]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/dcache.c
ceph: use flag bit for at_end readdir flag
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
07f3f05c 39#include "internal.h"
1da177e4 40
789680d1
NP
41/*
42 * Usage:
873feea0
NP
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
23044507
NP
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
b7ab39f6 55 * - d_count
da502956 56 * - d_unhashed()
2fd6b7f5
NP
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
b23fb0a6 59 * - d_alias, d_inode
789680d1
NP
60 *
61 * Ordering:
873feea0 62 * dentry->d_inode->i_lock
b5c84bf6
NP
63 * dentry->d_lock
64 * dcache_lru_lock
ceb5bdc2
NP
65 * dcache_hash_bucket lock
66 * s_anon lock
789680d1 67 *
da502956
NP
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
789680d1
NP
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
fa3536cc 79int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
80EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
23044507 82static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 84
949854d0 85EXPORT_SYMBOL(rename_lock);
1da177e4 86
e18b890b 87static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 88
1da177e4
LT
89/*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97#define D_HASHBITS d_hash_shift
98#define D_HASHMASK d_hash_mask
99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
b07ad996 105static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
106 unsigned long hash)
107{
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3e880fb5 118static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
121static int get_nr_dentry(void)
122{
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128}
129
312d3ca8
CH
130int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132{
3e880fb5 133 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135}
136#endif
137
9c82ab9c 138static void __d_free(struct rcu_head *head)
1da177e4 139{
9c82ab9c
CH
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
fd217f4d 142 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146}
147
148/*
b5c84bf6 149 * no locks, please.
1da177e4
LT
150 */
151static void d_free(struct dentry *dentry)
152{
b7ab39f6 153 BUG_ON(dentry->d_count);
3e880fb5 154 this_cpu_dec(nr_dentry);
1da177e4
LT
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
312d3ca8 157
dea3667b
LT
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 160 __d_free(&dentry->d_u.d_rcu);
b3423415 161 else
9c82ab9c 162 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
163}
164
31e6b01f
NP
165/**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 167 * @dentry: the target dentry
31e6b01f
NP
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173{
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177}
178
1da177e4
LT
179/*
180 * Release the dentry's inode, using the filesystem
31e6b01f
NP
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
1da177e4 183 */
858119e1 184static void dentry_iput(struct dentry * dentry)
31f3e0b3 185 __releases(dentry->d_lock)
873feea0 186 __releases(dentry->d_inode->i_lock)
1da177e4
LT
187{
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
873feea0 193 spin_unlock(&inode->i_lock);
f805fbda
LT
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
1da177e4
LT
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
1da177e4
LT
202 }
203}
204
31e6b01f
NP
205/*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
873feea0 211 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
212{
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
873feea0 218 spin_unlock(&inode->i_lock);
31e6b01f
NP
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225}
226
da3bbdd4 227/*
23044507 228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
229 */
230static void dentry_lru_add(struct dentry *dentry)
231{
a4633357 232 if (list_empty(&dentry->d_lru)) {
23044507 233 spin_lock(&dcache_lru_lock);
a4633357
CH
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 236 dentry_stat.nr_unused++;
23044507 237 spin_unlock(&dcache_lru_lock);
a4633357 238 }
da3bbdd4
KM
239}
240
23044507
NP
241static void __dentry_lru_del(struct dentry *dentry)
242{
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246}
247
da3bbdd4
KM
248static void dentry_lru_del(struct dentry *dentry)
249{
250 if (!list_empty(&dentry->d_lru)) {
23044507
NP
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
254 }
255}
256
a4633357 257static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 258{
23044507 259 spin_lock(&dcache_lru_lock);
a4633357
CH
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 263 dentry_stat.nr_unused++;
a4633357
CH
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 266 }
23044507 267 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
268}
269
d52b9086
MS
270/**
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
ff5fdb61 273 * @parent: parent dentry
d52b9086 274 *
31f3e0b3 275 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
276 *
277 * If this is the root of the dentry tree, return NULL.
23044507 278 *
b5c84bf6
NP
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
d52b9086 281 */
2fd6b7f5 282static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 283 __releases(dentry->d_lock)
2fd6b7f5 284 __releases(parent->d_lock)
873feea0 285 __releases(dentry->d_inode->i_lock)
d52b9086 286{
d52b9086 287 list_del(&dentry->d_u.d_child);
c83ce989
TM
288 /*
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
291 */
292 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
293 if (parent)
294 spin_unlock(&parent->d_lock);
d52b9086 295 dentry_iput(dentry);
b7ab39f6
NP
296 /*
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
299 */
d52b9086 300 d_free(dentry);
871c0067 301 return parent;
d52b9086
MS
302}
303
789680d1
NP
304/**
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
307 *
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
313 *
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
316 *
317 * __d_drop requires dentry->d_lock.
318 */
319void __d_drop(struct dentry *dentry)
320{
dea3667b 321 if (!d_unhashed(dentry)) {
b07ad996 322 struct hlist_bl_head *b;
dea3667b 323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
b07ad996 324 b = &dentry->d_sb->s_anon;
dea3667b 325 else
ceb5bdc2 326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
dea3667b 327
1879fd6a 328 hlist_bl_lock(b);
dea3667b
LT
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
1879fd6a 331 hlist_bl_unlock(b);
dea3667b
LT
332
333 dentry_rcuwalk_barrier(dentry);
789680d1
NP
334 }
335}
336EXPORT_SYMBOL(__d_drop);
337
338void d_drop(struct dentry *dentry)
339{
789680d1
NP
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
789680d1
NP
343}
344EXPORT_SYMBOL(d_drop);
345
77812a1e
NP
346/*
347 * Finish off a dentry we've decided to kill.
348 * dentry->d_lock must be held, returns with it unlocked.
349 * If ref is non-zero, then decrement the refcount too.
350 * Returns dentry requiring refcount drop, or NULL if we're done.
351 */
352static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
353 __releases(dentry->d_lock)
354{
873feea0 355 struct inode *inode;
77812a1e
NP
356 struct dentry *parent;
357
873feea0
NP
358 inode = dentry->d_inode;
359 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
360relock:
361 spin_unlock(&dentry->d_lock);
362 cpu_relax();
363 return dentry; /* try again with same dentry */
364 }
365 if (IS_ROOT(dentry))
366 parent = NULL;
367 else
368 parent = dentry->d_parent;
369 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
370 if (inode)
371 spin_unlock(&inode->i_lock);
77812a1e
NP
372 goto relock;
373 }
31e6b01f 374
77812a1e
NP
375 if (ref)
376 dentry->d_count--;
377 /* if dentry was on the d_lru list delete it from there */
378 dentry_lru_del(dentry);
379 /* if it was on the hash then remove it */
380 __d_drop(dentry);
381 return d_kill(dentry, parent);
382}
383
1da177e4
LT
384/*
385 * This is dput
386 *
387 * This is complicated by the fact that we do not want to put
388 * dentries that are no longer on any hash chain on the unused
389 * list: we'd much rather just get rid of them immediately.
390 *
391 * However, that implies that we have to traverse the dentry
392 * tree upwards to the parents which might _also_ now be
393 * scheduled for deletion (it may have been only waiting for
394 * its last child to go away).
395 *
396 * This tail recursion is done by hand as we don't want to depend
397 * on the compiler to always get this right (gcc generally doesn't).
398 * Real recursion would eat up our stack space.
399 */
400
401/*
402 * dput - release a dentry
403 * @dentry: dentry to release
404 *
405 * Release a dentry. This will drop the usage count and if appropriate
406 * call the dentry unlink method as well as removing it from the queues and
407 * releasing its resources. If the parent dentries were scheduled for release
408 * they too may now get deleted.
1da177e4 409 */
1da177e4
LT
410void dput(struct dentry *dentry)
411{
412 if (!dentry)
413 return;
414
415repeat:
b7ab39f6 416 if (dentry->d_count == 1)
1da177e4 417 might_sleep();
1da177e4 418 spin_lock(&dentry->d_lock);
61f3dee4
NP
419 BUG_ON(!dentry->d_count);
420 if (dentry->d_count > 1) {
421 dentry->d_count--;
1da177e4 422 spin_unlock(&dentry->d_lock);
1da177e4
LT
423 return;
424 }
425
fb045adb 426 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 427 if (dentry->d_op->d_delete(dentry))
61f3dee4 428 goto kill_it;
1da177e4 429 }
265ac902 430
1da177e4
LT
431 /* Unreachable? Get rid of it */
432 if (d_unhashed(dentry))
433 goto kill_it;
265ac902
NP
434
435 /* Otherwise leave it cached and ensure it's on the LRU */
436 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 437 dentry_lru_add(dentry);
265ac902 438
61f3dee4
NP
439 dentry->d_count--;
440 spin_unlock(&dentry->d_lock);
1da177e4
LT
441 return;
442
d52b9086 443kill_it:
77812a1e 444 dentry = dentry_kill(dentry, 1);
d52b9086
MS
445 if (dentry)
446 goto repeat;
1da177e4 447}
ec4f8605 448EXPORT_SYMBOL(dput);
1da177e4
LT
449
450/**
451 * d_invalidate - invalidate a dentry
452 * @dentry: dentry to invalidate
453 *
454 * Try to invalidate the dentry if it turns out to be
455 * possible. If there are other dentries that can be
456 * reached through this one we can't delete it and we
457 * return -EBUSY. On success we return 0.
458 *
459 * no dcache lock.
460 */
461
462int d_invalidate(struct dentry * dentry)
463{
464 /*
465 * If it's already been dropped, return OK.
466 */
da502956 467 spin_lock(&dentry->d_lock);
1da177e4 468 if (d_unhashed(dentry)) {
da502956 469 spin_unlock(&dentry->d_lock);
1da177e4
LT
470 return 0;
471 }
472 /*
473 * Check whether to do a partial shrink_dcache
474 * to get rid of unused child entries.
475 */
476 if (!list_empty(&dentry->d_subdirs)) {
da502956 477 spin_unlock(&dentry->d_lock);
1da177e4 478 shrink_dcache_parent(dentry);
da502956 479 spin_lock(&dentry->d_lock);
1da177e4
LT
480 }
481
482 /*
483 * Somebody else still using it?
484 *
485 * If it's a directory, we can't drop it
486 * for fear of somebody re-populating it
487 * with children (even though dropping it
488 * would make it unreachable from the root,
489 * we might still populate it if it was a
490 * working directory or similar).
491 */
b7ab39f6 492 if (dentry->d_count > 1) {
1da177e4
LT
493 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
494 spin_unlock(&dentry->d_lock);
1da177e4
LT
495 return -EBUSY;
496 }
497 }
498
499 __d_drop(dentry);
500 spin_unlock(&dentry->d_lock);
1da177e4
LT
501 return 0;
502}
ec4f8605 503EXPORT_SYMBOL(d_invalidate);
1da177e4 504
b5c84bf6 505/* This must be called with d_lock held */
dc0474be 506static inline void __dget_dlock(struct dentry *dentry)
23044507 507{
b7ab39f6 508 dentry->d_count++;
23044507
NP
509}
510
dc0474be 511static inline void __dget(struct dentry *dentry)
1da177e4 512{
23044507 513 spin_lock(&dentry->d_lock);
dc0474be 514 __dget_dlock(dentry);
23044507 515 spin_unlock(&dentry->d_lock);
1da177e4
LT
516}
517
b7ab39f6
NP
518struct dentry *dget_parent(struct dentry *dentry)
519{
520 struct dentry *ret;
521
522repeat:
a734eb45
NP
523 /*
524 * Don't need rcu_dereference because we re-check it was correct under
525 * the lock.
526 */
527 rcu_read_lock();
b7ab39f6 528 ret = dentry->d_parent;
a734eb45
NP
529 if (!ret) {
530 rcu_read_unlock();
b7ab39f6
NP
531 goto out;
532 }
a734eb45
NP
533 spin_lock(&ret->d_lock);
534 if (unlikely(ret != dentry->d_parent)) {
535 spin_unlock(&ret->d_lock);
536 rcu_read_unlock();
b7ab39f6
NP
537 goto repeat;
538 }
a734eb45 539 rcu_read_unlock();
b7ab39f6
NP
540 BUG_ON(!ret->d_count);
541 ret->d_count++;
542 spin_unlock(&ret->d_lock);
543out:
b7ab39f6
NP
544 return ret;
545}
546EXPORT_SYMBOL(dget_parent);
547
1da177e4
LT
548/**
549 * d_find_alias - grab a hashed alias of inode
550 * @inode: inode in question
551 * @want_discon: flag, used by d_splice_alias, to request
552 * that only a DISCONNECTED alias be returned.
553 *
554 * If inode has a hashed alias, or is a directory and has any alias,
555 * acquire the reference to alias and return it. Otherwise return NULL.
556 * Notice that if inode is a directory there can be only one alias and
557 * it can be unhashed only if it has no children, or if it is the root
558 * of a filesystem.
559 *
21c0d8fd 560 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 561 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 562 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 563 */
da502956 564static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 565{
da502956 566 struct dentry *alias, *discon_alias;
1da177e4 567
da502956
NP
568again:
569 discon_alias = NULL;
570 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
571 spin_lock(&alias->d_lock);
1da177e4 572 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 573 if (IS_ROOT(alias) &&
da502956 574 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 575 discon_alias = alias;
da502956 576 } else if (!want_discon) {
dc0474be 577 __dget_dlock(alias);
da502956
NP
578 spin_unlock(&alias->d_lock);
579 return alias;
580 }
581 }
582 spin_unlock(&alias->d_lock);
583 }
584 if (discon_alias) {
585 alias = discon_alias;
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 590 __dget_dlock(alias);
da502956 591 spin_unlock(&alias->d_lock);
1da177e4
LT
592 return alias;
593 }
594 }
da502956
NP
595 spin_unlock(&alias->d_lock);
596 goto again;
1da177e4 597 }
da502956 598 return NULL;
1da177e4
LT
599}
600
da502956 601struct dentry *d_find_alias(struct inode *inode)
1da177e4 602{
214fda1f
DH
603 struct dentry *de = NULL;
604
605 if (!list_empty(&inode->i_dentry)) {
873feea0 606 spin_lock(&inode->i_lock);
214fda1f 607 de = __d_find_alias(inode, 0);
873feea0 608 spin_unlock(&inode->i_lock);
214fda1f 609 }
1da177e4
LT
610 return de;
611}
ec4f8605 612EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
613
614/*
615 * Try to kill dentries associated with this inode.
616 * WARNING: you must own a reference to inode.
617 */
618void d_prune_aliases(struct inode *inode)
619{
0cdca3f9 620 struct dentry *dentry;
1da177e4 621restart:
873feea0 622 spin_lock(&inode->i_lock);
0cdca3f9 623 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 624 spin_lock(&dentry->d_lock);
b7ab39f6 625 if (!dentry->d_count) {
dc0474be 626 __dget_dlock(dentry);
1da177e4
LT
627 __d_drop(dentry);
628 spin_unlock(&dentry->d_lock);
873feea0 629 spin_unlock(&inode->i_lock);
1da177e4
LT
630 dput(dentry);
631 goto restart;
632 }
633 spin_unlock(&dentry->d_lock);
634 }
873feea0 635 spin_unlock(&inode->i_lock);
1da177e4 636}
ec4f8605 637EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
638
639/*
77812a1e
NP
640 * Try to throw away a dentry - free the inode, dput the parent.
641 * Requires dentry->d_lock is held, and dentry->d_count == 0.
642 * Releases dentry->d_lock.
d702ccb3 643 *
77812a1e 644 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 645 */
77812a1e 646static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 647 __releases(dentry->d_lock)
1da177e4 648{
77812a1e 649 struct dentry *parent;
d52b9086 650
77812a1e 651 parent = dentry_kill(dentry, 0);
d52b9086 652 /*
77812a1e
NP
653 * If dentry_kill returns NULL, we have nothing more to do.
654 * if it returns the same dentry, trylocks failed. In either
655 * case, just loop again.
656 *
657 * Otherwise, we need to prune ancestors too. This is necessary
658 * to prevent quadratic behavior of shrink_dcache_parent(), but
659 * is also expected to be beneficial in reducing dentry cache
660 * fragmentation.
d52b9086 661 */
77812a1e
NP
662 if (!parent)
663 return;
664 if (parent == dentry)
665 return;
666
667 /* Prune ancestors. */
668 dentry = parent;
d52b9086 669 while (dentry) {
b7ab39f6 670 spin_lock(&dentry->d_lock);
89e60548
NP
671 if (dentry->d_count > 1) {
672 dentry->d_count--;
673 spin_unlock(&dentry->d_lock);
674 return;
675 }
77812a1e 676 dentry = dentry_kill(dentry, 1);
d52b9086 677 }
1da177e4
LT
678}
679
3049cfe2 680static void shrink_dentry_list(struct list_head *list)
1da177e4 681{
da3bbdd4 682 struct dentry *dentry;
da3bbdd4 683
ec33679d
NP
684 rcu_read_lock();
685 for (;;) {
ec33679d
NP
686 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
687 if (&dentry->d_lru == list)
688 break; /* empty */
689 spin_lock(&dentry->d_lock);
690 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
691 spin_unlock(&dentry->d_lock);
23044507
NP
692 continue;
693 }
694
1da177e4
LT
695 /*
696 * We found an inuse dentry which was not removed from
da3bbdd4
KM
697 * the LRU because of laziness during lookup. Do not free
698 * it - just keep it off the LRU list.
1da177e4 699 */
b7ab39f6 700 if (dentry->d_count) {
ec33679d 701 dentry_lru_del(dentry);
da3bbdd4 702 spin_unlock(&dentry->d_lock);
1da177e4
LT
703 continue;
704 }
ec33679d 705
ec33679d 706 rcu_read_unlock();
77812a1e
NP
707
708 try_prune_one_dentry(dentry);
709
ec33679d 710 rcu_read_lock();
da3bbdd4 711 }
ec33679d 712 rcu_read_unlock();
3049cfe2
CH
713}
714
715/**
716 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
717 * @sb: superblock to shrink dentry LRU.
718 * @count: number of entries to prune
719 * @flags: flags to control the dentry processing
720 *
721 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
722 */
723static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
724{
725 /* called from prune_dcache() and shrink_dcache_parent() */
726 struct dentry *dentry;
727 LIST_HEAD(referenced);
728 LIST_HEAD(tmp);
729 int cnt = *count;
730
23044507
NP
731relock:
732 spin_lock(&dcache_lru_lock);
3049cfe2
CH
733 while (!list_empty(&sb->s_dentry_lru)) {
734 dentry = list_entry(sb->s_dentry_lru.prev,
735 struct dentry, d_lru);
736 BUG_ON(dentry->d_sb != sb);
737
23044507
NP
738 if (!spin_trylock(&dentry->d_lock)) {
739 spin_unlock(&dcache_lru_lock);
740 cpu_relax();
741 goto relock;
742 }
743
3049cfe2
CH
744 /*
745 * If we are honouring the DCACHE_REFERENCED flag and the
746 * dentry has this flag set, don't free it. Clear the flag
747 * and put it back on the LRU.
748 */
23044507
NP
749 if (flags & DCACHE_REFERENCED &&
750 dentry->d_flags & DCACHE_REFERENCED) {
751 dentry->d_flags &= ~DCACHE_REFERENCED;
752 list_move(&dentry->d_lru, &referenced);
3049cfe2 753 spin_unlock(&dentry->d_lock);
23044507
NP
754 } else {
755 list_move_tail(&dentry->d_lru, &tmp);
756 spin_unlock(&dentry->d_lock);
757 if (!--cnt)
758 break;
3049cfe2 759 }
ec33679d 760 cond_resched_lock(&dcache_lru_lock);
3049cfe2 761 }
da3bbdd4
KM
762 if (!list_empty(&referenced))
763 list_splice(&referenced, &sb->s_dentry_lru);
23044507 764 spin_unlock(&dcache_lru_lock);
ec33679d
NP
765
766 shrink_dentry_list(&tmp);
767
768 *count = cnt;
da3bbdd4
KM
769}
770
771/**
772 * prune_dcache - shrink the dcache
773 * @count: number of entries to try to free
774 *
775 * Shrink the dcache. This is done when we need more memory, or simply when we
776 * need to unmount something (at which point we need to unuse all dentries).
777 *
778 * This function may fail to free any resources if all the dentries are in use.
779 */
780static void prune_dcache(int count)
781{
dca33252 782 struct super_block *sb, *p = NULL;
da3bbdd4 783 int w_count;
86c8749e 784 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
785 int prune_ratio;
786 int pruned;
787
788 if (unused == 0 || count == 0)
789 return;
da3bbdd4
KM
790 if (count >= unused)
791 prune_ratio = 1;
792 else
793 prune_ratio = unused / count;
794 spin_lock(&sb_lock);
dca33252 795 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
796 if (list_empty(&sb->s_instances))
797 continue;
da3bbdd4 798 if (sb->s_nr_dentry_unused == 0)
1da177e4 799 continue;
da3bbdd4
KM
800 sb->s_count++;
801 /* Now, we reclaim unused dentrins with fairness.
802 * We reclaim them same percentage from each superblock.
803 * We calculate number of dentries to scan on this sb
804 * as follows, but the implementation is arranged to avoid
805 * overflows:
806 * number of dentries to scan on this sb =
807 * count * (number of dentries on this sb /
808 * number of dentries in the machine)
0feae5c4 809 */
da3bbdd4
KM
810 spin_unlock(&sb_lock);
811 if (prune_ratio != 1)
812 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
813 else
814 w_count = sb->s_nr_dentry_unused;
815 pruned = w_count;
0feae5c4 816 /*
da3bbdd4
KM
817 * We need to be sure this filesystem isn't being unmounted,
818 * otherwise we could race with generic_shutdown_super(), and
819 * end up holding a reference to an inode while the filesystem
820 * is unmounted. So we try to get s_umount, and make sure
821 * s_root isn't NULL.
0feae5c4 822 */
da3bbdd4
KM
823 if (down_read_trylock(&sb->s_umount)) {
824 if ((sb->s_root != NULL) &&
825 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
826 __shrink_dcache_sb(sb, &w_count,
827 DCACHE_REFERENCED);
828 pruned -= w_count;
0feae5c4 829 }
da3bbdd4 830 up_read(&sb->s_umount);
0feae5c4 831 }
da3bbdd4 832 spin_lock(&sb_lock);
dca33252
AV
833 if (p)
834 __put_super(p);
da3bbdd4 835 count -= pruned;
dca33252 836 p = sb;
79893c17
AV
837 /* more work left to do? */
838 if (count <= 0)
839 break;
1da177e4 840 }
dca33252
AV
841 if (p)
842 __put_super(p);
da3bbdd4 843 spin_unlock(&sb_lock);
1da177e4
LT
844}
845
1da177e4
LT
846/**
847 * shrink_dcache_sb - shrink dcache for a superblock
848 * @sb: superblock
849 *
3049cfe2
CH
850 * Shrink the dcache for the specified super block. This is used to free
851 * the dcache before unmounting a file system.
1da177e4 852 */
3049cfe2 853void shrink_dcache_sb(struct super_block *sb)
1da177e4 854{
3049cfe2
CH
855 LIST_HEAD(tmp);
856
23044507 857 spin_lock(&dcache_lru_lock);
3049cfe2
CH
858 while (!list_empty(&sb->s_dentry_lru)) {
859 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 860 spin_unlock(&dcache_lru_lock);
3049cfe2 861 shrink_dentry_list(&tmp);
ec33679d 862 spin_lock(&dcache_lru_lock);
3049cfe2 863 }
23044507 864 spin_unlock(&dcache_lru_lock);
1da177e4 865}
ec4f8605 866EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 867
c636ebdb
DH
868/*
869 * destroy a single subtree of dentries for unmount
870 * - see the comments on shrink_dcache_for_umount() for a description of the
871 * locking
872 */
873static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
874{
875 struct dentry *parent;
f8713576 876 unsigned detached = 0;
c636ebdb
DH
877
878 BUG_ON(!IS_ROOT(dentry));
879
880 /* detach this root from the system */
23044507 881 spin_lock(&dentry->d_lock);
a4633357 882 dentry_lru_del(dentry);
c636ebdb 883 __d_drop(dentry);
da502956 884 spin_unlock(&dentry->d_lock);
c636ebdb
DH
885
886 for (;;) {
887 /* descend to the first leaf in the current subtree */
888 while (!list_empty(&dentry->d_subdirs)) {
889 struct dentry *loop;
890
891 /* this is a branch with children - detach all of them
892 * from the system in one go */
2fd6b7f5 893 spin_lock(&dentry->d_lock);
c636ebdb
DH
894 list_for_each_entry(loop, &dentry->d_subdirs,
895 d_u.d_child) {
2fd6b7f5
NP
896 spin_lock_nested(&loop->d_lock,
897 DENTRY_D_LOCK_NESTED);
a4633357 898 dentry_lru_del(loop);
c636ebdb 899 __d_drop(loop);
da502956 900 spin_unlock(&loop->d_lock);
c636ebdb 901 }
2fd6b7f5 902 spin_unlock(&dentry->d_lock);
c636ebdb
DH
903
904 /* move to the first child */
905 dentry = list_entry(dentry->d_subdirs.next,
906 struct dentry, d_u.d_child);
907 }
908
909 /* consume the dentries from this leaf up through its parents
910 * until we find one with children or run out altogether */
911 do {
912 struct inode *inode;
913
b7ab39f6 914 if (dentry->d_count != 0) {
c636ebdb
DH
915 printk(KERN_ERR
916 "BUG: Dentry %p{i=%lx,n=%s}"
917 " still in use (%d)"
918 " [unmount of %s %s]\n",
919 dentry,
920 dentry->d_inode ?
921 dentry->d_inode->i_ino : 0UL,
922 dentry->d_name.name,
b7ab39f6 923 dentry->d_count,
c636ebdb
DH
924 dentry->d_sb->s_type->name,
925 dentry->d_sb->s_id);
926 BUG();
927 }
928
2fd6b7f5 929 if (IS_ROOT(dentry)) {
c636ebdb 930 parent = NULL;
2fd6b7f5
NP
931 list_del(&dentry->d_u.d_child);
932 } else {
871c0067 933 parent = dentry->d_parent;
b7ab39f6
NP
934 spin_lock(&parent->d_lock);
935 parent->d_count--;
2fd6b7f5 936 list_del(&dentry->d_u.d_child);
b7ab39f6 937 spin_unlock(&parent->d_lock);
871c0067 938 }
c636ebdb 939
f8713576 940 detached++;
c636ebdb
DH
941
942 inode = dentry->d_inode;
943 if (inode) {
944 dentry->d_inode = NULL;
945 list_del_init(&dentry->d_alias);
946 if (dentry->d_op && dentry->d_op->d_iput)
947 dentry->d_op->d_iput(dentry, inode);
948 else
949 iput(inode);
950 }
951
952 d_free(dentry);
953
954 /* finished when we fall off the top of the tree,
955 * otherwise we ascend to the parent and move to the
956 * next sibling if there is one */
957 if (!parent)
312d3ca8 958 return;
c636ebdb 959 dentry = parent;
c636ebdb
DH
960 } while (list_empty(&dentry->d_subdirs));
961
962 dentry = list_entry(dentry->d_subdirs.next,
963 struct dentry, d_u.d_child);
964 }
965}
966
967/*
968 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 969 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
970 * - the superblock is detached from all mountings and open files, so the
971 * dentry trees will not be rearranged by the VFS
972 * - s_umount is write-locked, so the memory pressure shrinker will ignore
973 * any dentries belonging to this superblock that it comes across
974 * - the filesystem itself is no longer permitted to rearrange the dentries
975 * in this superblock
976 */
977void shrink_dcache_for_umount(struct super_block *sb)
978{
979 struct dentry *dentry;
980
981 if (down_read_trylock(&sb->s_umount))
982 BUG();
983
984 dentry = sb->s_root;
985 sb->s_root = NULL;
b7ab39f6
NP
986 spin_lock(&dentry->d_lock);
987 dentry->d_count--;
988 spin_unlock(&dentry->d_lock);
c636ebdb
DH
989 shrink_dcache_for_umount_subtree(dentry);
990
ceb5bdc2
NP
991 while (!hlist_bl_empty(&sb->s_anon)) {
992 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
993 shrink_dcache_for_umount_subtree(dentry);
994 }
995}
996
c826cb7d
LT
997/*
998 * This tries to ascend one level of parenthood, but
999 * we can race with renaming, so we need to re-check
1000 * the parenthood after dropping the lock and check
1001 * that the sequence number still matches.
1002 */
1003static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1004{
1005 struct dentry *new = old->d_parent;
1006
1007 rcu_read_lock();
1008 spin_unlock(&old->d_lock);
1009 spin_lock(&new->d_lock);
1010
1011 /*
1012 * might go back up the wrong parent if we have had a rename
1013 * or deletion
1014 */
1015 if (new != old->d_parent ||
c83ce989 1016 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
1017 (!locked && read_seqretry(&rename_lock, seq))) {
1018 spin_unlock(&new->d_lock);
1019 new = NULL;
1020 }
1021 rcu_read_unlock();
1022 return new;
1023}
1024
1025
1da177e4
LT
1026/*
1027 * Search for at least 1 mount point in the dentry's subdirs.
1028 * We descend to the next level whenever the d_subdirs
1029 * list is non-empty and continue searching.
1030 */
1031
1032/**
1033 * have_submounts - check for mounts over a dentry
1034 * @parent: dentry to check.
1035 *
1036 * Return true if the parent or its subdirectories contain
1037 * a mount point
1038 */
1da177e4
LT
1039int have_submounts(struct dentry *parent)
1040{
949854d0 1041 struct dentry *this_parent;
1da177e4 1042 struct list_head *next;
949854d0 1043 unsigned seq;
58db63d0 1044 int locked = 0;
949854d0 1045
949854d0 1046 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1047again:
1048 this_parent = parent;
1da177e4 1049
1da177e4
LT
1050 if (d_mountpoint(parent))
1051 goto positive;
2fd6b7f5 1052 spin_lock(&this_parent->d_lock);
1da177e4
LT
1053repeat:
1054 next = this_parent->d_subdirs.next;
1055resume:
1056 while (next != &this_parent->d_subdirs) {
1057 struct list_head *tmp = next;
5160ee6f 1058 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1059 next = tmp->next;
2fd6b7f5
NP
1060
1061 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1062 /* Have we found a mount point ? */
2fd6b7f5
NP
1063 if (d_mountpoint(dentry)) {
1064 spin_unlock(&dentry->d_lock);
1065 spin_unlock(&this_parent->d_lock);
1da177e4 1066 goto positive;
2fd6b7f5 1067 }
1da177e4 1068 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1069 spin_unlock(&this_parent->d_lock);
1070 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1071 this_parent = dentry;
2fd6b7f5 1072 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1073 goto repeat;
1074 }
2fd6b7f5 1075 spin_unlock(&dentry->d_lock);
1da177e4
LT
1076 }
1077 /*
1078 * All done at this level ... ascend and resume the search.
1079 */
1080 if (this_parent != parent) {
c826cb7d
LT
1081 struct dentry *child = this_parent;
1082 this_parent = try_to_ascend(this_parent, locked, seq);
1083 if (!this_parent)
949854d0 1084 goto rename_retry;
949854d0 1085 next = child->d_u.d_child.next;
1da177e4
LT
1086 goto resume;
1087 }
2fd6b7f5 1088 spin_unlock(&this_parent->d_lock);
58db63d0 1089 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1090 goto rename_retry;
58db63d0
NP
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1da177e4
LT
1093 return 0; /* No mount points found in tree */
1094positive:
58db63d0 1095 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1096 goto rename_retry;
58db63d0
NP
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1da177e4 1099 return 1;
58db63d0
NP
1100
1101rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1da177e4 1105}
ec4f8605 1106EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1107
1108/*
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1114 *
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1121 */
1122static int select_parent(struct dentry * parent)
1123{
949854d0 1124 struct dentry *this_parent;
1da177e4 1125 struct list_head *next;
949854d0 1126 unsigned seq;
1da177e4 1127 int found = 0;
58db63d0 1128 int locked = 0;
1da177e4 1129
949854d0 1130 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1131again:
1132 this_parent = parent;
2fd6b7f5 1133 spin_lock(&this_parent->d_lock);
1da177e4
LT
1134repeat:
1135 next = this_parent->d_subdirs.next;
1136resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
5160ee6f 1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1140 next = tmp->next;
1141
2fd6b7f5 1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1143
1da177e4
LT
1144 /*
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1147 */
b7ab39f6 1148 if (!dentry->d_count) {
a4633357 1149 dentry_lru_move_tail(dentry);
1da177e4 1150 found++;
a4633357
CH
1151 } else {
1152 dentry_lru_del(dentry);
1da177e4
LT
1153 }
1154
1155 /*
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1159 */
2fd6b7f5
NP
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1da177e4 1162 goto out;
2fd6b7f5 1163 }
1da177e4
LT
1164
1165 /*
1166 * Descend a level if the d_subdirs list is non-empty.
1167 */
1168 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1171 this_parent = dentry;
2fd6b7f5 1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1173 goto repeat;
1174 }
2fd6b7f5
NP
1175
1176 spin_unlock(&dentry->d_lock);
1da177e4
LT
1177 }
1178 /*
1179 * All done at this level ... ascend and resume the search.
1180 */
1181 if (this_parent != parent) {
c826cb7d
LT
1182 struct dentry *child = this_parent;
1183 this_parent = try_to_ascend(this_parent, locked, seq);
1184 if (!this_parent)
949854d0 1185 goto rename_retry;
949854d0 1186 next = child->d_u.d_child.next;
1da177e4
LT
1187 goto resume;
1188 }
1189out:
2fd6b7f5 1190 spin_unlock(&this_parent->d_lock);
58db63d0 1191 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1192 goto rename_retry;
58db63d0
NP
1193 if (locked)
1194 write_sequnlock(&rename_lock);
1da177e4 1195 return found;
58db63d0
NP
1196
1197rename_retry:
1198 if (found)
1199 return found;
1200 locked = 1;
1201 write_seqlock(&rename_lock);
1202 goto again;
1da177e4
LT
1203}
1204
1205/**
1206 * shrink_dcache_parent - prune dcache
1207 * @parent: parent of entries to prune
1208 *
1209 * Prune the dcache to remove unused children of the parent dentry.
1210 */
1211
1212void shrink_dcache_parent(struct dentry * parent)
1213{
da3bbdd4 1214 struct super_block *sb = parent->d_sb;
1da177e4
LT
1215 int found;
1216
1217 while ((found = select_parent(parent)) != 0)
da3bbdd4 1218 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1219}
ec4f8605 1220EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1221
1da177e4 1222/*
1495f230 1223 * Scan `sc->nr_slab_to_reclaim' dentries and return the number which remain.
1da177e4
LT
1224 *
1225 * We need to avoid reentering the filesystem if the caller is performing a
1226 * GFP_NOFS allocation attempt. One example deadlock is:
1227 *
1228 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1229 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1230 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1231 *
1232 * In this case we return -1 to tell the caller that we baled.
1233 */
1495f230
YH
1234static int shrink_dcache_memory(struct shrinker *shrink,
1235 struct shrink_control *sc)
1da177e4 1236{
1495f230
YH
1237 int nr = sc->nr_to_scan;
1238 gfp_t gfp_mask = sc->gfp_mask;
1239
1da177e4
LT
1240 if (nr) {
1241 if (!(gfp_mask & __GFP_FS))
1242 return -1;
da3bbdd4 1243 prune_dcache(nr);
1da177e4 1244 }
312d3ca8 1245
86c8749e 1246 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1247}
1248
8e1f936b
RR
1249static struct shrinker dcache_shrinker = {
1250 .shrink = shrink_dcache_memory,
1251 .seeks = DEFAULT_SEEKS,
1252};
1253
1da177e4
LT
1254/**
1255 * d_alloc - allocate a dcache entry
1256 * @parent: parent of entry to allocate
1257 * @name: qstr of the name
1258 *
1259 * Allocates a dentry. It returns %NULL if there is insufficient memory
1260 * available. On a success the dentry is returned. The name passed in is
1261 * copied and the copy passed in may be reused after this call.
1262 */
1263
1264struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1265{
1266 struct dentry *dentry;
1267 char *dname;
1268
e12ba74d 1269 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1270 if (!dentry)
1271 return NULL;
1272
1273 if (name->len > DNAME_INLINE_LEN-1) {
1274 dname = kmalloc(name->len + 1, GFP_KERNEL);
1275 if (!dname) {
1276 kmem_cache_free(dentry_cache, dentry);
1277 return NULL;
1278 }
1279 } else {
1280 dname = dentry->d_iname;
1281 }
1282 dentry->d_name.name = dname;
1283
1284 dentry->d_name.len = name->len;
1285 dentry->d_name.hash = name->hash;
1286 memcpy(dname, name->name, name->len);
1287 dname[name->len] = 0;
1288
b7ab39f6 1289 dentry->d_count = 1;
dea3667b 1290 dentry->d_flags = 0;
1da177e4 1291 spin_lock_init(&dentry->d_lock);
31e6b01f 1292 seqcount_init(&dentry->d_seq);
1da177e4
LT
1293 dentry->d_inode = NULL;
1294 dentry->d_parent = NULL;
1295 dentry->d_sb = NULL;
1296 dentry->d_op = NULL;
1297 dentry->d_fsdata = NULL;
ceb5bdc2 1298 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1299 INIT_LIST_HEAD(&dentry->d_lru);
1300 INIT_LIST_HEAD(&dentry->d_subdirs);
1301 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1302 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1303
1304 if (parent) {
2fd6b7f5 1305 spin_lock(&parent->d_lock);
89ad485f
NP
1306 /*
1307 * don't need child lock because it is not subject
1308 * to concurrency here
1309 */
dc0474be
NP
1310 __dget_dlock(parent);
1311 dentry->d_parent = parent;
1da177e4 1312 dentry->d_sb = parent->d_sb;
c8aebb0c 1313 d_set_d_op(dentry, dentry->d_sb->s_d_op);
5160ee6f 1314 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5 1315 spin_unlock(&parent->d_lock);
2fd6b7f5 1316 }
1da177e4 1317
3e880fb5 1318 this_cpu_inc(nr_dentry);
312d3ca8 1319
1da177e4
LT
1320 return dentry;
1321}
ec4f8605 1322EXPORT_SYMBOL(d_alloc);
1da177e4 1323
4b936885
NP
1324struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1325{
1326 struct dentry *dentry = d_alloc(NULL, name);
1327 if (dentry) {
1328 dentry->d_sb = sb;
c8aebb0c 1329 d_set_d_op(dentry, dentry->d_sb->s_d_op);
4b936885
NP
1330 dentry->d_parent = dentry;
1331 dentry->d_flags |= DCACHE_DISCONNECTED;
1332 }
1333 return dentry;
1334}
1335EXPORT_SYMBOL(d_alloc_pseudo);
1336
1da177e4
LT
1337struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1338{
1339 struct qstr q;
1340
1341 q.name = name;
1342 q.len = strlen(name);
1343 q.hash = full_name_hash(q.name, q.len);
1344 return d_alloc(parent, &q);
1345}
ef26ca97 1346EXPORT_SYMBOL(d_alloc_name);
1da177e4 1347
fb045adb
NP
1348void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1349{
6f7f7caa
LT
1350 WARN_ON_ONCE(dentry->d_op);
1351 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1352 DCACHE_OP_COMPARE |
1353 DCACHE_OP_REVALIDATE |
1354 DCACHE_OP_DELETE ));
1355 dentry->d_op = op;
1356 if (!op)
1357 return;
1358 if (op->d_hash)
1359 dentry->d_flags |= DCACHE_OP_HASH;
1360 if (op->d_compare)
1361 dentry->d_flags |= DCACHE_OP_COMPARE;
1362 if (op->d_revalidate)
1363 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1364 if (op->d_delete)
1365 dentry->d_flags |= DCACHE_OP_DELETE;
1366
1367}
1368EXPORT_SYMBOL(d_set_d_op);
1369
360da900
OH
1370static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1371{
b23fb0a6 1372 spin_lock(&dentry->d_lock);
9875cf80
DH
1373 if (inode) {
1374 if (unlikely(IS_AUTOMOUNT(inode)))
1375 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1376 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1377 }
360da900 1378 dentry->d_inode = inode;
31e6b01f 1379 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1380 spin_unlock(&dentry->d_lock);
360da900
OH
1381 fsnotify_d_instantiate(dentry, inode);
1382}
1383
1da177e4
LT
1384/**
1385 * d_instantiate - fill in inode information for a dentry
1386 * @entry: dentry to complete
1387 * @inode: inode to attach to this dentry
1388 *
1389 * Fill in inode information in the entry.
1390 *
1391 * This turns negative dentries into productive full members
1392 * of society.
1393 *
1394 * NOTE! This assumes that the inode count has been incremented
1395 * (or otherwise set) by the caller to indicate that it is now
1396 * in use by the dcache.
1397 */
1398
1399void d_instantiate(struct dentry *entry, struct inode * inode)
1400{
28133c7b 1401 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1402 if (inode)
1403 spin_lock(&inode->i_lock);
360da900 1404 __d_instantiate(entry, inode);
873feea0
NP
1405 if (inode)
1406 spin_unlock(&inode->i_lock);
1da177e4
LT
1407 security_d_instantiate(entry, inode);
1408}
ec4f8605 1409EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1410
1411/**
1412 * d_instantiate_unique - instantiate a non-aliased dentry
1413 * @entry: dentry to instantiate
1414 * @inode: inode to attach to this dentry
1415 *
1416 * Fill in inode information in the entry. On success, it returns NULL.
1417 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1418 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1419 *
1420 * Note that in order to avoid conflicts with rename() etc, the caller
1421 * had better be holding the parent directory semaphore.
e866cfa9
OD
1422 *
1423 * This also assumes that the inode count has been incremented
1424 * (or otherwise set) by the caller to indicate that it is now
1425 * in use by the dcache.
1da177e4 1426 */
770bfad8
DH
1427static struct dentry *__d_instantiate_unique(struct dentry *entry,
1428 struct inode *inode)
1da177e4
LT
1429{
1430 struct dentry *alias;
1431 int len = entry->d_name.len;
1432 const char *name = entry->d_name.name;
1433 unsigned int hash = entry->d_name.hash;
1434
770bfad8 1435 if (!inode) {
360da900 1436 __d_instantiate(entry, NULL);
770bfad8
DH
1437 return NULL;
1438 }
1439
1da177e4
LT
1440 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1441 struct qstr *qstr = &alias->d_name;
1442
9abca360
NP
1443 /*
1444 * Don't need alias->d_lock here, because aliases with
1445 * d_parent == entry->d_parent are not subject to name or
1446 * parent changes, because the parent inode i_mutex is held.
1447 */
1da177e4
LT
1448 if (qstr->hash != hash)
1449 continue;
1450 if (alias->d_parent != entry->d_parent)
1451 continue;
9d55c369 1452 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1453 continue;
dc0474be 1454 __dget(alias);
1da177e4
LT
1455 return alias;
1456 }
770bfad8 1457
360da900 1458 __d_instantiate(entry, inode);
1da177e4
LT
1459 return NULL;
1460}
770bfad8
DH
1461
1462struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1463{
1464 struct dentry *result;
1465
1466 BUG_ON(!list_empty(&entry->d_alias));
1467
873feea0
NP
1468 if (inode)
1469 spin_lock(&inode->i_lock);
770bfad8 1470 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1471 if (inode)
1472 spin_unlock(&inode->i_lock);
770bfad8
DH
1473
1474 if (!result) {
1475 security_d_instantiate(entry, inode);
1476 return NULL;
1477 }
1478
1479 BUG_ON(!d_unhashed(result));
1480 iput(inode);
1481 return result;
1482}
1483
1da177e4
LT
1484EXPORT_SYMBOL(d_instantiate_unique);
1485
1486/**
1487 * d_alloc_root - allocate root dentry
1488 * @root_inode: inode to allocate the root for
1489 *
1490 * Allocate a root ("/") dentry for the inode given. The inode is
1491 * instantiated and returned. %NULL is returned if there is insufficient
1492 * memory or the inode passed is %NULL.
1493 */
1494
1495struct dentry * d_alloc_root(struct inode * root_inode)
1496{
1497 struct dentry *res = NULL;
1498
1499 if (root_inode) {
1500 static const struct qstr name = { .name = "/", .len = 1 };
1501
1502 res = d_alloc(NULL, &name);
1503 if (res) {
1504 res->d_sb = root_inode->i_sb;
c8aebb0c 1505 d_set_d_op(res, res->d_sb->s_d_op);
1da177e4
LT
1506 res->d_parent = res;
1507 d_instantiate(res, root_inode);
1508 }
1509 }
1510 return res;
1511}
ec4f8605 1512EXPORT_SYMBOL(d_alloc_root);
1da177e4 1513
d891eedb
BF
1514static struct dentry * __d_find_any_alias(struct inode *inode)
1515{
1516 struct dentry *alias;
1517
1518 if (list_empty(&inode->i_dentry))
1519 return NULL;
1520 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1521 __dget(alias);
1522 return alias;
1523}
1524
1525static struct dentry * d_find_any_alias(struct inode *inode)
1526{
1527 struct dentry *de;
1528
1529 spin_lock(&inode->i_lock);
1530 de = __d_find_any_alias(inode);
1531 spin_unlock(&inode->i_lock);
1532 return de;
1533}
1534
1535
4ea3ada2
CH
1536/**
1537 * d_obtain_alias - find or allocate a dentry for a given inode
1538 * @inode: inode to allocate the dentry for
1539 *
1540 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1541 * similar open by handle operations. The returned dentry may be anonymous,
1542 * or may have a full name (if the inode was already in the cache).
1543 *
1544 * When called on a directory inode, we must ensure that the inode only ever
1545 * has one dentry. If a dentry is found, that is returned instead of
1546 * allocating a new one.
1547 *
1548 * On successful return, the reference to the inode has been transferred
44003728
CH
1549 * to the dentry. In case of an error the reference on the inode is released.
1550 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1551 * be passed in and will be the error will be propagate to the return value,
1552 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1553 */
1554struct dentry *d_obtain_alias(struct inode *inode)
1555{
9308a612
CH
1556 static const struct qstr anonstring = { .name = "" };
1557 struct dentry *tmp;
1558 struct dentry *res;
4ea3ada2
CH
1559
1560 if (!inode)
44003728 1561 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1562 if (IS_ERR(inode))
1563 return ERR_CAST(inode);
1564
d891eedb 1565 res = d_find_any_alias(inode);
9308a612
CH
1566 if (res)
1567 goto out_iput;
1568
1569 tmp = d_alloc(NULL, &anonstring);
1570 if (!tmp) {
1571 res = ERR_PTR(-ENOMEM);
1572 goto out_iput;
4ea3ada2 1573 }
9308a612
CH
1574 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1575
b5c84bf6 1576
873feea0 1577 spin_lock(&inode->i_lock);
d891eedb 1578 res = __d_find_any_alias(inode);
9308a612 1579 if (res) {
873feea0 1580 spin_unlock(&inode->i_lock);
9308a612
CH
1581 dput(tmp);
1582 goto out_iput;
1583 }
1584
1585 /* attach a disconnected dentry */
1586 spin_lock(&tmp->d_lock);
1587 tmp->d_sb = inode->i_sb;
c8aebb0c 1588 d_set_d_op(tmp, tmp->d_sb->s_d_op);
9308a612
CH
1589 tmp->d_inode = inode;
1590 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1591 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1592 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1593 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1594 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1595 spin_unlock(&tmp->d_lock);
873feea0 1596 spin_unlock(&inode->i_lock);
24ff6663 1597 security_d_instantiate(tmp, inode);
9308a612 1598
9308a612
CH
1599 return tmp;
1600
1601 out_iput:
24ff6663
JB
1602 if (res && !IS_ERR(res))
1603 security_d_instantiate(res, inode);
9308a612
CH
1604 iput(inode);
1605 return res;
4ea3ada2 1606}
adc48720 1607EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1608
1609/**
1610 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1611 * @inode: the inode which may have a disconnected dentry
1612 * @dentry: a negative dentry which we want to point to the inode.
1613 *
1614 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1615 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1616 * and return it, else simply d_add the inode to the dentry and return NULL.
1617 *
1618 * This is needed in the lookup routine of any filesystem that is exportable
1619 * (via knfsd) so that we can build dcache paths to directories effectively.
1620 *
1621 * If a dentry was found and moved, then it is returned. Otherwise NULL
1622 * is returned. This matches the expected return value of ->lookup.
1623 *
1624 */
1625struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1626{
1627 struct dentry *new = NULL;
1628
21c0d8fd 1629 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1630 spin_lock(&inode->i_lock);
1da177e4
LT
1631 new = __d_find_alias(inode, 1);
1632 if (new) {
1633 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1634 spin_unlock(&inode->i_lock);
1da177e4 1635 security_d_instantiate(new, inode);
1da177e4
LT
1636 d_move(new, dentry);
1637 iput(inode);
1638 } else {
873feea0 1639 /* already taking inode->i_lock, so d_add() by hand */
360da900 1640 __d_instantiate(dentry, inode);
873feea0 1641 spin_unlock(&inode->i_lock);
1da177e4
LT
1642 security_d_instantiate(dentry, inode);
1643 d_rehash(dentry);
1644 }
1645 } else
1646 d_add(dentry, inode);
1647 return new;
1648}
ec4f8605 1649EXPORT_SYMBOL(d_splice_alias);
1da177e4 1650
9403540c
BN
1651/**
1652 * d_add_ci - lookup or allocate new dentry with case-exact name
1653 * @inode: the inode case-insensitive lookup has found
1654 * @dentry: the negative dentry that was passed to the parent's lookup func
1655 * @name: the case-exact name to be associated with the returned dentry
1656 *
1657 * This is to avoid filling the dcache with case-insensitive names to the
1658 * same inode, only the actual correct case is stored in the dcache for
1659 * case-insensitive filesystems.
1660 *
1661 * For a case-insensitive lookup match and if the the case-exact dentry
1662 * already exists in in the dcache, use it and return it.
1663 *
1664 * If no entry exists with the exact case name, allocate new dentry with
1665 * the exact case, and return the spliced entry.
1666 */
e45b590b 1667struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1668 struct qstr *name)
1669{
1670 int error;
1671 struct dentry *found;
1672 struct dentry *new;
1673
b6520c81
CH
1674 /*
1675 * First check if a dentry matching the name already exists,
1676 * if not go ahead and create it now.
1677 */
9403540c 1678 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1679 if (!found) {
1680 new = d_alloc(dentry->d_parent, name);
1681 if (!new) {
1682 error = -ENOMEM;
1683 goto err_out;
1684 }
b6520c81 1685
9403540c
BN
1686 found = d_splice_alias(inode, new);
1687 if (found) {
1688 dput(new);
1689 return found;
1690 }
1691 return new;
1692 }
b6520c81
CH
1693
1694 /*
1695 * If a matching dentry exists, and it's not negative use it.
1696 *
1697 * Decrement the reference count to balance the iget() done
1698 * earlier on.
1699 */
9403540c
BN
1700 if (found->d_inode) {
1701 if (unlikely(found->d_inode != inode)) {
1702 /* This can't happen because bad inodes are unhashed. */
1703 BUG_ON(!is_bad_inode(inode));
1704 BUG_ON(!is_bad_inode(found->d_inode));
1705 }
9403540c
BN
1706 iput(inode);
1707 return found;
1708 }
b6520c81 1709
9403540c
BN
1710 /*
1711 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1712 * already has a dentry.
9403540c 1713 */
873feea0 1714 spin_lock(&inode->i_lock);
b6520c81 1715 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1716 __d_instantiate(found, inode);
873feea0 1717 spin_unlock(&inode->i_lock);
9403540c
BN
1718 security_d_instantiate(found, inode);
1719 return found;
1720 }
b6520c81 1721
9403540c 1722 /*
b6520c81
CH
1723 * In case a directory already has a (disconnected) entry grab a
1724 * reference to it, move it in place and use it.
9403540c
BN
1725 */
1726 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
dc0474be 1727 __dget(new);
873feea0 1728 spin_unlock(&inode->i_lock);
9403540c 1729 security_d_instantiate(found, inode);
9403540c 1730 d_move(new, found);
9403540c 1731 iput(inode);
9403540c 1732 dput(found);
9403540c
BN
1733 return new;
1734
1735err_out:
1736 iput(inode);
1737 return ERR_PTR(error);
1738}
ec4f8605 1739EXPORT_SYMBOL(d_add_ci);
1da177e4 1740
31e6b01f
NP
1741/**
1742 * __d_lookup_rcu - search for a dentry (racy, store-free)
1743 * @parent: parent dentry
1744 * @name: qstr of name we wish to find
1745 * @seq: returns d_seq value at the point where the dentry was found
1746 * @inode: returns dentry->d_inode when the inode was found valid.
1747 * Returns: dentry, or NULL
1748 *
1749 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1750 * resolution (store-free path walking) design described in
1751 * Documentation/filesystems/path-lookup.txt.
1752 *
1753 * This is not to be used outside core vfs.
1754 *
1755 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1756 * held, and rcu_read_lock held. The returned dentry must not be stored into
1757 * without taking d_lock and checking d_seq sequence count against @seq
1758 * returned here.
1759 *
1760 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1761 * function.
1762 *
1763 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1764 * the returned dentry, so long as its parent's seqlock is checked after the
1765 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1766 * is formed, giving integrity down the path walk.
1767 */
1768struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1769 unsigned *seq, struct inode **inode)
1770{
1771 unsigned int len = name->len;
1772 unsigned int hash = name->hash;
1773 const unsigned char *str = name->name;
b07ad996 1774 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1775 struct hlist_bl_node *node;
31e6b01f
NP
1776 struct dentry *dentry;
1777
1778 /*
1779 * Note: There is significant duplication with __d_lookup_rcu which is
1780 * required to prevent single threaded performance regressions
1781 * especially on architectures where smp_rmb (in seqcounts) are costly.
1782 * Keep the two functions in sync.
1783 */
1784
1785 /*
1786 * The hash list is protected using RCU.
1787 *
1788 * Carefully use d_seq when comparing a candidate dentry, to avoid
1789 * races with d_move().
1790 *
1791 * It is possible that concurrent renames can mess up our list
1792 * walk here and result in missing our dentry, resulting in the
1793 * false-negative result. d_lookup() protects against concurrent
1794 * renames using rename_lock seqlock.
1795 *
b0a4bb83 1796 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1797 */
b07ad996 1798 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1799 struct inode *i;
1800 const char *tname;
1801 int tlen;
1802
1803 if (dentry->d_name.hash != hash)
1804 continue;
1805
1806seqretry:
1807 *seq = read_seqcount_begin(&dentry->d_seq);
1808 if (dentry->d_parent != parent)
1809 continue;
1810 if (d_unhashed(dentry))
1811 continue;
1812 tlen = dentry->d_name.len;
1813 tname = dentry->d_name.name;
1814 i = dentry->d_inode;
e1bb5782 1815 prefetch(tname);
31e6b01f
NP
1816 /*
1817 * This seqcount check is required to ensure name and
1818 * len are loaded atomically, so as not to walk off the
1819 * edge of memory when walking. If we could load this
1820 * atomically some other way, we could drop this check.
1821 */
1822 if (read_seqcount_retry(&dentry->d_seq, *seq))
1823 goto seqretry;
fb045adb 1824 if (parent->d_flags & DCACHE_OP_COMPARE) {
31e6b01f
NP
1825 if (parent->d_op->d_compare(parent, *inode,
1826 dentry, i,
1827 tlen, tname, name))
1828 continue;
1829 } else {
9d55c369 1830 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1831 continue;
1832 }
1833 /*
1834 * No extra seqcount check is required after the name
1835 * compare. The caller must perform a seqcount check in
1836 * order to do anything useful with the returned dentry
1837 * anyway.
1838 */
1839 *inode = i;
1840 return dentry;
1841 }
1842 return NULL;
1843}
1844
1da177e4
LT
1845/**
1846 * d_lookup - search for a dentry
1847 * @parent: parent dentry
1848 * @name: qstr of name we wish to find
b04f784e 1849 * Returns: dentry, or NULL
1da177e4 1850 *
b04f784e
NP
1851 * d_lookup searches the children of the parent dentry for the name in
1852 * question. If the dentry is found its reference count is incremented and the
1853 * dentry is returned. The caller must use dput to free the entry when it has
1854 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1855 */
31e6b01f 1856struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1857{
31e6b01f 1858 struct dentry *dentry;
949854d0 1859 unsigned seq;
1da177e4
LT
1860
1861 do {
1862 seq = read_seqbegin(&rename_lock);
1863 dentry = __d_lookup(parent, name);
1864 if (dentry)
1865 break;
1866 } while (read_seqretry(&rename_lock, seq));
1867 return dentry;
1868}
ec4f8605 1869EXPORT_SYMBOL(d_lookup);
1da177e4 1870
31e6b01f 1871/**
b04f784e
NP
1872 * __d_lookup - search for a dentry (racy)
1873 * @parent: parent dentry
1874 * @name: qstr of name we wish to find
1875 * Returns: dentry, or NULL
1876 *
1877 * __d_lookup is like d_lookup, however it may (rarely) return a
1878 * false-negative result due to unrelated rename activity.
1879 *
1880 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1881 * however it must be used carefully, eg. with a following d_lookup in
1882 * the case of failure.
1883 *
1884 * __d_lookup callers must be commented.
1885 */
31e6b01f 1886struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1887{
1888 unsigned int len = name->len;
1889 unsigned int hash = name->hash;
1890 const unsigned char *str = name->name;
b07ad996 1891 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1892 struct hlist_bl_node *node;
31e6b01f 1893 struct dentry *found = NULL;
665a7583 1894 struct dentry *dentry;
1da177e4 1895
31e6b01f
NP
1896 /*
1897 * Note: There is significant duplication with __d_lookup_rcu which is
1898 * required to prevent single threaded performance regressions
1899 * especially on architectures where smp_rmb (in seqcounts) are costly.
1900 * Keep the two functions in sync.
1901 */
1902
b04f784e
NP
1903 /*
1904 * The hash list is protected using RCU.
1905 *
1906 * Take d_lock when comparing a candidate dentry, to avoid races
1907 * with d_move().
1908 *
1909 * It is possible that concurrent renames can mess up our list
1910 * walk here and result in missing our dentry, resulting in the
1911 * false-negative result. d_lookup() protects against concurrent
1912 * renames using rename_lock seqlock.
1913 *
b0a4bb83 1914 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1915 */
1da177e4
LT
1916 rcu_read_lock();
1917
b07ad996 1918 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1919 const char *tname;
1920 int tlen;
1da177e4 1921
1da177e4
LT
1922 if (dentry->d_name.hash != hash)
1923 continue;
1da177e4
LT
1924
1925 spin_lock(&dentry->d_lock);
1da177e4
LT
1926 if (dentry->d_parent != parent)
1927 goto next;
d0185c08
LT
1928 if (d_unhashed(dentry))
1929 goto next;
1930
1da177e4
LT
1931 /*
1932 * It is safe to compare names since d_move() cannot
1933 * change the qstr (protected by d_lock).
1934 */
31e6b01f
NP
1935 tlen = dentry->d_name.len;
1936 tname = dentry->d_name.name;
fb045adb 1937 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1938 if (parent->d_op->d_compare(parent, parent->d_inode,
1939 dentry, dentry->d_inode,
31e6b01f 1940 tlen, tname, name))
1da177e4
LT
1941 goto next;
1942 } else {
9d55c369 1943 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1944 goto next;
1945 }
1946
b7ab39f6 1947 dentry->d_count++;
d0185c08 1948 found = dentry;
1da177e4
LT
1949 spin_unlock(&dentry->d_lock);
1950 break;
1951next:
1952 spin_unlock(&dentry->d_lock);
1953 }
1954 rcu_read_unlock();
1955
1956 return found;
1957}
1958
3e7e241f
EB
1959/**
1960 * d_hash_and_lookup - hash the qstr then search for a dentry
1961 * @dir: Directory to search in
1962 * @name: qstr of name we wish to find
1963 *
1964 * On hash failure or on lookup failure NULL is returned.
1965 */
1966struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1967{
1968 struct dentry *dentry = NULL;
1969
1970 /*
1971 * Check for a fs-specific hash function. Note that we must
1972 * calculate the standard hash first, as the d_op->d_hash()
1973 * routine may choose to leave the hash value unchanged.
1974 */
1975 name->hash = full_name_hash(name->name, name->len);
fb045adb 1976 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1977 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1978 goto out;
1979 }
1980 dentry = d_lookup(dir, name);
1981out:
1982 return dentry;
1983}
1984
1da177e4 1985/**
786a5e15 1986 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1987 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1988 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1989 *
1990 * An insecure source has sent us a dentry, here we verify it and dget() it.
1991 * This is used by ncpfs in its readdir implementation.
1992 * Zero is returned in the dentry is invalid.
786a5e15
NP
1993 *
1994 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1995 */
d3a23e16 1996int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1997{
786a5e15 1998 struct dentry *child;
d3a23e16 1999
2fd6b7f5 2000 spin_lock(&dparent->d_lock);
786a5e15
NP
2001 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2002 if (dentry == child) {
2fd6b7f5 2003 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2004 __dget_dlock(dentry);
2fd6b7f5
NP
2005 spin_unlock(&dentry->d_lock);
2006 spin_unlock(&dparent->d_lock);
1da177e4
LT
2007 return 1;
2008 }
2009 }
2fd6b7f5 2010 spin_unlock(&dparent->d_lock);
786a5e15 2011
1da177e4
LT
2012 return 0;
2013}
ec4f8605 2014EXPORT_SYMBOL(d_validate);
1da177e4
LT
2015
2016/*
2017 * When a file is deleted, we have two options:
2018 * - turn this dentry into a negative dentry
2019 * - unhash this dentry and free it.
2020 *
2021 * Usually, we want to just turn this into
2022 * a negative dentry, but if anybody else is
2023 * currently using the dentry or the inode
2024 * we can't do that and we fall back on removing
2025 * it from the hash queues and waiting for
2026 * it to be deleted later when it has no users
2027 */
2028
2029/**
2030 * d_delete - delete a dentry
2031 * @dentry: The dentry to delete
2032 *
2033 * Turn the dentry into a negative dentry if possible, otherwise
2034 * remove it from the hash queues so it can be deleted later
2035 */
2036
2037void d_delete(struct dentry * dentry)
2038{
873feea0 2039 struct inode *inode;
7a91bf7f 2040 int isdir = 0;
1da177e4
LT
2041 /*
2042 * Are we the only user?
2043 */
357f8e65 2044again:
1da177e4 2045 spin_lock(&dentry->d_lock);
873feea0
NP
2046 inode = dentry->d_inode;
2047 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2048 if (dentry->d_count == 1) {
873feea0 2049 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
2050 spin_unlock(&dentry->d_lock);
2051 cpu_relax();
2052 goto again;
2053 }
13e3c5e5 2054 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2055 dentry_unlink_inode(dentry);
7a91bf7f 2056 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2057 return;
2058 }
2059
2060 if (!d_unhashed(dentry))
2061 __d_drop(dentry);
2062
2063 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2064
2065 fsnotify_nameremove(dentry, isdir);
1da177e4 2066}
ec4f8605 2067EXPORT_SYMBOL(d_delete);
1da177e4 2068
b07ad996 2069static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2070{
ceb5bdc2 2071 BUG_ON(!d_unhashed(entry));
1879fd6a 2072 hlist_bl_lock(b);
dea3667b 2073 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2074 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2075 hlist_bl_unlock(b);
1da177e4
LT
2076}
2077
770bfad8
DH
2078static void _d_rehash(struct dentry * entry)
2079{
2080 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2081}
2082
1da177e4
LT
2083/**
2084 * d_rehash - add an entry back to the hash
2085 * @entry: dentry to add to the hash
2086 *
2087 * Adds a dentry to the hash according to its name.
2088 */
2089
2090void d_rehash(struct dentry * entry)
2091{
1da177e4 2092 spin_lock(&entry->d_lock);
770bfad8 2093 _d_rehash(entry);
1da177e4 2094 spin_unlock(&entry->d_lock);
1da177e4 2095}
ec4f8605 2096EXPORT_SYMBOL(d_rehash);
1da177e4 2097
fb2d5b86
NP
2098/**
2099 * dentry_update_name_case - update case insensitive dentry with a new name
2100 * @dentry: dentry to be updated
2101 * @name: new name
2102 *
2103 * Update a case insensitive dentry with new case of name.
2104 *
2105 * dentry must have been returned by d_lookup with name @name. Old and new
2106 * name lengths must match (ie. no d_compare which allows mismatched name
2107 * lengths).
2108 *
2109 * Parent inode i_mutex must be held over d_lookup and into this call (to
2110 * keep renames and concurrent inserts, and readdir(2) away).
2111 */
2112void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2113{
7ebfa57f 2114 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2115 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2116
fb2d5b86 2117 spin_lock(&dentry->d_lock);
31e6b01f 2118 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2119 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2120 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2121 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2122}
2123EXPORT_SYMBOL(dentry_update_name_case);
2124
1da177e4
LT
2125static void switch_names(struct dentry *dentry, struct dentry *target)
2126{
2127 if (dname_external(target)) {
2128 if (dname_external(dentry)) {
2129 /*
2130 * Both external: swap the pointers
2131 */
9a8d5bb4 2132 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2133 } else {
2134 /*
2135 * dentry:internal, target:external. Steal target's
2136 * storage and make target internal.
2137 */
321bcf92
BF
2138 memcpy(target->d_iname, dentry->d_name.name,
2139 dentry->d_name.len + 1);
1da177e4
LT
2140 dentry->d_name.name = target->d_name.name;
2141 target->d_name.name = target->d_iname;
2142 }
2143 } else {
2144 if (dname_external(dentry)) {
2145 /*
2146 * dentry:external, target:internal. Give dentry's
2147 * storage to target and make dentry internal
2148 */
2149 memcpy(dentry->d_iname, target->d_name.name,
2150 target->d_name.len + 1);
2151 target->d_name.name = dentry->d_name.name;
2152 dentry->d_name.name = dentry->d_iname;
2153 } else {
2154 /*
2155 * Both are internal. Just copy target to dentry
2156 */
2157 memcpy(dentry->d_iname, target->d_name.name,
2158 target->d_name.len + 1);
dc711ca3
AV
2159 dentry->d_name.len = target->d_name.len;
2160 return;
1da177e4
LT
2161 }
2162 }
9a8d5bb4 2163 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2164}
2165
2fd6b7f5
NP
2166static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2167{
2168 /*
2169 * XXXX: do we really need to take target->d_lock?
2170 */
2171 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2172 spin_lock(&target->d_parent->d_lock);
2173 else {
2174 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2175 spin_lock(&dentry->d_parent->d_lock);
2176 spin_lock_nested(&target->d_parent->d_lock,
2177 DENTRY_D_LOCK_NESTED);
2178 } else {
2179 spin_lock(&target->d_parent->d_lock);
2180 spin_lock_nested(&dentry->d_parent->d_lock,
2181 DENTRY_D_LOCK_NESTED);
2182 }
2183 }
2184 if (target < dentry) {
2185 spin_lock_nested(&target->d_lock, 2);
2186 spin_lock_nested(&dentry->d_lock, 3);
2187 } else {
2188 spin_lock_nested(&dentry->d_lock, 2);
2189 spin_lock_nested(&target->d_lock, 3);
2190 }
2191}
2192
2193static void dentry_unlock_parents_for_move(struct dentry *dentry,
2194 struct dentry *target)
2195{
2196 if (target->d_parent != dentry->d_parent)
2197 spin_unlock(&dentry->d_parent->d_lock);
2198 if (target->d_parent != target)
2199 spin_unlock(&target->d_parent->d_lock);
2200}
2201
1da177e4 2202/*
2fd6b7f5
NP
2203 * When switching names, the actual string doesn't strictly have to
2204 * be preserved in the target - because we're dropping the target
2205 * anyway. As such, we can just do a simple memcpy() to copy over
2206 * the new name before we switch.
2207 *
2208 * Note that we have to be a lot more careful about getting the hash
2209 * switched - we have to switch the hash value properly even if it
2210 * then no longer matches the actual (corrupted) string of the target.
2211 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2212 */
9eaef27b 2213/*
18367501 2214 * __d_move - move a dentry
1da177e4
LT
2215 * @dentry: entry to move
2216 * @target: new dentry
2217 *
2218 * Update the dcache to reflect the move of a file name. Negative
18367501
AV
2219 * dcache entries should not be moved in this way. Caller hold
2220 * rename_lock.
1da177e4 2221 */
18367501 2222static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2223{
1da177e4
LT
2224 if (!dentry->d_inode)
2225 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2226
2fd6b7f5
NP
2227 BUG_ON(d_ancestor(dentry, target));
2228 BUG_ON(d_ancestor(target, dentry));
2229
2fd6b7f5 2230 dentry_lock_for_move(dentry, target);
1da177e4 2231
31e6b01f
NP
2232 write_seqcount_begin(&dentry->d_seq);
2233 write_seqcount_begin(&target->d_seq);
2234
ceb5bdc2
NP
2235 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2236
2237 /*
2238 * Move the dentry to the target hash queue. Don't bother checking
2239 * for the same hash queue because of how unlikely it is.
2240 */
2241 __d_drop(dentry);
789680d1 2242 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2243
2244 /* Unhash the target: dput() will then get rid of it */
2245 __d_drop(target);
2246
5160ee6f
ED
2247 list_del(&dentry->d_u.d_child);
2248 list_del(&target->d_u.d_child);
1da177e4
LT
2249
2250 /* Switch the names.. */
2251 switch_names(dentry, target);
9a8d5bb4 2252 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2253
2254 /* ... and switch the parents */
2255 if (IS_ROOT(dentry)) {
2256 dentry->d_parent = target->d_parent;
2257 target->d_parent = target;
5160ee6f 2258 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2259 } else {
9a8d5bb4 2260 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2261
2262 /* And add them back to the (new) parent lists */
5160ee6f 2263 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2264 }
2265
5160ee6f 2266 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2267
31e6b01f
NP
2268 write_seqcount_end(&target->d_seq);
2269 write_seqcount_end(&dentry->d_seq);
2270
2fd6b7f5 2271 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2272 spin_unlock(&target->d_lock);
c32ccd87 2273 fsnotify_d_move(dentry);
1da177e4 2274 spin_unlock(&dentry->d_lock);
18367501
AV
2275}
2276
2277/*
2278 * d_move - move a dentry
2279 * @dentry: entry to move
2280 * @target: new dentry
2281 *
2282 * Update the dcache to reflect the move of a file name. Negative
2283 * dcache entries should not be moved in this way.
2284 */
2285void d_move(struct dentry *dentry, struct dentry *target)
2286{
2287 write_seqlock(&rename_lock);
2288 __d_move(dentry, target);
1da177e4 2289 write_sequnlock(&rename_lock);
9eaef27b 2290}
ec4f8605 2291EXPORT_SYMBOL(d_move);
1da177e4 2292
e2761a11
OH
2293/**
2294 * d_ancestor - search for an ancestor
2295 * @p1: ancestor dentry
2296 * @p2: child dentry
2297 *
2298 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2299 * an ancestor of p2, else NULL.
9eaef27b 2300 */
e2761a11 2301struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2302{
2303 struct dentry *p;
2304
871c0067 2305 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2306 if (p->d_parent == p1)
e2761a11 2307 return p;
9eaef27b 2308 }
e2761a11 2309 return NULL;
9eaef27b
TM
2310}
2311
2312/*
2313 * This helper attempts to cope with remotely renamed directories
2314 *
2315 * It assumes that the caller is already holding
18367501 2316 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2317 *
2318 * Note: If ever the locking in lock_rename() changes, then please
2319 * remember to update this too...
9eaef27b 2320 */
873feea0
NP
2321static struct dentry *__d_unalias(struct inode *inode,
2322 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2323{
2324 struct mutex *m1 = NULL, *m2 = NULL;
2325 struct dentry *ret;
2326
2327 /* If alias and dentry share a parent, then no extra locks required */
2328 if (alias->d_parent == dentry->d_parent)
2329 goto out_unalias;
2330
9eaef27b
TM
2331 /* See lock_rename() */
2332 ret = ERR_PTR(-EBUSY);
2333 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2334 goto out_err;
2335 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2336 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2337 goto out_err;
2338 m2 = &alias->d_parent->d_inode->i_mutex;
2339out_unalias:
18367501 2340 __d_move(alias, dentry);
9eaef27b
TM
2341 ret = alias;
2342out_err:
873feea0 2343 spin_unlock(&inode->i_lock);
9eaef27b
TM
2344 if (m2)
2345 mutex_unlock(m2);
2346 if (m1)
2347 mutex_unlock(m1);
2348 return ret;
2349}
2350
770bfad8
DH
2351/*
2352 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2353 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2354 * returns with anon->d_lock held!
770bfad8
DH
2355 */
2356static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2357{
2358 struct dentry *dparent, *aparent;
2359
2fd6b7f5 2360 dentry_lock_for_move(anon, dentry);
770bfad8 2361
31e6b01f
NP
2362 write_seqcount_begin(&dentry->d_seq);
2363 write_seqcount_begin(&anon->d_seq);
2364
770bfad8
DH
2365 dparent = dentry->d_parent;
2366 aparent = anon->d_parent;
2367
2fd6b7f5
NP
2368 switch_names(dentry, anon);
2369 swap(dentry->d_name.hash, anon->d_name.hash);
2370
770bfad8
DH
2371 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2372 list_del(&dentry->d_u.d_child);
2373 if (!IS_ROOT(dentry))
2374 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2375 else
2376 INIT_LIST_HEAD(&dentry->d_u.d_child);
2377
2378 anon->d_parent = (dparent == dentry) ? anon : dparent;
2379 list_del(&anon->d_u.d_child);
2380 if (!IS_ROOT(anon))
2381 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2382 else
2383 INIT_LIST_HEAD(&anon->d_u.d_child);
2384
31e6b01f
NP
2385 write_seqcount_end(&dentry->d_seq);
2386 write_seqcount_end(&anon->d_seq);
2387
2fd6b7f5
NP
2388 dentry_unlock_parents_for_move(anon, dentry);
2389 spin_unlock(&dentry->d_lock);
2390
2391 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2392 anon->d_flags &= ~DCACHE_DISCONNECTED;
2393}
2394
2395/**
2396 * d_materialise_unique - introduce an inode into the tree
2397 * @dentry: candidate dentry
2398 * @inode: inode to bind to the dentry, to which aliases may be attached
2399 *
2400 * Introduces an dentry into the tree, substituting an extant disconnected
2401 * root directory alias in its place if there is one
2402 */
2403struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2404{
9eaef27b 2405 struct dentry *actual;
770bfad8
DH
2406
2407 BUG_ON(!d_unhashed(dentry));
2408
770bfad8
DH
2409 if (!inode) {
2410 actual = dentry;
360da900 2411 __d_instantiate(dentry, NULL);
357f8e65
NP
2412 d_rehash(actual);
2413 goto out_nolock;
770bfad8
DH
2414 }
2415
873feea0 2416 spin_lock(&inode->i_lock);
357f8e65 2417
9eaef27b
TM
2418 if (S_ISDIR(inode->i_mode)) {
2419 struct dentry *alias;
2420
2421 /* Does an aliased dentry already exist? */
2422 alias = __d_find_alias(inode, 0);
2423 if (alias) {
2424 actual = alias;
18367501
AV
2425 write_seqlock(&rename_lock);
2426
2427 if (d_ancestor(alias, dentry)) {
2428 /* Check for loops */
2429 actual = ERR_PTR(-ELOOP);
2430 } else if (IS_ROOT(alias)) {
2431 /* Is this an anonymous mountpoint that we
2432 * could splice into our tree? */
9eaef27b 2433 __d_materialise_dentry(dentry, alias);
18367501 2434 write_sequnlock(&rename_lock);
9eaef27b
TM
2435 __d_drop(alias);
2436 goto found;
18367501
AV
2437 } else {
2438 /* Nope, but we must(!) avoid directory
2439 * aliasing */
2440 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2441 }
18367501 2442 write_sequnlock(&rename_lock);
9eaef27b
TM
2443 if (IS_ERR(actual))
2444 dput(alias);
2445 goto out_nolock;
2446 }
770bfad8
DH
2447 }
2448
2449 /* Add a unique reference */
2450 actual = __d_instantiate_unique(dentry, inode);
2451 if (!actual)
2452 actual = dentry;
357f8e65
NP
2453 else
2454 BUG_ON(!d_unhashed(actual));
770bfad8 2455
770bfad8
DH
2456 spin_lock(&actual->d_lock);
2457found:
2458 _d_rehash(actual);
2459 spin_unlock(&actual->d_lock);
873feea0 2460 spin_unlock(&inode->i_lock);
9eaef27b 2461out_nolock:
770bfad8
DH
2462 if (actual == dentry) {
2463 security_d_instantiate(dentry, inode);
2464 return NULL;
2465 }
2466
2467 iput(inode);
2468 return actual;
770bfad8 2469}
ec4f8605 2470EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2471
cdd16d02 2472static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2473{
2474 *buflen -= namelen;
2475 if (*buflen < 0)
2476 return -ENAMETOOLONG;
2477 *buffer -= namelen;
2478 memcpy(*buffer, str, namelen);
2479 return 0;
2480}
2481
cdd16d02
MS
2482static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2483{
2484 return prepend(buffer, buflen, name->name, name->len);
2485}
2486
1da177e4 2487/**
208898c1 2488 * prepend_path - Prepend path string to a buffer
9d1bc601
MS
2489 * @path: the dentry/vfsmount to report
2490 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2491 * @buffer: pointer to the end of the buffer
2492 * @buflen: pointer to buffer length
552ce544 2493 *
949854d0 2494 * Caller holds the rename_lock.
9d1bc601
MS
2495 *
2496 * If path is not reachable from the supplied root, then the value of
2497 * root is changed (without modifying refcounts).
1da177e4 2498 */
f2eb6575
MS
2499static int prepend_path(const struct path *path, struct path *root,
2500 char **buffer, int *buflen)
1da177e4 2501{
9d1bc601
MS
2502 struct dentry *dentry = path->dentry;
2503 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2504 bool slash = false;
2505 int error = 0;
6092d048 2506
99b7db7b 2507 br_read_lock(vfsmount_lock);
f2eb6575 2508 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2509 struct dentry * parent;
2510
1da177e4 2511 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2512 /* Global root? */
1da177e4 2513 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2514 goto global_root;
2515 }
2516 dentry = vfsmnt->mnt_mountpoint;
2517 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2518 continue;
2519 }
2520 parent = dentry->d_parent;
2521 prefetch(parent);
9abca360 2522 spin_lock(&dentry->d_lock);
f2eb6575 2523 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2524 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2525 if (!error)
2526 error = prepend(buffer, buflen, "/", 1);
2527 if (error)
2528 break;
2529
2530 slash = true;
1da177e4
LT
2531 dentry = parent;
2532 }
2533
be285c71 2534out:
f2eb6575
MS
2535 if (!error && !slash)
2536 error = prepend(buffer, buflen, "/", 1);
2537
99b7db7b 2538 br_read_unlock(vfsmount_lock);
f2eb6575 2539 return error;
1da177e4
LT
2540
2541global_root:
98dc568b
MS
2542 /*
2543 * Filesystems needing to implement special "root names"
2544 * should do so with ->d_dname()
2545 */
2546 if (IS_ROOT(dentry) &&
2547 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2548 WARN(1, "Root dentry has weird name <%.*s>\n",
2549 (int) dentry->d_name.len, dentry->d_name.name);
2550 }
9d1bc601
MS
2551 root->mnt = vfsmnt;
2552 root->dentry = dentry;
be285c71 2553 goto out;
f2eb6575 2554}
be285c71 2555
f2eb6575
MS
2556/**
2557 * __d_path - return the path of a dentry
2558 * @path: the dentry/vfsmount to report
2559 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2560 * @buf: buffer to return value in
f2eb6575
MS
2561 * @buflen: buffer length
2562 *
ffd1f4ed 2563 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2564 *
2565 * Returns a pointer into the buffer or an error code if the
2566 * path was too long.
2567 *
be148247 2568 * "buflen" should be positive.
f2eb6575
MS
2569 *
2570 * If path is not reachable from the supplied root, then the value of
2571 * root is changed (without modifying refcounts).
2572 */
2573char *__d_path(const struct path *path, struct path *root,
2574 char *buf, int buflen)
2575{
2576 char *res = buf + buflen;
2577 int error;
2578
2579 prepend(&res, &buflen, "\0", 1);
949854d0 2580 write_seqlock(&rename_lock);
f2eb6575 2581 error = prepend_path(path, root, &res, &buflen);
949854d0 2582 write_sequnlock(&rename_lock);
be148247 2583
f2eb6575
MS
2584 if (error)
2585 return ERR_PTR(error);
f2eb6575 2586 return res;
1da177e4
LT
2587}
2588
ffd1f4ed
MS
2589/*
2590 * same as __d_path but appends "(deleted)" for unlinked files.
2591 */
2592static int path_with_deleted(const struct path *path, struct path *root,
2593 char **buf, int *buflen)
2594{
2595 prepend(buf, buflen, "\0", 1);
2596 if (d_unlinked(path->dentry)) {
2597 int error = prepend(buf, buflen, " (deleted)", 10);
2598 if (error)
2599 return error;
2600 }
2601
2602 return prepend_path(path, root, buf, buflen);
2603}
2604
8df9d1a4
MS
2605static int prepend_unreachable(char **buffer, int *buflen)
2606{
2607 return prepend(buffer, buflen, "(unreachable)", 13);
2608}
2609
a03a8a70
JB
2610/**
2611 * d_path - return the path of a dentry
cf28b486 2612 * @path: path to report
a03a8a70
JB
2613 * @buf: buffer to return value in
2614 * @buflen: buffer length
2615 *
2616 * Convert a dentry into an ASCII path name. If the entry has been deleted
2617 * the string " (deleted)" is appended. Note that this is ambiguous.
2618 *
52afeefb
AV
2619 * Returns a pointer into the buffer or an error code if the path was
2620 * too long. Note: Callers should use the returned pointer, not the passed
2621 * in buffer, to use the name! The implementation often starts at an offset
2622 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2623 *
31f3e0b3 2624 * "buflen" should be positive.
a03a8a70 2625 */
20d4fdc1 2626char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2627{
ffd1f4ed 2628 char *res = buf + buflen;
6ac08c39 2629 struct path root;
9d1bc601 2630 struct path tmp;
ffd1f4ed 2631 int error;
1da177e4 2632
c23fbb6b
ED
2633 /*
2634 * We have various synthetic filesystems that never get mounted. On
2635 * these filesystems dentries are never used for lookup purposes, and
2636 * thus don't need to be hashed. They also don't need a name until a
2637 * user wants to identify the object in /proc/pid/fd/. The little hack
2638 * below allows us to generate a name for these objects on demand:
2639 */
cf28b486
JB
2640 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2641 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2642
f7ad3c6b 2643 get_fs_root(current->fs, &root);
949854d0 2644 write_seqlock(&rename_lock);
9d1bc601 2645 tmp = root;
ffd1f4ed
MS
2646 error = path_with_deleted(path, &tmp, &res, &buflen);
2647 if (error)
2648 res = ERR_PTR(error);
949854d0 2649 write_sequnlock(&rename_lock);
6ac08c39 2650 path_put(&root);
1da177e4
LT
2651 return res;
2652}
ec4f8605 2653EXPORT_SYMBOL(d_path);
1da177e4 2654
8df9d1a4
MS
2655/**
2656 * d_path_with_unreachable - return the path of a dentry
2657 * @path: path to report
2658 * @buf: buffer to return value in
2659 * @buflen: buffer length
2660 *
2661 * The difference from d_path() is that this prepends "(unreachable)"
2662 * to paths which are unreachable from the current process' root.
2663 */
2664char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2665{
2666 char *res = buf + buflen;
2667 struct path root;
2668 struct path tmp;
2669 int error;
2670
2671 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2672 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2673
2674 get_fs_root(current->fs, &root);
949854d0 2675 write_seqlock(&rename_lock);
8df9d1a4
MS
2676 tmp = root;
2677 error = path_with_deleted(path, &tmp, &res, &buflen);
2678 if (!error && !path_equal(&tmp, &root))
2679 error = prepend_unreachable(&res, &buflen);
949854d0 2680 write_sequnlock(&rename_lock);
8df9d1a4
MS
2681 path_put(&root);
2682 if (error)
2683 res = ERR_PTR(error);
2684
2685 return res;
2686}
2687
c23fbb6b
ED
2688/*
2689 * Helper function for dentry_operations.d_dname() members
2690 */
2691char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2692 const char *fmt, ...)
2693{
2694 va_list args;
2695 char temp[64];
2696 int sz;
2697
2698 va_start(args, fmt);
2699 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2700 va_end(args);
2701
2702 if (sz > sizeof(temp) || sz > buflen)
2703 return ERR_PTR(-ENAMETOOLONG);
2704
2705 buffer += buflen - sz;
2706 return memcpy(buffer, temp, sz);
2707}
2708
6092d048
RP
2709/*
2710 * Write full pathname from the root of the filesystem into the buffer.
2711 */
ec2447c2 2712static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2713{
2714 char *end = buf + buflen;
2715 char *retval;
2716
6092d048 2717 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2718 if (buflen < 1)
2719 goto Elong;
2720 /* Get '/' right */
2721 retval = end-1;
2722 *retval = '/';
2723
cdd16d02
MS
2724 while (!IS_ROOT(dentry)) {
2725 struct dentry *parent = dentry->d_parent;
9abca360 2726 int error;
6092d048 2727
6092d048 2728 prefetch(parent);
9abca360
NP
2729 spin_lock(&dentry->d_lock);
2730 error = prepend_name(&end, &buflen, &dentry->d_name);
2731 spin_unlock(&dentry->d_lock);
2732 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2733 goto Elong;
2734
2735 retval = end;
2736 dentry = parent;
2737 }
c103135c
AV
2738 return retval;
2739Elong:
2740 return ERR_PTR(-ENAMETOOLONG);
2741}
ec2447c2
NP
2742
2743char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2744{
2745 char *retval;
2746
949854d0 2747 write_seqlock(&rename_lock);
ec2447c2 2748 retval = __dentry_path(dentry, buf, buflen);
949854d0 2749 write_sequnlock(&rename_lock);
ec2447c2
NP
2750
2751 return retval;
2752}
2753EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2754
2755char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2756{
2757 char *p = NULL;
2758 char *retval;
2759
949854d0 2760 write_seqlock(&rename_lock);
c103135c
AV
2761 if (d_unlinked(dentry)) {
2762 p = buf + buflen;
2763 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2764 goto Elong;
2765 buflen++;
2766 }
2767 retval = __dentry_path(dentry, buf, buflen);
949854d0 2768 write_sequnlock(&rename_lock);
c103135c
AV
2769 if (!IS_ERR(retval) && p)
2770 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2771 return retval;
2772Elong:
6092d048
RP
2773 return ERR_PTR(-ENAMETOOLONG);
2774}
2775
1da177e4
LT
2776/*
2777 * NOTE! The user-level library version returns a
2778 * character pointer. The kernel system call just
2779 * returns the length of the buffer filled (which
2780 * includes the ending '\0' character), or a negative
2781 * error value. So libc would do something like
2782 *
2783 * char *getcwd(char * buf, size_t size)
2784 * {
2785 * int retval;
2786 *
2787 * retval = sys_getcwd(buf, size);
2788 * if (retval >= 0)
2789 * return buf;
2790 * errno = -retval;
2791 * return NULL;
2792 * }
2793 */
3cdad428 2794SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2795{
552ce544 2796 int error;
6ac08c39 2797 struct path pwd, root;
552ce544 2798 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2799
2800 if (!page)
2801 return -ENOMEM;
2802
f7ad3c6b 2803 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2804
552ce544 2805 error = -ENOENT;
949854d0 2806 write_seqlock(&rename_lock);
f3da392e 2807 if (!d_unlinked(pwd.dentry)) {
552ce544 2808 unsigned long len;
9d1bc601 2809 struct path tmp = root;
8df9d1a4
MS
2810 char *cwd = page + PAGE_SIZE;
2811 int buflen = PAGE_SIZE;
1da177e4 2812
8df9d1a4
MS
2813 prepend(&cwd, &buflen, "\0", 1);
2814 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2815 write_sequnlock(&rename_lock);
552ce544 2816
8df9d1a4 2817 if (error)
552ce544
LT
2818 goto out;
2819
8df9d1a4
MS
2820 /* Unreachable from current root */
2821 if (!path_equal(&tmp, &root)) {
2822 error = prepend_unreachable(&cwd, &buflen);
2823 if (error)
2824 goto out;
2825 }
2826
552ce544
LT
2827 error = -ERANGE;
2828 len = PAGE_SIZE + page - cwd;
2829 if (len <= size) {
2830 error = len;
2831 if (copy_to_user(buf, cwd, len))
2832 error = -EFAULT;
2833 }
949854d0
NP
2834 } else {
2835 write_sequnlock(&rename_lock);
949854d0 2836 }
1da177e4
LT
2837
2838out:
6ac08c39
JB
2839 path_put(&pwd);
2840 path_put(&root);
1da177e4
LT
2841 free_page((unsigned long) page);
2842 return error;
2843}
2844
2845/*
2846 * Test whether new_dentry is a subdirectory of old_dentry.
2847 *
2848 * Trivially implemented using the dcache structure
2849 */
2850
2851/**
2852 * is_subdir - is new dentry a subdirectory of old_dentry
2853 * @new_dentry: new dentry
2854 * @old_dentry: old dentry
2855 *
2856 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2857 * Returns 0 otherwise.
2858 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2859 */
2860
e2761a11 2861int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2862{
2863 int result;
949854d0 2864 unsigned seq;
1da177e4 2865
e2761a11
OH
2866 if (new_dentry == old_dentry)
2867 return 1;
2868
e2761a11 2869 do {
1da177e4 2870 /* for restarting inner loop in case of seq retry */
1da177e4 2871 seq = read_seqbegin(&rename_lock);
949854d0
NP
2872 /*
2873 * Need rcu_readlock to protect against the d_parent trashing
2874 * due to d_move
2875 */
2876 rcu_read_lock();
e2761a11 2877 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2878 result = 1;
e2761a11
OH
2879 else
2880 result = 0;
949854d0 2881 rcu_read_unlock();
1da177e4 2882 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2883
2884 return result;
2885}
2886
2096f759
AV
2887int path_is_under(struct path *path1, struct path *path2)
2888{
2889 struct vfsmount *mnt = path1->mnt;
2890 struct dentry *dentry = path1->dentry;
2891 int res;
99b7db7b
NP
2892
2893 br_read_lock(vfsmount_lock);
2096f759
AV
2894 if (mnt != path2->mnt) {
2895 for (;;) {
2896 if (mnt->mnt_parent == mnt) {
99b7db7b 2897 br_read_unlock(vfsmount_lock);
2096f759
AV
2898 return 0;
2899 }
2900 if (mnt->mnt_parent == path2->mnt)
2901 break;
2902 mnt = mnt->mnt_parent;
2903 }
2904 dentry = mnt->mnt_mountpoint;
2905 }
2906 res = is_subdir(dentry, path2->dentry);
99b7db7b 2907 br_read_unlock(vfsmount_lock);
2096f759
AV
2908 return res;
2909}
2910EXPORT_SYMBOL(path_is_under);
2911
1da177e4
LT
2912void d_genocide(struct dentry *root)
2913{
949854d0 2914 struct dentry *this_parent;
1da177e4 2915 struct list_head *next;
949854d0 2916 unsigned seq;
58db63d0 2917 int locked = 0;
1da177e4 2918
949854d0 2919 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2920again:
2921 this_parent = root;
2fd6b7f5 2922 spin_lock(&this_parent->d_lock);
1da177e4
LT
2923repeat:
2924 next = this_parent->d_subdirs.next;
2925resume:
2926 while (next != &this_parent->d_subdirs) {
2927 struct list_head *tmp = next;
5160ee6f 2928 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2929 next = tmp->next;
949854d0 2930
da502956
NP
2931 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2932 if (d_unhashed(dentry) || !dentry->d_inode) {
2933 spin_unlock(&dentry->d_lock);
1da177e4 2934 continue;
da502956 2935 }
1da177e4 2936 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2937 spin_unlock(&this_parent->d_lock);
2938 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2939 this_parent = dentry;
2fd6b7f5 2940 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2941 goto repeat;
2942 }
949854d0
NP
2943 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2944 dentry->d_flags |= DCACHE_GENOCIDE;
2945 dentry->d_count--;
2946 }
b7ab39f6 2947 spin_unlock(&dentry->d_lock);
1da177e4
LT
2948 }
2949 if (this_parent != root) {
c826cb7d 2950 struct dentry *child = this_parent;
949854d0
NP
2951 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2952 this_parent->d_flags |= DCACHE_GENOCIDE;
2953 this_parent->d_count--;
2954 }
c826cb7d
LT
2955 this_parent = try_to_ascend(this_parent, locked, seq);
2956 if (!this_parent)
949854d0 2957 goto rename_retry;
949854d0 2958 next = child->d_u.d_child.next;
1da177e4
LT
2959 goto resume;
2960 }
2fd6b7f5 2961 spin_unlock(&this_parent->d_lock);
58db63d0 2962 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2963 goto rename_retry;
58db63d0
NP
2964 if (locked)
2965 write_sequnlock(&rename_lock);
2966 return;
2967
2968rename_retry:
2969 locked = 1;
2970 write_seqlock(&rename_lock);
2971 goto again;
1da177e4
LT
2972}
2973
2974/**
2975 * find_inode_number - check for dentry with name
2976 * @dir: directory to check
2977 * @name: Name to find.
2978 *
2979 * Check whether a dentry already exists for the given name,
2980 * and return the inode number if it has an inode. Otherwise
2981 * 0 is returned.
2982 *
2983 * This routine is used to post-process directory listings for
2984 * filesystems using synthetic inode numbers, and is necessary
2985 * to keep getcwd() working.
2986 */
2987
2988ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2989{
2990 struct dentry * dentry;
2991 ino_t ino = 0;
2992
3e7e241f
EB
2993 dentry = d_hash_and_lookup(dir, name);
2994 if (dentry) {
1da177e4
LT
2995 if (dentry->d_inode)
2996 ino = dentry->d_inode->i_ino;
2997 dput(dentry);
2998 }
1da177e4
LT
2999 return ino;
3000}
ec4f8605 3001EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3002
3003static __initdata unsigned long dhash_entries;
3004static int __init set_dhash_entries(char *str)
3005{
3006 if (!str)
3007 return 0;
3008 dhash_entries = simple_strtoul(str, &str, 0);
3009 return 1;
3010}
3011__setup("dhash_entries=", set_dhash_entries);
3012
3013static void __init dcache_init_early(void)
3014{
3015 int loop;
3016
3017 /* If hashes are distributed across NUMA nodes, defer
3018 * hash allocation until vmalloc space is available.
3019 */
3020 if (hashdist)
3021 return;
3022
3023 dentry_hashtable =
3024 alloc_large_system_hash("Dentry cache",
b07ad996 3025 sizeof(struct hlist_bl_head),
1da177e4
LT
3026 dhash_entries,
3027 13,
3028 HASH_EARLY,
3029 &d_hash_shift,
3030 &d_hash_mask,
3031 0);
3032
3033 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3034 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3035}
3036
74bf17cf 3037static void __init dcache_init(void)
1da177e4
LT
3038{
3039 int loop;
3040
3041 /*
3042 * A constructor could be added for stable state like the lists,
3043 * but it is probably not worth it because of the cache nature
3044 * of the dcache.
3045 */
0a31bd5f
CL
3046 dentry_cache = KMEM_CACHE(dentry,
3047 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 3048
8e1f936b 3049 register_shrinker(&dcache_shrinker);
1da177e4
LT
3050
3051 /* Hash may have been set up in dcache_init_early */
3052 if (!hashdist)
3053 return;
3054
3055 dentry_hashtable =
3056 alloc_large_system_hash("Dentry cache",
b07ad996 3057 sizeof(struct hlist_bl_head),
1da177e4
LT
3058 dhash_entries,
3059 13,
3060 0,
3061 &d_hash_shift,
3062 &d_hash_mask,
3063 0);
3064
3065 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3066 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3067}
3068
3069/* SLAB cache for __getname() consumers */
e18b890b 3070struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3071EXPORT_SYMBOL(names_cachep);
1da177e4 3072
1da177e4
LT
3073EXPORT_SYMBOL(d_genocide);
3074
1da177e4
LT
3075void __init vfs_caches_init_early(void)
3076{
3077 dcache_init_early();
3078 inode_init_early();
3079}
3080
3081void __init vfs_caches_init(unsigned long mempages)
3082{
3083 unsigned long reserve;
3084
3085 /* Base hash sizes on available memory, with a reserve equal to
3086 150% of current kernel size */
3087
3088 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3089 mempages -= reserve;
3090
3091 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3092 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3093
74bf17cf
DC
3094 dcache_init();
3095 inode_init();
1da177e4 3096 files_init(mempages);
74bf17cf 3097 mnt_init();
1da177e4
LT
3098 bdev_cache_init();
3099 chrdev_init();
3100}