]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/dax.c
Merge ath-next from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[mirror_ubuntu-jammy-kernel.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634
MW
13#include <linux/fs.h>
14#include <linux/genhd.h>
f7ca90b1
MW
15#include <linux/highmem.h>
16#include <linux/memcontrol.h>
17#include <linux/mm.h>
d475c634 18#include <linux/mutex.h>
9973c98e 19#include <linux/pagevec.h>
289c6aed 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
d475c634 22#include <linux/uio.h>
f7ca90b1 23#include <linux/vmstat.h>
34c0fd54 24#include <linux/pfn_t.h>
0e749e54 25#include <linux/sizes.h>
4b4bb46d 26#include <linux/mmu_notifier.h>
a254e568 27#include <linux/iomap.h>
11cf9d86 28#include <asm/pgalloc.h>
d475c634 29
282a8e03
RZ
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
cfc93c6c
MW
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
ac401cc7
JK
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
917f3452
RZ
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 51
cfc93c6c
MW
52/* The order of a PMD entry */
53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
527b19d0 67/*
3159f943
MW
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
527b19d0
RZ
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
3159f943
MW
77#define DAX_SHIFT (4)
78#define DAX_LOCKED (1UL << 0)
79#define DAX_PMD (1UL << 1)
80#define DAX_ZERO_PAGE (1UL << 2)
81#define DAX_EMPTY (1UL << 3)
527b19d0 82
a77d19f4 83static unsigned long dax_to_pfn(void *entry)
527b19d0 84{
3159f943 85 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
86}
87
9f32d221
MW
88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89{
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91}
92
cfc93c6c
MW
93static bool dax_is_locked(void *entry)
94{
95 return xa_to_value(entry) & DAX_LOCKED;
96}
97
a77d19f4 98static unsigned int dax_entry_order(void *entry)
527b19d0 99{
3159f943 100 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 101 return PMD_ORDER;
527b19d0
RZ
102 return 0;
103}
104
fda490d3 105static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 106{
3159f943 107 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
108}
109
fda490d3 110static bool dax_is_pte_entry(void *entry)
d475c634 111{
3159f943 112 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
113}
114
642261ac 115static int dax_is_zero_entry(void *entry)
d475c634 116{
3159f943 117 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
118}
119
642261ac 120static int dax_is_empty_entry(void *entry)
b2e0d162 121{
3159f943 122 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
123}
124
23c84eb7
MWO
125/*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129static bool dax_is_conflict(void *entry)
130{
131 return entry == XA_RETRY_ENTRY;
132}
133
ac401cc7 134/*
a77d19f4 135 * DAX page cache entry locking
ac401cc7
JK
136 */
137struct exceptional_entry_key {
ec4907ff 138 struct xarray *xa;
63e95b5c 139 pgoff_t entry_start;
ac401cc7
JK
140};
141
142struct wait_exceptional_entry_queue {
ac6424b9 143 wait_queue_entry_t wait;
ac401cc7
JK
144 struct exceptional_entry_key key;
145};
146
b15cd800
MW
147static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
149{
150 unsigned long hash;
b15cd800 151 unsigned long index = xas->xa_index;
63e95b5c
RZ
152
153 /*
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
157 */
642261ac 158 if (dax_is_pmd_entry(entry))
917f3452 159 index &= ~PG_PMD_COLOUR;
b15cd800 160 key->xa = xas->xa;
63e95b5c
RZ
161 key->entry_start = index;
162
b15cd800 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
164 return wait_table + hash;
165}
166
ec4907ff
MW
167static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
169{
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
ec4907ff 174 if (key->xa != ewait->key.xa ||
63e95b5c 175 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178}
179
e30331ff 180/*
b93b0163
MW
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
e30331ff 184 */
b15cd800 185static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
186{
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
189
b15cd800 190 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
191
192 /*
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 194 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
197 */
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200}
201
cfc93c6c
MW
202/*
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
23c84eb7
MWO
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
cfc93c6c
MW
209 *
210 * Must be called with the i_pages lock held.
211 */
23c84eb7 212static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
cfc93c6c
MW
213{
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
217
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
220
221 for (;;) {
0e40de03 222 entry = xas_find_conflict(xas);
6370740e
DW
223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224 return entry;
23c84eb7
MWO
225 if (dax_entry_order(entry) < order)
226 return XA_RETRY_ENTRY;
6370740e 227 if (!dax_is_locked(entry))
cfc93c6c
MW
228 return entry;
229
b15cd800 230 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
231 prepare_to_wait_exclusive(wq, &ewait.wait,
232 TASK_UNINTERRUPTIBLE);
233 xas_unlock_irq(xas);
234 xas_reset(xas);
235 schedule();
236 finish_wait(wq, &ewait.wait);
237 xas_lock_irq(xas);
238 }
239}
240
55e56f06
MW
241/*
242 * The only thing keeping the address space around is the i_pages lock
243 * (it's cycled in clear_inode() after removing the entries from i_pages)
244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
245 */
246static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247{
248 struct wait_exceptional_entry_queue ewait;
249 wait_queue_head_t *wq;
250
251 init_wait(&ewait.wait);
252 ewait.wait.func = wake_exceptional_entry_func;
253
254 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
255 /*
256 * Unlike get_unlocked_entry() there is no guarantee that this
257 * path ever successfully retrieves an unlocked entry before an
258 * inode dies. Perform a non-exclusive wait in case this path
259 * never successfully performs its own wake up.
260 */
261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
262 xas_unlock_irq(xas);
263 schedule();
264 finish_wait(wq, &ewait.wait);
55e56f06
MW
265}
266
cfc93c6c
MW
267static void put_unlocked_entry(struct xa_state *xas, void *entry)
268{
269 /* If we were the only waiter woken, wake the next one */
61c30c98 270 if (entry && !dax_is_conflict(entry))
cfc93c6c
MW
271 dax_wake_entry(xas, entry, false);
272}
273
274/*
275 * We used the xa_state to get the entry, but then we locked the entry and
276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
277 * before use.
278 */
279static void dax_unlock_entry(struct xa_state *xas, void *entry)
280{
281 void *old;
282
7ae2ea7d 283 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
284 xas_reset(xas);
285 xas_lock_irq(xas);
286 old = xas_store(xas, entry);
287 xas_unlock_irq(xas);
288 BUG_ON(!dax_is_locked(old));
289 dax_wake_entry(xas, entry, false);
290}
291
292/*
293 * Return: The entry stored at this location before it was locked.
294 */
295static void *dax_lock_entry(struct xa_state *xas, void *entry)
296{
297 unsigned long v = xa_to_value(entry);
298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299}
300
d2c997c0
DW
301static unsigned long dax_entry_size(void *entry)
302{
303 if (dax_is_zero_entry(entry))
304 return 0;
305 else if (dax_is_empty_entry(entry))
306 return 0;
307 else if (dax_is_pmd_entry(entry))
308 return PMD_SIZE;
309 else
310 return PAGE_SIZE;
311}
312
a77d19f4 313static unsigned long dax_end_pfn(void *entry)
d2c997c0 314{
a77d19f4 315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
316}
317
318/*
319 * Iterate through all mapped pfns represented by an entry, i.e. skip
320 * 'empty' and 'zero' entries.
321 */
322#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
323 for (pfn = dax_to_pfn(entry); \
324 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 325
73449daf
DW
326/*
327 * TODO: for reflink+dax we need a way to associate a single page with
328 * multiple address_space instances at different linear_page_index()
329 * offsets.
330 */
331static void dax_associate_entry(void *entry, struct address_space *mapping,
332 struct vm_area_struct *vma, unsigned long address)
d2c997c0 333{
73449daf
DW
334 unsigned long size = dax_entry_size(entry), pfn, index;
335 int i = 0;
d2c997c0
DW
336
337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338 return;
339
73449daf 340 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
341 for_each_mapped_pfn(entry, pfn) {
342 struct page *page = pfn_to_page(pfn);
343
344 WARN_ON_ONCE(page->mapping);
345 page->mapping = mapping;
73449daf 346 page->index = index + i++;
d2c997c0
DW
347 }
348}
349
350static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351 bool trunc)
352{
353 unsigned long pfn;
354
355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356 return;
357
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
360
361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363 page->mapping = NULL;
73449daf 364 page->index = 0;
d2c997c0
DW
365 }
366}
367
5fac7408
DW
368static struct page *dax_busy_page(void *entry)
369{
370 unsigned long pfn;
371
372 for_each_mapped_pfn(entry, pfn) {
373 struct page *page = pfn_to_page(pfn);
374
375 if (page_ref_count(page) > 1)
376 return page;
377 }
378 return NULL;
379}
380
c5bbd451
MW
381/*
382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383 * @page: The page whose entry we want to lock
384 *
385 * Context: Process context.
27359fd6
MW
386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387 * not be locked.
c5bbd451 388 */
27359fd6 389dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 390{
9f32d221
MW
391 XA_STATE(xas, NULL, 0);
392 void *entry;
c2a7d2a1 393
c5bbd451
MW
394 /* Ensure page->mapping isn't freed while we look at it */
395 rcu_read_lock();
c2a7d2a1 396 for (;;) {
9f32d221 397 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 398
27359fd6 399 entry = NULL;
c93db7bb 400 if (!mapping || !dax_mapping(mapping))
c5bbd451 401 break;
c2a7d2a1
DW
402
403 /*
404 * In the device-dax case there's no need to lock, a
405 * struct dev_pagemap pin is sufficient to keep the
406 * inode alive, and we assume we have dev_pagemap pin
407 * otherwise we would not have a valid pfn_to_page()
408 * translation.
409 */
27359fd6 410 entry = (void *)~0UL;
9f32d221 411 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 412 break;
c2a7d2a1 413
9f32d221
MW
414 xas.xa = &mapping->i_pages;
415 xas_lock_irq(&xas);
c2a7d2a1 416 if (mapping != page->mapping) {
9f32d221 417 xas_unlock_irq(&xas);
c2a7d2a1
DW
418 continue;
419 }
9f32d221
MW
420 xas_set(&xas, page->index);
421 entry = xas_load(&xas);
422 if (dax_is_locked(entry)) {
c5bbd451 423 rcu_read_unlock();
55e56f06 424 wait_entry_unlocked(&xas, entry);
c5bbd451 425 rcu_read_lock();
6d7cd8c1 426 continue;
c2a7d2a1 427 }
9f32d221
MW
428 dax_lock_entry(&xas, entry);
429 xas_unlock_irq(&xas);
c5bbd451 430 break;
c2a7d2a1 431 }
c5bbd451 432 rcu_read_unlock();
27359fd6 433 return (dax_entry_t)entry;
c2a7d2a1
DW
434}
435
27359fd6 436void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
437{
438 struct address_space *mapping = page->mapping;
9f32d221 439 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 440
9f32d221 441 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
442 return;
443
27359fd6 444 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
445}
446
ac401cc7 447/*
a77d19f4
MW
448 * Find page cache entry at given index. If it is a DAX entry, return it
449 * with the entry locked. If the page cache doesn't contain an entry at
450 * that index, add a locked empty entry.
ac401cc7 451 *
3159f943 452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
453 * either return that locked entry or will return VM_FAULT_FALLBACK.
454 * This will happen if there are any PTE entries within the PMD range
455 * that we are requesting.
642261ac 456 *
b15cd800
MW
457 * We always favor PTE entries over PMD entries. There isn't a flow where we
458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
459 * insertion will fail if it finds any PTE entries already in the tree, and a
460 * PTE insertion will cause an existing PMD entry to be unmapped and
461 * downgraded to PTE entries. This happens for both PMD zero pages as
462 * well as PMD empty entries.
642261ac 463 *
b15cd800
MW
464 * The exception to this downgrade path is for PMD entries that have
465 * real storage backing them. We will leave these real PMD entries in
466 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 467 *
ac401cc7
JK
468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469 * persistent memory the benefit is doubtful. We can add that later if we can
470 * show it helps.
b15cd800
MW
471 *
472 * On error, this function does not return an ERR_PTR. Instead it returns
473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
474 * overlap with xarray value entries.
ac401cc7 475 */
b15cd800 476static void *grab_mapping_entry(struct xa_state *xas,
23c84eb7 477 struct address_space *mapping, unsigned int order)
ac401cc7 478{
b15cd800
MW
479 unsigned long index = xas->xa_index;
480 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481 void *entry;
642261ac 482
b15cd800
MW
483retry:
484 xas_lock_irq(xas);
23c84eb7 485 entry = get_unlocked_entry(xas, order);
91d25ba8 486
642261ac 487 if (entry) {
23c84eb7
MWO
488 if (dax_is_conflict(entry))
489 goto fallback;
0e40de03 490 if (!xa_is_value(entry)) {
49688e65 491 xas_set_err(xas, -EIO);
b15cd800
MW
492 goto out_unlock;
493 }
494
23c84eb7 495 if (order == 0) {
91d25ba8 496 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
497 (dax_is_zero_entry(entry) ||
498 dax_is_empty_entry(entry))) {
499 pmd_downgrade = true;
500 }
501 }
502 }
503
b15cd800
MW
504 if (pmd_downgrade) {
505 /*
506 * Make sure 'entry' remains valid while we drop
507 * the i_pages lock.
508 */
509 dax_lock_entry(xas, entry);
642261ac 510
642261ac
RZ
511 /*
512 * Besides huge zero pages the only other thing that gets
513 * downgraded are empty entries which don't need to be
514 * unmapped.
515 */
b15cd800
MW
516 if (dax_is_zero_entry(entry)) {
517 xas_unlock_irq(xas);
518 unmap_mapping_pages(mapping,
519 xas->xa_index & ~PG_PMD_COLOUR,
520 PG_PMD_NR, false);
521 xas_reset(xas);
522 xas_lock_irq(xas);
e11f8b7b
RZ
523 }
524
b15cd800
MW
525 dax_disassociate_entry(entry, mapping, false);
526 xas_store(xas, NULL); /* undo the PMD join */
527 dax_wake_entry(xas, entry, true);
528 mapping->nrexceptional--;
529 entry = NULL;
530 xas_set(xas, index);
531 }
642261ac 532
b15cd800
MW
533 if (entry) {
534 dax_lock_entry(xas, entry);
535 } else {
23c84eb7
MWO
536 unsigned long flags = DAX_EMPTY;
537
538 if (order > 0)
539 flags |= DAX_PMD;
540 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
b15cd800
MW
541 dax_lock_entry(xas, entry);
542 if (xas_error(xas))
543 goto out_unlock;
ac401cc7 544 mapping->nrexceptional++;
ac401cc7 545 }
b15cd800
MW
546
547out_unlock:
548 xas_unlock_irq(xas);
549 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550 goto retry;
551 if (xas->xa_node == XA_ERROR(-ENOMEM))
552 return xa_mk_internal(VM_FAULT_OOM);
553 if (xas_error(xas))
554 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 555 return entry;
b15cd800
MW
556fallback:
557 xas_unlock_irq(xas);
558 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
559}
560
5fac7408 561/**
6bbdd563 562 * dax_layout_busy_page_range - find first pinned page in @mapping
5fac7408 563 * @mapping: address space to scan for a page with ref count > 1
6bbdd563
VG
564 * @start: Starting offset. Page containing 'start' is included.
565 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
566 * pages from 'start' till the end of file are included.
5fac7408
DW
567 *
568 * DAX requires ZONE_DEVICE mapped pages. These pages are never
569 * 'onlined' to the page allocator so they are considered idle when
570 * page->count == 1. A filesystem uses this interface to determine if
571 * any page in the mapping is busy, i.e. for DMA, or other
572 * get_user_pages() usages.
573 *
574 * It is expected that the filesystem is holding locks to block the
575 * establishment of new mappings in this address_space. I.e. it expects
576 * to be able to run unmap_mapping_range() and subsequently not race
577 * mapping_mapped() becoming true.
578 */
6bbdd563
VG
579struct page *dax_layout_busy_page_range(struct address_space *mapping,
580 loff_t start, loff_t end)
5fac7408 581{
084a8990
MW
582 void *entry;
583 unsigned int scanned = 0;
5fac7408 584 struct page *page = NULL;
6bbdd563
VG
585 pgoff_t start_idx = start >> PAGE_SHIFT;
586 pgoff_t end_idx;
587 XA_STATE(xas, &mapping->i_pages, start_idx);
5fac7408
DW
588
589 /*
590 * In the 'limited' case get_user_pages() for dax is disabled.
591 */
592 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
593 return NULL;
594
595 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
596 return NULL;
597
6bbdd563
VG
598 /* If end == LLONG_MAX, all pages from start to till end of file */
599 if (end == LLONG_MAX)
600 end_idx = ULONG_MAX;
601 else
602 end_idx = end >> PAGE_SHIFT;
5fac7408
DW
603 /*
604 * If we race get_user_pages_fast() here either we'll see the
084a8990 605 * elevated page count in the iteration and wait, or
5fac7408
DW
606 * get_user_pages_fast() will see that the page it took a reference
607 * against is no longer mapped in the page tables and bail to the
608 * get_user_pages() slow path. The slow path is protected by
609 * pte_lock() and pmd_lock(). New references are not taken without
6bbdd563 610 * holding those locks, and unmap_mapping_pages() will not zero the
5fac7408
DW
611 * pte or pmd without holding the respective lock, so we are
612 * guaranteed to either see new references or prevent new
613 * references from being established.
614 */
6bbdd563 615 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
5fac7408 616
084a8990 617 xas_lock_irq(&xas);
6bbdd563 618 xas_for_each(&xas, entry, end_idx) {
084a8990
MW
619 if (WARN_ON_ONCE(!xa_is_value(entry)))
620 continue;
621 if (unlikely(dax_is_locked(entry)))
23c84eb7 622 entry = get_unlocked_entry(&xas, 0);
084a8990
MW
623 if (entry)
624 page = dax_busy_page(entry);
625 put_unlocked_entry(&xas, entry);
5fac7408
DW
626 if (page)
627 break;
084a8990
MW
628 if (++scanned % XA_CHECK_SCHED)
629 continue;
630
631 xas_pause(&xas);
632 xas_unlock_irq(&xas);
633 cond_resched();
634 xas_lock_irq(&xas);
5fac7408 635 }
084a8990 636 xas_unlock_irq(&xas);
5fac7408
DW
637 return page;
638}
6bbdd563
VG
639EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
640
641struct page *dax_layout_busy_page(struct address_space *mapping)
642{
643 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
644}
5fac7408
DW
645EXPORT_SYMBOL_GPL(dax_layout_busy_page);
646
a77d19f4 647static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
648 pgoff_t index, bool trunc)
649{
07f2d89c 650 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
651 int ret = 0;
652 void *entry;
c6dcf52c 653
07f2d89c 654 xas_lock_irq(&xas);
23c84eb7 655 entry = get_unlocked_entry(&xas, 0);
3159f943 656 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
657 goto out;
658 if (!trunc &&
07f2d89c
MW
659 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
660 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 661 goto out;
d2c997c0 662 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 663 xas_store(&xas, NULL);
c6dcf52c
JK
664 mapping->nrexceptional--;
665 ret = 1;
666out:
07f2d89c
MW
667 put_unlocked_entry(&xas, entry);
668 xas_unlock_irq(&xas);
c6dcf52c
JK
669 return ret;
670}
07f2d89c 671
ac401cc7 672/*
3159f943
MW
673 * Delete DAX entry at @index from @mapping. Wait for it
674 * to be unlocked before deleting it.
ac401cc7
JK
675 */
676int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
677{
a77d19f4 678 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 679
ac401cc7
JK
680 /*
681 * This gets called from truncate / punch_hole path. As such, the caller
682 * must hold locks protecting against concurrent modifications of the
a77d19f4 683 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 684 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
685 * at that index as well...
686 */
c6dcf52c
JK
687 WARN_ON_ONCE(!ret);
688 return ret;
689}
690
c6dcf52c 691/*
3159f943 692 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
693 */
694int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
695 pgoff_t index)
696{
a77d19f4 697 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
698}
699
c7fe193f
IW
700static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
701 sector_t sector, struct page *to, unsigned long vaddr)
f7ca90b1 702{
cccbce67
DW
703 void *vto, *kaddr;
704 pgoff_t pgoff;
cccbce67
DW
705 long rc;
706 int id;
707
c7fe193f 708 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
709 if (rc)
710 return rc;
711
712 id = dax_read_lock();
c7fe193f 713 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
cccbce67
DW
714 if (rc < 0) {
715 dax_read_unlock(id);
716 return rc;
717 }
f7ca90b1 718 vto = kmap_atomic(to);
cccbce67 719 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 720 kunmap_atomic(vto);
cccbce67 721 dax_read_unlock(id);
f7ca90b1
MW
722 return 0;
723}
724
642261ac
RZ
725/*
726 * By this point grab_mapping_entry() has ensured that we have a locked entry
727 * of the appropriate size so we don't have to worry about downgrading PMDs to
728 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
729 * already in the tree, we will skip the insertion and just dirty the PMD as
730 * appropriate.
731 */
b15cd800
MW
732static void *dax_insert_entry(struct xa_state *xas,
733 struct address_space *mapping, struct vm_fault *vmf,
734 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 735{
b15cd800 736 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 737
f5b7b748 738 if (dirty)
d2b2a28e 739 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 740
3159f943 741 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 742 unsigned long index = xas->xa_index;
91d25ba8
RZ
743 /* we are replacing a zero page with block mapping */
744 if (dax_is_pmd_entry(entry))
977fbdcd 745 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 746 PG_PMD_NR, false);
91d25ba8 747 else /* pte entry */
b15cd800 748 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
749 }
750
b15cd800
MW
751 xas_reset(xas);
752 xas_lock_irq(xas);
1571c029
JK
753 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
754 void *old;
755
d2c997c0 756 dax_disassociate_entry(entry, mapping, false);
73449daf 757 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
642261ac 758 /*
a77d19f4 759 * Only swap our new entry into the page cache if the current
642261ac 760 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 761 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
762 * means that if we are trying to insert a PTE and the
763 * existing entry is a PMD, we will just leave the PMD in the
764 * tree and dirty it if necessary.
765 */
1571c029 766 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
767 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
768 DAX_LOCKED));
91d25ba8 769 entry = new_entry;
b15cd800
MW
770 } else {
771 xas_load(xas); /* Walk the xa_state */
9973c98e 772 }
91d25ba8 773
f5b7b748 774 if (dirty)
b15cd800 775 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 776
b15cd800 777 xas_unlock_irq(xas);
91d25ba8 778 return entry;
9973c98e
RZ
779}
780
a77d19f4
MW
781static inline
782unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
783{
784 unsigned long address;
785
786 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
787 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
788 return address;
789}
790
791/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
792static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
793 unsigned long pfn)
4b4bb46d
JK
794{
795 struct vm_area_struct *vma;
f729c8c9
RZ
796 pte_t pte, *ptep = NULL;
797 pmd_t *pmdp = NULL;
4b4bb46d 798 spinlock_t *ptl;
4b4bb46d
JK
799
800 i_mmap_lock_read(mapping);
801 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
ac46d4f3
JG
802 struct mmu_notifier_range range;
803 unsigned long address;
4b4bb46d
JK
804
805 cond_resched();
806
807 if (!(vma->vm_flags & VM_SHARED))
808 continue;
809
810 address = pgoff_address(index, vma);
a4d1a885
JG
811
812 /*
ff5c19ed
CH
813 * Note because we provide range to follow_pte it will call
814 * mmu_notifier_invalidate_range_start() on our behalf before
815 * taking any lock.
a4d1a885 816 */
ff5c19ed 817 if (follow_pte(vma->vm_mm, address, &range, &ptep, &pmdp, &ptl))
4b4bb46d 818 continue;
4b4bb46d 819
0f10851e
JG
820 /*
821 * No need to call mmu_notifier_invalidate_range() as we are
822 * downgrading page table protection not changing it to point
823 * to a new page.
824 *
ad56b738 825 * See Documentation/vm/mmu_notifier.rst
0f10851e 826 */
f729c8c9
RZ
827 if (pmdp) {
828#ifdef CONFIG_FS_DAX_PMD
829 pmd_t pmd;
830
831 if (pfn != pmd_pfn(*pmdp))
832 goto unlock_pmd;
f6f37321 833 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
834 goto unlock_pmd;
835
836 flush_cache_page(vma, address, pfn);
024eee0e 837 pmd = pmdp_invalidate(vma, address, pmdp);
f729c8c9
RZ
838 pmd = pmd_wrprotect(pmd);
839 pmd = pmd_mkclean(pmd);
840 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 841unlock_pmd:
f729c8c9 842#endif
ee190ca6 843 spin_unlock(ptl);
f729c8c9
RZ
844 } else {
845 if (pfn != pte_pfn(*ptep))
846 goto unlock_pte;
847 if (!pte_dirty(*ptep) && !pte_write(*ptep))
848 goto unlock_pte;
849
850 flush_cache_page(vma, address, pfn);
851 pte = ptep_clear_flush(vma, address, ptep);
852 pte = pte_wrprotect(pte);
853 pte = pte_mkclean(pte);
854 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
855unlock_pte:
856 pte_unmap_unlock(ptep, ptl);
857 }
4b4bb46d 858
ac46d4f3 859 mmu_notifier_invalidate_range_end(&range);
4b4bb46d
JK
860 }
861 i_mmap_unlock_read(mapping);
862}
863
9fc747f6
MW
864static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
865 struct address_space *mapping, void *entry)
9973c98e 866{
e4b3448b 867 unsigned long pfn, index, count;
3fe0791c 868 long ret = 0;
9973c98e 869
9973c98e 870 /*
a6abc2c0
JK
871 * A page got tagged dirty in DAX mapping? Something is seriously
872 * wrong.
9973c98e 873 */
3159f943 874 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 875 return -EIO;
9973c98e 876
9fc747f6
MW
877 if (unlikely(dax_is_locked(entry))) {
878 void *old_entry = entry;
879
23c84eb7 880 entry = get_unlocked_entry(xas, 0);
9fc747f6
MW
881
882 /* Entry got punched out / reallocated? */
883 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
884 goto put_unlocked;
885 /*
886 * Entry got reallocated elsewhere? No need to writeback.
887 * We have to compare pfns as we must not bail out due to
888 * difference in lockbit or entry type.
889 */
890 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
891 goto put_unlocked;
892 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
893 dax_is_zero_entry(entry))) {
894 ret = -EIO;
895 goto put_unlocked;
896 }
897
898 /* Another fsync thread may have already done this entry */
899 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
900 goto put_unlocked;
9973c98e
RZ
901 }
902
a6abc2c0 903 /* Lock the entry to serialize with page faults */
9fc747f6
MW
904 dax_lock_entry(xas, entry);
905
a6abc2c0
JK
906 /*
907 * We can clear the tag now but we have to be careful so that concurrent
908 * dax_writeback_one() calls for the same index cannot finish before we
909 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
910 * at the entry only under the i_pages lock and once they do that
911 * they will see the entry locked and wait for it to unlock.
a6abc2c0 912 */
9fc747f6
MW
913 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
914 xas_unlock_irq(xas);
a6abc2c0 915
642261ac 916 /*
e4b3448b
MW
917 * If dax_writeback_mapping_range() was given a wbc->range_start
918 * in the middle of a PMD, the 'index' we use needs to be
919 * aligned to the start of the PMD.
3fe0791c
DW
920 * This allows us to flush for PMD_SIZE and not have to worry about
921 * partial PMD writebacks.
642261ac 922 */
a77d19f4 923 pfn = dax_to_pfn(entry);
e4b3448b
MW
924 count = 1UL << dax_entry_order(entry);
925 index = xas->xa_index & ~(count - 1);
cccbce67 926
e4b3448b
MW
927 dax_entry_mkclean(mapping, index, pfn);
928 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
929 /*
930 * After we have flushed the cache, we can clear the dirty tag. There
931 * cannot be new dirty data in the pfn after the flush has completed as
932 * the pfn mappings are writeprotected and fault waits for mapping
933 * entry lock.
934 */
9fc747f6
MW
935 xas_reset(xas);
936 xas_lock_irq(xas);
937 xas_store(xas, entry);
938 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
939 dax_wake_entry(xas, entry, false);
940
e4b3448b 941 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
942 return ret;
943
a6abc2c0 944 put_unlocked:
9fc747f6 945 put_unlocked_entry(xas, entry);
9973c98e
RZ
946 return ret;
947}
948
949/*
950 * Flush the mapping to the persistent domain within the byte range of [start,
951 * end]. This is required by data integrity operations to ensure file data is
952 * on persistent storage prior to completion of the operation.
953 */
7f6d5b52 954int dax_writeback_mapping_range(struct address_space *mapping,
3f666c56 955 struct dax_device *dax_dev, struct writeback_control *wbc)
9973c98e 956{
9fc747f6 957 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 958 struct inode *inode = mapping->host;
9fc747f6 959 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
9fc747f6
MW
960 void *entry;
961 int ret = 0;
962 unsigned int scanned = 0;
9973c98e
RZ
963
964 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
965 return -EIO;
966
7f6d5b52
RZ
967 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
968 return 0;
969
9fc747f6 970 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 971
9fc747f6 972 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 973
9fc747f6
MW
974 xas_lock_irq(&xas);
975 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
976 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
977 if (ret < 0) {
978 mapping_set_error(mapping, ret);
9973c98e 979 break;
9973c98e 980 }
9fc747f6
MW
981 if (++scanned % XA_CHECK_SCHED)
982 continue;
983
984 xas_pause(&xas);
985 xas_unlock_irq(&xas);
986 cond_resched();
987 xas_lock_irq(&xas);
9973c98e 988 }
9fc747f6 989 xas_unlock_irq(&xas);
9fc747f6
MW
990 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
991 return ret;
9973c98e
RZ
992}
993EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
994
31a6f1a6 995static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 996{
a3841f94 997 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
998}
999
5e161e40
JK
1000static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1001 pfn_t *pfnp)
f7ca90b1 1002{
31a6f1a6 1003 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
1004 pgoff_t pgoff;
1005 int id, rc;
5e161e40 1006 long length;
f7ca90b1 1007
5e161e40 1008 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
1009 if (rc)
1010 return rc;
cccbce67 1011 id = dax_read_lock();
5e161e40 1012 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1013 NULL, pfnp);
5e161e40
JK
1014 if (length < 0) {
1015 rc = length;
1016 goto out;
cccbce67 1017 }
5e161e40
JK
1018 rc = -EINVAL;
1019 if (PFN_PHYS(length) < size)
1020 goto out;
1021 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1022 goto out;
1023 /* For larger pages we need devmap */
1024 if (length > 1 && !pfn_t_devmap(*pfnp))
1025 goto out;
1026 rc = 0;
1027out:
cccbce67 1028 dax_read_unlock(id);
5e161e40 1029 return rc;
0e3b210c 1030}
0e3b210c 1031
e30331ff 1032/*
91d25ba8
RZ
1033 * The user has performed a load from a hole in the file. Allocating a new
1034 * page in the file would cause excessive storage usage for workloads with
1035 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1036 * If this page is ever written to we will re-fault and change the mapping to
1037 * point to real DAX storage instead.
e30331ff 1038 */
b15cd800
MW
1039static vm_fault_t dax_load_hole(struct xa_state *xas,
1040 struct address_space *mapping, void **entry,
1041 struct vm_fault *vmf)
e30331ff
RZ
1042{
1043 struct inode *inode = mapping->host;
91d25ba8 1044 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1045 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1046 vm_fault_t ret;
e30331ff 1047
b15cd800 1048 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1049 DAX_ZERO_PAGE, false);
1050
ab77dab4 1051 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1052 trace_dax_load_hole(inode, vmf, ret);
1053 return ret;
1054}
1055
81ee8e52 1056s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
679c8bd3 1057{
4f3b4f16 1058 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
0a23f9ff
VG
1059 pgoff_t pgoff;
1060 long rc, id;
1061 void *kaddr;
1062 bool page_aligned = false;
81ee8e52
MWO
1063 unsigned offset = offset_in_page(pos);
1064 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
cccbce67 1065
0a23f9ff 1066 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
81ee8e52 1067 (size == PAGE_SIZE))
0a23f9ff 1068 page_aligned = true;
cccbce67 1069
4f3b4f16 1070 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
0a23f9ff
VG
1071 if (rc)
1072 return rc;
1073
1074 id = dax_read_lock();
1075
1076 if (page_aligned)
81ee8e52 1077 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
0a23f9ff 1078 else
4f3b4f16 1079 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
0a23f9ff
VG
1080 if (rc < 0) {
1081 dax_read_unlock(id);
1082 return rc;
1083 }
1084
1085 if (!page_aligned) {
81f55870 1086 memset(kaddr + offset, 0, size);
4f3b4f16 1087 dax_flush(iomap->dax_dev, kaddr + offset, size);
4b0228fa 1088 }
0a23f9ff 1089 dax_read_unlock(id);
81ee8e52 1090 return size;
679c8bd3 1091}
679c8bd3 1092
a254e568 1093static loff_t
11c59c92 1094dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
c039b997 1095 struct iomap *iomap, struct iomap *srcmap)
a254e568 1096{
cccbce67
DW
1097 struct block_device *bdev = iomap->bdev;
1098 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1099 struct iov_iter *iter = data;
1100 loff_t end = pos + length, done = 0;
1101 ssize_t ret = 0;
a77d4786 1102 size_t xfer;
cccbce67 1103 int id;
a254e568
CH
1104
1105 if (iov_iter_rw(iter) == READ) {
1106 end = min(end, i_size_read(inode));
1107 if (pos >= end)
1108 return 0;
1109
1110 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1111 return iov_iter_zero(min(length, end - pos), iter);
1112 }
1113
1114 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1115 return -EIO;
1116
e3fce68c
JK
1117 /*
1118 * Write can allocate block for an area which has a hole page mapped
1119 * into page tables. We have to tear down these mappings so that data
1120 * written by write(2) is visible in mmap.
1121 */
cd656375 1122 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1123 invalidate_inode_pages2_range(inode->i_mapping,
1124 pos >> PAGE_SHIFT,
1125 (end - 1) >> PAGE_SHIFT);
1126 }
1127
cccbce67 1128 id = dax_read_lock();
a254e568
CH
1129 while (pos < end) {
1130 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1131 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1132 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1133 ssize_t map_len;
cccbce67
DW
1134 pgoff_t pgoff;
1135 void *kaddr;
a254e568 1136
d1908f52
MH
1137 if (fatal_signal_pending(current)) {
1138 ret = -EINTR;
1139 break;
1140 }
1141
cccbce67
DW
1142 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1143 if (ret)
1144 break;
1145
1146 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1147 &kaddr, NULL);
a254e568
CH
1148 if (map_len < 0) {
1149 ret = map_len;
1150 break;
1151 }
1152
cccbce67
DW
1153 map_len = PFN_PHYS(map_len);
1154 kaddr += offset;
a254e568
CH
1155 map_len -= offset;
1156 if (map_len > end - pos)
1157 map_len = end - pos;
1158
a2e050f5
RZ
1159 /*
1160 * The userspace address for the memory copy has already been
1161 * validated via access_ok() in either vfs_read() or
1162 * vfs_write(), depending on which operation we are doing.
1163 */
a254e568 1164 if (iov_iter_rw(iter) == WRITE)
a77d4786 1165 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1166 map_len, iter);
a254e568 1167 else
a77d4786 1168 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1169 map_len, iter);
a254e568 1170
a77d4786
DW
1171 pos += xfer;
1172 length -= xfer;
1173 done += xfer;
1174
1175 if (xfer == 0)
1176 ret = -EFAULT;
1177 if (xfer < map_len)
1178 break;
a254e568 1179 }
cccbce67 1180 dax_read_unlock(id);
a254e568
CH
1181
1182 return done ? done : ret;
1183}
1184
1185/**
11c59c92 1186 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1187 * @iocb: The control block for this I/O
1188 * @iter: The addresses to do I/O from or to
1189 * @ops: iomap ops passed from the file system
1190 *
1191 * This function performs read and write operations to directly mapped
1192 * persistent memory. The callers needs to take care of read/write exclusion
1193 * and evicting any page cache pages in the region under I/O.
1194 */
1195ssize_t
11c59c92 1196dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1197 const struct iomap_ops *ops)
a254e568
CH
1198{
1199 struct address_space *mapping = iocb->ki_filp->f_mapping;
1200 struct inode *inode = mapping->host;
1201 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1202 unsigned flags = 0;
1203
168316db 1204 if (iov_iter_rw(iter) == WRITE) {
9ffbe8ac 1205 lockdep_assert_held_write(&inode->i_rwsem);
a254e568 1206 flags |= IOMAP_WRITE;
168316db
CH
1207 } else {
1208 lockdep_assert_held(&inode->i_rwsem);
1209 }
a254e568 1210
96222d53
JM
1211 if (iocb->ki_flags & IOCB_NOWAIT)
1212 flags |= IOMAP_NOWAIT;
1213
a254e568
CH
1214 while (iov_iter_count(iter)) {
1215 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1216 iter, dax_iomap_actor);
a254e568
CH
1217 if (ret <= 0)
1218 break;
1219 pos += ret;
1220 done += ret;
1221 }
1222
1223 iocb->ki_pos += done;
1224 return done ? done : ret;
1225}
11c59c92 1226EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1227
ab77dab4 1228static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1229{
1230 if (error == 0)
1231 return VM_FAULT_NOPAGE;
c9aed74e 1232 return vmf_error(error);
9f141d6e
JK
1233}
1234
aaa422c4
DW
1235/*
1236 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1237 * flushed on write-faults (non-cow), but not read-faults.
1238 */
1239static bool dax_fault_is_synchronous(unsigned long flags,
1240 struct vm_area_struct *vma, struct iomap *iomap)
1241{
1242 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1243 && (iomap->flags & IOMAP_F_DIRTY);
1244}
1245
ab77dab4 1246static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1247 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1248{
a0987ad5
JK
1249 struct vm_area_struct *vma = vmf->vma;
1250 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1251 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1252 struct inode *inode = mapping->host;
1a29d85e 1253 unsigned long vaddr = vmf->address;
a7d73fe6 1254 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
c039b997
GR
1255 struct iomap iomap = { .type = IOMAP_HOLE };
1256 struct iomap srcmap = { .type = IOMAP_HOLE };
9484ab1b 1257 unsigned flags = IOMAP_FAULT;
a7d73fe6 1258 int error, major = 0;
d2c43ef1 1259 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1260 bool sync;
ab77dab4 1261 vm_fault_t ret = 0;
a7d73fe6 1262 void *entry;
1b5a1cb2 1263 pfn_t pfn;
a7d73fe6 1264
ab77dab4 1265 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1266 /*
1267 * Check whether offset isn't beyond end of file now. Caller is supposed
1268 * to hold locks serializing us with truncate / punch hole so this is
1269 * a reliable test.
1270 */
a9c42b33 1271 if (pos >= i_size_read(inode)) {
ab77dab4 1272 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1273 goto out;
1274 }
a7d73fe6 1275
d2c43ef1 1276 if (write && !vmf->cow_page)
a7d73fe6
CH
1277 flags |= IOMAP_WRITE;
1278
b15cd800
MW
1279 entry = grab_mapping_entry(&xas, mapping, 0);
1280 if (xa_is_internal(entry)) {
1281 ret = xa_to_internal(entry);
13e451fd
JK
1282 goto out;
1283 }
1284
e2093926
RZ
1285 /*
1286 * It is possible, particularly with mixed reads & writes to private
1287 * mappings, that we have raced with a PMD fault that overlaps with
1288 * the PTE we need to set up. If so just return and the fault will be
1289 * retried.
1290 */
1291 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1292 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1293 goto unlock_entry;
1294 }
1295
a7d73fe6
CH
1296 /*
1297 * Note that we don't bother to use iomap_apply here: DAX required
1298 * the file system block size to be equal the page size, which means
1299 * that we never have to deal with more than a single extent here.
1300 */
c039b997 1301 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
c0b24625
JK
1302 if (iomap_errp)
1303 *iomap_errp = error;
a9c42b33 1304 if (error) {
ab77dab4 1305 ret = dax_fault_return(error);
13e451fd 1306 goto unlock_entry;
a9c42b33 1307 }
a7d73fe6 1308 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1309 error = -EIO; /* fs corruption? */
1310 goto error_finish_iomap;
a7d73fe6
CH
1311 }
1312
a7d73fe6 1313 if (vmf->cow_page) {
31a6f1a6
JK
1314 sector_t sector = dax_iomap_sector(&iomap, pos);
1315
a7d73fe6
CH
1316 switch (iomap.type) {
1317 case IOMAP_HOLE:
1318 case IOMAP_UNWRITTEN:
1319 clear_user_highpage(vmf->cow_page, vaddr);
1320 break;
1321 case IOMAP_MAPPED:
c7fe193f
IW
1322 error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1323 sector, vmf->cow_page, vaddr);
a7d73fe6
CH
1324 break;
1325 default:
1326 WARN_ON_ONCE(1);
1327 error = -EIO;
1328 break;
1329 }
1330
1331 if (error)
13e451fd 1332 goto error_finish_iomap;
b1aa812b
JK
1333
1334 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1335 ret = finish_fault(vmf);
1336 if (!ret)
1337 ret = VM_FAULT_DONE_COW;
13e451fd 1338 goto finish_iomap;
a7d73fe6
CH
1339 }
1340
aaa422c4 1341 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1342
a7d73fe6
CH
1343 switch (iomap.type) {
1344 case IOMAP_MAPPED:
1345 if (iomap.flags & IOMAP_F_NEW) {
1346 count_vm_event(PGMAJFAULT);
a0987ad5 1347 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1348 major = VM_FAULT_MAJOR;
1349 }
1b5a1cb2
JK
1350 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1351 if (error < 0)
1352 goto error_finish_iomap;
1353
b15cd800 1354 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1355 0, write && !sync);
1b5a1cb2 1356
caa51d26
JK
1357 /*
1358 * If we are doing synchronous page fault and inode needs fsync,
1359 * we can insert PTE into page tables only after that happens.
1360 * Skip insertion for now and return the pfn so that caller can
1361 * insert it after fsync is done.
1362 */
1363 if (sync) {
1364 if (WARN_ON_ONCE(!pfnp)) {
1365 error = -EIO;
1366 goto error_finish_iomap;
1367 }
1368 *pfnp = pfn;
ab77dab4 1369 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1370 goto finish_iomap;
1371 }
1b5a1cb2
JK
1372 trace_dax_insert_mapping(inode, vmf, entry);
1373 if (write)
ab77dab4 1374 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1375 else
ab77dab4 1376 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1377
ab77dab4 1378 goto finish_iomap;
a7d73fe6
CH
1379 case IOMAP_UNWRITTEN:
1380 case IOMAP_HOLE:
d2c43ef1 1381 if (!write) {
b15cd800 1382 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1383 goto finish_iomap;
1550290b 1384 }
df561f66 1385 fallthrough;
a7d73fe6
CH
1386 default:
1387 WARN_ON_ONCE(1);
1388 error = -EIO;
1389 break;
1390 }
1391
13e451fd 1392 error_finish_iomap:
ab77dab4 1393 ret = dax_fault_return(error);
9f141d6e
JK
1394 finish_iomap:
1395 if (ops->iomap_end) {
1396 int copied = PAGE_SIZE;
1397
ab77dab4 1398 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1399 copied = 0;
1400 /*
1401 * The fault is done by now and there's no way back (other
1402 * thread may be already happily using PTE we have installed).
1403 * Just ignore error from ->iomap_end since we cannot do much
1404 * with it.
1405 */
1406 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1407 }
13e451fd 1408 unlock_entry:
b15cd800 1409 dax_unlock_entry(&xas, entry);
13e451fd 1410 out:
ab77dab4
SJ
1411 trace_dax_pte_fault_done(inode, vmf, ret);
1412 return ret | major;
a7d73fe6 1413}
642261ac
RZ
1414
1415#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1416static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1417 struct iomap *iomap, void **entry)
642261ac 1418{
f4200391
DJ
1419 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1420 unsigned long pmd_addr = vmf->address & PMD_MASK;
11cf9d86 1421 struct vm_area_struct *vma = vmf->vma;
653b2ea3 1422 struct inode *inode = mapping->host;
11cf9d86 1423 pgtable_t pgtable = NULL;
642261ac
RZ
1424 struct page *zero_page;
1425 spinlock_t *ptl;
1426 pmd_t pmd_entry;
3fe0791c 1427 pfn_t pfn;
642261ac 1428
f4200391 1429 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1430
1431 if (unlikely(!zero_page))
653b2ea3 1432 goto fallback;
642261ac 1433
3fe0791c 1434 pfn = page_to_pfn_t(zero_page);
b15cd800 1435 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1436 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1437
11cf9d86
AK
1438 if (arch_needs_pgtable_deposit()) {
1439 pgtable = pte_alloc_one(vma->vm_mm);
1440 if (!pgtable)
1441 return VM_FAULT_OOM;
1442 }
1443
f4200391
DJ
1444 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1445 if (!pmd_none(*(vmf->pmd))) {
642261ac 1446 spin_unlock(ptl);
653b2ea3 1447 goto fallback;
642261ac
RZ
1448 }
1449
11cf9d86
AK
1450 if (pgtable) {
1451 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1452 mm_inc_nr_ptes(vma->vm_mm);
1453 }
f4200391 1454 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1455 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1456 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1457 spin_unlock(ptl);
b15cd800 1458 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1459 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1460
1461fallback:
11cf9d86
AK
1462 if (pgtable)
1463 pte_free(vma->vm_mm, pgtable);
b15cd800 1464 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1465 return VM_FAULT_FALLBACK;
642261ac
RZ
1466}
1467
ab77dab4 1468static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1469 const struct iomap_ops *ops)
642261ac 1470{
f4200391 1471 struct vm_area_struct *vma = vmf->vma;
642261ac 1472 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1473 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1474 unsigned long pmd_addr = vmf->address & PMD_MASK;
1475 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1476 bool sync;
9484ab1b 1477 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1478 struct inode *inode = mapping->host;
ab77dab4 1479 vm_fault_t result = VM_FAULT_FALLBACK;
c039b997
GR
1480 struct iomap iomap = { .type = IOMAP_HOLE };
1481 struct iomap srcmap = { .type = IOMAP_HOLE };
b15cd800 1482 pgoff_t max_pgoff;
642261ac
RZ
1483 void *entry;
1484 loff_t pos;
1485 int error;
302a5e31 1486 pfn_t pfn;
642261ac 1487
282a8e03
RZ
1488 /*
1489 * Check whether offset isn't beyond end of file now. Caller is
1490 * supposed to hold locks serializing us with truncate / punch hole so
1491 * this is a reliable test.
1492 */
957ac8c4 1493 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1494
f4200391 1495 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1496
fffa281b
RZ
1497 /*
1498 * Make sure that the faulting address's PMD offset (color) matches
1499 * the PMD offset from the start of the file. This is necessary so
1500 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1501 * range in the page cache.
fffa281b
RZ
1502 */
1503 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1504 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1505 goto fallback;
1506
642261ac
RZ
1507 /* Fall back to PTEs if we're going to COW */
1508 if (write && !(vma->vm_flags & VM_SHARED))
1509 goto fallback;
1510
1511 /* If the PMD would extend outside the VMA */
1512 if (pmd_addr < vma->vm_start)
1513 goto fallback;
1514 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1515 goto fallback;
1516
b15cd800 1517 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1518 result = VM_FAULT_SIGBUS;
1519 goto out;
1520 }
642261ac
RZ
1521
1522 /* If the PMD would extend beyond the file size */
b15cd800 1523 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1524 goto fallback;
1525
876f2946 1526 /*
b15cd800
MW
1527 * grab_mapping_entry() will make sure we get an empty PMD entry,
1528 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1529 * entry is already in the array, for instance), it will return
1530 * VM_FAULT_FALLBACK.
876f2946 1531 */
23c84eb7 1532 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
b15cd800
MW
1533 if (xa_is_internal(entry)) {
1534 result = xa_to_internal(entry);
876f2946 1535 goto fallback;
b15cd800 1536 }
876f2946 1537
e2093926
RZ
1538 /*
1539 * It is possible, particularly with mixed reads & writes to private
1540 * mappings, that we have raced with a PTE fault that overlaps with
1541 * the PMD we need to set up. If so just return and the fault will be
1542 * retried.
1543 */
1544 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1545 !pmd_devmap(*vmf->pmd)) {
1546 result = 0;
1547 goto unlock_entry;
1548 }
1549
642261ac
RZ
1550 /*
1551 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1552 * setting up a mapping, so really we're using iomap_begin() as a way
1553 * to look up our filesystem block.
1554 */
b15cd800 1555 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
c039b997
GR
1556 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1557 &srcmap);
642261ac 1558 if (error)
876f2946 1559 goto unlock_entry;
9f141d6e 1560
642261ac
RZ
1561 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1562 goto finish_iomap;
1563
aaa422c4 1564 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1565
642261ac
RZ
1566 switch (iomap.type) {
1567 case IOMAP_MAPPED:
302a5e31
JK
1568 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1569 if (error < 0)
1570 goto finish_iomap;
1571
b15cd800 1572 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1573 DAX_PMD, write && !sync);
302a5e31 1574
caa51d26
JK
1575 /*
1576 * If we are doing synchronous page fault and inode needs fsync,
1577 * we can insert PMD into page tables only after that happens.
1578 * Skip insertion for now and return the pfn so that caller can
1579 * insert it after fsync is done.
1580 */
1581 if (sync) {
1582 if (WARN_ON_ONCE(!pfnp))
1583 goto finish_iomap;
1584 *pfnp = pfn;
1585 result = VM_FAULT_NEEDDSYNC;
1586 goto finish_iomap;
1587 }
1588
302a5e31 1589 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
fce86ff5 1590 result = vmf_insert_pfn_pmd(vmf, pfn, write);
642261ac
RZ
1591 break;
1592 case IOMAP_UNWRITTEN:
1593 case IOMAP_HOLE:
1594 if (WARN_ON_ONCE(write))
876f2946 1595 break;
b15cd800 1596 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1597 break;
1598 default:
1599 WARN_ON_ONCE(1);
1600 break;
1601 }
1602
1603 finish_iomap:
1604 if (ops->iomap_end) {
9f141d6e
JK
1605 int copied = PMD_SIZE;
1606
1607 if (result == VM_FAULT_FALLBACK)
1608 copied = 0;
1609 /*
1610 * The fault is done by now and there's no way back (other
1611 * thread may be already happily using PMD we have installed).
1612 * Just ignore error from ->iomap_end since we cannot do much
1613 * with it.
1614 */
1615 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1616 &iomap);
642261ac 1617 }
876f2946 1618 unlock_entry:
b15cd800 1619 dax_unlock_entry(&xas, entry);
642261ac
RZ
1620 fallback:
1621 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1622 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1623 count_vm_event(THP_FAULT_FALLBACK);
1624 }
282a8e03 1625out:
f4200391 1626 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1627 return result;
1628}
a2d58167 1629#else
ab77dab4 1630static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1631 const struct iomap_ops *ops)
a2d58167
DJ
1632{
1633 return VM_FAULT_FALLBACK;
1634}
642261ac 1635#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1636
1637/**
1638 * dax_iomap_fault - handle a page fault on a DAX file
1639 * @vmf: The description of the fault
cec04e8c 1640 * @pe_size: Size of the page to fault in
9a0dd422 1641 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1642 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1643 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1644 *
1645 * When a page fault occurs, filesystems may call this helper in
1646 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1647 * has done all the necessary locking for page fault to proceed
1648 * successfully.
1649 */
ab77dab4 1650vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1651 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1652{
c791ace1
DJ
1653 switch (pe_size) {
1654 case PE_SIZE_PTE:
c0b24625 1655 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1656 case PE_SIZE_PMD:
9a0dd422 1657 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1658 default:
1659 return VM_FAULT_FALLBACK;
1660 }
1661}
1662EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1663
a77d19f4 1664/*
71eab6df
JK
1665 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1666 * @vmf: The description of the fault
71eab6df 1667 * @pfn: PFN to insert
cfc93c6c 1668 * @order: Order of entry to insert.
71eab6df 1669 *
a77d19f4
MW
1670 * This function inserts a writeable PTE or PMD entry into the page tables
1671 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1672 */
cfc93c6c
MW
1673static vm_fault_t
1674dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1675{
1676 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1677 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1678 void *entry;
ab77dab4 1679 vm_fault_t ret;
71eab6df 1680
cfc93c6c 1681 xas_lock_irq(&xas);
23c84eb7 1682 entry = get_unlocked_entry(&xas, order);
71eab6df 1683 /* Did we race with someone splitting entry or so? */
23c84eb7
MWO
1684 if (!entry || dax_is_conflict(entry) ||
1685 (order == 0 && !dax_is_pte_entry(entry))) {
cfc93c6c
MW
1686 put_unlocked_entry(&xas, entry);
1687 xas_unlock_irq(&xas);
71eab6df
JK
1688 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1689 VM_FAULT_NOPAGE);
1690 return VM_FAULT_NOPAGE;
1691 }
cfc93c6c
MW
1692 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1693 dax_lock_entry(&xas, entry);
1694 xas_unlock_irq(&xas);
1695 if (order == 0)
ab77dab4 1696 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1697#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1698 else if (order == PMD_ORDER)
fce86ff5 1699 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1700#endif
cfc93c6c 1701 else
ab77dab4 1702 ret = VM_FAULT_FALLBACK;
cfc93c6c 1703 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1704 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1705 return ret;
71eab6df
JK
1706}
1707
1708/**
1709 * dax_finish_sync_fault - finish synchronous page fault
1710 * @vmf: The description of the fault
1711 * @pe_size: Size of entry to be inserted
1712 * @pfn: PFN to insert
1713 *
1714 * This function ensures that the file range touched by the page fault is
1715 * stored persistently on the media and handles inserting of appropriate page
1716 * table entry.
1717 */
ab77dab4
SJ
1718vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1719 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1720{
1721 int err;
1722 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1723 unsigned int order = pe_order(pe_size);
1724 size_t len = PAGE_SIZE << order;
71eab6df 1725
71eab6df
JK
1726 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1727 if (err)
1728 return VM_FAULT_SIGBUS;
cfc93c6c 1729 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1730}
1731EXPORT_SYMBOL_GPL(dax_finish_sync_fault);