]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/dax.c
dax: Reinstate RCU protection of inode
[mirror_ubuntu-focal-kernel.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
cfc93c6c
MW
41static inline unsigned int pe_order(enum page_entry_size pe_size)
42{
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
50}
51
ac401cc7
JK
52/* We choose 4096 entries - same as per-zone page wait tables */
53#define DAX_WAIT_TABLE_BITS 12
54#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
917f3452
RZ
56/* The 'colour' (ie low bits) within a PMD of a page offset. */
57#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 58#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 59
cfc93c6c
MW
60/* The order of a PMD entry */
61#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
62
ce95ab0f 63static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
64
65static int __init init_dax_wait_table(void)
66{
67 int i;
68
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
72}
73fs_initcall(init_dax_wait_table);
74
527b19d0 75/*
3159f943
MW
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
527b19d0
RZ
80 *
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
84 */
3159f943
MW
85#define DAX_SHIFT (4)
86#define DAX_LOCKED (1UL << 0)
87#define DAX_PMD (1UL << 1)
88#define DAX_ZERO_PAGE (1UL << 2)
89#define DAX_EMPTY (1UL << 3)
527b19d0 90
a77d19f4 91static unsigned long dax_to_pfn(void *entry)
527b19d0 92{
3159f943 93 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
94}
95
9f32d221
MW
96static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97{
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99}
100
101static void *dax_make_page_entry(struct page *page)
102{
103 pfn_t pfn = page_to_pfn_t(page);
104 return dax_make_entry(pfn, PageHead(page) ? DAX_PMD : 0);
105}
106
cfc93c6c
MW
107static bool dax_is_locked(void *entry)
108{
109 return xa_to_value(entry) & DAX_LOCKED;
110}
111
a77d19f4 112static unsigned int dax_entry_order(void *entry)
527b19d0 113{
3159f943 114 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 115 return PMD_ORDER;
527b19d0
RZ
116 return 0;
117}
118
642261ac 119static int dax_is_pmd_entry(void *entry)
d1a5f2b4 120{
3159f943 121 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
122}
123
642261ac 124static int dax_is_pte_entry(void *entry)
d475c634 125{
3159f943 126 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
127}
128
642261ac 129static int dax_is_zero_entry(void *entry)
d475c634 130{
3159f943 131 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
132}
133
642261ac 134static int dax_is_empty_entry(void *entry)
b2e0d162 135{
3159f943 136 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
137}
138
ac401cc7 139/*
a77d19f4 140 * DAX page cache entry locking
ac401cc7
JK
141 */
142struct exceptional_entry_key {
ec4907ff 143 struct xarray *xa;
63e95b5c 144 pgoff_t entry_start;
ac401cc7
JK
145};
146
147struct wait_exceptional_entry_queue {
ac6424b9 148 wait_queue_entry_t wait;
ac401cc7
JK
149 struct exceptional_entry_key key;
150};
151
b15cd800
MW
152static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
153 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
154{
155 unsigned long hash;
b15cd800 156 unsigned long index = xas->xa_index;
63e95b5c
RZ
157
158 /*
159 * If 'entry' is a PMD, align the 'index' that we use for the wait
160 * queue to the start of that PMD. This ensures that all offsets in
161 * the range covered by the PMD map to the same bit lock.
162 */
642261ac 163 if (dax_is_pmd_entry(entry))
917f3452 164 index &= ~PG_PMD_COLOUR;
b15cd800 165 key->xa = xas->xa;
63e95b5c
RZ
166 key->entry_start = index;
167
b15cd800 168 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
169 return wait_table + hash;
170}
171
ec4907ff
MW
172static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
173 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
174{
175 struct exceptional_entry_key *key = keyp;
176 struct wait_exceptional_entry_queue *ewait =
177 container_of(wait, struct wait_exceptional_entry_queue, wait);
178
ec4907ff 179 if (key->xa != ewait->key.xa ||
63e95b5c 180 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
181 return 0;
182 return autoremove_wake_function(wait, mode, sync, NULL);
183}
184
e30331ff 185/*
b93b0163
MW
186 * @entry may no longer be the entry at the index in the mapping.
187 * The important information it's conveying is whether the entry at
188 * this index used to be a PMD entry.
e30331ff 189 */
b15cd800 190static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
191{
192 struct exceptional_entry_key key;
193 wait_queue_head_t *wq;
194
b15cd800 195 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
196
197 /*
198 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 199 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
200 * So at this point all tasks that could have seen our entry locked
201 * must be in the waitqueue and the following check will see them.
202 */
203 if (waitqueue_active(wq))
204 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
205}
206
cfc93c6c
MW
207/*
208 * Look up entry in page cache, wait for it to become unlocked if it
209 * is a DAX entry and return it. The caller must subsequently call
210 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
211 * if it did.
212 *
213 * Must be called with the i_pages lock held.
214 */
215static void *get_unlocked_entry(struct xa_state *xas)
216{
217 void *entry;
218 struct wait_exceptional_entry_queue ewait;
219 wait_queue_head_t *wq;
220
221 init_wait(&ewait.wait);
222 ewait.wait.func = wake_exceptional_entry_func;
223
224 for (;;) {
225 entry = xas_load(xas);
226 if (!entry || xa_is_internal(entry) ||
227 WARN_ON_ONCE(!xa_is_value(entry)) ||
228 !dax_is_locked(entry))
229 return entry;
230
b15cd800 231 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
232 prepare_to_wait_exclusive(wq, &ewait.wait,
233 TASK_UNINTERRUPTIBLE);
234 xas_unlock_irq(xas);
235 xas_reset(xas);
236 schedule();
237 finish_wait(wq, &ewait.wait);
238 xas_lock_irq(xas);
239 }
240}
241
242static void put_unlocked_entry(struct xa_state *xas, void *entry)
243{
244 /* If we were the only waiter woken, wake the next one */
245 if (entry)
246 dax_wake_entry(xas, entry, false);
247}
248
249/*
250 * We used the xa_state to get the entry, but then we locked the entry and
251 * dropped the xa_lock, so we know the xa_state is stale and must be reset
252 * before use.
253 */
254static void dax_unlock_entry(struct xa_state *xas, void *entry)
255{
256 void *old;
257
7ae2ea7d 258 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
259 xas_reset(xas);
260 xas_lock_irq(xas);
261 old = xas_store(xas, entry);
262 xas_unlock_irq(xas);
263 BUG_ON(!dax_is_locked(old));
264 dax_wake_entry(xas, entry, false);
265}
266
267/*
268 * Return: The entry stored at this location before it was locked.
269 */
270static void *dax_lock_entry(struct xa_state *xas, void *entry)
271{
272 unsigned long v = xa_to_value(entry);
273 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
274}
275
d2c997c0
DW
276static unsigned long dax_entry_size(void *entry)
277{
278 if (dax_is_zero_entry(entry))
279 return 0;
280 else if (dax_is_empty_entry(entry))
281 return 0;
282 else if (dax_is_pmd_entry(entry))
283 return PMD_SIZE;
284 else
285 return PAGE_SIZE;
286}
287
a77d19f4 288static unsigned long dax_end_pfn(void *entry)
d2c997c0 289{
a77d19f4 290 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
291}
292
293/*
294 * Iterate through all mapped pfns represented by an entry, i.e. skip
295 * 'empty' and 'zero' entries.
296 */
297#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
298 for (pfn = dax_to_pfn(entry); \
299 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 300
73449daf
DW
301/*
302 * TODO: for reflink+dax we need a way to associate a single page with
303 * multiple address_space instances at different linear_page_index()
304 * offsets.
305 */
306static void dax_associate_entry(void *entry, struct address_space *mapping,
307 struct vm_area_struct *vma, unsigned long address)
d2c997c0 308{
73449daf
DW
309 unsigned long size = dax_entry_size(entry), pfn, index;
310 int i = 0;
d2c997c0
DW
311
312 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
313 return;
314
73449daf 315 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
316 for_each_mapped_pfn(entry, pfn) {
317 struct page *page = pfn_to_page(pfn);
318
319 WARN_ON_ONCE(page->mapping);
320 page->mapping = mapping;
73449daf 321 page->index = index + i++;
d2c997c0
DW
322 }
323}
324
325static void dax_disassociate_entry(void *entry, struct address_space *mapping,
326 bool trunc)
327{
328 unsigned long pfn;
329
330 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
331 return;
332
333 for_each_mapped_pfn(entry, pfn) {
334 struct page *page = pfn_to_page(pfn);
335
336 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
337 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
338 page->mapping = NULL;
73449daf 339 page->index = 0;
d2c997c0
DW
340 }
341}
342
5fac7408
DW
343static struct page *dax_busy_page(void *entry)
344{
345 unsigned long pfn;
346
347 for_each_mapped_pfn(entry, pfn) {
348 struct page *page = pfn_to_page(pfn);
349
350 if (page_ref_count(page) > 1)
351 return page;
352 }
353 return NULL;
354}
355
c5bbd451
MW
356/*
357 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
358 * @page: The page whose entry we want to lock
359 *
360 * Context: Process context.
361 * Return: %true if the entry was locked or does not need to be locked.
362 */
c2a7d2a1
DW
363bool dax_lock_mapping_entry(struct page *page)
364{
9f32d221
MW
365 XA_STATE(xas, NULL, 0);
366 void *entry;
c5bbd451 367 bool locked;
c2a7d2a1 368
c5bbd451
MW
369 /* Ensure page->mapping isn't freed while we look at it */
370 rcu_read_lock();
c2a7d2a1 371 for (;;) {
9f32d221 372 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 373
c5bbd451 374 locked = false;
c2a7d2a1 375 if (!dax_mapping(mapping))
c5bbd451 376 break;
c2a7d2a1
DW
377
378 /*
379 * In the device-dax case there's no need to lock, a
380 * struct dev_pagemap pin is sufficient to keep the
381 * inode alive, and we assume we have dev_pagemap pin
382 * otherwise we would not have a valid pfn_to_page()
383 * translation.
384 */
c5bbd451 385 locked = true;
9f32d221 386 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 387 break;
c2a7d2a1 388
9f32d221
MW
389 xas.xa = &mapping->i_pages;
390 xas_lock_irq(&xas);
c2a7d2a1 391 if (mapping != page->mapping) {
9f32d221 392 xas_unlock_irq(&xas);
c2a7d2a1
DW
393 continue;
394 }
9f32d221
MW
395 xas_set(&xas, page->index);
396 entry = xas_load(&xas);
397 if (dax_is_locked(entry)) {
c5bbd451 398 rcu_read_unlock();
9f32d221 399 entry = get_unlocked_entry(&xas);
6d7cd8c1 400 xas_unlock_irq(&xas);
c5bbd451 401 rcu_read_lock();
6d7cd8c1 402 continue;
c2a7d2a1 403 }
9f32d221
MW
404 dax_lock_entry(&xas, entry);
405 xas_unlock_irq(&xas);
c5bbd451 406 break;
c2a7d2a1 407 }
c5bbd451
MW
408 rcu_read_unlock();
409 return locked;
c2a7d2a1
DW
410}
411
412void dax_unlock_mapping_entry(struct page *page)
413{
414 struct address_space *mapping = page->mapping;
9f32d221 415 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 416
9f32d221 417 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
418 return;
419
9f32d221 420 dax_unlock_entry(&xas, dax_make_page_entry(page));
c2a7d2a1
DW
421}
422
ac401cc7 423/*
a77d19f4
MW
424 * Find page cache entry at given index. If it is a DAX entry, return it
425 * with the entry locked. If the page cache doesn't contain an entry at
426 * that index, add a locked empty entry.
ac401cc7 427 *
3159f943 428 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
429 * either return that locked entry or will return VM_FAULT_FALLBACK.
430 * This will happen if there are any PTE entries within the PMD range
431 * that we are requesting.
642261ac 432 *
b15cd800
MW
433 * We always favor PTE entries over PMD entries. There isn't a flow where we
434 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
435 * insertion will fail if it finds any PTE entries already in the tree, and a
436 * PTE insertion will cause an existing PMD entry to be unmapped and
437 * downgraded to PTE entries. This happens for both PMD zero pages as
438 * well as PMD empty entries.
642261ac 439 *
b15cd800
MW
440 * The exception to this downgrade path is for PMD entries that have
441 * real storage backing them. We will leave these real PMD entries in
442 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 443 *
ac401cc7
JK
444 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
445 * persistent memory the benefit is doubtful. We can add that later if we can
446 * show it helps.
b15cd800
MW
447 *
448 * On error, this function does not return an ERR_PTR. Instead it returns
449 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
450 * overlap with xarray value entries.
ac401cc7 451 */
b15cd800
MW
452static void *grab_mapping_entry(struct xa_state *xas,
453 struct address_space *mapping, unsigned long size_flag)
ac401cc7 454{
b15cd800
MW
455 unsigned long index = xas->xa_index;
456 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
457 void *entry;
642261ac 458
b15cd800
MW
459retry:
460 xas_lock_irq(xas);
461 entry = get_unlocked_entry(xas);
462 if (xa_is_internal(entry))
463 goto fallback;
91d25ba8 464
642261ac 465 if (entry) {
b15cd800
MW
466 if (WARN_ON_ONCE(!xa_is_value(entry))) {
467 xas_set_err(xas, EIO);
468 goto out_unlock;
469 }
470
3159f943 471 if (size_flag & DAX_PMD) {
91d25ba8 472 if (dax_is_pte_entry(entry)) {
b15cd800
MW
473 put_unlocked_entry(xas, entry);
474 goto fallback;
642261ac
RZ
475 }
476 } else { /* trying to grab a PTE entry */
91d25ba8 477 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
478 (dax_is_zero_entry(entry) ||
479 dax_is_empty_entry(entry))) {
480 pmd_downgrade = true;
481 }
482 }
483 }
484
b15cd800
MW
485 if (pmd_downgrade) {
486 /*
487 * Make sure 'entry' remains valid while we drop
488 * the i_pages lock.
489 */
490 dax_lock_entry(xas, entry);
642261ac 491
642261ac
RZ
492 /*
493 * Besides huge zero pages the only other thing that gets
494 * downgraded are empty entries which don't need to be
495 * unmapped.
496 */
b15cd800
MW
497 if (dax_is_zero_entry(entry)) {
498 xas_unlock_irq(xas);
499 unmap_mapping_pages(mapping,
500 xas->xa_index & ~PG_PMD_COLOUR,
501 PG_PMD_NR, false);
502 xas_reset(xas);
503 xas_lock_irq(xas);
e11f8b7b
RZ
504 }
505
b15cd800
MW
506 dax_disassociate_entry(entry, mapping, false);
507 xas_store(xas, NULL); /* undo the PMD join */
508 dax_wake_entry(xas, entry, true);
509 mapping->nrexceptional--;
510 entry = NULL;
511 xas_set(xas, index);
512 }
642261ac 513
b15cd800
MW
514 if (entry) {
515 dax_lock_entry(xas, entry);
516 } else {
517 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
518 dax_lock_entry(xas, entry);
519 if (xas_error(xas))
520 goto out_unlock;
ac401cc7 521 mapping->nrexceptional++;
ac401cc7 522 }
b15cd800
MW
523
524out_unlock:
525 xas_unlock_irq(xas);
526 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
527 goto retry;
528 if (xas->xa_node == XA_ERROR(-ENOMEM))
529 return xa_mk_internal(VM_FAULT_OOM);
530 if (xas_error(xas))
531 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 532 return entry;
b15cd800
MW
533fallback:
534 xas_unlock_irq(xas);
535 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
536}
537
5fac7408
DW
538/**
539 * dax_layout_busy_page - find first pinned page in @mapping
540 * @mapping: address space to scan for a page with ref count > 1
541 *
542 * DAX requires ZONE_DEVICE mapped pages. These pages are never
543 * 'onlined' to the page allocator so they are considered idle when
544 * page->count == 1. A filesystem uses this interface to determine if
545 * any page in the mapping is busy, i.e. for DMA, or other
546 * get_user_pages() usages.
547 *
548 * It is expected that the filesystem is holding locks to block the
549 * establishment of new mappings in this address_space. I.e. it expects
550 * to be able to run unmap_mapping_range() and subsequently not race
551 * mapping_mapped() becoming true.
552 */
553struct page *dax_layout_busy_page(struct address_space *mapping)
554{
084a8990
MW
555 XA_STATE(xas, &mapping->i_pages, 0);
556 void *entry;
557 unsigned int scanned = 0;
5fac7408 558 struct page *page = NULL;
5fac7408
DW
559
560 /*
561 * In the 'limited' case get_user_pages() for dax is disabled.
562 */
563 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
564 return NULL;
565
566 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
567 return NULL;
568
5fac7408
DW
569 /*
570 * If we race get_user_pages_fast() here either we'll see the
084a8990 571 * elevated page count in the iteration and wait, or
5fac7408
DW
572 * get_user_pages_fast() will see that the page it took a reference
573 * against is no longer mapped in the page tables and bail to the
574 * get_user_pages() slow path. The slow path is protected by
575 * pte_lock() and pmd_lock(). New references are not taken without
576 * holding those locks, and unmap_mapping_range() will not zero the
577 * pte or pmd without holding the respective lock, so we are
578 * guaranteed to either see new references or prevent new
579 * references from being established.
580 */
581 unmap_mapping_range(mapping, 0, 0, 1);
582
084a8990
MW
583 xas_lock_irq(&xas);
584 xas_for_each(&xas, entry, ULONG_MAX) {
585 if (WARN_ON_ONCE(!xa_is_value(entry)))
586 continue;
587 if (unlikely(dax_is_locked(entry)))
588 entry = get_unlocked_entry(&xas);
589 if (entry)
590 page = dax_busy_page(entry);
591 put_unlocked_entry(&xas, entry);
5fac7408
DW
592 if (page)
593 break;
084a8990
MW
594 if (++scanned % XA_CHECK_SCHED)
595 continue;
596
597 xas_pause(&xas);
598 xas_unlock_irq(&xas);
599 cond_resched();
600 xas_lock_irq(&xas);
5fac7408 601 }
084a8990 602 xas_unlock_irq(&xas);
5fac7408
DW
603 return page;
604}
605EXPORT_SYMBOL_GPL(dax_layout_busy_page);
606
a77d19f4 607static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
608 pgoff_t index, bool trunc)
609{
07f2d89c 610 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
611 int ret = 0;
612 void *entry;
c6dcf52c 613
07f2d89c
MW
614 xas_lock_irq(&xas);
615 entry = get_unlocked_entry(&xas);
3159f943 616 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
617 goto out;
618 if (!trunc &&
07f2d89c
MW
619 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
620 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 621 goto out;
d2c997c0 622 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 623 xas_store(&xas, NULL);
c6dcf52c
JK
624 mapping->nrexceptional--;
625 ret = 1;
626out:
07f2d89c
MW
627 put_unlocked_entry(&xas, entry);
628 xas_unlock_irq(&xas);
c6dcf52c
JK
629 return ret;
630}
07f2d89c 631
ac401cc7 632/*
3159f943
MW
633 * Delete DAX entry at @index from @mapping. Wait for it
634 * to be unlocked before deleting it.
ac401cc7
JK
635 */
636int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
637{
a77d19f4 638 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 639
ac401cc7
JK
640 /*
641 * This gets called from truncate / punch_hole path. As such, the caller
642 * must hold locks protecting against concurrent modifications of the
a77d19f4 643 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 644 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
645 * at that index as well...
646 */
c6dcf52c
JK
647 WARN_ON_ONCE(!ret);
648 return ret;
649}
650
c6dcf52c 651/*
3159f943 652 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
653 */
654int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
655 pgoff_t index)
656{
a77d19f4 657 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
658}
659
cccbce67
DW
660static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
661 sector_t sector, size_t size, struct page *to,
662 unsigned long vaddr)
f7ca90b1 663{
cccbce67
DW
664 void *vto, *kaddr;
665 pgoff_t pgoff;
cccbce67
DW
666 long rc;
667 int id;
668
669 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
670 if (rc)
671 return rc;
672
673 id = dax_read_lock();
86ed913b 674 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
675 if (rc < 0) {
676 dax_read_unlock(id);
677 return rc;
678 }
f7ca90b1 679 vto = kmap_atomic(to);
cccbce67 680 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 681 kunmap_atomic(vto);
cccbce67 682 dax_read_unlock(id);
f7ca90b1
MW
683 return 0;
684}
685
642261ac
RZ
686/*
687 * By this point grab_mapping_entry() has ensured that we have a locked entry
688 * of the appropriate size so we don't have to worry about downgrading PMDs to
689 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
690 * already in the tree, we will skip the insertion and just dirty the PMD as
691 * appropriate.
692 */
b15cd800
MW
693static void *dax_insert_entry(struct xa_state *xas,
694 struct address_space *mapping, struct vm_fault *vmf,
695 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 696{
b15cd800 697 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 698
f5b7b748 699 if (dirty)
d2b2a28e 700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 701
3159f943 702 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 703 unsigned long index = xas->xa_index;
91d25ba8
RZ
704 /* we are replacing a zero page with block mapping */
705 if (dax_is_pmd_entry(entry))
977fbdcd 706 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 707 PG_PMD_NR, false);
91d25ba8 708 else /* pte entry */
b15cd800 709 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
710 }
711
b15cd800
MW
712 xas_reset(xas);
713 xas_lock_irq(xas);
d2c997c0
DW
714 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
715 dax_disassociate_entry(entry, mapping, false);
73449daf 716 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 717 }
642261ac 718
91d25ba8 719 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac 720 /*
a77d19f4 721 * Only swap our new entry into the page cache if the current
642261ac 722 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 723 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
724 * means that if we are trying to insert a PTE and the
725 * existing entry is a PMD, we will just leave the PMD in the
726 * tree and dirty it if necessary.
727 */
b15cd800
MW
728 void *old = dax_lock_entry(xas, new_entry);
729 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
730 DAX_LOCKED));
91d25ba8 731 entry = new_entry;
b15cd800
MW
732 } else {
733 xas_load(xas); /* Walk the xa_state */
9973c98e 734 }
91d25ba8 735
f5b7b748 736 if (dirty)
b15cd800 737 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 738
b15cd800 739 xas_unlock_irq(xas);
91d25ba8 740 return entry;
9973c98e
RZ
741}
742
a77d19f4
MW
743static inline
744unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
745{
746 unsigned long address;
747
748 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
749 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
750 return address;
751}
752
753/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
754static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
755 unsigned long pfn)
4b4bb46d
JK
756{
757 struct vm_area_struct *vma;
f729c8c9
RZ
758 pte_t pte, *ptep = NULL;
759 pmd_t *pmdp = NULL;
4b4bb46d 760 spinlock_t *ptl;
4b4bb46d
JK
761
762 i_mmap_lock_read(mapping);
763 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
a4d1a885 764 unsigned long address, start, end;
4b4bb46d
JK
765
766 cond_resched();
767
768 if (!(vma->vm_flags & VM_SHARED))
769 continue;
770
771 address = pgoff_address(index, vma);
a4d1a885
JG
772
773 /*
774 * Note because we provide start/end to follow_pte_pmd it will
775 * call mmu_notifier_invalidate_range_start() on our behalf
776 * before taking any lock.
777 */
778 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
4b4bb46d 779 continue;
4b4bb46d 780
0f10851e
JG
781 /*
782 * No need to call mmu_notifier_invalidate_range() as we are
783 * downgrading page table protection not changing it to point
784 * to a new page.
785 *
ad56b738 786 * See Documentation/vm/mmu_notifier.rst
0f10851e 787 */
f729c8c9
RZ
788 if (pmdp) {
789#ifdef CONFIG_FS_DAX_PMD
790 pmd_t pmd;
791
792 if (pfn != pmd_pfn(*pmdp))
793 goto unlock_pmd;
f6f37321 794 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
795 goto unlock_pmd;
796
797 flush_cache_page(vma, address, pfn);
798 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
799 pmd = pmd_wrprotect(pmd);
800 pmd = pmd_mkclean(pmd);
801 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 802unlock_pmd:
f729c8c9 803#endif
ee190ca6 804 spin_unlock(ptl);
f729c8c9
RZ
805 } else {
806 if (pfn != pte_pfn(*ptep))
807 goto unlock_pte;
808 if (!pte_dirty(*ptep) && !pte_write(*ptep))
809 goto unlock_pte;
810
811 flush_cache_page(vma, address, pfn);
812 pte = ptep_clear_flush(vma, address, ptep);
813 pte = pte_wrprotect(pte);
814 pte = pte_mkclean(pte);
815 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
816unlock_pte:
817 pte_unmap_unlock(ptep, ptl);
818 }
4b4bb46d 819
a4d1a885 820 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
4b4bb46d
JK
821 }
822 i_mmap_unlock_read(mapping);
823}
824
9fc747f6
MW
825static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
826 struct address_space *mapping, void *entry)
9973c98e 827{
3fe0791c
DW
828 unsigned long pfn;
829 long ret = 0;
cccbce67 830 size_t size;
9973c98e 831
9973c98e 832 /*
a6abc2c0
JK
833 * A page got tagged dirty in DAX mapping? Something is seriously
834 * wrong.
9973c98e 835 */
3159f943 836 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 837 return -EIO;
9973c98e 838
9fc747f6
MW
839 if (unlikely(dax_is_locked(entry))) {
840 void *old_entry = entry;
841
842 entry = get_unlocked_entry(xas);
843
844 /* Entry got punched out / reallocated? */
845 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
846 goto put_unlocked;
847 /*
848 * Entry got reallocated elsewhere? No need to writeback.
849 * We have to compare pfns as we must not bail out due to
850 * difference in lockbit or entry type.
851 */
852 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
853 goto put_unlocked;
854 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
855 dax_is_zero_entry(entry))) {
856 ret = -EIO;
857 goto put_unlocked;
858 }
859
860 /* Another fsync thread may have already done this entry */
861 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
862 goto put_unlocked;
9973c98e
RZ
863 }
864
a6abc2c0 865 /* Lock the entry to serialize with page faults */
9fc747f6
MW
866 dax_lock_entry(xas, entry);
867
a6abc2c0
JK
868 /*
869 * We can clear the tag now but we have to be careful so that concurrent
870 * dax_writeback_one() calls for the same index cannot finish before we
871 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
872 * at the entry only under the i_pages lock and once they do that
873 * they will see the entry locked and wait for it to unlock.
a6abc2c0 874 */
9fc747f6
MW
875 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
876 xas_unlock_irq(xas);
a6abc2c0 877
642261ac
RZ
878 /*
879 * Even if dax_writeback_mapping_range() was given a wbc->range_start
880 * in the middle of a PMD, the 'index' we are given will be aligned to
3fe0791c
DW
881 * the start index of the PMD, as will the pfn we pull from 'entry'.
882 * This allows us to flush for PMD_SIZE and not have to worry about
883 * partial PMD writebacks.
642261ac 884 */
a77d19f4
MW
885 pfn = dax_to_pfn(entry);
886 size = PAGE_SIZE << dax_entry_order(entry);
cccbce67 887
9fc747f6 888 dax_entry_mkclean(mapping, xas->xa_index, pfn);
3fe0791c 889 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
4b4bb46d
JK
890 /*
891 * After we have flushed the cache, we can clear the dirty tag. There
892 * cannot be new dirty data in the pfn after the flush has completed as
893 * the pfn mappings are writeprotected and fault waits for mapping
894 * entry lock.
895 */
9fc747f6
MW
896 xas_reset(xas);
897 xas_lock_irq(xas);
898 xas_store(xas, entry);
899 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
900 dax_wake_entry(xas, entry, false);
901
902 trace_dax_writeback_one(mapping->host, xas->xa_index,
903 size >> PAGE_SHIFT);
9973c98e
RZ
904 return ret;
905
a6abc2c0 906 put_unlocked:
9fc747f6 907 put_unlocked_entry(xas, entry);
9973c98e
RZ
908 return ret;
909}
910
911/*
912 * Flush the mapping to the persistent domain within the byte range of [start,
913 * end]. This is required by data integrity operations to ensure file data is
914 * on persistent storage prior to completion of the operation.
915 */
7f6d5b52
RZ
916int dax_writeback_mapping_range(struct address_space *mapping,
917 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 918{
9fc747f6 919 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 920 struct inode *inode = mapping->host;
9fc747f6 921 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 922 struct dax_device *dax_dev;
9fc747f6
MW
923 void *entry;
924 int ret = 0;
925 unsigned int scanned = 0;
9973c98e
RZ
926
927 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
928 return -EIO;
929
7f6d5b52
RZ
930 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
931 return 0;
932
cccbce67
DW
933 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
934 if (!dax_dev)
935 return -EIO;
936
9fc747f6 937 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 938
9fc747f6 939 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 940
9fc747f6
MW
941 xas_lock_irq(&xas);
942 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
943 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
944 if (ret < 0) {
945 mapping_set_error(mapping, ret);
9973c98e 946 break;
9973c98e 947 }
9fc747f6
MW
948 if (++scanned % XA_CHECK_SCHED)
949 continue;
950
951 xas_pause(&xas);
952 xas_unlock_irq(&xas);
953 cond_resched();
954 xas_lock_irq(&xas);
9973c98e 955 }
9fc747f6 956 xas_unlock_irq(&xas);
cccbce67 957 put_dax(dax_dev);
9fc747f6
MW
958 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
959 return ret;
9973c98e
RZ
960}
961EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
962
31a6f1a6 963static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 964{
a3841f94 965 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
966}
967
5e161e40
JK
968static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
969 pfn_t *pfnp)
f7ca90b1 970{
31a6f1a6 971 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
972 pgoff_t pgoff;
973 int id, rc;
5e161e40 974 long length;
f7ca90b1 975
5e161e40 976 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
977 if (rc)
978 return rc;
cccbce67 979 id = dax_read_lock();
5e161e40 980 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 981 NULL, pfnp);
5e161e40
JK
982 if (length < 0) {
983 rc = length;
984 goto out;
cccbce67 985 }
5e161e40
JK
986 rc = -EINVAL;
987 if (PFN_PHYS(length) < size)
988 goto out;
989 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
990 goto out;
991 /* For larger pages we need devmap */
992 if (length > 1 && !pfn_t_devmap(*pfnp))
993 goto out;
994 rc = 0;
995out:
cccbce67 996 dax_read_unlock(id);
5e161e40 997 return rc;
0e3b210c 998}
0e3b210c 999
e30331ff 1000/*
91d25ba8
RZ
1001 * The user has performed a load from a hole in the file. Allocating a new
1002 * page in the file would cause excessive storage usage for workloads with
1003 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1004 * If this page is ever written to we will re-fault and change the mapping to
1005 * point to real DAX storage instead.
e30331ff 1006 */
b15cd800
MW
1007static vm_fault_t dax_load_hole(struct xa_state *xas,
1008 struct address_space *mapping, void **entry,
1009 struct vm_fault *vmf)
e30331ff
RZ
1010{
1011 struct inode *inode = mapping->host;
91d25ba8 1012 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1013 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1014 vm_fault_t ret;
e30331ff 1015
b15cd800 1016 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1017 DAX_ZERO_PAGE, false);
1018
ab77dab4 1019 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1020 trace_dax_load_hole(inode, vmf, ret);
1021 return ret;
1022}
1023
4b0228fa
VV
1024static bool dax_range_is_aligned(struct block_device *bdev,
1025 unsigned int offset, unsigned int length)
1026{
1027 unsigned short sector_size = bdev_logical_block_size(bdev);
1028
1029 if (!IS_ALIGNED(offset, sector_size))
1030 return false;
1031 if (!IS_ALIGNED(length, sector_size))
1032 return false;
1033
1034 return true;
1035}
1036
cccbce67
DW
1037int __dax_zero_page_range(struct block_device *bdev,
1038 struct dax_device *dax_dev, sector_t sector,
1039 unsigned int offset, unsigned int size)
679c8bd3 1040{
cccbce67
DW
1041 if (dax_range_is_aligned(bdev, offset, size)) {
1042 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1043
1044 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1045 size >> 9, GFP_NOFS, 0);
4b0228fa 1046 } else {
cccbce67
DW
1047 pgoff_t pgoff;
1048 long rc, id;
1049 void *kaddr;
cccbce67 1050
e84b83b9 1051 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1052 if (rc)
1053 return rc;
1054
1055 id = dax_read_lock();
86ed913b 1056 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1057 if (rc < 0) {
1058 dax_read_unlock(id);
1059 return rc;
1060 }
81f55870 1061 memset(kaddr + offset, 0, size);
c3ca015f 1062 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1063 dax_read_unlock(id);
4b0228fa 1064 }
679c8bd3
CH
1065 return 0;
1066}
1067EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1068
a254e568 1069static loff_t
11c59c92 1070dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1071 struct iomap *iomap)
1072{
cccbce67
DW
1073 struct block_device *bdev = iomap->bdev;
1074 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1075 struct iov_iter *iter = data;
1076 loff_t end = pos + length, done = 0;
1077 ssize_t ret = 0;
a77d4786 1078 size_t xfer;
cccbce67 1079 int id;
a254e568
CH
1080
1081 if (iov_iter_rw(iter) == READ) {
1082 end = min(end, i_size_read(inode));
1083 if (pos >= end)
1084 return 0;
1085
1086 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1087 return iov_iter_zero(min(length, end - pos), iter);
1088 }
1089
1090 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1091 return -EIO;
1092
e3fce68c
JK
1093 /*
1094 * Write can allocate block for an area which has a hole page mapped
1095 * into page tables. We have to tear down these mappings so that data
1096 * written by write(2) is visible in mmap.
1097 */
cd656375 1098 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1099 invalidate_inode_pages2_range(inode->i_mapping,
1100 pos >> PAGE_SHIFT,
1101 (end - 1) >> PAGE_SHIFT);
1102 }
1103
cccbce67 1104 id = dax_read_lock();
a254e568
CH
1105 while (pos < end) {
1106 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1107 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1108 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1109 ssize_t map_len;
cccbce67
DW
1110 pgoff_t pgoff;
1111 void *kaddr;
a254e568 1112
d1908f52
MH
1113 if (fatal_signal_pending(current)) {
1114 ret = -EINTR;
1115 break;
1116 }
1117
cccbce67
DW
1118 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1119 if (ret)
1120 break;
1121
1122 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1123 &kaddr, NULL);
a254e568
CH
1124 if (map_len < 0) {
1125 ret = map_len;
1126 break;
1127 }
1128
cccbce67
DW
1129 map_len = PFN_PHYS(map_len);
1130 kaddr += offset;
a254e568
CH
1131 map_len -= offset;
1132 if (map_len > end - pos)
1133 map_len = end - pos;
1134
a2e050f5
RZ
1135 /*
1136 * The userspace address for the memory copy has already been
1137 * validated via access_ok() in either vfs_read() or
1138 * vfs_write(), depending on which operation we are doing.
1139 */
a254e568 1140 if (iov_iter_rw(iter) == WRITE)
a77d4786 1141 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1142 map_len, iter);
a254e568 1143 else
a77d4786 1144 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1145 map_len, iter);
a254e568 1146
a77d4786
DW
1147 pos += xfer;
1148 length -= xfer;
1149 done += xfer;
1150
1151 if (xfer == 0)
1152 ret = -EFAULT;
1153 if (xfer < map_len)
1154 break;
a254e568 1155 }
cccbce67 1156 dax_read_unlock(id);
a254e568
CH
1157
1158 return done ? done : ret;
1159}
1160
1161/**
11c59c92 1162 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1163 * @iocb: The control block for this I/O
1164 * @iter: The addresses to do I/O from or to
1165 * @ops: iomap ops passed from the file system
1166 *
1167 * This function performs read and write operations to directly mapped
1168 * persistent memory. The callers needs to take care of read/write exclusion
1169 * and evicting any page cache pages in the region under I/O.
1170 */
1171ssize_t
11c59c92 1172dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1173 const struct iomap_ops *ops)
a254e568
CH
1174{
1175 struct address_space *mapping = iocb->ki_filp->f_mapping;
1176 struct inode *inode = mapping->host;
1177 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1178 unsigned flags = 0;
1179
168316db
CH
1180 if (iov_iter_rw(iter) == WRITE) {
1181 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1182 flags |= IOMAP_WRITE;
168316db
CH
1183 } else {
1184 lockdep_assert_held(&inode->i_rwsem);
1185 }
a254e568 1186
a254e568
CH
1187 while (iov_iter_count(iter)) {
1188 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1189 iter, dax_iomap_actor);
a254e568
CH
1190 if (ret <= 0)
1191 break;
1192 pos += ret;
1193 done += ret;
1194 }
1195
1196 iocb->ki_pos += done;
1197 return done ? done : ret;
1198}
11c59c92 1199EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1200
ab77dab4 1201static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1202{
1203 if (error == 0)
1204 return VM_FAULT_NOPAGE;
1205 if (error == -ENOMEM)
1206 return VM_FAULT_OOM;
1207 return VM_FAULT_SIGBUS;
1208}
1209
aaa422c4
DW
1210/*
1211 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1212 * flushed on write-faults (non-cow), but not read-faults.
1213 */
1214static bool dax_fault_is_synchronous(unsigned long flags,
1215 struct vm_area_struct *vma, struct iomap *iomap)
1216{
1217 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1218 && (iomap->flags & IOMAP_F_DIRTY);
1219}
1220
ab77dab4 1221static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1222 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1223{
a0987ad5
JK
1224 struct vm_area_struct *vma = vmf->vma;
1225 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1226 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1227 struct inode *inode = mapping->host;
1a29d85e 1228 unsigned long vaddr = vmf->address;
a7d73fe6 1229 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1230 struct iomap iomap = { 0 };
9484ab1b 1231 unsigned flags = IOMAP_FAULT;
a7d73fe6 1232 int error, major = 0;
d2c43ef1 1233 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1234 bool sync;
ab77dab4 1235 vm_fault_t ret = 0;
a7d73fe6 1236 void *entry;
1b5a1cb2 1237 pfn_t pfn;
a7d73fe6 1238
ab77dab4 1239 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1240 /*
1241 * Check whether offset isn't beyond end of file now. Caller is supposed
1242 * to hold locks serializing us with truncate / punch hole so this is
1243 * a reliable test.
1244 */
a9c42b33 1245 if (pos >= i_size_read(inode)) {
ab77dab4 1246 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1247 goto out;
1248 }
a7d73fe6 1249
d2c43ef1 1250 if (write && !vmf->cow_page)
a7d73fe6
CH
1251 flags |= IOMAP_WRITE;
1252
b15cd800
MW
1253 entry = grab_mapping_entry(&xas, mapping, 0);
1254 if (xa_is_internal(entry)) {
1255 ret = xa_to_internal(entry);
13e451fd
JK
1256 goto out;
1257 }
1258
e2093926
RZ
1259 /*
1260 * It is possible, particularly with mixed reads & writes to private
1261 * mappings, that we have raced with a PMD fault that overlaps with
1262 * the PTE we need to set up. If so just return and the fault will be
1263 * retried.
1264 */
1265 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1266 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1267 goto unlock_entry;
1268 }
1269
a7d73fe6
CH
1270 /*
1271 * Note that we don't bother to use iomap_apply here: DAX required
1272 * the file system block size to be equal the page size, which means
1273 * that we never have to deal with more than a single extent here.
1274 */
1275 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1276 if (iomap_errp)
1277 *iomap_errp = error;
a9c42b33 1278 if (error) {
ab77dab4 1279 ret = dax_fault_return(error);
13e451fd 1280 goto unlock_entry;
a9c42b33 1281 }
a7d73fe6 1282 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1283 error = -EIO; /* fs corruption? */
1284 goto error_finish_iomap;
a7d73fe6
CH
1285 }
1286
a7d73fe6 1287 if (vmf->cow_page) {
31a6f1a6
JK
1288 sector_t sector = dax_iomap_sector(&iomap, pos);
1289
a7d73fe6
CH
1290 switch (iomap.type) {
1291 case IOMAP_HOLE:
1292 case IOMAP_UNWRITTEN:
1293 clear_user_highpage(vmf->cow_page, vaddr);
1294 break;
1295 case IOMAP_MAPPED:
cccbce67
DW
1296 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1297 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1298 break;
1299 default:
1300 WARN_ON_ONCE(1);
1301 error = -EIO;
1302 break;
1303 }
1304
1305 if (error)
13e451fd 1306 goto error_finish_iomap;
b1aa812b
JK
1307
1308 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1309 ret = finish_fault(vmf);
1310 if (!ret)
1311 ret = VM_FAULT_DONE_COW;
13e451fd 1312 goto finish_iomap;
a7d73fe6
CH
1313 }
1314
aaa422c4 1315 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1316
a7d73fe6
CH
1317 switch (iomap.type) {
1318 case IOMAP_MAPPED:
1319 if (iomap.flags & IOMAP_F_NEW) {
1320 count_vm_event(PGMAJFAULT);
a0987ad5 1321 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1322 major = VM_FAULT_MAJOR;
1323 }
1b5a1cb2
JK
1324 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1325 if (error < 0)
1326 goto error_finish_iomap;
1327
b15cd800 1328 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1329 0, write && !sync);
1b5a1cb2 1330
caa51d26
JK
1331 /*
1332 * If we are doing synchronous page fault and inode needs fsync,
1333 * we can insert PTE into page tables only after that happens.
1334 * Skip insertion for now and return the pfn so that caller can
1335 * insert it after fsync is done.
1336 */
1337 if (sync) {
1338 if (WARN_ON_ONCE(!pfnp)) {
1339 error = -EIO;
1340 goto error_finish_iomap;
1341 }
1342 *pfnp = pfn;
ab77dab4 1343 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1344 goto finish_iomap;
1345 }
1b5a1cb2
JK
1346 trace_dax_insert_mapping(inode, vmf, entry);
1347 if (write)
ab77dab4 1348 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1349 else
ab77dab4 1350 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1351
ab77dab4 1352 goto finish_iomap;
a7d73fe6
CH
1353 case IOMAP_UNWRITTEN:
1354 case IOMAP_HOLE:
d2c43ef1 1355 if (!write) {
b15cd800 1356 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1357 goto finish_iomap;
1550290b 1358 }
a7d73fe6
CH
1359 /*FALLTHRU*/
1360 default:
1361 WARN_ON_ONCE(1);
1362 error = -EIO;
1363 break;
1364 }
1365
13e451fd 1366 error_finish_iomap:
ab77dab4 1367 ret = dax_fault_return(error);
9f141d6e
JK
1368 finish_iomap:
1369 if (ops->iomap_end) {
1370 int copied = PAGE_SIZE;
1371
ab77dab4 1372 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1373 copied = 0;
1374 /*
1375 * The fault is done by now and there's no way back (other
1376 * thread may be already happily using PTE we have installed).
1377 * Just ignore error from ->iomap_end since we cannot do much
1378 * with it.
1379 */
1380 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1381 }
13e451fd 1382 unlock_entry:
b15cd800 1383 dax_unlock_entry(&xas, entry);
13e451fd 1384 out:
ab77dab4
SJ
1385 trace_dax_pte_fault_done(inode, vmf, ret);
1386 return ret | major;
a7d73fe6 1387}
642261ac
RZ
1388
1389#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1390static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1391 struct iomap *iomap, void **entry)
642261ac 1392{
f4200391
DJ
1393 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1394 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1395 struct inode *inode = mapping->host;
642261ac
RZ
1396 struct page *zero_page;
1397 spinlock_t *ptl;
1398 pmd_t pmd_entry;
3fe0791c 1399 pfn_t pfn;
642261ac 1400
f4200391 1401 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1402
1403 if (unlikely(!zero_page))
653b2ea3 1404 goto fallback;
642261ac 1405
3fe0791c 1406 pfn = page_to_pfn_t(zero_page);
b15cd800 1407 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1408 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1409
f4200391
DJ
1410 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1411 if (!pmd_none(*(vmf->pmd))) {
642261ac 1412 spin_unlock(ptl);
653b2ea3 1413 goto fallback;
642261ac
RZ
1414 }
1415
f4200391 1416 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1417 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1418 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1419 spin_unlock(ptl);
b15cd800 1420 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1421 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1422
1423fallback:
b15cd800 1424 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1425 return VM_FAULT_FALLBACK;
642261ac
RZ
1426}
1427
ab77dab4 1428static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1429 const struct iomap_ops *ops)
642261ac 1430{
f4200391 1431 struct vm_area_struct *vma = vmf->vma;
642261ac 1432 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1433 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1434 unsigned long pmd_addr = vmf->address & PMD_MASK;
1435 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1436 bool sync;
9484ab1b 1437 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1438 struct inode *inode = mapping->host;
ab77dab4 1439 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1440 struct iomap iomap = { 0 };
b15cd800 1441 pgoff_t max_pgoff;
642261ac
RZ
1442 void *entry;
1443 loff_t pos;
1444 int error;
302a5e31 1445 pfn_t pfn;
642261ac 1446
282a8e03
RZ
1447 /*
1448 * Check whether offset isn't beyond end of file now. Caller is
1449 * supposed to hold locks serializing us with truncate / punch hole so
1450 * this is a reliable test.
1451 */
957ac8c4 1452 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1453
f4200391 1454 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1455
fffa281b
RZ
1456 /*
1457 * Make sure that the faulting address's PMD offset (color) matches
1458 * the PMD offset from the start of the file. This is necessary so
1459 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1460 * range in the page cache.
fffa281b
RZ
1461 */
1462 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1463 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1464 goto fallback;
1465
642261ac
RZ
1466 /* Fall back to PTEs if we're going to COW */
1467 if (write && !(vma->vm_flags & VM_SHARED))
1468 goto fallback;
1469
1470 /* If the PMD would extend outside the VMA */
1471 if (pmd_addr < vma->vm_start)
1472 goto fallback;
1473 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1474 goto fallback;
1475
b15cd800 1476 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1477 result = VM_FAULT_SIGBUS;
1478 goto out;
1479 }
642261ac
RZ
1480
1481 /* If the PMD would extend beyond the file size */
b15cd800 1482 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1483 goto fallback;
1484
876f2946 1485 /*
b15cd800
MW
1486 * grab_mapping_entry() will make sure we get an empty PMD entry,
1487 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1488 * entry is already in the array, for instance), it will return
1489 * VM_FAULT_FALLBACK.
876f2946 1490 */
b15cd800
MW
1491 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1492 if (xa_is_internal(entry)) {
1493 result = xa_to_internal(entry);
876f2946 1494 goto fallback;
b15cd800 1495 }
876f2946 1496
e2093926
RZ
1497 /*
1498 * It is possible, particularly with mixed reads & writes to private
1499 * mappings, that we have raced with a PTE fault that overlaps with
1500 * the PMD we need to set up. If so just return and the fault will be
1501 * retried.
1502 */
1503 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1504 !pmd_devmap(*vmf->pmd)) {
1505 result = 0;
1506 goto unlock_entry;
1507 }
1508
642261ac
RZ
1509 /*
1510 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1511 * setting up a mapping, so really we're using iomap_begin() as a way
1512 * to look up our filesystem block.
1513 */
b15cd800 1514 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1515 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1516 if (error)
876f2946 1517 goto unlock_entry;
9f141d6e 1518
642261ac
RZ
1519 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1520 goto finish_iomap;
1521
aaa422c4 1522 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1523
642261ac
RZ
1524 switch (iomap.type) {
1525 case IOMAP_MAPPED:
302a5e31
JK
1526 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1527 if (error < 0)
1528 goto finish_iomap;
1529
b15cd800 1530 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1531 DAX_PMD, write && !sync);
302a5e31 1532
caa51d26
JK
1533 /*
1534 * If we are doing synchronous page fault and inode needs fsync,
1535 * we can insert PMD into page tables only after that happens.
1536 * Skip insertion for now and return the pfn so that caller can
1537 * insert it after fsync is done.
1538 */
1539 if (sync) {
1540 if (WARN_ON_ONCE(!pfnp))
1541 goto finish_iomap;
1542 *pfnp = pfn;
1543 result = VM_FAULT_NEEDDSYNC;
1544 goto finish_iomap;
1545 }
1546
302a5e31
JK
1547 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1548 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1549 write);
642261ac
RZ
1550 break;
1551 case IOMAP_UNWRITTEN:
1552 case IOMAP_HOLE:
1553 if (WARN_ON_ONCE(write))
876f2946 1554 break;
b15cd800 1555 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1556 break;
1557 default:
1558 WARN_ON_ONCE(1);
1559 break;
1560 }
1561
1562 finish_iomap:
1563 if (ops->iomap_end) {
9f141d6e
JK
1564 int copied = PMD_SIZE;
1565
1566 if (result == VM_FAULT_FALLBACK)
1567 copied = 0;
1568 /*
1569 * The fault is done by now and there's no way back (other
1570 * thread may be already happily using PMD we have installed).
1571 * Just ignore error from ->iomap_end since we cannot do much
1572 * with it.
1573 */
1574 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1575 &iomap);
642261ac 1576 }
876f2946 1577 unlock_entry:
b15cd800 1578 dax_unlock_entry(&xas, entry);
642261ac
RZ
1579 fallback:
1580 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1581 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1582 count_vm_event(THP_FAULT_FALLBACK);
1583 }
282a8e03 1584out:
f4200391 1585 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1586 return result;
1587}
a2d58167 1588#else
ab77dab4 1589static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1590 const struct iomap_ops *ops)
a2d58167
DJ
1591{
1592 return VM_FAULT_FALLBACK;
1593}
642261ac 1594#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1595
1596/**
1597 * dax_iomap_fault - handle a page fault on a DAX file
1598 * @vmf: The description of the fault
cec04e8c 1599 * @pe_size: Size of the page to fault in
9a0dd422 1600 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1601 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1602 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1603 *
1604 * When a page fault occurs, filesystems may call this helper in
1605 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1606 * has done all the necessary locking for page fault to proceed
1607 * successfully.
1608 */
ab77dab4 1609vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1610 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1611{
c791ace1
DJ
1612 switch (pe_size) {
1613 case PE_SIZE_PTE:
c0b24625 1614 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1615 case PE_SIZE_PMD:
9a0dd422 1616 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1617 default:
1618 return VM_FAULT_FALLBACK;
1619 }
1620}
1621EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1622
a77d19f4 1623/*
71eab6df
JK
1624 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1625 * @vmf: The description of the fault
71eab6df 1626 * @pfn: PFN to insert
cfc93c6c 1627 * @order: Order of entry to insert.
71eab6df 1628 *
a77d19f4
MW
1629 * This function inserts a writeable PTE or PMD entry into the page tables
1630 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1631 */
cfc93c6c
MW
1632static vm_fault_t
1633dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1634{
1635 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1636 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1637 void *entry;
ab77dab4 1638 vm_fault_t ret;
71eab6df 1639
cfc93c6c
MW
1640 xas_lock_irq(&xas);
1641 entry = get_unlocked_entry(&xas);
71eab6df
JK
1642 /* Did we race with someone splitting entry or so? */
1643 if (!entry ||
cfc93c6c
MW
1644 (order == 0 && !dax_is_pte_entry(entry)) ||
1645 (order == PMD_ORDER && (xa_is_internal(entry) ||
1646 !dax_is_pmd_entry(entry)))) {
1647 put_unlocked_entry(&xas, entry);
1648 xas_unlock_irq(&xas);
71eab6df
JK
1649 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1650 VM_FAULT_NOPAGE);
1651 return VM_FAULT_NOPAGE;
1652 }
cfc93c6c
MW
1653 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1654 dax_lock_entry(&xas, entry);
1655 xas_unlock_irq(&xas);
1656 if (order == 0)
ab77dab4 1657 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1658#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1659 else if (order == PMD_ORDER)
ab77dab4 1660 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df 1661 pfn, true);
71eab6df 1662#endif
cfc93c6c 1663 else
ab77dab4 1664 ret = VM_FAULT_FALLBACK;
cfc93c6c 1665 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1666 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1667 return ret;
71eab6df
JK
1668}
1669
1670/**
1671 * dax_finish_sync_fault - finish synchronous page fault
1672 * @vmf: The description of the fault
1673 * @pe_size: Size of entry to be inserted
1674 * @pfn: PFN to insert
1675 *
1676 * This function ensures that the file range touched by the page fault is
1677 * stored persistently on the media and handles inserting of appropriate page
1678 * table entry.
1679 */
ab77dab4
SJ
1680vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1681 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1682{
1683 int err;
1684 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1685 unsigned int order = pe_order(pe_size);
1686 size_t len = PAGE_SIZE << order;
71eab6df 1687
71eab6df
JK
1688 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1689 if (err)
1690 return VM_FAULT_SIGBUS;
cfc93c6c 1691 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1692}
1693EXPORT_SYMBOL_GPL(dax_finish_sync_fault);