]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/dcache.c
Merge tag 'pinctrl-v5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-jammy-kernel.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
2fd6b7f5
NP
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
e18b890b 81static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
87
1da177e4
LT
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
1da177e4 96
fa3536cc 97static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 98
b07ad996 99static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 100
8387ff25 101static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 102{
854d3e63 103 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
104}
105
94bdd655
AV
106#define IN_LOOKUP_SHIFT 10
107static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111{
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114}
115
116
1da177e4
LT
117/* Statistics gathering. */
118struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120};
121
3942c07c 122static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 123static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 124static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
125
126#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
127
128/*
129 * Here we resort to our own counters instead of using generic per-cpu counters
130 * for consistency with what the vfs inode code does. We are expected to harvest
131 * better code and performance by having our own specialized counters.
132 *
133 * Please note that the loop is done over all possible CPUs, not over all online
134 * CPUs. The reason for this is that we don't want to play games with CPUs going
135 * on and off. If one of them goes off, we will just keep their counters.
136 *
137 * glommer: See cffbc8a for details, and if you ever intend to change this,
138 * please update all vfs counters to match.
139 */
3942c07c 140static long get_nr_dentry(void)
3e880fb5
NP
141{
142 int i;
3942c07c 143 long sum = 0;
3e880fb5
NP
144 for_each_possible_cpu(i)
145 sum += per_cpu(nr_dentry, i);
146 return sum < 0 ? 0 : sum;
147}
148
62d36c77
DC
149static long get_nr_dentry_unused(void)
150{
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry_unused, i);
155 return sum < 0 ? 0 : sum;
156}
157
af0c9af1
WL
158static long get_nr_dentry_negative(void)
159{
160 int i;
161 long sum = 0;
162
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_negative, i);
165 return sum < 0 ? 0 : sum;
166}
167
32927393 168int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
312d3ca8
CH
169 size_t *lenp, loff_t *ppos)
170{
3e880fb5 171 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 172 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 173 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
175}
176#endif
177
5483f18e
LT
178/*
179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180 * The strings are both count bytes long, and count is non-zero.
181 */
e419b4cc
LT
182#ifdef CONFIG_DCACHE_WORD_ACCESS
183
184#include <asm/word-at-a-time.h>
185/*
186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187 * aligned allocation for this particular component. We don't
188 * strictly need the load_unaligned_zeropad() safety, but it
189 * doesn't hurt either.
190 *
191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192 * need the careful unaligned handling.
193 */
94753db5 194static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 195{
bfcfaa77 196 unsigned long a,b,mask;
bfcfaa77
LT
197
198 for (;;) {
bfe7aa6c 199 a = read_word_at_a_time(cs);
e419b4cc 200 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
201 if (tcount < sizeof(unsigned long))
202 break;
203 if (unlikely(a != b))
204 return 1;
205 cs += sizeof(unsigned long);
206 ct += sizeof(unsigned long);
207 tcount -= sizeof(unsigned long);
208 if (!tcount)
209 return 0;
210 }
a5c21dce 211 mask = bytemask_from_count(tcount);
bfcfaa77 212 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
213}
214
bfcfaa77 215#else
e419b4cc 216
94753db5 217static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 218{
5483f18e
LT
219 do {
220 if (*cs != *ct)
221 return 1;
222 cs++;
223 ct++;
224 tcount--;
225 } while (tcount);
226 return 0;
227}
228
e419b4cc
LT
229#endif
230
94753db5
LT
231static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232{
94753db5
LT
233 /*
234 * Be careful about RCU walk racing with rename:
506458ef 235 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
236 *
237 * NOTE! Even if a rename will mean that the length
238 * was not loaded atomically, we don't care. The
239 * RCU walk will check the sequence count eventually,
240 * and catch it. And we won't overrun the buffer,
241 * because we're reading the name pointer atomically,
242 * and a dentry name is guaranteed to be properly
243 * terminated with a NUL byte.
244 *
245 * End result: even if 'len' is wrong, we'll exit
246 * early because the data cannot match (there can
247 * be no NUL in the ct/tcount data)
248 */
506458ef 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 250
6326c71f 251 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
252}
253
8d85b484
AV
254struct external_name {
255 union {
256 atomic_t count;
257 struct rcu_head head;
258 } u;
259 unsigned char name[];
260};
261
262static inline struct external_name *external_name(struct dentry *dentry)
263{
264 return container_of(dentry->d_name.name, struct external_name, name[0]);
265}
266
9c82ab9c 267static void __d_free(struct rcu_head *head)
1da177e4 268{
9c82ab9c
CH
269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
8d85b484
AV
271 kmem_cache_free(dentry_cache, dentry);
272}
273
274static void __d_free_external(struct rcu_head *head)
275{
276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 277 kfree(external_name(dentry));
f1782c9b 278 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
279}
280
810bb172
AV
281static inline int dname_external(const struct dentry *dentry)
282{
283 return dentry->d_name.name != dentry->d_iname;
284}
285
49d31c2f
AV
286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287{
288 spin_lock(&dentry->d_lock);
230c6402 289 name->name = dentry->d_name;
49d31c2f 290 if (unlikely(dname_external(dentry))) {
230c6402 291 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 292 } else {
6cd00a01
TH
293 memcpy(name->inline_name, dentry->d_iname,
294 dentry->d_name.len + 1);
230c6402 295 name->name.name = name->inline_name;
49d31c2f 296 }
230c6402 297 spin_unlock(&dentry->d_lock);
49d31c2f
AV
298}
299EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301void release_dentry_name_snapshot(struct name_snapshot *name)
302{
230c6402 303 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 304 struct external_name *p;
230c6402 305 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 306 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 307 kfree_rcu(p, u.head);
49d31c2f
AV
308 }
309}
310EXPORT_SYMBOL(release_dentry_name_snapshot);
311
4bf46a27
DH
312static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315{
316 unsigned flags;
317
318 dentry->d_inode = inode;
4bf46a27
DH
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
2fa6b1e0 322 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
323}
324
4bf46a27
DH
325static inline void __d_clear_type_and_inode(struct dentry *dentry)
326{
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 331 dentry->d_inode = NULL;
af0c9af1
WL
332 if (dentry->d_flags & DCACHE_LRU_LIST)
333 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
334}
335
b4f0354e
AV
336static void dentry_free(struct dentry *dentry)
337{
946e51f2 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
344 }
345 }
b4f0354e 346 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 347 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
351}
352
1da177e4
LT
353/*
354 * Release the dentry's inode, using the filesystem
550dce01 355 * d_iput() operation if defined.
31e6b01f
NP
356 */
357static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
873feea0 359 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
360{
361 struct inode *inode = dentry->d_inode;
a528aca7 362
4c0d7cd5 363 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 364 __d_clear_type_and_inode(dentry);
946e51f2 365 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 366 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 367 spin_unlock(&dentry->d_lock);
873feea0 368 spin_unlock(&inode->i_lock);
31e6b01f
NP
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375}
376
89dc77bc
LT
377/*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
af0c9af1
WL
388 * The per-cpu "nr_dentry_negative" counters are only updated
389 * when deleted from or added to the per-superblock LRU list, not
390 * from/to the shrink list. That is to avoid an unneeded dec/inc
391 * pair when moving from LRU to shrink list in select_collect().
392 *
89dc77bc
LT
393 * These helper functions make sure we always follow the
394 * rules. d_lock must be held by the caller.
395 */
396#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397static void d_lru_add(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, 0);
400 dentry->d_flags |= DCACHE_LRU_LIST;
401 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
402 if (d_is_negative(dentry))
403 this_cpu_inc(nr_dentry_negative);
89dc77bc
LT
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405}
406
407static void d_lru_del(struct dentry *dentry)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
412 if (d_is_negative(dentry))
413 this_cpu_dec(nr_dentry_negative);
89dc77bc
LT
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415}
416
417static void d_shrink_del(struct dentry *dentry)
418{
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
423}
424
425static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426{
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
431}
432
433/*
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
438 */
3f97b163 439static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
440{
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
444 if (d_is_negative(dentry))
445 this_cpu_dec(nr_dentry_negative);
3f97b163 446 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
447}
448
3f97b163
VD
449static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 struct list_head *list)
89dc77bc
LT
451{
452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
454 if (d_is_negative(dentry))
455 this_cpu_dec(nr_dentry_negative);
3f97b163 456 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
457}
458
789680d1
NP
459/**
460 * d_drop - drop a dentry
461 * @dentry: dentry to drop
462 *
463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464 * be found through a VFS lookup any more. Note that this is different from
465 * deleting the dentry - d_delete will try to mark the dentry negative if
466 * possible, giving a successful _negative_ lookup, while d_drop will
467 * just make the cache lookup fail.
468 *
469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470 * reason (NFS timeouts or autofs deletes).
471 *
61647823
N
472 * __d_drop requires dentry->d_lock
473 * ___d_drop doesn't mark dentry as "unhashed"
474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 475 */
61647823 476static void ___d_drop(struct dentry *dentry)
789680d1 477{
0632a9ac
AV
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_root, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_roots;
486 else
487 b = d_hash(dentry->d_name.hash);
b61625d2 488
0632a9ac
AV
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
789680d1 492}
61647823
N
493
494void __d_drop(struct dentry *dentry)
495{
0632a9ac
AV
496 if (!d_unhashed(dentry)) {
497 ___d_drop(dentry);
498 dentry->d_hash.pprev = NULL;
499 write_seqcount_invalidate(&dentry->d_seq);
500 }
61647823 501}
789680d1
NP
502EXPORT_SYMBOL(__d_drop);
503
504void d_drop(struct dentry *dentry)
505{
789680d1
NP
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
789680d1
NP
509}
510EXPORT_SYMBOL(d_drop);
511
ba65dc5e
AV
512static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513{
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548}
549
e55fd011 550static void __dentry_kill(struct dentry *dentry)
77812a1e 551{
41edf278
AV
552 struct dentry *parent = NULL;
553 bool can_free = true;
41edf278 554 if (!IS_ROOT(dentry))
77812a1e 555 parent = dentry->d_parent;
31e6b01f 556
0d98439e
LT
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
f0023bc6 562 /*
f0023bc6
SW
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
29266201 566 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
567 dentry->d_op->d_prune(dentry);
568
01b60351
AV
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
01b60351 572 }
77812a1e
NP
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
ba65dc5e 575 dentry_unlist(dentry, parent);
03b3b889
AV
576 if (parent)
577 spin_unlock(&parent->d_lock);
550dce01
AV
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
03b3b889
AV
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
41edf278
AV
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
41edf278
AV
592 if (likely(can_free))
593 dentry_free(dentry);
9c5f1d30 594 cond_resched();
e55fd011
AV
595}
596
8b987a46 597static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 598{
8b987a46 599 struct dentry *parent;
046b961b 600 rcu_read_lock();
c2338f2d 601 spin_unlock(&dentry->d_lock);
046b961b 602again:
66702eb5 603 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
604 spin_lock(&parent->d_lock);
605 /*
606 * We can't blindly lock dentry until we are sure
607 * that we won't violate the locking order.
608 * Any changes of dentry->d_parent must have
609 * been done with parent->d_lock held, so
610 * spin_lock() above is enough of a barrier
611 * for checking if it's still our child.
612 */
613 if (unlikely(parent != dentry->d_parent)) {
614 spin_unlock(&parent->d_lock);
615 goto again;
616 }
65d8eb5a
AV
617 rcu_read_unlock();
618 if (parent != dentry)
9f12600f 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 620 else
046b961b
AV
621 parent = NULL;
622 return parent;
623}
624
8b987a46
AV
625static inline struct dentry *lock_parent(struct dentry *dentry)
626{
627 struct dentry *parent = dentry->d_parent;
628 if (IS_ROOT(dentry))
629 return NULL;
630 if (likely(spin_trylock(&parent->d_lock)))
631 return parent;
632 return __lock_parent(dentry);
633}
634
a338579f
AV
635static inline bool retain_dentry(struct dentry *dentry)
636{
637 WARN_ON(d_in_lookup(dentry));
638
639 /* Unreachable? Get rid of it */
640 if (unlikely(d_unhashed(dentry)))
641 return false;
642
643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 return false;
645
646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 if (dentry->d_op->d_delete(dentry))
648 return false;
649 }
2c567af4
IW
650
651 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652 return false;
653
62d9956c
AV
654 /* retain; LRU fodder */
655 dentry->d_lockref.count--;
656 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657 d_lru_add(dentry);
658 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
660 return true;
661}
662
2c567af4
IW
663void d_mark_dontcache(struct inode *inode)
664{
665 struct dentry *de;
666
667 spin_lock(&inode->i_lock);
668 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669 spin_lock(&de->d_lock);
670 de->d_flags |= DCACHE_DONTCACHE;
671 spin_unlock(&de->d_lock);
672 }
673 inode->i_state |= I_DONTCACHE;
674 spin_unlock(&inode->i_lock);
675}
676EXPORT_SYMBOL(d_mark_dontcache);
677
c1d0c1a2
JO
678/*
679 * Finish off a dentry we've decided to kill.
680 * dentry->d_lock must be held, returns with it unlocked.
681 * Returns dentry requiring refcount drop, or NULL if we're done.
682 */
683static struct dentry *dentry_kill(struct dentry *dentry)
684 __releases(dentry->d_lock)
685{
686 struct inode *inode = dentry->d_inode;
687 struct dentry *parent = NULL;
688
689 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 690 goto slow_positive;
c1d0c1a2
JO
691
692 if (!IS_ROOT(dentry)) {
693 parent = dentry->d_parent;
694 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
695 parent = __lock_parent(dentry);
696 if (likely(inode || !dentry->d_inode))
697 goto got_locks;
698 /* negative that became positive */
699 if (parent)
700 spin_unlock(&parent->d_lock);
701 inode = dentry->d_inode;
702 goto slow_positive;
c1d0c1a2
JO
703 }
704 }
c1d0c1a2
JO
705 __dentry_kill(dentry);
706 return parent;
707
f657a666
AV
708slow_positive:
709 spin_unlock(&dentry->d_lock);
710 spin_lock(&inode->i_lock);
711 spin_lock(&dentry->d_lock);
712 parent = lock_parent(dentry);
713got_locks:
714 if (unlikely(dentry->d_lockref.count != 1)) {
715 dentry->d_lockref.count--;
716 } else if (likely(!retain_dentry(dentry))) {
717 __dentry_kill(dentry);
718 return parent;
719 }
720 /* we are keeping it, after all */
721 if (inode)
722 spin_unlock(&inode->i_lock);
723 if (parent)
724 spin_unlock(&parent->d_lock);
c1d0c1a2 725 spin_unlock(&dentry->d_lock);
f657a666 726 return NULL;
c1d0c1a2
JO
727}
728
360f5479
LT
729/*
730 * Try to do a lockless dput(), and return whether that was successful.
731 *
732 * If unsuccessful, we return false, having already taken the dentry lock.
733 *
734 * The caller needs to hold the RCU read lock, so that the dentry is
735 * guaranteed to stay around even if the refcount goes down to zero!
736 */
737static inline bool fast_dput(struct dentry *dentry)
738{
739 int ret;
740 unsigned int d_flags;
741
742 /*
743 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 744 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
745 */
746 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747 return lockref_put_or_lock(&dentry->d_lockref);
748
749 /*
750 * .. otherwise, we can try to just decrement the
751 * lockref optimistically.
752 */
753 ret = lockref_put_return(&dentry->d_lockref);
754
755 /*
756 * If the lockref_put_return() failed due to the lock being held
757 * by somebody else, the fast path has failed. We will need to
758 * get the lock, and then check the count again.
759 */
760 if (unlikely(ret < 0)) {
761 spin_lock(&dentry->d_lock);
762 if (dentry->d_lockref.count > 1) {
763 dentry->d_lockref.count--;
764 spin_unlock(&dentry->d_lock);
7964410f 765 return true;
360f5479 766 }
7964410f 767 return false;
360f5479
LT
768 }
769
770 /*
771 * If we weren't the last ref, we're done.
772 */
773 if (ret)
7964410f 774 return true;
360f5479
LT
775
776 /*
777 * Careful, careful. The reference count went down
778 * to zero, but we don't hold the dentry lock, so
779 * somebody else could get it again, and do another
780 * dput(), and we need to not race with that.
781 *
782 * However, there is a very special and common case
783 * where we don't care, because there is nothing to
784 * do: the dentry is still hashed, it does not have
785 * a 'delete' op, and it's referenced and already on
786 * the LRU list.
787 *
788 * NOTE! Since we aren't locked, these values are
789 * not "stable". However, it is sufficient that at
790 * some point after we dropped the reference the
791 * dentry was hashed and the flags had the proper
792 * value. Other dentry users may have re-gotten
793 * a reference to the dentry and change that, but
794 * our work is done - we can leave the dentry
795 * around with a zero refcount.
796 */
797 smp_rmb();
66702eb5 798 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 799 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
800
801 /* Nothing to do? Dropping the reference was all we needed? */
802 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 803 return true;
360f5479
LT
804
805 /*
806 * Not the fast normal case? Get the lock. We've already decremented
807 * the refcount, but we'll need to re-check the situation after
808 * getting the lock.
809 */
810 spin_lock(&dentry->d_lock);
811
812 /*
813 * Did somebody else grab a reference to it in the meantime, and
814 * we're no longer the last user after all? Alternatively, somebody
815 * else could have killed it and marked it dead. Either way, we
816 * don't need to do anything else.
817 */
818 if (dentry->d_lockref.count) {
819 spin_unlock(&dentry->d_lock);
7964410f 820 return true;
360f5479
LT
821 }
822
823 /*
824 * Re-get the reference we optimistically dropped. We hold the
825 * lock, and we just tested that it was zero, so we can just
826 * set it to 1.
827 */
828 dentry->d_lockref.count = 1;
7964410f 829 return false;
360f5479
LT
830}
831
832
1da177e4
LT
833/*
834 * This is dput
835 *
836 * This is complicated by the fact that we do not want to put
837 * dentries that are no longer on any hash chain on the unused
838 * list: we'd much rather just get rid of them immediately.
839 *
840 * However, that implies that we have to traverse the dentry
841 * tree upwards to the parents which might _also_ now be
842 * scheduled for deletion (it may have been only waiting for
843 * its last child to go away).
844 *
845 * This tail recursion is done by hand as we don't want to depend
846 * on the compiler to always get this right (gcc generally doesn't).
847 * Real recursion would eat up our stack space.
848 */
849
850/*
851 * dput - release a dentry
852 * @dentry: dentry to release
853 *
854 * Release a dentry. This will drop the usage count and if appropriate
855 * call the dentry unlink method as well as removing it from the queues and
856 * releasing its resources. If the parent dentries were scheduled for release
857 * they too may now get deleted.
1da177e4 858 */
1da177e4
LT
859void dput(struct dentry *dentry)
860{
1088a640
AV
861 while (dentry) {
862 might_sleep();
1da177e4 863
1088a640
AV
864 rcu_read_lock();
865 if (likely(fast_dput(dentry))) {
866 rcu_read_unlock();
867 return;
868 }
47be6184 869
1088a640 870 /* Slow case: now with the dentry lock held */
360f5479 871 rcu_read_unlock();
360f5479 872
1088a640
AV
873 if (likely(retain_dentry(dentry))) {
874 spin_unlock(&dentry->d_lock);
875 return;
876 }
265ac902 877
1088a640 878 dentry = dentry_kill(dentry);
47be6184 879 }
1da177e4 880}
ec4f8605 881EXPORT_SYMBOL(dput);
1da177e4 882
9bdebc2b
AV
883static void __dput_to_list(struct dentry *dentry, struct list_head *list)
884__must_hold(&dentry->d_lock)
885{
886 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
887 /* let the owner of the list it's on deal with it */
888 --dentry->d_lockref.count;
889 } else {
890 if (dentry->d_flags & DCACHE_LRU_LIST)
891 d_lru_del(dentry);
892 if (!--dentry->d_lockref.count)
893 d_shrink_add(dentry, list);
894 }
895}
896
897void dput_to_list(struct dentry *dentry, struct list_head *list)
898{
899 rcu_read_lock();
900 if (likely(fast_dput(dentry))) {
901 rcu_read_unlock();
902 return;
903 }
904 rcu_read_unlock();
905 if (!retain_dentry(dentry))
906 __dput_to_list(dentry, list);
907 spin_unlock(&dentry->d_lock);
908}
1da177e4 909
b5c84bf6 910/* This must be called with d_lock held */
dc0474be 911static inline void __dget_dlock(struct dentry *dentry)
23044507 912{
98474236 913 dentry->d_lockref.count++;
23044507
NP
914}
915
dc0474be 916static inline void __dget(struct dentry *dentry)
1da177e4 917{
98474236 918 lockref_get(&dentry->d_lockref);
1da177e4
LT
919}
920
b7ab39f6
NP
921struct dentry *dget_parent(struct dentry *dentry)
922{
df3d0bbc 923 int gotref;
b7ab39f6 924 struct dentry *ret;
e8400933 925 unsigned seq;
b7ab39f6 926
df3d0bbc
WL
927 /*
928 * Do optimistic parent lookup without any
929 * locking.
930 */
931 rcu_read_lock();
e8400933 932 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 933 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
934 gotref = lockref_get_not_zero(&ret->d_lockref);
935 rcu_read_unlock();
936 if (likely(gotref)) {
e8400933 937 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
938 return ret;
939 dput(ret);
940 }
941
b7ab39f6 942repeat:
a734eb45
NP
943 /*
944 * Don't need rcu_dereference because we re-check it was correct under
945 * the lock.
946 */
947 rcu_read_lock();
b7ab39f6 948 ret = dentry->d_parent;
a734eb45
NP
949 spin_lock(&ret->d_lock);
950 if (unlikely(ret != dentry->d_parent)) {
951 spin_unlock(&ret->d_lock);
952 rcu_read_unlock();
b7ab39f6
NP
953 goto repeat;
954 }
a734eb45 955 rcu_read_unlock();
98474236
WL
956 BUG_ON(!ret->d_lockref.count);
957 ret->d_lockref.count++;
b7ab39f6 958 spin_unlock(&ret->d_lock);
b7ab39f6
NP
959 return ret;
960}
961EXPORT_SYMBOL(dget_parent);
962
61fec493
AV
963static struct dentry * __d_find_any_alias(struct inode *inode)
964{
965 struct dentry *alias;
966
967 if (hlist_empty(&inode->i_dentry))
968 return NULL;
969 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
970 __dget(alias);
971 return alias;
972}
973
974/**
975 * d_find_any_alias - find any alias for a given inode
976 * @inode: inode to find an alias for
977 *
978 * If any aliases exist for the given inode, take and return a
979 * reference for one of them. If no aliases exist, return %NULL.
980 */
981struct dentry *d_find_any_alias(struct inode *inode)
982{
983 struct dentry *de;
984
985 spin_lock(&inode->i_lock);
986 de = __d_find_any_alias(inode);
987 spin_unlock(&inode->i_lock);
988 return de;
989}
990EXPORT_SYMBOL(d_find_any_alias);
991
1da177e4
LT
992/**
993 * d_find_alias - grab a hashed alias of inode
994 * @inode: inode in question
1da177e4
LT
995 *
996 * If inode has a hashed alias, or is a directory and has any alias,
997 * acquire the reference to alias and return it. Otherwise return NULL.
998 * Notice that if inode is a directory there can be only one alias and
999 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
1000 * of a filesystem, or if the directory was renamed and d_revalidate
1001 * was the first vfs operation to notice.
1da177e4 1002 *
21c0d8fd 1003 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 1004 * any other hashed alias over that one.
1da177e4 1005 */
52ed46f0 1006static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 1007{
61fec493
AV
1008 struct dentry *alias;
1009
1010 if (S_ISDIR(inode->i_mode))
1011 return __d_find_any_alias(inode);
1da177e4 1012
946e51f2 1013 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 1014 spin_lock(&alias->d_lock);
61fec493 1015 if (!d_unhashed(alias)) {
8d80d7da
BF
1016 __dget_dlock(alias);
1017 spin_unlock(&alias->d_lock);
1018 return alias;
1da177e4 1019 }
da502956 1020 spin_unlock(&alias->d_lock);
1da177e4 1021 }
da502956 1022 return NULL;
1da177e4
LT
1023}
1024
da502956 1025struct dentry *d_find_alias(struct inode *inode)
1da177e4 1026{
214fda1f
DH
1027 struct dentry *de = NULL;
1028
b3d9b7a3 1029 if (!hlist_empty(&inode->i_dentry)) {
873feea0 1030 spin_lock(&inode->i_lock);
52ed46f0 1031 de = __d_find_alias(inode);
873feea0 1032 spin_unlock(&inode->i_lock);
214fda1f 1033 }
1da177e4
LT
1034 return de;
1035}
ec4f8605 1036EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
1037
1038/*
1039 * Try to kill dentries associated with this inode.
1040 * WARNING: you must own a reference to inode.
1041 */
1042void d_prune_aliases(struct inode *inode)
1043{
0cdca3f9 1044 struct dentry *dentry;
1da177e4 1045restart:
873feea0 1046 spin_lock(&inode->i_lock);
946e51f2 1047 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1048 spin_lock(&dentry->d_lock);
98474236 1049 if (!dentry->d_lockref.count) {
29355c39
AV
1050 struct dentry *parent = lock_parent(dentry);
1051 if (likely(!dentry->d_lockref.count)) {
1052 __dentry_kill(dentry);
4a7795d3 1053 dput(parent);
29355c39
AV
1054 goto restart;
1055 }
1056 if (parent)
1057 spin_unlock(&parent->d_lock);
1da177e4
LT
1058 }
1059 spin_unlock(&dentry->d_lock);
1060 }
873feea0 1061 spin_unlock(&inode->i_lock);
1da177e4 1062}
ec4f8605 1063EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1064
3b3f09f4
AV
1065/*
1066 * Lock a dentry from shrink list.
8f04da2a
JO
1067 * Called under rcu_read_lock() and dentry->d_lock; the former
1068 * guarantees that nothing we access will be freed under us.
3b3f09f4 1069 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1070 * d_delete(), etc.
1071 *
3b3f09f4
AV
1072 * Return false if dentry has been disrupted or grabbed, leaving
1073 * the caller to kick it off-list. Otherwise, return true and have
1074 * that dentry's inode and parent both locked.
1075 */
1076static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1077{
3b3f09f4
AV
1078 struct inode *inode;
1079 struct dentry *parent;
da3bbdd4 1080
3b3f09f4
AV
1081 if (dentry->d_lockref.count)
1082 return false;
1083
1084 inode = dentry->d_inode;
1085 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1086 spin_unlock(&dentry->d_lock);
1087 spin_lock(&inode->i_lock);
ec33679d 1088 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1089 if (unlikely(dentry->d_lockref.count))
1090 goto out;
1091 /* changed inode means that somebody had grabbed it */
1092 if (unlikely(inode != dentry->d_inode))
1093 goto out;
3b3f09f4 1094 }
046b961b 1095
3b3f09f4
AV
1096 parent = dentry->d_parent;
1097 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1098 return true;
dd1f6b2e 1099
3b3f09f4 1100 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1101 spin_lock(&parent->d_lock);
1102 if (unlikely(parent != dentry->d_parent)) {
1103 spin_unlock(&parent->d_lock);
1104 spin_lock(&dentry->d_lock);
1105 goto out;
1106 }
1107 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1108 if (likely(!dentry->d_lockref.count))
3b3f09f4 1109 return true;
3b3f09f4
AV
1110 spin_unlock(&parent->d_lock);
1111out:
1112 if (inode)
1113 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1114 return false;
1115}
77812a1e 1116
9bdebc2b 1117void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1118{
1119 while (!list_empty(list)) {
1120 struct dentry *dentry, *parent;
64fd72e0 1121
3b3f09f4
AV
1122 dentry = list_entry(list->prev, struct dentry, d_lru);
1123 spin_lock(&dentry->d_lock);
8f04da2a 1124 rcu_read_lock();
3b3f09f4
AV
1125 if (!shrink_lock_dentry(dentry)) {
1126 bool can_free = false;
8f04da2a 1127 rcu_read_unlock();
3b3f09f4
AV
1128 d_shrink_del(dentry);
1129 if (dentry->d_lockref.count < 0)
1130 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1131 spin_unlock(&dentry->d_lock);
1132 if (can_free)
1133 dentry_free(dentry);
1134 continue;
1135 }
8f04da2a 1136 rcu_read_unlock();
3b3f09f4
AV
1137 d_shrink_del(dentry);
1138 parent = dentry->d_parent;
9bdebc2b
AV
1139 if (parent != dentry)
1140 __dput_to_list(parent, list);
ff2fde99 1141 __dentry_kill(dentry);
da3bbdd4 1142 }
3049cfe2
CH
1143}
1144
3f97b163
VD
1145static enum lru_status dentry_lru_isolate(struct list_head *item,
1146 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1147{
1148 struct list_head *freeable = arg;
1149 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1150
1151
1152 /*
1153 * we are inverting the lru lock/dentry->d_lock here,
1154 * so use a trylock. If we fail to get the lock, just skip
1155 * it
1156 */
1157 if (!spin_trylock(&dentry->d_lock))
1158 return LRU_SKIP;
1159
1160 /*
1161 * Referenced dentries are still in use. If they have active
1162 * counts, just remove them from the LRU. Otherwise give them
1163 * another pass through the LRU.
1164 */
1165 if (dentry->d_lockref.count) {
3f97b163 1166 d_lru_isolate(lru, dentry);
f6041567
DC
1167 spin_unlock(&dentry->d_lock);
1168 return LRU_REMOVED;
1169 }
1170
1171 if (dentry->d_flags & DCACHE_REFERENCED) {
1172 dentry->d_flags &= ~DCACHE_REFERENCED;
1173 spin_unlock(&dentry->d_lock);
1174
1175 /*
1176 * The list move itself will be made by the common LRU code. At
1177 * this point, we've dropped the dentry->d_lock but keep the
1178 * lru lock. This is safe to do, since every list movement is
1179 * protected by the lru lock even if both locks are held.
1180 *
1181 * This is guaranteed by the fact that all LRU management
1182 * functions are intermediated by the LRU API calls like
1183 * list_lru_add and list_lru_del. List movement in this file
1184 * only ever occur through this functions or through callbacks
1185 * like this one, that are called from the LRU API.
1186 *
1187 * The only exceptions to this are functions like
1188 * shrink_dentry_list, and code that first checks for the
1189 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1190 * operating only with stack provided lists after they are
1191 * properly isolated from the main list. It is thus, always a
1192 * local access.
1193 */
1194 return LRU_ROTATE;
1195 }
1196
3f97b163 1197 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1198 spin_unlock(&dentry->d_lock);
1199
1200 return LRU_REMOVED;
1201}
1202
3049cfe2 1203/**
b48f03b3
DC
1204 * prune_dcache_sb - shrink the dcache
1205 * @sb: superblock
503c358c 1206 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1207 *
503c358c
VD
1208 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1210 * function.
3049cfe2 1211 *
b48f03b3
DC
1212 * This function may fail to free any resources if all the dentries are in
1213 * use.
3049cfe2 1214 */
503c358c 1215long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1216{
f6041567
DC
1217 LIST_HEAD(dispose);
1218 long freed;
3049cfe2 1219
503c358c
VD
1220 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221 dentry_lru_isolate, &dispose);
f6041567 1222 shrink_dentry_list(&dispose);
0a234c6d 1223 return freed;
da3bbdd4 1224}
23044507 1225
4e717f5c 1226static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1227 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1228{
4e717f5c
GC
1229 struct list_head *freeable = arg;
1230 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1231
4e717f5c
GC
1232 /*
1233 * we are inverting the lru lock/dentry->d_lock here,
1234 * so use a trylock. If we fail to get the lock, just skip
1235 * it
1236 */
1237 if (!spin_trylock(&dentry->d_lock))
1238 return LRU_SKIP;
1239
3f97b163 1240 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1241 spin_unlock(&dentry->d_lock);
ec33679d 1242
4e717f5c 1243 return LRU_REMOVED;
da3bbdd4
KM
1244}
1245
4e717f5c 1246
1da177e4
LT
1247/**
1248 * shrink_dcache_sb - shrink dcache for a superblock
1249 * @sb: superblock
1250 *
3049cfe2
CH
1251 * Shrink the dcache for the specified super block. This is used to free
1252 * the dcache before unmounting a file system.
1da177e4 1253 */
3049cfe2 1254void shrink_dcache_sb(struct super_block *sb)
1da177e4 1255{
4e717f5c
GC
1256 do {
1257 LIST_HEAD(dispose);
1258
1dbd449c 1259 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1260 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1261 shrink_dentry_list(&dispose);
b17c070f 1262 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1263}
ec4f8605 1264EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1265
db14fc3a
MS
1266/**
1267 * enum d_walk_ret - action to talke during tree walk
1268 * @D_WALK_CONTINUE: contrinue walk
1269 * @D_WALK_QUIT: quit walk
1270 * @D_WALK_NORETRY: quit when retry is needed
1271 * @D_WALK_SKIP: skip this dentry and its children
1272 */
1273enum d_walk_ret {
1274 D_WALK_CONTINUE,
1275 D_WALK_QUIT,
1276 D_WALK_NORETRY,
1277 D_WALK_SKIP,
1278};
c826cb7d 1279
1da177e4 1280/**
db14fc3a
MS
1281 * d_walk - walk the dentry tree
1282 * @parent: start of walk
1283 * @data: data passed to @enter() and @finish()
1284 * @enter: callback when first entering the dentry
1da177e4 1285 *
3a8e3611 1286 * The @enter() callbacks are called with d_lock held.
1da177e4 1287 */
db14fc3a 1288static void d_walk(struct dentry *parent, void *data,
3a8e3611 1289 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1290{
949854d0 1291 struct dentry *this_parent;
1da177e4 1292 struct list_head *next;
48f5ec21 1293 unsigned seq = 0;
db14fc3a
MS
1294 enum d_walk_ret ret;
1295 bool retry = true;
949854d0 1296
58db63d0 1297again:
48f5ec21 1298 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1299 this_parent = parent;
2fd6b7f5 1300 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1301
1302 ret = enter(data, this_parent);
1303 switch (ret) {
1304 case D_WALK_CONTINUE:
1305 break;
1306 case D_WALK_QUIT:
1307 case D_WALK_SKIP:
1308 goto out_unlock;
1309 case D_WALK_NORETRY:
1310 retry = false;
1311 break;
1312 }
1da177e4
LT
1313repeat:
1314 next = this_parent->d_subdirs.next;
1315resume:
1316 while (next != &this_parent->d_subdirs) {
1317 struct list_head *tmp = next;
946e51f2 1318 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1319 next = tmp->next;
2fd6b7f5 1320
ba65dc5e
AV
1321 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1322 continue;
1323
2fd6b7f5 1324 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1325
1326 ret = enter(data, dentry);
1327 switch (ret) {
1328 case D_WALK_CONTINUE:
1329 break;
1330 case D_WALK_QUIT:
2fd6b7f5 1331 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1332 goto out_unlock;
1333 case D_WALK_NORETRY:
1334 retry = false;
1335 break;
1336 case D_WALK_SKIP:
1337 spin_unlock(&dentry->d_lock);
1338 continue;
2fd6b7f5 1339 }
db14fc3a 1340
1da177e4 1341 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5 1342 spin_unlock(&this_parent->d_lock);
5facae4f 1343 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1344 this_parent = dentry;
2fd6b7f5 1345 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1346 goto repeat;
1347 }
2fd6b7f5 1348 spin_unlock(&dentry->d_lock);
1da177e4
LT
1349 }
1350 /*
1351 * All done at this level ... ascend and resume the search.
1352 */
ca5358ef
AV
1353 rcu_read_lock();
1354ascend:
1da177e4 1355 if (this_parent != parent) {
c826cb7d 1356 struct dentry *child = this_parent;
31dec132
AV
1357 this_parent = child->d_parent;
1358
31dec132
AV
1359 spin_unlock(&child->d_lock);
1360 spin_lock(&this_parent->d_lock);
1361
ca5358ef
AV
1362 /* might go back up the wrong parent if we have had a rename. */
1363 if (need_seqretry(&rename_lock, seq))
949854d0 1364 goto rename_retry;
2159184e
AV
1365 /* go into the first sibling still alive */
1366 do {
1367 next = child->d_child.next;
ca5358ef
AV
1368 if (next == &this_parent->d_subdirs)
1369 goto ascend;
1370 child = list_entry(next, struct dentry, d_child);
2159184e 1371 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1372 rcu_read_unlock();
1da177e4
LT
1373 goto resume;
1374 }
ca5358ef 1375 if (need_seqretry(&rename_lock, seq))
949854d0 1376 goto rename_retry;
ca5358ef 1377 rcu_read_unlock();
db14fc3a
MS
1378
1379out_unlock:
1380 spin_unlock(&this_parent->d_lock);
48f5ec21 1381 done_seqretry(&rename_lock, seq);
db14fc3a 1382 return;
58db63d0
NP
1383
1384rename_retry:
ca5358ef
AV
1385 spin_unlock(&this_parent->d_lock);
1386 rcu_read_unlock();
1387 BUG_ON(seq & 1);
db14fc3a
MS
1388 if (!retry)
1389 return;
48f5ec21 1390 seq = 1;
58db63d0 1391 goto again;
1da177e4 1392}
db14fc3a 1393
01619491
IK
1394struct check_mount {
1395 struct vfsmount *mnt;
1396 unsigned int mounted;
1397};
1398
1399static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1400{
1401 struct check_mount *info = data;
1402 struct path path = { .mnt = info->mnt, .dentry = dentry };
1403
1404 if (likely(!d_mountpoint(dentry)))
1405 return D_WALK_CONTINUE;
1406 if (__path_is_mountpoint(&path)) {
1407 info->mounted = 1;
1408 return D_WALK_QUIT;
1409 }
1410 return D_WALK_CONTINUE;
1411}
1412
1413/**
1414 * path_has_submounts - check for mounts over a dentry in the
1415 * current namespace.
1416 * @parent: path to check.
1417 *
1418 * Return true if the parent or its subdirectories contain
1419 * a mount point in the current namespace.
1420 */
1421int path_has_submounts(const struct path *parent)
1422{
1423 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1424
1425 read_seqlock_excl(&mount_lock);
3a8e3611 1426 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1427 read_sequnlock_excl(&mount_lock);
1428
1429 return data.mounted;
1430}
1431EXPORT_SYMBOL(path_has_submounts);
1432
eed81007
MS
1433/*
1434 * Called by mount code to set a mountpoint and check if the mountpoint is
1435 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1436 * subtree can become unreachable).
1437 *
1ffe46d1 1438 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1439 * this reason take rename_lock and d_lock on dentry and ancestors.
1440 */
1441int d_set_mounted(struct dentry *dentry)
1442{
1443 struct dentry *p;
1444 int ret = -ENOENT;
1445 write_seqlock(&rename_lock);
1446 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1447 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1448 spin_lock(&p->d_lock);
1449 if (unlikely(d_unhashed(p))) {
1450 spin_unlock(&p->d_lock);
1451 goto out;
1452 }
1453 spin_unlock(&p->d_lock);
1454 }
1455 spin_lock(&dentry->d_lock);
1456 if (!d_unlinked(dentry)) {
3895dbf8
EB
1457 ret = -EBUSY;
1458 if (!d_mountpoint(dentry)) {
1459 dentry->d_flags |= DCACHE_MOUNTED;
1460 ret = 0;
1461 }
eed81007
MS
1462 }
1463 spin_unlock(&dentry->d_lock);
1464out:
1465 write_sequnlock(&rename_lock);
1466 return ret;
1467}
1468
1da177e4 1469/*
fd517909 1470 * Search the dentry child list of the specified parent,
1da177e4
LT
1471 * and move any unused dentries to the end of the unused
1472 * list for prune_dcache(). We descend to the next level
1473 * whenever the d_subdirs list is non-empty and continue
1474 * searching.
1475 *
1476 * It returns zero iff there are no unused children,
1477 * otherwise it returns the number of children moved to
1478 * the end of the unused list. This may not be the total
1479 * number of unused children, because select_parent can
1480 * drop the lock and return early due to latency
1481 * constraints.
1482 */
1da177e4 1483
db14fc3a
MS
1484struct select_data {
1485 struct dentry *start;
9bdebc2b
AV
1486 union {
1487 long found;
1488 struct dentry *victim;
1489 };
db14fc3a 1490 struct list_head dispose;
db14fc3a 1491};
23044507 1492
db14fc3a
MS
1493static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1494{
1495 struct select_data *data = _data;
1496 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1497
db14fc3a
MS
1498 if (data->start == dentry)
1499 goto out;
2fd6b7f5 1500
fe91522a 1501 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1502 data->found++;
fe91522a
AV
1503 } else {
1504 if (dentry->d_flags & DCACHE_LRU_LIST)
1505 d_lru_del(dentry);
1506 if (!dentry->d_lockref.count) {
1507 d_shrink_add(dentry, &data->dispose);
1508 data->found++;
1509 }
1da177e4 1510 }
db14fc3a
MS
1511 /*
1512 * We can return to the caller if we have found some (this
1513 * ensures forward progress). We'll be coming back to find
1514 * the rest.
1515 */
fe91522a
AV
1516 if (!list_empty(&data->dispose))
1517 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1518out:
db14fc3a 1519 return ret;
1da177e4
LT
1520}
1521
9bdebc2b
AV
1522static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1523{
1524 struct select_data *data = _data;
1525 enum d_walk_ret ret = D_WALK_CONTINUE;
1526
1527 if (data->start == dentry)
1528 goto out;
1529
1530 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1531 if (!dentry->d_lockref.count) {
1532 rcu_read_lock();
1533 data->victim = dentry;
1534 return D_WALK_QUIT;
1535 }
1536 } else {
1537 if (dentry->d_flags & DCACHE_LRU_LIST)
1538 d_lru_del(dentry);
1539 if (!dentry->d_lockref.count)
1540 d_shrink_add(dentry, &data->dispose);
1541 }
1542 /*
1543 * We can return to the caller if we have found some (this
1544 * ensures forward progress). We'll be coming back to find
1545 * the rest.
1546 */
1547 if (!list_empty(&data->dispose))
1548 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1549out:
1550 return ret;
1551}
1552
1da177e4
LT
1553/**
1554 * shrink_dcache_parent - prune dcache
1555 * @parent: parent of entries to prune
1556 *
1557 * Prune the dcache to remove unused children of the parent dentry.
1558 */
db14fc3a 1559void shrink_dcache_parent(struct dentry *parent)
1da177e4 1560{
db14fc3a 1561 for (;;) {
9bdebc2b 1562 struct select_data data = {.start = parent};
1da177e4 1563
db14fc3a 1564 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1565 d_walk(parent, &data, select_collect);
4fb48871
AV
1566
1567 if (!list_empty(&data.dispose)) {
1568 shrink_dentry_list(&data.dispose);
1569 continue;
1570 }
1571
1572 cond_resched();
db14fc3a
MS
1573 if (!data.found)
1574 break;
9bdebc2b
AV
1575 data.victim = NULL;
1576 d_walk(parent, &data, select_collect2);
1577 if (data.victim) {
1578 struct dentry *parent;
1579 spin_lock(&data.victim->d_lock);
1580 if (!shrink_lock_dentry(data.victim)) {
1581 spin_unlock(&data.victim->d_lock);
1582 rcu_read_unlock();
1583 } else {
1584 rcu_read_unlock();
1585 parent = data.victim->d_parent;
1586 if (parent != data.victim)
1587 __dput_to_list(parent, &data.dispose);
1588 __dentry_kill(data.victim);
1589 }
1590 }
1591 if (!list_empty(&data.dispose))
1592 shrink_dentry_list(&data.dispose);
421348f1 1593 }
1da177e4 1594}
ec4f8605 1595EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1596
9c8c10e2 1597static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1598{
9c8c10e2
AV
1599 /* it has busy descendents; complain about those instead */
1600 if (!list_empty(&dentry->d_subdirs))
1601 return D_WALK_CONTINUE;
42c32608 1602
9c8c10e2
AV
1603 /* root with refcount 1 is fine */
1604 if (dentry == _data && dentry->d_lockref.count == 1)
1605 return D_WALK_CONTINUE;
1606
1607 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1608 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1609 dentry,
1610 dentry->d_inode ?
1611 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1612 dentry,
42c32608
AV
1613 dentry->d_lockref.count,
1614 dentry->d_sb->s_type->name,
1615 dentry->d_sb->s_id);
9c8c10e2
AV
1616 WARN_ON(1);
1617 return D_WALK_CONTINUE;
1618}
1619
1620static void do_one_tree(struct dentry *dentry)
1621{
1622 shrink_dcache_parent(dentry);
3a8e3611 1623 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1624 d_drop(dentry);
1625 dput(dentry);
42c32608
AV
1626}
1627
1628/*
1629 * destroy the dentries attached to a superblock on unmounting
1630 */
1631void shrink_dcache_for_umount(struct super_block *sb)
1632{
1633 struct dentry *dentry;
1634
9c8c10e2 1635 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1636
1637 dentry = sb->s_root;
1638 sb->s_root = NULL;
9c8c10e2 1639 do_one_tree(dentry);
42c32608 1640
f1ee6162
N
1641 while (!hlist_bl_empty(&sb->s_roots)) {
1642 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1643 do_one_tree(dentry);
42c32608
AV
1644 }
1645}
1646
ff17fa56 1647static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1648{
ff17fa56 1649 struct dentry **victim = _data;
848ac114 1650 if (d_mountpoint(dentry)) {
8ed936b5 1651 __dget_dlock(dentry);
ff17fa56 1652 *victim = dentry;
848ac114
MS
1653 return D_WALK_QUIT;
1654 }
ff17fa56 1655 return D_WALK_CONTINUE;
848ac114
MS
1656}
1657
1658/**
1ffe46d1
EB
1659 * d_invalidate - detach submounts, prune dcache, and drop
1660 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1661 */
5542aa2f 1662void d_invalidate(struct dentry *dentry)
848ac114 1663{
ff17fa56 1664 bool had_submounts = false;
1ffe46d1
EB
1665 spin_lock(&dentry->d_lock);
1666 if (d_unhashed(dentry)) {
1667 spin_unlock(&dentry->d_lock);
5542aa2f 1668 return;
1ffe46d1 1669 }
ff17fa56 1670 __d_drop(dentry);
1ffe46d1
EB
1671 spin_unlock(&dentry->d_lock);
1672
848ac114 1673 /* Negative dentries can be dropped without further checks */
ff17fa56 1674 if (!dentry->d_inode)
5542aa2f 1675 return;
848ac114 1676
ff17fa56 1677 shrink_dcache_parent(dentry);
848ac114 1678 for (;;) {
ff17fa56 1679 struct dentry *victim = NULL;
3a8e3611 1680 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1681 if (!victim) {
1682 if (had_submounts)
1683 shrink_dcache_parent(dentry);
81be24d2 1684 return;
8ed936b5 1685 }
ff17fa56
AV
1686 had_submounts = true;
1687 detach_mounts(victim);
1688 dput(victim);
848ac114 1689 }
848ac114 1690}
1ffe46d1 1691EXPORT_SYMBOL(d_invalidate);
848ac114 1692
1da177e4 1693/**
a4464dbc
AV
1694 * __d_alloc - allocate a dcache entry
1695 * @sb: filesystem it will belong to
1da177e4
LT
1696 * @name: qstr of the name
1697 *
1698 * Allocates a dentry. It returns %NULL if there is insufficient memory
1699 * available. On a success the dentry is returned. The name passed in is
1700 * copied and the copy passed in may be reused after this call.
1701 */
1702
5c8b0dfc 1703static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1704{
1705 struct dentry *dentry;
1706 char *dname;
285b102d 1707 int err;
1da177e4 1708
e12ba74d 1709 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1710 if (!dentry)
1711 return NULL;
1712
6326c71f
LT
1713 /*
1714 * We guarantee that the inline name is always NUL-terminated.
1715 * This way the memcpy() done by the name switching in rename
1716 * will still always have a NUL at the end, even if we might
1717 * be overwriting an internal NUL character
1718 */
1719 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1720 if (unlikely(!name)) {
cdf01226 1721 name = &slash_name;
798434bd
AV
1722 dname = dentry->d_iname;
1723 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1724 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1725 struct external_name *p = kmalloc(size + name->len,
1726 GFP_KERNEL_ACCOUNT |
1727 __GFP_RECLAIMABLE);
1728 if (!p) {
1da177e4
LT
1729 kmem_cache_free(dentry_cache, dentry);
1730 return NULL;
1731 }
2e03b4bc
VB
1732 atomic_set(&p->u.count, 1);
1733 dname = p->name;
1da177e4
LT
1734 } else {
1735 dname = dentry->d_iname;
1736 }
1da177e4
LT
1737
1738 dentry->d_name.len = name->len;
1739 dentry->d_name.hash = name->hash;
1740 memcpy(dname, name->name, name->len);
1741 dname[name->len] = 0;
1742
6326c71f 1743 /* Make sure we always see the terminating NUL character */
7088efa9 1744 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1745
98474236 1746 dentry->d_lockref.count = 1;
dea3667b 1747 dentry->d_flags = 0;
1da177e4 1748 spin_lock_init(&dentry->d_lock);
31e6b01f 1749 seqcount_init(&dentry->d_seq);
1da177e4 1750 dentry->d_inode = NULL;
a4464dbc
AV
1751 dentry->d_parent = dentry;
1752 dentry->d_sb = sb;
1da177e4
LT
1753 dentry->d_op = NULL;
1754 dentry->d_fsdata = NULL;
ceb5bdc2 1755 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1756 INIT_LIST_HEAD(&dentry->d_lru);
1757 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1758 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1759 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1760 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1761
285b102d
MS
1762 if (dentry->d_op && dentry->d_op->d_init) {
1763 err = dentry->d_op->d_init(dentry);
1764 if (err) {
1765 if (dname_external(dentry))
1766 kfree(external_name(dentry));
1767 kmem_cache_free(dentry_cache, dentry);
1768 return NULL;
1769 }
1770 }
1771
3e880fb5 1772 this_cpu_inc(nr_dentry);
312d3ca8 1773
1da177e4
LT
1774 return dentry;
1775}
a4464dbc
AV
1776
1777/**
1778 * d_alloc - allocate a dcache entry
1779 * @parent: parent of entry to allocate
1780 * @name: qstr of the name
1781 *
1782 * Allocates a dentry. It returns %NULL if there is insufficient memory
1783 * available. On a success the dentry is returned. The name passed in is
1784 * copied and the copy passed in may be reused after this call.
1785 */
1786struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1787{
1788 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1789 if (!dentry)
1790 return NULL;
a4464dbc
AV
1791 spin_lock(&parent->d_lock);
1792 /*
1793 * don't need child lock because it is not subject
1794 * to concurrency here
1795 */
1796 __dget_dlock(parent);
1797 dentry->d_parent = parent;
946e51f2 1798 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1799 spin_unlock(&parent->d_lock);
1800
1801 return dentry;
1802}
ec4f8605 1803EXPORT_SYMBOL(d_alloc);
1da177e4 1804
f9c34674
MS
1805struct dentry *d_alloc_anon(struct super_block *sb)
1806{
1807 return __d_alloc(sb, NULL);
1808}
1809EXPORT_SYMBOL(d_alloc_anon);
1810
ba65dc5e
AV
1811struct dentry *d_alloc_cursor(struct dentry * parent)
1812{
f9c34674 1813 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1814 if (dentry) {
5467a68c 1815 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1816 dentry->d_parent = dget(parent);
1817 }
1818 return dentry;
1819}
1820
e1a24bb0
BF
1821/**
1822 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1823 * @sb: the superblock
1824 * @name: qstr of the name
1825 *
1826 * For a filesystem that just pins its dentries in memory and never
1827 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1828 * This is used for pipes, sockets et.al. - the stuff that should
1829 * never be anyone's children or parents. Unlike all other
1830 * dentries, these will not have RCU delay between dropping the
1831 * last reference and freeing them.
ab1152dd
AV
1832 *
1833 * The only user is alloc_file_pseudo() and that's what should
1834 * be considered a public interface. Don't use directly.
e1a24bb0 1835 */
4b936885
NP
1836struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1837{
5467a68c
AV
1838 struct dentry *dentry = __d_alloc(sb, name);
1839 if (likely(dentry))
1840 dentry->d_flags |= DCACHE_NORCU;
1841 return dentry;
4b936885 1842}
4b936885 1843
1da177e4
LT
1844struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1845{
1846 struct qstr q;
1847
1848 q.name = name;
8387ff25 1849 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1850 return d_alloc(parent, &q);
1851}
ef26ca97 1852EXPORT_SYMBOL(d_alloc_name);
1da177e4 1853
fb045adb
NP
1854void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1855{
6f7f7caa
LT
1856 WARN_ON_ONCE(dentry->d_op);
1857 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1858 DCACHE_OP_COMPARE |
1859 DCACHE_OP_REVALIDATE |
ecf3d1f1 1860 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1861 DCACHE_OP_DELETE |
d101a125 1862 DCACHE_OP_REAL));
fb045adb
NP
1863 dentry->d_op = op;
1864 if (!op)
1865 return;
1866 if (op->d_hash)
1867 dentry->d_flags |= DCACHE_OP_HASH;
1868 if (op->d_compare)
1869 dentry->d_flags |= DCACHE_OP_COMPARE;
1870 if (op->d_revalidate)
1871 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1872 if (op->d_weak_revalidate)
1873 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1874 if (op->d_delete)
1875 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1876 if (op->d_prune)
1877 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1878 if (op->d_real)
1879 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1880
1881}
1882EXPORT_SYMBOL(d_set_d_op);
1883
df1a085a
DH
1884
1885/*
1886 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1887 * @dentry - The dentry to mark
1888 *
1889 * Mark a dentry as falling through to the lower layer (as set with
1890 * d_pin_lower()). This flag may be recorded on the medium.
1891 */
1892void d_set_fallthru(struct dentry *dentry)
1893{
1894 spin_lock(&dentry->d_lock);
1895 dentry->d_flags |= DCACHE_FALLTHRU;
1896 spin_unlock(&dentry->d_lock);
1897}
1898EXPORT_SYMBOL(d_set_fallthru);
1899
b18825a7
DH
1900static unsigned d_flags_for_inode(struct inode *inode)
1901{
44bdb5e5 1902 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1903
1904 if (!inode)
1905 return DCACHE_MISS_TYPE;
1906
1907 if (S_ISDIR(inode->i_mode)) {
1908 add_flags = DCACHE_DIRECTORY_TYPE;
1909 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1910 if (unlikely(!inode->i_op->lookup))
1911 add_flags = DCACHE_AUTODIR_TYPE;
1912 else
1913 inode->i_opflags |= IOP_LOOKUP;
1914 }
44bdb5e5
DH
1915 goto type_determined;
1916 }
1917
1918 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1919 if (unlikely(inode->i_op->get_link)) {
b18825a7 1920 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1921 goto type_determined;
1922 }
1923 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1924 }
1925
44bdb5e5
DH
1926 if (unlikely(!S_ISREG(inode->i_mode)))
1927 add_flags = DCACHE_SPECIAL_TYPE;
1928
1929type_determined:
b18825a7
DH
1930 if (unlikely(IS_AUTOMOUNT(inode)))
1931 add_flags |= DCACHE_NEED_AUTOMOUNT;
1932 return add_flags;
1933}
1934
360da900
OH
1935static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1936{
b18825a7 1937 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1938 WARN_ON(d_in_lookup(dentry));
b18825a7 1939
b23fb0a6 1940 spin_lock(&dentry->d_lock);
af0c9af1
WL
1941 /*
1942 * Decrement negative dentry count if it was in the LRU list.
1943 */
1944 if (dentry->d_flags & DCACHE_LRU_LIST)
1945 this_cpu_dec(nr_dentry_negative);
de689f5e 1946 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1947 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1948 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1949 raw_write_seqcount_end(&dentry->d_seq);
affda484 1950 fsnotify_update_flags(dentry);
b23fb0a6 1951 spin_unlock(&dentry->d_lock);
360da900
OH
1952}
1953
1da177e4
LT
1954/**
1955 * d_instantiate - fill in inode information for a dentry
1956 * @entry: dentry to complete
1957 * @inode: inode to attach to this dentry
1958 *
1959 * Fill in inode information in the entry.
1960 *
1961 * This turns negative dentries into productive full members
1962 * of society.
1963 *
1964 * NOTE! This assumes that the inode count has been incremented
1965 * (or otherwise set) by the caller to indicate that it is now
1966 * in use by the dcache.
1967 */
1968
1969void d_instantiate(struct dentry *entry, struct inode * inode)
1970{
946e51f2 1971 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1972 if (inode) {
b9680917 1973 security_d_instantiate(entry, inode);
873feea0 1974 spin_lock(&inode->i_lock);
de689f5e 1975 __d_instantiate(entry, inode);
873feea0 1976 spin_unlock(&inode->i_lock);
de689f5e 1977 }
1da177e4 1978}
ec4f8605 1979EXPORT_SYMBOL(d_instantiate);
1da177e4 1980
1e2e547a
AV
1981/*
1982 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1983 * with lockdep-related part of unlock_new_inode() done before
1984 * anything else. Use that instead of open-coding d_instantiate()/
1985 * unlock_new_inode() combinations.
1986 */
1987void d_instantiate_new(struct dentry *entry, struct inode *inode)
1988{
1989 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1990 BUG_ON(!inode);
1991 lockdep_annotate_inode_mutex_key(inode);
1992 security_d_instantiate(entry, inode);
1993 spin_lock(&inode->i_lock);
1994 __d_instantiate(entry, inode);
1995 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1996 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1997 smp_mb();
1998 wake_up_bit(&inode->i_state, __I_NEW);
1999 spin_unlock(&inode->i_lock);
2000}
2001EXPORT_SYMBOL(d_instantiate_new);
2002
adc0e91a
AV
2003struct dentry *d_make_root(struct inode *root_inode)
2004{
2005 struct dentry *res = NULL;
2006
2007 if (root_inode) {
f9c34674 2008 res = d_alloc_anon(root_inode->i_sb);
5467a68c 2009 if (res)
adc0e91a 2010 d_instantiate(res, root_inode);
5467a68c 2011 else
adc0e91a
AV
2012 iput(root_inode);
2013 }
2014 return res;
2015}
2016EXPORT_SYMBOL(d_make_root);
2017
f9c34674
MS
2018static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2019 struct inode *inode,
2020 bool disconnected)
4ea3ada2 2021{
9308a612 2022 struct dentry *res;
b18825a7 2023 unsigned add_flags;
4ea3ada2 2024
f9c34674 2025 security_d_instantiate(dentry, inode);
873feea0 2026 spin_lock(&inode->i_lock);
d891eedb 2027 res = __d_find_any_alias(inode);
9308a612 2028 if (res) {
873feea0 2029 spin_unlock(&inode->i_lock);
f9c34674 2030 dput(dentry);
9308a612
CH
2031 goto out_iput;
2032 }
2033
2034 /* attach a disconnected dentry */
1a0a397e
BF
2035 add_flags = d_flags_for_inode(inode);
2036
2037 if (disconnected)
2038 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2039
f9c34674
MS
2040 spin_lock(&dentry->d_lock);
2041 __d_set_inode_and_type(dentry, inode, add_flags);
2042 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 2043 if (!disconnected) {
139351f1
LT
2044 hlist_bl_lock(&dentry->d_sb->s_roots);
2045 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2046 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2047 }
f9c34674 2048 spin_unlock(&dentry->d_lock);
873feea0 2049 spin_unlock(&inode->i_lock);
9308a612 2050
f9c34674 2051 return dentry;
9308a612
CH
2052
2053 out_iput:
2054 iput(inode);
2055 return res;
4ea3ada2 2056}
1a0a397e 2057
f9c34674
MS
2058struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2059{
2060 return __d_instantiate_anon(dentry, inode, true);
2061}
2062EXPORT_SYMBOL(d_instantiate_anon);
2063
2064static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2065{
2066 struct dentry *tmp;
2067 struct dentry *res;
2068
2069 if (!inode)
2070 return ERR_PTR(-ESTALE);
2071 if (IS_ERR(inode))
2072 return ERR_CAST(inode);
2073
2074 res = d_find_any_alias(inode);
2075 if (res)
2076 goto out_iput;
2077
2078 tmp = d_alloc_anon(inode->i_sb);
2079 if (!tmp) {
2080 res = ERR_PTR(-ENOMEM);
2081 goto out_iput;
2082 }
2083
2084 return __d_instantiate_anon(tmp, inode, disconnected);
2085
2086out_iput:
2087 iput(inode);
2088 return res;
2089}
2090
1a0a397e
BF
2091/**
2092 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2093 * @inode: inode to allocate the dentry for
2094 *
2095 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2096 * similar open by handle operations. The returned dentry may be anonymous,
2097 * or may have a full name (if the inode was already in the cache).
2098 *
2099 * When called on a directory inode, we must ensure that the inode only ever
2100 * has one dentry. If a dentry is found, that is returned instead of
2101 * allocating a new one.
2102 *
2103 * On successful return, the reference to the inode has been transferred
2104 * to the dentry. In case of an error the reference on the inode is released.
2105 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2106 * be passed in and the error will be propagated to the return value,
2107 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2108 */
2109struct dentry *d_obtain_alias(struct inode *inode)
2110{
f9c34674 2111 return __d_obtain_alias(inode, true);
1a0a397e 2112}
adc48720 2113EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2114
1a0a397e
BF
2115/**
2116 * d_obtain_root - find or allocate a dentry for a given inode
2117 * @inode: inode to allocate the dentry for
2118 *
2119 * Obtain an IS_ROOT dentry for the root of a filesystem.
2120 *
2121 * We must ensure that directory inodes only ever have one dentry. If a
2122 * dentry is found, that is returned instead of allocating a new one.
2123 *
2124 * On successful return, the reference to the inode has been transferred
2125 * to the dentry. In case of an error the reference on the inode is
2126 * released. A %NULL or IS_ERR inode may be passed in and will be the
2127 * error will be propagate to the return value, with a %NULL @inode
2128 * replaced by ERR_PTR(-ESTALE).
2129 */
2130struct dentry *d_obtain_root(struct inode *inode)
2131{
f9c34674 2132 return __d_obtain_alias(inode, false);
1a0a397e
BF
2133}
2134EXPORT_SYMBOL(d_obtain_root);
2135
9403540c
BN
2136/**
2137 * d_add_ci - lookup or allocate new dentry with case-exact name
2138 * @inode: the inode case-insensitive lookup has found
2139 * @dentry: the negative dentry that was passed to the parent's lookup func
2140 * @name: the case-exact name to be associated with the returned dentry
2141 *
2142 * This is to avoid filling the dcache with case-insensitive names to the
2143 * same inode, only the actual correct case is stored in the dcache for
2144 * case-insensitive filesystems.
2145 *
2146 * For a case-insensitive lookup match and if the the case-exact dentry
2147 * already exists in in the dcache, use it and return it.
2148 *
2149 * If no entry exists with the exact case name, allocate new dentry with
2150 * the exact case, and return the spliced entry.
2151 */
e45b590b 2152struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2153 struct qstr *name)
2154{
d9171b93 2155 struct dentry *found, *res;
9403540c 2156
b6520c81
CH
2157 /*
2158 * First check if a dentry matching the name already exists,
2159 * if not go ahead and create it now.
2160 */
9403540c 2161 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2162 if (found) {
2163 iput(inode);
2164 return found;
2165 }
2166 if (d_in_lookup(dentry)) {
2167 found = d_alloc_parallel(dentry->d_parent, name,
2168 dentry->d_wait);
2169 if (IS_ERR(found) || !d_in_lookup(found)) {
2170 iput(inode);
2171 return found;
9403540c 2172 }
d9171b93
AV
2173 } else {
2174 found = d_alloc(dentry->d_parent, name);
2175 if (!found) {
2176 iput(inode);
2177 return ERR_PTR(-ENOMEM);
2178 }
2179 }
2180 res = d_splice_alias(inode, found);
2181 if (res) {
2182 dput(found);
2183 return res;
9403540c 2184 }
4f522a24 2185 return found;
9403540c 2186}
ec4f8605 2187EXPORT_SYMBOL(d_add_ci);
1da177e4 2188
12f8ad4b 2189
d4c91a8f
AV
2190static inline bool d_same_name(const struct dentry *dentry,
2191 const struct dentry *parent,
2192 const struct qstr *name)
12f8ad4b 2193{
d4c91a8f
AV
2194 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2195 if (dentry->d_name.len != name->len)
2196 return false;
2197 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2198 }
6fa67e70 2199 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2200 dentry->d_name.len, dentry->d_name.name,
2201 name) == 0;
12f8ad4b
LT
2202}
2203
31e6b01f
NP
2204/**
2205 * __d_lookup_rcu - search for a dentry (racy, store-free)
2206 * @parent: parent dentry
2207 * @name: qstr of name we wish to find
1f1e6e52 2208 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2209 * Returns: dentry, or NULL
2210 *
2211 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2212 * resolution (store-free path walking) design described in
2213 * Documentation/filesystems/path-lookup.txt.
2214 *
2215 * This is not to be used outside core vfs.
2216 *
2217 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2218 * held, and rcu_read_lock held. The returned dentry must not be stored into
2219 * without taking d_lock and checking d_seq sequence count against @seq
2220 * returned here.
2221 *
15570086 2222 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2223 * function.
2224 *
2225 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2226 * the returned dentry, so long as its parent's seqlock is checked after the
2227 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2228 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2229 *
2230 * NOTE! The caller *has* to check the resulting dentry against the sequence
2231 * number we've returned before using any of the resulting dentry state!
31e6b01f 2232 */
8966be90
LT
2233struct dentry *__d_lookup_rcu(const struct dentry *parent,
2234 const struct qstr *name,
da53be12 2235 unsigned *seqp)
31e6b01f 2236{
26fe5750 2237 u64 hashlen = name->hash_len;
31e6b01f 2238 const unsigned char *str = name->name;
8387ff25 2239 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2240 struct hlist_bl_node *node;
31e6b01f
NP
2241 struct dentry *dentry;
2242
2243 /*
2244 * Note: There is significant duplication with __d_lookup_rcu which is
2245 * required to prevent single threaded performance regressions
2246 * especially on architectures where smp_rmb (in seqcounts) are costly.
2247 * Keep the two functions in sync.
2248 */
2249
2250 /*
2251 * The hash list is protected using RCU.
2252 *
2253 * Carefully use d_seq when comparing a candidate dentry, to avoid
2254 * races with d_move().
2255 *
2256 * It is possible that concurrent renames can mess up our list
2257 * walk here and result in missing our dentry, resulting in the
2258 * false-negative result. d_lookup() protects against concurrent
2259 * renames using rename_lock seqlock.
2260 *
b0a4bb83 2261 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2262 */
b07ad996 2263 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2264 unsigned seq;
31e6b01f 2265
31e6b01f 2266seqretry:
12f8ad4b
LT
2267 /*
2268 * The dentry sequence count protects us from concurrent
da53be12 2269 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2270 *
2271 * The caller must perform a seqcount check in order
da53be12 2272 * to do anything useful with the returned dentry.
12f8ad4b
LT
2273 *
2274 * NOTE! We do a "raw" seqcount_begin here. That means that
2275 * we don't wait for the sequence count to stabilize if it
2276 * is in the middle of a sequence change. If we do the slow
2277 * dentry compare, we will do seqretries until it is stable,
2278 * and if we end up with a successful lookup, we actually
2279 * want to exit RCU lookup anyway.
d4c91a8f
AV
2280 *
2281 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2282 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2283 */
2284 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2285 if (dentry->d_parent != parent)
2286 continue;
2e321806
LT
2287 if (d_unhashed(dentry))
2288 continue;
12f8ad4b 2289
830c0f0e 2290 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2291 int tlen;
2292 const char *tname;
26fe5750
LT
2293 if (dentry->d_name.hash != hashlen_hash(hashlen))
2294 continue;
d4c91a8f
AV
2295 tlen = dentry->d_name.len;
2296 tname = dentry->d_name.name;
2297 /* we want a consistent (name,len) pair */
2298 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2299 cpu_relax();
12f8ad4b
LT
2300 goto seqretry;
2301 }
6fa67e70 2302 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2303 tlen, tname, name) != 0)
2304 continue;
2305 } else {
2306 if (dentry->d_name.hash_len != hashlen)
2307 continue;
2308 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2309 continue;
31e6b01f 2310 }
da53be12 2311 *seqp = seq;
d4c91a8f 2312 return dentry;
31e6b01f
NP
2313 }
2314 return NULL;
2315}
2316
1da177e4
LT
2317/**
2318 * d_lookup - search for a dentry
2319 * @parent: parent dentry
2320 * @name: qstr of name we wish to find
b04f784e 2321 * Returns: dentry, or NULL
1da177e4 2322 *
b04f784e
NP
2323 * d_lookup searches the children of the parent dentry for the name in
2324 * question. If the dentry is found its reference count is incremented and the
2325 * dentry is returned. The caller must use dput to free the entry when it has
2326 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2327 */
da2d8455 2328struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2329{
31e6b01f 2330 struct dentry *dentry;
949854d0 2331 unsigned seq;
1da177e4 2332
b8314f93
DY
2333 do {
2334 seq = read_seqbegin(&rename_lock);
2335 dentry = __d_lookup(parent, name);
2336 if (dentry)
1da177e4
LT
2337 break;
2338 } while (read_seqretry(&rename_lock, seq));
2339 return dentry;
2340}
ec4f8605 2341EXPORT_SYMBOL(d_lookup);
1da177e4 2342
31e6b01f 2343/**
b04f784e
NP
2344 * __d_lookup - search for a dentry (racy)
2345 * @parent: parent dentry
2346 * @name: qstr of name we wish to find
2347 * Returns: dentry, or NULL
2348 *
2349 * __d_lookup is like d_lookup, however it may (rarely) return a
2350 * false-negative result due to unrelated rename activity.
2351 *
2352 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2353 * however it must be used carefully, eg. with a following d_lookup in
2354 * the case of failure.
2355 *
2356 * __d_lookup callers must be commented.
2357 */
a713ca2a 2358struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2359{
1da177e4 2360 unsigned int hash = name->hash;
8387ff25 2361 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2362 struct hlist_bl_node *node;
31e6b01f 2363 struct dentry *found = NULL;
665a7583 2364 struct dentry *dentry;
1da177e4 2365
31e6b01f
NP
2366 /*
2367 * Note: There is significant duplication with __d_lookup_rcu which is
2368 * required to prevent single threaded performance regressions
2369 * especially on architectures where smp_rmb (in seqcounts) are costly.
2370 * Keep the two functions in sync.
2371 */
2372
b04f784e
NP
2373 /*
2374 * The hash list is protected using RCU.
2375 *
2376 * Take d_lock when comparing a candidate dentry, to avoid races
2377 * with d_move().
2378 *
2379 * It is possible that concurrent renames can mess up our list
2380 * walk here and result in missing our dentry, resulting in the
2381 * false-negative result. d_lookup() protects against concurrent
2382 * renames using rename_lock seqlock.
2383 *
b0a4bb83 2384 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2385 */
1da177e4
LT
2386 rcu_read_lock();
2387
b07ad996 2388 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2389
1da177e4
LT
2390 if (dentry->d_name.hash != hash)
2391 continue;
1da177e4
LT
2392
2393 spin_lock(&dentry->d_lock);
1da177e4
LT
2394 if (dentry->d_parent != parent)
2395 goto next;
d0185c08
LT
2396 if (d_unhashed(dentry))
2397 goto next;
2398
d4c91a8f
AV
2399 if (!d_same_name(dentry, parent, name))
2400 goto next;
1da177e4 2401
98474236 2402 dentry->d_lockref.count++;
d0185c08 2403 found = dentry;
1da177e4
LT
2404 spin_unlock(&dentry->d_lock);
2405 break;
2406next:
2407 spin_unlock(&dentry->d_lock);
2408 }
2409 rcu_read_unlock();
2410
2411 return found;
2412}
2413
3e7e241f
EB
2414/**
2415 * d_hash_and_lookup - hash the qstr then search for a dentry
2416 * @dir: Directory to search in
2417 * @name: qstr of name we wish to find
2418 *
4f522a24 2419 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2420 */
2421struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2422{
3e7e241f
EB
2423 /*
2424 * Check for a fs-specific hash function. Note that we must
2425 * calculate the standard hash first, as the d_op->d_hash()
2426 * routine may choose to leave the hash value unchanged.
2427 */
8387ff25 2428 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2429 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2430 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2431 if (unlikely(err < 0))
2432 return ERR_PTR(err);
3e7e241f 2433 }
4f522a24 2434 return d_lookup(dir, name);
3e7e241f 2435}
4f522a24 2436EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2437
1da177e4
LT
2438/*
2439 * When a file is deleted, we have two options:
2440 * - turn this dentry into a negative dentry
2441 * - unhash this dentry and free it.
2442 *
2443 * Usually, we want to just turn this into
2444 * a negative dentry, but if anybody else is
2445 * currently using the dentry or the inode
2446 * we can't do that and we fall back on removing
2447 * it from the hash queues and waiting for
2448 * it to be deleted later when it has no users
2449 */
2450
2451/**
2452 * d_delete - delete a dentry
2453 * @dentry: The dentry to delete
2454 *
2455 * Turn the dentry into a negative dentry if possible, otherwise
2456 * remove it from the hash queues so it can be deleted later
2457 */
2458
2459void d_delete(struct dentry * dentry)
2460{
c19457f0 2461 struct inode *inode = dentry->d_inode;
c19457f0
AV
2462
2463 spin_lock(&inode->i_lock);
2464 spin_lock(&dentry->d_lock);
1da177e4
LT
2465 /*
2466 * Are we the only user?
2467 */
98474236 2468 if (dentry->d_lockref.count == 1) {
13e3c5e5 2469 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2470 dentry_unlink_inode(dentry);
c19457f0 2471 } else {
1da177e4 2472 __d_drop(dentry);
c19457f0
AV
2473 spin_unlock(&dentry->d_lock);
2474 spin_unlock(&inode->i_lock);
2475 }
1da177e4 2476}
ec4f8605 2477EXPORT_SYMBOL(d_delete);
1da177e4 2478
15d3c589 2479static void __d_rehash(struct dentry *entry)
1da177e4 2480{
15d3c589 2481 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2482
1879fd6a 2483 hlist_bl_lock(b);
b07ad996 2484 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2485 hlist_bl_unlock(b);
1da177e4
LT
2486}
2487
2488/**
2489 * d_rehash - add an entry back to the hash
2490 * @entry: dentry to add to the hash
2491 *
2492 * Adds a dentry to the hash according to its name.
2493 */
2494
2495void d_rehash(struct dentry * entry)
2496{
1da177e4 2497 spin_lock(&entry->d_lock);
15d3c589 2498 __d_rehash(entry);
1da177e4 2499 spin_unlock(&entry->d_lock);
1da177e4 2500}
ec4f8605 2501EXPORT_SYMBOL(d_rehash);
1da177e4 2502
84e710da
AV
2503static inline unsigned start_dir_add(struct inode *dir)
2504{
2505
2506 for (;;) {
2507 unsigned n = dir->i_dir_seq;
2508 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2509 return n;
2510 cpu_relax();
2511 }
2512}
2513
2514static inline void end_dir_add(struct inode *dir, unsigned n)
2515{
2516 smp_store_release(&dir->i_dir_seq, n + 2);
2517}
2518
d9171b93
AV
2519static void d_wait_lookup(struct dentry *dentry)
2520{
2521 if (d_in_lookup(dentry)) {
2522 DECLARE_WAITQUEUE(wait, current);
2523 add_wait_queue(dentry->d_wait, &wait);
2524 do {
2525 set_current_state(TASK_UNINTERRUPTIBLE);
2526 spin_unlock(&dentry->d_lock);
2527 schedule();
2528 spin_lock(&dentry->d_lock);
2529 } while (d_in_lookup(dentry));
2530 }
2531}
2532
94bdd655 2533struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2534 const struct qstr *name,
2535 wait_queue_head_t *wq)
94bdd655 2536{
94bdd655 2537 unsigned int hash = name->hash;
94bdd655
AV
2538 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2539 struct hlist_bl_node *node;
2540 struct dentry *new = d_alloc(parent, name);
2541 struct dentry *dentry;
2542 unsigned seq, r_seq, d_seq;
2543
2544 if (unlikely(!new))
2545 return ERR_PTR(-ENOMEM);
2546
2547retry:
2548 rcu_read_lock();
015555fd 2549 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2550 r_seq = read_seqbegin(&rename_lock);
2551 dentry = __d_lookup_rcu(parent, name, &d_seq);
2552 if (unlikely(dentry)) {
2553 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2554 rcu_read_unlock();
2555 goto retry;
2556 }
2557 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2558 rcu_read_unlock();
2559 dput(dentry);
2560 goto retry;
2561 }
2562 rcu_read_unlock();
2563 dput(new);
2564 return dentry;
2565 }
2566 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2567 rcu_read_unlock();
2568 goto retry;
2569 }
015555fd
WD
2570
2571 if (unlikely(seq & 1)) {
2572 rcu_read_unlock();
2573 goto retry;
2574 }
2575
94bdd655 2576 hlist_bl_lock(b);
8cc07c80 2577 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2578 hlist_bl_unlock(b);
2579 rcu_read_unlock();
2580 goto retry;
2581 }
94bdd655
AV
2582 /*
2583 * No changes for the parent since the beginning of d_lookup().
2584 * Since all removals from the chain happen with hlist_bl_lock(),
2585 * any potential in-lookup matches are going to stay here until
2586 * we unlock the chain. All fields are stable in everything
2587 * we encounter.
2588 */
2589 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2590 if (dentry->d_name.hash != hash)
2591 continue;
2592 if (dentry->d_parent != parent)
2593 continue;
d4c91a8f
AV
2594 if (!d_same_name(dentry, parent, name))
2595 continue;
94bdd655 2596 hlist_bl_unlock(b);
e7d6ef97
AV
2597 /* now we can try to grab a reference */
2598 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2599 rcu_read_unlock();
2600 goto retry;
2601 }
2602
2603 rcu_read_unlock();
2604 /*
2605 * somebody is likely to be still doing lookup for it;
2606 * wait for them to finish
2607 */
d9171b93
AV
2608 spin_lock(&dentry->d_lock);
2609 d_wait_lookup(dentry);
2610 /*
2611 * it's not in-lookup anymore; in principle we should repeat
2612 * everything from dcache lookup, but it's likely to be what
2613 * d_lookup() would've found anyway. If it is, just return it;
2614 * otherwise we really have to repeat the whole thing.
2615 */
2616 if (unlikely(dentry->d_name.hash != hash))
2617 goto mismatch;
2618 if (unlikely(dentry->d_parent != parent))
2619 goto mismatch;
2620 if (unlikely(d_unhashed(dentry)))
2621 goto mismatch;
d4c91a8f
AV
2622 if (unlikely(!d_same_name(dentry, parent, name)))
2623 goto mismatch;
d9171b93
AV
2624 /* OK, it *is* a hashed match; return it */
2625 spin_unlock(&dentry->d_lock);
94bdd655
AV
2626 dput(new);
2627 return dentry;
2628 }
e7d6ef97 2629 rcu_read_unlock();
94bdd655
AV
2630 /* we can't take ->d_lock here; it's OK, though. */
2631 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2632 new->d_wait = wq;
94bdd655
AV
2633 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2634 hlist_bl_unlock(b);
2635 return new;
d9171b93
AV
2636mismatch:
2637 spin_unlock(&dentry->d_lock);
2638 dput(dentry);
2639 goto retry;
94bdd655
AV
2640}
2641EXPORT_SYMBOL(d_alloc_parallel);
2642
85c7f810
AV
2643void __d_lookup_done(struct dentry *dentry)
2644{
94bdd655
AV
2645 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2646 dentry->d_name.hash);
2647 hlist_bl_lock(b);
85c7f810 2648 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2649 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2650 wake_up_all(dentry->d_wait);
2651 dentry->d_wait = NULL;
94bdd655
AV
2652 hlist_bl_unlock(b);
2653 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2654 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2655}
2656EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2657
2658/* inode->i_lock held if inode is non-NULL */
2659
2660static inline void __d_add(struct dentry *dentry, struct inode *inode)
2661{
84e710da
AV
2662 struct inode *dir = NULL;
2663 unsigned n;
0568d705 2664 spin_lock(&dentry->d_lock);
84e710da
AV
2665 if (unlikely(d_in_lookup(dentry))) {
2666 dir = dentry->d_parent->d_inode;
2667 n = start_dir_add(dir);
85c7f810 2668 __d_lookup_done(dentry);
84e710da 2669 }
ed782b5a 2670 if (inode) {
0568d705
AV
2671 unsigned add_flags = d_flags_for_inode(inode);
2672 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2673 raw_write_seqcount_begin(&dentry->d_seq);
2674 __d_set_inode_and_type(dentry, inode, add_flags);
2675 raw_write_seqcount_end(&dentry->d_seq);
affda484 2676 fsnotify_update_flags(dentry);
ed782b5a 2677 }
15d3c589 2678 __d_rehash(dentry);
84e710da
AV
2679 if (dir)
2680 end_dir_add(dir, n);
0568d705
AV
2681 spin_unlock(&dentry->d_lock);
2682 if (inode)
2683 spin_unlock(&inode->i_lock);
ed782b5a
AV
2684}
2685
34d0d19d
AV
2686/**
2687 * d_add - add dentry to hash queues
2688 * @entry: dentry to add
2689 * @inode: The inode to attach to this dentry
2690 *
2691 * This adds the entry to the hash queues and initializes @inode.
2692 * The entry was actually filled in earlier during d_alloc().
2693 */
2694
2695void d_add(struct dentry *entry, struct inode *inode)
2696{
b9680917
AV
2697 if (inode) {
2698 security_d_instantiate(entry, inode);
ed782b5a 2699 spin_lock(&inode->i_lock);
b9680917 2700 }
ed782b5a 2701 __d_add(entry, inode);
34d0d19d
AV
2702}
2703EXPORT_SYMBOL(d_add);
2704
668d0cd5
AV
2705/**
2706 * d_exact_alias - find and hash an exact unhashed alias
2707 * @entry: dentry to add
2708 * @inode: The inode to go with this dentry
2709 *
2710 * If an unhashed dentry with the same name/parent and desired
2711 * inode already exists, hash and return it. Otherwise, return
2712 * NULL.
2713 *
2714 * Parent directory should be locked.
2715 */
2716struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2717{
2718 struct dentry *alias;
668d0cd5
AV
2719 unsigned int hash = entry->d_name.hash;
2720
2721 spin_lock(&inode->i_lock);
2722 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2723 /*
2724 * Don't need alias->d_lock here, because aliases with
2725 * d_parent == entry->d_parent are not subject to name or
2726 * parent changes, because the parent inode i_mutex is held.
2727 */
2728 if (alias->d_name.hash != hash)
2729 continue;
2730 if (alias->d_parent != entry->d_parent)
2731 continue;
d4c91a8f 2732 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2733 continue;
2734 spin_lock(&alias->d_lock);
2735 if (!d_unhashed(alias)) {
2736 spin_unlock(&alias->d_lock);
2737 alias = NULL;
2738 } else {
2739 __dget_dlock(alias);
15d3c589 2740 __d_rehash(alias);
668d0cd5
AV
2741 spin_unlock(&alias->d_lock);
2742 }
2743 spin_unlock(&inode->i_lock);
2744 return alias;
2745 }
2746 spin_unlock(&inode->i_lock);
2747 return NULL;
2748}
2749EXPORT_SYMBOL(d_exact_alias);
2750
8d85b484 2751static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2752{
8d85b484
AV
2753 if (unlikely(dname_external(target))) {
2754 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2755 /*
2756 * Both external: swap the pointers
2757 */
9a8d5bb4 2758 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2759 } else {
2760 /*
2761 * dentry:internal, target:external. Steal target's
2762 * storage and make target internal.
2763 */
321bcf92
BF
2764 memcpy(target->d_iname, dentry->d_name.name,
2765 dentry->d_name.len + 1);
1da177e4
LT
2766 dentry->d_name.name = target->d_name.name;
2767 target->d_name.name = target->d_iname;
2768 }
2769 } else {
8d85b484 2770 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2771 /*
2772 * dentry:external, target:internal. Give dentry's
2773 * storage to target and make dentry internal
2774 */
2775 memcpy(dentry->d_iname, target->d_name.name,
2776 target->d_name.len + 1);
2777 target->d_name.name = dentry->d_name.name;
2778 dentry->d_name.name = dentry->d_iname;
2779 } else {
2780 /*
da1ce067 2781 * Both are internal.
1da177e4 2782 */
da1ce067
MS
2783 unsigned int i;
2784 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2785 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2786 swap(((long *) &dentry->d_iname)[i],
2787 ((long *) &target->d_iname)[i]);
2788 }
1da177e4
LT
2789 }
2790 }
a28ddb87 2791 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2792}
2793
8d85b484
AV
2794static void copy_name(struct dentry *dentry, struct dentry *target)
2795{
2796 struct external_name *old_name = NULL;
2797 if (unlikely(dname_external(dentry)))
2798 old_name = external_name(dentry);
2799 if (unlikely(dname_external(target))) {
2800 atomic_inc(&external_name(target)->u.count);
2801 dentry->d_name = target->d_name;
2802 } else {
2803 memcpy(dentry->d_iname, target->d_name.name,
2804 target->d_name.len + 1);
2805 dentry->d_name.name = dentry->d_iname;
2806 dentry->d_name.hash_len = target->d_name.hash_len;
2807 }
2808 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2809 kfree_rcu(old_name, u.head);
8d85b484
AV
2810}
2811
9eaef27b 2812/*
18367501 2813 * __d_move - move a dentry
1da177e4
LT
2814 * @dentry: entry to move
2815 * @target: new dentry
da1ce067 2816 * @exchange: exchange the two dentries
1da177e4
LT
2817 *
2818 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2819 * dcache entries should not be moved in this way. Caller must hold
2820 * rename_lock, the i_mutex of the source and target directories,
2821 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2822 */
da1ce067
MS
2823static void __d_move(struct dentry *dentry, struct dentry *target,
2824 bool exchange)
1da177e4 2825{
42177007 2826 struct dentry *old_parent, *p;
84e710da
AV
2827 struct inode *dir = NULL;
2828 unsigned n;
1da177e4 2829
42177007
AV
2830 WARN_ON(!dentry->d_inode);
2831 if (WARN_ON(dentry == target))
2832 return;
2833
2fd6b7f5 2834 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2835 old_parent = dentry->d_parent;
2836 p = d_ancestor(old_parent, target);
2837 if (IS_ROOT(dentry)) {
2838 BUG_ON(p);
2839 spin_lock(&target->d_parent->d_lock);
2840 } else if (!p) {
2841 /* target is not a descendent of dentry->d_parent */
2842 spin_lock(&target->d_parent->d_lock);
2843 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2844 } else {
2845 BUG_ON(p == dentry);
2846 spin_lock(&old_parent->d_lock);
2847 if (p != target)
2848 spin_lock_nested(&target->d_parent->d_lock,
2849 DENTRY_D_LOCK_NESTED);
2850 }
2851 spin_lock_nested(&dentry->d_lock, 2);
2852 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2853
84e710da
AV
2854 if (unlikely(d_in_lookup(target))) {
2855 dir = target->d_parent->d_inode;
2856 n = start_dir_add(dir);
85c7f810 2857 __d_lookup_done(target);
84e710da 2858 }
1da177e4 2859
31e6b01f 2860 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2861 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2862
15d3c589 2863 /* unhash both */
0632a9ac
AV
2864 if (!d_unhashed(dentry))
2865 ___d_drop(dentry);
2866 if (!d_unhashed(target))
2867 ___d_drop(target);
1da177e4 2868
076515fc
AV
2869 /* ... and switch them in the tree */
2870 dentry->d_parent = target->d_parent;
2871 if (!exchange) {
8d85b484 2872 copy_name(dentry, target);
61647823 2873 target->d_hash.pprev = NULL;
076515fc 2874 dentry->d_parent->d_lockref.count++;
5467a68c 2875 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2876 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2877 } else {
076515fc
AV
2878 target->d_parent = old_parent;
2879 swap_names(dentry, target);
946e51f2 2880 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2881 __d_rehash(target);
2882 fsnotify_update_flags(target);
1da177e4 2883 }
076515fc
AV
2884 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2885 __d_rehash(dentry);
2886 fsnotify_update_flags(dentry);
0bf3d5c1 2887 fscrypt_handle_d_move(dentry);
1da177e4 2888
31e6b01f
NP
2889 write_seqcount_end(&target->d_seq);
2890 write_seqcount_end(&dentry->d_seq);
2891
84e710da
AV
2892 if (dir)
2893 end_dir_add(dir, n);
076515fc
AV
2894
2895 if (dentry->d_parent != old_parent)
2896 spin_unlock(&dentry->d_parent->d_lock);
2897 if (dentry != old_parent)
2898 spin_unlock(&old_parent->d_lock);
2899 spin_unlock(&target->d_lock);
2900 spin_unlock(&dentry->d_lock);
18367501
AV
2901}
2902
2903/*
2904 * d_move - move a dentry
2905 * @dentry: entry to move
2906 * @target: new dentry
2907 *
2908 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2909 * dcache entries should not be moved in this way. See the locking
2910 * requirements for __d_move.
18367501
AV
2911 */
2912void d_move(struct dentry *dentry, struct dentry *target)
2913{
2914 write_seqlock(&rename_lock);
da1ce067 2915 __d_move(dentry, target, false);
1da177e4 2916 write_sequnlock(&rename_lock);
9eaef27b 2917}
ec4f8605 2918EXPORT_SYMBOL(d_move);
1da177e4 2919
da1ce067
MS
2920/*
2921 * d_exchange - exchange two dentries
2922 * @dentry1: first dentry
2923 * @dentry2: second dentry
2924 */
2925void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2926{
2927 write_seqlock(&rename_lock);
2928
2929 WARN_ON(!dentry1->d_inode);
2930 WARN_ON(!dentry2->d_inode);
2931 WARN_ON(IS_ROOT(dentry1));
2932 WARN_ON(IS_ROOT(dentry2));
2933
2934 __d_move(dentry1, dentry2, true);
2935
2936 write_sequnlock(&rename_lock);
2937}
2938
e2761a11
OH
2939/**
2940 * d_ancestor - search for an ancestor
2941 * @p1: ancestor dentry
2942 * @p2: child dentry
2943 *
2944 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2945 * an ancestor of p2, else NULL.
9eaef27b 2946 */
e2761a11 2947struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2948{
2949 struct dentry *p;
2950
871c0067 2951 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2952 if (p->d_parent == p1)
e2761a11 2953 return p;
9eaef27b 2954 }
e2761a11 2955 return NULL;
9eaef27b
TM
2956}
2957
2958/*
2959 * This helper attempts to cope with remotely renamed directories
2960 *
2961 * It assumes that the caller is already holding
a03e283b 2962 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2963 *
2964 * Note: If ever the locking in lock_rename() changes, then please
2965 * remember to update this too...
9eaef27b 2966 */
b5ae6b15 2967static int __d_unalias(struct inode *inode,
873feea0 2968 struct dentry *dentry, struct dentry *alias)
9eaef27b 2969{
9902af79
AV
2970 struct mutex *m1 = NULL;
2971 struct rw_semaphore *m2 = NULL;
3d330dc1 2972 int ret = -ESTALE;
9eaef27b
TM
2973
2974 /* If alias and dentry share a parent, then no extra locks required */
2975 if (alias->d_parent == dentry->d_parent)
2976 goto out_unalias;
2977
9eaef27b 2978 /* See lock_rename() */
9eaef27b
TM
2979 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2980 goto out_err;
2981 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2982 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2983 goto out_err;
9902af79 2984 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2985out_unalias:
8ed936b5 2986 __d_move(alias, dentry, false);
b5ae6b15 2987 ret = 0;
9eaef27b 2988out_err:
9eaef27b 2989 if (m2)
9902af79 2990 up_read(m2);
9eaef27b
TM
2991 if (m1)
2992 mutex_unlock(m1);
2993 return ret;
2994}
2995
3f70bd51
BF
2996/**
2997 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2998 * @inode: the inode which may have a disconnected dentry
2999 * @dentry: a negative dentry which we want to point to the inode.
3000 *
da093a9b
BF
3001 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3002 * place of the given dentry and return it, else simply d_add the inode
3003 * to the dentry and return NULL.
3f70bd51 3004 *
908790fa
BF
3005 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3006 * we should error out: directories can't have multiple aliases.
3007 *
3f70bd51
BF
3008 * This is needed in the lookup routine of any filesystem that is exportable
3009 * (via knfsd) so that we can build dcache paths to directories effectively.
3010 *
3011 * If a dentry was found and moved, then it is returned. Otherwise NULL
3012 * is returned. This matches the expected return value of ->lookup.
3013 *
3014 * Cluster filesystems may call this function with a negative, hashed dentry.
3015 * In that case, we know that the inode will be a regular file, and also this
3016 * will only occur during atomic_open. So we need to check for the dentry
3017 * being already hashed only in the final case.
3018 */
3019struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3020{
3f70bd51
BF
3021 if (IS_ERR(inode))
3022 return ERR_CAST(inode);
3023
770bfad8
DH
3024 BUG_ON(!d_unhashed(dentry));
3025
de689f5e 3026 if (!inode)
b5ae6b15 3027 goto out;
de689f5e 3028
b9680917 3029 security_d_instantiate(dentry, inode);
873feea0 3030 spin_lock(&inode->i_lock);
9eaef27b 3031 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3032 struct dentry *new = __d_find_any_alias(inode);
3033 if (unlikely(new)) {
a03e283b
EB
3034 /* The reference to new ensures it remains an alias */
3035 spin_unlock(&inode->i_lock);
18367501 3036 write_seqlock(&rename_lock);
b5ae6b15
AV
3037 if (unlikely(d_ancestor(new, dentry))) {
3038 write_sequnlock(&rename_lock);
b5ae6b15
AV
3039 dput(new);
3040 new = ERR_PTR(-ELOOP);
3041 pr_warn_ratelimited(
3042 "VFS: Lookup of '%s' in %s %s"
3043 " would have caused loop\n",
3044 dentry->d_name.name,
3045 inode->i_sb->s_type->name,
3046 inode->i_sb->s_id);
3047 } else if (!IS_ROOT(new)) {
076515fc 3048 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3049 int err = __d_unalias(inode, dentry, new);
18367501 3050 write_sequnlock(&rename_lock);
b5ae6b15
AV
3051 if (err) {
3052 dput(new);
3053 new = ERR_PTR(err);
3054 }
076515fc 3055 dput(old_parent);
18367501 3056 } else {
b5ae6b15
AV
3057 __d_move(new, dentry, false);
3058 write_sequnlock(&rename_lock);
dd179946 3059 }
b5ae6b15
AV
3060 iput(inode);
3061 return new;
9eaef27b 3062 }
770bfad8 3063 }
b5ae6b15 3064out:
ed782b5a 3065 __d_add(dentry, inode);
b5ae6b15 3066 return NULL;
770bfad8 3067}
b5ae6b15 3068EXPORT_SYMBOL(d_splice_alias);
770bfad8 3069
1da177e4
LT
3070/*
3071 * Test whether new_dentry is a subdirectory of old_dentry.
3072 *
3073 * Trivially implemented using the dcache structure
3074 */
3075
3076/**
3077 * is_subdir - is new dentry a subdirectory of old_dentry
3078 * @new_dentry: new dentry
3079 * @old_dentry: old dentry
3080 *
a6e5787f
YB
3081 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3082 * Returns false otherwise.
1da177e4
LT
3083 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3084 */
3085
a6e5787f 3086bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3087{
a6e5787f 3088 bool result;
949854d0 3089 unsigned seq;
1da177e4 3090
e2761a11 3091 if (new_dentry == old_dentry)
a6e5787f 3092 return true;
e2761a11 3093
e2761a11 3094 do {
1da177e4 3095 /* for restarting inner loop in case of seq retry */
1da177e4 3096 seq = read_seqbegin(&rename_lock);
949854d0
NP
3097 /*
3098 * Need rcu_readlock to protect against the d_parent trashing
3099 * due to d_move
3100 */
3101 rcu_read_lock();
e2761a11 3102 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3103 result = true;
e2761a11 3104 else
a6e5787f 3105 result = false;
949854d0 3106 rcu_read_unlock();
1da177e4 3107 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3108
3109 return result;
3110}
e8f9e5b7 3111EXPORT_SYMBOL(is_subdir);
1da177e4 3112
db14fc3a 3113static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3114{
db14fc3a
MS
3115 struct dentry *root = data;
3116 if (dentry != root) {
3117 if (d_unhashed(dentry) || !dentry->d_inode)
3118 return D_WALK_SKIP;
1da177e4 3119
01ddc4ed
MS
3120 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3121 dentry->d_flags |= DCACHE_GENOCIDE;
3122 dentry->d_lockref.count--;
3123 }
1da177e4 3124 }
db14fc3a
MS
3125 return D_WALK_CONTINUE;
3126}
58db63d0 3127
db14fc3a
MS
3128void d_genocide(struct dentry *parent)
3129{
3a8e3611 3130 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3131}
3132
cbd4a5bc
AV
3133EXPORT_SYMBOL(d_genocide);
3134
60545d0d 3135void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3136{
60545d0d
AV
3137 inode_dec_link_count(inode);
3138 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3139 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3140 !d_unlinked(dentry));
3141 spin_lock(&dentry->d_parent->d_lock);
3142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3143 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3144 (unsigned long long)inode->i_ino);
3145 spin_unlock(&dentry->d_lock);
3146 spin_unlock(&dentry->d_parent->d_lock);
3147 d_instantiate(dentry, inode);
1da177e4 3148}
60545d0d 3149EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3150
3151static __initdata unsigned long dhash_entries;
3152static int __init set_dhash_entries(char *str)
3153{
3154 if (!str)
3155 return 0;
3156 dhash_entries = simple_strtoul(str, &str, 0);
3157 return 1;
3158}
3159__setup("dhash_entries=", set_dhash_entries);
3160
3161static void __init dcache_init_early(void)
3162{
1da177e4
LT
3163 /* If hashes are distributed across NUMA nodes, defer
3164 * hash allocation until vmalloc space is available.
3165 */
3166 if (hashdist)
3167 return;
3168
3169 dentry_hashtable =
3170 alloc_large_system_hash("Dentry cache",
b07ad996 3171 sizeof(struct hlist_bl_head),
1da177e4
LT
3172 dhash_entries,
3173 13,
3d375d78 3174 HASH_EARLY | HASH_ZERO,
1da177e4 3175 &d_hash_shift,
b35d786b 3176 NULL,
31fe62b9 3177 0,
1da177e4 3178 0);
854d3e63 3179 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3180}
3181
74bf17cf 3182static void __init dcache_init(void)
1da177e4 3183{
3d375d78 3184 /*
1da177e4
LT
3185 * A constructor could be added for stable state like the lists,
3186 * but it is probably not worth it because of the cache nature
3d375d78 3187 * of the dcache.
1da177e4 3188 */
80344266
DW
3189 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3190 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3191 d_iname);
1da177e4
LT
3192
3193 /* Hash may have been set up in dcache_init_early */
3194 if (!hashdist)
3195 return;
3196
3197 dentry_hashtable =
3198 alloc_large_system_hash("Dentry cache",
b07ad996 3199 sizeof(struct hlist_bl_head),
1da177e4
LT
3200 dhash_entries,
3201 13,
3d375d78 3202 HASH_ZERO,
1da177e4 3203 &d_hash_shift,
b35d786b 3204 NULL,
31fe62b9 3205 0,
1da177e4 3206 0);
854d3e63 3207 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3208}
3209
3210/* SLAB cache for __getname() consumers */
e18b890b 3211struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3212EXPORT_SYMBOL(names_cachep);
1da177e4 3213
1da177e4
LT
3214void __init vfs_caches_init_early(void)
3215{
6916363f
SAS
3216 int i;
3217
3218 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3219 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3220
1da177e4
LT
3221 dcache_init_early();
3222 inode_init_early();
3223}
3224
4248b0da 3225void __init vfs_caches_init(void)
1da177e4 3226{
6a9b8820
DW
3227 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3228 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3229
74bf17cf
DC
3230 dcache_init();
3231 inode_init();
4248b0da
MG
3232 files_init();
3233 files_maxfiles_init();
74bf17cf 3234 mnt_init();
1da177e4
LT
3235 bdev_cache_init();
3236 chrdev_init();
3237}