]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/dax.c
ubifs: rename_whiteout: Fix double free for whiteout_ui->data
[mirror_ubuntu-focal-kernel.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634
MW
13#include <linux/fs.h>
14#include <linux/genhd.h>
f7ca90b1
MW
15#include <linux/highmem.h>
16#include <linux/memcontrol.h>
17#include <linux/mm.h>
d475c634 18#include <linux/mutex.h>
9973c98e 19#include <linux/pagevec.h>
289c6aed 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
d475c634 22#include <linux/uio.h>
f7ca90b1 23#include <linux/vmstat.h>
34c0fd54 24#include <linux/pfn_t.h>
0e749e54 25#include <linux/sizes.h>
4b4bb46d 26#include <linux/mmu_notifier.h>
a254e568 27#include <linux/iomap.h>
11cf9d86 28#include <asm/pgalloc.h>
d475c634 29
282a8e03
RZ
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
cfc93c6c
MW
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
ac401cc7
JK
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
917f3452
RZ
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 51
cfc93c6c
MW
52/* The order of a PMD entry */
53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
527b19d0 67/*
3159f943
MW
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
527b19d0
RZ
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
3159f943
MW
77#define DAX_SHIFT (4)
78#define DAX_LOCKED (1UL << 0)
79#define DAX_PMD (1UL << 1)
80#define DAX_ZERO_PAGE (1UL << 2)
81#define DAX_EMPTY (1UL << 3)
527b19d0 82
a77d19f4 83static unsigned long dax_to_pfn(void *entry)
527b19d0 84{
3159f943 85 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
86}
87
9f32d221
MW
88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89{
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91}
92
cfc93c6c
MW
93static bool dax_is_locked(void *entry)
94{
95 return xa_to_value(entry) & DAX_LOCKED;
96}
97
a77d19f4 98static unsigned int dax_entry_order(void *entry)
527b19d0 99{
3159f943 100 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 101 return PMD_ORDER;
527b19d0
RZ
102 return 0;
103}
104
fda490d3 105static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 106{
3159f943 107 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
108}
109
fda490d3 110static bool dax_is_pte_entry(void *entry)
d475c634 111{
3159f943 112 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
113}
114
642261ac 115static int dax_is_zero_entry(void *entry)
d475c634 116{
3159f943 117 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
118}
119
642261ac 120static int dax_is_empty_entry(void *entry)
b2e0d162 121{
3159f943 122 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
123}
124
23c84eb7
MWO
125/*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129static bool dax_is_conflict(void *entry)
130{
131 return entry == XA_RETRY_ENTRY;
132}
133
ac401cc7 134/*
a77d19f4 135 * DAX page cache entry locking
ac401cc7
JK
136 */
137struct exceptional_entry_key {
ec4907ff 138 struct xarray *xa;
63e95b5c 139 pgoff_t entry_start;
ac401cc7
JK
140};
141
142struct wait_exceptional_entry_queue {
ac6424b9 143 wait_queue_entry_t wait;
ac401cc7
JK
144 struct exceptional_entry_key key;
145};
146
b15cd800
MW
147static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
149{
150 unsigned long hash;
b15cd800 151 unsigned long index = xas->xa_index;
63e95b5c
RZ
152
153 /*
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
157 */
642261ac 158 if (dax_is_pmd_entry(entry))
917f3452 159 index &= ~PG_PMD_COLOUR;
b15cd800 160 key->xa = xas->xa;
63e95b5c
RZ
161 key->entry_start = index;
162
b15cd800 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
164 return wait_table + hash;
165}
166
ec4907ff
MW
167static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
169{
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
ec4907ff 174 if (key->xa != ewait->key.xa ||
63e95b5c 175 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178}
179
e30331ff 180/*
b93b0163
MW
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
e30331ff 184 */
b15cd800 185static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
186{
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
189
b15cd800 190 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
191
192 /*
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 194 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
197 */
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200}
201
cfc93c6c
MW
202/*
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
23c84eb7
MWO
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
cfc93c6c
MW
209 *
210 * Must be called with the i_pages lock held.
211 */
23c84eb7 212static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
cfc93c6c
MW
213{
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
217
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
220
221 for (;;) {
0e40de03 222 entry = xas_find_conflict(xas);
6370740e
DW
223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224 return entry;
23c84eb7
MWO
225 if (dax_entry_order(entry) < order)
226 return XA_RETRY_ENTRY;
6370740e 227 if (!dax_is_locked(entry))
cfc93c6c
MW
228 return entry;
229
b15cd800 230 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
231 prepare_to_wait_exclusive(wq, &ewait.wait,
232 TASK_UNINTERRUPTIBLE);
233 xas_unlock_irq(xas);
234 xas_reset(xas);
235 schedule();
236 finish_wait(wq, &ewait.wait);
237 xas_lock_irq(xas);
238 }
239}
240
55e56f06
MW
241/*
242 * The only thing keeping the address space around is the i_pages lock
243 * (it's cycled in clear_inode() after removing the entries from i_pages)
244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
245 */
246static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247{
248 struct wait_exceptional_entry_queue ewait;
249 wait_queue_head_t *wq;
250
251 init_wait(&ewait.wait);
252 ewait.wait.func = wake_exceptional_entry_func;
253
254 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
255 /*
256 * Unlike get_unlocked_entry() there is no guarantee that this
257 * path ever successfully retrieves an unlocked entry before an
258 * inode dies. Perform a non-exclusive wait in case this path
259 * never successfully performs its own wake up.
260 */
261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
262 xas_unlock_irq(xas);
263 schedule();
264 finish_wait(wq, &ewait.wait);
55e56f06
MW
265}
266
cfc93c6c
MW
267static void put_unlocked_entry(struct xa_state *xas, void *entry)
268{
269 /* If we were the only waiter woken, wake the next one */
61c30c98 270 if (entry && !dax_is_conflict(entry))
cfc93c6c
MW
271 dax_wake_entry(xas, entry, false);
272}
273
274/*
275 * We used the xa_state to get the entry, but then we locked the entry and
276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
277 * before use.
278 */
279static void dax_unlock_entry(struct xa_state *xas, void *entry)
280{
281 void *old;
282
7ae2ea7d 283 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
284 xas_reset(xas);
285 xas_lock_irq(xas);
286 old = xas_store(xas, entry);
287 xas_unlock_irq(xas);
288 BUG_ON(!dax_is_locked(old));
289 dax_wake_entry(xas, entry, false);
290}
291
292/*
293 * Return: The entry stored at this location before it was locked.
294 */
295static void *dax_lock_entry(struct xa_state *xas, void *entry)
296{
297 unsigned long v = xa_to_value(entry);
298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299}
300
d2c997c0
DW
301static unsigned long dax_entry_size(void *entry)
302{
303 if (dax_is_zero_entry(entry))
304 return 0;
305 else if (dax_is_empty_entry(entry))
306 return 0;
307 else if (dax_is_pmd_entry(entry))
308 return PMD_SIZE;
309 else
310 return PAGE_SIZE;
311}
312
a77d19f4 313static unsigned long dax_end_pfn(void *entry)
d2c997c0 314{
a77d19f4 315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
316}
317
318/*
319 * Iterate through all mapped pfns represented by an entry, i.e. skip
320 * 'empty' and 'zero' entries.
321 */
322#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
323 for (pfn = dax_to_pfn(entry); \
324 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 325
73449daf
DW
326/*
327 * TODO: for reflink+dax we need a way to associate a single page with
328 * multiple address_space instances at different linear_page_index()
329 * offsets.
330 */
331static void dax_associate_entry(void *entry, struct address_space *mapping,
332 struct vm_area_struct *vma, unsigned long address)
d2c997c0 333{
73449daf
DW
334 unsigned long size = dax_entry_size(entry), pfn, index;
335 int i = 0;
d2c997c0
DW
336
337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338 return;
339
73449daf 340 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
341 for_each_mapped_pfn(entry, pfn) {
342 struct page *page = pfn_to_page(pfn);
343
344 WARN_ON_ONCE(page->mapping);
345 page->mapping = mapping;
73449daf 346 page->index = index + i++;
d2c997c0
DW
347 }
348}
349
350static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351 bool trunc)
352{
353 unsigned long pfn;
354
355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356 return;
357
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
360
361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363 page->mapping = NULL;
73449daf 364 page->index = 0;
d2c997c0
DW
365 }
366}
367
5fac7408
DW
368static struct page *dax_busy_page(void *entry)
369{
370 unsigned long pfn;
371
372 for_each_mapped_pfn(entry, pfn) {
373 struct page *page = pfn_to_page(pfn);
374
375 if (page_ref_count(page) > 1)
376 return page;
377 }
378 return NULL;
379}
380
c5bbd451
MW
381/*
382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383 * @page: The page whose entry we want to lock
384 *
385 * Context: Process context.
27359fd6
MW
386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387 * not be locked.
c5bbd451 388 */
27359fd6 389dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 390{
9f32d221
MW
391 XA_STATE(xas, NULL, 0);
392 void *entry;
c2a7d2a1 393
c5bbd451
MW
394 /* Ensure page->mapping isn't freed while we look at it */
395 rcu_read_lock();
c2a7d2a1 396 for (;;) {
9f32d221 397 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 398
27359fd6 399 entry = NULL;
c93db7bb 400 if (!mapping || !dax_mapping(mapping))
c5bbd451 401 break;
c2a7d2a1
DW
402
403 /*
404 * In the device-dax case there's no need to lock, a
405 * struct dev_pagemap pin is sufficient to keep the
406 * inode alive, and we assume we have dev_pagemap pin
407 * otherwise we would not have a valid pfn_to_page()
408 * translation.
409 */
27359fd6 410 entry = (void *)~0UL;
9f32d221 411 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 412 break;
c2a7d2a1 413
9f32d221
MW
414 xas.xa = &mapping->i_pages;
415 xas_lock_irq(&xas);
c2a7d2a1 416 if (mapping != page->mapping) {
9f32d221 417 xas_unlock_irq(&xas);
c2a7d2a1
DW
418 continue;
419 }
9f32d221
MW
420 xas_set(&xas, page->index);
421 entry = xas_load(&xas);
422 if (dax_is_locked(entry)) {
c5bbd451 423 rcu_read_unlock();
55e56f06 424 wait_entry_unlocked(&xas, entry);
c5bbd451 425 rcu_read_lock();
6d7cd8c1 426 continue;
c2a7d2a1 427 }
9f32d221
MW
428 dax_lock_entry(&xas, entry);
429 xas_unlock_irq(&xas);
c5bbd451 430 break;
c2a7d2a1 431 }
c5bbd451 432 rcu_read_unlock();
27359fd6 433 return (dax_entry_t)entry;
c2a7d2a1
DW
434}
435
27359fd6 436void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
437{
438 struct address_space *mapping = page->mapping;
9f32d221 439 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 440
9f32d221 441 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
442 return;
443
27359fd6 444 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
445}
446
ac401cc7 447/*
a77d19f4
MW
448 * Find page cache entry at given index. If it is a DAX entry, return it
449 * with the entry locked. If the page cache doesn't contain an entry at
450 * that index, add a locked empty entry.
ac401cc7 451 *
3159f943 452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
453 * either return that locked entry or will return VM_FAULT_FALLBACK.
454 * This will happen if there are any PTE entries within the PMD range
455 * that we are requesting.
642261ac 456 *
b15cd800
MW
457 * We always favor PTE entries over PMD entries. There isn't a flow where we
458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
459 * insertion will fail if it finds any PTE entries already in the tree, and a
460 * PTE insertion will cause an existing PMD entry to be unmapped and
461 * downgraded to PTE entries. This happens for both PMD zero pages as
462 * well as PMD empty entries.
642261ac 463 *
b15cd800
MW
464 * The exception to this downgrade path is for PMD entries that have
465 * real storage backing them. We will leave these real PMD entries in
466 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 467 *
ac401cc7
JK
468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469 * persistent memory the benefit is doubtful. We can add that later if we can
470 * show it helps.
b15cd800
MW
471 *
472 * On error, this function does not return an ERR_PTR. Instead it returns
473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
474 * overlap with xarray value entries.
ac401cc7 475 */
b15cd800 476static void *grab_mapping_entry(struct xa_state *xas,
23c84eb7 477 struct address_space *mapping, unsigned int order)
ac401cc7 478{
b15cd800 479 unsigned long index = xas->xa_index;
cc60c617 480 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
b15cd800 481 void *entry;
642261ac 482
b15cd800 483retry:
cc60c617 484 pmd_downgrade = false;
b15cd800 485 xas_lock_irq(xas);
23c84eb7 486 entry = get_unlocked_entry(xas, order);
91d25ba8 487
642261ac 488 if (entry) {
23c84eb7
MWO
489 if (dax_is_conflict(entry))
490 goto fallback;
0e40de03 491 if (!xa_is_value(entry)) {
b15cd800
MW
492 xas_set_err(xas, EIO);
493 goto out_unlock;
494 }
495
23c84eb7 496 if (order == 0) {
91d25ba8 497 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
498 (dax_is_zero_entry(entry) ||
499 dax_is_empty_entry(entry))) {
500 pmd_downgrade = true;
501 }
502 }
503 }
504
b15cd800
MW
505 if (pmd_downgrade) {
506 /*
507 * Make sure 'entry' remains valid while we drop
508 * the i_pages lock.
509 */
510 dax_lock_entry(xas, entry);
642261ac 511
642261ac
RZ
512 /*
513 * Besides huge zero pages the only other thing that gets
514 * downgraded are empty entries which don't need to be
515 * unmapped.
516 */
b15cd800
MW
517 if (dax_is_zero_entry(entry)) {
518 xas_unlock_irq(xas);
519 unmap_mapping_pages(mapping,
520 xas->xa_index & ~PG_PMD_COLOUR,
521 PG_PMD_NR, false);
522 xas_reset(xas);
523 xas_lock_irq(xas);
e11f8b7b
RZ
524 }
525
b15cd800
MW
526 dax_disassociate_entry(entry, mapping, false);
527 xas_store(xas, NULL); /* undo the PMD join */
528 dax_wake_entry(xas, entry, true);
529 mapping->nrexceptional--;
530 entry = NULL;
531 xas_set(xas, index);
532 }
642261ac 533
b15cd800
MW
534 if (entry) {
535 dax_lock_entry(xas, entry);
536 } else {
23c84eb7
MWO
537 unsigned long flags = DAX_EMPTY;
538
539 if (order > 0)
540 flags |= DAX_PMD;
541 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
b15cd800
MW
542 dax_lock_entry(xas, entry);
543 if (xas_error(xas))
544 goto out_unlock;
ac401cc7 545 mapping->nrexceptional++;
ac401cc7 546 }
b15cd800
MW
547
548out_unlock:
549 xas_unlock_irq(xas);
550 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
551 goto retry;
552 if (xas->xa_node == XA_ERROR(-ENOMEM))
553 return xa_mk_internal(VM_FAULT_OOM);
554 if (xas_error(xas))
555 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 556 return entry;
b15cd800
MW
557fallback:
558 xas_unlock_irq(xas);
559 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
560}
561
5fac7408
DW
562/**
563 * dax_layout_busy_page - find first pinned page in @mapping
564 * @mapping: address space to scan for a page with ref count > 1
565 *
566 * DAX requires ZONE_DEVICE mapped pages. These pages are never
567 * 'onlined' to the page allocator so they are considered idle when
568 * page->count == 1. A filesystem uses this interface to determine if
569 * any page in the mapping is busy, i.e. for DMA, or other
570 * get_user_pages() usages.
571 *
572 * It is expected that the filesystem is holding locks to block the
573 * establishment of new mappings in this address_space. I.e. it expects
574 * to be able to run unmap_mapping_range() and subsequently not race
575 * mapping_mapped() becoming true.
576 */
577struct page *dax_layout_busy_page(struct address_space *mapping)
578{
084a8990
MW
579 XA_STATE(xas, &mapping->i_pages, 0);
580 void *entry;
581 unsigned int scanned = 0;
5fac7408 582 struct page *page = NULL;
5fac7408
DW
583
584 /*
585 * In the 'limited' case get_user_pages() for dax is disabled.
586 */
587 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
588 return NULL;
589
590 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
591 return NULL;
592
5fac7408
DW
593 /*
594 * If we race get_user_pages_fast() here either we'll see the
084a8990 595 * elevated page count in the iteration and wait, or
5fac7408
DW
596 * get_user_pages_fast() will see that the page it took a reference
597 * against is no longer mapped in the page tables and bail to the
598 * get_user_pages() slow path. The slow path is protected by
599 * pte_lock() and pmd_lock(). New references are not taken without
600 * holding those locks, and unmap_mapping_range() will not zero the
601 * pte or pmd without holding the respective lock, so we are
602 * guaranteed to either see new references or prevent new
603 * references from being established.
604 */
d75996dd 605 unmap_mapping_range(mapping, 0, 0, 0);
5fac7408 606
084a8990
MW
607 xas_lock_irq(&xas);
608 xas_for_each(&xas, entry, ULONG_MAX) {
609 if (WARN_ON_ONCE(!xa_is_value(entry)))
610 continue;
611 if (unlikely(dax_is_locked(entry)))
23c84eb7 612 entry = get_unlocked_entry(&xas, 0);
084a8990
MW
613 if (entry)
614 page = dax_busy_page(entry);
615 put_unlocked_entry(&xas, entry);
5fac7408
DW
616 if (page)
617 break;
084a8990
MW
618 if (++scanned % XA_CHECK_SCHED)
619 continue;
620
621 xas_pause(&xas);
622 xas_unlock_irq(&xas);
623 cond_resched();
624 xas_lock_irq(&xas);
5fac7408 625 }
084a8990 626 xas_unlock_irq(&xas);
5fac7408
DW
627 return page;
628}
629EXPORT_SYMBOL_GPL(dax_layout_busy_page);
630
a77d19f4 631static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
632 pgoff_t index, bool trunc)
633{
07f2d89c 634 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
635 int ret = 0;
636 void *entry;
c6dcf52c 637
07f2d89c 638 xas_lock_irq(&xas);
23c84eb7 639 entry = get_unlocked_entry(&xas, 0);
3159f943 640 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
641 goto out;
642 if (!trunc &&
07f2d89c
MW
643 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
644 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 645 goto out;
d2c997c0 646 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 647 xas_store(&xas, NULL);
c6dcf52c
JK
648 mapping->nrexceptional--;
649 ret = 1;
650out:
07f2d89c
MW
651 put_unlocked_entry(&xas, entry);
652 xas_unlock_irq(&xas);
c6dcf52c
JK
653 return ret;
654}
07f2d89c 655
ac401cc7 656/*
3159f943
MW
657 * Delete DAX entry at @index from @mapping. Wait for it
658 * to be unlocked before deleting it.
ac401cc7
JK
659 */
660int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
661{
a77d19f4 662 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 663
ac401cc7
JK
664 /*
665 * This gets called from truncate / punch_hole path. As such, the caller
666 * must hold locks protecting against concurrent modifications of the
a77d19f4 667 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 668 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
669 * at that index as well...
670 */
c6dcf52c
JK
671 WARN_ON_ONCE(!ret);
672 return ret;
673}
674
c6dcf52c 675/*
3159f943 676 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
677 */
678int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
679 pgoff_t index)
680{
a77d19f4 681 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
682}
683
cccbce67
DW
684static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
685 sector_t sector, size_t size, struct page *to,
686 unsigned long vaddr)
f7ca90b1 687{
cccbce67
DW
688 void *vto, *kaddr;
689 pgoff_t pgoff;
cccbce67
DW
690 long rc;
691 int id;
692
693 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
694 if (rc)
695 return rc;
696
697 id = dax_read_lock();
86ed913b 698 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
699 if (rc < 0) {
700 dax_read_unlock(id);
701 return rc;
702 }
f7ca90b1 703 vto = kmap_atomic(to);
cccbce67 704 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 705 kunmap_atomic(vto);
cccbce67 706 dax_read_unlock(id);
f7ca90b1
MW
707 return 0;
708}
709
642261ac
RZ
710/*
711 * By this point grab_mapping_entry() has ensured that we have a locked entry
712 * of the appropriate size so we don't have to worry about downgrading PMDs to
713 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
714 * already in the tree, we will skip the insertion and just dirty the PMD as
715 * appropriate.
716 */
b15cd800
MW
717static void *dax_insert_entry(struct xa_state *xas,
718 struct address_space *mapping, struct vm_fault *vmf,
719 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 720{
b15cd800 721 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 722
f5b7b748 723 if (dirty)
d2b2a28e 724 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 725
3159f943 726 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 727 unsigned long index = xas->xa_index;
91d25ba8
RZ
728 /* we are replacing a zero page with block mapping */
729 if (dax_is_pmd_entry(entry))
977fbdcd 730 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 731 PG_PMD_NR, false);
91d25ba8 732 else /* pte entry */
b15cd800 733 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
734 }
735
b15cd800
MW
736 xas_reset(xas);
737 xas_lock_irq(xas);
1571c029
JK
738 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
739 void *old;
740
d2c997c0 741 dax_disassociate_entry(entry, mapping, false);
73449daf 742 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
642261ac 743 /*
a77d19f4 744 * Only swap our new entry into the page cache if the current
642261ac 745 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 746 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
747 * means that if we are trying to insert a PTE and the
748 * existing entry is a PMD, we will just leave the PMD in the
749 * tree and dirty it if necessary.
750 */
1571c029 751 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
752 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
753 DAX_LOCKED));
91d25ba8 754 entry = new_entry;
b15cd800
MW
755 } else {
756 xas_load(xas); /* Walk the xa_state */
9973c98e 757 }
91d25ba8 758
f5b7b748 759 if (dirty)
b15cd800 760 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 761
b15cd800 762 xas_unlock_irq(xas);
91d25ba8 763 return entry;
9973c98e
RZ
764}
765
a77d19f4
MW
766static inline
767unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
768{
769 unsigned long address;
770
771 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
772 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
773 return address;
774}
775
776/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
777static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
778 unsigned long pfn)
4b4bb46d
JK
779{
780 struct vm_area_struct *vma;
f729c8c9
RZ
781 pte_t pte, *ptep = NULL;
782 pmd_t *pmdp = NULL;
4b4bb46d 783 spinlock_t *ptl;
4b4bb46d
JK
784
785 i_mmap_lock_read(mapping);
786 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
ac46d4f3
JG
787 struct mmu_notifier_range range;
788 unsigned long address;
4b4bb46d
JK
789
790 cond_resched();
791
792 if (!(vma->vm_flags & VM_SHARED))
793 continue;
794
795 address = pgoff_address(index, vma);
a4d1a885
JG
796
797 /*
5f369a12 798 * follow_invalidate_pte() will use the range to call
6e8a02dc
CH
799 * mmu_notifier_invalidate_range_start() on our behalf before
800 * taking any lock.
a4d1a885 801 */
5f369a12
PB
802 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
803 &pmdp, &ptl))
4b4bb46d 804 continue;
4b4bb46d 805
0f10851e
JG
806 /*
807 * No need to call mmu_notifier_invalidate_range() as we are
808 * downgrading page table protection not changing it to point
809 * to a new page.
810 *
ad56b738 811 * See Documentation/vm/mmu_notifier.rst
0f10851e 812 */
f729c8c9
RZ
813 if (pmdp) {
814#ifdef CONFIG_FS_DAX_PMD
815 pmd_t pmd;
816
817 if (pfn != pmd_pfn(*pmdp))
818 goto unlock_pmd;
f6f37321 819 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
820 goto unlock_pmd;
821
822 flush_cache_page(vma, address, pfn);
024eee0e 823 pmd = pmdp_invalidate(vma, address, pmdp);
f729c8c9
RZ
824 pmd = pmd_wrprotect(pmd);
825 pmd = pmd_mkclean(pmd);
826 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 827unlock_pmd:
f729c8c9 828#endif
ee190ca6 829 spin_unlock(ptl);
f729c8c9
RZ
830 } else {
831 if (pfn != pte_pfn(*ptep))
832 goto unlock_pte;
833 if (!pte_dirty(*ptep) && !pte_write(*ptep))
834 goto unlock_pte;
835
836 flush_cache_page(vma, address, pfn);
837 pte = ptep_clear_flush(vma, address, ptep);
838 pte = pte_wrprotect(pte);
839 pte = pte_mkclean(pte);
840 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
841unlock_pte:
842 pte_unmap_unlock(ptep, ptl);
843 }
4b4bb46d 844
ac46d4f3 845 mmu_notifier_invalidate_range_end(&range);
4b4bb46d
JK
846 }
847 i_mmap_unlock_read(mapping);
848}
849
9fc747f6
MW
850static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
851 struct address_space *mapping, void *entry)
9973c98e 852{
e4b3448b 853 unsigned long pfn, index, count;
3fe0791c 854 long ret = 0;
9973c98e 855
9973c98e 856 /*
a6abc2c0
JK
857 * A page got tagged dirty in DAX mapping? Something is seriously
858 * wrong.
9973c98e 859 */
3159f943 860 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 861 return -EIO;
9973c98e 862
9fc747f6
MW
863 if (unlikely(dax_is_locked(entry))) {
864 void *old_entry = entry;
865
23c84eb7 866 entry = get_unlocked_entry(xas, 0);
9fc747f6
MW
867
868 /* Entry got punched out / reallocated? */
869 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
870 goto put_unlocked;
871 /*
872 * Entry got reallocated elsewhere? No need to writeback.
873 * We have to compare pfns as we must not bail out due to
874 * difference in lockbit or entry type.
875 */
876 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
877 goto put_unlocked;
878 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
879 dax_is_zero_entry(entry))) {
880 ret = -EIO;
881 goto put_unlocked;
882 }
883
884 /* Another fsync thread may have already done this entry */
885 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
886 goto put_unlocked;
9973c98e
RZ
887 }
888
a6abc2c0 889 /* Lock the entry to serialize with page faults */
9fc747f6
MW
890 dax_lock_entry(xas, entry);
891
a6abc2c0
JK
892 /*
893 * We can clear the tag now but we have to be careful so that concurrent
894 * dax_writeback_one() calls for the same index cannot finish before we
895 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
896 * at the entry only under the i_pages lock and once they do that
897 * they will see the entry locked and wait for it to unlock.
a6abc2c0 898 */
9fc747f6
MW
899 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
900 xas_unlock_irq(xas);
a6abc2c0 901
642261ac 902 /*
e4b3448b
MW
903 * If dax_writeback_mapping_range() was given a wbc->range_start
904 * in the middle of a PMD, the 'index' we use needs to be
905 * aligned to the start of the PMD.
3fe0791c
DW
906 * This allows us to flush for PMD_SIZE and not have to worry about
907 * partial PMD writebacks.
642261ac 908 */
a77d19f4 909 pfn = dax_to_pfn(entry);
e4b3448b
MW
910 count = 1UL << dax_entry_order(entry);
911 index = xas->xa_index & ~(count - 1);
cccbce67 912
e4b3448b
MW
913 dax_entry_mkclean(mapping, index, pfn);
914 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
915 /*
916 * After we have flushed the cache, we can clear the dirty tag. There
917 * cannot be new dirty data in the pfn after the flush has completed as
918 * the pfn mappings are writeprotected and fault waits for mapping
919 * entry lock.
920 */
9fc747f6
MW
921 xas_reset(xas);
922 xas_lock_irq(xas);
923 xas_store(xas, entry);
924 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
925 dax_wake_entry(xas, entry, false);
926
e4b3448b 927 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
928 return ret;
929
a6abc2c0 930 put_unlocked:
9fc747f6 931 put_unlocked_entry(xas, entry);
9973c98e
RZ
932 return ret;
933}
934
935/*
936 * Flush the mapping to the persistent domain within the byte range of [start,
937 * end]. This is required by data integrity operations to ensure file data is
938 * on persistent storage prior to completion of the operation.
939 */
7f6d5b52
RZ
940int dax_writeback_mapping_range(struct address_space *mapping,
941 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 942{
9fc747f6 943 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 944 struct inode *inode = mapping->host;
9fc747f6 945 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 946 struct dax_device *dax_dev;
9fc747f6
MW
947 void *entry;
948 int ret = 0;
949 unsigned int scanned = 0;
9973c98e
RZ
950
951 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
952 return -EIO;
953
7f6d5b52
RZ
954 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
955 return 0;
956
cccbce67
DW
957 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
958 if (!dax_dev)
959 return -EIO;
960
9fc747f6 961 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 962
9fc747f6 963 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 964
9fc747f6
MW
965 xas_lock_irq(&xas);
966 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
967 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
968 if (ret < 0) {
969 mapping_set_error(mapping, ret);
9973c98e 970 break;
9973c98e 971 }
9fc747f6
MW
972 if (++scanned % XA_CHECK_SCHED)
973 continue;
974
975 xas_pause(&xas);
976 xas_unlock_irq(&xas);
977 cond_resched();
978 xas_lock_irq(&xas);
9973c98e 979 }
9fc747f6 980 xas_unlock_irq(&xas);
cccbce67 981 put_dax(dax_dev);
9fc747f6
MW
982 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
983 return ret;
9973c98e
RZ
984}
985EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
986
31a6f1a6 987static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 988{
a3841f94 989 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
990}
991
5e161e40
JK
992static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
993 pfn_t *pfnp)
f7ca90b1 994{
31a6f1a6 995 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
996 pgoff_t pgoff;
997 int id, rc;
5e161e40 998 long length;
f7ca90b1 999
5e161e40 1000 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
1001 if (rc)
1002 return rc;
cccbce67 1003 id = dax_read_lock();
5e161e40 1004 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1005 NULL, pfnp);
5e161e40
JK
1006 if (length < 0) {
1007 rc = length;
1008 goto out;
cccbce67 1009 }
5e161e40
JK
1010 rc = -EINVAL;
1011 if (PFN_PHYS(length) < size)
1012 goto out;
1013 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1014 goto out;
1015 /* For larger pages we need devmap */
1016 if (length > 1 && !pfn_t_devmap(*pfnp))
1017 goto out;
1018 rc = 0;
1019out:
cccbce67 1020 dax_read_unlock(id);
5e161e40 1021 return rc;
0e3b210c 1022}
0e3b210c 1023
e30331ff 1024/*
91d25ba8
RZ
1025 * The user has performed a load from a hole in the file. Allocating a new
1026 * page in the file would cause excessive storage usage for workloads with
1027 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1028 * If this page is ever written to we will re-fault and change the mapping to
1029 * point to real DAX storage instead.
e30331ff 1030 */
b15cd800
MW
1031static vm_fault_t dax_load_hole(struct xa_state *xas,
1032 struct address_space *mapping, void **entry,
1033 struct vm_fault *vmf)
e30331ff
RZ
1034{
1035 struct inode *inode = mapping->host;
91d25ba8 1036 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1037 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1038 vm_fault_t ret;
e30331ff 1039
b15cd800 1040 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1041 DAX_ZERO_PAGE, false);
1042
ab77dab4 1043 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1044 trace_dax_load_hole(inode, vmf, ret);
1045 return ret;
1046}
1047
4b0228fa
VV
1048static bool dax_range_is_aligned(struct block_device *bdev,
1049 unsigned int offset, unsigned int length)
1050{
1051 unsigned short sector_size = bdev_logical_block_size(bdev);
1052
1053 if (!IS_ALIGNED(offset, sector_size))
1054 return false;
1055 if (!IS_ALIGNED(length, sector_size))
1056 return false;
1057
1058 return true;
1059}
1060
cccbce67
DW
1061int __dax_zero_page_range(struct block_device *bdev,
1062 struct dax_device *dax_dev, sector_t sector,
1063 unsigned int offset, unsigned int size)
679c8bd3 1064{
cccbce67
DW
1065 if (dax_range_is_aligned(bdev, offset, size)) {
1066 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1067
1068 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1069 size >> 9, GFP_NOFS, 0);
4b0228fa 1070 } else {
cccbce67
DW
1071 pgoff_t pgoff;
1072 long rc, id;
1073 void *kaddr;
cccbce67 1074
e84b83b9 1075 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1076 if (rc)
1077 return rc;
1078
1079 id = dax_read_lock();
86ed913b 1080 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1081 if (rc < 0) {
1082 dax_read_unlock(id);
1083 return rc;
1084 }
81f55870 1085 memset(kaddr + offset, 0, size);
c3ca015f 1086 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1087 dax_read_unlock(id);
4b0228fa 1088 }
679c8bd3
CH
1089 return 0;
1090}
1091EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1092
a254e568 1093static loff_t
11c59c92 1094dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1095 struct iomap *iomap)
1096{
cccbce67
DW
1097 struct block_device *bdev = iomap->bdev;
1098 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1099 struct iov_iter *iter = data;
1100 loff_t end = pos + length, done = 0;
1101 ssize_t ret = 0;
a77d4786 1102 size_t xfer;
cccbce67 1103 int id;
a254e568
CH
1104
1105 if (iov_iter_rw(iter) == READ) {
1106 end = min(end, i_size_read(inode));
1107 if (pos >= end)
1108 return 0;
1109
1110 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1111 return iov_iter_zero(min(length, end - pos), iter);
1112 }
1113
1114 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1115 return -EIO;
1116
e3fce68c
JK
1117 /*
1118 * Write can allocate block for an area which has a hole page mapped
1119 * into page tables. We have to tear down these mappings so that data
1120 * written by write(2) is visible in mmap.
1121 */
cd656375 1122 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1123 invalidate_inode_pages2_range(inode->i_mapping,
1124 pos >> PAGE_SHIFT,
1125 (end - 1) >> PAGE_SHIFT);
1126 }
1127
cccbce67 1128 id = dax_read_lock();
a254e568
CH
1129 while (pos < end) {
1130 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1131 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1132 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1133 ssize_t map_len;
cccbce67
DW
1134 pgoff_t pgoff;
1135 void *kaddr;
a254e568 1136
d1908f52
MH
1137 if (fatal_signal_pending(current)) {
1138 ret = -EINTR;
1139 break;
1140 }
1141
cccbce67
DW
1142 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1143 if (ret)
1144 break;
1145
1146 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1147 &kaddr, NULL);
a254e568
CH
1148 if (map_len < 0) {
1149 ret = map_len;
1150 break;
1151 }
1152
cccbce67
DW
1153 map_len = PFN_PHYS(map_len);
1154 kaddr += offset;
a254e568
CH
1155 map_len -= offset;
1156 if (map_len > end - pos)
1157 map_len = end - pos;
1158
a2e050f5
RZ
1159 /*
1160 * The userspace address for the memory copy has already been
1161 * validated via access_ok() in either vfs_read() or
1162 * vfs_write(), depending on which operation we are doing.
1163 */
a254e568 1164 if (iov_iter_rw(iter) == WRITE)
a77d4786 1165 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1166 map_len, iter);
a254e568 1167 else
a77d4786 1168 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1169 map_len, iter);
a254e568 1170
a77d4786
DW
1171 pos += xfer;
1172 length -= xfer;
1173 done += xfer;
1174
1175 if (xfer == 0)
1176 ret = -EFAULT;
1177 if (xfer < map_len)
1178 break;
a254e568 1179 }
cccbce67 1180 dax_read_unlock(id);
a254e568
CH
1181
1182 return done ? done : ret;
1183}
1184
1185/**
11c59c92 1186 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1187 * @iocb: The control block for this I/O
1188 * @iter: The addresses to do I/O from or to
1189 * @ops: iomap ops passed from the file system
1190 *
1191 * This function performs read and write operations to directly mapped
1192 * persistent memory. The callers needs to take care of read/write exclusion
1193 * and evicting any page cache pages in the region under I/O.
1194 */
1195ssize_t
11c59c92 1196dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1197 const struct iomap_ops *ops)
a254e568
CH
1198{
1199 struct address_space *mapping = iocb->ki_filp->f_mapping;
1200 struct inode *inode = mapping->host;
1201 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1202 unsigned flags = 0;
1203
168316db 1204 if (iov_iter_rw(iter) == WRITE) {
9ffbe8ac 1205 lockdep_assert_held_write(&inode->i_rwsem);
a254e568 1206 flags |= IOMAP_WRITE;
168316db
CH
1207 } else {
1208 lockdep_assert_held(&inode->i_rwsem);
1209 }
a254e568 1210
8123ffde
JM
1211 if (iocb->ki_flags & IOCB_NOWAIT)
1212 flags |= IOMAP_NOWAIT;
1213
a254e568
CH
1214 while (iov_iter_count(iter)) {
1215 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1216 iter, dax_iomap_actor);
a254e568
CH
1217 if (ret <= 0)
1218 break;
1219 pos += ret;
1220 done += ret;
1221 }
1222
1223 iocb->ki_pos += done;
1224 return done ? done : ret;
1225}
11c59c92 1226EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1227
ab77dab4 1228static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1229{
1230 if (error == 0)
1231 return VM_FAULT_NOPAGE;
c9aed74e 1232 return vmf_error(error);
9f141d6e
JK
1233}
1234
aaa422c4
DW
1235/*
1236 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1237 * flushed on write-faults (non-cow), but not read-faults.
1238 */
1239static bool dax_fault_is_synchronous(unsigned long flags,
1240 struct vm_area_struct *vma, struct iomap *iomap)
1241{
1242 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1243 && (iomap->flags & IOMAP_F_DIRTY);
1244}
1245
ab77dab4 1246static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1247 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1248{
a0987ad5
JK
1249 struct vm_area_struct *vma = vmf->vma;
1250 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1251 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1252 struct inode *inode = mapping->host;
1a29d85e 1253 unsigned long vaddr = vmf->address;
a7d73fe6 1254 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1255 struct iomap iomap = { 0 };
9484ab1b 1256 unsigned flags = IOMAP_FAULT;
a7d73fe6 1257 int error, major = 0;
d2c43ef1 1258 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1259 bool sync;
ab77dab4 1260 vm_fault_t ret = 0;
a7d73fe6 1261 void *entry;
1b5a1cb2 1262 pfn_t pfn;
a7d73fe6 1263
ab77dab4 1264 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1265 /*
1266 * Check whether offset isn't beyond end of file now. Caller is supposed
1267 * to hold locks serializing us with truncate / punch hole so this is
1268 * a reliable test.
1269 */
a9c42b33 1270 if (pos >= i_size_read(inode)) {
ab77dab4 1271 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1272 goto out;
1273 }
a7d73fe6 1274
d2c43ef1 1275 if (write && !vmf->cow_page)
a7d73fe6
CH
1276 flags |= IOMAP_WRITE;
1277
b15cd800
MW
1278 entry = grab_mapping_entry(&xas, mapping, 0);
1279 if (xa_is_internal(entry)) {
1280 ret = xa_to_internal(entry);
13e451fd
JK
1281 goto out;
1282 }
1283
e2093926
RZ
1284 /*
1285 * It is possible, particularly with mixed reads & writes to private
1286 * mappings, that we have raced with a PMD fault that overlaps with
1287 * the PTE we need to set up. If so just return and the fault will be
1288 * retried.
1289 */
1290 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1291 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1292 goto unlock_entry;
1293 }
1294
a7d73fe6
CH
1295 /*
1296 * Note that we don't bother to use iomap_apply here: DAX required
1297 * the file system block size to be equal the page size, which means
1298 * that we never have to deal with more than a single extent here.
1299 */
1300 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1301 if (iomap_errp)
1302 *iomap_errp = error;
a9c42b33 1303 if (error) {
ab77dab4 1304 ret = dax_fault_return(error);
13e451fd 1305 goto unlock_entry;
a9c42b33 1306 }
a7d73fe6 1307 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1308 error = -EIO; /* fs corruption? */
1309 goto error_finish_iomap;
a7d73fe6
CH
1310 }
1311
a7d73fe6 1312 if (vmf->cow_page) {
31a6f1a6
JK
1313 sector_t sector = dax_iomap_sector(&iomap, pos);
1314
a7d73fe6
CH
1315 switch (iomap.type) {
1316 case IOMAP_HOLE:
1317 case IOMAP_UNWRITTEN:
1318 clear_user_highpage(vmf->cow_page, vaddr);
1319 break;
1320 case IOMAP_MAPPED:
cccbce67
DW
1321 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1322 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1323 break;
1324 default:
1325 WARN_ON_ONCE(1);
1326 error = -EIO;
1327 break;
1328 }
1329
1330 if (error)
13e451fd 1331 goto error_finish_iomap;
b1aa812b
JK
1332
1333 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1334 ret = finish_fault(vmf);
1335 if (!ret)
1336 ret = VM_FAULT_DONE_COW;
13e451fd 1337 goto finish_iomap;
a7d73fe6
CH
1338 }
1339
aaa422c4 1340 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1341
a7d73fe6
CH
1342 switch (iomap.type) {
1343 case IOMAP_MAPPED:
1344 if (iomap.flags & IOMAP_F_NEW) {
1345 count_vm_event(PGMAJFAULT);
a0987ad5 1346 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1347 major = VM_FAULT_MAJOR;
1348 }
1b5a1cb2
JK
1349 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1350 if (error < 0)
1351 goto error_finish_iomap;
1352
b15cd800 1353 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1354 0, write && !sync);
1b5a1cb2 1355
caa51d26
JK
1356 /*
1357 * If we are doing synchronous page fault and inode needs fsync,
1358 * we can insert PTE into page tables only after that happens.
1359 * Skip insertion for now and return the pfn so that caller can
1360 * insert it after fsync is done.
1361 */
1362 if (sync) {
1363 if (WARN_ON_ONCE(!pfnp)) {
1364 error = -EIO;
1365 goto error_finish_iomap;
1366 }
1367 *pfnp = pfn;
ab77dab4 1368 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1369 goto finish_iomap;
1370 }
1b5a1cb2
JK
1371 trace_dax_insert_mapping(inode, vmf, entry);
1372 if (write)
ab77dab4 1373 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1374 else
ab77dab4 1375 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1376
ab77dab4 1377 goto finish_iomap;
a7d73fe6
CH
1378 case IOMAP_UNWRITTEN:
1379 case IOMAP_HOLE:
d2c43ef1 1380 if (!write) {
b15cd800 1381 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1382 goto finish_iomap;
1550290b 1383 }
a7d73fe6
CH
1384 /*FALLTHRU*/
1385 default:
1386 WARN_ON_ONCE(1);
1387 error = -EIO;
1388 break;
1389 }
1390
13e451fd 1391 error_finish_iomap:
ab77dab4 1392 ret = dax_fault_return(error);
9f141d6e
JK
1393 finish_iomap:
1394 if (ops->iomap_end) {
1395 int copied = PAGE_SIZE;
1396
ab77dab4 1397 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1398 copied = 0;
1399 /*
1400 * The fault is done by now and there's no way back (other
1401 * thread may be already happily using PTE we have installed).
1402 * Just ignore error from ->iomap_end since we cannot do much
1403 * with it.
1404 */
1405 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1406 }
13e451fd 1407 unlock_entry:
b15cd800 1408 dax_unlock_entry(&xas, entry);
13e451fd 1409 out:
ab77dab4
SJ
1410 trace_dax_pte_fault_done(inode, vmf, ret);
1411 return ret | major;
a7d73fe6 1412}
642261ac
RZ
1413
1414#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1415static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1416 struct iomap *iomap, void **entry)
642261ac 1417{
f4200391
DJ
1418 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1419 unsigned long pmd_addr = vmf->address & PMD_MASK;
11cf9d86 1420 struct vm_area_struct *vma = vmf->vma;
653b2ea3 1421 struct inode *inode = mapping->host;
11cf9d86 1422 pgtable_t pgtable = NULL;
642261ac
RZ
1423 struct page *zero_page;
1424 spinlock_t *ptl;
1425 pmd_t pmd_entry;
3fe0791c 1426 pfn_t pfn;
642261ac 1427
f4200391 1428 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1429
1430 if (unlikely(!zero_page))
653b2ea3 1431 goto fallback;
642261ac 1432
3fe0791c 1433 pfn = page_to_pfn_t(zero_page);
b15cd800 1434 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1435 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1436
11cf9d86
AK
1437 if (arch_needs_pgtable_deposit()) {
1438 pgtable = pte_alloc_one(vma->vm_mm);
1439 if (!pgtable)
1440 return VM_FAULT_OOM;
1441 }
1442
f4200391
DJ
1443 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1444 if (!pmd_none(*(vmf->pmd))) {
642261ac 1445 spin_unlock(ptl);
653b2ea3 1446 goto fallback;
642261ac
RZ
1447 }
1448
11cf9d86
AK
1449 if (pgtable) {
1450 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1451 mm_inc_nr_ptes(vma->vm_mm);
1452 }
f4200391 1453 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1454 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1455 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1456 spin_unlock(ptl);
b15cd800 1457 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1458 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1459
1460fallback:
11cf9d86
AK
1461 if (pgtable)
1462 pte_free(vma->vm_mm, pgtable);
b15cd800 1463 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1464 return VM_FAULT_FALLBACK;
642261ac
RZ
1465}
1466
ab77dab4 1467static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1468 const struct iomap_ops *ops)
642261ac 1469{
f4200391 1470 struct vm_area_struct *vma = vmf->vma;
642261ac 1471 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1472 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1473 unsigned long pmd_addr = vmf->address & PMD_MASK;
1474 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1475 bool sync;
9484ab1b 1476 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1477 struct inode *inode = mapping->host;
ab77dab4 1478 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1479 struct iomap iomap = { 0 };
b15cd800 1480 pgoff_t max_pgoff;
642261ac
RZ
1481 void *entry;
1482 loff_t pos;
1483 int error;
302a5e31 1484 pfn_t pfn;
642261ac 1485
282a8e03
RZ
1486 /*
1487 * Check whether offset isn't beyond end of file now. Caller is
1488 * supposed to hold locks serializing us with truncate / punch hole so
1489 * this is a reliable test.
1490 */
957ac8c4 1491 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1492
f4200391 1493 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1494
fffa281b
RZ
1495 /*
1496 * Make sure that the faulting address's PMD offset (color) matches
1497 * the PMD offset from the start of the file. This is necessary so
1498 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1499 * range in the page cache.
fffa281b
RZ
1500 */
1501 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1502 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1503 goto fallback;
1504
642261ac
RZ
1505 /* Fall back to PTEs if we're going to COW */
1506 if (write && !(vma->vm_flags & VM_SHARED))
1507 goto fallback;
1508
1509 /* If the PMD would extend outside the VMA */
1510 if (pmd_addr < vma->vm_start)
1511 goto fallback;
1512 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1513 goto fallback;
1514
b15cd800 1515 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1516 result = VM_FAULT_SIGBUS;
1517 goto out;
1518 }
642261ac
RZ
1519
1520 /* If the PMD would extend beyond the file size */
b15cd800 1521 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1522 goto fallback;
1523
876f2946 1524 /*
b15cd800
MW
1525 * grab_mapping_entry() will make sure we get an empty PMD entry,
1526 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1527 * entry is already in the array, for instance), it will return
1528 * VM_FAULT_FALLBACK.
876f2946 1529 */
23c84eb7 1530 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
b15cd800
MW
1531 if (xa_is_internal(entry)) {
1532 result = xa_to_internal(entry);
876f2946 1533 goto fallback;
b15cd800 1534 }
876f2946 1535
e2093926
RZ
1536 /*
1537 * It is possible, particularly with mixed reads & writes to private
1538 * mappings, that we have raced with a PTE fault that overlaps with
1539 * the PMD we need to set up. If so just return and the fault will be
1540 * retried.
1541 */
1542 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1543 !pmd_devmap(*vmf->pmd)) {
1544 result = 0;
1545 goto unlock_entry;
1546 }
1547
642261ac
RZ
1548 /*
1549 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1550 * setting up a mapping, so really we're using iomap_begin() as a way
1551 * to look up our filesystem block.
1552 */
b15cd800 1553 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1554 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1555 if (error)
876f2946 1556 goto unlock_entry;
9f141d6e 1557
642261ac
RZ
1558 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1559 goto finish_iomap;
1560
aaa422c4 1561 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1562
642261ac
RZ
1563 switch (iomap.type) {
1564 case IOMAP_MAPPED:
302a5e31
JK
1565 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1566 if (error < 0)
1567 goto finish_iomap;
1568
b15cd800 1569 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1570 DAX_PMD, write && !sync);
302a5e31 1571
caa51d26
JK
1572 /*
1573 * If we are doing synchronous page fault and inode needs fsync,
1574 * we can insert PMD into page tables only after that happens.
1575 * Skip insertion for now and return the pfn so that caller can
1576 * insert it after fsync is done.
1577 */
1578 if (sync) {
1579 if (WARN_ON_ONCE(!pfnp))
1580 goto finish_iomap;
1581 *pfnp = pfn;
1582 result = VM_FAULT_NEEDDSYNC;
1583 goto finish_iomap;
1584 }
1585
302a5e31 1586 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
fce86ff5 1587 result = vmf_insert_pfn_pmd(vmf, pfn, write);
642261ac
RZ
1588 break;
1589 case IOMAP_UNWRITTEN:
1590 case IOMAP_HOLE:
1591 if (WARN_ON_ONCE(write))
876f2946 1592 break;
b15cd800 1593 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1594 break;
1595 default:
1596 WARN_ON_ONCE(1);
1597 break;
1598 }
1599
1600 finish_iomap:
1601 if (ops->iomap_end) {
9f141d6e
JK
1602 int copied = PMD_SIZE;
1603
1604 if (result == VM_FAULT_FALLBACK)
1605 copied = 0;
1606 /*
1607 * The fault is done by now and there's no way back (other
1608 * thread may be already happily using PMD we have installed).
1609 * Just ignore error from ->iomap_end since we cannot do much
1610 * with it.
1611 */
1612 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1613 &iomap);
642261ac 1614 }
876f2946 1615 unlock_entry:
b15cd800 1616 dax_unlock_entry(&xas, entry);
642261ac
RZ
1617 fallback:
1618 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1619 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1620 count_vm_event(THP_FAULT_FALLBACK);
1621 }
282a8e03 1622out:
f4200391 1623 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1624 return result;
1625}
a2d58167 1626#else
ab77dab4 1627static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1628 const struct iomap_ops *ops)
a2d58167
DJ
1629{
1630 return VM_FAULT_FALLBACK;
1631}
642261ac 1632#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1633
1634/**
1635 * dax_iomap_fault - handle a page fault on a DAX file
1636 * @vmf: The description of the fault
cec04e8c 1637 * @pe_size: Size of the page to fault in
9a0dd422 1638 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1639 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1640 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1641 *
1642 * When a page fault occurs, filesystems may call this helper in
1643 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1644 * has done all the necessary locking for page fault to proceed
1645 * successfully.
1646 */
ab77dab4 1647vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1648 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1649{
c791ace1
DJ
1650 switch (pe_size) {
1651 case PE_SIZE_PTE:
c0b24625 1652 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1653 case PE_SIZE_PMD:
9a0dd422 1654 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1655 default:
1656 return VM_FAULT_FALLBACK;
1657 }
1658}
1659EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1660
a77d19f4 1661/*
71eab6df
JK
1662 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1663 * @vmf: The description of the fault
71eab6df 1664 * @pfn: PFN to insert
cfc93c6c 1665 * @order: Order of entry to insert.
71eab6df 1666 *
a77d19f4
MW
1667 * This function inserts a writeable PTE or PMD entry into the page tables
1668 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1669 */
cfc93c6c
MW
1670static vm_fault_t
1671dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1672{
1673 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1674 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1675 void *entry;
ab77dab4 1676 vm_fault_t ret;
71eab6df 1677
cfc93c6c 1678 xas_lock_irq(&xas);
23c84eb7 1679 entry = get_unlocked_entry(&xas, order);
71eab6df 1680 /* Did we race with someone splitting entry or so? */
23c84eb7
MWO
1681 if (!entry || dax_is_conflict(entry) ||
1682 (order == 0 && !dax_is_pte_entry(entry))) {
cfc93c6c
MW
1683 put_unlocked_entry(&xas, entry);
1684 xas_unlock_irq(&xas);
71eab6df
JK
1685 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1686 VM_FAULT_NOPAGE);
1687 return VM_FAULT_NOPAGE;
1688 }
cfc93c6c
MW
1689 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1690 dax_lock_entry(&xas, entry);
1691 xas_unlock_irq(&xas);
1692 if (order == 0)
ab77dab4 1693 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1694#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1695 else if (order == PMD_ORDER)
fce86ff5 1696 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1697#endif
cfc93c6c 1698 else
ab77dab4 1699 ret = VM_FAULT_FALLBACK;
cfc93c6c 1700 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1701 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1702 return ret;
71eab6df
JK
1703}
1704
1705/**
1706 * dax_finish_sync_fault - finish synchronous page fault
1707 * @vmf: The description of the fault
1708 * @pe_size: Size of entry to be inserted
1709 * @pfn: PFN to insert
1710 *
1711 * This function ensures that the file range touched by the page fault is
1712 * stored persistently on the media and handles inserting of appropriate page
1713 * table entry.
1714 */
ab77dab4
SJ
1715vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1716 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1717{
1718 int err;
1719 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1720 unsigned int order = pe_order(pe_size);
1721 size_t len = PAGE_SIZE << order;
71eab6df 1722
71eab6df
JK
1723 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1724 if (err)
1725 return VM_FAULT_SIGBUS;
cfc93c6c 1726 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1727}
1728EXPORT_SYMBOL_GPL(dax_finish_sync_fault);