]>
Commit | Line | Data |
---|---|---|
d475c634 MW |
1 | /* |
2 | * fs/dax.c - Direct Access filesystem code | |
3 | * Copyright (c) 2013-2014 Intel Corporation | |
4 | * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> | |
5 | * Author: Ross Zwisler <ross.zwisler@linux.intel.com> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify it | |
8 | * under the terms and conditions of the GNU General Public License, | |
9 | * version 2, as published by the Free Software Foundation. | |
10 | * | |
11 | * This program is distributed in the hope it will be useful, but WITHOUT | |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
14 | * more details. | |
15 | */ | |
16 | ||
17 | #include <linux/atomic.h> | |
18 | #include <linux/blkdev.h> | |
19 | #include <linux/buffer_head.h> | |
d77e92e2 | 20 | #include <linux/dax.h> |
d475c634 MW |
21 | #include <linux/fs.h> |
22 | #include <linux/genhd.h> | |
f7ca90b1 MW |
23 | #include <linux/highmem.h> |
24 | #include <linux/memcontrol.h> | |
25 | #include <linux/mm.h> | |
d475c634 | 26 | #include <linux/mutex.h> |
9973c98e | 27 | #include <linux/pagevec.h> |
289c6aed | 28 | #include <linux/sched.h> |
f361bf4a | 29 | #include <linux/sched/signal.h> |
d475c634 | 30 | #include <linux/uio.h> |
f7ca90b1 | 31 | #include <linux/vmstat.h> |
34c0fd54 | 32 | #include <linux/pfn_t.h> |
0e749e54 | 33 | #include <linux/sizes.h> |
4b4bb46d | 34 | #include <linux/mmu_notifier.h> |
a254e568 CH |
35 | #include <linux/iomap.h> |
36 | #include "internal.h" | |
d475c634 | 37 | |
282a8e03 RZ |
38 | #define CREATE_TRACE_POINTS |
39 | #include <trace/events/fs_dax.h> | |
40 | ||
ac401cc7 JK |
41 | /* We choose 4096 entries - same as per-zone page wait tables */ |
42 | #define DAX_WAIT_TABLE_BITS 12 | |
43 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | |
44 | ||
917f3452 RZ |
45 | /* The 'colour' (ie low bits) within a PMD of a page offset. */ |
46 | #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) | |
977fbdcd | 47 | #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) |
917f3452 | 48 | |
ce95ab0f | 49 | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; |
ac401cc7 JK |
50 | |
51 | static int __init init_dax_wait_table(void) | |
52 | { | |
53 | int i; | |
54 | ||
55 | for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | |
56 | init_waitqueue_head(wait_table + i); | |
57 | return 0; | |
58 | } | |
59 | fs_initcall(init_dax_wait_table); | |
60 | ||
527b19d0 RZ |
61 | /* |
62 | * We use lowest available bit in exceptional entry for locking, one bit for | |
63 | * the entry size (PMD) and two more to tell us if the entry is a zero page or | |
64 | * an empty entry that is just used for locking. In total four special bits. | |
65 | * | |
66 | * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE | |
67 | * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem | |
68 | * block allocation. | |
69 | */ | |
70 | #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4) | |
71 | #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT) | |
72 | #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) | |
73 | #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) | |
74 | #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)) | |
75 | ||
3fe0791c | 76 | static unsigned long dax_radix_pfn(void *entry) |
527b19d0 RZ |
77 | { |
78 | return (unsigned long)entry >> RADIX_DAX_SHIFT; | |
79 | } | |
80 | ||
3fe0791c | 81 | static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags) |
527b19d0 RZ |
82 | { |
83 | return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags | | |
3fe0791c | 84 | (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK); |
527b19d0 RZ |
85 | } |
86 | ||
87 | static unsigned int dax_radix_order(void *entry) | |
88 | { | |
89 | if ((unsigned long)entry & RADIX_DAX_PMD) | |
90 | return PMD_SHIFT - PAGE_SHIFT; | |
91 | return 0; | |
92 | } | |
93 | ||
642261ac | 94 | static int dax_is_pmd_entry(void *entry) |
d1a5f2b4 | 95 | { |
642261ac | 96 | return (unsigned long)entry & RADIX_DAX_PMD; |
d1a5f2b4 DW |
97 | } |
98 | ||
642261ac | 99 | static int dax_is_pte_entry(void *entry) |
d475c634 | 100 | { |
642261ac | 101 | return !((unsigned long)entry & RADIX_DAX_PMD); |
d475c634 MW |
102 | } |
103 | ||
642261ac | 104 | static int dax_is_zero_entry(void *entry) |
d475c634 | 105 | { |
91d25ba8 | 106 | return (unsigned long)entry & RADIX_DAX_ZERO_PAGE; |
d475c634 MW |
107 | } |
108 | ||
642261ac | 109 | static int dax_is_empty_entry(void *entry) |
b2e0d162 | 110 | { |
642261ac | 111 | return (unsigned long)entry & RADIX_DAX_EMPTY; |
b2e0d162 DW |
112 | } |
113 | ||
ac401cc7 JK |
114 | /* |
115 | * DAX radix tree locking | |
116 | */ | |
117 | struct exceptional_entry_key { | |
118 | struct address_space *mapping; | |
63e95b5c | 119 | pgoff_t entry_start; |
ac401cc7 JK |
120 | }; |
121 | ||
122 | struct wait_exceptional_entry_queue { | |
ac6424b9 | 123 | wait_queue_entry_t wait; |
ac401cc7 JK |
124 | struct exceptional_entry_key key; |
125 | }; | |
126 | ||
63e95b5c RZ |
127 | static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, |
128 | pgoff_t index, void *entry, struct exceptional_entry_key *key) | |
129 | { | |
130 | unsigned long hash; | |
131 | ||
132 | /* | |
133 | * If 'entry' is a PMD, align the 'index' that we use for the wait | |
134 | * queue to the start of that PMD. This ensures that all offsets in | |
135 | * the range covered by the PMD map to the same bit lock. | |
136 | */ | |
642261ac | 137 | if (dax_is_pmd_entry(entry)) |
917f3452 | 138 | index &= ~PG_PMD_COLOUR; |
63e95b5c RZ |
139 | |
140 | key->mapping = mapping; | |
141 | key->entry_start = index; | |
142 | ||
143 | hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); | |
144 | return wait_table + hash; | |
145 | } | |
146 | ||
ac6424b9 | 147 | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode, |
ac401cc7 JK |
148 | int sync, void *keyp) |
149 | { | |
150 | struct exceptional_entry_key *key = keyp; | |
151 | struct wait_exceptional_entry_queue *ewait = | |
152 | container_of(wait, struct wait_exceptional_entry_queue, wait); | |
153 | ||
154 | if (key->mapping != ewait->key.mapping || | |
63e95b5c | 155 | key->entry_start != ewait->key.entry_start) |
ac401cc7 JK |
156 | return 0; |
157 | return autoremove_wake_function(wait, mode, sync, NULL); | |
158 | } | |
159 | ||
e30331ff | 160 | /* |
b93b0163 MW |
161 | * @entry may no longer be the entry at the index in the mapping. |
162 | * The important information it's conveying is whether the entry at | |
163 | * this index used to be a PMD entry. | |
e30331ff | 164 | */ |
d01ad197 | 165 | static void dax_wake_mapping_entry_waiter(struct address_space *mapping, |
e30331ff RZ |
166 | pgoff_t index, void *entry, bool wake_all) |
167 | { | |
168 | struct exceptional_entry_key key; | |
169 | wait_queue_head_t *wq; | |
170 | ||
171 | wq = dax_entry_waitqueue(mapping, index, entry, &key); | |
172 | ||
173 | /* | |
174 | * Checking for locked entry and prepare_to_wait_exclusive() happens | |
b93b0163 | 175 | * under the i_pages lock, ditto for entry handling in our callers. |
e30331ff RZ |
176 | * So at this point all tasks that could have seen our entry locked |
177 | * must be in the waitqueue and the following check will see them. | |
178 | */ | |
179 | if (waitqueue_active(wq)) | |
180 | __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); | |
181 | } | |
182 | ||
ac401cc7 | 183 | /* |
b93b0163 MW |
184 | * Check whether the given slot is locked. Must be called with the i_pages |
185 | * lock held. | |
ac401cc7 JK |
186 | */ |
187 | static inline int slot_locked(struct address_space *mapping, void **slot) | |
188 | { | |
189 | unsigned long entry = (unsigned long) | |
b93b0163 | 190 | radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); |
ac401cc7 JK |
191 | return entry & RADIX_DAX_ENTRY_LOCK; |
192 | } | |
193 | ||
194 | /* | |
b93b0163 | 195 | * Mark the given slot as locked. Must be called with the i_pages lock held. |
ac401cc7 JK |
196 | */ |
197 | static inline void *lock_slot(struct address_space *mapping, void **slot) | |
198 | { | |
199 | unsigned long entry = (unsigned long) | |
b93b0163 | 200 | radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); |
ac401cc7 JK |
201 | |
202 | entry |= RADIX_DAX_ENTRY_LOCK; | |
b93b0163 | 203 | radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry); |
ac401cc7 JK |
204 | return (void *)entry; |
205 | } | |
206 | ||
207 | /* | |
b93b0163 | 208 | * Mark the given slot as unlocked. Must be called with the i_pages lock held. |
ac401cc7 JK |
209 | */ |
210 | static inline void *unlock_slot(struct address_space *mapping, void **slot) | |
211 | { | |
212 | unsigned long entry = (unsigned long) | |
b93b0163 | 213 | radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); |
ac401cc7 JK |
214 | |
215 | entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; | |
b93b0163 | 216 | radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry); |
ac401cc7 JK |
217 | return (void *)entry; |
218 | } | |
219 | ||
220 | /* | |
221 | * Lookup entry in radix tree, wait for it to become unlocked if it is | |
222 | * exceptional entry and return it. The caller must call | |
223 | * put_unlocked_mapping_entry() when he decided not to lock the entry or | |
224 | * put_locked_mapping_entry() when he locked the entry and now wants to | |
225 | * unlock it. | |
226 | * | |
b93b0163 | 227 | * Must be called with the i_pages lock held. |
ac401cc7 | 228 | */ |
c2a7d2a1 DW |
229 | static void *__get_unlocked_mapping_entry(struct address_space *mapping, |
230 | pgoff_t index, void ***slotp, bool (*wait_fn)(void)) | |
ac401cc7 | 231 | { |
e3ad61c6 | 232 | void *entry, **slot; |
ac401cc7 | 233 | struct wait_exceptional_entry_queue ewait; |
63e95b5c | 234 | wait_queue_head_t *wq; |
ac401cc7 JK |
235 | |
236 | init_wait(&ewait.wait); | |
237 | ewait.wait.func = wake_exceptional_entry_func; | |
ac401cc7 JK |
238 | |
239 | for (;;) { | |
c2a7d2a1 DW |
240 | bool revalidate; |
241 | ||
b93b0163 | 242 | entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, |
ac401cc7 | 243 | &slot); |
91d25ba8 RZ |
244 | if (!entry || |
245 | WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) || | |
ac401cc7 JK |
246 | !slot_locked(mapping, slot)) { |
247 | if (slotp) | |
248 | *slotp = slot; | |
e3ad61c6 | 249 | return entry; |
ac401cc7 | 250 | } |
63e95b5c RZ |
251 | |
252 | wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); | |
ac401cc7 JK |
253 | prepare_to_wait_exclusive(wq, &ewait.wait, |
254 | TASK_UNINTERRUPTIBLE); | |
b93b0163 | 255 | xa_unlock_irq(&mapping->i_pages); |
c2a7d2a1 | 256 | revalidate = wait_fn(); |
ac401cc7 | 257 | finish_wait(wq, &ewait.wait); |
b93b0163 | 258 | xa_lock_irq(&mapping->i_pages); |
c2a7d2a1 DW |
259 | if (revalidate) |
260 | return ERR_PTR(-EAGAIN); | |
ac401cc7 JK |
261 | } |
262 | } | |
263 | ||
c2a7d2a1 DW |
264 | static bool entry_wait(void) |
265 | { | |
266 | schedule(); | |
267 | /* | |
268 | * Never return an ERR_PTR() from | |
269 | * __get_unlocked_mapping_entry(), just keep looping. | |
270 | */ | |
271 | return false; | |
272 | } | |
273 | ||
274 | static void *get_unlocked_mapping_entry(struct address_space *mapping, | |
275 | pgoff_t index, void ***slotp) | |
276 | { | |
277 | return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait); | |
278 | } | |
279 | ||
280 | static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index) | |
b1aa812b JK |
281 | { |
282 | void *entry, **slot; | |
283 | ||
b93b0163 MW |
284 | xa_lock_irq(&mapping->i_pages); |
285 | entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot); | |
b1aa812b JK |
286 | if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || |
287 | !slot_locked(mapping, slot))) { | |
b93b0163 | 288 | xa_unlock_irq(&mapping->i_pages); |
b1aa812b JK |
289 | return; |
290 | } | |
291 | unlock_slot(mapping, slot); | |
b93b0163 | 292 | xa_unlock_irq(&mapping->i_pages); |
b1aa812b JK |
293 | dax_wake_mapping_entry_waiter(mapping, index, entry, false); |
294 | } | |
295 | ||
422476c4 | 296 | static void put_locked_mapping_entry(struct address_space *mapping, |
91d25ba8 | 297 | pgoff_t index) |
422476c4 | 298 | { |
c2a7d2a1 | 299 | unlock_mapping_entry(mapping, index); |
422476c4 RZ |
300 | } |
301 | ||
302 | /* | |
303 | * Called when we are done with radix tree entry we looked up via | |
304 | * get_unlocked_mapping_entry() and which we didn't lock in the end. | |
305 | */ | |
306 | static void put_unlocked_mapping_entry(struct address_space *mapping, | |
307 | pgoff_t index, void *entry) | |
308 | { | |
91d25ba8 | 309 | if (!entry) |
422476c4 RZ |
310 | return; |
311 | ||
312 | /* We have to wake up next waiter for the radix tree entry lock */ | |
313 | dax_wake_mapping_entry_waiter(mapping, index, entry, false); | |
314 | } | |
315 | ||
d2c997c0 DW |
316 | static unsigned long dax_entry_size(void *entry) |
317 | { | |
318 | if (dax_is_zero_entry(entry)) | |
319 | return 0; | |
320 | else if (dax_is_empty_entry(entry)) | |
321 | return 0; | |
322 | else if (dax_is_pmd_entry(entry)) | |
323 | return PMD_SIZE; | |
324 | else | |
325 | return PAGE_SIZE; | |
326 | } | |
327 | ||
328 | static unsigned long dax_radix_end_pfn(void *entry) | |
329 | { | |
330 | return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; | |
331 | } | |
332 | ||
333 | /* | |
334 | * Iterate through all mapped pfns represented by an entry, i.e. skip | |
335 | * 'empty' and 'zero' entries. | |
336 | */ | |
337 | #define for_each_mapped_pfn(entry, pfn) \ | |
338 | for (pfn = dax_radix_pfn(entry); \ | |
339 | pfn < dax_radix_end_pfn(entry); pfn++) | |
340 | ||
73449daf DW |
341 | /* |
342 | * TODO: for reflink+dax we need a way to associate a single page with | |
343 | * multiple address_space instances at different linear_page_index() | |
344 | * offsets. | |
345 | */ | |
346 | static void dax_associate_entry(void *entry, struct address_space *mapping, | |
347 | struct vm_area_struct *vma, unsigned long address) | |
d2c997c0 | 348 | { |
73449daf DW |
349 | unsigned long size = dax_entry_size(entry), pfn, index; |
350 | int i = 0; | |
d2c997c0 DW |
351 | |
352 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
353 | return; | |
354 | ||
73449daf | 355 | index = linear_page_index(vma, address & ~(size - 1)); |
d2c997c0 DW |
356 | for_each_mapped_pfn(entry, pfn) { |
357 | struct page *page = pfn_to_page(pfn); | |
358 | ||
359 | WARN_ON_ONCE(page->mapping); | |
360 | page->mapping = mapping; | |
73449daf | 361 | page->index = index + i++; |
d2c997c0 DW |
362 | } |
363 | } | |
364 | ||
365 | static void dax_disassociate_entry(void *entry, struct address_space *mapping, | |
366 | bool trunc) | |
367 | { | |
368 | unsigned long pfn; | |
369 | ||
370 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
371 | return; | |
372 | ||
373 | for_each_mapped_pfn(entry, pfn) { | |
374 | struct page *page = pfn_to_page(pfn); | |
375 | ||
376 | WARN_ON_ONCE(trunc && page_ref_count(page) > 1); | |
377 | WARN_ON_ONCE(page->mapping && page->mapping != mapping); | |
378 | page->mapping = NULL; | |
73449daf | 379 | page->index = 0; |
d2c997c0 DW |
380 | } |
381 | } | |
382 | ||
5fac7408 DW |
383 | static struct page *dax_busy_page(void *entry) |
384 | { | |
385 | unsigned long pfn; | |
386 | ||
387 | for_each_mapped_pfn(entry, pfn) { | |
388 | struct page *page = pfn_to_page(pfn); | |
389 | ||
390 | if (page_ref_count(page) > 1) | |
391 | return page; | |
392 | } | |
393 | return NULL; | |
394 | } | |
395 | ||
c2a7d2a1 DW |
396 | static bool entry_wait_revalidate(void) |
397 | { | |
398 | rcu_read_unlock(); | |
399 | schedule(); | |
400 | rcu_read_lock(); | |
401 | ||
402 | /* | |
403 | * Tell __get_unlocked_mapping_entry() to take a break, we need | |
404 | * to revalidate page->mapping after dropping locks | |
405 | */ | |
406 | return true; | |
407 | } | |
408 | ||
409 | bool dax_lock_mapping_entry(struct page *page) | |
410 | { | |
411 | pgoff_t index; | |
412 | struct inode *inode; | |
413 | bool did_lock = false; | |
414 | void *entry = NULL, **slot; | |
415 | struct address_space *mapping; | |
416 | ||
417 | rcu_read_lock(); | |
418 | for (;;) { | |
419 | mapping = READ_ONCE(page->mapping); | |
420 | ||
421 | if (!dax_mapping(mapping)) | |
422 | break; | |
423 | ||
424 | /* | |
425 | * In the device-dax case there's no need to lock, a | |
426 | * struct dev_pagemap pin is sufficient to keep the | |
427 | * inode alive, and we assume we have dev_pagemap pin | |
428 | * otherwise we would not have a valid pfn_to_page() | |
429 | * translation. | |
430 | */ | |
431 | inode = mapping->host; | |
432 | if (S_ISCHR(inode->i_mode)) { | |
433 | did_lock = true; | |
434 | break; | |
435 | } | |
436 | ||
437 | xa_lock_irq(&mapping->i_pages); | |
438 | if (mapping != page->mapping) { | |
439 | xa_unlock_irq(&mapping->i_pages); | |
440 | continue; | |
441 | } | |
442 | index = page->index; | |
443 | ||
444 | entry = __get_unlocked_mapping_entry(mapping, index, &slot, | |
445 | entry_wait_revalidate); | |
446 | if (!entry) { | |
447 | xa_unlock_irq(&mapping->i_pages); | |
448 | break; | |
449 | } else if (IS_ERR(entry)) { | |
450 | WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN); | |
451 | continue; | |
452 | } | |
453 | lock_slot(mapping, slot); | |
454 | did_lock = true; | |
455 | xa_unlock_irq(&mapping->i_pages); | |
456 | break; | |
457 | } | |
458 | rcu_read_unlock(); | |
459 | ||
460 | return did_lock; | |
461 | } | |
462 | ||
463 | void dax_unlock_mapping_entry(struct page *page) | |
464 | { | |
465 | struct address_space *mapping = page->mapping; | |
466 | struct inode *inode = mapping->host; | |
467 | ||
468 | if (S_ISCHR(inode->i_mode)) | |
469 | return; | |
470 | ||
471 | unlock_mapping_entry(mapping, page->index); | |
472 | } | |
473 | ||
ac401cc7 | 474 | /* |
91d25ba8 RZ |
475 | * Find radix tree entry at given index. If it points to an exceptional entry, |
476 | * return it with the radix tree entry locked. If the radix tree doesn't | |
477 | * contain given index, create an empty exceptional entry for the index and | |
478 | * return with it locked. | |
ac401cc7 | 479 | * |
642261ac RZ |
480 | * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will |
481 | * either return that locked entry or will return an error. This error will | |
91d25ba8 RZ |
482 | * happen if there are any 4k entries within the 2MiB range that we are |
483 | * requesting. | |
642261ac RZ |
484 | * |
485 | * We always favor 4k entries over 2MiB entries. There isn't a flow where we | |
486 | * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB | |
487 | * insertion will fail if it finds any 4k entries already in the tree, and a | |
488 | * 4k insertion will cause an existing 2MiB entry to be unmapped and | |
489 | * downgraded to 4k entries. This happens for both 2MiB huge zero pages as | |
490 | * well as 2MiB empty entries. | |
491 | * | |
492 | * The exception to this downgrade path is for 2MiB DAX PMD entries that have | |
493 | * real storage backing them. We will leave these real 2MiB DAX entries in | |
494 | * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. | |
495 | * | |
ac401cc7 JK |
496 | * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For |
497 | * persistent memory the benefit is doubtful. We can add that later if we can | |
498 | * show it helps. | |
499 | */ | |
642261ac RZ |
500 | static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, |
501 | unsigned long size_flag) | |
ac401cc7 | 502 | { |
642261ac | 503 | bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ |
e3ad61c6 | 504 | void *entry, **slot; |
ac401cc7 JK |
505 | |
506 | restart: | |
b93b0163 | 507 | xa_lock_irq(&mapping->i_pages); |
e3ad61c6 | 508 | entry = get_unlocked_mapping_entry(mapping, index, &slot); |
642261ac | 509 | |
91d25ba8 RZ |
510 | if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) { |
511 | entry = ERR_PTR(-EIO); | |
512 | goto out_unlock; | |
513 | } | |
514 | ||
642261ac RZ |
515 | if (entry) { |
516 | if (size_flag & RADIX_DAX_PMD) { | |
91d25ba8 | 517 | if (dax_is_pte_entry(entry)) { |
642261ac RZ |
518 | put_unlocked_mapping_entry(mapping, index, |
519 | entry); | |
520 | entry = ERR_PTR(-EEXIST); | |
521 | goto out_unlock; | |
522 | } | |
523 | } else { /* trying to grab a PTE entry */ | |
91d25ba8 | 524 | if (dax_is_pmd_entry(entry) && |
642261ac RZ |
525 | (dax_is_zero_entry(entry) || |
526 | dax_is_empty_entry(entry))) { | |
527 | pmd_downgrade = true; | |
528 | } | |
529 | } | |
530 | } | |
531 | ||
ac401cc7 | 532 | /* No entry for given index? Make sure radix tree is big enough. */ |
642261ac | 533 | if (!entry || pmd_downgrade) { |
ac401cc7 JK |
534 | int err; |
535 | ||
642261ac RZ |
536 | if (pmd_downgrade) { |
537 | /* | |
538 | * Make sure 'entry' remains valid while we drop | |
b93b0163 | 539 | * the i_pages lock. |
642261ac RZ |
540 | */ |
541 | entry = lock_slot(mapping, slot); | |
542 | } | |
543 | ||
b93b0163 | 544 | xa_unlock_irq(&mapping->i_pages); |
642261ac RZ |
545 | /* |
546 | * Besides huge zero pages the only other thing that gets | |
547 | * downgraded are empty entries which don't need to be | |
548 | * unmapped. | |
549 | */ | |
550 | if (pmd_downgrade && dax_is_zero_entry(entry)) | |
977fbdcd MW |
551 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
552 | PG_PMD_NR, false); | |
642261ac | 553 | |
ac401cc7 JK |
554 | err = radix_tree_preload( |
555 | mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); | |
0cb80b48 JK |
556 | if (err) { |
557 | if (pmd_downgrade) | |
91d25ba8 | 558 | put_locked_mapping_entry(mapping, index); |
ac401cc7 | 559 | return ERR_PTR(err); |
0cb80b48 | 560 | } |
b93b0163 | 561 | xa_lock_irq(&mapping->i_pages); |
642261ac | 562 | |
e11f8b7b RZ |
563 | if (!entry) { |
564 | /* | |
b93b0163 | 565 | * We needed to drop the i_pages lock while calling |
e11f8b7b RZ |
566 | * radix_tree_preload() and we didn't have an entry to |
567 | * lock. See if another thread inserted an entry at | |
568 | * our index during this time. | |
569 | */ | |
b93b0163 | 570 | entry = __radix_tree_lookup(&mapping->i_pages, index, |
e11f8b7b RZ |
571 | NULL, &slot); |
572 | if (entry) { | |
573 | radix_tree_preload_end(); | |
b93b0163 | 574 | xa_unlock_irq(&mapping->i_pages); |
e11f8b7b RZ |
575 | goto restart; |
576 | } | |
577 | } | |
578 | ||
642261ac | 579 | if (pmd_downgrade) { |
d2c997c0 | 580 | dax_disassociate_entry(entry, mapping, false); |
b93b0163 | 581 | radix_tree_delete(&mapping->i_pages, index); |
642261ac RZ |
582 | mapping->nrexceptional--; |
583 | dax_wake_mapping_entry_waiter(mapping, index, entry, | |
584 | true); | |
585 | } | |
586 | ||
587 | entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); | |
588 | ||
b93b0163 | 589 | err = __radix_tree_insert(&mapping->i_pages, index, |
642261ac | 590 | dax_radix_order(entry), entry); |
ac401cc7 JK |
591 | radix_tree_preload_end(); |
592 | if (err) { | |
b93b0163 | 593 | xa_unlock_irq(&mapping->i_pages); |
642261ac | 594 | /* |
e11f8b7b RZ |
595 | * Our insertion of a DAX entry failed, most likely |
596 | * because we were inserting a PMD entry and it | |
597 | * collided with a PTE sized entry at a different | |
598 | * index in the PMD range. We haven't inserted | |
599 | * anything into the radix tree and have no waiters to | |
600 | * wake. | |
642261ac | 601 | */ |
ac401cc7 JK |
602 | return ERR_PTR(err); |
603 | } | |
604 | /* Good, we have inserted empty locked entry into the tree. */ | |
605 | mapping->nrexceptional++; | |
b93b0163 | 606 | xa_unlock_irq(&mapping->i_pages); |
e3ad61c6 | 607 | return entry; |
ac401cc7 | 608 | } |
e3ad61c6 | 609 | entry = lock_slot(mapping, slot); |
642261ac | 610 | out_unlock: |
b93b0163 | 611 | xa_unlock_irq(&mapping->i_pages); |
e3ad61c6 | 612 | return entry; |
ac401cc7 JK |
613 | } |
614 | ||
5fac7408 DW |
615 | /** |
616 | * dax_layout_busy_page - find first pinned page in @mapping | |
617 | * @mapping: address space to scan for a page with ref count > 1 | |
618 | * | |
619 | * DAX requires ZONE_DEVICE mapped pages. These pages are never | |
620 | * 'onlined' to the page allocator so they are considered idle when | |
621 | * page->count == 1. A filesystem uses this interface to determine if | |
622 | * any page in the mapping is busy, i.e. for DMA, or other | |
623 | * get_user_pages() usages. | |
624 | * | |
625 | * It is expected that the filesystem is holding locks to block the | |
626 | * establishment of new mappings in this address_space. I.e. it expects | |
627 | * to be able to run unmap_mapping_range() and subsequently not race | |
628 | * mapping_mapped() becoming true. | |
629 | */ | |
630 | struct page *dax_layout_busy_page(struct address_space *mapping) | |
631 | { | |
632 | pgoff_t indices[PAGEVEC_SIZE]; | |
633 | struct page *page = NULL; | |
634 | struct pagevec pvec; | |
635 | pgoff_t index, end; | |
636 | unsigned i; | |
637 | ||
638 | /* | |
639 | * In the 'limited' case get_user_pages() for dax is disabled. | |
640 | */ | |
641 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
642 | return NULL; | |
643 | ||
644 | if (!dax_mapping(mapping) || !mapping_mapped(mapping)) | |
645 | return NULL; | |
646 | ||
647 | pagevec_init(&pvec); | |
648 | index = 0; | |
649 | end = -1; | |
650 | ||
651 | /* | |
652 | * If we race get_user_pages_fast() here either we'll see the | |
653 | * elevated page count in the pagevec_lookup and wait, or | |
654 | * get_user_pages_fast() will see that the page it took a reference | |
655 | * against is no longer mapped in the page tables and bail to the | |
656 | * get_user_pages() slow path. The slow path is protected by | |
657 | * pte_lock() and pmd_lock(). New references are not taken without | |
658 | * holding those locks, and unmap_mapping_range() will not zero the | |
659 | * pte or pmd without holding the respective lock, so we are | |
660 | * guaranteed to either see new references or prevent new | |
661 | * references from being established. | |
662 | */ | |
663 | unmap_mapping_range(mapping, 0, 0, 1); | |
664 | ||
665 | while (index < end && pagevec_lookup_entries(&pvec, mapping, index, | |
666 | min(end - index, (pgoff_t)PAGEVEC_SIZE), | |
667 | indices)) { | |
668 | for (i = 0; i < pagevec_count(&pvec); i++) { | |
669 | struct page *pvec_ent = pvec.pages[i]; | |
670 | void *entry; | |
671 | ||
672 | index = indices[i]; | |
673 | if (index >= end) | |
674 | break; | |
675 | ||
cdbf8897 RZ |
676 | if (WARN_ON_ONCE( |
677 | !radix_tree_exceptional_entry(pvec_ent))) | |
5fac7408 DW |
678 | continue; |
679 | ||
680 | xa_lock_irq(&mapping->i_pages); | |
681 | entry = get_unlocked_mapping_entry(mapping, index, NULL); | |
682 | if (entry) | |
683 | page = dax_busy_page(entry); | |
684 | put_unlocked_mapping_entry(mapping, index, entry); | |
685 | xa_unlock_irq(&mapping->i_pages); | |
686 | if (page) | |
687 | break; | |
688 | } | |
cdbf8897 RZ |
689 | |
690 | /* | |
691 | * We don't expect normal struct page entries to exist in our | |
692 | * tree, but we keep these pagevec calls so that this code is | |
693 | * consistent with the common pattern for handling pagevecs | |
694 | * throughout the kernel. | |
695 | */ | |
5fac7408 DW |
696 | pagevec_remove_exceptionals(&pvec); |
697 | pagevec_release(&pvec); | |
698 | index++; | |
699 | ||
700 | if (page) | |
701 | break; | |
702 | } | |
703 | return page; | |
704 | } | |
705 | EXPORT_SYMBOL_GPL(dax_layout_busy_page); | |
706 | ||
c6dcf52c JK |
707 | static int __dax_invalidate_mapping_entry(struct address_space *mapping, |
708 | pgoff_t index, bool trunc) | |
709 | { | |
710 | int ret = 0; | |
711 | void *entry; | |
b93b0163 | 712 | struct radix_tree_root *pages = &mapping->i_pages; |
c6dcf52c | 713 | |
b93b0163 | 714 | xa_lock_irq(pages); |
c6dcf52c | 715 | entry = get_unlocked_mapping_entry(mapping, index, NULL); |
91d25ba8 | 716 | if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry))) |
c6dcf52c JK |
717 | goto out; |
718 | if (!trunc && | |
b93b0163 MW |
719 | (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) || |
720 | radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))) | |
c6dcf52c | 721 | goto out; |
d2c997c0 | 722 | dax_disassociate_entry(entry, mapping, trunc); |
b93b0163 | 723 | radix_tree_delete(pages, index); |
c6dcf52c JK |
724 | mapping->nrexceptional--; |
725 | ret = 1; | |
726 | out: | |
727 | put_unlocked_mapping_entry(mapping, index, entry); | |
b93b0163 | 728 | xa_unlock_irq(pages); |
c6dcf52c JK |
729 | return ret; |
730 | } | |
ac401cc7 JK |
731 | /* |
732 | * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree | |
733 | * entry to get unlocked before deleting it. | |
734 | */ | |
735 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | |
736 | { | |
c6dcf52c | 737 | int ret = __dax_invalidate_mapping_entry(mapping, index, true); |
ac401cc7 | 738 | |
ac401cc7 JK |
739 | /* |
740 | * This gets called from truncate / punch_hole path. As such, the caller | |
741 | * must hold locks protecting against concurrent modifications of the | |
742 | * radix tree (usually fs-private i_mmap_sem for writing). Since the | |
743 | * caller has seen exceptional entry for this index, we better find it | |
744 | * at that index as well... | |
745 | */ | |
c6dcf52c JK |
746 | WARN_ON_ONCE(!ret); |
747 | return ret; | |
748 | } | |
749 | ||
c6dcf52c JK |
750 | /* |
751 | * Invalidate exceptional DAX entry if it is clean. | |
752 | */ | |
753 | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, | |
754 | pgoff_t index) | |
755 | { | |
756 | return __dax_invalidate_mapping_entry(mapping, index, false); | |
ac401cc7 JK |
757 | } |
758 | ||
cccbce67 DW |
759 | static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, |
760 | sector_t sector, size_t size, struct page *to, | |
761 | unsigned long vaddr) | |
f7ca90b1 | 762 | { |
cccbce67 DW |
763 | void *vto, *kaddr; |
764 | pgoff_t pgoff; | |
cccbce67 DW |
765 | long rc; |
766 | int id; | |
767 | ||
768 | rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); | |
769 | if (rc) | |
770 | return rc; | |
771 | ||
772 | id = dax_read_lock(); | |
86ed913b | 773 | rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); |
cccbce67 DW |
774 | if (rc < 0) { |
775 | dax_read_unlock(id); | |
776 | return rc; | |
777 | } | |
f7ca90b1 | 778 | vto = kmap_atomic(to); |
cccbce67 | 779 | copy_user_page(vto, (void __force *)kaddr, vaddr, to); |
f7ca90b1 | 780 | kunmap_atomic(vto); |
cccbce67 | 781 | dax_read_unlock(id); |
f7ca90b1 MW |
782 | return 0; |
783 | } | |
784 | ||
642261ac RZ |
785 | /* |
786 | * By this point grab_mapping_entry() has ensured that we have a locked entry | |
787 | * of the appropriate size so we don't have to worry about downgrading PMDs to | |
788 | * PTEs. If we happen to be trying to insert a PTE and there is a PMD | |
789 | * already in the tree, we will skip the insertion and just dirty the PMD as | |
790 | * appropriate. | |
791 | */ | |
ac401cc7 JK |
792 | static void *dax_insert_mapping_entry(struct address_space *mapping, |
793 | struct vm_fault *vmf, | |
3fe0791c | 794 | void *entry, pfn_t pfn_t, |
f5b7b748 | 795 | unsigned long flags, bool dirty) |
9973c98e | 796 | { |
b93b0163 | 797 | struct radix_tree_root *pages = &mapping->i_pages; |
3fe0791c | 798 | unsigned long pfn = pfn_t_to_pfn(pfn_t); |
ac401cc7 | 799 | pgoff_t index = vmf->pgoff; |
3fe0791c | 800 | void *new_entry; |
9973c98e | 801 | |
f5b7b748 | 802 | if (dirty) |
d2b2a28e | 803 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
9973c98e | 804 | |
91d25ba8 RZ |
805 | if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) { |
806 | /* we are replacing a zero page with block mapping */ | |
807 | if (dax_is_pmd_entry(entry)) | |
977fbdcd MW |
808 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
809 | PG_PMD_NR, false); | |
91d25ba8 | 810 | else /* pte entry */ |
977fbdcd | 811 | unmap_mapping_pages(mapping, vmf->pgoff, 1, false); |
9973c98e RZ |
812 | } |
813 | ||
b93b0163 | 814 | xa_lock_irq(pages); |
3fe0791c | 815 | new_entry = dax_radix_locked_entry(pfn, flags); |
d2c997c0 DW |
816 | if (dax_entry_size(entry) != dax_entry_size(new_entry)) { |
817 | dax_disassociate_entry(entry, mapping, false); | |
73449daf | 818 | dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); |
d2c997c0 | 819 | } |
642261ac | 820 | |
91d25ba8 | 821 | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { |
642261ac RZ |
822 | /* |
823 | * Only swap our new entry into the radix tree if the current | |
824 | * entry is a zero page or an empty entry. If a normal PTE or | |
825 | * PMD entry is already in the tree, we leave it alone. This | |
826 | * means that if we are trying to insert a PTE and the | |
827 | * existing entry is a PMD, we will just leave the PMD in the | |
828 | * tree and dirty it if necessary. | |
829 | */ | |
f7942430 | 830 | struct radix_tree_node *node; |
ac401cc7 JK |
831 | void **slot; |
832 | void *ret; | |
9973c98e | 833 | |
b93b0163 | 834 | ret = __radix_tree_lookup(pages, index, &node, &slot); |
ac401cc7 | 835 | WARN_ON_ONCE(ret != entry); |
b93b0163 | 836 | __radix_tree_replace(pages, node, slot, |
c7df8ad2 | 837 | new_entry, NULL); |
91d25ba8 | 838 | entry = new_entry; |
9973c98e | 839 | } |
91d25ba8 | 840 | |
f5b7b748 | 841 | if (dirty) |
b93b0163 | 842 | radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY); |
91d25ba8 | 843 | |
b93b0163 | 844 | xa_unlock_irq(pages); |
91d25ba8 | 845 | return entry; |
9973c98e RZ |
846 | } |
847 | ||
4b4bb46d JK |
848 | static inline unsigned long |
849 | pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) | |
850 | { | |
851 | unsigned long address; | |
852 | ||
853 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
854 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); | |
855 | return address; | |
856 | } | |
857 | ||
858 | /* Walk all mappings of a given index of a file and writeprotect them */ | |
859 | static void dax_mapping_entry_mkclean(struct address_space *mapping, | |
860 | pgoff_t index, unsigned long pfn) | |
861 | { | |
862 | struct vm_area_struct *vma; | |
f729c8c9 RZ |
863 | pte_t pte, *ptep = NULL; |
864 | pmd_t *pmdp = NULL; | |
4b4bb46d | 865 | spinlock_t *ptl; |
4b4bb46d JK |
866 | |
867 | i_mmap_lock_read(mapping); | |
868 | vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { | |
a4d1a885 | 869 | unsigned long address, start, end; |
4b4bb46d JK |
870 | |
871 | cond_resched(); | |
872 | ||
873 | if (!(vma->vm_flags & VM_SHARED)) | |
874 | continue; | |
875 | ||
876 | address = pgoff_address(index, vma); | |
a4d1a885 JG |
877 | |
878 | /* | |
879 | * Note because we provide start/end to follow_pte_pmd it will | |
880 | * call mmu_notifier_invalidate_range_start() on our behalf | |
881 | * before taking any lock. | |
882 | */ | |
883 | if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl)) | |
4b4bb46d | 884 | continue; |
4b4bb46d | 885 | |
0f10851e JG |
886 | /* |
887 | * No need to call mmu_notifier_invalidate_range() as we are | |
888 | * downgrading page table protection not changing it to point | |
889 | * to a new page. | |
890 | * | |
ad56b738 | 891 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 892 | */ |
f729c8c9 RZ |
893 | if (pmdp) { |
894 | #ifdef CONFIG_FS_DAX_PMD | |
895 | pmd_t pmd; | |
896 | ||
897 | if (pfn != pmd_pfn(*pmdp)) | |
898 | goto unlock_pmd; | |
f6f37321 | 899 | if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) |
f729c8c9 RZ |
900 | goto unlock_pmd; |
901 | ||
902 | flush_cache_page(vma, address, pfn); | |
903 | pmd = pmdp_huge_clear_flush(vma, address, pmdp); | |
904 | pmd = pmd_wrprotect(pmd); | |
905 | pmd = pmd_mkclean(pmd); | |
906 | set_pmd_at(vma->vm_mm, address, pmdp, pmd); | |
f729c8c9 | 907 | unlock_pmd: |
f729c8c9 | 908 | #endif |
ee190ca6 | 909 | spin_unlock(ptl); |
f729c8c9 RZ |
910 | } else { |
911 | if (pfn != pte_pfn(*ptep)) | |
912 | goto unlock_pte; | |
913 | if (!pte_dirty(*ptep) && !pte_write(*ptep)) | |
914 | goto unlock_pte; | |
915 | ||
916 | flush_cache_page(vma, address, pfn); | |
917 | pte = ptep_clear_flush(vma, address, ptep); | |
918 | pte = pte_wrprotect(pte); | |
919 | pte = pte_mkclean(pte); | |
920 | set_pte_at(vma->vm_mm, address, ptep, pte); | |
f729c8c9 RZ |
921 | unlock_pte: |
922 | pte_unmap_unlock(ptep, ptl); | |
923 | } | |
4b4bb46d | 924 | |
a4d1a885 | 925 | mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); |
4b4bb46d JK |
926 | } |
927 | i_mmap_unlock_read(mapping); | |
928 | } | |
929 | ||
3fe0791c DW |
930 | static int dax_writeback_one(struct dax_device *dax_dev, |
931 | struct address_space *mapping, pgoff_t index, void *entry) | |
9973c98e | 932 | { |
b93b0163 | 933 | struct radix_tree_root *pages = &mapping->i_pages; |
3fe0791c DW |
934 | void *entry2, **slot; |
935 | unsigned long pfn; | |
936 | long ret = 0; | |
cccbce67 | 937 | size_t size; |
9973c98e | 938 | |
9973c98e | 939 | /* |
a6abc2c0 JK |
940 | * A page got tagged dirty in DAX mapping? Something is seriously |
941 | * wrong. | |
9973c98e | 942 | */ |
a6abc2c0 JK |
943 | if (WARN_ON(!radix_tree_exceptional_entry(entry))) |
944 | return -EIO; | |
9973c98e | 945 | |
b93b0163 | 946 | xa_lock_irq(pages); |
a6abc2c0 JK |
947 | entry2 = get_unlocked_mapping_entry(mapping, index, &slot); |
948 | /* Entry got punched out / reallocated? */ | |
91d25ba8 | 949 | if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2))) |
a6abc2c0 JK |
950 | goto put_unlocked; |
951 | /* | |
952 | * Entry got reallocated elsewhere? No need to writeback. We have to | |
3fe0791c | 953 | * compare pfns as we must not bail out due to difference in lockbit |
a6abc2c0 JK |
954 | * or entry type. |
955 | */ | |
3fe0791c | 956 | if (dax_radix_pfn(entry2) != dax_radix_pfn(entry)) |
a6abc2c0 | 957 | goto put_unlocked; |
642261ac RZ |
958 | if (WARN_ON_ONCE(dax_is_empty_entry(entry) || |
959 | dax_is_zero_entry(entry))) { | |
9973c98e | 960 | ret = -EIO; |
a6abc2c0 | 961 | goto put_unlocked; |
9973c98e RZ |
962 | } |
963 | ||
a6abc2c0 | 964 | /* Another fsync thread may have already written back this entry */ |
b93b0163 | 965 | if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)) |
a6abc2c0 JK |
966 | goto put_unlocked; |
967 | /* Lock the entry to serialize with page faults */ | |
968 | entry = lock_slot(mapping, slot); | |
969 | /* | |
970 | * We can clear the tag now but we have to be careful so that concurrent | |
971 | * dax_writeback_one() calls for the same index cannot finish before we | |
972 | * actually flush the caches. This is achieved as the calls will look | |
b93b0163 MW |
973 | * at the entry only under the i_pages lock and once they do that |
974 | * they will see the entry locked and wait for it to unlock. | |
a6abc2c0 | 975 | */ |
b93b0163 MW |
976 | radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE); |
977 | xa_unlock_irq(pages); | |
a6abc2c0 | 978 | |
642261ac RZ |
979 | /* |
980 | * Even if dax_writeback_mapping_range() was given a wbc->range_start | |
981 | * in the middle of a PMD, the 'index' we are given will be aligned to | |
3fe0791c DW |
982 | * the start index of the PMD, as will the pfn we pull from 'entry'. |
983 | * This allows us to flush for PMD_SIZE and not have to worry about | |
984 | * partial PMD writebacks. | |
642261ac | 985 | */ |
3fe0791c | 986 | pfn = dax_radix_pfn(entry); |
cccbce67 DW |
987 | size = PAGE_SIZE << dax_radix_order(entry); |
988 | ||
3fe0791c DW |
989 | dax_mapping_entry_mkclean(mapping, index, pfn); |
990 | dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size); | |
4b4bb46d JK |
991 | /* |
992 | * After we have flushed the cache, we can clear the dirty tag. There | |
993 | * cannot be new dirty data in the pfn after the flush has completed as | |
994 | * the pfn mappings are writeprotected and fault waits for mapping | |
995 | * entry lock. | |
996 | */ | |
b93b0163 MW |
997 | xa_lock_irq(pages); |
998 | radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY); | |
999 | xa_unlock_irq(pages); | |
f9bc3a07 | 1000 | trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT); |
91d25ba8 | 1001 | put_locked_mapping_entry(mapping, index); |
9973c98e RZ |
1002 | return ret; |
1003 | ||
a6abc2c0 JK |
1004 | put_unlocked: |
1005 | put_unlocked_mapping_entry(mapping, index, entry2); | |
b93b0163 | 1006 | xa_unlock_irq(pages); |
9973c98e RZ |
1007 | return ret; |
1008 | } | |
1009 | ||
1010 | /* | |
1011 | * Flush the mapping to the persistent domain within the byte range of [start, | |
1012 | * end]. This is required by data integrity operations to ensure file data is | |
1013 | * on persistent storage prior to completion of the operation. | |
1014 | */ | |
7f6d5b52 RZ |
1015 | int dax_writeback_mapping_range(struct address_space *mapping, |
1016 | struct block_device *bdev, struct writeback_control *wbc) | |
9973c98e RZ |
1017 | { |
1018 | struct inode *inode = mapping->host; | |
642261ac | 1019 | pgoff_t start_index, end_index; |
9973c98e | 1020 | pgoff_t indices[PAGEVEC_SIZE]; |
cccbce67 | 1021 | struct dax_device *dax_dev; |
9973c98e RZ |
1022 | struct pagevec pvec; |
1023 | bool done = false; | |
1024 | int i, ret = 0; | |
9973c98e RZ |
1025 | |
1026 | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | |
1027 | return -EIO; | |
1028 | ||
7f6d5b52 RZ |
1029 | if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) |
1030 | return 0; | |
1031 | ||
cccbce67 DW |
1032 | dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); |
1033 | if (!dax_dev) | |
1034 | return -EIO; | |
1035 | ||
09cbfeaf KS |
1036 | start_index = wbc->range_start >> PAGE_SHIFT; |
1037 | end_index = wbc->range_end >> PAGE_SHIFT; | |
9973c98e | 1038 | |
d14a3f48 RZ |
1039 | trace_dax_writeback_range(inode, start_index, end_index); |
1040 | ||
9973c98e RZ |
1041 | tag_pages_for_writeback(mapping, start_index, end_index); |
1042 | ||
86679820 | 1043 | pagevec_init(&pvec); |
9973c98e RZ |
1044 | while (!done) { |
1045 | pvec.nr = find_get_entries_tag(mapping, start_index, | |
1046 | PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, | |
1047 | pvec.pages, indices); | |
1048 | ||
1049 | if (pvec.nr == 0) | |
1050 | break; | |
1051 | ||
1052 | for (i = 0; i < pvec.nr; i++) { | |
1053 | if (indices[i] > end_index) { | |
1054 | done = true; | |
1055 | break; | |
1056 | } | |
1057 | ||
3fe0791c DW |
1058 | ret = dax_writeback_one(dax_dev, mapping, indices[i], |
1059 | pvec.pages[i]); | |
819ec6b9 JL |
1060 | if (ret < 0) { |
1061 | mapping_set_error(mapping, ret); | |
d14a3f48 | 1062 | goto out; |
819ec6b9 | 1063 | } |
9973c98e | 1064 | } |
1eb643d0 | 1065 | start_index = indices[pvec.nr - 1] + 1; |
9973c98e | 1066 | } |
d14a3f48 | 1067 | out: |
cccbce67 | 1068 | put_dax(dax_dev); |
d14a3f48 RZ |
1069 | trace_dax_writeback_range_done(inode, start_index, end_index); |
1070 | return (ret < 0 ? ret : 0); | |
9973c98e RZ |
1071 | } |
1072 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | |
1073 | ||
31a6f1a6 | 1074 | static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) |
f7ca90b1 | 1075 | { |
a3841f94 | 1076 | return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; |
31a6f1a6 JK |
1077 | } |
1078 | ||
5e161e40 JK |
1079 | static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, |
1080 | pfn_t *pfnp) | |
f7ca90b1 | 1081 | { |
31a6f1a6 | 1082 | const sector_t sector = dax_iomap_sector(iomap, pos); |
cccbce67 DW |
1083 | pgoff_t pgoff; |
1084 | int id, rc; | |
5e161e40 | 1085 | long length; |
f7ca90b1 | 1086 | |
5e161e40 | 1087 | rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); |
cccbce67 DW |
1088 | if (rc) |
1089 | return rc; | |
cccbce67 | 1090 | id = dax_read_lock(); |
5e161e40 | 1091 | length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), |
86ed913b | 1092 | NULL, pfnp); |
5e161e40 JK |
1093 | if (length < 0) { |
1094 | rc = length; | |
1095 | goto out; | |
cccbce67 | 1096 | } |
5e161e40 JK |
1097 | rc = -EINVAL; |
1098 | if (PFN_PHYS(length) < size) | |
1099 | goto out; | |
1100 | if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) | |
1101 | goto out; | |
1102 | /* For larger pages we need devmap */ | |
1103 | if (length > 1 && !pfn_t_devmap(*pfnp)) | |
1104 | goto out; | |
1105 | rc = 0; | |
1106 | out: | |
cccbce67 | 1107 | dax_read_unlock(id); |
5e161e40 | 1108 | return rc; |
0e3b210c | 1109 | } |
0e3b210c | 1110 | |
e30331ff | 1111 | /* |
91d25ba8 RZ |
1112 | * The user has performed a load from a hole in the file. Allocating a new |
1113 | * page in the file would cause excessive storage usage for workloads with | |
1114 | * sparse files. Instead we insert a read-only mapping of the 4k zero page. | |
1115 | * If this page is ever written to we will re-fault and change the mapping to | |
1116 | * point to real DAX storage instead. | |
e30331ff | 1117 | */ |
ab77dab4 | 1118 | static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry, |
e30331ff RZ |
1119 | struct vm_fault *vmf) |
1120 | { | |
1121 | struct inode *inode = mapping->host; | |
91d25ba8 | 1122 | unsigned long vaddr = vmf->address; |
ab77dab4 | 1123 | vm_fault_t ret = VM_FAULT_NOPAGE; |
91d25ba8 | 1124 | struct page *zero_page; |
3fe0791c | 1125 | pfn_t pfn; |
e30331ff | 1126 | |
91d25ba8 RZ |
1127 | zero_page = ZERO_PAGE(0); |
1128 | if (unlikely(!zero_page)) { | |
e30331ff RZ |
1129 | ret = VM_FAULT_OOM; |
1130 | goto out; | |
1131 | } | |
1132 | ||
3fe0791c | 1133 | pfn = page_to_pfn_t(zero_page); |
cc4a90ac MW |
1134 | dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE, |
1135 | false); | |
ab77dab4 | 1136 | ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); |
e30331ff RZ |
1137 | out: |
1138 | trace_dax_load_hole(inode, vmf, ret); | |
1139 | return ret; | |
1140 | } | |
1141 | ||
4b0228fa VV |
1142 | static bool dax_range_is_aligned(struct block_device *bdev, |
1143 | unsigned int offset, unsigned int length) | |
1144 | { | |
1145 | unsigned short sector_size = bdev_logical_block_size(bdev); | |
1146 | ||
1147 | if (!IS_ALIGNED(offset, sector_size)) | |
1148 | return false; | |
1149 | if (!IS_ALIGNED(length, sector_size)) | |
1150 | return false; | |
1151 | ||
1152 | return true; | |
1153 | } | |
1154 | ||
cccbce67 DW |
1155 | int __dax_zero_page_range(struct block_device *bdev, |
1156 | struct dax_device *dax_dev, sector_t sector, | |
1157 | unsigned int offset, unsigned int size) | |
679c8bd3 | 1158 | { |
cccbce67 DW |
1159 | if (dax_range_is_aligned(bdev, offset, size)) { |
1160 | sector_t start_sector = sector + (offset >> 9); | |
4b0228fa VV |
1161 | |
1162 | return blkdev_issue_zeroout(bdev, start_sector, | |
53ef7d0e | 1163 | size >> 9, GFP_NOFS, 0); |
4b0228fa | 1164 | } else { |
cccbce67 DW |
1165 | pgoff_t pgoff; |
1166 | long rc, id; | |
1167 | void *kaddr; | |
cccbce67 | 1168 | |
e84b83b9 | 1169 | rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); |
cccbce67 DW |
1170 | if (rc) |
1171 | return rc; | |
1172 | ||
1173 | id = dax_read_lock(); | |
86ed913b | 1174 | rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); |
cccbce67 DW |
1175 | if (rc < 0) { |
1176 | dax_read_unlock(id); | |
1177 | return rc; | |
1178 | } | |
81f55870 | 1179 | memset(kaddr + offset, 0, size); |
c3ca015f | 1180 | dax_flush(dax_dev, kaddr + offset, size); |
cccbce67 | 1181 | dax_read_unlock(id); |
4b0228fa | 1182 | } |
679c8bd3 CH |
1183 | return 0; |
1184 | } | |
1185 | EXPORT_SYMBOL_GPL(__dax_zero_page_range); | |
1186 | ||
a254e568 | 1187 | static loff_t |
11c59c92 | 1188 | dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
a254e568 CH |
1189 | struct iomap *iomap) |
1190 | { | |
cccbce67 DW |
1191 | struct block_device *bdev = iomap->bdev; |
1192 | struct dax_device *dax_dev = iomap->dax_dev; | |
a254e568 CH |
1193 | struct iov_iter *iter = data; |
1194 | loff_t end = pos + length, done = 0; | |
1195 | ssize_t ret = 0; | |
a77d4786 | 1196 | size_t xfer; |
cccbce67 | 1197 | int id; |
a254e568 CH |
1198 | |
1199 | if (iov_iter_rw(iter) == READ) { | |
1200 | end = min(end, i_size_read(inode)); | |
1201 | if (pos >= end) | |
1202 | return 0; | |
1203 | ||
1204 | if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) | |
1205 | return iov_iter_zero(min(length, end - pos), iter); | |
1206 | } | |
1207 | ||
1208 | if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) | |
1209 | return -EIO; | |
1210 | ||
e3fce68c JK |
1211 | /* |
1212 | * Write can allocate block for an area which has a hole page mapped | |
1213 | * into page tables. We have to tear down these mappings so that data | |
1214 | * written by write(2) is visible in mmap. | |
1215 | */ | |
cd656375 | 1216 | if (iomap->flags & IOMAP_F_NEW) { |
e3fce68c JK |
1217 | invalidate_inode_pages2_range(inode->i_mapping, |
1218 | pos >> PAGE_SHIFT, | |
1219 | (end - 1) >> PAGE_SHIFT); | |
1220 | } | |
1221 | ||
cccbce67 | 1222 | id = dax_read_lock(); |
a254e568 CH |
1223 | while (pos < end) { |
1224 | unsigned offset = pos & (PAGE_SIZE - 1); | |
cccbce67 DW |
1225 | const size_t size = ALIGN(length + offset, PAGE_SIZE); |
1226 | const sector_t sector = dax_iomap_sector(iomap, pos); | |
a254e568 | 1227 | ssize_t map_len; |
cccbce67 DW |
1228 | pgoff_t pgoff; |
1229 | void *kaddr; | |
a254e568 | 1230 | |
d1908f52 MH |
1231 | if (fatal_signal_pending(current)) { |
1232 | ret = -EINTR; | |
1233 | break; | |
1234 | } | |
1235 | ||
cccbce67 DW |
1236 | ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); |
1237 | if (ret) | |
1238 | break; | |
1239 | ||
1240 | map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), | |
86ed913b | 1241 | &kaddr, NULL); |
a254e568 CH |
1242 | if (map_len < 0) { |
1243 | ret = map_len; | |
1244 | break; | |
1245 | } | |
1246 | ||
cccbce67 DW |
1247 | map_len = PFN_PHYS(map_len); |
1248 | kaddr += offset; | |
a254e568 CH |
1249 | map_len -= offset; |
1250 | if (map_len > end - pos) | |
1251 | map_len = end - pos; | |
1252 | ||
a2e050f5 RZ |
1253 | /* |
1254 | * The userspace address for the memory copy has already been | |
1255 | * validated via access_ok() in either vfs_read() or | |
1256 | * vfs_write(), depending on which operation we are doing. | |
1257 | */ | |
a254e568 | 1258 | if (iov_iter_rw(iter) == WRITE) |
a77d4786 | 1259 | xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, |
fec53774 | 1260 | map_len, iter); |
a254e568 | 1261 | else |
a77d4786 | 1262 | xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, |
b3a9a0c3 | 1263 | map_len, iter); |
a254e568 | 1264 | |
a77d4786 DW |
1265 | pos += xfer; |
1266 | length -= xfer; | |
1267 | done += xfer; | |
1268 | ||
1269 | if (xfer == 0) | |
1270 | ret = -EFAULT; | |
1271 | if (xfer < map_len) | |
1272 | break; | |
a254e568 | 1273 | } |
cccbce67 | 1274 | dax_read_unlock(id); |
a254e568 CH |
1275 | |
1276 | return done ? done : ret; | |
1277 | } | |
1278 | ||
1279 | /** | |
11c59c92 | 1280 | * dax_iomap_rw - Perform I/O to a DAX file |
a254e568 CH |
1281 | * @iocb: The control block for this I/O |
1282 | * @iter: The addresses to do I/O from or to | |
1283 | * @ops: iomap ops passed from the file system | |
1284 | * | |
1285 | * This function performs read and write operations to directly mapped | |
1286 | * persistent memory. The callers needs to take care of read/write exclusion | |
1287 | * and evicting any page cache pages in the region under I/O. | |
1288 | */ | |
1289 | ssize_t | |
11c59c92 | 1290 | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, |
8ff6daa1 | 1291 | const struct iomap_ops *ops) |
a254e568 CH |
1292 | { |
1293 | struct address_space *mapping = iocb->ki_filp->f_mapping; | |
1294 | struct inode *inode = mapping->host; | |
1295 | loff_t pos = iocb->ki_pos, ret = 0, done = 0; | |
1296 | unsigned flags = 0; | |
1297 | ||
168316db CH |
1298 | if (iov_iter_rw(iter) == WRITE) { |
1299 | lockdep_assert_held_exclusive(&inode->i_rwsem); | |
a254e568 | 1300 | flags |= IOMAP_WRITE; |
168316db CH |
1301 | } else { |
1302 | lockdep_assert_held(&inode->i_rwsem); | |
1303 | } | |
a254e568 | 1304 | |
a254e568 CH |
1305 | while (iov_iter_count(iter)) { |
1306 | ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, | |
11c59c92 | 1307 | iter, dax_iomap_actor); |
a254e568 CH |
1308 | if (ret <= 0) |
1309 | break; | |
1310 | pos += ret; | |
1311 | done += ret; | |
1312 | } | |
1313 | ||
1314 | iocb->ki_pos += done; | |
1315 | return done ? done : ret; | |
1316 | } | |
11c59c92 | 1317 | EXPORT_SYMBOL_GPL(dax_iomap_rw); |
a7d73fe6 | 1318 | |
ab77dab4 | 1319 | static vm_fault_t dax_fault_return(int error) |
9f141d6e JK |
1320 | { |
1321 | if (error == 0) | |
1322 | return VM_FAULT_NOPAGE; | |
1323 | if (error == -ENOMEM) | |
1324 | return VM_FAULT_OOM; | |
1325 | return VM_FAULT_SIGBUS; | |
1326 | } | |
1327 | ||
aaa422c4 DW |
1328 | /* |
1329 | * MAP_SYNC on a dax mapping guarantees dirty metadata is | |
1330 | * flushed on write-faults (non-cow), but not read-faults. | |
1331 | */ | |
1332 | static bool dax_fault_is_synchronous(unsigned long flags, | |
1333 | struct vm_area_struct *vma, struct iomap *iomap) | |
1334 | { | |
1335 | return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) | |
1336 | && (iomap->flags & IOMAP_F_DIRTY); | |
1337 | } | |
1338 | ||
ab77dab4 | 1339 | static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, |
c0b24625 | 1340 | int *iomap_errp, const struct iomap_ops *ops) |
a7d73fe6 | 1341 | { |
a0987ad5 JK |
1342 | struct vm_area_struct *vma = vmf->vma; |
1343 | struct address_space *mapping = vma->vm_file->f_mapping; | |
a7d73fe6 | 1344 | struct inode *inode = mapping->host; |
1a29d85e | 1345 | unsigned long vaddr = vmf->address; |
a7d73fe6 | 1346 | loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; |
a7d73fe6 | 1347 | struct iomap iomap = { 0 }; |
9484ab1b | 1348 | unsigned flags = IOMAP_FAULT; |
a7d73fe6 | 1349 | int error, major = 0; |
d2c43ef1 | 1350 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
caa51d26 | 1351 | bool sync; |
ab77dab4 | 1352 | vm_fault_t ret = 0; |
a7d73fe6 | 1353 | void *entry; |
1b5a1cb2 | 1354 | pfn_t pfn; |
a7d73fe6 | 1355 | |
ab77dab4 | 1356 | trace_dax_pte_fault(inode, vmf, ret); |
a7d73fe6 CH |
1357 | /* |
1358 | * Check whether offset isn't beyond end of file now. Caller is supposed | |
1359 | * to hold locks serializing us with truncate / punch hole so this is | |
1360 | * a reliable test. | |
1361 | */ | |
a9c42b33 | 1362 | if (pos >= i_size_read(inode)) { |
ab77dab4 | 1363 | ret = VM_FAULT_SIGBUS; |
a9c42b33 RZ |
1364 | goto out; |
1365 | } | |
a7d73fe6 | 1366 | |
d2c43ef1 | 1367 | if (write && !vmf->cow_page) |
a7d73fe6 CH |
1368 | flags |= IOMAP_WRITE; |
1369 | ||
13e451fd JK |
1370 | entry = grab_mapping_entry(mapping, vmf->pgoff, 0); |
1371 | if (IS_ERR(entry)) { | |
ab77dab4 | 1372 | ret = dax_fault_return(PTR_ERR(entry)); |
13e451fd JK |
1373 | goto out; |
1374 | } | |
1375 | ||
e2093926 RZ |
1376 | /* |
1377 | * It is possible, particularly with mixed reads & writes to private | |
1378 | * mappings, that we have raced with a PMD fault that overlaps with | |
1379 | * the PTE we need to set up. If so just return and the fault will be | |
1380 | * retried. | |
1381 | */ | |
1382 | if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { | |
ab77dab4 | 1383 | ret = VM_FAULT_NOPAGE; |
e2093926 RZ |
1384 | goto unlock_entry; |
1385 | } | |
1386 | ||
a7d73fe6 CH |
1387 | /* |
1388 | * Note that we don't bother to use iomap_apply here: DAX required | |
1389 | * the file system block size to be equal the page size, which means | |
1390 | * that we never have to deal with more than a single extent here. | |
1391 | */ | |
1392 | error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); | |
c0b24625 JK |
1393 | if (iomap_errp) |
1394 | *iomap_errp = error; | |
a9c42b33 | 1395 | if (error) { |
ab77dab4 | 1396 | ret = dax_fault_return(error); |
13e451fd | 1397 | goto unlock_entry; |
a9c42b33 | 1398 | } |
a7d73fe6 | 1399 | if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { |
13e451fd JK |
1400 | error = -EIO; /* fs corruption? */ |
1401 | goto error_finish_iomap; | |
a7d73fe6 CH |
1402 | } |
1403 | ||
a7d73fe6 | 1404 | if (vmf->cow_page) { |
31a6f1a6 JK |
1405 | sector_t sector = dax_iomap_sector(&iomap, pos); |
1406 | ||
a7d73fe6 CH |
1407 | switch (iomap.type) { |
1408 | case IOMAP_HOLE: | |
1409 | case IOMAP_UNWRITTEN: | |
1410 | clear_user_highpage(vmf->cow_page, vaddr); | |
1411 | break; | |
1412 | case IOMAP_MAPPED: | |
cccbce67 DW |
1413 | error = copy_user_dax(iomap.bdev, iomap.dax_dev, |
1414 | sector, PAGE_SIZE, vmf->cow_page, vaddr); | |
a7d73fe6 CH |
1415 | break; |
1416 | default: | |
1417 | WARN_ON_ONCE(1); | |
1418 | error = -EIO; | |
1419 | break; | |
1420 | } | |
1421 | ||
1422 | if (error) | |
13e451fd | 1423 | goto error_finish_iomap; |
b1aa812b JK |
1424 | |
1425 | __SetPageUptodate(vmf->cow_page); | |
ab77dab4 SJ |
1426 | ret = finish_fault(vmf); |
1427 | if (!ret) | |
1428 | ret = VM_FAULT_DONE_COW; | |
13e451fd | 1429 | goto finish_iomap; |
a7d73fe6 CH |
1430 | } |
1431 | ||
aaa422c4 | 1432 | sync = dax_fault_is_synchronous(flags, vma, &iomap); |
caa51d26 | 1433 | |
a7d73fe6 CH |
1434 | switch (iomap.type) { |
1435 | case IOMAP_MAPPED: | |
1436 | if (iomap.flags & IOMAP_F_NEW) { | |
1437 | count_vm_event(PGMAJFAULT); | |
a0987ad5 | 1438 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
a7d73fe6 CH |
1439 | major = VM_FAULT_MAJOR; |
1440 | } | |
1b5a1cb2 JK |
1441 | error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); |
1442 | if (error < 0) | |
1443 | goto error_finish_iomap; | |
1444 | ||
3fe0791c | 1445 | entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn, |
caa51d26 | 1446 | 0, write && !sync); |
1b5a1cb2 | 1447 | |
caa51d26 JK |
1448 | /* |
1449 | * If we are doing synchronous page fault and inode needs fsync, | |
1450 | * we can insert PTE into page tables only after that happens. | |
1451 | * Skip insertion for now and return the pfn so that caller can | |
1452 | * insert it after fsync is done. | |
1453 | */ | |
1454 | if (sync) { | |
1455 | if (WARN_ON_ONCE(!pfnp)) { | |
1456 | error = -EIO; | |
1457 | goto error_finish_iomap; | |
1458 | } | |
1459 | *pfnp = pfn; | |
ab77dab4 | 1460 | ret = VM_FAULT_NEEDDSYNC | major; |
caa51d26 JK |
1461 | goto finish_iomap; |
1462 | } | |
1b5a1cb2 JK |
1463 | trace_dax_insert_mapping(inode, vmf, entry); |
1464 | if (write) | |
ab77dab4 | 1465 | ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); |
1b5a1cb2 | 1466 | else |
ab77dab4 | 1467 | ret = vmf_insert_mixed(vma, vaddr, pfn); |
1b5a1cb2 | 1468 | |
ab77dab4 | 1469 | goto finish_iomap; |
a7d73fe6 CH |
1470 | case IOMAP_UNWRITTEN: |
1471 | case IOMAP_HOLE: | |
d2c43ef1 | 1472 | if (!write) { |
ab77dab4 | 1473 | ret = dax_load_hole(mapping, entry, vmf); |
13e451fd | 1474 | goto finish_iomap; |
1550290b | 1475 | } |
a7d73fe6 CH |
1476 | /*FALLTHRU*/ |
1477 | default: | |
1478 | WARN_ON_ONCE(1); | |
1479 | error = -EIO; | |
1480 | break; | |
1481 | } | |
1482 | ||
13e451fd | 1483 | error_finish_iomap: |
ab77dab4 | 1484 | ret = dax_fault_return(error); |
9f141d6e JK |
1485 | finish_iomap: |
1486 | if (ops->iomap_end) { | |
1487 | int copied = PAGE_SIZE; | |
1488 | ||
ab77dab4 | 1489 | if (ret & VM_FAULT_ERROR) |
9f141d6e JK |
1490 | copied = 0; |
1491 | /* | |
1492 | * The fault is done by now and there's no way back (other | |
1493 | * thread may be already happily using PTE we have installed). | |
1494 | * Just ignore error from ->iomap_end since we cannot do much | |
1495 | * with it. | |
1496 | */ | |
1497 | ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); | |
1550290b | 1498 | } |
13e451fd | 1499 | unlock_entry: |
91d25ba8 | 1500 | put_locked_mapping_entry(mapping, vmf->pgoff); |
13e451fd | 1501 | out: |
ab77dab4 SJ |
1502 | trace_dax_pte_fault_done(inode, vmf, ret); |
1503 | return ret | major; | |
a7d73fe6 | 1504 | } |
642261ac RZ |
1505 | |
1506 | #ifdef CONFIG_FS_DAX_PMD | |
ab77dab4 | 1507 | static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, |
91d25ba8 | 1508 | void *entry) |
642261ac | 1509 | { |
f4200391 DJ |
1510 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
1511 | unsigned long pmd_addr = vmf->address & PMD_MASK; | |
653b2ea3 | 1512 | struct inode *inode = mapping->host; |
642261ac | 1513 | struct page *zero_page; |
653b2ea3 | 1514 | void *ret = NULL; |
642261ac RZ |
1515 | spinlock_t *ptl; |
1516 | pmd_t pmd_entry; | |
3fe0791c | 1517 | pfn_t pfn; |
642261ac | 1518 | |
f4200391 | 1519 | zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); |
642261ac RZ |
1520 | |
1521 | if (unlikely(!zero_page)) | |
653b2ea3 | 1522 | goto fallback; |
642261ac | 1523 | |
3fe0791c DW |
1524 | pfn = page_to_pfn_t(zero_page); |
1525 | ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn, | |
f5b7b748 | 1526 | RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false); |
642261ac | 1527 | |
f4200391 DJ |
1528 | ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); |
1529 | if (!pmd_none(*(vmf->pmd))) { | |
642261ac | 1530 | spin_unlock(ptl); |
653b2ea3 | 1531 | goto fallback; |
642261ac RZ |
1532 | } |
1533 | ||
f4200391 | 1534 | pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); |
642261ac | 1535 | pmd_entry = pmd_mkhuge(pmd_entry); |
f4200391 | 1536 | set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); |
642261ac | 1537 | spin_unlock(ptl); |
f4200391 | 1538 | trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); |
642261ac | 1539 | return VM_FAULT_NOPAGE; |
653b2ea3 RZ |
1540 | |
1541 | fallback: | |
f4200391 | 1542 | trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); |
653b2ea3 | 1543 | return VM_FAULT_FALLBACK; |
642261ac RZ |
1544 | } |
1545 | ||
ab77dab4 | 1546 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
a2d58167 | 1547 | const struct iomap_ops *ops) |
642261ac | 1548 | { |
f4200391 | 1549 | struct vm_area_struct *vma = vmf->vma; |
642261ac | 1550 | struct address_space *mapping = vma->vm_file->f_mapping; |
d8a849e1 DJ |
1551 | unsigned long pmd_addr = vmf->address & PMD_MASK; |
1552 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
caa51d26 | 1553 | bool sync; |
9484ab1b | 1554 | unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; |
642261ac | 1555 | struct inode *inode = mapping->host; |
ab77dab4 | 1556 | vm_fault_t result = VM_FAULT_FALLBACK; |
642261ac RZ |
1557 | struct iomap iomap = { 0 }; |
1558 | pgoff_t max_pgoff, pgoff; | |
642261ac RZ |
1559 | void *entry; |
1560 | loff_t pos; | |
1561 | int error; | |
302a5e31 | 1562 | pfn_t pfn; |
642261ac | 1563 | |
282a8e03 RZ |
1564 | /* |
1565 | * Check whether offset isn't beyond end of file now. Caller is | |
1566 | * supposed to hold locks serializing us with truncate / punch hole so | |
1567 | * this is a reliable test. | |
1568 | */ | |
1569 | pgoff = linear_page_index(vma, pmd_addr); | |
957ac8c4 | 1570 | max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
282a8e03 | 1571 | |
f4200391 | 1572 | trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); |
282a8e03 | 1573 | |
fffa281b RZ |
1574 | /* |
1575 | * Make sure that the faulting address's PMD offset (color) matches | |
1576 | * the PMD offset from the start of the file. This is necessary so | |
1577 | * that a PMD range in the page table overlaps exactly with a PMD | |
1578 | * range in the radix tree. | |
1579 | */ | |
1580 | if ((vmf->pgoff & PG_PMD_COLOUR) != | |
1581 | ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) | |
1582 | goto fallback; | |
1583 | ||
642261ac RZ |
1584 | /* Fall back to PTEs if we're going to COW */ |
1585 | if (write && !(vma->vm_flags & VM_SHARED)) | |
1586 | goto fallback; | |
1587 | ||
1588 | /* If the PMD would extend outside the VMA */ | |
1589 | if (pmd_addr < vma->vm_start) | |
1590 | goto fallback; | |
1591 | if ((pmd_addr + PMD_SIZE) > vma->vm_end) | |
1592 | goto fallback; | |
1593 | ||
957ac8c4 | 1594 | if (pgoff >= max_pgoff) { |
282a8e03 RZ |
1595 | result = VM_FAULT_SIGBUS; |
1596 | goto out; | |
1597 | } | |
642261ac RZ |
1598 | |
1599 | /* If the PMD would extend beyond the file size */ | |
957ac8c4 | 1600 | if ((pgoff | PG_PMD_COLOUR) >= max_pgoff) |
642261ac RZ |
1601 | goto fallback; |
1602 | ||
876f2946 | 1603 | /* |
91d25ba8 RZ |
1604 | * grab_mapping_entry() will make sure we get a 2MiB empty entry, a |
1605 | * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page | |
1606 | * is already in the tree, for instance), it will return -EEXIST and | |
1607 | * we just fall back to 4k entries. | |
876f2946 RZ |
1608 | */ |
1609 | entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); | |
1610 | if (IS_ERR(entry)) | |
1611 | goto fallback; | |
1612 | ||
e2093926 RZ |
1613 | /* |
1614 | * It is possible, particularly with mixed reads & writes to private | |
1615 | * mappings, that we have raced with a PTE fault that overlaps with | |
1616 | * the PMD we need to set up. If so just return and the fault will be | |
1617 | * retried. | |
1618 | */ | |
1619 | if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && | |
1620 | !pmd_devmap(*vmf->pmd)) { | |
1621 | result = 0; | |
1622 | goto unlock_entry; | |
1623 | } | |
1624 | ||
642261ac RZ |
1625 | /* |
1626 | * Note that we don't use iomap_apply here. We aren't doing I/O, only | |
1627 | * setting up a mapping, so really we're using iomap_begin() as a way | |
1628 | * to look up our filesystem block. | |
1629 | */ | |
1630 | pos = (loff_t)pgoff << PAGE_SHIFT; | |
1631 | error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); | |
1632 | if (error) | |
876f2946 | 1633 | goto unlock_entry; |
9f141d6e | 1634 | |
642261ac RZ |
1635 | if (iomap.offset + iomap.length < pos + PMD_SIZE) |
1636 | goto finish_iomap; | |
1637 | ||
aaa422c4 | 1638 | sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); |
caa51d26 | 1639 | |
642261ac RZ |
1640 | switch (iomap.type) { |
1641 | case IOMAP_MAPPED: | |
302a5e31 JK |
1642 | error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); |
1643 | if (error < 0) | |
1644 | goto finish_iomap; | |
1645 | ||
3fe0791c | 1646 | entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn, |
caa51d26 | 1647 | RADIX_DAX_PMD, write && !sync); |
302a5e31 | 1648 | |
caa51d26 JK |
1649 | /* |
1650 | * If we are doing synchronous page fault and inode needs fsync, | |
1651 | * we can insert PMD into page tables only after that happens. | |
1652 | * Skip insertion for now and return the pfn so that caller can | |
1653 | * insert it after fsync is done. | |
1654 | */ | |
1655 | if (sync) { | |
1656 | if (WARN_ON_ONCE(!pfnp)) | |
1657 | goto finish_iomap; | |
1658 | *pfnp = pfn; | |
1659 | result = VM_FAULT_NEEDDSYNC; | |
1660 | goto finish_iomap; | |
1661 | } | |
1662 | ||
302a5e31 JK |
1663 | trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); |
1664 | result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, | |
1665 | write); | |
642261ac RZ |
1666 | break; |
1667 | case IOMAP_UNWRITTEN: | |
1668 | case IOMAP_HOLE: | |
1669 | if (WARN_ON_ONCE(write)) | |
876f2946 | 1670 | break; |
91d25ba8 | 1671 | result = dax_pmd_load_hole(vmf, &iomap, entry); |
642261ac RZ |
1672 | break; |
1673 | default: | |
1674 | WARN_ON_ONCE(1); | |
1675 | break; | |
1676 | } | |
1677 | ||
1678 | finish_iomap: | |
1679 | if (ops->iomap_end) { | |
9f141d6e JK |
1680 | int copied = PMD_SIZE; |
1681 | ||
1682 | if (result == VM_FAULT_FALLBACK) | |
1683 | copied = 0; | |
1684 | /* | |
1685 | * The fault is done by now and there's no way back (other | |
1686 | * thread may be already happily using PMD we have installed). | |
1687 | * Just ignore error from ->iomap_end since we cannot do much | |
1688 | * with it. | |
1689 | */ | |
1690 | ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, | |
1691 | &iomap); | |
642261ac | 1692 | } |
876f2946 | 1693 | unlock_entry: |
91d25ba8 | 1694 | put_locked_mapping_entry(mapping, pgoff); |
642261ac RZ |
1695 | fallback: |
1696 | if (result == VM_FAULT_FALLBACK) { | |
d8a849e1 | 1697 | split_huge_pmd(vma, vmf->pmd, vmf->address); |
642261ac RZ |
1698 | count_vm_event(THP_FAULT_FALLBACK); |
1699 | } | |
282a8e03 | 1700 | out: |
f4200391 | 1701 | trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); |
642261ac RZ |
1702 | return result; |
1703 | } | |
a2d58167 | 1704 | #else |
ab77dab4 | 1705 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
01cddfe9 | 1706 | const struct iomap_ops *ops) |
a2d58167 DJ |
1707 | { |
1708 | return VM_FAULT_FALLBACK; | |
1709 | } | |
642261ac | 1710 | #endif /* CONFIG_FS_DAX_PMD */ |
a2d58167 DJ |
1711 | |
1712 | /** | |
1713 | * dax_iomap_fault - handle a page fault on a DAX file | |
1714 | * @vmf: The description of the fault | |
cec04e8c | 1715 | * @pe_size: Size of the page to fault in |
9a0dd422 | 1716 | * @pfnp: PFN to insert for synchronous faults if fsync is required |
c0b24625 | 1717 | * @iomap_errp: Storage for detailed error code in case of error |
cec04e8c | 1718 | * @ops: Iomap ops passed from the file system |
a2d58167 DJ |
1719 | * |
1720 | * When a page fault occurs, filesystems may call this helper in | |
1721 | * their fault handler for DAX files. dax_iomap_fault() assumes the caller | |
1722 | * has done all the necessary locking for page fault to proceed | |
1723 | * successfully. | |
1724 | */ | |
ab77dab4 | 1725 | vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, |
c0b24625 | 1726 | pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) |
a2d58167 | 1727 | { |
c791ace1 DJ |
1728 | switch (pe_size) { |
1729 | case PE_SIZE_PTE: | |
c0b24625 | 1730 | return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); |
c791ace1 | 1731 | case PE_SIZE_PMD: |
9a0dd422 | 1732 | return dax_iomap_pmd_fault(vmf, pfnp, ops); |
a2d58167 DJ |
1733 | default: |
1734 | return VM_FAULT_FALLBACK; | |
1735 | } | |
1736 | } | |
1737 | EXPORT_SYMBOL_GPL(dax_iomap_fault); | |
71eab6df JK |
1738 | |
1739 | /** | |
1740 | * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables | |
1741 | * @vmf: The description of the fault | |
1742 | * @pe_size: Size of entry to be inserted | |
1743 | * @pfn: PFN to insert | |
1744 | * | |
1745 | * This function inserts writeable PTE or PMD entry into page tables for mmaped | |
1746 | * DAX file. It takes care of marking corresponding radix tree entry as dirty | |
1747 | * as well. | |
1748 | */ | |
ab77dab4 | 1749 | static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf, |
71eab6df JK |
1750 | enum page_entry_size pe_size, |
1751 | pfn_t pfn) | |
1752 | { | |
1753 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | |
1754 | void *entry, **slot; | |
1755 | pgoff_t index = vmf->pgoff; | |
ab77dab4 | 1756 | vm_fault_t ret; |
71eab6df | 1757 | |
b93b0163 | 1758 | xa_lock_irq(&mapping->i_pages); |
71eab6df JK |
1759 | entry = get_unlocked_mapping_entry(mapping, index, &slot); |
1760 | /* Did we race with someone splitting entry or so? */ | |
1761 | if (!entry || | |
1762 | (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) || | |
1763 | (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) { | |
1764 | put_unlocked_mapping_entry(mapping, index, entry); | |
b93b0163 | 1765 | xa_unlock_irq(&mapping->i_pages); |
71eab6df JK |
1766 | trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, |
1767 | VM_FAULT_NOPAGE); | |
1768 | return VM_FAULT_NOPAGE; | |
1769 | } | |
b93b0163 | 1770 | radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY); |
71eab6df | 1771 | entry = lock_slot(mapping, slot); |
b93b0163 | 1772 | xa_unlock_irq(&mapping->i_pages); |
71eab6df JK |
1773 | switch (pe_size) { |
1774 | case PE_SIZE_PTE: | |
ab77dab4 | 1775 | ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); |
71eab6df JK |
1776 | break; |
1777 | #ifdef CONFIG_FS_DAX_PMD | |
1778 | case PE_SIZE_PMD: | |
ab77dab4 | 1779 | ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, |
71eab6df JK |
1780 | pfn, true); |
1781 | break; | |
1782 | #endif | |
1783 | default: | |
ab77dab4 | 1784 | ret = VM_FAULT_FALLBACK; |
71eab6df JK |
1785 | } |
1786 | put_locked_mapping_entry(mapping, index); | |
ab77dab4 SJ |
1787 | trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); |
1788 | return ret; | |
71eab6df JK |
1789 | } |
1790 | ||
1791 | /** | |
1792 | * dax_finish_sync_fault - finish synchronous page fault | |
1793 | * @vmf: The description of the fault | |
1794 | * @pe_size: Size of entry to be inserted | |
1795 | * @pfn: PFN to insert | |
1796 | * | |
1797 | * This function ensures that the file range touched by the page fault is | |
1798 | * stored persistently on the media and handles inserting of appropriate page | |
1799 | * table entry. | |
1800 | */ | |
ab77dab4 SJ |
1801 | vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, |
1802 | enum page_entry_size pe_size, pfn_t pfn) | |
71eab6df JK |
1803 | { |
1804 | int err; | |
1805 | loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; | |
1806 | size_t len = 0; | |
1807 | ||
1808 | if (pe_size == PE_SIZE_PTE) | |
1809 | len = PAGE_SIZE; | |
1810 | else if (pe_size == PE_SIZE_PMD) | |
1811 | len = PMD_SIZE; | |
1812 | else | |
1813 | WARN_ON_ONCE(1); | |
1814 | err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); | |
1815 | if (err) | |
1816 | return VM_FAULT_SIGBUS; | |
1817 | return dax_insert_pfn_mkwrite(vmf, pe_size, pfn); | |
1818 | } | |
1819 | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); |