]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/dcache.c
ext4: check for inconsistent extents between index and leaf block
[mirror_ubuntu-focal-kernel.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
2fd6b7f5
NP
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
e18b890b 81static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
87
1da177e4
LT
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
1da177e4 96
fa3536cc 97static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 98
b07ad996 99static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 100
8387ff25 101static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 102{
854d3e63 103 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
104}
105
94bdd655
AV
106#define IN_LOOKUP_SHIFT 10
107static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 unsigned int hash)
111{
112 hash += (unsigned long) parent / L1_CACHE_BYTES;
113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114}
115
116
1da177e4
LT
117/* Statistics gathering. */
118struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120};
121
3942c07c 122static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 123static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 124static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
125
126#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
127
128/*
129 * Here we resort to our own counters instead of using generic per-cpu counters
130 * for consistency with what the vfs inode code does. We are expected to harvest
131 * better code and performance by having our own specialized counters.
132 *
133 * Please note that the loop is done over all possible CPUs, not over all online
134 * CPUs. The reason for this is that we don't want to play games with CPUs going
135 * on and off. If one of them goes off, we will just keep their counters.
136 *
137 * glommer: See cffbc8a for details, and if you ever intend to change this,
138 * please update all vfs counters to match.
139 */
3942c07c 140static long get_nr_dentry(void)
3e880fb5
NP
141{
142 int i;
3942c07c 143 long sum = 0;
3e880fb5
NP
144 for_each_possible_cpu(i)
145 sum += per_cpu(nr_dentry, i);
146 return sum < 0 ? 0 : sum;
147}
148
62d36c77
DC
149static long get_nr_dentry_unused(void)
150{
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry_unused, i);
155 return sum < 0 ? 0 : sum;
156}
157
af0c9af1
WL
158static long get_nr_dentry_negative(void)
159{
160 int i;
161 long sum = 0;
162
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_negative, i);
165 return sum < 0 ? 0 : sum;
166}
167
1f7e0616 168int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
169 size_t *lenp, loff_t *ppos)
170{
3e880fb5 171 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 172 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 173 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
175}
176#endif
177
5483f18e
LT
178/*
179 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180 * The strings are both count bytes long, and count is non-zero.
181 */
e419b4cc
LT
182#ifdef CONFIG_DCACHE_WORD_ACCESS
183
184#include <asm/word-at-a-time.h>
185/*
186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187 * aligned allocation for this particular component. We don't
188 * strictly need the load_unaligned_zeropad() safety, but it
189 * doesn't hurt either.
190 *
191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192 * need the careful unaligned handling.
193 */
94753db5 194static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 195{
bfcfaa77 196 unsigned long a,b,mask;
bfcfaa77
LT
197
198 for (;;) {
bfe7aa6c 199 a = read_word_at_a_time(cs);
e419b4cc 200 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
201 if (tcount < sizeof(unsigned long))
202 break;
203 if (unlikely(a != b))
204 return 1;
205 cs += sizeof(unsigned long);
206 ct += sizeof(unsigned long);
207 tcount -= sizeof(unsigned long);
208 if (!tcount)
209 return 0;
210 }
a5c21dce 211 mask = bytemask_from_count(tcount);
bfcfaa77 212 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
213}
214
bfcfaa77 215#else
e419b4cc 216
94753db5 217static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 218{
5483f18e
LT
219 do {
220 if (*cs != *ct)
221 return 1;
222 cs++;
223 ct++;
224 tcount--;
225 } while (tcount);
226 return 0;
227}
228
e419b4cc
LT
229#endif
230
94753db5
LT
231static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232{
94753db5
LT
233 /*
234 * Be careful about RCU walk racing with rename:
506458ef 235 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
236 *
237 * NOTE! Even if a rename will mean that the length
238 * was not loaded atomically, we don't care. The
239 * RCU walk will check the sequence count eventually,
240 * and catch it. And we won't overrun the buffer,
241 * because we're reading the name pointer atomically,
242 * and a dentry name is guaranteed to be properly
243 * terminated with a NUL byte.
244 *
245 * End result: even if 'len' is wrong, we'll exit
246 * early because the data cannot match (there can
247 * be no NUL in the ct/tcount data)
248 */
506458ef 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 250
6326c71f 251 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
252}
253
8d85b484
AV
254struct external_name {
255 union {
256 atomic_t count;
257 struct rcu_head head;
258 } u;
259 unsigned char name[];
260};
261
262static inline struct external_name *external_name(struct dentry *dentry)
263{
264 return container_of(dentry->d_name.name, struct external_name, name[0]);
265}
266
9c82ab9c 267static void __d_free(struct rcu_head *head)
1da177e4 268{
9c82ab9c
CH
269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
8d85b484
AV
271 kmem_cache_free(dentry_cache, dentry);
272}
273
274static void __d_free_external(struct rcu_head *head)
275{
276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 277 kfree(external_name(dentry));
f1782c9b 278 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
279}
280
810bb172
AV
281static inline int dname_external(const struct dentry *dentry)
282{
283 return dentry->d_name.name != dentry->d_iname;
284}
285
49d31c2f
AV
286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287{
288 spin_lock(&dentry->d_lock);
230c6402 289 name->name = dentry->d_name;
49d31c2f 290 if (unlikely(dname_external(dentry))) {
230c6402 291 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 292 } else {
6cd00a01
TH
293 memcpy(name->inline_name, dentry->d_iname,
294 dentry->d_name.len + 1);
230c6402 295 name->name.name = name->inline_name;
49d31c2f 296 }
230c6402 297 spin_unlock(&dentry->d_lock);
49d31c2f
AV
298}
299EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301void release_dentry_name_snapshot(struct name_snapshot *name)
302{
230c6402 303 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 304 struct external_name *p;
230c6402 305 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 306 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 307 kfree_rcu(p, u.head);
49d31c2f
AV
308 }
309}
310EXPORT_SYMBOL(release_dentry_name_snapshot);
311
4bf46a27
DH
312static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315{
316 unsigned flags;
317
318 dentry->d_inode = inode;
4bf46a27
DH
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323}
324
4bf46a27
DH
325static inline void __d_clear_type_and_inode(struct dentry *dentry)
326{
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 331 dentry->d_inode = NULL;
af0c9af1
WL
332 if (dentry->d_flags & DCACHE_LRU_LIST)
333 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
334}
335
b4f0354e
AV
336static void dentry_free(struct dentry *dentry)
337{
946e51f2 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
344 }
345 }
b4f0354e 346 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 347 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
351}
352
1da177e4
LT
353/*
354 * Release the dentry's inode, using the filesystem
550dce01 355 * d_iput() operation if defined.
31e6b01f
NP
356 */
357static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
873feea0 359 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
360{
361 struct inode *inode = dentry->d_inode;
a528aca7 362
4c0d7cd5 363 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 364 __d_clear_type_and_inode(dentry);
946e51f2 365 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 366 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 367 spin_unlock(&dentry->d_lock);
873feea0 368 spin_unlock(&inode->i_lock);
31e6b01f
NP
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
375}
376
89dc77bc
LT
377/*
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
381 *
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
384 *
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
387 *
af0c9af1
WL
388 * The per-cpu "nr_dentry_negative" counters are only updated
389 * when deleted from or added to the per-superblock LRU list, not
390 * from/to the shrink list. That is to avoid an unneeded dec/inc
391 * pair when moving from LRU to shrink list in select_collect().
392 *
89dc77bc
LT
393 * These helper functions make sure we always follow the
394 * rules. d_lock must be held by the caller.
395 */
396#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397static void d_lru_add(struct dentry *dentry)
398{
399 D_FLAG_VERIFY(dentry, 0);
400 dentry->d_flags |= DCACHE_LRU_LIST;
401 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
402 if (d_is_negative(dentry))
403 this_cpu_inc(nr_dentry_negative);
89dc77bc
LT
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405}
406
407static void d_lru_del(struct dentry *dentry)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
412 if (d_is_negative(dentry))
413 this_cpu_dec(nr_dentry_negative);
89dc77bc
LT
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415}
416
417static void d_shrink_del(struct dentry *dentry)
418{
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
423}
424
425static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426{
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
431}
432
433/*
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
438 */
3f97b163 439static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
440{
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
444 if (d_is_negative(dentry))
445 this_cpu_dec(nr_dentry_negative);
3f97b163 446 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
447}
448
3f97b163
VD
449static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 struct list_head *list)
89dc77bc
LT
451{
452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
454 if (d_is_negative(dentry))
455 this_cpu_dec(nr_dentry_negative);
3f97b163 456 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
457}
458
789680d1
NP
459/**
460 * d_drop - drop a dentry
461 * @dentry: dentry to drop
462 *
463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464 * be found through a VFS lookup any more. Note that this is different from
465 * deleting the dentry - d_delete will try to mark the dentry negative if
466 * possible, giving a successful _negative_ lookup, while d_drop will
467 * just make the cache lookup fail.
468 *
469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470 * reason (NFS timeouts or autofs deletes).
471 *
61647823
N
472 * __d_drop requires dentry->d_lock
473 * ___d_drop doesn't mark dentry as "unhashed"
474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 475 */
61647823 476static void ___d_drop(struct dentry *dentry)
789680d1 477{
0632a9ac
AV
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_root, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_roots;
486 else
487 b = d_hash(dentry->d_name.hash);
b61625d2 488
0632a9ac
AV
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
789680d1 492}
61647823
N
493
494void __d_drop(struct dentry *dentry)
495{
0632a9ac
AV
496 if (!d_unhashed(dentry)) {
497 ___d_drop(dentry);
498 dentry->d_hash.pprev = NULL;
499 write_seqcount_invalidate(&dentry->d_seq);
500 }
61647823 501}
789680d1
NP
502EXPORT_SYMBOL(__d_drop);
503
504void d_drop(struct dentry *dentry)
505{
789680d1
NP
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
789680d1
NP
509}
510EXPORT_SYMBOL(d_drop);
511
ba65dc5e
AV
512static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513{
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548}
549
e55fd011 550static void __dentry_kill(struct dentry *dentry)
77812a1e 551{
41edf278
AV
552 struct dentry *parent = NULL;
553 bool can_free = true;
41edf278 554 if (!IS_ROOT(dentry))
77812a1e 555 parent = dentry->d_parent;
31e6b01f 556
0d98439e
LT
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
f0023bc6 562 /*
f0023bc6
SW
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
29266201 566 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
567 dentry->d_op->d_prune(dentry);
568
01b60351
AV
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
01b60351 572 }
77812a1e
NP
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
ba65dc5e 575 dentry_unlist(dentry, parent);
03b3b889
AV
576 if (parent)
577 spin_unlock(&parent->d_lock);
550dce01
AV
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
03b3b889
AV
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
41edf278
AV
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
41edf278
AV
592 if (likely(can_free))
593 dentry_free(dentry);
9c5f1d30 594 cond_resched();
e55fd011
AV
595}
596
8b987a46 597static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 598{
8b987a46 599 struct dentry *parent;
046b961b 600 rcu_read_lock();
c2338f2d 601 spin_unlock(&dentry->d_lock);
046b961b 602again:
66702eb5 603 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
604 spin_lock(&parent->d_lock);
605 /*
606 * We can't blindly lock dentry until we are sure
607 * that we won't violate the locking order.
608 * Any changes of dentry->d_parent must have
609 * been done with parent->d_lock held, so
610 * spin_lock() above is enough of a barrier
611 * for checking if it's still our child.
612 */
613 if (unlikely(parent != dentry->d_parent)) {
614 spin_unlock(&parent->d_lock);
615 goto again;
616 }
65d8eb5a
AV
617 rcu_read_unlock();
618 if (parent != dentry)
9f12600f 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 620 else
046b961b
AV
621 parent = NULL;
622 return parent;
623}
624
8b987a46
AV
625static inline struct dentry *lock_parent(struct dentry *dentry)
626{
627 struct dentry *parent = dentry->d_parent;
628 if (IS_ROOT(dentry))
629 return NULL;
630 if (likely(spin_trylock(&parent->d_lock)))
631 return parent;
632 return __lock_parent(dentry);
633}
634
a338579f
AV
635static inline bool retain_dentry(struct dentry *dentry)
636{
637 WARN_ON(d_in_lookup(dentry));
638
639 /* Unreachable? Get rid of it */
640 if (unlikely(d_unhashed(dentry)))
641 return false;
642
643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 return false;
645
646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 if (dentry->d_op->d_delete(dentry))
648 return false;
649 }
62d9956c
AV
650 /* retain; LRU fodder */
651 dentry->d_lockref.count--;
652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 d_lru_add(dentry);
654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
656 return true;
657}
658
c1d0c1a2
JO
659/*
660 * Finish off a dentry we've decided to kill.
661 * dentry->d_lock must be held, returns with it unlocked.
662 * Returns dentry requiring refcount drop, or NULL if we're done.
663 */
664static struct dentry *dentry_kill(struct dentry *dentry)
665 __releases(dentry->d_lock)
666{
667 struct inode *inode = dentry->d_inode;
668 struct dentry *parent = NULL;
669
670 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 671 goto slow_positive;
c1d0c1a2
JO
672
673 if (!IS_ROOT(dentry)) {
674 parent = dentry->d_parent;
675 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
676 parent = __lock_parent(dentry);
677 if (likely(inode || !dentry->d_inode))
678 goto got_locks;
679 /* negative that became positive */
680 if (parent)
681 spin_unlock(&parent->d_lock);
682 inode = dentry->d_inode;
683 goto slow_positive;
c1d0c1a2
JO
684 }
685 }
c1d0c1a2
JO
686 __dentry_kill(dentry);
687 return parent;
688
f657a666
AV
689slow_positive:
690 spin_unlock(&dentry->d_lock);
691 spin_lock(&inode->i_lock);
692 spin_lock(&dentry->d_lock);
693 parent = lock_parent(dentry);
694got_locks:
695 if (unlikely(dentry->d_lockref.count != 1)) {
696 dentry->d_lockref.count--;
697 } else if (likely(!retain_dentry(dentry))) {
698 __dentry_kill(dentry);
699 return parent;
700 }
701 /* we are keeping it, after all */
702 if (inode)
703 spin_unlock(&inode->i_lock);
704 if (parent)
705 spin_unlock(&parent->d_lock);
c1d0c1a2 706 spin_unlock(&dentry->d_lock);
f657a666 707 return NULL;
c1d0c1a2
JO
708}
709
360f5479
LT
710/*
711 * Try to do a lockless dput(), and return whether that was successful.
712 *
713 * If unsuccessful, we return false, having already taken the dentry lock.
714 *
715 * The caller needs to hold the RCU read lock, so that the dentry is
716 * guaranteed to stay around even if the refcount goes down to zero!
717 */
718static inline bool fast_dput(struct dentry *dentry)
719{
720 int ret;
721 unsigned int d_flags;
722
723 /*
724 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 725 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
726 */
727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 return lockref_put_or_lock(&dentry->d_lockref);
729
730 /*
731 * .. otherwise, we can try to just decrement the
732 * lockref optimistically.
733 */
734 ret = lockref_put_return(&dentry->d_lockref);
735
736 /*
737 * If the lockref_put_return() failed due to the lock being held
738 * by somebody else, the fast path has failed. We will need to
739 * get the lock, and then check the count again.
740 */
741 if (unlikely(ret < 0)) {
742 spin_lock(&dentry->d_lock);
743 if (dentry->d_lockref.count > 1) {
744 dentry->d_lockref.count--;
745 spin_unlock(&dentry->d_lock);
7964410f 746 return true;
360f5479 747 }
7964410f 748 return false;
360f5479
LT
749 }
750
751 /*
752 * If we weren't the last ref, we're done.
753 */
754 if (ret)
7964410f 755 return true;
360f5479
LT
756
757 /*
758 * Careful, careful. The reference count went down
759 * to zero, but we don't hold the dentry lock, so
760 * somebody else could get it again, and do another
761 * dput(), and we need to not race with that.
762 *
763 * However, there is a very special and common case
764 * where we don't care, because there is nothing to
765 * do: the dentry is still hashed, it does not have
766 * a 'delete' op, and it's referenced and already on
767 * the LRU list.
768 *
769 * NOTE! Since we aren't locked, these values are
770 * not "stable". However, it is sufficient that at
771 * some point after we dropped the reference the
772 * dentry was hashed and the flags had the proper
773 * value. Other dentry users may have re-gotten
774 * a reference to the dentry and change that, but
775 * our work is done - we can leave the dentry
776 * around with a zero refcount.
777 */
778 smp_rmb();
66702eb5 779 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
781
782 /* Nothing to do? Dropping the reference was all we needed? */
783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 784 return true;
360f5479
LT
785
786 /*
787 * Not the fast normal case? Get the lock. We've already decremented
788 * the refcount, but we'll need to re-check the situation after
789 * getting the lock.
790 */
791 spin_lock(&dentry->d_lock);
792
793 /*
794 * Did somebody else grab a reference to it in the meantime, and
795 * we're no longer the last user after all? Alternatively, somebody
796 * else could have killed it and marked it dead. Either way, we
797 * don't need to do anything else.
798 */
799 if (dentry->d_lockref.count) {
800 spin_unlock(&dentry->d_lock);
7964410f 801 return true;
360f5479
LT
802 }
803
804 /*
805 * Re-get the reference we optimistically dropped. We hold the
806 * lock, and we just tested that it was zero, so we can just
807 * set it to 1.
808 */
809 dentry->d_lockref.count = 1;
7964410f 810 return false;
360f5479
LT
811}
812
813
1da177e4
LT
814/*
815 * This is dput
816 *
817 * This is complicated by the fact that we do not want to put
818 * dentries that are no longer on any hash chain on the unused
819 * list: we'd much rather just get rid of them immediately.
820 *
821 * However, that implies that we have to traverse the dentry
822 * tree upwards to the parents which might _also_ now be
823 * scheduled for deletion (it may have been only waiting for
824 * its last child to go away).
825 *
826 * This tail recursion is done by hand as we don't want to depend
827 * on the compiler to always get this right (gcc generally doesn't).
828 * Real recursion would eat up our stack space.
829 */
830
831/*
832 * dput - release a dentry
833 * @dentry: dentry to release
834 *
835 * Release a dentry. This will drop the usage count and if appropriate
836 * call the dentry unlink method as well as removing it from the queues and
837 * releasing its resources. If the parent dentries were scheduled for release
838 * they too may now get deleted.
1da177e4 839 */
1da177e4
LT
840void dput(struct dentry *dentry)
841{
1088a640
AV
842 while (dentry) {
843 might_sleep();
1da177e4 844
1088a640
AV
845 rcu_read_lock();
846 if (likely(fast_dput(dentry))) {
847 rcu_read_unlock();
848 return;
849 }
47be6184 850
1088a640 851 /* Slow case: now with the dentry lock held */
360f5479 852 rcu_read_unlock();
360f5479 853
1088a640
AV
854 if (likely(retain_dentry(dentry))) {
855 spin_unlock(&dentry->d_lock);
856 return;
857 }
265ac902 858
1088a640 859 dentry = dentry_kill(dentry);
47be6184 860 }
1da177e4 861}
ec4f8605 862EXPORT_SYMBOL(dput);
1da177e4 863
9bdebc2b
AV
864static void __dput_to_list(struct dentry *dentry, struct list_head *list)
865__must_hold(&dentry->d_lock)
866{
867 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
868 /* let the owner of the list it's on deal with it */
869 --dentry->d_lockref.count;
870 } else {
871 if (dentry->d_flags & DCACHE_LRU_LIST)
872 d_lru_del(dentry);
873 if (!--dentry->d_lockref.count)
874 d_shrink_add(dentry, list);
875 }
876}
877
878void dput_to_list(struct dentry *dentry, struct list_head *list)
879{
880 rcu_read_lock();
881 if (likely(fast_dput(dentry))) {
882 rcu_read_unlock();
883 return;
884 }
885 rcu_read_unlock();
886 if (!retain_dentry(dentry))
887 __dput_to_list(dentry, list);
888 spin_unlock(&dentry->d_lock);
889}
1da177e4 890
b5c84bf6 891/* This must be called with d_lock held */
dc0474be 892static inline void __dget_dlock(struct dentry *dentry)
23044507 893{
98474236 894 dentry->d_lockref.count++;
23044507
NP
895}
896
dc0474be 897static inline void __dget(struct dentry *dentry)
1da177e4 898{
98474236 899 lockref_get(&dentry->d_lockref);
1da177e4
LT
900}
901
b7ab39f6
NP
902struct dentry *dget_parent(struct dentry *dentry)
903{
df3d0bbc 904 int gotref;
b7ab39f6 905 struct dentry *ret;
2918407c 906 unsigned seq;
b7ab39f6 907
df3d0bbc
WL
908 /*
909 * Do optimistic parent lookup without any
910 * locking.
911 */
912 rcu_read_lock();
2918407c 913 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 914 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
915 gotref = lockref_get_not_zero(&ret->d_lockref);
916 rcu_read_unlock();
917 if (likely(gotref)) {
2918407c 918 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
919 return ret;
920 dput(ret);
921 }
922
b7ab39f6 923repeat:
a734eb45
NP
924 /*
925 * Don't need rcu_dereference because we re-check it was correct under
926 * the lock.
927 */
928 rcu_read_lock();
b7ab39f6 929 ret = dentry->d_parent;
a734eb45
NP
930 spin_lock(&ret->d_lock);
931 if (unlikely(ret != dentry->d_parent)) {
932 spin_unlock(&ret->d_lock);
933 rcu_read_unlock();
b7ab39f6
NP
934 goto repeat;
935 }
a734eb45 936 rcu_read_unlock();
98474236
WL
937 BUG_ON(!ret->d_lockref.count);
938 ret->d_lockref.count++;
b7ab39f6 939 spin_unlock(&ret->d_lock);
b7ab39f6
NP
940 return ret;
941}
942EXPORT_SYMBOL(dget_parent);
943
61fec493
AV
944static struct dentry * __d_find_any_alias(struct inode *inode)
945{
946 struct dentry *alias;
947
948 if (hlist_empty(&inode->i_dentry))
949 return NULL;
950 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
951 __dget(alias);
952 return alias;
953}
954
955/**
956 * d_find_any_alias - find any alias for a given inode
957 * @inode: inode to find an alias for
958 *
959 * If any aliases exist for the given inode, take and return a
960 * reference for one of them. If no aliases exist, return %NULL.
961 */
962struct dentry *d_find_any_alias(struct inode *inode)
963{
964 struct dentry *de;
965
966 spin_lock(&inode->i_lock);
967 de = __d_find_any_alias(inode);
968 spin_unlock(&inode->i_lock);
969 return de;
970}
971EXPORT_SYMBOL(d_find_any_alias);
972
1da177e4
LT
973/**
974 * d_find_alias - grab a hashed alias of inode
975 * @inode: inode in question
1da177e4
LT
976 *
977 * If inode has a hashed alias, or is a directory and has any alias,
978 * acquire the reference to alias and return it. Otherwise return NULL.
979 * Notice that if inode is a directory there can be only one alias and
980 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
981 * of a filesystem, or if the directory was renamed and d_revalidate
982 * was the first vfs operation to notice.
1da177e4 983 *
21c0d8fd 984 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 985 * any other hashed alias over that one.
1da177e4 986 */
52ed46f0 987static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 988{
61fec493
AV
989 struct dentry *alias;
990
991 if (S_ISDIR(inode->i_mode))
992 return __d_find_any_alias(inode);
1da177e4 993
946e51f2 994 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 995 spin_lock(&alias->d_lock);
61fec493 996 if (!d_unhashed(alias)) {
8d80d7da
BF
997 __dget_dlock(alias);
998 spin_unlock(&alias->d_lock);
999 return alias;
1da177e4 1000 }
da502956 1001 spin_unlock(&alias->d_lock);
1da177e4 1002 }
da502956 1003 return NULL;
1da177e4
LT
1004}
1005
da502956 1006struct dentry *d_find_alias(struct inode *inode)
1da177e4 1007{
214fda1f
DH
1008 struct dentry *de = NULL;
1009
b3d9b7a3 1010 if (!hlist_empty(&inode->i_dentry)) {
873feea0 1011 spin_lock(&inode->i_lock);
52ed46f0 1012 de = __d_find_alias(inode);
873feea0 1013 spin_unlock(&inode->i_lock);
214fda1f 1014 }
1da177e4
LT
1015 return de;
1016}
ec4f8605 1017EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
1018
1019/*
1020 * Try to kill dentries associated with this inode.
1021 * WARNING: you must own a reference to inode.
1022 */
1023void d_prune_aliases(struct inode *inode)
1024{
0cdca3f9 1025 struct dentry *dentry;
1da177e4 1026restart:
873feea0 1027 spin_lock(&inode->i_lock);
946e51f2 1028 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1029 spin_lock(&dentry->d_lock);
98474236 1030 if (!dentry->d_lockref.count) {
29355c39
AV
1031 struct dentry *parent = lock_parent(dentry);
1032 if (likely(!dentry->d_lockref.count)) {
1033 __dentry_kill(dentry);
4a7795d3 1034 dput(parent);
29355c39
AV
1035 goto restart;
1036 }
1037 if (parent)
1038 spin_unlock(&parent->d_lock);
1da177e4
LT
1039 }
1040 spin_unlock(&dentry->d_lock);
1041 }
873feea0 1042 spin_unlock(&inode->i_lock);
1da177e4 1043}
ec4f8605 1044EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1045
3b3f09f4
AV
1046/*
1047 * Lock a dentry from shrink list.
8f04da2a
JO
1048 * Called under rcu_read_lock() and dentry->d_lock; the former
1049 * guarantees that nothing we access will be freed under us.
3b3f09f4 1050 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1051 * d_delete(), etc.
1052 *
3b3f09f4
AV
1053 * Return false if dentry has been disrupted or grabbed, leaving
1054 * the caller to kick it off-list. Otherwise, return true and have
1055 * that dentry's inode and parent both locked.
1056 */
1057static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1058{
3b3f09f4
AV
1059 struct inode *inode;
1060 struct dentry *parent;
da3bbdd4 1061
3b3f09f4
AV
1062 if (dentry->d_lockref.count)
1063 return false;
1064
1065 inode = dentry->d_inode;
1066 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1067 spin_unlock(&dentry->d_lock);
1068 spin_lock(&inode->i_lock);
ec33679d 1069 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1070 if (unlikely(dentry->d_lockref.count))
1071 goto out;
1072 /* changed inode means that somebody had grabbed it */
1073 if (unlikely(inode != dentry->d_inode))
1074 goto out;
3b3f09f4 1075 }
046b961b 1076
3b3f09f4
AV
1077 parent = dentry->d_parent;
1078 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1079 return true;
dd1f6b2e 1080
3b3f09f4 1081 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1082 spin_lock(&parent->d_lock);
1083 if (unlikely(parent != dentry->d_parent)) {
1084 spin_unlock(&parent->d_lock);
1085 spin_lock(&dentry->d_lock);
1086 goto out;
1087 }
1088 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1089 if (likely(!dentry->d_lockref.count))
3b3f09f4 1090 return true;
3b3f09f4
AV
1091 spin_unlock(&parent->d_lock);
1092out:
1093 if (inode)
1094 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1095 return false;
1096}
77812a1e 1097
9bdebc2b 1098void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1099{
1100 while (!list_empty(list)) {
1101 struct dentry *dentry, *parent;
64fd72e0 1102
3b3f09f4
AV
1103 dentry = list_entry(list->prev, struct dentry, d_lru);
1104 spin_lock(&dentry->d_lock);
8f04da2a 1105 rcu_read_lock();
3b3f09f4
AV
1106 if (!shrink_lock_dentry(dentry)) {
1107 bool can_free = false;
8f04da2a 1108 rcu_read_unlock();
3b3f09f4
AV
1109 d_shrink_del(dentry);
1110 if (dentry->d_lockref.count < 0)
1111 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1112 spin_unlock(&dentry->d_lock);
1113 if (can_free)
1114 dentry_free(dentry);
1115 continue;
1116 }
8f04da2a 1117 rcu_read_unlock();
3b3f09f4
AV
1118 d_shrink_del(dentry);
1119 parent = dentry->d_parent;
9bdebc2b
AV
1120 if (parent != dentry)
1121 __dput_to_list(parent, list);
ff2fde99 1122 __dentry_kill(dentry);
da3bbdd4 1123 }
3049cfe2
CH
1124}
1125
3f97b163
VD
1126static enum lru_status dentry_lru_isolate(struct list_head *item,
1127 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1128{
1129 struct list_head *freeable = arg;
1130 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1131
1132
1133 /*
1134 * we are inverting the lru lock/dentry->d_lock here,
1135 * so use a trylock. If we fail to get the lock, just skip
1136 * it
1137 */
1138 if (!spin_trylock(&dentry->d_lock))
1139 return LRU_SKIP;
1140
1141 /*
1142 * Referenced dentries are still in use. If they have active
1143 * counts, just remove them from the LRU. Otherwise give them
1144 * another pass through the LRU.
1145 */
1146 if (dentry->d_lockref.count) {
3f97b163 1147 d_lru_isolate(lru, dentry);
f6041567
DC
1148 spin_unlock(&dentry->d_lock);
1149 return LRU_REMOVED;
1150 }
1151
1152 if (dentry->d_flags & DCACHE_REFERENCED) {
1153 dentry->d_flags &= ~DCACHE_REFERENCED;
1154 spin_unlock(&dentry->d_lock);
1155
1156 /*
1157 * The list move itself will be made by the common LRU code. At
1158 * this point, we've dropped the dentry->d_lock but keep the
1159 * lru lock. This is safe to do, since every list movement is
1160 * protected by the lru lock even if both locks are held.
1161 *
1162 * This is guaranteed by the fact that all LRU management
1163 * functions are intermediated by the LRU API calls like
1164 * list_lru_add and list_lru_del. List movement in this file
1165 * only ever occur through this functions or through callbacks
1166 * like this one, that are called from the LRU API.
1167 *
1168 * The only exceptions to this are functions like
1169 * shrink_dentry_list, and code that first checks for the
1170 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1171 * operating only with stack provided lists after they are
1172 * properly isolated from the main list. It is thus, always a
1173 * local access.
1174 */
1175 return LRU_ROTATE;
1176 }
1177
3f97b163 1178 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1179 spin_unlock(&dentry->d_lock);
1180
1181 return LRU_REMOVED;
1182}
1183
3049cfe2 1184/**
b48f03b3
DC
1185 * prune_dcache_sb - shrink the dcache
1186 * @sb: superblock
503c358c 1187 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1188 *
503c358c
VD
1189 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1190 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1191 * function.
3049cfe2 1192 *
b48f03b3
DC
1193 * This function may fail to free any resources if all the dentries are in
1194 * use.
3049cfe2 1195 */
503c358c 1196long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1197{
f6041567
DC
1198 LIST_HEAD(dispose);
1199 long freed;
3049cfe2 1200
503c358c
VD
1201 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1202 dentry_lru_isolate, &dispose);
f6041567 1203 shrink_dentry_list(&dispose);
0a234c6d 1204 return freed;
da3bbdd4 1205}
23044507 1206
4e717f5c 1207static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1208 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1209{
4e717f5c
GC
1210 struct list_head *freeable = arg;
1211 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1212
4e717f5c
GC
1213 /*
1214 * we are inverting the lru lock/dentry->d_lock here,
1215 * so use a trylock. If we fail to get the lock, just skip
1216 * it
1217 */
1218 if (!spin_trylock(&dentry->d_lock))
1219 return LRU_SKIP;
1220
3f97b163 1221 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1222 spin_unlock(&dentry->d_lock);
ec33679d 1223
4e717f5c 1224 return LRU_REMOVED;
da3bbdd4
KM
1225}
1226
4e717f5c 1227
1da177e4
LT
1228/**
1229 * shrink_dcache_sb - shrink dcache for a superblock
1230 * @sb: superblock
1231 *
3049cfe2
CH
1232 * Shrink the dcache for the specified super block. This is used to free
1233 * the dcache before unmounting a file system.
1da177e4 1234 */
3049cfe2 1235void shrink_dcache_sb(struct super_block *sb)
1da177e4 1236{
4e717f5c
GC
1237 do {
1238 LIST_HEAD(dispose);
1239
1dbd449c 1240 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1241 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1242 shrink_dentry_list(&dispose);
b17c070f 1243 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1244}
ec4f8605 1245EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1246
db14fc3a
MS
1247/**
1248 * enum d_walk_ret - action to talke during tree walk
1249 * @D_WALK_CONTINUE: contrinue walk
1250 * @D_WALK_QUIT: quit walk
1251 * @D_WALK_NORETRY: quit when retry is needed
1252 * @D_WALK_SKIP: skip this dentry and its children
1253 */
1254enum d_walk_ret {
1255 D_WALK_CONTINUE,
1256 D_WALK_QUIT,
1257 D_WALK_NORETRY,
1258 D_WALK_SKIP,
1259};
c826cb7d 1260
1da177e4 1261/**
db14fc3a
MS
1262 * d_walk - walk the dentry tree
1263 * @parent: start of walk
1264 * @data: data passed to @enter() and @finish()
1265 * @enter: callback when first entering the dentry
1da177e4 1266 *
3a8e3611 1267 * The @enter() callbacks are called with d_lock held.
1da177e4 1268 */
a3a49a17 1269void d_walk(struct dentry *parent, void *data,
3a8e3611 1270 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1271{
949854d0 1272 struct dentry *this_parent;
1da177e4 1273 struct list_head *next;
48f5ec21 1274 unsigned seq = 0;
db14fc3a
MS
1275 enum d_walk_ret ret;
1276 bool retry = true;
949854d0 1277
58db63d0 1278again:
48f5ec21 1279 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1280 this_parent = parent;
2fd6b7f5 1281 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1282
1283 ret = enter(data, this_parent);
1284 switch (ret) {
1285 case D_WALK_CONTINUE:
1286 break;
1287 case D_WALK_QUIT:
1288 case D_WALK_SKIP:
1289 goto out_unlock;
1290 case D_WALK_NORETRY:
1291 retry = false;
1292 break;
1293 }
1da177e4
LT
1294repeat:
1295 next = this_parent->d_subdirs.next;
1296resume:
1297 while (next != &this_parent->d_subdirs) {
1298 struct list_head *tmp = next;
946e51f2 1299 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1300 next = tmp->next;
2fd6b7f5 1301
ba65dc5e
AV
1302 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1303 continue;
1304
2fd6b7f5 1305 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1306
1307 ret = enter(data, dentry);
1308 switch (ret) {
1309 case D_WALK_CONTINUE:
1310 break;
1311 case D_WALK_QUIT:
2fd6b7f5 1312 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1313 goto out_unlock;
1314 case D_WALK_NORETRY:
1315 retry = false;
1316 break;
1317 case D_WALK_SKIP:
1318 spin_unlock(&dentry->d_lock);
1319 continue;
2fd6b7f5 1320 }
db14fc3a 1321
1da177e4 1322 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1323 spin_unlock(&this_parent->d_lock);
1324 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1325 this_parent = dentry;
2fd6b7f5 1326 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1327 goto repeat;
1328 }
2fd6b7f5 1329 spin_unlock(&dentry->d_lock);
1da177e4
LT
1330 }
1331 /*
1332 * All done at this level ... ascend and resume the search.
1333 */
ca5358ef
AV
1334 rcu_read_lock();
1335ascend:
1da177e4 1336 if (this_parent != parent) {
c826cb7d 1337 struct dentry *child = this_parent;
31dec132
AV
1338 this_parent = child->d_parent;
1339
31dec132
AV
1340 spin_unlock(&child->d_lock);
1341 spin_lock(&this_parent->d_lock);
1342
ca5358ef
AV
1343 /* might go back up the wrong parent if we have had a rename. */
1344 if (need_seqretry(&rename_lock, seq))
949854d0 1345 goto rename_retry;
2159184e
AV
1346 /* go into the first sibling still alive */
1347 do {
1348 next = child->d_child.next;
ca5358ef
AV
1349 if (next == &this_parent->d_subdirs)
1350 goto ascend;
1351 child = list_entry(next, struct dentry, d_child);
2159184e 1352 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1353 rcu_read_unlock();
1da177e4
LT
1354 goto resume;
1355 }
ca5358ef 1356 if (need_seqretry(&rename_lock, seq))
949854d0 1357 goto rename_retry;
ca5358ef 1358 rcu_read_unlock();
db14fc3a
MS
1359
1360out_unlock:
1361 spin_unlock(&this_parent->d_lock);
48f5ec21 1362 done_seqretry(&rename_lock, seq);
db14fc3a 1363 return;
58db63d0
NP
1364
1365rename_retry:
ca5358ef
AV
1366 spin_unlock(&this_parent->d_lock);
1367 rcu_read_unlock();
1368 BUG_ON(seq & 1);
db14fc3a
MS
1369 if (!retry)
1370 return;
48f5ec21 1371 seq = 1;
58db63d0 1372 goto again;
1da177e4 1373}
a3a49a17 1374EXPORT_SYMBOL_GPL(d_walk);
db14fc3a 1375
01619491
IK
1376struct check_mount {
1377 struct vfsmount *mnt;
1378 unsigned int mounted;
1379};
1380
1381static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1382{
1383 struct check_mount *info = data;
1384 struct path path = { .mnt = info->mnt, .dentry = dentry };
1385
1386 if (likely(!d_mountpoint(dentry)))
1387 return D_WALK_CONTINUE;
1388 if (__path_is_mountpoint(&path)) {
1389 info->mounted = 1;
1390 return D_WALK_QUIT;
1391 }
1392 return D_WALK_CONTINUE;
1393}
1394
1395/**
1396 * path_has_submounts - check for mounts over a dentry in the
1397 * current namespace.
1398 * @parent: path to check.
1399 *
1400 * Return true if the parent or its subdirectories contain
1401 * a mount point in the current namespace.
1402 */
1403int path_has_submounts(const struct path *parent)
1404{
1405 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1406
1407 read_seqlock_excl(&mount_lock);
3a8e3611 1408 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1409 read_sequnlock_excl(&mount_lock);
1410
1411 return data.mounted;
1412}
1413EXPORT_SYMBOL(path_has_submounts);
1414
eed81007
MS
1415/*
1416 * Called by mount code to set a mountpoint and check if the mountpoint is
1417 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1418 * subtree can become unreachable).
1419 *
1ffe46d1 1420 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1421 * this reason take rename_lock and d_lock on dentry and ancestors.
1422 */
1423int d_set_mounted(struct dentry *dentry)
1424{
1425 struct dentry *p;
1426 int ret = -ENOENT;
1427 write_seqlock(&rename_lock);
1428 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1429 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1430 spin_lock(&p->d_lock);
1431 if (unlikely(d_unhashed(p))) {
1432 spin_unlock(&p->d_lock);
1433 goto out;
1434 }
1435 spin_unlock(&p->d_lock);
1436 }
1437 spin_lock(&dentry->d_lock);
1438 if (!d_unlinked(dentry)) {
3895dbf8
EB
1439 ret = -EBUSY;
1440 if (!d_mountpoint(dentry)) {
1441 dentry->d_flags |= DCACHE_MOUNTED;
1442 ret = 0;
1443 }
eed81007
MS
1444 }
1445 spin_unlock(&dentry->d_lock);
1446out:
1447 write_sequnlock(&rename_lock);
1448 return ret;
1449}
1450
1da177e4 1451/*
fd517909 1452 * Search the dentry child list of the specified parent,
1da177e4
LT
1453 * and move any unused dentries to the end of the unused
1454 * list for prune_dcache(). We descend to the next level
1455 * whenever the d_subdirs list is non-empty and continue
1456 * searching.
1457 *
1458 * It returns zero iff there are no unused children,
1459 * otherwise it returns the number of children moved to
1460 * the end of the unused list. This may not be the total
1461 * number of unused children, because select_parent can
1462 * drop the lock and return early due to latency
1463 * constraints.
1464 */
1da177e4 1465
db14fc3a
MS
1466struct select_data {
1467 struct dentry *start;
9bdebc2b
AV
1468 union {
1469 long found;
1470 struct dentry *victim;
1471 };
db14fc3a 1472 struct list_head dispose;
db14fc3a 1473};
23044507 1474
db14fc3a
MS
1475static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1476{
1477 struct select_data *data = _data;
1478 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1479
db14fc3a
MS
1480 if (data->start == dentry)
1481 goto out;
2fd6b7f5 1482
fe91522a 1483 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1484 data->found++;
fe91522a
AV
1485 } else {
1486 if (dentry->d_flags & DCACHE_LRU_LIST)
1487 d_lru_del(dentry);
1488 if (!dentry->d_lockref.count) {
1489 d_shrink_add(dentry, &data->dispose);
1490 data->found++;
1491 }
1da177e4 1492 }
db14fc3a
MS
1493 /*
1494 * We can return to the caller if we have found some (this
1495 * ensures forward progress). We'll be coming back to find
1496 * the rest.
1497 */
fe91522a
AV
1498 if (!list_empty(&data->dispose))
1499 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1500out:
db14fc3a 1501 return ret;
1da177e4
LT
1502}
1503
9bdebc2b
AV
1504static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1505{
1506 struct select_data *data = _data;
1507 enum d_walk_ret ret = D_WALK_CONTINUE;
1508
1509 if (data->start == dentry)
1510 goto out;
1511
1512 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1513 if (!dentry->d_lockref.count) {
1514 rcu_read_lock();
1515 data->victim = dentry;
1516 return D_WALK_QUIT;
1517 }
1518 } else {
1519 if (dentry->d_flags & DCACHE_LRU_LIST)
1520 d_lru_del(dentry);
1521 if (!dentry->d_lockref.count)
1522 d_shrink_add(dentry, &data->dispose);
1523 }
1524 /*
1525 * We can return to the caller if we have found some (this
1526 * ensures forward progress). We'll be coming back to find
1527 * the rest.
1528 */
1529 if (!list_empty(&data->dispose))
1530 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1531out:
1532 return ret;
1533}
1534
1da177e4
LT
1535/**
1536 * shrink_dcache_parent - prune dcache
1537 * @parent: parent of entries to prune
1538 *
1539 * Prune the dcache to remove unused children of the parent dentry.
1540 */
db14fc3a 1541void shrink_dcache_parent(struct dentry *parent)
1da177e4 1542{
db14fc3a 1543 for (;;) {
9bdebc2b 1544 struct select_data data = {.start = parent};
1da177e4 1545
db14fc3a 1546 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1547 d_walk(parent, &data, select_collect);
4fb48871
AV
1548
1549 if (!list_empty(&data.dispose)) {
1550 shrink_dentry_list(&data.dispose);
1551 continue;
1552 }
1553
1554 cond_resched();
db14fc3a
MS
1555 if (!data.found)
1556 break;
9bdebc2b
AV
1557 data.victim = NULL;
1558 d_walk(parent, &data, select_collect2);
1559 if (data.victim) {
1560 struct dentry *parent;
1561 spin_lock(&data.victim->d_lock);
1562 if (!shrink_lock_dentry(data.victim)) {
1563 spin_unlock(&data.victim->d_lock);
1564 rcu_read_unlock();
1565 } else {
1566 rcu_read_unlock();
1567 parent = data.victim->d_parent;
1568 if (parent != data.victim)
1569 __dput_to_list(parent, &data.dispose);
1570 __dentry_kill(data.victim);
1571 }
1572 }
1573 if (!list_empty(&data.dispose))
1574 shrink_dentry_list(&data.dispose);
421348f1 1575 }
1da177e4 1576}
ec4f8605 1577EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1578
9c8c10e2 1579static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1580{
9c8c10e2
AV
1581 /* it has busy descendents; complain about those instead */
1582 if (!list_empty(&dentry->d_subdirs))
1583 return D_WALK_CONTINUE;
42c32608 1584
9c8c10e2
AV
1585 /* root with refcount 1 is fine */
1586 if (dentry == _data && dentry->d_lockref.count == 1)
1587 return D_WALK_CONTINUE;
1588
1589 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1590 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1591 dentry,
1592 dentry->d_inode ?
1593 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1594 dentry,
42c32608
AV
1595 dentry->d_lockref.count,
1596 dentry->d_sb->s_type->name,
1597 dentry->d_sb->s_id);
9c8c10e2
AV
1598 WARN_ON(1);
1599 return D_WALK_CONTINUE;
1600}
1601
1602static void do_one_tree(struct dentry *dentry)
1603{
1604 shrink_dcache_parent(dentry);
3a8e3611 1605 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1606 d_drop(dentry);
1607 dput(dentry);
42c32608
AV
1608}
1609
1610/*
1611 * destroy the dentries attached to a superblock on unmounting
1612 */
1613void shrink_dcache_for_umount(struct super_block *sb)
1614{
1615 struct dentry *dentry;
1616
9c8c10e2 1617 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1618
1619 dentry = sb->s_root;
1620 sb->s_root = NULL;
9c8c10e2 1621 do_one_tree(dentry);
42c32608 1622
f1ee6162
N
1623 while (!hlist_bl_empty(&sb->s_roots)) {
1624 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1625 do_one_tree(dentry);
42c32608
AV
1626 }
1627}
1628
ff17fa56 1629static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1630{
ff17fa56 1631 struct dentry **victim = _data;
848ac114 1632 if (d_mountpoint(dentry)) {
8ed936b5 1633 __dget_dlock(dentry);
ff17fa56 1634 *victim = dentry;
848ac114
MS
1635 return D_WALK_QUIT;
1636 }
ff17fa56 1637 return D_WALK_CONTINUE;
848ac114
MS
1638}
1639
1640/**
1ffe46d1
EB
1641 * d_invalidate - detach submounts, prune dcache, and drop
1642 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1643 */
5542aa2f 1644void d_invalidate(struct dentry *dentry)
848ac114 1645{
ff17fa56 1646 bool had_submounts = false;
1ffe46d1
EB
1647 spin_lock(&dentry->d_lock);
1648 if (d_unhashed(dentry)) {
1649 spin_unlock(&dentry->d_lock);
5542aa2f 1650 return;
1ffe46d1 1651 }
ff17fa56 1652 __d_drop(dentry);
1ffe46d1
EB
1653 spin_unlock(&dentry->d_lock);
1654
848ac114 1655 /* Negative dentries can be dropped without further checks */
ff17fa56 1656 if (!dentry->d_inode)
5542aa2f 1657 return;
848ac114 1658
ff17fa56 1659 shrink_dcache_parent(dentry);
848ac114 1660 for (;;) {
ff17fa56 1661 struct dentry *victim = NULL;
3a8e3611 1662 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1663 if (!victim) {
1664 if (had_submounts)
1665 shrink_dcache_parent(dentry);
81be24d2 1666 return;
8ed936b5 1667 }
ff17fa56
AV
1668 had_submounts = true;
1669 detach_mounts(victim);
1670 dput(victim);
848ac114 1671 }
848ac114 1672}
1ffe46d1 1673EXPORT_SYMBOL(d_invalidate);
848ac114 1674
1da177e4 1675/**
a4464dbc
AV
1676 * __d_alloc - allocate a dcache entry
1677 * @sb: filesystem it will belong to
1da177e4
LT
1678 * @name: qstr of the name
1679 *
1680 * Allocates a dentry. It returns %NULL if there is insufficient memory
1681 * available. On a success the dentry is returned. The name passed in is
1682 * copied and the copy passed in may be reused after this call.
1683 */
1684
a4464dbc 1685struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1686{
1687 struct dentry *dentry;
1688 char *dname;
285b102d 1689 int err;
1da177e4 1690
e12ba74d 1691 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1692 if (!dentry)
1693 return NULL;
1694
6326c71f
LT
1695 /*
1696 * We guarantee that the inline name is always NUL-terminated.
1697 * This way the memcpy() done by the name switching in rename
1698 * will still always have a NUL at the end, even if we might
1699 * be overwriting an internal NUL character
1700 */
1701 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1702 if (unlikely(!name)) {
cdf01226 1703 name = &slash_name;
798434bd
AV
1704 dname = dentry->d_iname;
1705 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1706 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1707 struct external_name *p = kmalloc(size + name->len,
1708 GFP_KERNEL_ACCOUNT |
1709 __GFP_RECLAIMABLE);
1710 if (!p) {
1da177e4
LT
1711 kmem_cache_free(dentry_cache, dentry);
1712 return NULL;
1713 }
2e03b4bc
VB
1714 atomic_set(&p->u.count, 1);
1715 dname = p->name;
1da177e4
LT
1716 } else {
1717 dname = dentry->d_iname;
1718 }
1da177e4
LT
1719
1720 dentry->d_name.len = name->len;
1721 dentry->d_name.hash = name->hash;
1722 memcpy(dname, name->name, name->len);
1723 dname[name->len] = 0;
1724
6326c71f 1725 /* Make sure we always see the terminating NUL character */
7088efa9 1726 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1727
98474236 1728 dentry->d_lockref.count = 1;
dea3667b 1729 dentry->d_flags = 0;
1da177e4 1730 spin_lock_init(&dentry->d_lock);
31e6b01f 1731 seqcount_init(&dentry->d_seq);
1da177e4 1732 dentry->d_inode = NULL;
a4464dbc
AV
1733 dentry->d_parent = dentry;
1734 dentry->d_sb = sb;
1da177e4
LT
1735 dentry->d_op = NULL;
1736 dentry->d_fsdata = NULL;
ceb5bdc2 1737 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1738 INIT_LIST_HEAD(&dentry->d_lru);
1739 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1740 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1741 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1742 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1743
285b102d
MS
1744 if (dentry->d_op && dentry->d_op->d_init) {
1745 err = dentry->d_op->d_init(dentry);
1746 if (err) {
1747 if (dname_external(dentry))
1748 kfree(external_name(dentry));
1749 kmem_cache_free(dentry_cache, dentry);
1750 return NULL;
1751 }
1752 }
1753
3e880fb5 1754 this_cpu_inc(nr_dentry);
312d3ca8 1755
1da177e4
LT
1756 return dentry;
1757}
a4464dbc
AV
1758
1759/**
1760 * d_alloc - allocate a dcache entry
1761 * @parent: parent of entry to allocate
1762 * @name: qstr of the name
1763 *
1764 * Allocates a dentry. It returns %NULL if there is insufficient memory
1765 * available. On a success the dentry is returned. The name passed in is
1766 * copied and the copy passed in may be reused after this call.
1767 */
1768struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1769{
1770 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1771 if (!dentry)
1772 return NULL;
a4464dbc
AV
1773 spin_lock(&parent->d_lock);
1774 /*
1775 * don't need child lock because it is not subject
1776 * to concurrency here
1777 */
1778 __dget_dlock(parent);
1779 dentry->d_parent = parent;
946e51f2 1780 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1781 spin_unlock(&parent->d_lock);
1782
1783 return dentry;
1784}
ec4f8605 1785EXPORT_SYMBOL(d_alloc);
1da177e4 1786
f9c34674
MS
1787struct dentry *d_alloc_anon(struct super_block *sb)
1788{
1789 return __d_alloc(sb, NULL);
1790}
1791EXPORT_SYMBOL(d_alloc_anon);
1792
ba65dc5e
AV
1793struct dentry *d_alloc_cursor(struct dentry * parent)
1794{
f9c34674 1795 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1796 if (dentry) {
5467a68c 1797 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1798 dentry->d_parent = dget(parent);
1799 }
1800 return dentry;
1801}
1802
e1a24bb0
BF
1803/**
1804 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1805 * @sb: the superblock
1806 * @name: qstr of the name
1807 *
1808 * For a filesystem that just pins its dentries in memory and never
1809 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1810 * This is used for pipes, sockets et.al. - the stuff that should
1811 * never be anyone's children or parents. Unlike all other
1812 * dentries, these will not have RCU delay between dropping the
1813 * last reference and freeing them.
ab1152dd
AV
1814 *
1815 * The only user is alloc_file_pseudo() and that's what should
1816 * be considered a public interface. Don't use directly.
e1a24bb0 1817 */
4b936885
NP
1818struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1819{
5467a68c
AV
1820 struct dentry *dentry = __d_alloc(sb, name);
1821 if (likely(dentry))
1822 dentry->d_flags |= DCACHE_NORCU;
1823 return dentry;
4b936885 1824}
4b936885 1825
1da177e4
LT
1826struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1827{
1828 struct qstr q;
1829
1830 q.name = name;
8387ff25 1831 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1832 return d_alloc(parent, &q);
1833}
ef26ca97 1834EXPORT_SYMBOL(d_alloc_name);
1da177e4 1835
fb045adb
NP
1836void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1837{
6f7f7caa
LT
1838 WARN_ON_ONCE(dentry->d_op);
1839 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1840 DCACHE_OP_COMPARE |
1841 DCACHE_OP_REVALIDATE |
ecf3d1f1 1842 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1843 DCACHE_OP_DELETE |
d101a125 1844 DCACHE_OP_REAL));
fb045adb
NP
1845 dentry->d_op = op;
1846 if (!op)
1847 return;
1848 if (op->d_hash)
1849 dentry->d_flags |= DCACHE_OP_HASH;
1850 if (op->d_compare)
1851 dentry->d_flags |= DCACHE_OP_COMPARE;
1852 if (op->d_revalidate)
1853 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1854 if (op->d_weak_revalidate)
1855 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1856 if (op->d_delete)
1857 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1858 if (op->d_prune)
1859 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1860 if (op->d_real)
1861 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1862
1863}
1864EXPORT_SYMBOL(d_set_d_op);
1865
df1a085a
DH
1866
1867/*
1868 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1869 * @dentry - The dentry to mark
1870 *
1871 * Mark a dentry as falling through to the lower layer (as set with
1872 * d_pin_lower()). This flag may be recorded on the medium.
1873 */
1874void d_set_fallthru(struct dentry *dentry)
1875{
1876 spin_lock(&dentry->d_lock);
1877 dentry->d_flags |= DCACHE_FALLTHRU;
1878 spin_unlock(&dentry->d_lock);
1879}
1880EXPORT_SYMBOL(d_set_fallthru);
1881
b18825a7
DH
1882static unsigned d_flags_for_inode(struct inode *inode)
1883{
44bdb5e5 1884 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1885
1886 if (!inode)
1887 return DCACHE_MISS_TYPE;
1888
1889 if (S_ISDIR(inode->i_mode)) {
1890 add_flags = DCACHE_DIRECTORY_TYPE;
1891 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1892 if (unlikely(!inode->i_op->lookup))
1893 add_flags = DCACHE_AUTODIR_TYPE;
1894 else
1895 inode->i_opflags |= IOP_LOOKUP;
1896 }
44bdb5e5
DH
1897 goto type_determined;
1898 }
1899
1900 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1901 if (unlikely(inode->i_op->get_link)) {
b18825a7 1902 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1903 goto type_determined;
1904 }
1905 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1906 }
1907
44bdb5e5
DH
1908 if (unlikely(!S_ISREG(inode->i_mode)))
1909 add_flags = DCACHE_SPECIAL_TYPE;
1910
1911type_determined:
b18825a7
DH
1912 if (unlikely(IS_AUTOMOUNT(inode)))
1913 add_flags |= DCACHE_NEED_AUTOMOUNT;
1914 return add_flags;
1915}
1916
360da900
OH
1917static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1918{
b18825a7 1919 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1920 WARN_ON(d_in_lookup(dentry));
b18825a7 1921
b23fb0a6 1922 spin_lock(&dentry->d_lock);
af0c9af1
WL
1923 /*
1924 * Decrement negative dentry count if it was in the LRU list.
1925 */
1926 if (dentry->d_flags & DCACHE_LRU_LIST)
1927 this_cpu_dec(nr_dentry_negative);
de689f5e 1928 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1929 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1930 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1931 raw_write_seqcount_end(&dentry->d_seq);
affda484 1932 fsnotify_update_flags(dentry);
b23fb0a6 1933 spin_unlock(&dentry->d_lock);
360da900
OH
1934}
1935
1da177e4
LT
1936/**
1937 * d_instantiate - fill in inode information for a dentry
1938 * @entry: dentry to complete
1939 * @inode: inode to attach to this dentry
1940 *
1941 * Fill in inode information in the entry.
1942 *
1943 * This turns negative dentries into productive full members
1944 * of society.
1945 *
1946 * NOTE! This assumes that the inode count has been incremented
1947 * (or otherwise set) by the caller to indicate that it is now
1948 * in use by the dcache.
1949 */
1950
1951void d_instantiate(struct dentry *entry, struct inode * inode)
1952{
946e51f2 1953 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1954 if (inode) {
b9680917 1955 security_d_instantiate(entry, inode);
873feea0 1956 spin_lock(&inode->i_lock);
de689f5e 1957 __d_instantiate(entry, inode);
873feea0 1958 spin_unlock(&inode->i_lock);
de689f5e 1959 }
1da177e4 1960}
ec4f8605 1961EXPORT_SYMBOL(d_instantiate);
1da177e4 1962
1e2e547a
AV
1963/*
1964 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1965 * with lockdep-related part of unlock_new_inode() done before
1966 * anything else. Use that instead of open-coding d_instantiate()/
1967 * unlock_new_inode() combinations.
1968 */
1969void d_instantiate_new(struct dentry *entry, struct inode *inode)
1970{
1971 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1972 BUG_ON(!inode);
1973 lockdep_annotate_inode_mutex_key(inode);
1974 security_d_instantiate(entry, inode);
1975 spin_lock(&inode->i_lock);
1976 __d_instantiate(entry, inode);
1977 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1978 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1979 smp_mb();
1980 wake_up_bit(&inode->i_state, __I_NEW);
1981 spin_unlock(&inode->i_lock);
1982}
1983EXPORT_SYMBOL(d_instantiate_new);
1984
adc0e91a
AV
1985struct dentry *d_make_root(struct inode *root_inode)
1986{
1987 struct dentry *res = NULL;
1988
1989 if (root_inode) {
f9c34674 1990 res = d_alloc_anon(root_inode->i_sb);
5467a68c 1991 if (res)
adc0e91a 1992 d_instantiate(res, root_inode);
5467a68c 1993 else
adc0e91a
AV
1994 iput(root_inode);
1995 }
1996 return res;
1997}
1998EXPORT_SYMBOL(d_make_root);
1999
f9c34674
MS
2000static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2001 struct inode *inode,
2002 bool disconnected)
4ea3ada2 2003{
9308a612 2004 struct dentry *res;
b18825a7 2005 unsigned add_flags;
4ea3ada2 2006
f9c34674 2007 security_d_instantiate(dentry, inode);
873feea0 2008 spin_lock(&inode->i_lock);
d891eedb 2009 res = __d_find_any_alias(inode);
9308a612 2010 if (res) {
873feea0 2011 spin_unlock(&inode->i_lock);
f9c34674 2012 dput(dentry);
9308a612
CH
2013 goto out_iput;
2014 }
2015
2016 /* attach a disconnected dentry */
1a0a397e
BF
2017 add_flags = d_flags_for_inode(inode);
2018
2019 if (disconnected)
2020 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2021
f9c34674
MS
2022 spin_lock(&dentry->d_lock);
2023 __d_set_inode_and_type(dentry, inode, add_flags);
2024 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 2025 if (!disconnected) {
139351f1
LT
2026 hlist_bl_lock(&dentry->d_sb->s_roots);
2027 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2028 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2029 }
f9c34674 2030 spin_unlock(&dentry->d_lock);
873feea0 2031 spin_unlock(&inode->i_lock);
9308a612 2032
f9c34674 2033 return dentry;
9308a612
CH
2034
2035 out_iput:
2036 iput(inode);
2037 return res;
4ea3ada2 2038}
1a0a397e 2039
f9c34674
MS
2040struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2041{
2042 return __d_instantiate_anon(dentry, inode, true);
2043}
2044EXPORT_SYMBOL(d_instantiate_anon);
2045
2046static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2047{
2048 struct dentry *tmp;
2049 struct dentry *res;
2050
2051 if (!inode)
2052 return ERR_PTR(-ESTALE);
2053 if (IS_ERR(inode))
2054 return ERR_CAST(inode);
2055
2056 res = d_find_any_alias(inode);
2057 if (res)
2058 goto out_iput;
2059
2060 tmp = d_alloc_anon(inode->i_sb);
2061 if (!tmp) {
2062 res = ERR_PTR(-ENOMEM);
2063 goto out_iput;
2064 }
2065
2066 return __d_instantiate_anon(tmp, inode, disconnected);
2067
2068out_iput:
2069 iput(inode);
2070 return res;
2071}
2072
1a0a397e
BF
2073/**
2074 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2075 * @inode: inode to allocate the dentry for
2076 *
2077 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2078 * similar open by handle operations. The returned dentry may be anonymous,
2079 * or may have a full name (if the inode was already in the cache).
2080 *
2081 * When called on a directory inode, we must ensure that the inode only ever
2082 * has one dentry. If a dentry is found, that is returned instead of
2083 * allocating a new one.
2084 *
2085 * On successful return, the reference to the inode has been transferred
2086 * to the dentry. In case of an error the reference on the inode is released.
2087 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2088 * be passed in and the error will be propagated to the return value,
2089 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2090 */
2091struct dentry *d_obtain_alias(struct inode *inode)
2092{
f9c34674 2093 return __d_obtain_alias(inode, true);
1a0a397e 2094}
adc48720 2095EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2096
1a0a397e
BF
2097/**
2098 * d_obtain_root - find or allocate a dentry for a given inode
2099 * @inode: inode to allocate the dentry for
2100 *
2101 * Obtain an IS_ROOT dentry for the root of a filesystem.
2102 *
2103 * We must ensure that directory inodes only ever have one dentry. If a
2104 * dentry is found, that is returned instead of allocating a new one.
2105 *
2106 * On successful return, the reference to the inode has been transferred
2107 * to the dentry. In case of an error the reference on the inode is
2108 * released. A %NULL or IS_ERR inode may be passed in and will be the
2109 * error will be propagate to the return value, with a %NULL @inode
2110 * replaced by ERR_PTR(-ESTALE).
2111 */
2112struct dentry *d_obtain_root(struct inode *inode)
2113{
f9c34674 2114 return __d_obtain_alias(inode, false);
1a0a397e
BF
2115}
2116EXPORT_SYMBOL(d_obtain_root);
2117
9403540c
BN
2118/**
2119 * d_add_ci - lookup or allocate new dentry with case-exact name
2120 * @inode: the inode case-insensitive lookup has found
2121 * @dentry: the negative dentry that was passed to the parent's lookup func
2122 * @name: the case-exact name to be associated with the returned dentry
2123 *
2124 * This is to avoid filling the dcache with case-insensitive names to the
2125 * same inode, only the actual correct case is stored in the dcache for
2126 * case-insensitive filesystems.
2127 *
2128 * For a case-insensitive lookup match and if the the case-exact dentry
2129 * already exists in in the dcache, use it and return it.
2130 *
2131 * If no entry exists with the exact case name, allocate new dentry with
2132 * the exact case, and return the spliced entry.
2133 */
e45b590b 2134struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2135 struct qstr *name)
2136{
d9171b93 2137 struct dentry *found, *res;
9403540c 2138
b6520c81
CH
2139 /*
2140 * First check if a dentry matching the name already exists,
2141 * if not go ahead and create it now.
2142 */
9403540c 2143 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2144 if (found) {
2145 iput(inode);
2146 return found;
2147 }
2148 if (d_in_lookup(dentry)) {
2149 found = d_alloc_parallel(dentry->d_parent, name,
2150 dentry->d_wait);
2151 if (IS_ERR(found) || !d_in_lookup(found)) {
2152 iput(inode);
2153 return found;
9403540c 2154 }
d9171b93
AV
2155 } else {
2156 found = d_alloc(dentry->d_parent, name);
2157 if (!found) {
2158 iput(inode);
2159 return ERR_PTR(-ENOMEM);
2160 }
2161 }
2162 res = d_splice_alias(inode, found);
2163 if (res) {
2164 dput(found);
2165 return res;
9403540c 2166 }
4f522a24 2167 return found;
9403540c 2168}
ec4f8605 2169EXPORT_SYMBOL(d_add_ci);
1da177e4 2170
12f8ad4b 2171
d4c91a8f
AV
2172static inline bool d_same_name(const struct dentry *dentry,
2173 const struct dentry *parent,
2174 const struct qstr *name)
12f8ad4b 2175{
d4c91a8f
AV
2176 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2177 if (dentry->d_name.len != name->len)
2178 return false;
2179 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2180 }
6fa67e70 2181 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2182 dentry->d_name.len, dentry->d_name.name,
2183 name) == 0;
12f8ad4b
LT
2184}
2185
31e6b01f
NP
2186/**
2187 * __d_lookup_rcu - search for a dentry (racy, store-free)
2188 * @parent: parent dentry
2189 * @name: qstr of name we wish to find
1f1e6e52 2190 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2191 * Returns: dentry, or NULL
2192 *
2193 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2194 * resolution (store-free path walking) design described in
2195 * Documentation/filesystems/path-lookup.txt.
2196 *
2197 * This is not to be used outside core vfs.
2198 *
2199 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2200 * held, and rcu_read_lock held. The returned dentry must not be stored into
2201 * without taking d_lock and checking d_seq sequence count against @seq
2202 * returned here.
2203 *
15570086 2204 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2205 * function.
2206 *
2207 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2208 * the returned dentry, so long as its parent's seqlock is checked after the
2209 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2210 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2211 *
2212 * NOTE! The caller *has* to check the resulting dentry against the sequence
2213 * number we've returned before using any of the resulting dentry state!
31e6b01f 2214 */
8966be90
LT
2215struct dentry *__d_lookup_rcu(const struct dentry *parent,
2216 const struct qstr *name,
da53be12 2217 unsigned *seqp)
31e6b01f 2218{
26fe5750 2219 u64 hashlen = name->hash_len;
31e6b01f 2220 const unsigned char *str = name->name;
8387ff25 2221 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2222 struct hlist_bl_node *node;
31e6b01f
NP
2223 struct dentry *dentry;
2224
2225 /*
2226 * Note: There is significant duplication with __d_lookup_rcu which is
2227 * required to prevent single threaded performance regressions
2228 * especially on architectures where smp_rmb (in seqcounts) are costly.
2229 * Keep the two functions in sync.
2230 */
2231
2232 /*
2233 * The hash list is protected using RCU.
2234 *
2235 * Carefully use d_seq when comparing a candidate dentry, to avoid
2236 * races with d_move().
2237 *
2238 * It is possible that concurrent renames can mess up our list
2239 * walk here and result in missing our dentry, resulting in the
2240 * false-negative result. d_lookup() protects against concurrent
2241 * renames using rename_lock seqlock.
2242 *
b0a4bb83 2243 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2244 */
b07ad996 2245 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2246 unsigned seq;
31e6b01f 2247
31e6b01f 2248seqretry:
12f8ad4b
LT
2249 /*
2250 * The dentry sequence count protects us from concurrent
da53be12 2251 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2252 *
2253 * The caller must perform a seqcount check in order
da53be12 2254 * to do anything useful with the returned dentry.
12f8ad4b
LT
2255 *
2256 * NOTE! We do a "raw" seqcount_begin here. That means that
2257 * we don't wait for the sequence count to stabilize if it
2258 * is in the middle of a sequence change. If we do the slow
2259 * dentry compare, we will do seqretries until it is stable,
2260 * and if we end up with a successful lookup, we actually
2261 * want to exit RCU lookup anyway.
d4c91a8f
AV
2262 *
2263 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2264 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2265 */
2266 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2267 if (dentry->d_parent != parent)
2268 continue;
2e321806
LT
2269 if (d_unhashed(dentry))
2270 continue;
12f8ad4b 2271
830c0f0e 2272 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2273 int tlen;
2274 const char *tname;
26fe5750
LT
2275 if (dentry->d_name.hash != hashlen_hash(hashlen))
2276 continue;
d4c91a8f
AV
2277 tlen = dentry->d_name.len;
2278 tname = dentry->d_name.name;
2279 /* we want a consistent (name,len) pair */
2280 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2281 cpu_relax();
12f8ad4b
LT
2282 goto seqretry;
2283 }
6fa67e70 2284 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2285 tlen, tname, name) != 0)
2286 continue;
2287 } else {
2288 if (dentry->d_name.hash_len != hashlen)
2289 continue;
2290 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2291 continue;
31e6b01f 2292 }
da53be12 2293 *seqp = seq;
d4c91a8f 2294 return dentry;
31e6b01f
NP
2295 }
2296 return NULL;
2297}
2298
1da177e4
LT
2299/**
2300 * d_lookup - search for a dentry
2301 * @parent: parent dentry
2302 * @name: qstr of name we wish to find
b04f784e 2303 * Returns: dentry, or NULL
1da177e4 2304 *
b04f784e
NP
2305 * d_lookup searches the children of the parent dentry for the name in
2306 * question. If the dentry is found its reference count is incremented and the
2307 * dentry is returned. The caller must use dput to free the entry when it has
2308 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2309 */
da2d8455 2310struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2311{
31e6b01f 2312 struct dentry *dentry;
949854d0 2313 unsigned seq;
1da177e4 2314
b8314f93
DY
2315 do {
2316 seq = read_seqbegin(&rename_lock);
2317 dentry = __d_lookup(parent, name);
2318 if (dentry)
1da177e4
LT
2319 break;
2320 } while (read_seqretry(&rename_lock, seq));
2321 return dentry;
2322}
ec4f8605 2323EXPORT_SYMBOL(d_lookup);
1da177e4 2324
31e6b01f 2325/**
b04f784e
NP
2326 * __d_lookup - search for a dentry (racy)
2327 * @parent: parent dentry
2328 * @name: qstr of name we wish to find
2329 * Returns: dentry, or NULL
2330 *
2331 * __d_lookup is like d_lookup, however it may (rarely) return a
2332 * false-negative result due to unrelated rename activity.
2333 *
2334 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2335 * however it must be used carefully, eg. with a following d_lookup in
2336 * the case of failure.
2337 *
2338 * __d_lookup callers must be commented.
2339 */
a713ca2a 2340struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2341{
1da177e4 2342 unsigned int hash = name->hash;
8387ff25 2343 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2344 struct hlist_bl_node *node;
31e6b01f 2345 struct dentry *found = NULL;
665a7583 2346 struct dentry *dentry;
1da177e4 2347
31e6b01f
NP
2348 /*
2349 * Note: There is significant duplication with __d_lookup_rcu which is
2350 * required to prevent single threaded performance regressions
2351 * especially on architectures where smp_rmb (in seqcounts) are costly.
2352 * Keep the two functions in sync.
2353 */
2354
b04f784e
NP
2355 /*
2356 * The hash list is protected using RCU.
2357 *
2358 * Take d_lock when comparing a candidate dentry, to avoid races
2359 * with d_move().
2360 *
2361 * It is possible that concurrent renames can mess up our list
2362 * walk here and result in missing our dentry, resulting in the
2363 * false-negative result. d_lookup() protects against concurrent
2364 * renames using rename_lock seqlock.
2365 *
b0a4bb83 2366 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2367 */
1da177e4
LT
2368 rcu_read_lock();
2369
b07ad996 2370 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2371
1da177e4
LT
2372 if (dentry->d_name.hash != hash)
2373 continue;
1da177e4
LT
2374
2375 spin_lock(&dentry->d_lock);
1da177e4
LT
2376 if (dentry->d_parent != parent)
2377 goto next;
d0185c08
LT
2378 if (d_unhashed(dentry))
2379 goto next;
2380
d4c91a8f
AV
2381 if (!d_same_name(dentry, parent, name))
2382 goto next;
1da177e4 2383
98474236 2384 dentry->d_lockref.count++;
d0185c08 2385 found = dentry;
1da177e4
LT
2386 spin_unlock(&dentry->d_lock);
2387 break;
2388next:
2389 spin_unlock(&dentry->d_lock);
2390 }
2391 rcu_read_unlock();
2392
2393 return found;
2394}
2395
3e7e241f
EB
2396/**
2397 * d_hash_and_lookup - hash the qstr then search for a dentry
2398 * @dir: Directory to search in
2399 * @name: qstr of name we wish to find
2400 *
4f522a24 2401 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2402 */
2403struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2404{
3e7e241f
EB
2405 /*
2406 * Check for a fs-specific hash function. Note that we must
2407 * calculate the standard hash first, as the d_op->d_hash()
2408 * routine may choose to leave the hash value unchanged.
2409 */
8387ff25 2410 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2411 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2412 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2413 if (unlikely(err < 0))
2414 return ERR_PTR(err);
3e7e241f 2415 }
4f522a24 2416 return d_lookup(dir, name);
3e7e241f 2417}
4f522a24 2418EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2419
1da177e4
LT
2420/*
2421 * When a file is deleted, we have two options:
2422 * - turn this dentry into a negative dentry
2423 * - unhash this dentry and free it.
2424 *
2425 * Usually, we want to just turn this into
2426 * a negative dentry, but if anybody else is
2427 * currently using the dentry or the inode
2428 * we can't do that and we fall back on removing
2429 * it from the hash queues and waiting for
2430 * it to be deleted later when it has no users
2431 */
2432
2433/**
2434 * d_delete - delete a dentry
2435 * @dentry: The dentry to delete
2436 *
2437 * Turn the dentry into a negative dentry if possible, otherwise
2438 * remove it from the hash queues so it can be deleted later
2439 */
2440
2441void d_delete(struct dentry * dentry)
2442{
c19457f0 2443 struct inode *inode = dentry->d_inode;
c19457f0
AV
2444
2445 spin_lock(&inode->i_lock);
2446 spin_lock(&dentry->d_lock);
1da177e4
LT
2447 /*
2448 * Are we the only user?
2449 */
98474236 2450 if (dentry->d_lockref.count == 1) {
13e3c5e5 2451 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2452 dentry_unlink_inode(dentry);
c19457f0 2453 } else {
1da177e4 2454 __d_drop(dentry);
c19457f0
AV
2455 spin_unlock(&dentry->d_lock);
2456 spin_unlock(&inode->i_lock);
2457 }
1da177e4 2458}
ec4f8605 2459EXPORT_SYMBOL(d_delete);
1da177e4 2460
15d3c589 2461static void __d_rehash(struct dentry *entry)
1da177e4 2462{
15d3c589 2463 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2464
1879fd6a 2465 hlist_bl_lock(b);
b07ad996 2466 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2467 hlist_bl_unlock(b);
1da177e4
LT
2468}
2469
2470/**
2471 * d_rehash - add an entry back to the hash
2472 * @entry: dentry to add to the hash
2473 *
2474 * Adds a dentry to the hash according to its name.
2475 */
2476
2477void d_rehash(struct dentry * entry)
2478{
1da177e4 2479 spin_lock(&entry->d_lock);
15d3c589 2480 __d_rehash(entry);
1da177e4 2481 spin_unlock(&entry->d_lock);
1da177e4 2482}
ec4f8605 2483EXPORT_SYMBOL(d_rehash);
1da177e4 2484
84e710da
AV
2485static inline unsigned start_dir_add(struct inode *dir)
2486{
2487
2488 for (;;) {
2489 unsigned n = dir->i_dir_seq;
2490 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2491 return n;
2492 cpu_relax();
2493 }
2494}
2495
2496static inline void end_dir_add(struct inode *dir, unsigned n)
2497{
2498 smp_store_release(&dir->i_dir_seq, n + 2);
2499}
2500
d9171b93
AV
2501static void d_wait_lookup(struct dentry *dentry)
2502{
2503 if (d_in_lookup(dentry)) {
2504 DECLARE_WAITQUEUE(wait, current);
2505 add_wait_queue(dentry->d_wait, &wait);
2506 do {
2507 set_current_state(TASK_UNINTERRUPTIBLE);
2508 spin_unlock(&dentry->d_lock);
2509 schedule();
2510 spin_lock(&dentry->d_lock);
2511 } while (d_in_lookup(dentry));
2512 }
2513}
2514
94bdd655 2515struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2516 const struct qstr *name,
2517 wait_queue_head_t *wq)
94bdd655 2518{
94bdd655 2519 unsigned int hash = name->hash;
94bdd655
AV
2520 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2521 struct hlist_bl_node *node;
2522 struct dentry *new = d_alloc(parent, name);
2523 struct dentry *dentry;
2524 unsigned seq, r_seq, d_seq;
2525
2526 if (unlikely(!new))
2527 return ERR_PTR(-ENOMEM);
2528
2529retry:
2530 rcu_read_lock();
015555fd 2531 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2532 r_seq = read_seqbegin(&rename_lock);
2533 dentry = __d_lookup_rcu(parent, name, &d_seq);
2534 if (unlikely(dentry)) {
2535 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2536 rcu_read_unlock();
2537 goto retry;
2538 }
2539 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2540 rcu_read_unlock();
2541 dput(dentry);
2542 goto retry;
2543 }
2544 rcu_read_unlock();
2545 dput(new);
2546 return dentry;
2547 }
2548 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2549 rcu_read_unlock();
2550 goto retry;
2551 }
015555fd
WD
2552
2553 if (unlikely(seq & 1)) {
2554 rcu_read_unlock();
2555 goto retry;
2556 }
2557
94bdd655 2558 hlist_bl_lock(b);
8cc07c80 2559 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2560 hlist_bl_unlock(b);
2561 rcu_read_unlock();
2562 goto retry;
2563 }
94bdd655
AV
2564 /*
2565 * No changes for the parent since the beginning of d_lookup().
2566 * Since all removals from the chain happen with hlist_bl_lock(),
2567 * any potential in-lookup matches are going to stay here until
2568 * we unlock the chain. All fields are stable in everything
2569 * we encounter.
2570 */
2571 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2572 if (dentry->d_name.hash != hash)
2573 continue;
2574 if (dentry->d_parent != parent)
2575 continue;
d4c91a8f
AV
2576 if (!d_same_name(dentry, parent, name))
2577 continue;
94bdd655 2578 hlist_bl_unlock(b);
e7d6ef97
AV
2579 /* now we can try to grab a reference */
2580 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2581 rcu_read_unlock();
2582 goto retry;
2583 }
2584
2585 rcu_read_unlock();
2586 /*
2587 * somebody is likely to be still doing lookup for it;
2588 * wait for them to finish
2589 */
d9171b93
AV
2590 spin_lock(&dentry->d_lock);
2591 d_wait_lookup(dentry);
2592 /*
2593 * it's not in-lookup anymore; in principle we should repeat
2594 * everything from dcache lookup, but it's likely to be what
2595 * d_lookup() would've found anyway. If it is, just return it;
2596 * otherwise we really have to repeat the whole thing.
2597 */
2598 if (unlikely(dentry->d_name.hash != hash))
2599 goto mismatch;
2600 if (unlikely(dentry->d_parent != parent))
2601 goto mismatch;
2602 if (unlikely(d_unhashed(dentry)))
2603 goto mismatch;
d4c91a8f
AV
2604 if (unlikely(!d_same_name(dentry, parent, name)))
2605 goto mismatch;
d9171b93
AV
2606 /* OK, it *is* a hashed match; return it */
2607 spin_unlock(&dentry->d_lock);
94bdd655
AV
2608 dput(new);
2609 return dentry;
2610 }
e7d6ef97 2611 rcu_read_unlock();
94bdd655
AV
2612 /* we can't take ->d_lock here; it's OK, though. */
2613 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2614 new->d_wait = wq;
94bdd655
AV
2615 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2616 hlist_bl_unlock(b);
2617 return new;
d9171b93
AV
2618mismatch:
2619 spin_unlock(&dentry->d_lock);
2620 dput(dentry);
2621 goto retry;
94bdd655
AV
2622}
2623EXPORT_SYMBOL(d_alloc_parallel);
2624
85c7f810
AV
2625void __d_lookup_done(struct dentry *dentry)
2626{
94bdd655
AV
2627 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2628 dentry->d_name.hash);
2629 hlist_bl_lock(b);
85c7f810 2630 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2631 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2632 wake_up_all(dentry->d_wait);
2633 dentry->d_wait = NULL;
94bdd655
AV
2634 hlist_bl_unlock(b);
2635 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2636 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2637}
2638EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2639
2640/* inode->i_lock held if inode is non-NULL */
2641
2642static inline void __d_add(struct dentry *dentry, struct inode *inode)
2643{
84e710da
AV
2644 struct inode *dir = NULL;
2645 unsigned n;
0568d705 2646 spin_lock(&dentry->d_lock);
84e710da
AV
2647 if (unlikely(d_in_lookup(dentry))) {
2648 dir = dentry->d_parent->d_inode;
2649 n = start_dir_add(dir);
85c7f810 2650 __d_lookup_done(dentry);
84e710da 2651 }
ed782b5a 2652 if (inode) {
0568d705
AV
2653 unsigned add_flags = d_flags_for_inode(inode);
2654 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2655 raw_write_seqcount_begin(&dentry->d_seq);
2656 __d_set_inode_and_type(dentry, inode, add_flags);
2657 raw_write_seqcount_end(&dentry->d_seq);
affda484 2658 fsnotify_update_flags(dentry);
ed782b5a 2659 }
15d3c589 2660 __d_rehash(dentry);
84e710da
AV
2661 if (dir)
2662 end_dir_add(dir, n);
0568d705
AV
2663 spin_unlock(&dentry->d_lock);
2664 if (inode)
2665 spin_unlock(&inode->i_lock);
ed782b5a
AV
2666}
2667
34d0d19d
AV
2668/**
2669 * d_add - add dentry to hash queues
2670 * @entry: dentry to add
2671 * @inode: The inode to attach to this dentry
2672 *
2673 * This adds the entry to the hash queues and initializes @inode.
2674 * The entry was actually filled in earlier during d_alloc().
2675 */
2676
2677void d_add(struct dentry *entry, struct inode *inode)
2678{
b9680917
AV
2679 if (inode) {
2680 security_d_instantiate(entry, inode);
ed782b5a 2681 spin_lock(&inode->i_lock);
b9680917 2682 }
ed782b5a 2683 __d_add(entry, inode);
34d0d19d
AV
2684}
2685EXPORT_SYMBOL(d_add);
2686
668d0cd5
AV
2687/**
2688 * d_exact_alias - find and hash an exact unhashed alias
2689 * @entry: dentry to add
2690 * @inode: The inode to go with this dentry
2691 *
2692 * If an unhashed dentry with the same name/parent and desired
2693 * inode already exists, hash and return it. Otherwise, return
2694 * NULL.
2695 *
2696 * Parent directory should be locked.
2697 */
2698struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2699{
2700 struct dentry *alias;
668d0cd5
AV
2701 unsigned int hash = entry->d_name.hash;
2702
2703 spin_lock(&inode->i_lock);
2704 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2705 /*
2706 * Don't need alias->d_lock here, because aliases with
2707 * d_parent == entry->d_parent are not subject to name or
2708 * parent changes, because the parent inode i_mutex is held.
2709 */
2710 if (alias->d_name.hash != hash)
2711 continue;
2712 if (alias->d_parent != entry->d_parent)
2713 continue;
d4c91a8f 2714 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2715 continue;
2716 spin_lock(&alias->d_lock);
2717 if (!d_unhashed(alias)) {
2718 spin_unlock(&alias->d_lock);
2719 alias = NULL;
2720 } else {
2721 __dget_dlock(alias);
15d3c589 2722 __d_rehash(alias);
668d0cd5
AV
2723 spin_unlock(&alias->d_lock);
2724 }
2725 spin_unlock(&inode->i_lock);
2726 return alias;
2727 }
2728 spin_unlock(&inode->i_lock);
2729 return NULL;
2730}
2731EXPORT_SYMBOL(d_exact_alias);
2732
8d85b484 2733static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2734{
8d85b484
AV
2735 if (unlikely(dname_external(target))) {
2736 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2737 /*
2738 * Both external: swap the pointers
2739 */
9a8d5bb4 2740 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2741 } else {
2742 /*
2743 * dentry:internal, target:external. Steal target's
2744 * storage and make target internal.
2745 */
321bcf92
BF
2746 memcpy(target->d_iname, dentry->d_name.name,
2747 dentry->d_name.len + 1);
1da177e4
LT
2748 dentry->d_name.name = target->d_name.name;
2749 target->d_name.name = target->d_iname;
2750 }
2751 } else {
8d85b484 2752 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2753 /*
2754 * dentry:external, target:internal. Give dentry's
2755 * storage to target and make dentry internal
2756 */
2757 memcpy(dentry->d_iname, target->d_name.name,
2758 target->d_name.len + 1);
2759 target->d_name.name = dentry->d_name.name;
2760 dentry->d_name.name = dentry->d_iname;
2761 } else {
2762 /*
da1ce067 2763 * Both are internal.
1da177e4 2764 */
da1ce067
MS
2765 unsigned int i;
2766 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2767 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2768 swap(((long *) &dentry->d_iname)[i],
2769 ((long *) &target->d_iname)[i]);
2770 }
1da177e4
LT
2771 }
2772 }
a28ddb87 2773 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2774}
2775
8d85b484
AV
2776static void copy_name(struct dentry *dentry, struct dentry *target)
2777{
2778 struct external_name *old_name = NULL;
2779 if (unlikely(dname_external(dentry)))
2780 old_name = external_name(dentry);
2781 if (unlikely(dname_external(target))) {
2782 atomic_inc(&external_name(target)->u.count);
2783 dentry->d_name = target->d_name;
2784 } else {
2785 memcpy(dentry->d_iname, target->d_name.name,
2786 target->d_name.len + 1);
2787 dentry->d_name.name = dentry->d_iname;
2788 dentry->d_name.hash_len = target->d_name.hash_len;
2789 }
2790 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2791 kfree_rcu(old_name, u.head);
8d85b484
AV
2792}
2793
9eaef27b 2794/*
18367501 2795 * __d_move - move a dentry
1da177e4
LT
2796 * @dentry: entry to move
2797 * @target: new dentry
da1ce067 2798 * @exchange: exchange the two dentries
1da177e4
LT
2799 *
2800 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2801 * dcache entries should not be moved in this way. Caller must hold
2802 * rename_lock, the i_mutex of the source and target directories,
2803 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2804 */
da1ce067
MS
2805static void __d_move(struct dentry *dentry, struct dentry *target,
2806 bool exchange)
1da177e4 2807{
42177007 2808 struct dentry *old_parent, *p;
84e710da
AV
2809 struct inode *dir = NULL;
2810 unsigned n;
1da177e4 2811
42177007
AV
2812 WARN_ON(!dentry->d_inode);
2813 if (WARN_ON(dentry == target))
2814 return;
2815
2fd6b7f5 2816 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2817 old_parent = dentry->d_parent;
2818 p = d_ancestor(old_parent, target);
2819 if (IS_ROOT(dentry)) {
2820 BUG_ON(p);
2821 spin_lock(&target->d_parent->d_lock);
2822 } else if (!p) {
2823 /* target is not a descendent of dentry->d_parent */
2824 spin_lock(&target->d_parent->d_lock);
2825 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2826 } else {
2827 BUG_ON(p == dentry);
2828 spin_lock(&old_parent->d_lock);
2829 if (p != target)
2830 spin_lock_nested(&target->d_parent->d_lock,
2831 DENTRY_D_LOCK_NESTED);
2832 }
2833 spin_lock_nested(&dentry->d_lock, 2);
2834 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2835
84e710da
AV
2836 if (unlikely(d_in_lookup(target))) {
2837 dir = target->d_parent->d_inode;
2838 n = start_dir_add(dir);
85c7f810 2839 __d_lookup_done(target);
84e710da 2840 }
1da177e4 2841
31e6b01f 2842 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2843 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2844
15d3c589 2845 /* unhash both */
0632a9ac
AV
2846 if (!d_unhashed(dentry))
2847 ___d_drop(dentry);
2848 if (!d_unhashed(target))
2849 ___d_drop(target);
1da177e4 2850
076515fc
AV
2851 /* ... and switch them in the tree */
2852 dentry->d_parent = target->d_parent;
2853 if (!exchange) {
8d85b484 2854 copy_name(dentry, target);
61647823 2855 target->d_hash.pprev = NULL;
076515fc 2856 dentry->d_parent->d_lockref.count++;
5467a68c 2857 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2858 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2859 } else {
076515fc
AV
2860 target->d_parent = old_parent;
2861 swap_names(dentry, target);
946e51f2 2862 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2863 __d_rehash(target);
2864 fsnotify_update_flags(target);
1da177e4 2865 }
076515fc
AV
2866 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2867 __d_rehash(dentry);
2868 fsnotify_update_flags(dentry);
0bf3d5c1 2869 fscrypt_handle_d_move(dentry);
1da177e4 2870
31e6b01f
NP
2871 write_seqcount_end(&target->d_seq);
2872 write_seqcount_end(&dentry->d_seq);
2873
84e710da
AV
2874 if (dir)
2875 end_dir_add(dir, n);
076515fc
AV
2876
2877 if (dentry->d_parent != old_parent)
2878 spin_unlock(&dentry->d_parent->d_lock);
2879 if (dentry != old_parent)
2880 spin_unlock(&old_parent->d_lock);
2881 spin_unlock(&target->d_lock);
2882 spin_unlock(&dentry->d_lock);
18367501
AV
2883}
2884
2885/*
2886 * d_move - move a dentry
2887 * @dentry: entry to move
2888 * @target: new dentry
2889 *
2890 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2891 * dcache entries should not be moved in this way. See the locking
2892 * requirements for __d_move.
18367501
AV
2893 */
2894void d_move(struct dentry *dentry, struct dentry *target)
2895{
2896 write_seqlock(&rename_lock);
da1ce067 2897 __d_move(dentry, target, false);
1da177e4 2898 write_sequnlock(&rename_lock);
9eaef27b 2899}
ec4f8605 2900EXPORT_SYMBOL(d_move);
1da177e4 2901
da1ce067
MS
2902/*
2903 * d_exchange - exchange two dentries
2904 * @dentry1: first dentry
2905 * @dentry2: second dentry
2906 */
2907void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2908{
2909 write_seqlock(&rename_lock);
2910
2911 WARN_ON(!dentry1->d_inode);
2912 WARN_ON(!dentry2->d_inode);
2913 WARN_ON(IS_ROOT(dentry1));
2914 WARN_ON(IS_ROOT(dentry2));
2915
2916 __d_move(dentry1, dentry2, true);
2917
2918 write_sequnlock(&rename_lock);
2919}
a3a49a17 2920EXPORT_SYMBOL_GPL(d_exchange);
da1ce067 2921
e2761a11
OH
2922/**
2923 * d_ancestor - search for an ancestor
2924 * @p1: ancestor dentry
2925 * @p2: child dentry
2926 *
2927 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2928 * an ancestor of p2, else NULL.
9eaef27b 2929 */
e2761a11 2930struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2931{
2932 struct dentry *p;
2933
871c0067 2934 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2935 if (p->d_parent == p1)
e2761a11 2936 return p;
9eaef27b 2937 }
e2761a11 2938 return NULL;
9eaef27b
TM
2939}
2940
2941/*
2942 * This helper attempts to cope with remotely renamed directories
2943 *
2944 * It assumes that the caller is already holding
a03e283b 2945 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2946 *
2947 * Note: If ever the locking in lock_rename() changes, then please
2948 * remember to update this too...
9eaef27b 2949 */
b5ae6b15 2950static int __d_unalias(struct inode *inode,
873feea0 2951 struct dentry *dentry, struct dentry *alias)
9eaef27b 2952{
9902af79
AV
2953 struct mutex *m1 = NULL;
2954 struct rw_semaphore *m2 = NULL;
3d330dc1 2955 int ret = -ESTALE;
9eaef27b
TM
2956
2957 /* If alias and dentry share a parent, then no extra locks required */
2958 if (alias->d_parent == dentry->d_parent)
2959 goto out_unalias;
2960
9eaef27b 2961 /* See lock_rename() */
9eaef27b
TM
2962 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2963 goto out_err;
2964 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2965 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2966 goto out_err;
9902af79 2967 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2968out_unalias:
8ed936b5 2969 __d_move(alias, dentry, false);
b5ae6b15 2970 ret = 0;
9eaef27b 2971out_err:
9eaef27b 2972 if (m2)
9902af79 2973 up_read(m2);
9eaef27b
TM
2974 if (m1)
2975 mutex_unlock(m1);
2976 return ret;
2977}
2978
3f70bd51
BF
2979/**
2980 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2981 * @inode: the inode which may have a disconnected dentry
2982 * @dentry: a negative dentry which we want to point to the inode.
2983 *
da093a9b
BF
2984 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2985 * place of the given dentry and return it, else simply d_add the inode
2986 * to the dentry and return NULL.
3f70bd51 2987 *
908790fa
BF
2988 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2989 * we should error out: directories can't have multiple aliases.
2990 *
3f70bd51
BF
2991 * This is needed in the lookup routine of any filesystem that is exportable
2992 * (via knfsd) so that we can build dcache paths to directories effectively.
2993 *
2994 * If a dentry was found and moved, then it is returned. Otherwise NULL
2995 * is returned. This matches the expected return value of ->lookup.
2996 *
2997 * Cluster filesystems may call this function with a negative, hashed dentry.
2998 * In that case, we know that the inode will be a regular file, and also this
2999 * will only occur during atomic_open. So we need to check for the dentry
3000 * being already hashed only in the final case.
3001 */
3002struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3003{
3f70bd51
BF
3004 if (IS_ERR(inode))
3005 return ERR_CAST(inode);
3006
770bfad8
DH
3007 BUG_ON(!d_unhashed(dentry));
3008
de689f5e 3009 if (!inode)
b5ae6b15 3010 goto out;
de689f5e 3011
b9680917 3012 security_d_instantiate(dentry, inode);
873feea0 3013 spin_lock(&inode->i_lock);
9eaef27b 3014 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3015 struct dentry *new = __d_find_any_alias(inode);
3016 if (unlikely(new)) {
a03e283b
EB
3017 /* The reference to new ensures it remains an alias */
3018 spin_unlock(&inode->i_lock);
18367501 3019 write_seqlock(&rename_lock);
b5ae6b15
AV
3020 if (unlikely(d_ancestor(new, dentry))) {
3021 write_sequnlock(&rename_lock);
b5ae6b15
AV
3022 dput(new);
3023 new = ERR_PTR(-ELOOP);
3024 pr_warn_ratelimited(
3025 "VFS: Lookup of '%s' in %s %s"
3026 " would have caused loop\n",
3027 dentry->d_name.name,
3028 inode->i_sb->s_type->name,
3029 inode->i_sb->s_id);
3030 } else if (!IS_ROOT(new)) {
076515fc 3031 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3032 int err = __d_unalias(inode, dentry, new);
18367501 3033 write_sequnlock(&rename_lock);
b5ae6b15
AV
3034 if (err) {
3035 dput(new);
3036 new = ERR_PTR(err);
3037 }
076515fc 3038 dput(old_parent);
18367501 3039 } else {
b5ae6b15
AV
3040 __d_move(new, dentry, false);
3041 write_sequnlock(&rename_lock);
dd179946 3042 }
b5ae6b15
AV
3043 iput(inode);
3044 return new;
9eaef27b 3045 }
770bfad8 3046 }
b5ae6b15 3047out:
ed782b5a 3048 __d_add(dentry, inode);
b5ae6b15 3049 return NULL;
770bfad8 3050}
b5ae6b15 3051EXPORT_SYMBOL(d_splice_alias);
770bfad8 3052
1da177e4
LT
3053/*
3054 * Test whether new_dentry is a subdirectory of old_dentry.
3055 *
3056 * Trivially implemented using the dcache structure
3057 */
3058
3059/**
3060 * is_subdir - is new dentry a subdirectory of old_dentry
3061 * @new_dentry: new dentry
3062 * @old_dentry: old dentry
3063 *
a6e5787f
YB
3064 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3065 * Returns false otherwise.
1da177e4
LT
3066 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3067 */
3068
a6e5787f 3069bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3070{
a6e5787f 3071 bool result;
949854d0 3072 unsigned seq;
1da177e4 3073
e2761a11 3074 if (new_dentry == old_dentry)
a6e5787f 3075 return true;
e2761a11 3076
e2761a11 3077 do {
1da177e4 3078 /* for restarting inner loop in case of seq retry */
1da177e4 3079 seq = read_seqbegin(&rename_lock);
949854d0
NP
3080 /*
3081 * Need rcu_readlock to protect against the d_parent trashing
3082 * due to d_move
3083 */
3084 rcu_read_lock();
e2761a11 3085 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3086 result = true;
e2761a11 3087 else
a6e5787f 3088 result = false;
949854d0 3089 rcu_read_unlock();
1da177e4 3090 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3091
3092 return result;
3093}
e8f9e5b7 3094EXPORT_SYMBOL(is_subdir);
1da177e4 3095
db14fc3a 3096static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3097{
db14fc3a
MS
3098 struct dentry *root = data;
3099 if (dentry != root) {
3100 if (d_unhashed(dentry) || !dentry->d_inode)
3101 return D_WALK_SKIP;
1da177e4 3102
01ddc4ed
MS
3103 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3104 dentry->d_flags |= DCACHE_GENOCIDE;
3105 dentry->d_lockref.count--;
3106 }
1da177e4 3107 }
db14fc3a
MS
3108 return D_WALK_CONTINUE;
3109}
58db63d0 3110
db14fc3a
MS
3111void d_genocide(struct dentry *parent)
3112{
3a8e3611 3113 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3114}
3115
cbd4a5bc
AV
3116EXPORT_SYMBOL(d_genocide);
3117
60545d0d 3118void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3119{
60545d0d
AV
3120 inode_dec_link_count(inode);
3121 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3122 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3123 !d_unlinked(dentry));
3124 spin_lock(&dentry->d_parent->d_lock);
3125 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3126 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3127 (unsigned long long)inode->i_ino);
3128 spin_unlock(&dentry->d_lock);
3129 spin_unlock(&dentry->d_parent->d_lock);
3130 d_instantiate(dentry, inode);
1da177e4 3131}
60545d0d 3132EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3133
3134static __initdata unsigned long dhash_entries;
3135static int __init set_dhash_entries(char *str)
3136{
3137 if (!str)
3138 return 0;
3139 dhash_entries = simple_strtoul(str, &str, 0);
3140 return 1;
3141}
3142__setup("dhash_entries=", set_dhash_entries);
3143
3144static void __init dcache_init_early(void)
3145{
1da177e4
LT
3146 /* If hashes are distributed across NUMA nodes, defer
3147 * hash allocation until vmalloc space is available.
3148 */
3149 if (hashdist)
3150 return;
3151
3152 dentry_hashtable =
3153 alloc_large_system_hash("Dentry cache",
b07ad996 3154 sizeof(struct hlist_bl_head),
1da177e4
LT
3155 dhash_entries,
3156 13,
3d375d78 3157 HASH_EARLY | HASH_ZERO,
1da177e4 3158 &d_hash_shift,
b35d786b 3159 NULL,
31fe62b9 3160 0,
1da177e4 3161 0);
854d3e63 3162 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3163}
3164
74bf17cf 3165static void __init dcache_init(void)
1da177e4 3166{
3d375d78 3167 /*
1da177e4
LT
3168 * A constructor could be added for stable state like the lists,
3169 * but it is probably not worth it because of the cache nature
3d375d78 3170 * of the dcache.
1da177e4 3171 */
80344266
DW
3172 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3173 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3174 d_iname);
1da177e4
LT
3175
3176 /* Hash may have been set up in dcache_init_early */
3177 if (!hashdist)
3178 return;
3179
3180 dentry_hashtable =
3181 alloc_large_system_hash("Dentry cache",
b07ad996 3182 sizeof(struct hlist_bl_head),
1da177e4
LT
3183 dhash_entries,
3184 13,
3d375d78 3185 HASH_ZERO,
1da177e4 3186 &d_hash_shift,
b35d786b 3187 NULL,
31fe62b9 3188 0,
1da177e4 3189 0);
854d3e63 3190 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3191}
3192
3193/* SLAB cache for __getname() consumers */
e18b890b 3194struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3195EXPORT_SYMBOL(names_cachep);
1da177e4 3196
1da177e4
LT
3197void __init vfs_caches_init_early(void)
3198{
6916363f
SAS
3199 int i;
3200
3201 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3202 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3203
1da177e4
LT
3204 dcache_init_early();
3205 inode_init_early();
3206}
3207
4248b0da 3208void __init vfs_caches_init(void)
1da177e4 3209{
6a9b8820
DW
3210 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3211 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3212
74bf17cf
DC
3213 dcache_init();
3214 inode_init();
4248b0da
MG
3215 files_init();
3216 files_maxfiles_init();
74bf17cf 3217 mnt_init();
1da177e4
LT
3218 bdev_cache_init();
3219 chrdev_init();
3220}