]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/dcache.c
dentry: move to per-sb LRU locks
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
19156840 51 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6 65 * dentry->d_lock
19156840 66 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
232d2d60
WL
90/**
91 * read_seqbegin_or_lock - begin a sequence number check or locking block
92 * lock: sequence lock
93 * seq : sequence number to be checked
94 *
95 * First try it once optimistically without taking the lock. If that fails,
96 * take the lock. The sequence number is also used as a marker for deciding
97 * whether to be a reader (even) or writer (odd).
98 * N.B. seq must be initialized to an even number to begin with.
99 */
100static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
101{
48f5ec21 102 if (!(*seq & 1)) /* Even */
232d2d60 103 *seq = read_seqbegin(lock);
48f5ec21 104 else /* Odd */
232d2d60
WL
105 write_seqlock(lock);
106}
107
48f5ec21 108static inline int need_seqretry(seqlock_t *lock, int seq)
232d2d60 109{
48f5ec21
AV
110 return !(seq & 1) && read_seqretry(lock, seq);
111}
112
113static inline void done_seqretry(seqlock_t *lock, int seq)
114{
115 if (seq & 1)
232d2d60 116 write_sequnlock(lock);
232d2d60
WL
117}
118
1da177e4
LT
119/*
120 * This is the single most critical data structure when it comes
121 * to the dcache: the hashtable for lookups. Somebody should try
122 * to make this good - I've just made it work.
123 *
124 * This hash-function tries to avoid losing too many bits of hash
125 * information, yet avoid using a prime hash-size or similar.
126 */
127#define D_HASHBITS d_hash_shift
128#define D_HASHMASK d_hash_mask
129
fa3536cc
ED
130static unsigned int d_hash_mask __read_mostly;
131static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 132
b07ad996 133static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 134
8966be90 135static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 136 unsigned int hash)
ceb5bdc2 137{
6d7d1a0d
LT
138 hash += (unsigned long) parent / L1_CACHE_BYTES;
139 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
140 return dentry_hashtable + (hash & D_HASHMASK);
141}
142
1da177e4
LT
143/* Statistics gathering. */
144struct dentry_stat_t dentry_stat = {
145 .age_limit = 45,
146};
147
3942c07c 148static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 149static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
150
151#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
152
153/*
154 * Here we resort to our own counters instead of using generic per-cpu counters
155 * for consistency with what the vfs inode code does. We are expected to harvest
156 * better code and performance by having our own specialized counters.
157 *
158 * Please note that the loop is done over all possible CPUs, not over all online
159 * CPUs. The reason for this is that we don't want to play games with CPUs going
160 * on and off. If one of them goes off, we will just keep their counters.
161 *
162 * glommer: See cffbc8a for details, and if you ever intend to change this,
163 * please update all vfs counters to match.
164 */
3942c07c 165static long get_nr_dentry(void)
3e880fb5
NP
166{
167 int i;
3942c07c 168 long sum = 0;
3e880fb5
NP
169 for_each_possible_cpu(i)
170 sum += per_cpu(nr_dentry, i);
171 return sum < 0 ? 0 : sum;
172}
173
62d36c77
DC
174static long get_nr_dentry_unused(void)
175{
176 int i;
177 long sum = 0;
178 for_each_possible_cpu(i)
179 sum += per_cpu(nr_dentry_unused, i);
180 return sum < 0 ? 0 : sum;
181}
182
312d3ca8
CH
183int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
184 size_t *lenp, loff_t *ppos)
185{
3e880fb5 186 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 187 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 188 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
189}
190#endif
191
5483f18e
LT
192/*
193 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
194 * The strings are both count bytes long, and count is non-zero.
195 */
e419b4cc
LT
196#ifdef CONFIG_DCACHE_WORD_ACCESS
197
198#include <asm/word-at-a-time.h>
199/*
200 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
201 * aligned allocation for this particular component. We don't
202 * strictly need the load_unaligned_zeropad() safety, but it
203 * doesn't hurt either.
204 *
205 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
206 * need the careful unaligned handling.
207 */
94753db5 208static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 209{
bfcfaa77 210 unsigned long a,b,mask;
bfcfaa77
LT
211
212 for (;;) {
12f8ad4b 213 a = *(unsigned long *)cs;
e419b4cc 214 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
215 if (tcount < sizeof(unsigned long))
216 break;
217 if (unlikely(a != b))
218 return 1;
219 cs += sizeof(unsigned long);
220 ct += sizeof(unsigned long);
221 tcount -= sizeof(unsigned long);
222 if (!tcount)
223 return 0;
224 }
225 mask = ~(~0ul << tcount*8);
226 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
227}
228
bfcfaa77 229#else
e419b4cc 230
94753db5 231static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 232{
5483f18e
LT
233 do {
234 if (*cs != *ct)
235 return 1;
236 cs++;
237 ct++;
238 tcount--;
239 } while (tcount);
240 return 0;
241}
242
e419b4cc
LT
243#endif
244
94753db5
LT
245static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
246{
6326c71f 247 const unsigned char *cs;
94753db5
LT
248 /*
249 * Be careful about RCU walk racing with rename:
250 * use ACCESS_ONCE to fetch the name pointer.
251 *
252 * NOTE! Even if a rename will mean that the length
253 * was not loaded atomically, we don't care. The
254 * RCU walk will check the sequence count eventually,
255 * and catch it. And we won't overrun the buffer,
256 * because we're reading the name pointer atomically,
257 * and a dentry name is guaranteed to be properly
258 * terminated with a NUL byte.
259 *
260 * End result: even if 'len' is wrong, we'll exit
261 * early because the data cannot match (there can
262 * be no NUL in the ct/tcount data)
263 */
6326c71f
LT
264 cs = ACCESS_ONCE(dentry->d_name.name);
265 smp_read_barrier_depends();
266 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
267}
268
9c82ab9c 269static void __d_free(struct rcu_head *head)
1da177e4 270{
9c82ab9c
CH
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272
b3d9b7a3 273 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
274 if (dname_external(dentry))
275 kfree(dentry->d_name.name);
276 kmem_cache_free(dentry_cache, dentry);
277}
278
279/*
b5c84bf6 280 * no locks, please.
1da177e4
LT
281 */
282static void d_free(struct dentry *dentry)
283{
0d98439e 284 BUG_ON((int)dentry->d_lockref.count > 0);
3e880fb5 285 this_cpu_dec(nr_dentry);
1da177e4
LT
286 if (dentry->d_op && dentry->d_op->d_release)
287 dentry->d_op->d_release(dentry);
312d3ca8 288
dea3667b
LT
289 /* if dentry was never visible to RCU, immediate free is OK */
290 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 291 __d_free(&dentry->d_u.d_rcu);
b3423415 292 else
9c82ab9c 293 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
294}
295
31e6b01f
NP
296/**
297 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 298 * @dentry: the target dentry
31e6b01f
NP
299 * After this call, in-progress rcu-walk path lookup will fail. This
300 * should be called after unhashing, and after changing d_inode (if
301 * the dentry has not already been unhashed).
302 */
303static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
304{
305 assert_spin_locked(&dentry->d_lock);
306 /* Go through a barrier */
307 write_seqcount_barrier(&dentry->d_seq);
308}
309
1da177e4
LT
310/*
311 * Release the dentry's inode, using the filesystem
31e6b01f
NP
312 * d_iput() operation if defined. Dentry has no refcount
313 * and is unhashed.
1da177e4 314 */
858119e1 315static void dentry_iput(struct dentry * dentry)
31f3e0b3 316 __releases(dentry->d_lock)
873feea0 317 __releases(dentry->d_inode->i_lock)
1da177e4
LT
318{
319 struct inode *inode = dentry->d_inode;
320 if (inode) {
321 dentry->d_inode = NULL;
b3d9b7a3 322 hlist_del_init(&dentry->d_alias);
1da177e4 323 spin_unlock(&dentry->d_lock);
873feea0 324 spin_unlock(&inode->i_lock);
f805fbda
LT
325 if (!inode->i_nlink)
326 fsnotify_inoderemove(inode);
1da177e4
LT
327 if (dentry->d_op && dentry->d_op->d_iput)
328 dentry->d_op->d_iput(dentry, inode);
329 else
330 iput(inode);
331 } else {
332 spin_unlock(&dentry->d_lock);
1da177e4
LT
333 }
334}
335
31e6b01f
NP
336/*
337 * Release the dentry's inode, using the filesystem
338 * d_iput() operation if defined. dentry remains in-use.
339 */
340static void dentry_unlink_inode(struct dentry * dentry)
341 __releases(dentry->d_lock)
873feea0 342 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
343{
344 struct inode *inode = dentry->d_inode;
345 dentry->d_inode = NULL;
b3d9b7a3 346 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
347 dentry_rcuwalk_barrier(dentry);
348 spin_unlock(&dentry->d_lock);
873feea0 349 spin_unlock(&inode->i_lock);
31e6b01f
NP
350 if (!inode->i_nlink)
351 fsnotify_inoderemove(inode);
352 if (dentry->d_op && dentry->d_op->d_iput)
353 dentry->d_op->d_iput(dentry, inode);
354 else
355 iput(inode);
356}
357
da3bbdd4 358/*
f0023bc6 359 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
360 */
361static void dentry_lru_add(struct dentry *dentry)
362{
8aab6a27 363 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) {
19156840 364 spin_lock(&dentry->d_sb->s_dentry_lru_lock);
8aab6a27 365 dentry->d_flags |= DCACHE_LRU_LIST;
a4633357
CH
366 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
367 dentry->d_sb->s_nr_dentry_unused++;
62d36c77 368 this_cpu_inc(nr_dentry_unused);
19156840 369 spin_unlock(&dentry->d_sb->s_dentry_lru_lock);
a4633357 370 }
da3bbdd4
KM
371}
372
23044507
NP
373static void __dentry_lru_del(struct dentry *dentry)
374{
375 list_del_init(&dentry->d_lru);
8aab6a27 376 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
23044507 377 dentry->d_sb->s_nr_dentry_unused--;
62d36c77 378 this_cpu_dec(nr_dentry_unused);
23044507
NP
379}
380
f0023bc6
SW
381/*
382 * Remove a dentry with references from the LRU.
383 */
da3bbdd4
KM
384static void dentry_lru_del(struct dentry *dentry)
385{
386 if (!list_empty(&dentry->d_lru)) {
19156840 387 spin_lock(&dentry->d_sb->s_dentry_lru_lock);
23044507 388 __dentry_lru_del(dentry);
19156840 389 spin_unlock(&dentry->d_sb->s_dentry_lru_lock);
da3bbdd4
KM
390 }
391}
392
b48f03b3 393static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 394{
19156840 395 spin_lock(&dentry->d_sb->s_dentry_lru_lock);
a4633357 396 if (list_empty(&dentry->d_lru)) {
8aab6a27 397 dentry->d_flags |= DCACHE_LRU_LIST;
b48f03b3 398 list_add_tail(&dentry->d_lru, list);
a4633357 399 dentry->d_sb->s_nr_dentry_unused++;
62d36c77 400 this_cpu_inc(nr_dentry_unused);
a4633357 401 } else {
b48f03b3 402 list_move_tail(&dentry->d_lru, list);
da3bbdd4 403 }
19156840 404 spin_unlock(&dentry->d_sb->s_dentry_lru_lock);
da3bbdd4
KM
405}
406
d52b9086
MS
407/**
408 * d_kill - kill dentry and return parent
409 * @dentry: dentry to kill
ff5fdb61 410 * @parent: parent dentry
d52b9086 411 *
31f3e0b3 412 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
413 *
414 * If this is the root of the dentry tree, return NULL.
23044507 415 *
b5c84bf6
NP
416 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
417 * d_kill.
d52b9086 418 */
2fd6b7f5 419static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 420 __releases(dentry->d_lock)
2fd6b7f5 421 __releases(parent->d_lock)
873feea0 422 __releases(dentry->d_inode->i_lock)
d52b9086 423{
d52b9086 424 list_del(&dentry->d_u.d_child);
c83ce989
TM
425 /*
426 * Inform try_to_ascend() that we are no longer attached to the
427 * dentry tree
428 */
b161dfa6 429 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
430 if (parent)
431 spin_unlock(&parent->d_lock);
d52b9086 432 dentry_iput(dentry);
b7ab39f6
NP
433 /*
434 * dentry_iput drops the locks, at which point nobody (except
435 * transient RCU lookups) can reach this dentry.
436 */
d52b9086 437 d_free(dentry);
871c0067 438 return parent;
d52b9086
MS
439}
440
c6627c60
DH
441/*
442 * Unhash a dentry without inserting an RCU walk barrier or checking that
443 * dentry->d_lock is locked. The caller must take care of that, if
444 * appropriate.
445 */
446static void __d_shrink(struct dentry *dentry)
447{
448 if (!d_unhashed(dentry)) {
449 struct hlist_bl_head *b;
450 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
451 b = &dentry->d_sb->s_anon;
452 else
453 b = d_hash(dentry->d_parent, dentry->d_name.hash);
454
455 hlist_bl_lock(b);
456 __hlist_bl_del(&dentry->d_hash);
457 dentry->d_hash.pprev = NULL;
458 hlist_bl_unlock(b);
459 }
460}
461
789680d1
NP
462/**
463 * d_drop - drop a dentry
464 * @dentry: dentry to drop
465 *
466 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
467 * be found through a VFS lookup any more. Note that this is different from
468 * deleting the dentry - d_delete will try to mark the dentry negative if
469 * possible, giving a successful _negative_ lookup, while d_drop will
470 * just make the cache lookup fail.
471 *
472 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
473 * reason (NFS timeouts or autofs deletes).
474 *
475 * __d_drop requires dentry->d_lock.
476 */
477void __d_drop(struct dentry *dentry)
478{
dea3667b 479 if (!d_unhashed(dentry)) {
c6627c60 480 __d_shrink(dentry);
dea3667b 481 dentry_rcuwalk_barrier(dentry);
789680d1
NP
482 }
483}
484EXPORT_SYMBOL(__d_drop);
485
486void d_drop(struct dentry *dentry)
487{
789680d1
NP
488 spin_lock(&dentry->d_lock);
489 __d_drop(dentry);
490 spin_unlock(&dentry->d_lock);
789680d1
NP
491}
492EXPORT_SYMBOL(d_drop);
493
77812a1e
NP
494/*
495 * Finish off a dentry we've decided to kill.
496 * dentry->d_lock must be held, returns with it unlocked.
497 * If ref is non-zero, then decrement the refcount too.
498 * Returns dentry requiring refcount drop, or NULL if we're done.
499 */
0d98439e 500static inline struct dentry *dentry_kill(struct dentry *dentry)
77812a1e
NP
501 __releases(dentry->d_lock)
502{
873feea0 503 struct inode *inode;
77812a1e
NP
504 struct dentry *parent;
505
873feea0
NP
506 inode = dentry->d_inode;
507 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
508relock:
509 spin_unlock(&dentry->d_lock);
510 cpu_relax();
511 return dentry; /* try again with same dentry */
512 }
513 if (IS_ROOT(dentry))
514 parent = NULL;
515 else
516 parent = dentry->d_parent;
517 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
518 if (inode)
519 spin_unlock(&inode->i_lock);
77812a1e
NP
520 goto relock;
521 }
31e6b01f 522
0d98439e
LT
523 /*
524 * The dentry is now unrecoverably dead to the world.
525 */
526 lockref_mark_dead(&dentry->d_lockref);
527
f0023bc6 528 /*
f0023bc6
SW
529 * inform the fs via d_prune that this dentry is about to be
530 * unhashed and destroyed.
531 */
590fb51f 532 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
533 dentry->d_op->d_prune(dentry);
534
535 dentry_lru_del(dentry);
77812a1e
NP
536 /* if it was on the hash then remove it */
537 __d_drop(dentry);
538 return d_kill(dentry, parent);
539}
540
1da177e4
LT
541/*
542 * This is dput
543 *
544 * This is complicated by the fact that we do not want to put
545 * dentries that are no longer on any hash chain on the unused
546 * list: we'd much rather just get rid of them immediately.
547 *
548 * However, that implies that we have to traverse the dentry
549 * tree upwards to the parents which might _also_ now be
550 * scheduled for deletion (it may have been only waiting for
551 * its last child to go away).
552 *
553 * This tail recursion is done by hand as we don't want to depend
554 * on the compiler to always get this right (gcc generally doesn't).
555 * Real recursion would eat up our stack space.
556 */
557
558/*
559 * dput - release a dentry
560 * @dentry: dentry to release
561 *
562 * Release a dentry. This will drop the usage count and if appropriate
563 * call the dentry unlink method as well as removing it from the queues and
564 * releasing its resources. If the parent dentries were scheduled for release
565 * they too may now get deleted.
1da177e4 566 */
1da177e4
LT
567void dput(struct dentry *dentry)
568{
8aab6a27 569 if (unlikely(!dentry))
1da177e4
LT
570 return;
571
572repeat:
98474236 573 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 574 return;
1da177e4 575
8aab6a27
LT
576 /* Unreachable? Get rid of it */
577 if (unlikely(d_unhashed(dentry)))
578 goto kill_it;
579
580 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 581 if (dentry->d_op->d_delete(dentry))
61f3dee4 582 goto kill_it;
1da177e4 583 }
265ac902 584
39e3c955 585 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 586 dentry_lru_add(dentry);
265ac902 587
98474236 588 dentry->d_lockref.count--;
61f3dee4 589 spin_unlock(&dentry->d_lock);
1da177e4
LT
590 return;
591
d52b9086 592kill_it:
0d98439e 593 dentry = dentry_kill(dentry);
d52b9086
MS
594 if (dentry)
595 goto repeat;
1da177e4 596}
ec4f8605 597EXPORT_SYMBOL(dput);
1da177e4
LT
598
599/**
600 * d_invalidate - invalidate a dentry
601 * @dentry: dentry to invalidate
602 *
603 * Try to invalidate the dentry if it turns out to be
604 * possible. If there are other dentries that can be
605 * reached through this one we can't delete it and we
606 * return -EBUSY. On success we return 0.
607 *
608 * no dcache lock.
609 */
610
611int d_invalidate(struct dentry * dentry)
612{
613 /*
614 * If it's already been dropped, return OK.
615 */
da502956 616 spin_lock(&dentry->d_lock);
1da177e4 617 if (d_unhashed(dentry)) {
da502956 618 spin_unlock(&dentry->d_lock);
1da177e4
LT
619 return 0;
620 }
621 /*
622 * Check whether to do a partial shrink_dcache
623 * to get rid of unused child entries.
624 */
625 if (!list_empty(&dentry->d_subdirs)) {
da502956 626 spin_unlock(&dentry->d_lock);
1da177e4 627 shrink_dcache_parent(dentry);
da502956 628 spin_lock(&dentry->d_lock);
1da177e4
LT
629 }
630
631 /*
632 * Somebody else still using it?
633 *
634 * If it's a directory, we can't drop it
635 * for fear of somebody re-populating it
636 * with children (even though dropping it
637 * would make it unreachable from the root,
638 * we might still populate it if it was a
639 * working directory or similar).
50e69630
AV
640 * We also need to leave mountpoints alone,
641 * directory or not.
1da177e4 642 */
98474236 643 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 644 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 645 spin_unlock(&dentry->d_lock);
1da177e4
LT
646 return -EBUSY;
647 }
648 }
649
650 __d_drop(dentry);
651 spin_unlock(&dentry->d_lock);
1da177e4
LT
652 return 0;
653}
ec4f8605 654EXPORT_SYMBOL(d_invalidate);
1da177e4 655
b5c84bf6 656/* This must be called with d_lock held */
dc0474be 657static inline void __dget_dlock(struct dentry *dentry)
23044507 658{
98474236 659 dentry->d_lockref.count++;
23044507
NP
660}
661
dc0474be 662static inline void __dget(struct dentry *dentry)
1da177e4 663{
98474236 664 lockref_get(&dentry->d_lockref);
1da177e4
LT
665}
666
b7ab39f6
NP
667struct dentry *dget_parent(struct dentry *dentry)
668{
df3d0bbc 669 int gotref;
b7ab39f6
NP
670 struct dentry *ret;
671
df3d0bbc
WL
672 /*
673 * Do optimistic parent lookup without any
674 * locking.
675 */
676 rcu_read_lock();
677 ret = ACCESS_ONCE(dentry->d_parent);
678 gotref = lockref_get_not_zero(&ret->d_lockref);
679 rcu_read_unlock();
680 if (likely(gotref)) {
681 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
682 return ret;
683 dput(ret);
684 }
685
b7ab39f6 686repeat:
a734eb45
NP
687 /*
688 * Don't need rcu_dereference because we re-check it was correct under
689 * the lock.
690 */
691 rcu_read_lock();
b7ab39f6 692 ret = dentry->d_parent;
a734eb45
NP
693 spin_lock(&ret->d_lock);
694 if (unlikely(ret != dentry->d_parent)) {
695 spin_unlock(&ret->d_lock);
696 rcu_read_unlock();
b7ab39f6
NP
697 goto repeat;
698 }
a734eb45 699 rcu_read_unlock();
98474236
WL
700 BUG_ON(!ret->d_lockref.count);
701 ret->d_lockref.count++;
b7ab39f6 702 spin_unlock(&ret->d_lock);
b7ab39f6
NP
703 return ret;
704}
705EXPORT_SYMBOL(dget_parent);
706
1da177e4
LT
707/**
708 * d_find_alias - grab a hashed alias of inode
709 * @inode: inode in question
32ba9c3f
LT
710 * @want_discon: flag, used by d_splice_alias, to request
711 * that only a DISCONNECTED alias be returned.
1da177e4
LT
712 *
713 * If inode has a hashed alias, or is a directory and has any alias,
714 * acquire the reference to alias and return it. Otherwise return NULL.
715 * Notice that if inode is a directory there can be only one alias and
716 * it can be unhashed only if it has no children, or if it is the root
717 * of a filesystem.
718 *
21c0d8fd 719 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
720 * any other hashed alias over that one unless @want_discon is set,
721 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 722 */
32ba9c3f 723static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 724{
da502956 725 struct dentry *alias, *discon_alias;
1da177e4 726
da502956
NP
727again:
728 discon_alias = NULL;
b67bfe0d 729 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 730 spin_lock(&alias->d_lock);
1da177e4 731 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 732 if (IS_ROOT(alias) &&
da502956 733 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 734 discon_alias = alias;
32ba9c3f 735 } else if (!want_discon) {
dc0474be 736 __dget_dlock(alias);
da502956
NP
737 spin_unlock(&alias->d_lock);
738 return alias;
739 }
740 }
741 spin_unlock(&alias->d_lock);
742 }
743 if (discon_alias) {
744 alias = discon_alias;
745 spin_lock(&alias->d_lock);
746 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
747 if (IS_ROOT(alias) &&
748 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 749 __dget_dlock(alias);
da502956 750 spin_unlock(&alias->d_lock);
1da177e4
LT
751 return alias;
752 }
753 }
da502956
NP
754 spin_unlock(&alias->d_lock);
755 goto again;
1da177e4 756 }
da502956 757 return NULL;
1da177e4
LT
758}
759
da502956 760struct dentry *d_find_alias(struct inode *inode)
1da177e4 761{
214fda1f
DH
762 struct dentry *de = NULL;
763
b3d9b7a3 764 if (!hlist_empty(&inode->i_dentry)) {
873feea0 765 spin_lock(&inode->i_lock);
32ba9c3f 766 de = __d_find_alias(inode, 0);
873feea0 767 spin_unlock(&inode->i_lock);
214fda1f 768 }
1da177e4
LT
769 return de;
770}
ec4f8605 771EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
772
773/*
774 * Try to kill dentries associated with this inode.
775 * WARNING: you must own a reference to inode.
776 */
777void d_prune_aliases(struct inode *inode)
778{
0cdca3f9 779 struct dentry *dentry;
1da177e4 780restart:
873feea0 781 spin_lock(&inode->i_lock);
b67bfe0d 782 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 783 spin_lock(&dentry->d_lock);
98474236 784 if (!dentry->d_lockref.count) {
590fb51f
YZ
785 /*
786 * inform the fs via d_prune that this dentry
787 * is about to be unhashed and destroyed.
788 */
789 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
790 !d_unhashed(dentry))
791 dentry->d_op->d_prune(dentry);
792
dc0474be 793 __dget_dlock(dentry);
1da177e4
LT
794 __d_drop(dentry);
795 spin_unlock(&dentry->d_lock);
873feea0 796 spin_unlock(&inode->i_lock);
1da177e4
LT
797 dput(dentry);
798 goto restart;
799 }
800 spin_unlock(&dentry->d_lock);
801 }
873feea0 802 spin_unlock(&inode->i_lock);
1da177e4 803}
ec4f8605 804EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
805
806/*
77812a1e
NP
807 * Try to throw away a dentry - free the inode, dput the parent.
808 * Requires dentry->d_lock is held, and dentry->d_count == 0.
809 * Releases dentry->d_lock.
d702ccb3 810 *
77812a1e 811 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 812 */
77812a1e 813static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 814 __releases(dentry->d_lock)
1da177e4 815{
77812a1e 816 struct dentry *parent;
d52b9086 817
0d98439e 818 parent = dentry_kill(dentry);
d52b9086 819 /*
77812a1e
NP
820 * If dentry_kill returns NULL, we have nothing more to do.
821 * if it returns the same dentry, trylocks failed. In either
822 * case, just loop again.
823 *
824 * Otherwise, we need to prune ancestors too. This is necessary
825 * to prevent quadratic behavior of shrink_dcache_parent(), but
826 * is also expected to be beneficial in reducing dentry cache
827 * fragmentation.
d52b9086 828 */
77812a1e
NP
829 if (!parent)
830 return;
831 if (parent == dentry)
832 return;
833
834 /* Prune ancestors. */
835 dentry = parent;
d52b9086 836 while (dentry) {
98474236 837 if (lockref_put_or_lock(&dentry->d_lockref))
89e60548 838 return;
0d98439e 839 dentry = dentry_kill(dentry);
d52b9086 840 }
1da177e4
LT
841}
842
3049cfe2 843static void shrink_dentry_list(struct list_head *list)
1da177e4 844{
da3bbdd4 845 struct dentry *dentry;
da3bbdd4 846
ec33679d
NP
847 rcu_read_lock();
848 for (;;) {
ec33679d
NP
849 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
850 if (&dentry->d_lru == list)
851 break; /* empty */
852 spin_lock(&dentry->d_lock);
853 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
854 spin_unlock(&dentry->d_lock);
23044507
NP
855 continue;
856 }
857
1da177e4
LT
858 /*
859 * We found an inuse dentry which was not removed from
da3bbdd4
KM
860 * the LRU because of laziness during lookup. Do not free
861 * it - just keep it off the LRU list.
1da177e4 862 */
98474236 863 if (dentry->d_lockref.count) {
ec33679d 864 dentry_lru_del(dentry);
da3bbdd4 865 spin_unlock(&dentry->d_lock);
1da177e4
LT
866 continue;
867 }
ec33679d 868
ec33679d 869 rcu_read_unlock();
77812a1e
NP
870
871 try_prune_one_dentry(dentry);
872
ec33679d 873 rcu_read_lock();
da3bbdd4 874 }
ec33679d 875 rcu_read_unlock();
3049cfe2
CH
876}
877
878/**
b48f03b3
DC
879 * prune_dcache_sb - shrink the dcache
880 * @sb: superblock
881 * @count: number of entries to try to free
882 *
883 * Attempt to shrink the superblock dcache LRU by @count entries. This is
884 * done when we need more memory an called from the superblock shrinker
885 * function.
3049cfe2 886 *
b48f03b3
DC
887 * This function may fail to free any resources if all the dentries are in
888 * use.
3049cfe2 889 */
b48f03b3 890void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 891{
3049cfe2
CH
892 struct dentry *dentry;
893 LIST_HEAD(referenced);
894 LIST_HEAD(tmp);
3049cfe2 895
23044507 896relock:
19156840 897 spin_lock(&sb->s_dentry_lru_lock);
3049cfe2
CH
898 while (!list_empty(&sb->s_dentry_lru)) {
899 dentry = list_entry(sb->s_dentry_lru.prev,
900 struct dentry, d_lru);
901 BUG_ON(dentry->d_sb != sb);
902
23044507 903 if (!spin_trylock(&dentry->d_lock)) {
19156840 904 spin_unlock(&sb->s_dentry_lru_lock);
23044507
NP
905 cpu_relax();
906 goto relock;
907 }
908
b48f03b3 909 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
910 dentry->d_flags &= ~DCACHE_REFERENCED;
911 list_move(&dentry->d_lru, &referenced);
3049cfe2 912 spin_unlock(&dentry->d_lock);
23044507
NP
913 } else {
914 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 915 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 916 spin_unlock(&dentry->d_lock);
b0d40c92 917 if (!--count)
23044507 918 break;
3049cfe2 919 }
19156840 920 cond_resched_lock(&sb->s_dentry_lru_lock);
3049cfe2 921 }
da3bbdd4
KM
922 if (!list_empty(&referenced))
923 list_splice(&referenced, &sb->s_dentry_lru);
19156840 924 spin_unlock(&sb->s_dentry_lru_lock);
ec33679d
NP
925
926 shrink_dentry_list(&tmp);
da3bbdd4
KM
927}
928
1da177e4
LT
929/**
930 * shrink_dcache_sb - shrink dcache for a superblock
931 * @sb: superblock
932 *
3049cfe2
CH
933 * Shrink the dcache for the specified super block. This is used to free
934 * the dcache before unmounting a file system.
1da177e4 935 */
3049cfe2 936void shrink_dcache_sb(struct super_block *sb)
1da177e4 937{
3049cfe2
CH
938 LIST_HEAD(tmp);
939
19156840 940 spin_lock(&sb->s_dentry_lru_lock);
3049cfe2
CH
941 while (!list_empty(&sb->s_dentry_lru)) {
942 list_splice_init(&sb->s_dentry_lru, &tmp);
19156840 943 spin_unlock(&sb->s_dentry_lru_lock);
3049cfe2 944 shrink_dentry_list(&tmp);
19156840 945 spin_lock(&sb->s_dentry_lru_lock);
3049cfe2 946 }
19156840 947 spin_unlock(&sb->s_dentry_lru_lock);
1da177e4 948}
ec4f8605 949EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 950
c636ebdb
DH
951/*
952 * destroy a single subtree of dentries for unmount
953 * - see the comments on shrink_dcache_for_umount() for a description of the
954 * locking
955 */
956static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
957{
958 struct dentry *parent;
959
960 BUG_ON(!IS_ROOT(dentry));
961
c636ebdb
DH
962 for (;;) {
963 /* descend to the first leaf in the current subtree */
43c1c9cd 964 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
965 dentry = list_entry(dentry->d_subdirs.next,
966 struct dentry, d_u.d_child);
c636ebdb
DH
967
968 /* consume the dentries from this leaf up through its parents
969 * until we find one with children or run out altogether */
970 do {
971 struct inode *inode;
972
f0023bc6 973 /*
61572bb1 974 * inform the fs that this dentry is about to be
f0023bc6
SW
975 * unhashed and destroyed.
976 */
590fb51f
YZ
977 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
978 !d_unhashed(dentry))
61572bb1
YZ
979 dentry->d_op->d_prune(dentry);
980
981 dentry_lru_del(dentry);
43c1c9cd
DH
982 __d_shrink(dentry);
983
98474236 984 if (dentry->d_lockref.count != 0) {
c636ebdb
DH
985 printk(KERN_ERR
986 "BUG: Dentry %p{i=%lx,n=%s}"
987 " still in use (%d)"
988 " [unmount of %s %s]\n",
989 dentry,
990 dentry->d_inode ?
991 dentry->d_inode->i_ino : 0UL,
992 dentry->d_name.name,
98474236 993 dentry->d_lockref.count,
c636ebdb
DH
994 dentry->d_sb->s_type->name,
995 dentry->d_sb->s_id);
996 BUG();
997 }
998
2fd6b7f5 999 if (IS_ROOT(dentry)) {
c636ebdb 1000 parent = NULL;
2fd6b7f5
NP
1001 list_del(&dentry->d_u.d_child);
1002 } else {
871c0067 1003 parent = dentry->d_parent;
98474236 1004 parent->d_lockref.count--;
2fd6b7f5 1005 list_del(&dentry->d_u.d_child);
871c0067 1006 }
c636ebdb 1007
c636ebdb
DH
1008 inode = dentry->d_inode;
1009 if (inode) {
1010 dentry->d_inode = NULL;
b3d9b7a3 1011 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
1012 if (dentry->d_op && dentry->d_op->d_iput)
1013 dentry->d_op->d_iput(dentry, inode);
1014 else
1015 iput(inode);
1016 }
1017
1018 d_free(dentry);
1019
1020 /* finished when we fall off the top of the tree,
1021 * otherwise we ascend to the parent and move to the
1022 * next sibling if there is one */
1023 if (!parent)
312d3ca8 1024 return;
c636ebdb 1025 dentry = parent;
c636ebdb
DH
1026 } while (list_empty(&dentry->d_subdirs));
1027
1028 dentry = list_entry(dentry->d_subdirs.next,
1029 struct dentry, d_u.d_child);
1030 }
1031}
1032
1033/*
1034 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1035 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1036 * - the superblock is detached from all mountings and open files, so the
1037 * dentry trees will not be rearranged by the VFS
1038 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1039 * any dentries belonging to this superblock that it comes across
1040 * - the filesystem itself is no longer permitted to rearrange the dentries
1041 * in this superblock
1042 */
1043void shrink_dcache_for_umount(struct super_block *sb)
1044{
1045 struct dentry *dentry;
1046
1047 if (down_read_trylock(&sb->s_umount))
1048 BUG();
1049
1050 dentry = sb->s_root;
1051 sb->s_root = NULL;
98474236 1052 dentry->d_lockref.count--;
c636ebdb
DH
1053 shrink_dcache_for_umount_subtree(dentry);
1054
ceb5bdc2
NP
1055 while (!hlist_bl_empty(&sb->s_anon)) {
1056 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1057 shrink_dcache_for_umount_subtree(dentry);
1058 }
1059}
1060
c826cb7d
LT
1061/*
1062 * This tries to ascend one level of parenthood, but
1063 * we can race with renaming, so we need to re-check
1064 * the parenthood after dropping the lock and check
1065 * that the sequence number still matches.
1066 */
48f5ec21 1067static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
c826cb7d
LT
1068{
1069 struct dentry *new = old->d_parent;
1070
1071 rcu_read_lock();
1072 spin_unlock(&old->d_lock);
1073 spin_lock(&new->d_lock);
1074
1075 /*
1076 * might go back up the wrong parent if we have had a rename
1077 * or deletion
1078 */
1079 if (new != old->d_parent ||
b161dfa6 1080 (old->d_flags & DCACHE_DENTRY_KILLED) ||
48f5ec21 1081 need_seqretry(&rename_lock, seq)) {
c826cb7d
LT
1082 spin_unlock(&new->d_lock);
1083 new = NULL;
1084 }
1085 rcu_read_unlock();
1086 return new;
1087}
1088
db14fc3a
MS
1089/**
1090 * enum d_walk_ret - action to talke during tree walk
1091 * @D_WALK_CONTINUE: contrinue walk
1092 * @D_WALK_QUIT: quit walk
1093 * @D_WALK_NORETRY: quit when retry is needed
1094 * @D_WALK_SKIP: skip this dentry and its children
1095 */
1096enum d_walk_ret {
1097 D_WALK_CONTINUE,
1098 D_WALK_QUIT,
1099 D_WALK_NORETRY,
1100 D_WALK_SKIP,
1101};
c826cb7d 1102
1da177e4 1103/**
db14fc3a
MS
1104 * d_walk - walk the dentry tree
1105 * @parent: start of walk
1106 * @data: data passed to @enter() and @finish()
1107 * @enter: callback when first entering the dentry
1108 * @finish: callback when successfully finished the walk
1da177e4 1109 *
db14fc3a 1110 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1111 */
db14fc3a
MS
1112static void d_walk(struct dentry *parent, void *data,
1113 enum d_walk_ret (*enter)(void *, struct dentry *),
1114 void (*finish)(void *))
1da177e4 1115{
949854d0 1116 struct dentry *this_parent;
1da177e4 1117 struct list_head *next;
48f5ec21 1118 unsigned seq = 0;
db14fc3a
MS
1119 enum d_walk_ret ret;
1120 bool retry = true;
949854d0 1121
58db63d0 1122again:
48f5ec21 1123 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1124 this_parent = parent;
2fd6b7f5 1125 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1126
1127 ret = enter(data, this_parent);
1128 switch (ret) {
1129 case D_WALK_CONTINUE:
1130 break;
1131 case D_WALK_QUIT:
1132 case D_WALK_SKIP:
1133 goto out_unlock;
1134 case D_WALK_NORETRY:
1135 retry = false;
1136 break;
1137 }
1da177e4
LT
1138repeat:
1139 next = this_parent->d_subdirs.next;
1140resume:
1141 while (next != &this_parent->d_subdirs) {
1142 struct list_head *tmp = next;
5160ee6f 1143 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1144 next = tmp->next;
2fd6b7f5
NP
1145
1146 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1147
1148 ret = enter(data, dentry);
1149 switch (ret) {
1150 case D_WALK_CONTINUE:
1151 break;
1152 case D_WALK_QUIT:
2fd6b7f5 1153 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1154 goto out_unlock;
1155 case D_WALK_NORETRY:
1156 retry = false;
1157 break;
1158 case D_WALK_SKIP:
1159 spin_unlock(&dentry->d_lock);
1160 continue;
2fd6b7f5 1161 }
db14fc3a 1162
1da177e4 1163 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1164 spin_unlock(&this_parent->d_lock);
1165 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1166 this_parent = dentry;
2fd6b7f5 1167 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1168 goto repeat;
1169 }
2fd6b7f5 1170 spin_unlock(&dentry->d_lock);
1da177e4
LT
1171 }
1172 /*
1173 * All done at this level ... ascend and resume the search.
1174 */
1175 if (this_parent != parent) {
c826cb7d 1176 struct dentry *child = this_parent;
48f5ec21 1177 this_parent = try_to_ascend(this_parent, seq);
c826cb7d 1178 if (!this_parent)
949854d0 1179 goto rename_retry;
949854d0 1180 next = child->d_u.d_child.next;
1da177e4
LT
1181 goto resume;
1182 }
48f5ec21 1183 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1184 spin_unlock(&this_parent->d_lock);
949854d0 1185 goto rename_retry;
db14fc3a
MS
1186 }
1187 if (finish)
1188 finish(data);
1189
1190out_unlock:
1191 spin_unlock(&this_parent->d_lock);
48f5ec21 1192 done_seqretry(&rename_lock, seq);
db14fc3a 1193 return;
58db63d0
NP
1194
1195rename_retry:
db14fc3a
MS
1196 if (!retry)
1197 return;
48f5ec21 1198 seq = 1;
58db63d0 1199 goto again;
1da177e4 1200}
db14fc3a
MS
1201
1202/*
1203 * Search for at least 1 mount point in the dentry's subdirs.
1204 * We descend to the next level whenever the d_subdirs
1205 * list is non-empty and continue searching.
1206 */
1207
1208/**
1209 * have_submounts - check for mounts over a dentry
1210 * @parent: dentry to check.
1211 *
1212 * Return true if the parent or its subdirectories contain
1213 * a mount point
1214 */
1215
1216static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1217{
1218 int *ret = data;
1219 if (d_mountpoint(dentry)) {
1220 *ret = 1;
1221 return D_WALK_QUIT;
1222 }
1223 return D_WALK_CONTINUE;
1224}
1225
1226int have_submounts(struct dentry *parent)
1227{
1228 int ret = 0;
1229
1230 d_walk(parent, &ret, check_mount, NULL);
1231
1232 return ret;
1233}
ec4f8605 1234EXPORT_SYMBOL(have_submounts);
1da177e4 1235
eed81007
MS
1236/*
1237 * Called by mount code to set a mountpoint and check if the mountpoint is
1238 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1239 * subtree can become unreachable).
1240 *
1241 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1242 * this reason take rename_lock and d_lock on dentry and ancestors.
1243 */
1244int d_set_mounted(struct dentry *dentry)
1245{
1246 struct dentry *p;
1247 int ret = -ENOENT;
1248 write_seqlock(&rename_lock);
1249 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1250 /* Need exclusion wrt. check_submounts_and_drop() */
1251 spin_lock(&p->d_lock);
1252 if (unlikely(d_unhashed(p))) {
1253 spin_unlock(&p->d_lock);
1254 goto out;
1255 }
1256 spin_unlock(&p->d_lock);
1257 }
1258 spin_lock(&dentry->d_lock);
1259 if (!d_unlinked(dentry)) {
1260 dentry->d_flags |= DCACHE_MOUNTED;
1261 ret = 0;
1262 }
1263 spin_unlock(&dentry->d_lock);
1264out:
1265 write_sequnlock(&rename_lock);
1266 return ret;
1267}
1268
1da177e4 1269/*
fd517909 1270 * Search the dentry child list of the specified parent,
1da177e4
LT
1271 * and move any unused dentries to the end of the unused
1272 * list for prune_dcache(). We descend to the next level
1273 * whenever the d_subdirs list is non-empty and continue
1274 * searching.
1275 *
1276 * It returns zero iff there are no unused children,
1277 * otherwise it returns the number of children moved to
1278 * the end of the unused list. This may not be the total
1279 * number of unused children, because select_parent can
1280 * drop the lock and return early due to latency
1281 * constraints.
1282 */
1da177e4 1283
db14fc3a
MS
1284struct select_data {
1285 struct dentry *start;
1286 struct list_head dispose;
1287 int found;
1288};
23044507 1289
db14fc3a
MS
1290static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1291{
1292 struct select_data *data = _data;
1293 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1294
db14fc3a
MS
1295 if (data->start == dentry)
1296 goto out;
2fd6b7f5 1297
1da177e4 1298 /*
db14fc3a
MS
1299 * move only zero ref count dentries to the dispose list.
1300 *
1301 * Those which are presently on the shrink list, being processed
1302 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1303 * loop in shrink_dcache_parent() might not make any progress
1304 * and loop forever.
1da177e4 1305 */
db14fc3a
MS
1306 if (dentry->d_lockref.count) {
1307 dentry_lru_del(dentry);
1308 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1309 dentry_lru_move_list(dentry, &data->dispose);
1310 dentry->d_flags |= DCACHE_SHRINK_LIST;
1311 data->found++;
1312 ret = D_WALK_NORETRY;
1da177e4 1313 }
db14fc3a
MS
1314 /*
1315 * We can return to the caller if we have found some (this
1316 * ensures forward progress). We'll be coming back to find
1317 * the rest.
1318 */
1319 if (data->found && need_resched())
1320 ret = D_WALK_QUIT;
1da177e4 1321out:
db14fc3a 1322 return ret;
1da177e4
LT
1323}
1324
1325/**
1326 * shrink_dcache_parent - prune dcache
1327 * @parent: parent of entries to prune
1328 *
1329 * Prune the dcache to remove unused children of the parent dentry.
1330 */
db14fc3a 1331void shrink_dcache_parent(struct dentry *parent)
1da177e4 1332{
db14fc3a
MS
1333 for (;;) {
1334 struct select_data data;
1da177e4 1335
db14fc3a
MS
1336 INIT_LIST_HEAD(&data.dispose);
1337 data.start = parent;
1338 data.found = 0;
1339
1340 d_walk(parent, &data, select_collect, NULL);
1341 if (!data.found)
1342 break;
1343
1344 shrink_dentry_list(&data.dispose);
421348f1
GT
1345 cond_resched();
1346 }
1da177e4 1347}
ec4f8605 1348EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1349
848ac114
MS
1350static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1351{
1352 struct select_data *data = _data;
1353
1354 if (d_mountpoint(dentry)) {
1355 data->found = -EBUSY;
1356 return D_WALK_QUIT;
1357 }
1358
1359 return select_collect(_data, dentry);
1360}
1361
1362static void check_and_drop(void *_data)
1363{
1364 struct select_data *data = _data;
1365
1366 if (d_mountpoint(data->start))
1367 data->found = -EBUSY;
1368 if (!data->found)
1369 __d_drop(data->start);
1370}
1371
1372/**
1373 * check_submounts_and_drop - prune dcache, check for submounts and drop
1374 *
1375 * All done as a single atomic operation relative to has_unlinked_ancestor().
1376 * Returns 0 if successfully unhashed @parent. If there were submounts then
1377 * return -EBUSY.
1378 *
1379 * @dentry: dentry to prune and drop
1380 */
1381int check_submounts_and_drop(struct dentry *dentry)
1382{
1383 int ret = 0;
1384
1385 /* Negative dentries can be dropped without further checks */
1386 if (!dentry->d_inode) {
1387 d_drop(dentry);
1388 goto out;
1389 }
1390
1391 for (;;) {
1392 struct select_data data;
1393
1394 INIT_LIST_HEAD(&data.dispose);
1395 data.start = dentry;
1396 data.found = 0;
1397
1398 d_walk(dentry, &data, check_and_collect, check_and_drop);
1399 ret = data.found;
1400
1401 if (!list_empty(&data.dispose))
1402 shrink_dentry_list(&data.dispose);
1403
1404 if (ret <= 0)
1405 break;
1406
1407 cond_resched();
1408 }
1409
1410out:
1411 return ret;
1412}
1413EXPORT_SYMBOL(check_submounts_and_drop);
1414
1da177e4 1415/**
a4464dbc
AV
1416 * __d_alloc - allocate a dcache entry
1417 * @sb: filesystem it will belong to
1da177e4
LT
1418 * @name: qstr of the name
1419 *
1420 * Allocates a dentry. It returns %NULL if there is insufficient memory
1421 * available. On a success the dentry is returned. The name passed in is
1422 * copied and the copy passed in may be reused after this call.
1423 */
1424
a4464dbc 1425struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1426{
1427 struct dentry *dentry;
1428 char *dname;
1429
e12ba74d 1430 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1431 if (!dentry)
1432 return NULL;
1433
6326c71f
LT
1434 /*
1435 * We guarantee that the inline name is always NUL-terminated.
1436 * This way the memcpy() done by the name switching in rename
1437 * will still always have a NUL at the end, even if we might
1438 * be overwriting an internal NUL character
1439 */
1440 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1441 if (name->len > DNAME_INLINE_LEN-1) {
1442 dname = kmalloc(name->len + 1, GFP_KERNEL);
1443 if (!dname) {
1444 kmem_cache_free(dentry_cache, dentry);
1445 return NULL;
1446 }
1447 } else {
1448 dname = dentry->d_iname;
1449 }
1da177e4
LT
1450
1451 dentry->d_name.len = name->len;
1452 dentry->d_name.hash = name->hash;
1453 memcpy(dname, name->name, name->len);
1454 dname[name->len] = 0;
1455
6326c71f
LT
1456 /* Make sure we always see the terminating NUL character */
1457 smp_wmb();
1458 dentry->d_name.name = dname;
1459
98474236 1460 dentry->d_lockref.count = 1;
dea3667b 1461 dentry->d_flags = 0;
1da177e4 1462 spin_lock_init(&dentry->d_lock);
31e6b01f 1463 seqcount_init(&dentry->d_seq);
1da177e4 1464 dentry->d_inode = NULL;
a4464dbc
AV
1465 dentry->d_parent = dentry;
1466 dentry->d_sb = sb;
1da177e4
LT
1467 dentry->d_op = NULL;
1468 dentry->d_fsdata = NULL;
ceb5bdc2 1469 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1470 INIT_LIST_HEAD(&dentry->d_lru);
1471 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1472 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1473 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1474 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1475
3e880fb5 1476 this_cpu_inc(nr_dentry);
312d3ca8 1477
1da177e4
LT
1478 return dentry;
1479}
a4464dbc
AV
1480
1481/**
1482 * d_alloc - allocate a dcache entry
1483 * @parent: parent of entry to allocate
1484 * @name: qstr of the name
1485 *
1486 * Allocates a dentry. It returns %NULL if there is insufficient memory
1487 * available. On a success the dentry is returned. The name passed in is
1488 * copied and the copy passed in may be reused after this call.
1489 */
1490struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1491{
1492 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1493 if (!dentry)
1494 return NULL;
1495
1496 spin_lock(&parent->d_lock);
1497 /*
1498 * don't need child lock because it is not subject
1499 * to concurrency here
1500 */
1501 __dget_dlock(parent);
1502 dentry->d_parent = parent;
1503 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1504 spin_unlock(&parent->d_lock);
1505
1506 return dentry;
1507}
ec4f8605 1508EXPORT_SYMBOL(d_alloc);
1da177e4 1509
4b936885
NP
1510struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1511{
a4464dbc
AV
1512 struct dentry *dentry = __d_alloc(sb, name);
1513 if (dentry)
4b936885 1514 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1515 return dentry;
1516}
1517EXPORT_SYMBOL(d_alloc_pseudo);
1518
1da177e4
LT
1519struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1520{
1521 struct qstr q;
1522
1523 q.name = name;
1524 q.len = strlen(name);
1525 q.hash = full_name_hash(q.name, q.len);
1526 return d_alloc(parent, &q);
1527}
ef26ca97 1528EXPORT_SYMBOL(d_alloc_name);
1da177e4 1529
fb045adb
NP
1530void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1531{
6f7f7caa
LT
1532 WARN_ON_ONCE(dentry->d_op);
1533 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1534 DCACHE_OP_COMPARE |
1535 DCACHE_OP_REVALIDATE |
ecf3d1f1 1536 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1537 DCACHE_OP_DELETE ));
1538 dentry->d_op = op;
1539 if (!op)
1540 return;
1541 if (op->d_hash)
1542 dentry->d_flags |= DCACHE_OP_HASH;
1543 if (op->d_compare)
1544 dentry->d_flags |= DCACHE_OP_COMPARE;
1545 if (op->d_revalidate)
1546 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1547 if (op->d_weak_revalidate)
1548 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1549 if (op->d_delete)
1550 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1551 if (op->d_prune)
1552 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1553
1554}
1555EXPORT_SYMBOL(d_set_d_op);
1556
360da900
OH
1557static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1558{
b23fb0a6 1559 spin_lock(&dentry->d_lock);
9875cf80
DH
1560 if (inode) {
1561 if (unlikely(IS_AUTOMOUNT(inode)))
1562 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1563 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1564 }
360da900 1565 dentry->d_inode = inode;
31e6b01f 1566 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1567 spin_unlock(&dentry->d_lock);
360da900
OH
1568 fsnotify_d_instantiate(dentry, inode);
1569}
1570
1da177e4
LT
1571/**
1572 * d_instantiate - fill in inode information for a dentry
1573 * @entry: dentry to complete
1574 * @inode: inode to attach to this dentry
1575 *
1576 * Fill in inode information in the entry.
1577 *
1578 * This turns negative dentries into productive full members
1579 * of society.
1580 *
1581 * NOTE! This assumes that the inode count has been incremented
1582 * (or otherwise set) by the caller to indicate that it is now
1583 * in use by the dcache.
1584 */
1585
1586void d_instantiate(struct dentry *entry, struct inode * inode)
1587{
b3d9b7a3 1588 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1589 if (inode)
1590 spin_lock(&inode->i_lock);
360da900 1591 __d_instantiate(entry, inode);
873feea0
NP
1592 if (inode)
1593 spin_unlock(&inode->i_lock);
1da177e4
LT
1594 security_d_instantiate(entry, inode);
1595}
ec4f8605 1596EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1597
1598/**
1599 * d_instantiate_unique - instantiate a non-aliased dentry
1600 * @entry: dentry to instantiate
1601 * @inode: inode to attach to this dentry
1602 *
1603 * Fill in inode information in the entry. On success, it returns NULL.
1604 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1605 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1606 *
1607 * Note that in order to avoid conflicts with rename() etc, the caller
1608 * had better be holding the parent directory semaphore.
e866cfa9
OD
1609 *
1610 * This also assumes that the inode count has been incremented
1611 * (or otherwise set) by the caller to indicate that it is now
1612 * in use by the dcache.
1da177e4 1613 */
770bfad8
DH
1614static struct dentry *__d_instantiate_unique(struct dentry *entry,
1615 struct inode *inode)
1da177e4
LT
1616{
1617 struct dentry *alias;
1618 int len = entry->d_name.len;
1619 const char *name = entry->d_name.name;
1620 unsigned int hash = entry->d_name.hash;
1621
770bfad8 1622 if (!inode) {
360da900 1623 __d_instantiate(entry, NULL);
770bfad8
DH
1624 return NULL;
1625 }
1626
b67bfe0d 1627 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1628 /*
1629 * Don't need alias->d_lock here, because aliases with
1630 * d_parent == entry->d_parent are not subject to name or
1631 * parent changes, because the parent inode i_mutex is held.
1632 */
12f8ad4b 1633 if (alias->d_name.hash != hash)
1da177e4
LT
1634 continue;
1635 if (alias->d_parent != entry->d_parent)
1636 continue;
ee983e89
LT
1637 if (alias->d_name.len != len)
1638 continue;
12f8ad4b 1639 if (dentry_cmp(alias, name, len))
1da177e4 1640 continue;
dc0474be 1641 __dget(alias);
1da177e4
LT
1642 return alias;
1643 }
770bfad8 1644
360da900 1645 __d_instantiate(entry, inode);
1da177e4
LT
1646 return NULL;
1647}
770bfad8
DH
1648
1649struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1650{
1651 struct dentry *result;
1652
b3d9b7a3 1653 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1654
873feea0
NP
1655 if (inode)
1656 spin_lock(&inode->i_lock);
770bfad8 1657 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1658 if (inode)
1659 spin_unlock(&inode->i_lock);
770bfad8
DH
1660
1661 if (!result) {
1662 security_d_instantiate(entry, inode);
1663 return NULL;
1664 }
1665
1666 BUG_ON(!d_unhashed(result));
1667 iput(inode);
1668 return result;
1669}
1670
1da177e4
LT
1671EXPORT_SYMBOL(d_instantiate_unique);
1672
adc0e91a
AV
1673struct dentry *d_make_root(struct inode *root_inode)
1674{
1675 struct dentry *res = NULL;
1676
1677 if (root_inode) {
26fe5750 1678 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1679
1680 res = __d_alloc(root_inode->i_sb, &name);
1681 if (res)
1682 d_instantiate(res, root_inode);
1683 else
1684 iput(root_inode);
1685 }
1686 return res;
1687}
1688EXPORT_SYMBOL(d_make_root);
1689
d891eedb
BF
1690static struct dentry * __d_find_any_alias(struct inode *inode)
1691{
1692 struct dentry *alias;
1693
b3d9b7a3 1694 if (hlist_empty(&inode->i_dentry))
d891eedb 1695 return NULL;
b3d9b7a3 1696 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1697 __dget(alias);
1698 return alias;
1699}
1700
46f72b34
SW
1701/**
1702 * d_find_any_alias - find any alias for a given inode
1703 * @inode: inode to find an alias for
1704 *
1705 * If any aliases exist for the given inode, take and return a
1706 * reference for one of them. If no aliases exist, return %NULL.
1707 */
1708struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1709{
1710 struct dentry *de;
1711
1712 spin_lock(&inode->i_lock);
1713 de = __d_find_any_alias(inode);
1714 spin_unlock(&inode->i_lock);
1715 return de;
1716}
46f72b34 1717EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1718
4ea3ada2
CH
1719/**
1720 * d_obtain_alias - find or allocate a dentry for a given inode
1721 * @inode: inode to allocate the dentry for
1722 *
1723 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1724 * similar open by handle operations. The returned dentry may be anonymous,
1725 * or may have a full name (if the inode was already in the cache).
1726 *
1727 * When called on a directory inode, we must ensure that the inode only ever
1728 * has one dentry. If a dentry is found, that is returned instead of
1729 * allocating a new one.
1730 *
1731 * On successful return, the reference to the inode has been transferred
44003728
CH
1732 * to the dentry. In case of an error the reference on the inode is released.
1733 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1734 * be passed in and will be the error will be propagate to the return value,
1735 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1736 */
1737struct dentry *d_obtain_alias(struct inode *inode)
1738{
b911a6bd 1739 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1740 struct dentry *tmp;
1741 struct dentry *res;
4ea3ada2
CH
1742
1743 if (!inode)
44003728 1744 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1745 if (IS_ERR(inode))
1746 return ERR_CAST(inode);
1747
d891eedb 1748 res = d_find_any_alias(inode);
9308a612
CH
1749 if (res)
1750 goto out_iput;
1751
a4464dbc 1752 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1753 if (!tmp) {
1754 res = ERR_PTR(-ENOMEM);
1755 goto out_iput;
4ea3ada2 1756 }
b5c84bf6 1757
873feea0 1758 spin_lock(&inode->i_lock);
d891eedb 1759 res = __d_find_any_alias(inode);
9308a612 1760 if (res) {
873feea0 1761 spin_unlock(&inode->i_lock);
9308a612
CH
1762 dput(tmp);
1763 goto out_iput;
1764 }
1765
1766 /* attach a disconnected dentry */
1767 spin_lock(&tmp->d_lock);
9308a612
CH
1768 tmp->d_inode = inode;
1769 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1770 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1771 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1772 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1773 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1774 spin_unlock(&tmp->d_lock);
873feea0 1775 spin_unlock(&inode->i_lock);
24ff6663 1776 security_d_instantiate(tmp, inode);
9308a612 1777
9308a612
CH
1778 return tmp;
1779
1780 out_iput:
24ff6663
JB
1781 if (res && !IS_ERR(res))
1782 security_d_instantiate(res, inode);
9308a612
CH
1783 iput(inode);
1784 return res;
4ea3ada2 1785}
adc48720 1786EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1787
1788/**
1789 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1790 * @inode: the inode which may have a disconnected dentry
1791 * @dentry: a negative dentry which we want to point to the inode.
1792 *
1793 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1794 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1795 * and return it, else simply d_add the inode to the dentry and return NULL.
1796 *
1797 * This is needed in the lookup routine of any filesystem that is exportable
1798 * (via knfsd) so that we can build dcache paths to directories effectively.
1799 *
1800 * If a dentry was found and moved, then it is returned. Otherwise NULL
1801 * is returned. This matches the expected return value of ->lookup.
1802 *
6d4ade98
SW
1803 * Cluster filesystems may call this function with a negative, hashed dentry.
1804 * In that case, we know that the inode will be a regular file, and also this
1805 * will only occur during atomic_open. So we need to check for the dentry
1806 * being already hashed only in the final case.
1da177e4
LT
1807 */
1808struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1809{
1810 struct dentry *new = NULL;
1811
a9049376
AV
1812 if (IS_ERR(inode))
1813 return ERR_CAST(inode);
1814
21c0d8fd 1815 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1816 spin_lock(&inode->i_lock);
32ba9c3f 1817 new = __d_find_alias(inode, 1);
1da177e4 1818 if (new) {
32ba9c3f 1819 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1820 spin_unlock(&inode->i_lock);
1da177e4 1821 security_d_instantiate(new, inode);
1da177e4
LT
1822 d_move(new, dentry);
1823 iput(inode);
1824 } else {
873feea0 1825 /* already taking inode->i_lock, so d_add() by hand */
360da900 1826 __d_instantiate(dentry, inode);
873feea0 1827 spin_unlock(&inode->i_lock);
1da177e4
LT
1828 security_d_instantiate(dentry, inode);
1829 d_rehash(dentry);
1830 }
6d4ade98
SW
1831 } else {
1832 d_instantiate(dentry, inode);
1833 if (d_unhashed(dentry))
1834 d_rehash(dentry);
1835 }
1da177e4
LT
1836 return new;
1837}
ec4f8605 1838EXPORT_SYMBOL(d_splice_alias);
1da177e4 1839
9403540c
BN
1840/**
1841 * d_add_ci - lookup or allocate new dentry with case-exact name
1842 * @inode: the inode case-insensitive lookup has found
1843 * @dentry: the negative dentry that was passed to the parent's lookup func
1844 * @name: the case-exact name to be associated with the returned dentry
1845 *
1846 * This is to avoid filling the dcache with case-insensitive names to the
1847 * same inode, only the actual correct case is stored in the dcache for
1848 * case-insensitive filesystems.
1849 *
1850 * For a case-insensitive lookup match and if the the case-exact dentry
1851 * already exists in in the dcache, use it and return it.
1852 *
1853 * If no entry exists with the exact case name, allocate new dentry with
1854 * the exact case, and return the spliced entry.
1855 */
e45b590b 1856struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1857 struct qstr *name)
1858{
9403540c
BN
1859 struct dentry *found;
1860 struct dentry *new;
1861
b6520c81
CH
1862 /*
1863 * First check if a dentry matching the name already exists,
1864 * if not go ahead and create it now.
1865 */
9403540c 1866 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1867 if (unlikely(IS_ERR(found)))
1868 goto err_out;
9403540c
BN
1869 if (!found) {
1870 new = d_alloc(dentry->d_parent, name);
1871 if (!new) {
4f522a24 1872 found = ERR_PTR(-ENOMEM);
9403540c
BN
1873 goto err_out;
1874 }
b6520c81 1875
9403540c
BN
1876 found = d_splice_alias(inode, new);
1877 if (found) {
1878 dput(new);
1879 return found;
1880 }
1881 return new;
1882 }
b6520c81
CH
1883
1884 /*
1885 * If a matching dentry exists, and it's not negative use it.
1886 *
1887 * Decrement the reference count to balance the iget() done
1888 * earlier on.
1889 */
9403540c
BN
1890 if (found->d_inode) {
1891 if (unlikely(found->d_inode != inode)) {
1892 /* This can't happen because bad inodes are unhashed. */
1893 BUG_ON(!is_bad_inode(inode));
1894 BUG_ON(!is_bad_inode(found->d_inode));
1895 }
9403540c
BN
1896 iput(inode);
1897 return found;
1898 }
b6520c81 1899
9403540c 1900 /*
9403540c 1901 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1902 * already has a dentry.
9403540c 1903 */
4513d899
AV
1904 new = d_splice_alias(inode, found);
1905 if (new) {
1906 dput(found);
1907 found = new;
9403540c 1908 }
4513d899 1909 return found;
9403540c
BN
1910
1911err_out:
1912 iput(inode);
4f522a24 1913 return found;
9403540c 1914}
ec4f8605 1915EXPORT_SYMBOL(d_add_ci);
1da177e4 1916
12f8ad4b
LT
1917/*
1918 * Do the slow-case of the dentry name compare.
1919 *
1920 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1921 * load the name and length information, so that the
12f8ad4b
LT
1922 * filesystem can rely on them, and can use the 'name' and
1923 * 'len' information without worrying about walking off the
1924 * end of memory etc.
1925 *
1926 * Thus the read_seqcount_retry() and the "duplicate" info
1927 * in arguments (the low-level filesystem should not look
1928 * at the dentry inode or name contents directly, since
1929 * rename can change them while we're in RCU mode).
1930 */
1931enum slow_d_compare {
1932 D_COMP_OK,
1933 D_COMP_NOMATCH,
1934 D_COMP_SEQRETRY,
1935};
1936
1937static noinline enum slow_d_compare slow_dentry_cmp(
1938 const struct dentry *parent,
12f8ad4b
LT
1939 struct dentry *dentry,
1940 unsigned int seq,
1941 const struct qstr *name)
1942{
1943 int tlen = dentry->d_name.len;
1944 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1945
1946 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1947 cpu_relax();
1948 return D_COMP_SEQRETRY;
1949 }
da53be12 1950 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1951 return D_COMP_NOMATCH;
1952 return D_COMP_OK;
1953}
1954
31e6b01f
NP
1955/**
1956 * __d_lookup_rcu - search for a dentry (racy, store-free)
1957 * @parent: parent dentry
1958 * @name: qstr of name we wish to find
1f1e6e52 1959 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1960 * Returns: dentry, or NULL
1961 *
1962 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1963 * resolution (store-free path walking) design described in
1964 * Documentation/filesystems/path-lookup.txt.
1965 *
1966 * This is not to be used outside core vfs.
1967 *
1968 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1969 * held, and rcu_read_lock held. The returned dentry must not be stored into
1970 * without taking d_lock and checking d_seq sequence count against @seq
1971 * returned here.
1972 *
15570086 1973 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
1974 * function.
1975 *
1976 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1977 * the returned dentry, so long as its parent's seqlock is checked after the
1978 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1979 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1980 *
1981 * NOTE! The caller *has* to check the resulting dentry against the sequence
1982 * number we've returned before using any of the resulting dentry state!
31e6b01f 1983 */
8966be90
LT
1984struct dentry *__d_lookup_rcu(const struct dentry *parent,
1985 const struct qstr *name,
da53be12 1986 unsigned *seqp)
31e6b01f 1987{
26fe5750 1988 u64 hashlen = name->hash_len;
31e6b01f 1989 const unsigned char *str = name->name;
26fe5750 1990 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1991 struct hlist_bl_node *node;
31e6b01f
NP
1992 struct dentry *dentry;
1993
1994 /*
1995 * Note: There is significant duplication with __d_lookup_rcu which is
1996 * required to prevent single threaded performance regressions
1997 * especially on architectures where smp_rmb (in seqcounts) are costly.
1998 * Keep the two functions in sync.
1999 */
2000
2001 /*
2002 * The hash list is protected using RCU.
2003 *
2004 * Carefully use d_seq when comparing a candidate dentry, to avoid
2005 * races with d_move().
2006 *
2007 * It is possible that concurrent renames can mess up our list
2008 * walk here and result in missing our dentry, resulting in the
2009 * false-negative result. d_lookup() protects against concurrent
2010 * renames using rename_lock seqlock.
2011 *
b0a4bb83 2012 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2013 */
b07ad996 2014 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2015 unsigned seq;
31e6b01f 2016
31e6b01f 2017seqretry:
12f8ad4b
LT
2018 /*
2019 * The dentry sequence count protects us from concurrent
da53be12 2020 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2021 *
2022 * The caller must perform a seqcount check in order
da53be12 2023 * to do anything useful with the returned dentry.
12f8ad4b
LT
2024 *
2025 * NOTE! We do a "raw" seqcount_begin here. That means that
2026 * we don't wait for the sequence count to stabilize if it
2027 * is in the middle of a sequence change. If we do the slow
2028 * dentry compare, we will do seqretries until it is stable,
2029 * and if we end up with a successful lookup, we actually
2030 * want to exit RCU lookup anyway.
2031 */
2032 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2033 if (dentry->d_parent != parent)
2034 continue;
2e321806
LT
2035 if (d_unhashed(dentry))
2036 continue;
12f8ad4b 2037
830c0f0e 2038 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2039 if (dentry->d_name.hash != hashlen_hash(hashlen))
2040 continue;
da53be12
LT
2041 *seqp = seq;
2042 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2043 case D_COMP_OK:
2044 return dentry;
2045 case D_COMP_NOMATCH:
31e6b01f 2046 continue;
12f8ad4b
LT
2047 default:
2048 goto seqretry;
2049 }
31e6b01f 2050 }
12f8ad4b 2051
26fe5750 2052 if (dentry->d_name.hash_len != hashlen)
ee983e89 2053 continue;
da53be12 2054 *seqp = seq;
26fe5750 2055 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2056 return dentry;
31e6b01f
NP
2057 }
2058 return NULL;
2059}
2060
1da177e4
LT
2061/**
2062 * d_lookup - search for a dentry
2063 * @parent: parent dentry
2064 * @name: qstr of name we wish to find
b04f784e 2065 * Returns: dentry, or NULL
1da177e4 2066 *
b04f784e
NP
2067 * d_lookup searches the children of the parent dentry for the name in
2068 * question. If the dentry is found its reference count is incremented and the
2069 * dentry is returned. The caller must use dput to free the entry when it has
2070 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2071 */
da2d8455 2072struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2073{
31e6b01f 2074 struct dentry *dentry;
949854d0 2075 unsigned seq;
1da177e4
LT
2076
2077 do {
2078 seq = read_seqbegin(&rename_lock);
2079 dentry = __d_lookup(parent, name);
2080 if (dentry)
2081 break;
2082 } while (read_seqretry(&rename_lock, seq));
2083 return dentry;
2084}
ec4f8605 2085EXPORT_SYMBOL(d_lookup);
1da177e4 2086
31e6b01f 2087/**
b04f784e
NP
2088 * __d_lookup - search for a dentry (racy)
2089 * @parent: parent dentry
2090 * @name: qstr of name we wish to find
2091 * Returns: dentry, or NULL
2092 *
2093 * __d_lookup is like d_lookup, however it may (rarely) return a
2094 * false-negative result due to unrelated rename activity.
2095 *
2096 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2097 * however it must be used carefully, eg. with a following d_lookup in
2098 * the case of failure.
2099 *
2100 * __d_lookup callers must be commented.
2101 */
a713ca2a 2102struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2103{
2104 unsigned int len = name->len;
2105 unsigned int hash = name->hash;
2106 const unsigned char *str = name->name;
b07ad996 2107 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2108 struct hlist_bl_node *node;
31e6b01f 2109 struct dentry *found = NULL;
665a7583 2110 struct dentry *dentry;
1da177e4 2111
31e6b01f
NP
2112 /*
2113 * Note: There is significant duplication with __d_lookup_rcu which is
2114 * required to prevent single threaded performance regressions
2115 * especially on architectures where smp_rmb (in seqcounts) are costly.
2116 * Keep the two functions in sync.
2117 */
2118
b04f784e
NP
2119 /*
2120 * The hash list is protected using RCU.
2121 *
2122 * Take d_lock when comparing a candidate dentry, to avoid races
2123 * with d_move().
2124 *
2125 * It is possible that concurrent renames can mess up our list
2126 * walk here and result in missing our dentry, resulting in the
2127 * false-negative result. d_lookup() protects against concurrent
2128 * renames using rename_lock seqlock.
2129 *
b0a4bb83 2130 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2131 */
1da177e4
LT
2132 rcu_read_lock();
2133
b07ad996 2134 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2135
1da177e4
LT
2136 if (dentry->d_name.hash != hash)
2137 continue;
1da177e4
LT
2138
2139 spin_lock(&dentry->d_lock);
1da177e4
LT
2140 if (dentry->d_parent != parent)
2141 goto next;
d0185c08
LT
2142 if (d_unhashed(dentry))
2143 goto next;
2144
1da177e4
LT
2145 /*
2146 * It is safe to compare names since d_move() cannot
2147 * change the qstr (protected by d_lock).
2148 */
fb045adb 2149 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2150 int tlen = dentry->d_name.len;
2151 const char *tname = dentry->d_name.name;
da53be12 2152 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2153 goto next;
2154 } else {
ee983e89
LT
2155 if (dentry->d_name.len != len)
2156 goto next;
12f8ad4b 2157 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2158 goto next;
2159 }
2160
98474236 2161 dentry->d_lockref.count++;
d0185c08 2162 found = dentry;
1da177e4
LT
2163 spin_unlock(&dentry->d_lock);
2164 break;
2165next:
2166 spin_unlock(&dentry->d_lock);
2167 }
2168 rcu_read_unlock();
2169
2170 return found;
2171}
2172
3e7e241f
EB
2173/**
2174 * d_hash_and_lookup - hash the qstr then search for a dentry
2175 * @dir: Directory to search in
2176 * @name: qstr of name we wish to find
2177 *
4f522a24 2178 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2179 */
2180struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2181{
3e7e241f
EB
2182 /*
2183 * Check for a fs-specific hash function. Note that we must
2184 * calculate the standard hash first, as the d_op->d_hash()
2185 * routine may choose to leave the hash value unchanged.
2186 */
2187 name->hash = full_name_hash(name->name, name->len);
fb045adb 2188 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2189 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2190 if (unlikely(err < 0))
2191 return ERR_PTR(err);
3e7e241f 2192 }
4f522a24 2193 return d_lookup(dir, name);
3e7e241f 2194}
4f522a24 2195EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2196
1da177e4 2197/**
786a5e15 2198 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2199 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2200 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2201 *
2202 * An insecure source has sent us a dentry, here we verify it and dget() it.
2203 * This is used by ncpfs in its readdir implementation.
2204 * Zero is returned in the dentry is invalid.
786a5e15
NP
2205 *
2206 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2207 */
d3a23e16 2208int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2209{
786a5e15 2210 struct dentry *child;
d3a23e16 2211
2fd6b7f5 2212 spin_lock(&dparent->d_lock);
786a5e15
NP
2213 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2214 if (dentry == child) {
2fd6b7f5 2215 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2216 __dget_dlock(dentry);
2fd6b7f5
NP
2217 spin_unlock(&dentry->d_lock);
2218 spin_unlock(&dparent->d_lock);
1da177e4
LT
2219 return 1;
2220 }
2221 }
2fd6b7f5 2222 spin_unlock(&dparent->d_lock);
786a5e15 2223
1da177e4
LT
2224 return 0;
2225}
ec4f8605 2226EXPORT_SYMBOL(d_validate);
1da177e4
LT
2227
2228/*
2229 * When a file is deleted, we have two options:
2230 * - turn this dentry into a negative dentry
2231 * - unhash this dentry and free it.
2232 *
2233 * Usually, we want to just turn this into
2234 * a negative dentry, but if anybody else is
2235 * currently using the dentry or the inode
2236 * we can't do that and we fall back on removing
2237 * it from the hash queues and waiting for
2238 * it to be deleted later when it has no users
2239 */
2240
2241/**
2242 * d_delete - delete a dentry
2243 * @dentry: The dentry to delete
2244 *
2245 * Turn the dentry into a negative dentry if possible, otherwise
2246 * remove it from the hash queues so it can be deleted later
2247 */
2248
2249void d_delete(struct dentry * dentry)
2250{
873feea0 2251 struct inode *inode;
7a91bf7f 2252 int isdir = 0;
1da177e4
LT
2253 /*
2254 * Are we the only user?
2255 */
357f8e65 2256again:
1da177e4 2257 spin_lock(&dentry->d_lock);
873feea0
NP
2258 inode = dentry->d_inode;
2259 isdir = S_ISDIR(inode->i_mode);
98474236 2260 if (dentry->d_lockref.count == 1) {
1fe0c023 2261 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2262 spin_unlock(&dentry->d_lock);
2263 cpu_relax();
2264 goto again;
2265 }
13e3c5e5 2266 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2267 dentry_unlink_inode(dentry);
7a91bf7f 2268 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2269 return;
2270 }
2271
2272 if (!d_unhashed(dentry))
2273 __d_drop(dentry);
2274
2275 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2276
2277 fsnotify_nameremove(dentry, isdir);
1da177e4 2278}
ec4f8605 2279EXPORT_SYMBOL(d_delete);
1da177e4 2280
b07ad996 2281static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2282{
ceb5bdc2 2283 BUG_ON(!d_unhashed(entry));
1879fd6a 2284 hlist_bl_lock(b);
dea3667b 2285 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2286 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2287 hlist_bl_unlock(b);
1da177e4
LT
2288}
2289
770bfad8
DH
2290static void _d_rehash(struct dentry * entry)
2291{
2292 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2293}
2294
1da177e4
LT
2295/**
2296 * d_rehash - add an entry back to the hash
2297 * @entry: dentry to add to the hash
2298 *
2299 * Adds a dentry to the hash according to its name.
2300 */
2301
2302void d_rehash(struct dentry * entry)
2303{
1da177e4 2304 spin_lock(&entry->d_lock);
770bfad8 2305 _d_rehash(entry);
1da177e4 2306 spin_unlock(&entry->d_lock);
1da177e4 2307}
ec4f8605 2308EXPORT_SYMBOL(d_rehash);
1da177e4 2309
fb2d5b86
NP
2310/**
2311 * dentry_update_name_case - update case insensitive dentry with a new name
2312 * @dentry: dentry to be updated
2313 * @name: new name
2314 *
2315 * Update a case insensitive dentry with new case of name.
2316 *
2317 * dentry must have been returned by d_lookup with name @name. Old and new
2318 * name lengths must match (ie. no d_compare which allows mismatched name
2319 * lengths).
2320 *
2321 * Parent inode i_mutex must be held over d_lookup and into this call (to
2322 * keep renames and concurrent inserts, and readdir(2) away).
2323 */
2324void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2325{
7ebfa57f 2326 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2327 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2328
fb2d5b86 2329 spin_lock(&dentry->d_lock);
31e6b01f 2330 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2331 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2332 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2333 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2334}
2335EXPORT_SYMBOL(dentry_update_name_case);
2336
1da177e4
LT
2337static void switch_names(struct dentry *dentry, struct dentry *target)
2338{
2339 if (dname_external(target)) {
2340 if (dname_external(dentry)) {
2341 /*
2342 * Both external: swap the pointers
2343 */
9a8d5bb4 2344 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2345 } else {
2346 /*
2347 * dentry:internal, target:external. Steal target's
2348 * storage and make target internal.
2349 */
321bcf92
BF
2350 memcpy(target->d_iname, dentry->d_name.name,
2351 dentry->d_name.len + 1);
1da177e4
LT
2352 dentry->d_name.name = target->d_name.name;
2353 target->d_name.name = target->d_iname;
2354 }
2355 } else {
2356 if (dname_external(dentry)) {
2357 /*
2358 * dentry:external, target:internal. Give dentry's
2359 * storage to target and make dentry internal
2360 */
2361 memcpy(dentry->d_iname, target->d_name.name,
2362 target->d_name.len + 1);
2363 target->d_name.name = dentry->d_name.name;
2364 dentry->d_name.name = dentry->d_iname;
2365 } else {
2366 /*
2367 * Both are internal. Just copy target to dentry
2368 */
2369 memcpy(dentry->d_iname, target->d_name.name,
2370 target->d_name.len + 1);
dc711ca3
AV
2371 dentry->d_name.len = target->d_name.len;
2372 return;
1da177e4
LT
2373 }
2374 }
9a8d5bb4 2375 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2376}
2377
2fd6b7f5
NP
2378static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2379{
2380 /*
2381 * XXXX: do we really need to take target->d_lock?
2382 */
2383 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2384 spin_lock(&target->d_parent->d_lock);
2385 else {
2386 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2387 spin_lock(&dentry->d_parent->d_lock);
2388 spin_lock_nested(&target->d_parent->d_lock,
2389 DENTRY_D_LOCK_NESTED);
2390 } else {
2391 spin_lock(&target->d_parent->d_lock);
2392 spin_lock_nested(&dentry->d_parent->d_lock,
2393 DENTRY_D_LOCK_NESTED);
2394 }
2395 }
2396 if (target < dentry) {
2397 spin_lock_nested(&target->d_lock, 2);
2398 spin_lock_nested(&dentry->d_lock, 3);
2399 } else {
2400 spin_lock_nested(&dentry->d_lock, 2);
2401 spin_lock_nested(&target->d_lock, 3);
2402 }
2403}
2404
2405static void dentry_unlock_parents_for_move(struct dentry *dentry,
2406 struct dentry *target)
2407{
2408 if (target->d_parent != dentry->d_parent)
2409 spin_unlock(&dentry->d_parent->d_lock);
2410 if (target->d_parent != target)
2411 spin_unlock(&target->d_parent->d_lock);
2412}
2413
1da177e4 2414/*
2fd6b7f5
NP
2415 * When switching names, the actual string doesn't strictly have to
2416 * be preserved in the target - because we're dropping the target
2417 * anyway. As such, we can just do a simple memcpy() to copy over
2418 * the new name before we switch.
2419 *
2420 * Note that we have to be a lot more careful about getting the hash
2421 * switched - we have to switch the hash value properly even if it
2422 * then no longer matches the actual (corrupted) string of the target.
2423 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2424 */
9eaef27b 2425/*
18367501 2426 * __d_move - move a dentry
1da177e4
LT
2427 * @dentry: entry to move
2428 * @target: new dentry
2429 *
2430 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2431 * dcache entries should not be moved in this way. Caller must hold
2432 * rename_lock, the i_mutex of the source and target directories,
2433 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2434 */
18367501 2435static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2436{
1da177e4
LT
2437 if (!dentry->d_inode)
2438 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2439
2fd6b7f5
NP
2440 BUG_ON(d_ancestor(dentry, target));
2441 BUG_ON(d_ancestor(target, dentry));
2442
2fd6b7f5 2443 dentry_lock_for_move(dentry, target);
1da177e4 2444
31e6b01f
NP
2445 write_seqcount_begin(&dentry->d_seq);
2446 write_seqcount_begin(&target->d_seq);
2447
ceb5bdc2
NP
2448 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2449
2450 /*
2451 * Move the dentry to the target hash queue. Don't bother checking
2452 * for the same hash queue because of how unlikely it is.
2453 */
2454 __d_drop(dentry);
789680d1 2455 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2456
2457 /* Unhash the target: dput() will then get rid of it */
2458 __d_drop(target);
2459
5160ee6f
ED
2460 list_del(&dentry->d_u.d_child);
2461 list_del(&target->d_u.d_child);
1da177e4
LT
2462
2463 /* Switch the names.. */
2464 switch_names(dentry, target);
9a8d5bb4 2465 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2466
2467 /* ... and switch the parents */
2468 if (IS_ROOT(dentry)) {
2469 dentry->d_parent = target->d_parent;
2470 target->d_parent = target;
5160ee6f 2471 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2472 } else {
9a8d5bb4 2473 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2474
2475 /* And add them back to the (new) parent lists */
5160ee6f 2476 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2477 }
2478
5160ee6f 2479 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2480
31e6b01f
NP
2481 write_seqcount_end(&target->d_seq);
2482 write_seqcount_end(&dentry->d_seq);
2483
2fd6b7f5 2484 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2485 spin_unlock(&target->d_lock);
c32ccd87 2486 fsnotify_d_move(dentry);
1da177e4 2487 spin_unlock(&dentry->d_lock);
18367501
AV
2488}
2489
2490/*
2491 * d_move - move a dentry
2492 * @dentry: entry to move
2493 * @target: new dentry
2494 *
2495 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2496 * dcache entries should not be moved in this way. See the locking
2497 * requirements for __d_move.
18367501
AV
2498 */
2499void d_move(struct dentry *dentry, struct dentry *target)
2500{
2501 write_seqlock(&rename_lock);
2502 __d_move(dentry, target);
1da177e4 2503 write_sequnlock(&rename_lock);
9eaef27b 2504}
ec4f8605 2505EXPORT_SYMBOL(d_move);
1da177e4 2506
e2761a11
OH
2507/**
2508 * d_ancestor - search for an ancestor
2509 * @p1: ancestor dentry
2510 * @p2: child dentry
2511 *
2512 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2513 * an ancestor of p2, else NULL.
9eaef27b 2514 */
e2761a11 2515struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2516{
2517 struct dentry *p;
2518
871c0067 2519 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2520 if (p->d_parent == p1)
e2761a11 2521 return p;
9eaef27b 2522 }
e2761a11 2523 return NULL;
9eaef27b
TM
2524}
2525
2526/*
2527 * This helper attempts to cope with remotely renamed directories
2528 *
2529 * It assumes that the caller is already holding
18367501 2530 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2531 *
2532 * Note: If ever the locking in lock_rename() changes, then please
2533 * remember to update this too...
9eaef27b 2534 */
873feea0
NP
2535static struct dentry *__d_unalias(struct inode *inode,
2536 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2537{
2538 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2539 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2540
2541 /* If alias and dentry share a parent, then no extra locks required */
2542 if (alias->d_parent == dentry->d_parent)
2543 goto out_unalias;
2544
9eaef27b 2545 /* See lock_rename() */
9eaef27b
TM
2546 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2547 goto out_err;
2548 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2549 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2550 goto out_err;
2551 m2 = &alias->d_parent->d_inode->i_mutex;
2552out_unalias:
ee3efa91
AV
2553 if (likely(!d_mountpoint(alias))) {
2554 __d_move(alias, dentry);
2555 ret = alias;
2556 }
9eaef27b 2557out_err:
873feea0 2558 spin_unlock(&inode->i_lock);
9eaef27b
TM
2559 if (m2)
2560 mutex_unlock(m2);
2561 if (m1)
2562 mutex_unlock(m1);
2563 return ret;
2564}
2565
770bfad8
DH
2566/*
2567 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2568 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2569 * returns with anon->d_lock held!
770bfad8
DH
2570 */
2571static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2572{
740da42e 2573 struct dentry *dparent;
770bfad8 2574
2fd6b7f5 2575 dentry_lock_for_move(anon, dentry);
770bfad8 2576
31e6b01f
NP
2577 write_seqcount_begin(&dentry->d_seq);
2578 write_seqcount_begin(&anon->d_seq);
2579
770bfad8 2580 dparent = dentry->d_parent;
770bfad8 2581
2fd6b7f5
NP
2582 switch_names(dentry, anon);
2583 swap(dentry->d_name.hash, anon->d_name.hash);
2584
740da42e
AV
2585 dentry->d_parent = dentry;
2586 list_del_init(&dentry->d_u.d_child);
2587 anon->d_parent = dparent;
9ed53b12 2588 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2589
31e6b01f
NP
2590 write_seqcount_end(&dentry->d_seq);
2591 write_seqcount_end(&anon->d_seq);
2592
2fd6b7f5
NP
2593 dentry_unlock_parents_for_move(anon, dentry);
2594 spin_unlock(&dentry->d_lock);
2595
2596 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2597 anon->d_flags &= ~DCACHE_DISCONNECTED;
2598}
2599
2600/**
2601 * d_materialise_unique - introduce an inode into the tree
2602 * @dentry: candidate dentry
2603 * @inode: inode to bind to the dentry, to which aliases may be attached
2604 *
2605 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2606 * root directory alias in its place if there is one. Caller must hold the
2607 * i_mutex of the parent directory.
770bfad8
DH
2608 */
2609struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2610{
9eaef27b 2611 struct dentry *actual;
770bfad8
DH
2612
2613 BUG_ON(!d_unhashed(dentry));
2614
770bfad8
DH
2615 if (!inode) {
2616 actual = dentry;
360da900 2617 __d_instantiate(dentry, NULL);
357f8e65
NP
2618 d_rehash(actual);
2619 goto out_nolock;
770bfad8
DH
2620 }
2621
873feea0 2622 spin_lock(&inode->i_lock);
357f8e65 2623
9eaef27b
TM
2624 if (S_ISDIR(inode->i_mode)) {
2625 struct dentry *alias;
2626
2627 /* Does an aliased dentry already exist? */
32ba9c3f 2628 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2629 if (alias) {
2630 actual = alias;
18367501
AV
2631 write_seqlock(&rename_lock);
2632
2633 if (d_ancestor(alias, dentry)) {
2634 /* Check for loops */
2635 actual = ERR_PTR(-ELOOP);
b18dafc8 2636 spin_unlock(&inode->i_lock);
18367501
AV
2637 } else if (IS_ROOT(alias)) {
2638 /* Is this an anonymous mountpoint that we
2639 * could splice into our tree? */
9eaef27b 2640 __d_materialise_dentry(dentry, alias);
18367501 2641 write_sequnlock(&rename_lock);
9eaef27b
TM
2642 __d_drop(alias);
2643 goto found;
18367501
AV
2644 } else {
2645 /* Nope, but we must(!) avoid directory
b18dafc8 2646 * aliasing. This drops inode->i_lock */
18367501 2647 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2648 }
18367501 2649 write_sequnlock(&rename_lock);
dd179946
DH
2650 if (IS_ERR(actual)) {
2651 if (PTR_ERR(actual) == -ELOOP)
2652 pr_warn_ratelimited(
2653 "VFS: Lookup of '%s' in %s %s"
2654 " would have caused loop\n",
2655 dentry->d_name.name,
2656 inode->i_sb->s_type->name,
2657 inode->i_sb->s_id);
9eaef27b 2658 dput(alias);
dd179946 2659 }
9eaef27b
TM
2660 goto out_nolock;
2661 }
770bfad8
DH
2662 }
2663
2664 /* Add a unique reference */
2665 actual = __d_instantiate_unique(dentry, inode);
2666 if (!actual)
2667 actual = dentry;
357f8e65
NP
2668 else
2669 BUG_ON(!d_unhashed(actual));
770bfad8 2670
770bfad8
DH
2671 spin_lock(&actual->d_lock);
2672found:
2673 _d_rehash(actual);
2674 spin_unlock(&actual->d_lock);
873feea0 2675 spin_unlock(&inode->i_lock);
9eaef27b 2676out_nolock:
770bfad8
DH
2677 if (actual == dentry) {
2678 security_d_instantiate(dentry, inode);
2679 return NULL;
2680 }
2681
2682 iput(inode);
2683 return actual;
770bfad8 2684}
ec4f8605 2685EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2686
cdd16d02 2687static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2688{
2689 *buflen -= namelen;
2690 if (*buflen < 0)
2691 return -ENAMETOOLONG;
2692 *buffer -= namelen;
2693 memcpy(*buffer, str, namelen);
2694 return 0;
2695}
2696
232d2d60
WL
2697/**
2698 * prepend_name - prepend a pathname in front of current buffer pointer
2699 * buffer: buffer pointer
2700 * buflen: allocated length of the buffer
2701 * name: name string and length qstr structure
2702 *
2703 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2704 * make sure that either the old or the new name pointer and length are
2705 * fetched. However, there may be mismatch between length and pointer.
2706 * The length cannot be trusted, we need to copy it byte-by-byte until
2707 * the length is reached or a null byte is found. It also prepends "/" at
2708 * the beginning of the name. The sequence number check at the caller will
2709 * retry it again when a d_move() does happen. So any garbage in the buffer
2710 * due to mismatched pointer and length will be discarded.
2711 */
cdd16d02
MS
2712static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2713{
232d2d60
WL
2714 const char *dname = ACCESS_ONCE(name->name);
2715 u32 dlen = ACCESS_ONCE(name->len);
2716 char *p;
2717
2718 if (*buflen < dlen + 1)
2719 return -ENAMETOOLONG;
2720 *buflen -= dlen + 1;
2721 p = *buffer -= dlen + 1;
2722 *p++ = '/';
2723 while (dlen--) {
2724 char c = *dname++;
2725 if (!c)
2726 break;
2727 *p++ = c;
2728 }
2729 return 0;
cdd16d02
MS
2730}
2731
1da177e4 2732/**
208898c1 2733 * prepend_path - Prepend path string to a buffer
9d1bc601 2734 * @path: the dentry/vfsmount to report
02125a82 2735 * @root: root vfsmnt/dentry
f2eb6575
MS
2736 * @buffer: pointer to the end of the buffer
2737 * @buflen: pointer to buffer length
552ce544 2738 *
232d2d60
WL
2739 * The function tries to write out the pathname without taking any lock other
2740 * than the RCU read lock to make sure that dentries won't go away. It only
2741 * checks the sequence number of the global rename_lock as any change in the
2742 * dentry's d_seq will be preceded by changes in the rename_lock sequence
2743 * number. If the sequence number had been change, it will restart the whole
2744 * pathname back-tracing sequence again. It performs a total of 3 trials of
2745 * lockless back-tracing sequences before falling back to take the
2746 * rename_lock.
1da177e4 2747 */
02125a82
AV
2748static int prepend_path(const struct path *path,
2749 const struct path *root,
f2eb6575 2750 char **buffer, int *buflen)
1da177e4 2751{
9d1bc601
MS
2752 struct dentry *dentry = path->dentry;
2753 struct vfsmount *vfsmnt = path->mnt;
0714a533 2754 struct mount *mnt = real_mount(vfsmnt);
f2eb6575 2755 int error = 0;
232d2d60
WL
2756 unsigned seq = 0;
2757 char *bptr;
2758 int blen;
6092d048 2759
48f5ec21 2760 rcu_read_lock();
232d2d60
WL
2761restart:
2762 bptr = *buffer;
2763 blen = *buflen;
2764 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2765 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2766 struct dentry * parent;
2767
1da177e4 2768 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2769 /* Global root? */
232d2d60
WL
2770 if (mnt_has_parent(mnt)) {
2771 dentry = mnt->mnt_mountpoint;
2772 mnt = mnt->mnt_parent;
2773 vfsmnt = &mnt->mnt;
2774 continue;
2775 }
2776 /*
2777 * Filesystems needing to implement special "root names"
2778 * should do so with ->d_dname()
2779 */
2780 if (IS_ROOT(dentry) &&
2781 (dentry->d_name.len != 1 ||
2782 dentry->d_name.name[0] != '/')) {
2783 WARN(1, "Root dentry has weird name <%.*s>\n",
2784 (int) dentry->d_name.len,
2785 dentry->d_name.name);
2786 }
2787 if (!error)
2788 error = is_mounted(vfsmnt) ? 1 : 2;
2789 break;
1da177e4
LT
2790 }
2791 parent = dentry->d_parent;
2792 prefetch(parent);
232d2d60 2793 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2794 if (error)
2795 break;
2796
1da177e4
LT
2797 dentry = parent;
2798 }
48f5ec21
AV
2799 if (!(seq & 1))
2800 rcu_read_unlock();
2801 if (need_seqretry(&rename_lock, seq)) {
2802 seq = 1;
232d2d60 2803 goto restart;
48f5ec21
AV
2804 }
2805 done_seqretry(&rename_lock, seq);
1da177e4 2806
232d2d60
WL
2807 if (error >= 0 && bptr == *buffer) {
2808 if (--blen < 0)
2809 error = -ENAMETOOLONG;
2810 else
2811 *--bptr = '/';
2812 }
2813 *buffer = bptr;
2814 *buflen = blen;
7ea600b5 2815 return error;
f2eb6575 2816}
be285c71 2817
f2eb6575
MS
2818/**
2819 * __d_path - return the path of a dentry
2820 * @path: the dentry/vfsmount to report
02125a82 2821 * @root: root vfsmnt/dentry
cd956a1c 2822 * @buf: buffer to return value in
f2eb6575
MS
2823 * @buflen: buffer length
2824 *
ffd1f4ed 2825 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2826 *
2827 * Returns a pointer into the buffer or an error code if the
2828 * path was too long.
2829 *
be148247 2830 * "buflen" should be positive.
f2eb6575 2831 *
02125a82 2832 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2833 */
02125a82
AV
2834char *__d_path(const struct path *path,
2835 const struct path *root,
f2eb6575
MS
2836 char *buf, int buflen)
2837{
2838 char *res = buf + buflen;
2839 int error;
2840
2841 prepend(&res, &buflen, "\0", 1);
7ea600b5 2842 br_read_lock(&vfsmount_lock);
f2eb6575 2843 error = prepend_path(path, root, &res, &buflen);
7ea600b5 2844 br_read_unlock(&vfsmount_lock);
be148247 2845
02125a82
AV
2846 if (error < 0)
2847 return ERR_PTR(error);
2848 if (error > 0)
2849 return NULL;
2850 return res;
2851}
2852
2853char *d_absolute_path(const struct path *path,
2854 char *buf, int buflen)
2855{
2856 struct path root = {};
2857 char *res = buf + buflen;
2858 int error;
2859
2860 prepend(&res, &buflen, "\0", 1);
7ea600b5 2861 br_read_lock(&vfsmount_lock);
02125a82 2862 error = prepend_path(path, &root, &res, &buflen);
7ea600b5 2863 br_read_unlock(&vfsmount_lock);
02125a82
AV
2864
2865 if (error > 1)
2866 error = -EINVAL;
2867 if (error < 0)
f2eb6575 2868 return ERR_PTR(error);
f2eb6575 2869 return res;
1da177e4
LT
2870}
2871
ffd1f4ed
MS
2872/*
2873 * same as __d_path but appends "(deleted)" for unlinked files.
2874 */
02125a82
AV
2875static int path_with_deleted(const struct path *path,
2876 const struct path *root,
2877 char **buf, int *buflen)
ffd1f4ed
MS
2878{
2879 prepend(buf, buflen, "\0", 1);
2880 if (d_unlinked(path->dentry)) {
2881 int error = prepend(buf, buflen, " (deleted)", 10);
2882 if (error)
2883 return error;
2884 }
2885
2886 return prepend_path(path, root, buf, buflen);
2887}
2888
8df9d1a4
MS
2889static int prepend_unreachable(char **buffer, int *buflen)
2890{
2891 return prepend(buffer, buflen, "(unreachable)", 13);
2892}
2893
a03a8a70
JB
2894/**
2895 * d_path - return the path of a dentry
cf28b486 2896 * @path: path to report
a03a8a70
JB
2897 * @buf: buffer to return value in
2898 * @buflen: buffer length
2899 *
2900 * Convert a dentry into an ASCII path name. If the entry has been deleted
2901 * the string " (deleted)" is appended. Note that this is ambiguous.
2902 *
52afeefb
AV
2903 * Returns a pointer into the buffer or an error code if the path was
2904 * too long. Note: Callers should use the returned pointer, not the passed
2905 * in buffer, to use the name! The implementation often starts at an offset
2906 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2907 *
31f3e0b3 2908 * "buflen" should be positive.
a03a8a70 2909 */
20d4fdc1 2910char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2911{
ffd1f4ed 2912 char *res = buf + buflen;
6ac08c39 2913 struct path root;
ffd1f4ed 2914 int error;
1da177e4 2915
c23fbb6b
ED
2916 /*
2917 * We have various synthetic filesystems that never get mounted. On
2918 * these filesystems dentries are never used for lookup purposes, and
2919 * thus don't need to be hashed. They also don't need a name until a
2920 * user wants to identify the object in /proc/pid/fd/. The little hack
2921 * below allows us to generate a name for these objects on demand:
2922 */
cf28b486
JB
2923 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2924 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2925
f7ad3c6b 2926 get_fs_root(current->fs, &root);
7ea600b5 2927 br_read_lock(&vfsmount_lock);
02125a82 2928 error = path_with_deleted(path, &root, &res, &buflen);
7ea600b5 2929 br_read_unlock(&vfsmount_lock);
02125a82 2930 if (error < 0)
ffd1f4ed 2931 res = ERR_PTR(error);
6ac08c39 2932 path_put(&root);
1da177e4
LT
2933 return res;
2934}
ec4f8605 2935EXPORT_SYMBOL(d_path);
1da177e4 2936
c23fbb6b
ED
2937/*
2938 * Helper function for dentry_operations.d_dname() members
2939 */
2940char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2941 const char *fmt, ...)
2942{
2943 va_list args;
2944 char temp[64];
2945 int sz;
2946
2947 va_start(args, fmt);
2948 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2949 va_end(args);
2950
2951 if (sz > sizeof(temp) || sz > buflen)
2952 return ERR_PTR(-ENAMETOOLONG);
2953
2954 buffer += buflen - sz;
2955 return memcpy(buffer, temp, sz);
2956}
2957
118b2302
AV
2958char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2959{
2960 char *end = buffer + buflen;
2961 /* these dentries are never renamed, so d_lock is not needed */
2962 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 2963 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
2964 prepend(&end, &buflen, "/", 1))
2965 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 2966 return end;
118b2302
AV
2967}
2968
6092d048
RP
2969/*
2970 * Write full pathname from the root of the filesystem into the buffer.
2971 */
ec2447c2 2972static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048 2973{
232d2d60
WL
2974 char *end, *retval;
2975 int len, seq = 0;
2976 int error = 0;
6092d048 2977
48f5ec21 2978 rcu_read_lock();
232d2d60
WL
2979restart:
2980 end = buf + buflen;
2981 len = buflen;
2982 prepend(&end, &len, "\0", 1);
6092d048
RP
2983 if (buflen < 1)
2984 goto Elong;
2985 /* Get '/' right */
2986 retval = end-1;
2987 *retval = '/';
232d2d60 2988 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
2989 while (!IS_ROOT(dentry)) {
2990 struct dentry *parent = dentry->d_parent;
9abca360 2991 int error;
6092d048 2992
6092d048 2993 prefetch(parent);
232d2d60
WL
2994 error = prepend_name(&end, &len, &dentry->d_name);
2995 if (error)
2996 break;
6092d048
RP
2997
2998 retval = end;
2999 dentry = parent;
3000 }
48f5ec21
AV
3001 if (!(seq & 1))
3002 rcu_read_unlock();
3003 if (need_seqretry(&rename_lock, seq)) {
3004 seq = 1;
232d2d60 3005 goto restart;
48f5ec21
AV
3006 }
3007 done_seqretry(&rename_lock, seq);
232d2d60
WL
3008 if (error)
3009 goto Elong;
c103135c
AV
3010 return retval;
3011Elong:
3012 return ERR_PTR(-ENAMETOOLONG);
3013}
ec2447c2
NP
3014
3015char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3016{
232d2d60 3017 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3018}
3019EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3020
3021char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3022{
3023 char *p = NULL;
3024 char *retval;
3025
c103135c
AV
3026 if (d_unlinked(dentry)) {
3027 p = buf + buflen;
3028 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3029 goto Elong;
3030 buflen++;
3031 }
3032 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3033 if (!IS_ERR(retval) && p)
3034 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3035 return retval;
3036Elong:
6092d048
RP
3037 return ERR_PTR(-ENAMETOOLONG);
3038}
3039
1da177e4
LT
3040/*
3041 * NOTE! The user-level library version returns a
3042 * character pointer. The kernel system call just
3043 * returns the length of the buffer filled (which
3044 * includes the ending '\0' character), or a negative
3045 * error value. So libc would do something like
3046 *
3047 * char *getcwd(char * buf, size_t size)
3048 * {
3049 * int retval;
3050 *
3051 * retval = sys_getcwd(buf, size);
3052 * if (retval >= 0)
3053 * return buf;
3054 * errno = -retval;
3055 * return NULL;
3056 * }
3057 */
3cdad428 3058SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3059{
552ce544 3060 int error;
6ac08c39 3061 struct path pwd, root;
552ce544 3062 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
3063
3064 if (!page)
3065 return -ENOMEM;
3066
f7ad3c6b 3067 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 3068
552ce544 3069 error = -ENOENT;
7ea600b5 3070 br_read_lock(&vfsmount_lock);
f3da392e 3071 if (!d_unlinked(pwd.dentry)) {
552ce544 3072 unsigned long len;
8df9d1a4
MS
3073 char *cwd = page + PAGE_SIZE;
3074 int buflen = PAGE_SIZE;
1da177e4 3075
8df9d1a4 3076 prepend(&cwd, &buflen, "\0", 1);
02125a82 3077 error = prepend_path(&pwd, &root, &cwd, &buflen);
7ea600b5 3078 br_read_unlock(&vfsmount_lock);
552ce544 3079
02125a82 3080 if (error < 0)
552ce544
LT
3081 goto out;
3082
8df9d1a4 3083 /* Unreachable from current root */
02125a82 3084 if (error > 0) {
8df9d1a4
MS
3085 error = prepend_unreachable(&cwd, &buflen);
3086 if (error)
3087 goto out;
3088 }
3089
552ce544
LT
3090 error = -ERANGE;
3091 len = PAGE_SIZE + page - cwd;
3092 if (len <= size) {
3093 error = len;
3094 if (copy_to_user(buf, cwd, len))
3095 error = -EFAULT;
3096 }
949854d0 3097 } else {
7ea600b5 3098 br_read_unlock(&vfsmount_lock);
949854d0 3099 }
1da177e4
LT
3100
3101out:
6ac08c39
JB
3102 path_put(&pwd);
3103 path_put(&root);
1da177e4
LT
3104 free_page((unsigned long) page);
3105 return error;
3106}
3107
3108/*
3109 * Test whether new_dentry is a subdirectory of old_dentry.
3110 *
3111 * Trivially implemented using the dcache structure
3112 */
3113
3114/**
3115 * is_subdir - is new dentry a subdirectory of old_dentry
3116 * @new_dentry: new dentry
3117 * @old_dentry: old dentry
3118 *
3119 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3120 * Returns 0 otherwise.
3121 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3122 */
3123
e2761a11 3124int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3125{
3126 int result;
949854d0 3127 unsigned seq;
1da177e4 3128
e2761a11
OH
3129 if (new_dentry == old_dentry)
3130 return 1;
3131
e2761a11 3132 do {
1da177e4 3133 /* for restarting inner loop in case of seq retry */
1da177e4 3134 seq = read_seqbegin(&rename_lock);
949854d0
NP
3135 /*
3136 * Need rcu_readlock to protect against the d_parent trashing
3137 * due to d_move
3138 */
3139 rcu_read_lock();
e2761a11 3140 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3141 result = 1;
e2761a11
OH
3142 else
3143 result = 0;
949854d0 3144 rcu_read_unlock();
1da177e4 3145 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3146
3147 return result;
3148}
3149
db14fc3a 3150static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3151{
db14fc3a
MS
3152 struct dentry *root = data;
3153 if (dentry != root) {
3154 if (d_unhashed(dentry) || !dentry->d_inode)
3155 return D_WALK_SKIP;
1da177e4 3156
01ddc4ed
MS
3157 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3158 dentry->d_flags |= DCACHE_GENOCIDE;
3159 dentry->d_lockref.count--;
3160 }
1da177e4 3161 }
db14fc3a
MS
3162 return D_WALK_CONTINUE;
3163}
58db63d0 3164
db14fc3a
MS
3165void d_genocide(struct dentry *parent)
3166{
3167 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3168}
3169
60545d0d 3170void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3171{
60545d0d
AV
3172 inode_dec_link_count(inode);
3173 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3174 !hlist_unhashed(&dentry->d_alias) ||
3175 !d_unlinked(dentry));
3176 spin_lock(&dentry->d_parent->d_lock);
3177 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3178 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3179 (unsigned long long)inode->i_ino);
3180 spin_unlock(&dentry->d_lock);
3181 spin_unlock(&dentry->d_parent->d_lock);
3182 d_instantiate(dentry, inode);
1da177e4 3183}
60545d0d 3184EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3185
3186static __initdata unsigned long dhash_entries;
3187static int __init set_dhash_entries(char *str)
3188{
3189 if (!str)
3190 return 0;
3191 dhash_entries = simple_strtoul(str, &str, 0);
3192 return 1;
3193}
3194__setup("dhash_entries=", set_dhash_entries);
3195
3196static void __init dcache_init_early(void)
3197{
074b8517 3198 unsigned int loop;
1da177e4
LT
3199
3200 /* If hashes are distributed across NUMA nodes, defer
3201 * hash allocation until vmalloc space is available.
3202 */
3203 if (hashdist)
3204 return;
3205
3206 dentry_hashtable =
3207 alloc_large_system_hash("Dentry cache",
b07ad996 3208 sizeof(struct hlist_bl_head),
1da177e4
LT
3209 dhash_entries,
3210 13,
3211 HASH_EARLY,
3212 &d_hash_shift,
3213 &d_hash_mask,
31fe62b9 3214 0,
1da177e4
LT
3215 0);
3216
074b8517 3217 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3218 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3219}
3220
74bf17cf 3221static void __init dcache_init(void)
1da177e4 3222{
074b8517 3223 unsigned int loop;
1da177e4
LT
3224
3225 /*
3226 * A constructor could be added for stable state like the lists,
3227 * but it is probably not worth it because of the cache nature
3228 * of the dcache.
3229 */
0a31bd5f
CL
3230 dentry_cache = KMEM_CACHE(dentry,
3231 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3232
3233 /* Hash may have been set up in dcache_init_early */
3234 if (!hashdist)
3235 return;
3236
3237 dentry_hashtable =
3238 alloc_large_system_hash("Dentry cache",
b07ad996 3239 sizeof(struct hlist_bl_head),
1da177e4
LT
3240 dhash_entries,
3241 13,
3242 0,
3243 &d_hash_shift,
3244 &d_hash_mask,
31fe62b9 3245 0,
1da177e4
LT
3246 0);
3247
074b8517 3248 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3249 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3250}
3251
3252/* SLAB cache for __getname() consumers */
e18b890b 3253struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3254EXPORT_SYMBOL(names_cachep);
1da177e4 3255
1da177e4
LT
3256EXPORT_SYMBOL(d_genocide);
3257
1da177e4
LT
3258void __init vfs_caches_init_early(void)
3259{
3260 dcache_init_early();
3261 inode_init_early();
3262}
3263
3264void __init vfs_caches_init(unsigned long mempages)
3265{
3266 unsigned long reserve;
3267
3268 /* Base hash sizes on available memory, with a reserve equal to
3269 150% of current kernel size */
3270
3271 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3272 mempages -= reserve;
3273
3274 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3275 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3276
74bf17cf
DC
3277 dcache_init();
3278 inode_init();
1da177e4 3279 files_init(mempages);
74bf17cf 3280 mnt_init();
1da177e4
LT
3281 bdev_cache_init();
3282 chrdev_init();
3283}