]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dax.c
xfs: call dax_pfn_mkwrite() for DAX fsync/msync
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
d475c634 34
b2e0d162
DW
35static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36{
37 struct request_queue *q = bdev->bd_queue;
38 long rc = -EIO;
39
40 dax->addr = (void __pmem *) ERR_PTR(-EIO);
41 if (blk_queue_enter(q, true) != 0)
42 return rc;
43
44 rc = bdev_direct_access(bdev, dax);
45 if (rc < 0) {
46 dax->addr = (void __pmem *) ERR_PTR(rc);
47 blk_queue_exit(q);
48 return rc;
49 }
50 return rc;
51}
52
53static void dax_unmap_atomic(struct block_device *bdev,
54 const struct blk_dax_ctl *dax)
55{
56 if (IS_ERR(dax->addr))
57 return;
58 blk_queue_exit(bdev->bd_queue);
59}
60
1ca19157
DC
61/*
62 * dax_clear_blocks() is called from within transaction context from XFS,
63 * and hence this means the stack from this point must follow GFP_NOFS
64 * semantics for all operations.
65 */
b2e0d162 66int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
289c6aed
MW
67{
68 struct block_device *bdev = inode->i_sb->s_bdev;
b2e0d162
DW
69 struct blk_dax_ctl dax = {
70 .sector = block << (inode->i_blkbits - 9),
71 .size = _size,
72 };
289c6aed
MW
73
74 might_sleep();
75 do {
0e749e54 76 long count, sz;
289c6aed 77
b2e0d162 78 count = dax_map_atomic(bdev, &dax);
289c6aed
MW
79 if (count < 0)
80 return count;
0e749e54 81 sz = min_t(long, count, SZ_128K);
b2e0d162
DW
82 clear_pmem(dax.addr, sz);
83 dax.size -= sz;
84 dax.sector += sz / 512;
85 dax_unmap_atomic(bdev, &dax);
0e749e54 86 cond_resched();
b2e0d162 87 } while (dax.size);
289c6aed 88
2765cfbb 89 wmb_pmem();
289c6aed
MW
90 return 0;
91}
92EXPORT_SYMBOL_GPL(dax_clear_blocks);
93
2765cfbb 94/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
e2e05394
RZ
95static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
96 loff_t pos, loff_t end)
d475c634
MW
97{
98 loff_t final = end - pos + first; /* The final byte of the buffer */
99
100 if (first > 0)
e2e05394 101 clear_pmem(addr, first);
d475c634 102 if (final < size)
e2e05394 103 clear_pmem(addr + final, size - final);
d475c634
MW
104}
105
106static bool buffer_written(struct buffer_head *bh)
107{
108 return buffer_mapped(bh) && !buffer_unwritten(bh);
109}
110
111/*
112 * When ext4 encounters a hole, it returns without modifying the buffer_head
113 * which means that we can't trust b_size. To cope with this, we set b_state
114 * to 0 before calling get_block and, if any bit is set, we know we can trust
115 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
116 * and would save us time calling get_block repeatedly.
117 */
118static bool buffer_size_valid(struct buffer_head *bh)
119{
120 return bh->b_state != 0;
121}
122
b2e0d162
DW
123
124static sector_t to_sector(const struct buffer_head *bh,
125 const struct inode *inode)
126{
127 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
128
129 return sector;
130}
131
a95cd631
OS
132static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
133 loff_t start, loff_t end, get_block_t get_block,
134 struct buffer_head *bh)
d475c634 135{
b2e0d162
DW
136 loff_t pos = start, max = start, bh_max = start;
137 bool hole = false, need_wmb = false;
138 struct block_device *bdev = NULL;
139 int rw = iov_iter_rw(iter), rc;
140 long map_len = 0;
141 struct blk_dax_ctl dax = {
142 .addr = (void __pmem *) ERR_PTR(-EIO),
143 };
144
145 if (rw == READ)
d475c634
MW
146 end = min(end, i_size_read(inode));
147
148 while (pos < end) {
2765cfbb 149 size_t len;
d475c634
MW
150 if (pos == max) {
151 unsigned blkbits = inode->i_blkbits;
e94f5a22
JM
152 long page = pos >> PAGE_SHIFT;
153 sector_t block = page << (PAGE_SHIFT - blkbits);
d475c634
MW
154 unsigned first = pos - (block << blkbits);
155 long size;
156
157 if (pos == bh_max) {
158 bh->b_size = PAGE_ALIGN(end - pos);
159 bh->b_state = 0;
b2e0d162
DW
160 rc = get_block(inode, block, bh, rw == WRITE);
161 if (rc)
d475c634
MW
162 break;
163 if (!buffer_size_valid(bh))
164 bh->b_size = 1 << blkbits;
165 bh_max = pos - first + bh->b_size;
b2e0d162 166 bdev = bh->b_bdev;
d475c634
MW
167 } else {
168 unsigned done = bh->b_size -
169 (bh_max - (pos - first));
170 bh->b_blocknr += done >> blkbits;
171 bh->b_size -= done;
172 }
173
b2e0d162 174 hole = rw == READ && !buffer_written(bh);
d475c634 175 if (hole) {
d475c634
MW
176 size = bh->b_size - first;
177 } else {
b2e0d162
DW
178 dax_unmap_atomic(bdev, &dax);
179 dax.sector = to_sector(bh, inode);
180 dax.size = bh->b_size;
181 map_len = dax_map_atomic(bdev, &dax);
182 if (map_len < 0) {
183 rc = map_len;
d475c634 184 break;
b2e0d162 185 }
2765cfbb 186 if (buffer_unwritten(bh) || buffer_new(bh)) {
b2e0d162
DW
187 dax_new_buf(dax.addr, map_len, first,
188 pos, end);
2765cfbb
RZ
189 need_wmb = true;
190 }
b2e0d162
DW
191 dax.addr += first;
192 size = map_len - first;
d475c634
MW
193 }
194 max = min(pos + size, end);
195 }
196
2765cfbb 197 if (iov_iter_rw(iter) == WRITE) {
b2e0d162 198 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
2765cfbb
RZ
199 need_wmb = true;
200 } else if (!hole)
b2e0d162 201 len = copy_to_iter((void __force *) dax.addr, max - pos,
e2e05394 202 iter);
d475c634
MW
203 else
204 len = iov_iter_zero(max - pos, iter);
205
cadfbb6e 206 if (!len) {
b2e0d162 207 rc = -EFAULT;
d475c634 208 break;
cadfbb6e 209 }
d475c634
MW
210
211 pos += len;
b2e0d162
DW
212 if (!IS_ERR(dax.addr))
213 dax.addr += len;
d475c634
MW
214 }
215
2765cfbb
RZ
216 if (need_wmb)
217 wmb_pmem();
b2e0d162 218 dax_unmap_atomic(bdev, &dax);
2765cfbb 219
b2e0d162 220 return (pos == start) ? rc : pos - start;
d475c634
MW
221}
222
223/**
224 * dax_do_io - Perform I/O to a DAX file
d475c634
MW
225 * @iocb: The control block for this I/O
226 * @inode: The file which the I/O is directed at
227 * @iter: The addresses to do I/O from or to
228 * @pos: The file offset where the I/O starts
229 * @get_block: The filesystem method used to translate file offsets to blocks
230 * @end_io: A filesystem callback for I/O completion
231 * @flags: See below
232 *
233 * This function uses the same locking scheme as do_blockdev_direct_IO:
234 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
235 * caller for writes. For reads, we take and release the i_mutex ourselves.
236 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
237 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
238 * is in progress.
239 */
a95cd631
OS
240ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
241 struct iov_iter *iter, loff_t pos, get_block_t get_block,
242 dio_iodone_t end_io, int flags)
d475c634
MW
243{
244 struct buffer_head bh;
245 ssize_t retval = -EINVAL;
246 loff_t end = pos + iov_iter_count(iter);
247
248 memset(&bh, 0, sizeof(bh));
249
a95cd631 250 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
d475c634
MW
251 struct address_space *mapping = inode->i_mapping;
252 mutex_lock(&inode->i_mutex);
253 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
254 if (retval) {
255 mutex_unlock(&inode->i_mutex);
256 goto out;
257 }
258 }
259
260 /* Protects against truncate */
bbab37dd
MW
261 if (!(flags & DIO_SKIP_DIO_COUNT))
262 inode_dio_begin(inode);
d475c634 263
a95cd631 264 retval = dax_io(inode, iter, pos, end, get_block, &bh);
d475c634 265
a95cd631 266 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
d475c634
MW
267 mutex_unlock(&inode->i_mutex);
268
269 if ((retval > 0) && end_io)
270 end_io(iocb, pos, retval, bh.b_private);
271
bbab37dd
MW
272 if (!(flags & DIO_SKIP_DIO_COUNT))
273 inode_dio_end(inode);
d475c634
MW
274 out:
275 return retval;
276}
277EXPORT_SYMBOL_GPL(dax_do_io);
f7ca90b1
MW
278
279/*
280 * The user has performed a load from a hole in the file. Allocating
281 * a new page in the file would cause excessive storage usage for
282 * workloads with sparse files. We allocate a page cache page instead.
283 * We'll kick it out of the page cache if it's ever written to,
284 * otherwise it will simply fall out of the page cache under memory
285 * pressure without ever having been dirtied.
286 */
287static int dax_load_hole(struct address_space *mapping, struct page *page,
288 struct vm_fault *vmf)
289{
290 unsigned long size;
291 struct inode *inode = mapping->host;
292 if (!page)
293 page = find_or_create_page(mapping, vmf->pgoff,
294 GFP_KERNEL | __GFP_ZERO);
295 if (!page)
296 return VM_FAULT_OOM;
297 /* Recheck i_size under page lock to avoid truncate race */
298 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
299 if (vmf->pgoff >= size) {
300 unlock_page(page);
301 page_cache_release(page);
302 return VM_FAULT_SIGBUS;
303 }
304
305 vmf->page = page;
306 return VM_FAULT_LOCKED;
307}
308
b2e0d162
DW
309static int copy_user_bh(struct page *to, struct inode *inode,
310 struct buffer_head *bh, unsigned long vaddr)
f7ca90b1 311{
b2e0d162
DW
312 struct blk_dax_ctl dax = {
313 .sector = to_sector(bh, inode),
314 .size = bh->b_size,
315 };
316 struct block_device *bdev = bh->b_bdev;
e2e05394
RZ
317 void *vto;
318
b2e0d162
DW
319 if (dax_map_atomic(bdev, &dax) < 0)
320 return PTR_ERR(dax.addr);
f7ca90b1 321 vto = kmap_atomic(to);
b2e0d162 322 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
f7ca90b1 323 kunmap_atomic(vto);
b2e0d162 324 dax_unmap_atomic(bdev, &dax);
f7ca90b1
MW
325 return 0;
326}
327
9973c98e
RZ
328#define NO_SECTOR -1
329#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
330
331static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
332 sector_t sector, bool pmd_entry, bool dirty)
333{
334 struct radix_tree_root *page_tree = &mapping->page_tree;
335 pgoff_t pmd_index = DAX_PMD_INDEX(index);
336 int type, error = 0;
337 void *entry;
338
339 WARN_ON_ONCE(pmd_entry && !dirty);
340 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
341
342 spin_lock_irq(&mapping->tree_lock);
343
344 entry = radix_tree_lookup(page_tree, pmd_index);
345 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
346 index = pmd_index;
347 goto dirty;
348 }
349
350 entry = radix_tree_lookup(page_tree, index);
351 if (entry) {
352 type = RADIX_DAX_TYPE(entry);
353 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
354 type != RADIX_DAX_PMD)) {
355 error = -EIO;
356 goto unlock;
357 }
358
359 if (!pmd_entry || type == RADIX_DAX_PMD)
360 goto dirty;
361
362 /*
363 * We only insert dirty PMD entries into the radix tree. This
364 * means we don't need to worry about removing a dirty PTE
365 * entry and inserting a clean PMD entry, thus reducing the
366 * range we would flush with a follow-up fsync/msync call.
367 */
368 radix_tree_delete(&mapping->page_tree, index);
369 mapping->nrexceptional--;
370 }
371
372 if (sector == NO_SECTOR) {
373 /*
374 * This can happen during correct operation if our pfn_mkwrite
375 * fault raced against a hole punch operation. If this
376 * happens the pte that was hole punched will have been
377 * unmapped and the radix tree entry will have been removed by
378 * the time we are called, but the call will still happen. We
379 * will return all the way up to wp_pfn_shared(), where the
380 * pte_same() check will fail, eventually causing page fault
381 * to be retried by the CPU.
382 */
383 goto unlock;
384 }
385
386 error = radix_tree_insert(page_tree, index,
387 RADIX_DAX_ENTRY(sector, pmd_entry));
388 if (error)
389 goto unlock;
390
391 mapping->nrexceptional++;
392 dirty:
393 if (dirty)
394 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
395 unlock:
396 spin_unlock_irq(&mapping->tree_lock);
397 return error;
398}
399
400static int dax_writeback_one(struct block_device *bdev,
401 struct address_space *mapping, pgoff_t index, void *entry)
402{
403 struct radix_tree_root *page_tree = &mapping->page_tree;
404 int type = RADIX_DAX_TYPE(entry);
405 struct radix_tree_node *node;
406 struct blk_dax_ctl dax;
407 void **slot;
408 int ret = 0;
409
410 spin_lock_irq(&mapping->tree_lock);
411 /*
412 * Regular page slots are stabilized by the page lock even
413 * without the tree itself locked. These unlocked entries
414 * need verification under the tree lock.
415 */
416 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
417 goto unlock;
418 if (*slot != entry)
419 goto unlock;
420
421 /* another fsync thread may have already written back this entry */
422 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
423 goto unlock;
424
425 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
426 ret = -EIO;
427 goto unlock;
428 }
429
430 dax.sector = RADIX_DAX_SECTOR(entry);
431 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
432 spin_unlock_irq(&mapping->tree_lock);
433
434 /*
435 * We cannot hold tree_lock while calling dax_map_atomic() because it
436 * eventually calls cond_resched().
437 */
438 ret = dax_map_atomic(bdev, &dax);
439 if (ret < 0)
440 return ret;
441
442 if (WARN_ON_ONCE(ret < dax.size)) {
443 ret = -EIO;
444 goto unmap;
445 }
446
447 wb_cache_pmem(dax.addr, dax.size);
448
449 spin_lock_irq(&mapping->tree_lock);
450 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
451 spin_unlock_irq(&mapping->tree_lock);
452 unmap:
453 dax_unmap_atomic(bdev, &dax);
454 return ret;
455
456 unlock:
457 spin_unlock_irq(&mapping->tree_lock);
458 return ret;
459}
460
461/*
462 * Flush the mapping to the persistent domain within the byte range of [start,
463 * end]. This is required by data integrity operations to ensure file data is
464 * on persistent storage prior to completion of the operation.
465 */
466int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
467 loff_t end)
468{
469 struct inode *inode = mapping->host;
470 struct block_device *bdev = inode->i_sb->s_bdev;
471 pgoff_t start_index, end_index, pmd_index;
472 pgoff_t indices[PAGEVEC_SIZE];
473 struct pagevec pvec;
474 bool done = false;
475 int i, ret = 0;
476 void *entry;
477
478 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
479 return -EIO;
480
481 start_index = start >> PAGE_CACHE_SHIFT;
482 end_index = end >> PAGE_CACHE_SHIFT;
483 pmd_index = DAX_PMD_INDEX(start_index);
484
485 rcu_read_lock();
486 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
487 rcu_read_unlock();
488
489 /* see if the start of our range is covered by a PMD entry */
490 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
491 start_index = pmd_index;
492
493 tag_pages_for_writeback(mapping, start_index, end_index);
494
495 pagevec_init(&pvec, 0);
496 while (!done) {
497 pvec.nr = find_get_entries_tag(mapping, start_index,
498 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
499 pvec.pages, indices);
500
501 if (pvec.nr == 0)
502 break;
503
504 for (i = 0; i < pvec.nr; i++) {
505 if (indices[i] > end_index) {
506 done = true;
507 break;
508 }
509
510 ret = dax_writeback_one(bdev, mapping, indices[i],
511 pvec.pages[i]);
512 if (ret < 0)
513 return ret;
514 }
515 }
516 wmb_pmem();
517 return 0;
518}
519EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
520
f7ca90b1
MW
521static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
522 struct vm_area_struct *vma, struct vm_fault *vmf)
523{
f7ca90b1 524 unsigned long vaddr = (unsigned long)vmf->virtual_address;
b2e0d162
DW
525 struct address_space *mapping = inode->i_mapping;
526 struct block_device *bdev = bh->b_bdev;
527 struct blk_dax_ctl dax = {
528 .sector = to_sector(bh, inode),
529 .size = bh->b_size,
530 };
f7ca90b1
MW
531 pgoff_t size;
532 int error;
533
0f90cc66
RZ
534 i_mmap_lock_read(mapping);
535
f7ca90b1
MW
536 /*
537 * Check truncate didn't happen while we were allocating a block.
538 * If it did, this block may or may not be still allocated to the
539 * file. We can't tell the filesystem to free it because we can't
540 * take i_mutex here. In the worst case, the file still has blocks
541 * allocated past the end of the file.
542 */
543 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
544 if (unlikely(vmf->pgoff >= size)) {
545 error = -EIO;
546 goto out;
547 }
548
b2e0d162
DW
549 if (dax_map_atomic(bdev, &dax) < 0) {
550 error = PTR_ERR(dax.addr);
f7ca90b1
MW
551 goto out;
552 }
553
2765cfbb 554 if (buffer_unwritten(bh) || buffer_new(bh)) {
b2e0d162 555 clear_pmem(dax.addr, PAGE_SIZE);
2765cfbb
RZ
556 wmb_pmem();
557 }
b2e0d162 558 dax_unmap_atomic(bdev, &dax);
f7ca90b1 559
9973c98e
RZ
560 error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
561 vmf->flags & FAULT_FLAG_WRITE);
562 if (error)
563 goto out;
564
01c8f1c4 565 error = vm_insert_mixed(vma, vaddr, dax.pfn);
f7ca90b1
MW
566
567 out:
0f90cc66
RZ
568 i_mmap_unlock_read(mapping);
569
f7ca90b1
MW
570 return error;
571}
572
ce5c5d55
DC
573/**
574 * __dax_fault - handle a page fault on a DAX file
575 * @vma: The virtual memory area where the fault occurred
576 * @vmf: The description of the fault
577 * @get_block: The filesystem method used to translate file offsets to blocks
b2442c5a
DC
578 * @complete_unwritten: The filesystem method used to convert unwritten blocks
579 * to written so the data written to them is exposed. This is required for
580 * required by write faults for filesystems that will return unwritten
581 * extent mappings from @get_block, but it is optional for reads as
582 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
583 * not support unwritten extents, the it should pass NULL.
ce5c5d55
DC
584 *
585 * When a page fault occurs, filesystems may call this helper in their
586 * fault handler for DAX files. __dax_fault() assumes the caller has done all
587 * the necessary locking for the page fault to proceed successfully.
588 */
589int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
e842f290 590 get_block_t get_block, dax_iodone_t complete_unwritten)
f7ca90b1
MW
591{
592 struct file *file = vma->vm_file;
593 struct address_space *mapping = file->f_mapping;
594 struct inode *inode = mapping->host;
595 struct page *page;
596 struct buffer_head bh;
597 unsigned long vaddr = (unsigned long)vmf->virtual_address;
598 unsigned blkbits = inode->i_blkbits;
599 sector_t block;
600 pgoff_t size;
601 int error;
602 int major = 0;
603
604 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
605 if (vmf->pgoff >= size)
606 return VM_FAULT_SIGBUS;
607
608 memset(&bh, 0, sizeof(bh));
609 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
610 bh.b_size = PAGE_SIZE;
611
612 repeat:
613 page = find_get_page(mapping, vmf->pgoff);
614 if (page) {
615 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
616 page_cache_release(page);
617 return VM_FAULT_RETRY;
618 }
619 if (unlikely(page->mapping != mapping)) {
620 unlock_page(page);
621 page_cache_release(page);
622 goto repeat;
623 }
624 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
625 if (unlikely(vmf->pgoff >= size)) {
626 /*
627 * We have a struct page covering a hole in the file
628 * from a read fault and we've raced with a truncate
629 */
630 error = -EIO;
0f90cc66 631 goto unlock_page;
f7ca90b1
MW
632 }
633 }
634
635 error = get_block(inode, block, &bh, 0);
636 if (!error && (bh.b_size < PAGE_SIZE))
637 error = -EIO; /* fs corruption? */
638 if (error)
0f90cc66 639 goto unlock_page;
f7ca90b1
MW
640
641 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
642 if (vmf->flags & FAULT_FLAG_WRITE) {
643 error = get_block(inode, block, &bh, 1);
644 count_vm_event(PGMAJFAULT);
645 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
646 major = VM_FAULT_MAJOR;
647 if (!error && (bh.b_size < PAGE_SIZE))
648 error = -EIO;
649 if (error)
0f90cc66 650 goto unlock_page;
f7ca90b1
MW
651 } else {
652 return dax_load_hole(mapping, page, vmf);
653 }
654 }
655
656 if (vmf->cow_page) {
657 struct page *new_page = vmf->cow_page;
658 if (buffer_written(&bh))
b2e0d162 659 error = copy_user_bh(new_page, inode, &bh, vaddr);
f7ca90b1
MW
660 else
661 clear_user_highpage(new_page, vaddr);
662 if (error)
0f90cc66 663 goto unlock_page;
f7ca90b1
MW
664 vmf->page = page;
665 if (!page) {
0f90cc66 666 i_mmap_lock_read(mapping);
f7ca90b1
MW
667 /* Check we didn't race with truncate */
668 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
669 PAGE_SHIFT;
670 if (vmf->pgoff >= size) {
0f90cc66 671 i_mmap_unlock_read(mapping);
f7ca90b1 672 error = -EIO;
0f90cc66 673 goto out;
f7ca90b1
MW
674 }
675 }
676 return VM_FAULT_LOCKED;
677 }
678
679 /* Check we didn't race with a read fault installing a new page */
680 if (!page && major)
681 page = find_lock_page(mapping, vmf->pgoff);
682
683 if (page) {
684 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
685 PAGE_CACHE_SIZE, 0);
686 delete_from_page_cache(page);
687 unlock_page(page);
688 page_cache_release(page);
9973c98e 689 page = NULL;
f7ca90b1
MW
690 }
691
e842f290
DC
692 /*
693 * If we successfully insert the new mapping over an unwritten extent,
694 * we need to ensure we convert the unwritten extent. If there is an
695 * error inserting the mapping, the filesystem needs to leave it as
696 * unwritten to prevent exposure of the stale underlying data to
697 * userspace, but we still need to call the completion function so
698 * the private resources on the mapping buffer can be released. We
699 * indicate what the callback should do via the uptodate variable, same
700 * as for normal BH based IO completions.
701 */
f7ca90b1 702 error = dax_insert_mapping(inode, &bh, vma, vmf);
b2442c5a
DC
703 if (buffer_unwritten(&bh)) {
704 if (complete_unwritten)
705 complete_unwritten(&bh, !error);
706 else
707 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
708 }
f7ca90b1
MW
709
710 out:
711 if (error == -ENOMEM)
712 return VM_FAULT_OOM | major;
713 /* -EBUSY is fine, somebody else faulted on the same PTE */
714 if ((error < 0) && (error != -EBUSY))
715 return VM_FAULT_SIGBUS | major;
716 return VM_FAULT_NOPAGE | major;
717
0f90cc66 718 unlock_page:
f7ca90b1
MW
719 if (page) {
720 unlock_page(page);
721 page_cache_release(page);
722 }
723 goto out;
724}
ce5c5d55 725EXPORT_SYMBOL(__dax_fault);
f7ca90b1
MW
726
727/**
728 * dax_fault - handle a page fault on a DAX file
729 * @vma: The virtual memory area where the fault occurred
730 * @vmf: The description of the fault
731 * @get_block: The filesystem method used to translate file offsets to blocks
732 *
733 * When a page fault occurs, filesystems may call this helper in their
734 * fault handler for DAX files.
735 */
736int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
e842f290 737 get_block_t get_block, dax_iodone_t complete_unwritten)
f7ca90b1
MW
738{
739 int result;
740 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
741
742 if (vmf->flags & FAULT_FLAG_WRITE) {
743 sb_start_pagefault(sb);
744 file_update_time(vma->vm_file);
745 }
ce5c5d55 746 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
f7ca90b1
MW
747 if (vmf->flags & FAULT_FLAG_WRITE)
748 sb_end_pagefault(sb);
749
750 return result;
751}
752EXPORT_SYMBOL_GPL(dax_fault);
4c0ccfef 753
844f35db
MW
754#ifdef CONFIG_TRANSPARENT_HUGEPAGE
755/*
756 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
757 * more often than one might expect in the below function.
758 */
759#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
760
cbb38e41
DW
761static void __dax_dbg(struct buffer_head *bh, unsigned long address,
762 const char *reason, const char *fn)
763{
764 if (bh) {
765 char bname[BDEVNAME_SIZE];
766 bdevname(bh->b_bdev, bname);
767 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
768 "length %zd fallback: %s\n", fn, current->comm,
769 address, bname, bh->b_state, (u64)bh->b_blocknr,
770 bh->b_size, reason);
771 } else {
772 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
773 current->comm, address, reason);
774 }
775}
776
777#define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
778
844f35db
MW
779int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
780 pmd_t *pmd, unsigned int flags, get_block_t get_block,
781 dax_iodone_t complete_unwritten)
782{
783 struct file *file = vma->vm_file;
784 struct address_space *mapping = file->f_mapping;
785 struct inode *inode = mapping->host;
786 struct buffer_head bh;
787 unsigned blkbits = inode->i_blkbits;
788 unsigned long pmd_addr = address & PMD_MASK;
789 bool write = flags & FAULT_FLAG_WRITE;
b2e0d162 790 struct block_device *bdev;
844f35db 791 pgoff_t size, pgoff;
b2e0d162 792 sector_t block;
9973c98e
RZ
793 int error, result = 0;
794 bool alloc = false;
844f35db 795
c046c321 796 /* dax pmd mappings require pfn_t_devmap() */
ee82c9ed
DW
797 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
798 return VM_FAULT_FALLBACK;
799
844f35db 800 /* Fall back to PTEs if we're going to COW */
59bf4fb9
TK
801 if (write && !(vma->vm_flags & VM_SHARED)) {
802 split_huge_pmd(vma, pmd, address);
cbb38e41 803 dax_pmd_dbg(NULL, address, "cow write");
844f35db 804 return VM_FAULT_FALLBACK;
59bf4fb9 805 }
844f35db 806 /* If the PMD would extend outside the VMA */
cbb38e41
DW
807 if (pmd_addr < vma->vm_start) {
808 dax_pmd_dbg(NULL, address, "vma start unaligned");
844f35db 809 return VM_FAULT_FALLBACK;
cbb38e41
DW
810 }
811 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
812 dax_pmd_dbg(NULL, address, "vma end unaligned");
844f35db 813 return VM_FAULT_FALLBACK;
cbb38e41 814 }
844f35db 815
3fdd1b47 816 pgoff = linear_page_index(vma, pmd_addr);
844f35db
MW
817 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
818 if (pgoff >= size)
819 return VM_FAULT_SIGBUS;
820 /* If the PMD would cover blocks out of the file */
cbb38e41
DW
821 if ((pgoff | PG_PMD_COLOUR) >= size) {
822 dax_pmd_dbg(NULL, address,
823 "offset + huge page size > file size");
844f35db 824 return VM_FAULT_FALLBACK;
cbb38e41 825 }
844f35db
MW
826
827 memset(&bh, 0, sizeof(bh));
d4bbe706 828 bh.b_bdev = inode->i_sb->s_bdev;
844f35db
MW
829 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
830
831 bh.b_size = PMD_SIZE;
9973c98e
RZ
832
833 if (get_block(inode, block, &bh, 0) != 0)
844f35db 834 return VM_FAULT_SIGBUS;
9973c98e
RZ
835
836 if (!buffer_mapped(&bh) && write) {
837 if (get_block(inode, block, &bh, 1) != 0)
838 return VM_FAULT_SIGBUS;
839 alloc = true;
840 }
841
b2e0d162 842 bdev = bh.b_bdev;
844f35db
MW
843
844 /*
845 * If the filesystem isn't willing to tell us the length of a hole,
846 * just fall back to PTEs. Calling get_block 512 times in a loop
847 * would be silly.
848 */
cbb38e41
DW
849 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
850 dax_pmd_dbg(&bh, address, "allocated block too small");
9973c98e
RZ
851 return VM_FAULT_FALLBACK;
852 }
853
854 /*
855 * If we allocated new storage, make sure no process has any
856 * zero pages covering this hole
857 */
858 if (alloc) {
859 loff_t lstart = pgoff << PAGE_SHIFT;
860 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
861
862 truncate_pagecache_range(inode, lstart, lend);
cbb38e41 863 }
844f35db 864
de14b9cb 865 i_mmap_lock_read(mapping);
46c043ed 866
84c4e5e6
MW
867 /*
868 * If a truncate happened while we were allocating blocks, we may
869 * leave blocks allocated to the file that are beyond EOF. We can't
870 * take i_mutex here, so just leave them hanging; they'll be freed
871 * when the file is deleted.
872 */
844f35db
MW
873 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
874 if (pgoff >= size) {
875 result = VM_FAULT_SIGBUS;
876 goto out;
877 }
cbb38e41 878 if ((pgoff | PG_PMD_COLOUR) >= size) {
de14b9cb
RZ
879 dax_pmd_dbg(&bh, address,
880 "offset + huge page size > file size");
844f35db 881 goto fallback;
cbb38e41 882 }
844f35db 883
844f35db 884 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
844f35db 885 spinlock_t *ptl;
d295e341 886 pmd_t entry;
844f35db 887 struct page *zero_page = get_huge_zero_page();
d295e341 888
cbb38e41
DW
889 if (unlikely(!zero_page)) {
890 dax_pmd_dbg(&bh, address, "no zero page");
844f35db 891 goto fallback;
cbb38e41 892 }
844f35db 893
d295e341
KS
894 ptl = pmd_lock(vma->vm_mm, pmd);
895 if (!pmd_none(*pmd)) {
896 spin_unlock(ptl);
cbb38e41 897 dax_pmd_dbg(&bh, address, "pmd already present");
d295e341
KS
898 goto fallback;
899 }
900
cbb38e41
DW
901 dev_dbg(part_to_dev(bdev->bd_part),
902 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
903 __func__, current->comm, address,
904 (unsigned long long) to_sector(&bh, inode));
905
d295e341
KS
906 entry = mk_pmd(zero_page, vma->vm_page_prot);
907 entry = pmd_mkhuge(entry);
908 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
844f35db 909 result = VM_FAULT_NOPAGE;
d295e341 910 spin_unlock(ptl);
844f35db 911 } else {
b2e0d162
DW
912 struct blk_dax_ctl dax = {
913 .sector = to_sector(&bh, inode),
914 .size = PMD_SIZE,
915 };
916 long length = dax_map_atomic(bdev, &dax);
917
844f35db
MW
918 if (length < 0) {
919 result = VM_FAULT_SIGBUS;
920 goto out;
921 }
cbb38e41
DW
922 if (length < PMD_SIZE) {
923 dax_pmd_dbg(&bh, address, "dax-length too small");
924 dax_unmap_atomic(bdev, &dax);
925 goto fallback;
926 }
927 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
928 dax_pmd_dbg(&bh, address, "pfn unaligned");
b2e0d162 929 dax_unmap_atomic(bdev, &dax);
844f35db 930 goto fallback;
b2e0d162 931 }
844f35db 932
c046c321 933 if (!pfn_t_devmap(dax.pfn)) {
b2e0d162 934 dax_unmap_atomic(bdev, &dax);
cbb38e41 935 dax_pmd_dbg(&bh, address, "pfn not in memmap");
152d7bd8 936 goto fallback;
b2e0d162 937 }
152d7bd8 938
0f90cc66 939 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
b2e0d162 940 clear_pmem(dax.addr, PMD_SIZE);
0f90cc66
RZ
941 wmb_pmem();
942 count_vm_event(PGMAJFAULT);
943 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
944 result |= VM_FAULT_MAJOR;
945 }
b2e0d162 946 dax_unmap_atomic(bdev, &dax);
0f90cc66 947
9973c98e
RZ
948 /*
949 * For PTE faults we insert a radix tree entry for reads, and
950 * leave it clean. Then on the first write we dirty the radix
951 * tree entry via the dax_pfn_mkwrite() path. This sequence
952 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
953 * call into get_block() to translate the pgoff to a sector in
954 * order to be able to create a new radix tree entry.
955 *
956 * The PMD path doesn't have an equivalent to
957 * dax_pfn_mkwrite(), though, so for a read followed by a
958 * write we traverse all the way through __dax_pmd_fault()
959 * twice. This means we can just skip inserting a radix tree
960 * entry completely on the initial read and just wait until
961 * the write to insert a dirty entry.
962 */
963 if (write) {
964 error = dax_radix_entry(mapping, pgoff, dax.sector,
965 true, true);
966 if (error) {
967 dax_pmd_dbg(&bh, address,
968 "PMD radix insertion failed");
969 goto fallback;
970 }
971 }
972
cbb38e41
DW
973 dev_dbg(part_to_dev(bdev->bd_part),
974 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
975 __func__, current->comm, address,
976 pfn_t_to_pfn(dax.pfn),
977 (unsigned long long) dax.sector);
34c0fd54 978 result |= vmf_insert_pfn_pmd(vma, address, pmd,
f25748e3 979 dax.pfn, write);
844f35db
MW
980 }
981
982 out:
0f90cc66
RZ
983 i_mmap_unlock_read(mapping);
984
844f35db
MW
985 if (buffer_unwritten(&bh))
986 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
987
988 return result;
989
990 fallback:
991 count_vm_event(THP_FAULT_FALLBACK);
992 result = VM_FAULT_FALLBACK;
993 goto out;
994}
995EXPORT_SYMBOL_GPL(__dax_pmd_fault);
996
997/**
998 * dax_pmd_fault - handle a PMD fault on a DAX file
999 * @vma: The virtual memory area where the fault occurred
1000 * @vmf: The description of the fault
1001 * @get_block: The filesystem method used to translate file offsets to blocks
1002 *
1003 * When a page fault occurs, filesystems may call this helper in their
1004 * pmd_fault handler for DAX files.
1005 */
1006int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1007 pmd_t *pmd, unsigned int flags, get_block_t get_block,
1008 dax_iodone_t complete_unwritten)
1009{
1010 int result;
1011 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1012
1013 if (flags & FAULT_FLAG_WRITE) {
1014 sb_start_pagefault(sb);
1015 file_update_time(vma->vm_file);
1016 }
1017 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1018 complete_unwritten);
1019 if (flags & FAULT_FLAG_WRITE)
1020 sb_end_pagefault(sb);
1021
1022 return result;
1023}
1024EXPORT_SYMBOL_GPL(dax_pmd_fault);
dd8a2b6c 1025#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
844f35db 1026
0e3b210c
BH
1027/**
1028 * dax_pfn_mkwrite - handle first write to DAX page
1029 * @vma: The virtual memory area where the fault occurred
1030 * @vmf: The description of the fault
0e3b210c
BH
1031 */
1032int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1033{
9973c98e 1034 struct file *file = vma->vm_file;
0e3b210c 1035
9973c98e
RZ
1036 /*
1037 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1038 * RADIX_DAX_PTE entry already exists in the radix tree from a
1039 * previous call to __dax_fault(). We just want to look up that PTE
1040 * entry using vmf->pgoff and make sure the dirty tag is set. This
1041 * saves us from having to make a call to get_block() here to look
1042 * up the sector.
1043 */
1044 dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
0e3b210c
BH
1045 return VM_FAULT_NOPAGE;
1046}
1047EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1048
4c0ccfef 1049/**
25726bc1 1050 * dax_zero_page_range - zero a range within a page of a DAX file
4c0ccfef
MW
1051 * @inode: The file being truncated
1052 * @from: The file offset that is being truncated to
25726bc1 1053 * @length: The number of bytes to zero
4c0ccfef
MW
1054 * @get_block: The filesystem method used to translate file offsets to blocks
1055 *
25726bc1
MW
1056 * This function can be called by a filesystem when it is zeroing part of a
1057 * page in a DAX file. This is intended for hole-punch operations. If
1058 * you are truncating a file, the helper function dax_truncate_page() may be
1059 * more convenient.
4c0ccfef
MW
1060 *
1061 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1062 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1063 * took care of disposing of the unnecessary blocks. Even if the filesystem
1064 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
25726bc1 1065 * since the file might be mmapped.
4c0ccfef 1066 */
25726bc1
MW
1067int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1068 get_block_t get_block)
4c0ccfef
MW
1069{
1070 struct buffer_head bh;
1071 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1072 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4c0ccfef
MW
1073 int err;
1074
1075 /* Block boundary? Nothing to do */
1076 if (!length)
1077 return 0;
25726bc1 1078 BUG_ON((offset + length) > PAGE_CACHE_SIZE);
4c0ccfef
MW
1079
1080 memset(&bh, 0, sizeof(bh));
1081 bh.b_size = PAGE_CACHE_SIZE;
1082 err = get_block(inode, index, &bh, 0);
1083 if (err < 0)
1084 return err;
1085 if (buffer_written(&bh)) {
b2e0d162
DW
1086 struct block_device *bdev = bh.b_bdev;
1087 struct blk_dax_ctl dax = {
1088 .sector = to_sector(&bh, inode),
1089 .size = PAGE_CACHE_SIZE,
1090 };
1091
1092 if (dax_map_atomic(bdev, &dax) < 0)
1093 return PTR_ERR(dax.addr);
1094 clear_pmem(dax.addr + offset, length);
2765cfbb 1095 wmb_pmem();
b2e0d162 1096 dax_unmap_atomic(bdev, &dax);
4c0ccfef
MW
1097 }
1098
1099 return 0;
1100}
25726bc1
MW
1101EXPORT_SYMBOL_GPL(dax_zero_page_range);
1102
1103/**
1104 * dax_truncate_page - handle a partial page being truncated in a DAX file
1105 * @inode: The file being truncated
1106 * @from: The file offset that is being truncated to
1107 * @get_block: The filesystem method used to translate file offsets to blocks
1108 *
1109 * Similar to block_truncate_page(), this function can be called by a
1110 * filesystem when it is truncating a DAX file to handle the partial page.
1111 *
1112 * We work in terms of PAGE_CACHE_SIZE here for commonality with
1113 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1114 * took care of disposing of the unnecessary blocks. Even if the filesystem
1115 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1116 * since the file might be mmapped.
1117 */
1118int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1119{
1120 unsigned length = PAGE_CACHE_ALIGN(from) - from;
1121 return dax_zero_page_range(inode, from, length, get_block);
1122}
4c0ccfef 1123EXPORT_SYMBOL_GPL(dax_truncate_page);