]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/dax.c
Merge tag 'libnvdimm-fixes-5.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634
MW
13#include <linux/fs.h>
14#include <linux/genhd.h>
f7ca90b1
MW
15#include <linux/highmem.h>
16#include <linux/memcontrol.h>
17#include <linux/mm.h>
d475c634 18#include <linux/mutex.h>
9973c98e 19#include <linux/pagevec.h>
289c6aed 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
d475c634 22#include <linux/uio.h>
f7ca90b1 23#include <linux/vmstat.h>
34c0fd54 24#include <linux/pfn_t.h>
0e749e54 25#include <linux/sizes.h>
4b4bb46d 26#include <linux/mmu_notifier.h>
a254e568 27#include <linux/iomap.h>
11cf9d86 28#include <asm/pgalloc.h>
d475c634 29
282a8e03
RZ
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
cfc93c6c
MW
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
ac401cc7
JK
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
917f3452
RZ
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 51
cfc93c6c
MW
52/* The order of a PMD entry */
53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
527b19d0 67/*
3159f943
MW
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
527b19d0
RZ
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
3159f943
MW
77#define DAX_SHIFT (4)
78#define DAX_LOCKED (1UL << 0)
79#define DAX_PMD (1UL << 1)
80#define DAX_ZERO_PAGE (1UL << 2)
81#define DAX_EMPTY (1UL << 3)
527b19d0 82
a77d19f4 83static unsigned long dax_to_pfn(void *entry)
527b19d0 84{
3159f943 85 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
86}
87
9f32d221
MW
88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89{
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91}
92
cfc93c6c
MW
93static bool dax_is_locked(void *entry)
94{
95 return xa_to_value(entry) & DAX_LOCKED;
96}
97
a77d19f4 98static unsigned int dax_entry_order(void *entry)
527b19d0 99{
3159f943 100 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 101 return PMD_ORDER;
527b19d0
RZ
102 return 0;
103}
104
fda490d3 105static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 106{
3159f943 107 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
108}
109
fda490d3 110static bool dax_is_pte_entry(void *entry)
d475c634 111{
3159f943 112 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
113}
114
642261ac 115static int dax_is_zero_entry(void *entry)
d475c634 116{
3159f943 117 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
118}
119
642261ac 120static int dax_is_empty_entry(void *entry)
b2e0d162 121{
3159f943 122 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
123}
124
23c84eb7
MWO
125/*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129static bool dax_is_conflict(void *entry)
130{
131 return entry == XA_RETRY_ENTRY;
132}
133
ac401cc7 134/*
a77d19f4 135 * DAX page cache entry locking
ac401cc7
JK
136 */
137struct exceptional_entry_key {
ec4907ff 138 struct xarray *xa;
63e95b5c 139 pgoff_t entry_start;
ac401cc7
JK
140};
141
142struct wait_exceptional_entry_queue {
ac6424b9 143 wait_queue_entry_t wait;
ac401cc7
JK
144 struct exceptional_entry_key key;
145};
146
b15cd800
MW
147static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
149{
150 unsigned long hash;
b15cd800 151 unsigned long index = xas->xa_index;
63e95b5c
RZ
152
153 /*
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
157 */
642261ac 158 if (dax_is_pmd_entry(entry))
917f3452 159 index &= ~PG_PMD_COLOUR;
b15cd800 160 key->xa = xas->xa;
63e95b5c
RZ
161 key->entry_start = index;
162
b15cd800 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
164 return wait_table + hash;
165}
166
ec4907ff
MW
167static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
169{
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
ec4907ff 174 if (key->xa != ewait->key.xa ||
63e95b5c 175 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178}
179
e30331ff 180/*
b93b0163
MW
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
e30331ff 184 */
b15cd800 185static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
186{
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
189
b15cd800 190 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
191
192 /*
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 194 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
197 */
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200}
201
cfc93c6c
MW
202/*
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
23c84eb7
MWO
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
cfc93c6c
MW
209 *
210 * Must be called with the i_pages lock held.
211 */
23c84eb7 212static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
cfc93c6c
MW
213{
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
217
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
220
221 for (;;) {
0e40de03 222 entry = xas_find_conflict(xas);
6370740e
DW
223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224 return entry;
23c84eb7
MWO
225 if (dax_entry_order(entry) < order)
226 return XA_RETRY_ENTRY;
6370740e 227 if (!dax_is_locked(entry))
cfc93c6c
MW
228 return entry;
229
b15cd800 230 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
231 prepare_to_wait_exclusive(wq, &ewait.wait,
232 TASK_UNINTERRUPTIBLE);
233 xas_unlock_irq(xas);
234 xas_reset(xas);
235 schedule();
236 finish_wait(wq, &ewait.wait);
237 xas_lock_irq(xas);
238 }
239}
240
55e56f06
MW
241/*
242 * The only thing keeping the address space around is the i_pages lock
243 * (it's cycled in clear_inode() after removing the entries from i_pages)
244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
245 */
246static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247{
248 struct wait_exceptional_entry_queue ewait;
249 wait_queue_head_t *wq;
250
251 init_wait(&ewait.wait);
252 ewait.wait.func = wake_exceptional_entry_func;
253
254 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
255 /*
256 * Unlike get_unlocked_entry() there is no guarantee that this
257 * path ever successfully retrieves an unlocked entry before an
258 * inode dies. Perform a non-exclusive wait in case this path
259 * never successfully performs its own wake up.
260 */
261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
262 xas_unlock_irq(xas);
263 schedule();
264 finish_wait(wq, &ewait.wait);
55e56f06
MW
265}
266
cfc93c6c
MW
267static void put_unlocked_entry(struct xa_state *xas, void *entry)
268{
269 /* If we were the only waiter woken, wake the next one */
61c30c98 270 if (entry && !dax_is_conflict(entry))
cfc93c6c
MW
271 dax_wake_entry(xas, entry, false);
272}
273
274/*
275 * We used the xa_state to get the entry, but then we locked the entry and
276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
277 * before use.
278 */
279static void dax_unlock_entry(struct xa_state *xas, void *entry)
280{
281 void *old;
282
7ae2ea7d 283 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
284 xas_reset(xas);
285 xas_lock_irq(xas);
286 old = xas_store(xas, entry);
287 xas_unlock_irq(xas);
288 BUG_ON(!dax_is_locked(old));
289 dax_wake_entry(xas, entry, false);
290}
291
292/*
293 * Return: The entry stored at this location before it was locked.
294 */
295static void *dax_lock_entry(struct xa_state *xas, void *entry)
296{
297 unsigned long v = xa_to_value(entry);
298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299}
300
d2c997c0
DW
301static unsigned long dax_entry_size(void *entry)
302{
303 if (dax_is_zero_entry(entry))
304 return 0;
305 else if (dax_is_empty_entry(entry))
306 return 0;
307 else if (dax_is_pmd_entry(entry))
308 return PMD_SIZE;
309 else
310 return PAGE_SIZE;
311}
312
a77d19f4 313static unsigned long dax_end_pfn(void *entry)
d2c997c0 314{
a77d19f4 315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
316}
317
318/*
319 * Iterate through all mapped pfns represented by an entry, i.e. skip
320 * 'empty' and 'zero' entries.
321 */
322#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
323 for (pfn = dax_to_pfn(entry); \
324 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 325
73449daf
DW
326/*
327 * TODO: for reflink+dax we need a way to associate a single page with
328 * multiple address_space instances at different linear_page_index()
329 * offsets.
330 */
331static void dax_associate_entry(void *entry, struct address_space *mapping,
332 struct vm_area_struct *vma, unsigned long address)
d2c997c0 333{
73449daf
DW
334 unsigned long size = dax_entry_size(entry), pfn, index;
335 int i = 0;
d2c997c0
DW
336
337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338 return;
339
73449daf 340 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
341 for_each_mapped_pfn(entry, pfn) {
342 struct page *page = pfn_to_page(pfn);
343
344 WARN_ON_ONCE(page->mapping);
345 page->mapping = mapping;
73449daf 346 page->index = index + i++;
d2c997c0
DW
347 }
348}
349
350static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351 bool trunc)
352{
353 unsigned long pfn;
354
355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356 return;
357
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
360
361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363 page->mapping = NULL;
73449daf 364 page->index = 0;
d2c997c0
DW
365 }
366}
367
5fac7408
DW
368static struct page *dax_busy_page(void *entry)
369{
370 unsigned long pfn;
371
372 for_each_mapped_pfn(entry, pfn) {
373 struct page *page = pfn_to_page(pfn);
374
375 if (page_ref_count(page) > 1)
376 return page;
377 }
378 return NULL;
379}
380
c5bbd451
MW
381/*
382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383 * @page: The page whose entry we want to lock
384 *
385 * Context: Process context.
27359fd6
MW
386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387 * not be locked.
c5bbd451 388 */
27359fd6 389dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 390{
9f32d221
MW
391 XA_STATE(xas, NULL, 0);
392 void *entry;
c2a7d2a1 393
c5bbd451
MW
394 /* Ensure page->mapping isn't freed while we look at it */
395 rcu_read_lock();
c2a7d2a1 396 for (;;) {
9f32d221 397 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 398
27359fd6 399 entry = NULL;
c93db7bb 400 if (!mapping || !dax_mapping(mapping))
c5bbd451 401 break;
c2a7d2a1
DW
402
403 /*
404 * In the device-dax case there's no need to lock, a
405 * struct dev_pagemap pin is sufficient to keep the
406 * inode alive, and we assume we have dev_pagemap pin
407 * otherwise we would not have a valid pfn_to_page()
408 * translation.
409 */
27359fd6 410 entry = (void *)~0UL;
9f32d221 411 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 412 break;
c2a7d2a1 413
9f32d221
MW
414 xas.xa = &mapping->i_pages;
415 xas_lock_irq(&xas);
c2a7d2a1 416 if (mapping != page->mapping) {
9f32d221 417 xas_unlock_irq(&xas);
c2a7d2a1
DW
418 continue;
419 }
9f32d221
MW
420 xas_set(&xas, page->index);
421 entry = xas_load(&xas);
422 if (dax_is_locked(entry)) {
c5bbd451 423 rcu_read_unlock();
55e56f06 424 wait_entry_unlocked(&xas, entry);
c5bbd451 425 rcu_read_lock();
6d7cd8c1 426 continue;
c2a7d2a1 427 }
9f32d221
MW
428 dax_lock_entry(&xas, entry);
429 xas_unlock_irq(&xas);
c5bbd451 430 break;
c2a7d2a1 431 }
c5bbd451 432 rcu_read_unlock();
27359fd6 433 return (dax_entry_t)entry;
c2a7d2a1
DW
434}
435
27359fd6 436void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
437{
438 struct address_space *mapping = page->mapping;
9f32d221 439 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 440
9f32d221 441 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
442 return;
443
27359fd6 444 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
445}
446
ac401cc7 447/*
a77d19f4
MW
448 * Find page cache entry at given index. If it is a DAX entry, return it
449 * with the entry locked. If the page cache doesn't contain an entry at
450 * that index, add a locked empty entry.
ac401cc7 451 *
3159f943 452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
453 * either return that locked entry or will return VM_FAULT_FALLBACK.
454 * This will happen if there are any PTE entries within the PMD range
455 * that we are requesting.
642261ac 456 *
b15cd800
MW
457 * We always favor PTE entries over PMD entries. There isn't a flow where we
458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
459 * insertion will fail if it finds any PTE entries already in the tree, and a
460 * PTE insertion will cause an existing PMD entry to be unmapped and
461 * downgraded to PTE entries. This happens for both PMD zero pages as
462 * well as PMD empty entries.
642261ac 463 *
b15cd800
MW
464 * The exception to this downgrade path is for PMD entries that have
465 * real storage backing them. We will leave these real PMD entries in
466 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 467 *
ac401cc7
JK
468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469 * persistent memory the benefit is doubtful. We can add that later if we can
470 * show it helps.
b15cd800
MW
471 *
472 * On error, this function does not return an ERR_PTR. Instead it returns
473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
474 * overlap with xarray value entries.
ac401cc7 475 */
b15cd800 476static void *grab_mapping_entry(struct xa_state *xas,
23c84eb7 477 struct address_space *mapping, unsigned int order)
ac401cc7 478{
b15cd800
MW
479 unsigned long index = xas->xa_index;
480 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481 void *entry;
642261ac 482
b15cd800
MW
483retry:
484 xas_lock_irq(xas);
23c84eb7 485 entry = get_unlocked_entry(xas, order);
91d25ba8 486
642261ac 487 if (entry) {
23c84eb7
MWO
488 if (dax_is_conflict(entry))
489 goto fallback;
0e40de03 490 if (!xa_is_value(entry)) {
49688e65 491 xas_set_err(xas, -EIO);
b15cd800
MW
492 goto out_unlock;
493 }
494
23c84eb7 495 if (order == 0) {
91d25ba8 496 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
497 (dax_is_zero_entry(entry) ||
498 dax_is_empty_entry(entry))) {
499 pmd_downgrade = true;
500 }
501 }
502 }
503
b15cd800
MW
504 if (pmd_downgrade) {
505 /*
506 * Make sure 'entry' remains valid while we drop
507 * the i_pages lock.
508 */
509 dax_lock_entry(xas, entry);
642261ac 510
642261ac
RZ
511 /*
512 * Besides huge zero pages the only other thing that gets
513 * downgraded are empty entries which don't need to be
514 * unmapped.
515 */
b15cd800
MW
516 if (dax_is_zero_entry(entry)) {
517 xas_unlock_irq(xas);
518 unmap_mapping_pages(mapping,
519 xas->xa_index & ~PG_PMD_COLOUR,
520 PG_PMD_NR, false);
521 xas_reset(xas);
522 xas_lock_irq(xas);
e11f8b7b
RZ
523 }
524
b15cd800
MW
525 dax_disassociate_entry(entry, mapping, false);
526 xas_store(xas, NULL); /* undo the PMD join */
527 dax_wake_entry(xas, entry, true);
528 mapping->nrexceptional--;
529 entry = NULL;
530 xas_set(xas, index);
531 }
642261ac 532
b15cd800
MW
533 if (entry) {
534 dax_lock_entry(xas, entry);
535 } else {
23c84eb7
MWO
536 unsigned long flags = DAX_EMPTY;
537
538 if (order > 0)
539 flags |= DAX_PMD;
540 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
b15cd800
MW
541 dax_lock_entry(xas, entry);
542 if (xas_error(xas))
543 goto out_unlock;
ac401cc7 544 mapping->nrexceptional++;
ac401cc7 545 }
b15cd800
MW
546
547out_unlock:
548 xas_unlock_irq(xas);
549 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550 goto retry;
551 if (xas->xa_node == XA_ERROR(-ENOMEM))
552 return xa_mk_internal(VM_FAULT_OOM);
553 if (xas_error(xas))
554 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 555 return entry;
b15cd800
MW
556fallback:
557 xas_unlock_irq(xas);
558 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
559}
560
5fac7408
DW
561/**
562 * dax_layout_busy_page - find first pinned page in @mapping
563 * @mapping: address space to scan for a page with ref count > 1
564 *
565 * DAX requires ZONE_DEVICE mapped pages. These pages are never
566 * 'onlined' to the page allocator so they are considered idle when
567 * page->count == 1. A filesystem uses this interface to determine if
568 * any page in the mapping is busy, i.e. for DMA, or other
569 * get_user_pages() usages.
570 *
571 * It is expected that the filesystem is holding locks to block the
572 * establishment of new mappings in this address_space. I.e. it expects
573 * to be able to run unmap_mapping_range() and subsequently not race
574 * mapping_mapped() becoming true.
575 */
576struct page *dax_layout_busy_page(struct address_space *mapping)
577{
084a8990
MW
578 XA_STATE(xas, &mapping->i_pages, 0);
579 void *entry;
580 unsigned int scanned = 0;
5fac7408 581 struct page *page = NULL;
5fac7408
DW
582
583 /*
584 * In the 'limited' case get_user_pages() for dax is disabled.
585 */
586 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
587 return NULL;
588
589 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
590 return NULL;
591
5fac7408
DW
592 /*
593 * If we race get_user_pages_fast() here either we'll see the
084a8990 594 * elevated page count in the iteration and wait, or
5fac7408
DW
595 * get_user_pages_fast() will see that the page it took a reference
596 * against is no longer mapped in the page tables and bail to the
597 * get_user_pages() slow path. The slow path is protected by
598 * pte_lock() and pmd_lock(). New references are not taken without
599 * holding those locks, and unmap_mapping_range() will not zero the
600 * pte or pmd without holding the respective lock, so we are
601 * guaranteed to either see new references or prevent new
602 * references from being established.
603 */
d75996dd 604 unmap_mapping_range(mapping, 0, 0, 0);
5fac7408 605
084a8990
MW
606 xas_lock_irq(&xas);
607 xas_for_each(&xas, entry, ULONG_MAX) {
608 if (WARN_ON_ONCE(!xa_is_value(entry)))
609 continue;
610 if (unlikely(dax_is_locked(entry)))
23c84eb7 611 entry = get_unlocked_entry(&xas, 0);
084a8990
MW
612 if (entry)
613 page = dax_busy_page(entry);
614 put_unlocked_entry(&xas, entry);
5fac7408
DW
615 if (page)
616 break;
084a8990
MW
617 if (++scanned % XA_CHECK_SCHED)
618 continue;
619
620 xas_pause(&xas);
621 xas_unlock_irq(&xas);
622 cond_resched();
623 xas_lock_irq(&xas);
5fac7408 624 }
084a8990 625 xas_unlock_irq(&xas);
5fac7408
DW
626 return page;
627}
628EXPORT_SYMBOL_GPL(dax_layout_busy_page);
629
a77d19f4 630static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
631 pgoff_t index, bool trunc)
632{
07f2d89c 633 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
634 int ret = 0;
635 void *entry;
c6dcf52c 636
07f2d89c 637 xas_lock_irq(&xas);
23c84eb7 638 entry = get_unlocked_entry(&xas, 0);
3159f943 639 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
640 goto out;
641 if (!trunc &&
07f2d89c
MW
642 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
643 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 644 goto out;
d2c997c0 645 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 646 xas_store(&xas, NULL);
c6dcf52c
JK
647 mapping->nrexceptional--;
648 ret = 1;
649out:
07f2d89c
MW
650 put_unlocked_entry(&xas, entry);
651 xas_unlock_irq(&xas);
c6dcf52c
JK
652 return ret;
653}
07f2d89c 654
ac401cc7 655/*
3159f943
MW
656 * Delete DAX entry at @index from @mapping. Wait for it
657 * to be unlocked before deleting it.
ac401cc7
JK
658 */
659int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
660{
a77d19f4 661 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 662
ac401cc7
JK
663 /*
664 * This gets called from truncate / punch_hole path. As such, the caller
665 * must hold locks protecting against concurrent modifications of the
a77d19f4 666 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 667 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
668 * at that index as well...
669 */
c6dcf52c
JK
670 WARN_ON_ONCE(!ret);
671 return ret;
672}
673
c6dcf52c 674/*
3159f943 675 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
676 */
677int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
678 pgoff_t index)
679{
a77d19f4 680 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
681}
682
c7fe193f
IW
683static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
684 sector_t sector, struct page *to, unsigned long vaddr)
f7ca90b1 685{
cccbce67
DW
686 void *vto, *kaddr;
687 pgoff_t pgoff;
cccbce67
DW
688 long rc;
689 int id;
690
c7fe193f 691 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
692 if (rc)
693 return rc;
694
695 id = dax_read_lock();
c7fe193f 696 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
cccbce67
DW
697 if (rc < 0) {
698 dax_read_unlock(id);
699 return rc;
700 }
f7ca90b1 701 vto = kmap_atomic(to);
cccbce67 702 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 703 kunmap_atomic(vto);
cccbce67 704 dax_read_unlock(id);
f7ca90b1
MW
705 return 0;
706}
707
642261ac
RZ
708/*
709 * By this point grab_mapping_entry() has ensured that we have a locked entry
710 * of the appropriate size so we don't have to worry about downgrading PMDs to
711 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
712 * already in the tree, we will skip the insertion and just dirty the PMD as
713 * appropriate.
714 */
b15cd800
MW
715static void *dax_insert_entry(struct xa_state *xas,
716 struct address_space *mapping, struct vm_fault *vmf,
717 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 718{
b15cd800 719 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 720
f5b7b748 721 if (dirty)
d2b2a28e 722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 723
3159f943 724 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 725 unsigned long index = xas->xa_index;
91d25ba8
RZ
726 /* we are replacing a zero page with block mapping */
727 if (dax_is_pmd_entry(entry))
977fbdcd 728 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 729 PG_PMD_NR, false);
91d25ba8 730 else /* pte entry */
b15cd800 731 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
732 }
733
b15cd800
MW
734 xas_reset(xas);
735 xas_lock_irq(xas);
1571c029
JK
736 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737 void *old;
738
d2c997c0 739 dax_disassociate_entry(entry, mapping, false);
73449daf 740 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
642261ac 741 /*
a77d19f4 742 * Only swap our new entry into the page cache if the current
642261ac 743 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 744 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
745 * means that if we are trying to insert a PTE and the
746 * existing entry is a PMD, we will just leave the PMD in the
747 * tree and dirty it if necessary.
748 */
1571c029 749 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
750 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
751 DAX_LOCKED));
91d25ba8 752 entry = new_entry;
b15cd800
MW
753 } else {
754 xas_load(xas); /* Walk the xa_state */
9973c98e 755 }
91d25ba8 756
f5b7b748 757 if (dirty)
b15cd800 758 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 759
b15cd800 760 xas_unlock_irq(xas);
91d25ba8 761 return entry;
9973c98e
RZ
762}
763
a77d19f4
MW
764static inline
765unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
766{
767 unsigned long address;
768
769 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
770 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
771 return address;
772}
773
774/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
775static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
776 unsigned long pfn)
4b4bb46d
JK
777{
778 struct vm_area_struct *vma;
f729c8c9
RZ
779 pte_t pte, *ptep = NULL;
780 pmd_t *pmdp = NULL;
4b4bb46d 781 spinlock_t *ptl;
4b4bb46d
JK
782
783 i_mmap_lock_read(mapping);
784 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
ac46d4f3
JG
785 struct mmu_notifier_range range;
786 unsigned long address;
4b4bb46d
JK
787
788 cond_resched();
789
790 if (!(vma->vm_flags & VM_SHARED))
791 continue;
792
793 address = pgoff_address(index, vma);
a4d1a885
JG
794
795 /*
0cefc36b 796 * Note because we provide range to follow_pte_pmd it will
a4d1a885
JG
797 * call mmu_notifier_invalidate_range_start() on our behalf
798 * before taking any lock.
799 */
ac46d4f3
JG
800 if (follow_pte_pmd(vma->vm_mm, address, &range,
801 &ptep, &pmdp, &ptl))
4b4bb46d 802 continue;
4b4bb46d 803
0f10851e
JG
804 /*
805 * No need to call mmu_notifier_invalidate_range() as we are
806 * downgrading page table protection not changing it to point
807 * to a new page.
808 *
ad56b738 809 * See Documentation/vm/mmu_notifier.rst
0f10851e 810 */
f729c8c9
RZ
811 if (pmdp) {
812#ifdef CONFIG_FS_DAX_PMD
813 pmd_t pmd;
814
815 if (pfn != pmd_pfn(*pmdp))
816 goto unlock_pmd;
f6f37321 817 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
818 goto unlock_pmd;
819
820 flush_cache_page(vma, address, pfn);
024eee0e 821 pmd = pmdp_invalidate(vma, address, pmdp);
f729c8c9
RZ
822 pmd = pmd_wrprotect(pmd);
823 pmd = pmd_mkclean(pmd);
824 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 825unlock_pmd:
f729c8c9 826#endif
ee190ca6 827 spin_unlock(ptl);
f729c8c9
RZ
828 } else {
829 if (pfn != pte_pfn(*ptep))
830 goto unlock_pte;
831 if (!pte_dirty(*ptep) && !pte_write(*ptep))
832 goto unlock_pte;
833
834 flush_cache_page(vma, address, pfn);
835 pte = ptep_clear_flush(vma, address, ptep);
836 pte = pte_wrprotect(pte);
837 pte = pte_mkclean(pte);
838 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
839unlock_pte:
840 pte_unmap_unlock(ptep, ptl);
841 }
4b4bb46d 842
ac46d4f3 843 mmu_notifier_invalidate_range_end(&range);
4b4bb46d
JK
844 }
845 i_mmap_unlock_read(mapping);
846}
847
9fc747f6
MW
848static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849 struct address_space *mapping, void *entry)
9973c98e 850{
e4b3448b 851 unsigned long pfn, index, count;
3fe0791c 852 long ret = 0;
9973c98e 853
9973c98e 854 /*
a6abc2c0
JK
855 * A page got tagged dirty in DAX mapping? Something is seriously
856 * wrong.
9973c98e 857 */
3159f943 858 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 859 return -EIO;
9973c98e 860
9fc747f6
MW
861 if (unlikely(dax_is_locked(entry))) {
862 void *old_entry = entry;
863
23c84eb7 864 entry = get_unlocked_entry(xas, 0);
9fc747f6
MW
865
866 /* Entry got punched out / reallocated? */
867 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
868 goto put_unlocked;
869 /*
870 * Entry got reallocated elsewhere? No need to writeback.
871 * We have to compare pfns as we must not bail out due to
872 * difference in lockbit or entry type.
873 */
874 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
875 goto put_unlocked;
876 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
877 dax_is_zero_entry(entry))) {
878 ret = -EIO;
879 goto put_unlocked;
880 }
881
882 /* Another fsync thread may have already done this entry */
883 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
884 goto put_unlocked;
9973c98e
RZ
885 }
886
a6abc2c0 887 /* Lock the entry to serialize with page faults */
9fc747f6
MW
888 dax_lock_entry(xas, entry);
889
a6abc2c0
JK
890 /*
891 * We can clear the tag now but we have to be careful so that concurrent
892 * dax_writeback_one() calls for the same index cannot finish before we
893 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
894 * at the entry only under the i_pages lock and once they do that
895 * they will see the entry locked and wait for it to unlock.
a6abc2c0 896 */
9fc747f6
MW
897 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
898 xas_unlock_irq(xas);
a6abc2c0 899
642261ac 900 /*
e4b3448b
MW
901 * If dax_writeback_mapping_range() was given a wbc->range_start
902 * in the middle of a PMD, the 'index' we use needs to be
903 * aligned to the start of the PMD.
3fe0791c
DW
904 * This allows us to flush for PMD_SIZE and not have to worry about
905 * partial PMD writebacks.
642261ac 906 */
a77d19f4 907 pfn = dax_to_pfn(entry);
e4b3448b
MW
908 count = 1UL << dax_entry_order(entry);
909 index = xas->xa_index & ~(count - 1);
cccbce67 910
e4b3448b
MW
911 dax_entry_mkclean(mapping, index, pfn);
912 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
913 /*
914 * After we have flushed the cache, we can clear the dirty tag. There
915 * cannot be new dirty data in the pfn after the flush has completed as
916 * the pfn mappings are writeprotected and fault waits for mapping
917 * entry lock.
918 */
9fc747f6
MW
919 xas_reset(xas);
920 xas_lock_irq(xas);
921 xas_store(xas, entry);
922 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923 dax_wake_entry(xas, entry, false);
924
e4b3448b 925 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
926 return ret;
927
a6abc2c0 928 put_unlocked:
9fc747f6 929 put_unlocked_entry(xas, entry);
9973c98e
RZ
930 return ret;
931}
932
933/*
934 * Flush the mapping to the persistent domain within the byte range of [start,
935 * end]. This is required by data integrity operations to ensure file data is
936 * on persistent storage prior to completion of the operation.
937 */
7f6d5b52 938int dax_writeback_mapping_range(struct address_space *mapping,
3f666c56 939 struct dax_device *dax_dev, struct writeback_control *wbc)
9973c98e 940{
9fc747f6 941 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 942 struct inode *inode = mapping->host;
9fc747f6 943 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
9fc747f6
MW
944 void *entry;
945 int ret = 0;
946 unsigned int scanned = 0;
9973c98e
RZ
947
948 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
949 return -EIO;
950
7f6d5b52
RZ
951 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
952 return 0;
953
9fc747f6 954 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 955
9fc747f6 956 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 957
9fc747f6
MW
958 xas_lock_irq(&xas);
959 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
960 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
961 if (ret < 0) {
962 mapping_set_error(mapping, ret);
9973c98e 963 break;
9973c98e 964 }
9fc747f6
MW
965 if (++scanned % XA_CHECK_SCHED)
966 continue;
967
968 xas_pause(&xas);
969 xas_unlock_irq(&xas);
970 cond_resched();
971 xas_lock_irq(&xas);
9973c98e 972 }
9fc747f6 973 xas_unlock_irq(&xas);
9fc747f6
MW
974 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
975 return ret;
9973c98e
RZ
976}
977EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
978
31a6f1a6 979static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 980{
a3841f94 981 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
982}
983
5e161e40
JK
984static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
985 pfn_t *pfnp)
f7ca90b1 986{
31a6f1a6 987 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
988 pgoff_t pgoff;
989 int id, rc;
5e161e40 990 long length;
f7ca90b1 991
5e161e40 992 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
993 if (rc)
994 return rc;
cccbce67 995 id = dax_read_lock();
5e161e40 996 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 997 NULL, pfnp);
5e161e40
JK
998 if (length < 0) {
999 rc = length;
1000 goto out;
cccbce67 1001 }
5e161e40
JK
1002 rc = -EINVAL;
1003 if (PFN_PHYS(length) < size)
1004 goto out;
1005 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1006 goto out;
1007 /* For larger pages we need devmap */
1008 if (length > 1 && !pfn_t_devmap(*pfnp))
1009 goto out;
1010 rc = 0;
1011out:
cccbce67 1012 dax_read_unlock(id);
5e161e40 1013 return rc;
0e3b210c 1014}
0e3b210c 1015
e30331ff 1016/*
91d25ba8
RZ
1017 * The user has performed a load from a hole in the file. Allocating a new
1018 * page in the file would cause excessive storage usage for workloads with
1019 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1020 * If this page is ever written to we will re-fault and change the mapping to
1021 * point to real DAX storage instead.
e30331ff 1022 */
b15cd800
MW
1023static vm_fault_t dax_load_hole(struct xa_state *xas,
1024 struct address_space *mapping, void **entry,
1025 struct vm_fault *vmf)
e30331ff
RZ
1026{
1027 struct inode *inode = mapping->host;
91d25ba8 1028 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1029 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1030 vm_fault_t ret;
e30331ff 1031
b15cd800 1032 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1033 DAX_ZERO_PAGE, false);
1034
ab77dab4 1035 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1036 trace_dax_load_hole(inode, vmf, ret);
1037 return ret;
1038}
1039
4f3b4f16
VG
1040int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size,
1041 struct iomap *iomap)
679c8bd3 1042{
4f3b4f16 1043 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
0a23f9ff
VG
1044 pgoff_t pgoff;
1045 long rc, id;
1046 void *kaddr;
1047 bool page_aligned = false;
4b0228fa 1048
cccbce67 1049
0a23f9ff
VG
1050 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1051 IS_ALIGNED(size, PAGE_SIZE))
1052 page_aligned = true;
cccbce67 1053
4f3b4f16 1054 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
0a23f9ff
VG
1055 if (rc)
1056 return rc;
1057
1058 id = dax_read_lock();
1059
1060 if (page_aligned)
4f3b4f16
VG
1061 rc = dax_zero_page_range(iomap->dax_dev, pgoff,
1062 size >> PAGE_SHIFT);
0a23f9ff 1063 else
4f3b4f16 1064 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
0a23f9ff
VG
1065 if (rc < 0) {
1066 dax_read_unlock(id);
1067 return rc;
1068 }
1069
1070 if (!page_aligned) {
81f55870 1071 memset(kaddr + offset, 0, size);
4f3b4f16 1072 dax_flush(iomap->dax_dev, kaddr + offset, size);
4b0228fa 1073 }
0a23f9ff 1074 dax_read_unlock(id);
679c8bd3
CH
1075 return 0;
1076}
679c8bd3 1077
a254e568 1078static loff_t
11c59c92 1079dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
c039b997 1080 struct iomap *iomap, struct iomap *srcmap)
a254e568 1081{
cccbce67
DW
1082 struct block_device *bdev = iomap->bdev;
1083 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1084 struct iov_iter *iter = data;
1085 loff_t end = pos + length, done = 0;
1086 ssize_t ret = 0;
a77d4786 1087 size_t xfer;
cccbce67 1088 int id;
a254e568
CH
1089
1090 if (iov_iter_rw(iter) == READ) {
1091 end = min(end, i_size_read(inode));
1092 if (pos >= end)
1093 return 0;
1094
1095 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1096 return iov_iter_zero(min(length, end - pos), iter);
1097 }
1098
1099 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1100 return -EIO;
1101
e3fce68c
JK
1102 /*
1103 * Write can allocate block for an area which has a hole page mapped
1104 * into page tables. We have to tear down these mappings so that data
1105 * written by write(2) is visible in mmap.
1106 */
cd656375 1107 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1108 invalidate_inode_pages2_range(inode->i_mapping,
1109 pos >> PAGE_SHIFT,
1110 (end - 1) >> PAGE_SHIFT);
1111 }
1112
cccbce67 1113 id = dax_read_lock();
a254e568
CH
1114 while (pos < end) {
1115 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1116 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1117 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1118 ssize_t map_len;
cccbce67
DW
1119 pgoff_t pgoff;
1120 void *kaddr;
a254e568 1121
d1908f52
MH
1122 if (fatal_signal_pending(current)) {
1123 ret = -EINTR;
1124 break;
1125 }
1126
cccbce67
DW
1127 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1128 if (ret)
1129 break;
1130
1131 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1132 &kaddr, NULL);
a254e568
CH
1133 if (map_len < 0) {
1134 ret = map_len;
1135 break;
1136 }
1137
cccbce67
DW
1138 map_len = PFN_PHYS(map_len);
1139 kaddr += offset;
a254e568
CH
1140 map_len -= offset;
1141 if (map_len > end - pos)
1142 map_len = end - pos;
1143
a2e050f5
RZ
1144 /*
1145 * The userspace address for the memory copy has already been
1146 * validated via access_ok() in either vfs_read() or
1147 * vfs_write(), depending on which operation we are doing.
1148 */
a254e568 1149 if (iov_iter_rw(iter) == WRITE)
a77d4786 1150 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1151 map_len, iter);
a254e568 1152 else
a77d4786 1153 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1154 map_len, iter);
a254e568 1155
a77d4786
DW
1156 pos += xfer;
1157 length -= xfer;
1158 done += xfer;
1159
1160 if (xfer == 0)
1161 ret = -EFAULT;
1162 if (xfer < map_len)
1163 break;
a254e568 1164 }
cccbce67 1165 dax_read_unlock(id);
a254e568
CH
1166
1167 return done ? done : ret;
1168}
1169
1170/**
11c59c92 1171 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1172 * @iocb: The control block for this I/O
1173 * @iter: The addresses to do I/O from or to
1174 * @ops: iomap ops passed from the file system
1175 *
1176 * This function performs read and write operations to directly mapped
1177 * persistent memory. The callers needs to take care of read/write exclusion
1178 * and evicting any page cache pages in the region under I/O.
1179 */
1180ssize_t
11c59c92 1181dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1182 const struct iomap_ops *ops)
a254e568
CH
1183{
1184 struct address_space *mapping = iocb->ki_filp->f_mapping;
1185 struct inode *inode = mapping->host;
1186 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1187 unsigned flags = 0;
1188
168316db 1189 if (iov_iter_rw(iter) == WRITE) {
9ffbe8ac 1190 lockdep_assert_held_write(&inode->i_rwsem);
a254e568 1191 flags |= IOMAP_WRITE;
168316db
CH
1192 } else {
1193 lockdep_assert_held(&inode->i_rwsem);
1194 }
a254e568 1195
96222d53
JM
1196 if (iocb->ki_flags & IOCB_NOWAIT)
1197 flags |= IOMAP_NOWAIT;
1198
a254e568
CH
1199 while (iov_iter_count(iter)) {
1200 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1201 iter, dax_iomap_actor);
a254e568
CH
1202 if (ret <= 0)
1203 break;
1204 pos += ret;
1205 done += ret;
1206 }
1207
1208 iocb->ki_pos += done;
1209 return done ? done : ret;
1210}
11c59c92 1211EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1212
ab77dab4 1213static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1214{
1215 if (error == 0)
1216 return VM_FAULT_NOPAGE;
c9aed74e 1217 return vmf_error(error);
9f141d6e
JK
1218}
1219
aaa422c4
DW
1220/*
1221 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1222 * flushed on write-faults (non-cow), but not read-faults.
1223 */
1224static bool dax_fault_is_synchronous(unsigned long flags,
1225 struct vm_area_struct *vma, struct iomap *iomap)
1226{
1227 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1228 && (iomap->flags & IOMAP_F_DIRTY);
1229}
1230
ab77dab4 1231static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1232 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1233{
a0987ad5
JK
1234 struct vm_area_struct *vma = vmf->vma;
1235 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1236 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1237 struct inode *inode = mapping->host;
1a29d85e 1238 unsigned long vaddr = vmf->address;
a7d73fe6 1239 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
c039b997
GR
1240 struct iomap iomap = { .type = IOMAP_HOLE };
1241 struct iomap srcmap = { .type = IOMAP_HOLE };
9484ab1b 1242 unsigned flags = IOMAP_FAULT;
a7d73fe6 1243 int error, major = 0;
d2c43ef1 1244 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1245 bool sync;
ab77dab4 1246 vm_fault_t ret = 0;
a7d73fe6 1247 void *entry;
1b5a1cb2 1248 pfn_t pfn;
a7d73fe6 1249
ab77dab4 1250 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1251 /*
1252 * Check whether offset isn't beyond end of file now. Caller is supposed
1253 * to hold locks serializing us with truncate / punch hole so this is
1254 * a reliable test.
1255 */
a9c42b33 1256 if (pos >= i_size_read(inode)) {
ab77dab4 1257 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1258 goto out;
1259 }
a7d73fe6 1260
d2c43ef1 1261 if (write && !vmf->cow_page)
a7d73fe6
CH
1262 flags |= IOMAP_WRITE;
1263
b15cd800
MW
1264 entry = grab_mapping_entry(&xas, mapping, 0);
1265 if (xa_is_internal(entry)) {
1266 ret = xa_to_internal(entry);
13e451fd
JK
1267 goto out;
1268 }
1269
e2093926
RZ
1270 /*
1271 * It is possible, particularly with mixed reads & writes to private
1272 * mappings, that we have raced with a PMD fault that overlaps with
1273 * the PTE we need to set up. If so just return and the fault will be
1274 * retried.
1275 */
1276 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1277 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1278 goto unlock_entry;
1279 }
1280
a7d73fe6
CH
1281 /*
1282 * Note that we don't bother to use iomap_apply here: DAX required
1283 * the file system block size to be equal the page size, which means
1284 * that we never have to deal with more than a single extent here.
1285 */
c039b997 1286 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
c0b24625
JK
1287 if (iomap_errp)
1288 *iomap_errp = error;
a9c42b33 1289 if (error) {
ab77dab4 1290 ret = dax_fault_return(error);
13e451fd 1291 goto unlock_entry;
a9c42b33 1292 }
a7d73fe6 1293 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1294 error = -EIO; /* fs corruption? */
1295 goto error_finish_iomap;
a7d73fe6
CH
1296 }
1297
a7d73fe6 1298 if (vmf->cow_page) {
31a6f1a6
JK
1299 sector_t sector = dax_iomap_sector(&iomap, pos);
1300
a7d73fe6
CH
1301 switch (iomap.type) {
1302 case IOMAP_HOLE:
1303 case IOMAP_UNWRITTEN:
1304 clear_user_highpage(vmf->cow_page, vaddr);
1305 break;
1306 case IOMAP_MAPPED:
c7fe193f
IW
1307 error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1308 sector, vmf->cow_page, vaddr);
a7d73fe6
CH
1309 break;
1310 default:
1311 WARN_ON_ONCE(1);
1312 error = -EIO;
1313 break;
1314 }
1315
1316 if (error)
13e451fd 1317 goto error_finish_iomap;
b1aa812b
JK
1318
1319 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1320 ret = finish_fault(vmf);
1321 if (!ret)
1322 ret = VM_FAULT_DONE_COW;
13e451fd 1323 goto finish_iomap;
a7d73fe6
CH
1324 }
1325
aaa422c4 1326 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1327
a7d73fe6
CH
1328 switch (iomap.type) {
1329 case IOMAP_MAPPED:
1330 if (iomap.flags & IOMAP_F_NEW) {
1331 count_vm_event(PGMAJFAULT);
a0987ad5 1332 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1333 major = VM_FAULT_MAJOR;
1334 }
1b5a1cb2
JK
1335 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1336 if (error < 0)
1337 goto error_finish_iomap;
1338
b15cd800 1339 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1340 0, write && !sync);
1b5a1cb2 1341
caa51d26
JK
1342 /*
1343 * If we are doing synchronous page fault and inode needs fsync,
1344 * we can insert PTE into page tables only after that happens.
1345 * Skip insertion for now and return the pfn so that caller can
1346 * insert it after fsync is done.
1347 */
1348 if (sync) {
1349 if (WARN_ON_ONCE(!pfnp)) {
1350 error = -EIO;
1351 goto error_finish_iomap;
1352 }
1353 *pfnp = pfn;
ab77dab4 1354 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1355 goto finish_iomap;
1356 }
1b5a1cb2
JK
1357 trace_dax_insert_mapping(inode, vmf, entry);
1358 if (write)
ab77dab4 1359 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1360 else
ab77dab4 1361 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1362
ab77dab4 1363 goto finish_iomap;
a7d73fe6
CH
1364 case IOMAP_UNWRITTEN:
1365 case IOMAP_HOLE:
d2c43ef1 1366 if (!write) {
b15cd800 1367 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1368 goto finish_iomap;
1550290b 1369 }
df561f66 1370 fallthrough;
a7d73fe6
CH
1371 default:
1372 WARN_ON_ONCE(1);
1373 error = -EIO;
1374 break;
1375 }
1376
13e451fd 1377 error_finish_iomap:
ab77dab4 1378 ret = dax_fault_return(error);
9f141d6e
JK
1379 finish_iomap:
1380 if (ops->iomap_end) {
1381 int copied = PAGE_SIZE;
1382
ab77dab4 1383 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1384 copied = 0;
1385 /*
1386 * The fault is done by now and there's no way back (other
1387 * thread may be already happily using PTE we have installed).
1388 * Just ignore error from ->iomap_end since we cannot do much
1389 * with it.
1390 */
1391 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1392 }
13e451fd 1393 unlock_entry:
b15cd800 1394 dax_unlock_entry(&xas, entry);
13e451fd 1395 out:
ab77dab4
SJ
1396 trace_dax_pte_fault_done(inode, vmf, ret);
1397 return ret | major;
a7d73fe6 1398}
642261ac
RZ
1399
1400#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1401static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1402 struct iomap *iomap, void **entry)
642261ac 1403{
f4200391
DJ
1404 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1405 unsigned long pmd_addr = vmf->address & PMD_MASK;
11cf9d86 1406 struct vm_area_struct *vma = vmf->vma;
653b2ea3 1407 struct inode *inode = mapping->host;
11cf9d86 1408 pgtable_t pgtable = NULL;
642261ac
RZ
1409 struct page *zero_page;
1410 spinlock_t *ptl;
1411 pmd_t pmd_entry;
3fe0791c 1412 pfn_t pfn;
642261ac 1413
f4200391 1414 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1415
1416 if (unlikely(!zero_page))
653b2ea3 1417 goto fallback;
642261ac 1418
3fe0791c 1419 pfn = page_to_pfn_t(zero_page);
b15cd800 1420 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1421 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1422
11cf9d86
AK
1423 if (arch_needs_pgtable_deposit()) {
1424 pgtable = pte_alloc_one(vma->vm_mm);
1425 if (!pgtable)
1426 return VM_FAULT_OOM;
1427 }
1428
f4200391
DJ
1429 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1430 if (!pmd_none(*(vmf->pmd))) {
642261ac 1431 spin_unlock(ptl);
653b2ea3 1432 goto fallback;
642261ac
RZ
1433 }
1434
11cf9d86
AK
1435 if (pgtable) {
1436 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1437 mm_inc_nr_ptes(vma->vm_mm);
1438 }
f4200391 1439 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1440 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1441 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1442 spin_unlock(ptl);
b15cd800 1443 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1444 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1445
1446fallback:
11cf9d86
AK
1447 if (pgtable)
1448 pte_free(vma->vm_mm, pgtable);
b15cd800 1449 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1450 return VM_FAULT_FALLBACK;
642261ac
RZ
1451}
1452
ab77dab4 1453static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1454 const struct iomap_ops *ops)
642261ac 1455{
f4200391 1456 struct vm_area_struct *vma = vmf->vma;
642261ac 1457 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1458 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1459 unsigned long pmd_addr = vmf->address & PMD_MASK;
1460 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1461 bool sync;
9484ab1b 1462 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1463 struct inode *inode = mapping->host;
ab77dab4 1464 vm_fault_t result = VM_FAULT_FALLBACK;
c039b997
GR
1465 struct iomap iomap = { .type = IOMAP_HOLE };
1466 struct iomap srcmap = { .type = IOMAP_HOLE };
b15cd800 1467 pgoff_t max_pgoff;
642261ac
RZ
1468 void *entry;
1469 loff_t pos;
1470 int error;
302a5e31 1471 pfn_t pfn;
642261ac 1472
282a8e03
RZ
1473 /*
1474 * Check whether offset isn't beyond end of file now. Caller is
1475 * supposed to hold locks serializing us with truncate / punch hole so
1476 * this is a reliable test.
1477 */
957ac8c4 1478 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1479
f4200391 1480 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1481
fffa281b
RZ
1482 /*
1483 * Make sure that the faulting address's PMD offset (color) matches
1484 * the PMD offset from the start of the file. This is necessary so
1485 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1486 * range in the page cache.
fffa281b
RZ
1487 */
1488 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1489 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1490 goto fallback;
1491
642261ac
RZ
1492 /* Fall back to PTEs if we're going to COW */
1493 if (write && !(vma->vm_flags & VM_SHARED))
1494 goto fallback;
1495
1496 /* If the PMD would extend outside the VMA */
1497 if (pmd_addr < vma->vm_start)
1498 goto fallback;
1499 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1500 goto fallback;
1501
b15cd800 1502 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1503 result = VM_FAULT_SIGBUS;
1504 goto out;
1505 }
642261ac
RZ
1506
1507 /* If the PMD would extend beyond the file size */
b15cd800 1508 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1509 goto fallback;
1510
876f2946 1511 /*
b15cd800
MW
1512 * grab_mapping_entry() will make sure we get an empty PMD entry,
1513 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1514 * entry is already in the array, for instance), it will return
1515 * VM_FAULT_FALLBACK.
876f2946 1516 */
23c84eb7 1517 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
b15cd800
MW
1518 if (xa_is_internal(entry)) {
1519 result = xa_to_internal(entry);
876f2946 1520 goto fallback;
b15cd800 1521 }
876f2946 1522
e2093926
RZ
1523 /*
1524 * It is possible, particularly with mixed reads & writes to private
1525 * mappings, that we have raced with a PTE fault that overlaps with
1526 * the PMD we need to set up. If so just return and the fault will be
1527 * retried.
1528 */
1529 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1530 !pmd_devmap(*vmf->pmd)) {
1531 result = 0;
1532 goto unlock_entry;
1533 }
1534
642261ac
RZ
1535 /*
1536 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1537 * setting up a mapping, so really we're using iomap_begin() as a way
1538 * to look up our filesystem block.
1539 */
b15cd800 1540 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
c039b997
GR
1541 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1542 &srcmap);
642261ac 1543 if (error)
876f2946 1544 goto unlock_entry;
9f141d6e 1545
642261ac
RZ
1546 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1547 goto finish_iomap;
1548
aaa422c4 1549 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1550
642261ac
RZ
1551 switch (iomap.type) {
1552 case IOMAP_MAPPED:
302a5e31
JK
1553 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1554 if (error < 0)
1555 goto finish_iomap;
1556
b15cd800 1557 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1558 DAX_PMD, write && !sync);
302a5e31 1559
caa51d26
JK
1560 /*
1561 * If we are doing synchronous page fault and inode needs fsync,
1562 * we can insert PMD into page tables only after that happens.
1563 * Skip insertion for now and return the pfn so that caller can
1564 * insert it after fsync is done.
1565 */
1566 if (sync) {
1567 if (WARN_ON_ONCE(!pfnp))
1568 goto finish_iomap;
1569 *pfnp = pfn;
1570 result = VM_FAULT_NEEDDSYNC;
1571 goto finish_iomap;
1572 }
1573
302a5e31 1574 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
fce86ff5 1575 result = vmf_insert_pfn_pmd(vmf, pfn, write);
642261ac
RZ
1576 break;
1577 case IOMAP_UNWRITTEN:
1578 case IOMAP_HOLE:
1579 if (WARN_ON_ONCE(write))
876f2946 1580 break;
b15cd800 1581 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1582 break;
1583 default:
1584 WARN_ON_ONCE(1);
1585 break;
1586 }
1587
1588 finish_iomap:
1589 if (ops->iomap_end) {
9f141d6e
JK
1590 int copied = PMD_SIZE;
1591
1592 if (result == VM_FAULT_FALLBACK)
1593 copied = 0;
1594 /*
1595 * The fault is done by now and there's no way back (other
1596 * thread may be already happily using PMD we have installed).
1597 * Just ignore error from ->iomap_end since we cannot do much
1598 * with it.
1599 */
1600 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1601 &iomap);
642261ac 1602 }
876f2946 1603 unlock_entry:
b15cd800 1604 dax_unlock_entry(&xas, entry);
642261ac
RZ
1605 fallback:
1606 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1607 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1608 count_vm_event(THP_FAULT_FALLBACK);
1609 }
282a8e03 1610out:
f4200391 1611 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1612 return result;
1613}
a2d58167 1614#else
ab77dab4 1615static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1616 const struct iomap_ops *ops)
a2d58167
DJ
1617{
1618 return VM_FAULT_FALLBACK;
1619}
642261ac 1620#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1621
1622/**
1623 * dax_iomap_fault - handle a page fault on a DAX file
1624 * @vmf: The description of the fault
cec04e8c 1625 * @pe_size: Size of the page to fault in
9a0dd422 1626 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1627 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1628 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1629 *
1630 * When a page fault occurs, filesystems may call this helper in
1631 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1632 * has done all the necessary locking for page fault to proceed
1633 * successfully.
1634 */
ab77dab4 1635vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1636 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1637{
c791ace1
DJ
1638 switch (pe_size) {
1639 case PE_SIZE_PTE:
c0b24625 1640 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1641 case PE_SIZE_PMD:
9a0dd422 1642 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1643 default:
1644 return VM_FAULT_FALLBACK;
1645 }
1646}
1647EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1648
a77d19f4 1649/*
71eab6df
JK
1650 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1651 * @vmf: The description of the fault
71eab6df 1652 * @pfn: PFN to insert
cfc93c6c 1653 * @order: Order of entry to insert.
71eab6df 1654 *
a77d19f4
MW
1655 * This function inserts a writeable PTE or PMD entry into the page tables
1656 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1657 */
cfc93c6c
MW
1658static vm_fault_t
1659dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1660{
1661 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1662 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1663 void *entry;
ab77dab4 1664 vm_fault_t ret;
71eab6df 1665
cfc93c6c 1666 xas_lock_irq(&xas);
23c84eb7 1667 entry = get_unlocked_entry(&xas, order);
71eab6df 1668 /* Did we race with someone splitting entry or so? */
23c84eb7
MWO
1669 if (!entry || dax_is_conflict(entry) ||
1670 (order == 0 && !dax_is_pte_entry(entry))) {
cfc93c6c
MW
1671 put_unlocked_entry(&xas, entry);
1672 xas_unlock_irq(&xas);
71eab6df
JK
1673 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1674 VM_FAULT_NOPAGE);
1675 return VM_FAULT_NOPAGE;
1676 }
cfc93c6c
MW
1677 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1678 dax_lock_entry(&xas, entry);
1679 xas_unlock_irq(&xas);
1680 if (order == 0)
ab77dab4 1681 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1682#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1683 else if (order == PMD_ORDER)
fce86ff5 1684 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1685#endif
cfc93c6c 1686 else
ab77dab4 1687 ret = VM_FAULT_FALLBACK;
cfc93c6c 1688 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1689 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1690 return ret;
71eab6df
JK
1691}
1692
1693/**
1694 * dax_finish_sync_fault - finish synchronous page fault
1695 * @vmf: The description of the fault
1696 * @pe_size: Size of entry to be inserted
1697 * @pfn: PFN to insert
1698 *
1699 * This function ensures that the file range touched by the page fault is
1700 * stored persistently on the media and handles inserting of appropriate page
1701 * table entry.
1702 */
ab77dab4
SJ
1703vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1704 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1705{
1706 int err;
1707 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1708 unsigned int order = pe_order(pe_size);
1709 size_t len = PAGE_SIZE << order;
71eab6df 1710
71eab6df
JK
1711 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1712 if (err)
1713 return VM_FAULT_SIGBUS;
cfc93c6c 1714 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1715}
1716EXPORT_SYMBOL_GPL(dax_finish_sync_fault);