]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
fs: dcache remove d_mounted
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
b23fb0a6
NP
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
23044507
NP
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
b23fb0a6 54 * - d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
b5c84bf6
NP
57 * dcache_inode_lock
58 * dentry->d_lock
59 * dcache_lru_lock
60 * dcache_hash_lock
789680d1 61 *
da502956
NP
62 * If there is an ancestor relationship:
63 * dentry->d_parent->...->d_parent->d_lock
64 * ...
65 * dentry->d_parent->d_lock
66 * dentry->d_lock
67 *
68 * If no ancestor relationship:
789680d1
NP
69 * if (dentry1 < dentry2)
70 * dentry1->d_lock
71 * dentry2->d_lock
72 */
fa3536cc 73int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
74EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
b23fb0a6 76__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
789680d1 77static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
23044507 78static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 80
949854d0 81EXPORT_SYMBOL(rename_lock);
b23fb0a6 82EXPORT_SYMBOL(dcache_inode_lock);
1da177e4 83
e18b890b 84static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
85
86#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
87
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96#define D_HASHBITS d_hash_shift
97#define D_HASHMASK d_hash_mask
98
fa3536cc
ED
99static unsigned int d_hash_mask __read_mostly;
100static unsigned int d_hash_shift __read_mostly;
101static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
102
103/* Statistics gathering. */
104struct dentry_stat_t dentry_stat = {
105 .age_limit = 45,
106};
107
3e880fb5 108static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
109
110#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
111static int get_nr_dentry(void)
112{
113 int i;
114 int sum = 0;
115 for_each_possible_cpu(i)
116 sum += per_cpu(nr_dentry, i);
117 return sum < 0 ? 0 : sum;
118}
119
312d3ca8
CH
120int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
121 size_t *lenp, loff_t *ppos)
122{
3e880fb5 123 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
124 return proc_dointvec(table, write, buffer, lenp, ppos);
125}
126#endif
127
9c82ab9c 128static void __d_free(struct rcu_head *head)
1da177e4 129{
9c82ab9c
CH
130 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
131
fd217f4d 132 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
133 if (dname_external(dentry))
134 kfree(dentry->d_name.name);
135 kmem_cache_free(dentry_cache, dentry);
136}
137
138/*
b5c84bf6 139 * no locks, please.
1da177e4
LT
140 */
141static void d_free(struct dentry *dentry)
142{
b7ab39f6 143 BUG_ON(dentry->d_count);
3e880fb5 144 this_cpu_dec(nr_dentry);
1da177e4
LT
145 if (dentry->d_op && dentry->d_op->d_release)
146 dentry->d_op->d_release(dentry);
312d3ca8 147
b3423415 148 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 149 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 150 __d_free(&dentry->d_u.d_rcu);
b3423415 151 else
9c82ab9c 152 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
153}
154
31e6b01f
NP
155/**
156 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
157 * After this call, in-progress rcu-walk path lookup will fail. This
158 * should be called after unhashing, and after changing d_inode (if
159 * the dentry has not already been unhashed).
160 */
161static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
162{
163 assert_spin_locked(&dentry->d_lock);
164 /* Go through a barrier */
165 write_seqcount_barrier(&dentry->d_seq);
166}
167
1da177e4
LT
168/*
169 * Release the dentry's inode, using the filesystem
31e6b01f
NP
170 * d_iput() operation if defined. Dentry has no refcount
171 * and is unhashed.
1da177e4 172 */
858119e1 173static void dentry_iput(struct dentry * dentry)
31f3e0b3 174 __releases(dentry->d_lock)
b23fb0a6 175 __releases(dcache_inode_lock)
1da177e4
LT
176{
177 struct inode *inode = dentry->d_inode;
178 if (inode) {
179 dentry->d_inode = NULL;
180 list_del_init(&dentry->d_alias);
181 spin_unlock(&dentry->d_lock);
b23fb0a6 182 spin_unlock(&dcache_inode_lock);
f805fbda
LT
183 if (!inode->i_nlink)
184 fsnotify_inoderemove(inode);
1da177e4
LT
185 if (dentry->d_op && dentry->d_op->d_iput)
186 dentry->d_op->d_iput(dentry, inode);
187 else
188 iput(inode);
189 } else {
190 spin_unlock(&dentry->d_lock);
b23fb0a6 191 spin_unlock(&dcache_inode_lock);
1da177e4
LT
192 }
193}
194
31e6b01f
NP
195/*
196 * Release the dentry's inode, using the filesystem
197 * d_iput() operation if defined. dentry remains in-use.
198 */
199static void dentry_unlink_inode(struct dentry * dentry)
200 __releases(dentry->d_lock)
201 __releases(dcache_inode_lock)
202{
203 struct inode *inode = dentry->d_inode;
204 dentry->d_inode = NULL;
205 list_del_init(&dentry->d_alias);
206 dentry_rcuwalk_barrier(dentry);
207 spin_unlock(&dentry->d_lock);
208 spin_unlock(&dcache_inode_lock);
209 if (!inode->i_nlink)
210 fsnotify_inoderemove(inode);
211 if (dentry->d_op && dentry->d_op->d_iput)
212 dentry->d_op->d_iput(dentry, inode);
213 else
214 iput(inode);
215}
216
da3bbdd4 217/*
23044507 218 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
219 */
220static void dentry_lru_add(struct dentry *dentry)
221{
a4633357 222 if (list_empty(&dentry->d_lru)) {
23044507 223 spin_lock(&dcache_lru_lock);
a4633357
CH
224 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
225 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 226 dentry_stat.nr_unused++;
23044507 227 spin_unlock(&dcache_lru_lock);
a4633357 228 }
da3bbdd4
KM
229}
230
23044507
NP
231static void __dentry_lru_del(struct dentry *dentry)
232{
233 list_del_init(&dentry->d_lru);
234 dentry->d_sb->s_nr_dentry_unused--;
235 dentry_stat.nr_unused--;
236}
237
da3bbdd4
KM
238static void dentry_lru_del(struct dentry *dentry)
239{
240 if (!list_empty(&dentry->d_lru)) {
23044507
NP
241 spin_lock(&dcache_lru_lock);
242 __dentry_lru_del(dentry);
243 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
244 }
245}
246
a4633357 247static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 248{
23044507 249 spin_lock(&dcache_lru_lock);
a4633357
CH
250 if (list_empty(&dentry->d_lru)) {
251 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
252 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 253 dentry_stat.nr_unused++;
a4633357
CH
254 } else {
255 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 256 }
23044507 257 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
258}
259
d52b9086
MS
260/**
261 * d_kill - kill dentry and return parent
262 * @dentry: dentry to kill
263 *
31f3e0b3 264 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
265 *
266 * If this is the root of the dentry tree, return NULL.
23044507 267 *
b5c84bf6
NP
268 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
269 * d_kill.
d52b9086 270 */
2fd6b7f5 271static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 272 __releases(dentry->d_lock)
2fd6b7f5 273 __releases(parent->d_lock)
b23fb0a6 274 __releases(dcache_inode_lock)
d52b9086 275{
949854d0 276 dentry->d_parent = NULL;
d52b9086 277 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
278 if (parent)
279 spin_unlock(&parent->d_lock);
d52b9086 280 dentry_iput(dentry);
b7ab39f6
NP
281 /*
282 * dentry_iput drops the locks, at which point nobody (except
283 * transient RCU lookups) can reach this dentry.
284 */
d52b9086 285 d_free(dentry);
871c0067 286 return parent;
d52b9086
MS
287}
288
789680d1
NP
289/**
290 * d_drop - drop a dentry
291 * @dentry: dentry to drop
292 *
293 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
294 * be found through a VFS lookup any more. Note that this is different from
295 * deleting the dentry - d_delete will try to mark the dentry negative if
296 * possible, giving a successful _negative_ lookup, while d_drop will
297 * just make the cache lookup fail.
298 *
299 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
300 * reason (NFS timeouts or autofs deletes).
301 *
302 * __d_drop requires dentry->d_lock.
303 */
304void __d_drop(struct dentry *dentry)
305{
306 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
307 dentry->d_flags |= DCACHE_UNHASHED;
308 spin_lock(&dcache_hash_lock);
309 hlist_del_rcu(&dentry->d_hash);
310 spin_unlock(&dcache_hash_lock);
31e6b01f 311 dentry_rcuwalk_barrier(dentry);
789680d1
NP
312 }
313}
314EXPORT_SYMBOL(__d_drop);
315
316void d_drop(struct dentry *dentry)
317{
789680d1
NP
318 spin_lock(&dentry->d_lock);
319 __d_drop(dentry);
320 spin_unlock(&dentry->d_lock);
789680d1
NP
321}
322EXPORT_SYMBOL(d_drop);
323
77812a1e
NP
324/*
325 * Finish off a dentry we've decided to kill.
326 * dentry->d_lock must be held, returns with it unlocked.
327 * If ref is non-zero, then decrement the refcount too.
328 * Returns dentry requiring refcount drop, or NULL if we're done.
329 */
330static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
331 __releases(dentry->d_lock)
332{
333 struct dentry *parent;
334
335 if (!spin_trylock(&dcache_inode_lock)) {
336relock:
337 spin_unlock(&dentry->d_lock);
338 cpu_relax();
339 return dentry; /* try again with same dentry */
340 }
341 if (IS_ROOT(dentry))
342 parent = NULL;
343 else
344 parent = dentry->d_parent;
345 if (parent && !spin_trylock(&parent->d_lock)) {
346 spin_unlock(&dcache_inode_lock);
347 goto relock;
348 }
31e6b01f 349
77812a1e
NP
350 if (ref)
351 dentry->d_count--;
352 /* if dentry was on the d_lru list delete it from there */
353 dentry_lru_del(dentry);
354 /* if it was on the hash then remove it */
355 __d_drop(dentry);
356 return d_kill(dentry, parent);
357}
358
1da177e4
LT
359/*
360 * This is dput
361 *
362 * This is complicated by the fact that we do not want to put
363 * dentries that are no longer on any hash chain on the unused
364 * list: we'd much rather just get rid of them immediately.
365 *
366 * However, that implies that we have to traverse the dentry
367 * tree upwards to the parents which might _also_ now be
368 * scheduled for deletion (it may have been only waiting for
369 * its last child to go away).
370 *
371 * This tail recursion is done by hand as we don't want to depend
372 * on the compiler to always get this right (gcc generally doesn't).
373 * Real recursion would eat up our stack space.
374 */
375
376/*
377 * dput - release a dentry
378 * @dentry: dentry to release
379 *
380 * Release a dentry. This will drop the usage count and if appropriate
381 * call the dentry unlink method as well as removing it from the queues and
382 * releasing its resources. If the parent dentries were scheduled for release
383 * they too may now get deleted.
1da177e4 384 */
1da177e4
LT
385void dput(struct dentry *dentry)
386{
387 if (!dentry)
388 return;
389
390repeat:
b7ab39f6 391 if (dentry->d_count == 1)
1da177e4 392 might_sleep();
1da177e4 393 spin_lock(&dentry->d_lock);
61f3dee4
NP
394 BUG_ON(!dentry->d_count);
395 if (dentry->d_count > 1) {
396 dentry->d_count--;
1da177e4 397 spin_unlock(&dentry->d_lock);
1da177e4
LT
398 return;
399 }
400
1da177e4
LT
401 if (dentry->d_op && dentry->d_op->d_delete) {
402 if (dentry->d_op->d_delete(dentry))
61f3dee4 403 goto kill_it;
1da177e4 404 }
265ac902 405
1da177e4
LT
406 /* Unreachable? Get rid of it */
407 if (d_unhashed(dentry))
408 goto kill_it;
265ac902
NP
409
410 /* Otherwise leave it cached and ensure it's on the LRU */
411 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 412 dentry_lru_add(dentry);
265ac902 413
61f3dee4
NP
414 dentry->d_count--;
415 spin_unlock(&dentry->d_lock);
1da177e4
LT
416 return;
417
d52b9086 418kill_it:
77812a1e 419 dentry = dentry_kill(dentry, 1);
d52b9086
MS
420 if (dentry)
421 goto repeat;
1da177e4 422}
ec4f8605 423EXPORT_SYMBOL(dput);
1da177e4
LT
424
425/**
426 * d_invalidate - invalidate a dentry
427 * @dentry: dentry to invalidate
428 *
429 * Try to invalidate the dentry if it turns out to be
430 * possible. If there are other dentries that can be
431 * reached through this one we can't delete it and we
432 * return -EBUSY. On success we return 0.
433 *
434 * no dcache lock.
435 */
436
437int d_invalidate(struct dentry * dentry)
438{
439 /*
440 * If it's already been dropped, return OK.
441 */
da502956 442 spin_lock(&dentry->d_lock);
1da177e4 443 if (d_unhashed(dentry)) {
da502956 444 spin_unlock(&dentry->d_lock);
1da177e4
LT
445 return 0;
446 }
447 /*
448 * Check whether to do a partial shrink_dcache
449 * to get rid of unused child entries.
450 */
451 if (!list_empty(&dentry->d_subdirs)) {
da502956 452 spin_unlock(&dentry->d_lock);
1da177e4 453 shrink_dcache_parent(dentry);
da502956 454 spin_lock(&dentry->d_lock);
1da177e4
LT
455 }
456
457 /*
458 * Somebody else still using it?
459 *
460 * If it's a directory, we can't drop it
461 * for fear of somebody re-populating it
462 * with children (even though dropping it
463 * would make it unreachable from the root,
464 * we might still populate it if it was a
465 * working directory or similar).
466 */
b7ab39f6 467 if (dentry->d_count > 1) {
1da177e4
LT
468 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
469 spin_unlock(&dentry->d_lock);
1da177e4
LT
470 return -EBUSY;
471 }
472 }
473
474 __d_drop(dentry);
475 spin_unlock(&dentry->d_lock);
1da177e4
LT
476 return 0;
477}
ec4f8605 478EXPORT_SYMBOL(d_invalidate);
1da177e4 479
b5c84bf6 480/* This must be called with d_lock held */
dc0474be 481static inline void __dget_dlock(struct dentry *dentry)
23044507 482{
b7ab39f6 483 dentry->d_count++;
23044507
NP
484}
485
dc0474be 486static inline void __dget(struct dentry *dentry)
1da177e4 487{
23044507 488 spin_lock(&dentry->d_lock);
dc0474be 489 __dget_dlock(dentry);
23044507 490 spin_unlock(&dentry->d_lock);
1da177e4
LT
491}
492
b7ab39f6
NP
493struct dentry *dget_parent(struct dentry *dentry)
494{
495 struct dentry *ret;
496
497repeat:
a734eb45
NP
498 /*
499 * Don't need rcu_dereference because we re-check it was correct under
500 * the lock.
501 */
502 rcu_read_lock();
b7ab39f6 503 ret = dentry->d_parent;
a734eb45
NP
504 if (!ret) {
505 rcu_read_unlock();
b7ab39f6
NP
506 goto out;
507 }
a734eb45
NP
508 spin_lock(&ret->d_lock);
509 if (unlikely(ret != dentry->d_parent)) {
510 spin_unlock(&ret->d_lock);
511 rcu_read_unlock();
b7ab39f6
NP
512 goto repeat;
513 }
a734eb45 514 rcu_read_unlock();
b7ab39f6
NP
515 BUG_ON(!ret->d_count);
516 ret->d_count++;
517 spin_unlock(&ret->d_lock);
518out:
b7ab39f6
NP
519 return ret;
520}
521EXPORT_SYMBOL(dget_parent);
522
1da177e4
LT
523/**
524 * d_find_alias - grab a hashed alias of inode
525 * @inode: inode in question
526 * @want_discon: flag, used by d_splice_alias, to request
527 * that only a DISCONNECTED alias be returned.
528 *
529 * If inode has a hashed alias, or is a directory and has any alias,
530 * acquire the reference to alias and return it. Otherwise return NULL.
531 * Notice that if inode is a directory there can be only one alias and
532 * it can be unhashed only if it has no children, or if it is the root
533 * of a filesystem.
534 *
21c0d8fd 535 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 536 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 537 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 538 */
da502956 539static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 540{
da502956 541 struct dentry *alias, *discon_alias;
1da177e4 542
da502956
NP
543again:
544 discon_alias = NULL;
545 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
546 spin_lock(&alias->d_lock);
1da177e4 547 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 548 if (IS_ROOT(alias) &&
da502956 549 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 550 discon_alias = alias;
da502956 551 } else if (!want_discon) {
dc0474be 552 __dget_dlock(alias);
da502956
NP
553 spin_unlock(&alias->d_lock);
554 return alias;
555 }
556 }
557 spin_unlock(&alias->d_lock);
558 }
559 if (discon_alias) {
560 alias = discon_alias;
561 spin_lock(&alias->d_lock);
562 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
563 if (IS_ROOT(alias) &&
564 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 565 __dget_dlock(alias);
da502956 566 spin_unlock(&alias->d_lock);
1da177e4
LT
567 return alias;
568 }
569 }
da502956
NP
570 spin_unlock(&alias->d_lock);
571 goto again;
1da177e4 572 }
da502956 573 return NULL;
1da177e4
LT
574}
575
da502956 576struct dentry *d_find_alias(struct inode *inode)
1da177e4 577{
214fda1f
DH
578 struct dentry *de = NULL;
579
580 if (!list_empty(&inode->i_dentry)) {
b23fb0a6 581 spin_lock(&dcache_inode_lock);
214fda1f 582 de = __d_find_alias(inode, 0);
b23fb0a6 583 spin_unlock(&dcache_inode_lock);
214fda1f 584 }
1da177e4
LT
585 return de;
586}
ec4f8605 587EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
588
589/*
590 * Try to kill dentries associated with this inode.
591 * WARNING: you must own a reference to inode.
592 */
593void d_prune_aliases(struct inode *inode)
594{
0cdca3f9 595 struct dentry *dentry;
1da177e4 596restart:
b23fb0a6 597 spin_lock(&dcache_inode_lock);
0cdca3f9 598 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 599 spin_lock(&dentry->d_lock);
b7ab39f6 600 if (!dentry->d_count) {
dc0474be 601 __dget_dlock(dentry);
1da177e4
LT
602 __d_drop(dentry);
603 spin_unlock(&dentry->d_lock);
b23fb0a6 604 spin_unlock(&dcache_inode_lock);
1da177e4
LT
605 dput(dentry);
606 goto restart;
607 }
608 spin_unlock(&dentry->d_lock);
609 }
b23fb0a6 610 spin_unlock(&dcache_inode_lock);
1da177e4 611}
ec4f8605 612EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
613
614/*
77812a1e
NP
615 * Try to throw away a dentry - free the inode, dput the parent.
616 * Requires dentry->d_lock is held, and dentry->d_count == 0.
617 * Releases dentry->d_lock.
d702ccb3 618 *
77812a1e 619 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 620 */
77812a1e 621static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 622 __releases(dentry->d_lock)
1da177e4 623{
77812a1e 624 struct dentry *parent;
d52b9086 625
77812a1e 626 parent = dentry_kill(dentry, 0);
d52b9086 627 /*
77812a1e
NP
628 * If dentry_kill returns NULL, we have nothing more to do.
629 * if it returns the same dentry, trylocks failed. In either
630 * case, just loop again.
631 *
632 * Otherwise, we need to prune ancestors too. This is necessary
633 * to prevent quadratic behavior of shrink_dcache_parent(), but
634 * is also expected to be beneficial in reducing dentry cache
635 * fragmentation.
d52b9086 636 */
77812a1e
NP
637 if (!parent)
638 return;
639 if (parent == dentry)
640 return;
641
642 /* Prune ancestors. */
643 dentry = parent;
d52b9086 644 while (dentry) {
b7ab39f6 645 spin_lock(&dentry->d_lock);
89e60548
NP
646 if (dentry->d_count > 1) {
647 dentry->d_count--;
648 spin_unlock(&dentry->d_lock);
649 return;
650 }
77812a1e 651 dentry = dentry_kill(dentry, 1);
d52b9086 652 }
1da177e4
LT
653}
654
3049cfe2 655static void shrink_dentry_list(struct list_head *list)
1da177e4 656{
da3bbdd4 657 struct dentry *dentry;
da3bbdd4 658
ec33679d
NP
659 rcu_read_lock();
660 for (;;) {
ec33679d
NP
661 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
662 if (&dentry->d_lru == list)
663 break; /* empty */
664 spin_lock(&dentry->d_lock);
665 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
666 spin_unlock(&dentry->d_lock);
23044507
NP
667 continue;
668 }
669
1da177e4
LT
670 /*
671 * We found an inuse dentry which was not removed from
da3bbdd4
KM
672 * the LRU because of laziness during lookup. Do not free
673 * it - just keep it off the LRU list.
1da177e4 674 */
b7ab39f6 675 if (dentry->d_count) {
ec33679d 676 dentry_lru_del(dentry);
da3bbdd4 677 spin_unlock(&dentry->d_lock);
1da177e4
LT
678 continue;
679 }
ec33679d 680
ec33679d 681 rcu_read_unlock();
77812a1e
NP
682
683 try_prune_one_dentry(dentry);
684
ec33679d 685 rcu_read_lock();
da3bbdd4 686 }
ec33679d 687 rcu_read_unlock();
3049cfe2
CH
688}
689
690/**
691 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
692 * @sb: superblock to shrink dentry LRU.
693 * @count: number of entries to prune
694 * @flags: flags to control the dentry processing
695 *
696 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
697 */
698static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
699{
700 /* called from prune_dcache() and shrink_dcache_parent() */
701 struct dentry *dentry;
702 LIST_HEAD(referenced);
703 LIST_HEAD(tmp);
704 int cnt = *count;
705
23044507
NP
706relock:
707 spin_lock(&dcache_lru_lock);
3049cfe2
CH
708 while (!list_empty(&sb->s_dentry_lru)) {
709 dentry = list_entry(sb->s_dentry_lru.prev,
710 struct dentry, d_lru);
711 BUG_ON(dentry->d_sb != sb);
712
23044507
NP
713 if (!spin_trylock(&dentry->d_lock)) {
714 spin_unlock(&dcache_lru_lock);
715 cpu_relax();
716 goto relock;
717 }
718
3049cfe2
CH
719 /*
720 * If we are honouring the DCACHE_REFERENCED flag and the
721 * dentry has this flag set, don't free it. Clear the flag
722 * and put it back on the LRU.
723 */
23044507
NP
724 if (flags & DCACHE_REFERENCED &&
725 dentry->d_flags & DCACHE_REFERENCED) {
726 dentry->d_flags &= ~DCACHE_REFERENCED;
727 list_move(&dentry->d_lru, &referenced);
3049cfe2 728 spin_unlock(&dentry->d_lock);
23044507
NP
729 } else {
730 list_move_tail(&dentry->d_lru, &tmp);
731 spin_unlock(&dentry->d_lock);
732 if (!--cnt)
733 break;
3049cfe2 734 }
ec33679d 735 cond_resched_lock(&dcache_lru_lock);
3049cfe2 736 }
da3bbdd4
KM
737 if (!list_empty(&referenced))
738 list_splice(&referenced, &sb->s_dentry_lru);
23044507 739 spin_unlock(&dcache_lru_lock);
ec33679d
NP
740
741 shrink_dentry_list(&tmp);
742
743 *count = cnt;
da3bbdd4
KM
744}
745
746/**
747 * prune_dcache - shrink the dcache
748 * @count: number of entries to try to free
749 *
750 * Shrink the dcache. This is done when we need more memory, or simply when we
751 * need to unmount something (at which point we need to unuse all dentries).
752 *
753 * This function may fail to free any resources if all the dentries are in use.
754 */
755static void prune_dcache(int count)
756{
dca33252 757 struct super_block *sb, *p = NULL;
da3bbdd4 758 int w_count;
86c8749e 759 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
760 int prune_ratio;
761 int pruned;
762
763 if (unused == 0 || count == 0)
764 return;
da3bbdd4
KM
765 if (count >= unused)
766 prune_ratio = 1;
767 else
768 prune_ratio = unused / count;
769 spin_lock(&sb_lock);
dca33252 770 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
771 if (list_empty(&sb->s_instances))
772 continue;
da3bbdd4 773 if (sb->s_nr_dentry_unused == 0)
1da177e4 774 continue;
da3bbdd4
KM
775 sb->s_count++;
776 /* Now, we reclaim unused dentrins with fairness.
777 * We reclaim them same percentage from each superblock.
778 * We calculate number of dentries to scan on this sb
779 * as follows, but the implementation is arranged to avoid
780 * overflows:
781 * number of dentries to scan on this sb =
782 * count * (number of dentries on this sb /
783 * number of dentries in the machine)
0feae5c4 784 */
da3bbdd4
KM
785 spin_unlock(&sb_lock);
786 if (prune_ratio != 1)
787 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
788 else
789 w_count = sb->s_nr_dentry_unused;
790 pruned = w_count;
0feae5c4 791 /*
da3bbdd4
KM
792 * We need to be sure this filesystem isn't being unmounted,
793 * otherwise we could race with generic_shutdown_super(), and
794 * end up holding a reference to an inode while the filesystem
795 * is unmounted. So we try to get s_umount, and make sure
796 * s_root isn't NULL.
0feae5c4 797 */
da3bbdd4
KM
798 if (down_read_trylock(&sb->s_umount)) {
799 if ((sb->s_root != NULL) &&
800 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
801 __shrink_dcache_sb(sb, &w_count,
802 DCACHE_REFERENCED);
803 pruned -= w_count;
0feae5c4 804 }
da3bbdd4 805 up_read(&sb->s_umount);
0feae5c4 806 }
da3bbdd4 807 spin_lock(&sb_lock);
dca33252
AV
808 if (p)
809 __put_super(p);
da3bbdd4 810 count -= pruned;
dca33252 811 p = sb;
79893c17
AV
812 /* more work left to do? */
813 if (count <= 0)
814 break;
1da177e4 815 }
dca33252
AV
816 if (p)
817 __put_super(p);
da3bbdd4 818 spin_unlock(&sb_lock);
1da177e4
LT
819}
820
1da177e4
LT
821/**
822 * shrink_dcache_sb - shrink dcache for a superblock
823 * @sb: superblock
824 *
3049cfe2
CH
825 * Shrink the dcache for the specified super block. This is used to free
826 * the dcache before unmounting a file system.
1da177e4 827 */
3049cfe2 828void shrink_dcache_sb(struct super_block *sb)
1da177e4 829{
3049cfe2
CH
830 LIST_HEAD(tmp);
831
23044507 832 spin_lock(&dcache_lru_lock);
3049cfe2
CH
833 while (!list_empty(&sb->s_dentry_lru)) {
834 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 835 spin_unlock(&dcache_lru_lock);
3049cfe2 836 shrink_dentry_list(&tmp);
ec33679d 837 spin_lock(&dcache_lru_lock);
3049cfe2 838 }
23044507 839 spin_unlock(&dcache_lru_lock);
1da177e4 840}
ec4f8605 841EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 842
c636ebdb
DH
843/*
844 * destroy a single subtree of dentries for unmount
845 * - see the comments on shrink_dcache_for_umount() for a description of the
846 * locking
847 */
848static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
849{
850 struct dentry *parent;
f8713576 851 unsigned detached = 0;
c636ebdb
DH
852
853 BUG_ON(!IS_ROOT(dentry));
854
855 /* detach this root from the system */
23044507 856 spin_lock(&dentry->d_lock);
a4633357 857 dentry_lru_del(dentry);
c636ebdb 858 __d_drop(dentry);
da502956 859 spin_unlock(&dentry->d_lock);
c636ebdb
DH
860
861 for (;;) {
862 /* descend to the first leaf in the current subtree */
863 while (!list_empty(&dentry->d_subdirs)) {
864 struct dentry *loop;
865
866 /* this is a branch with children - detach all of them
867 * from the system in one go */
2fd6b7f5 868 spin_lock(&dentry->d_lock);
c636ebdb
DH
869 list_for_each_entry(loop, &dentry->d_subdirs,
870 d_u.d_child) {
2fd6b7f5
NP
871 spin_lock_nested(&loop->d_lock,
872 DENTRY_D_LOCK_NESTED);
a4633357 873 dentry_lru_del(loop);
c636ebdb 874 __d_drop(loop);
da502956 875 spin_unlock(&loop->d_lock);
c636ebdb 876 }
2fd6b7f5 877 spin_unlock(&dentry->d_lock);
c636ebdb
DH
878
879 /* move to the first child */
880 dentry = list_entry(dentry->d_subdirs.next,
881 struct dentry, d_u.d_child);
882 }
883
884 /* consume the dentries from this leaf up through its parents
885 * until we find one with children or run out altogether */
886 do {
887 struct inode *inode;
888
b7ab39f6 889 if (dentry->d_count != 0) {
c636ebdb
DH
890 printk(KERN_ERR
891 "BUG: Dentry %p{i=%lx,n=%s}"
892 " still in use (%d)"
893 " [unmount of %s %s]\n",
894 dentry,
895 dentry->d_inode ?
896 dentry->d_inode->i_ino : 0UL,
897 dentry->d_name.name,
b7ab39f6 898 dentry->d_count,
c636ebdb
DH
899 dentry->d_sb->s_type->name,
900 dentry->d_sb->s_id);
901 BUG();
902 }
903
2fd6b7f5 904 if (IS_ROOT(dentry)) {
c636ebdb 905 parent = NULL;
2fd6b7f5
NP
906 list_del(&dentry->d_u.d_child);
907 } else {
871c0067 908 parent = dentry->d_parent;
b7ab39f6
NP
909 spin_lock(&parent->d_lock);
910 parent->d_count--;
2fd6b7f5 911 list_del(&dentry->d_u.d_child);
b7ab39f6 912 spin_unlock(&parent->d_lock);
871c0067 913 }
c636ebdb 914
f8713576 915 detached++;
c636ebdb
DH
916
917 inode = dentry->d_inode;
918 if (inode) {
919 dentry->d_inode = NULL;
920 list_del_init(&dentry->d_alias);
921 if (dentry->d_op && dentry->d_op->d_iput)
922 dentry->d_op->d_iput(dentry, inode);
923 else
924 iput(inode);
925 }
926
927 d_free(dentry);
928
929 /* finished when we fall off the top of the tree,
930 * otherwise we ascend to the parent and move to the
931 * next sibling if there is one */
932 if (!parent)
312d3ca8 933 return;
c636ebdb 934 dentry = parent;
c636ebdb
DH
935 } while (list_empty(&dentry->d_subdirs));
936
937 dentry = list_entry(dentry->d_subdirs.next,
938 struct dentry, d_u.d_child);
939 }
940}
941
942/*
943 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 944 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
945 * - the superblock is detached from all mountings and open files, so the
946 * dentry trees will not be rearranged by the VFS
947 * - s_umount is write-locked, so the memory pressure shrinker will ignore
948 * any dentries belonging to this superblock that it comes across
949 * - the filesystem itself is no longer permitted to rearrange the dentries
950 * in this superblock
951 */
952void shrink_dcache_for_umount(struct super_block *sb)
953{
954 struct dentry *dentry;
955
956 if (down_read_trylock(&sb->s_umount))
957 BUG();
958
959 dentry = sb->s_root;
960 sb->s_root = NULL;
b7ab39f6
NP
961 spin_lock(&dentry->d_lock);
962 dentry->d_count--;
963 spin_unlock(&dentry->d_lock);
c636ebdb
DH
964 shrink_dcache_for_umount_subtree(dentry);
965
966 while (!hlist_empty(&sb->s_anon)) {
967 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
968 shrink_dcache_for_umount_subtree(dentry);
969 }
970}
971
1da177e4
LT
972/*
973 * Search for at least 1 mount point in the dentry's subdirs.
974 * We descend to the next level whenever the d_subdirs
975 * list is non-empty and continue searching.
976 */
977
978/**
979 * have_submounts - check for mounts over a dentry
980 * @parent: dentry to check.
981 *
982 * Return true if the parent or its subdirectories contain
983 * a mount point
984 */
1da177e4
LT
985int have_submounts(struct dentry *parent)
986{
949854d0 987 struct dentry *this_parent;
1da177e4 988 struct list_head *next;
949854d0 989 unsigned seq;
58db63d0 990 int locked = 0;
949854d0 991
949854d0 992 seq = read_seqbegin(&rename_lock);
58db63d0
NP
993again:
994 this_parent = parent;
1da177e4 995
1da177e4
LT
996 if (d_mountpoint(parent))
997 goto positive;
2fd6b7f5 998 spin_lock(&this_parent->d_lock);
1da177e4
LT
999repeat:
1000 next = this_parent->d_subdirs.next;
1001resume:
1002 while (next != &this_parent->d_subdirs) {
1003 struct list_head *tmp = next;
5160ee6f 1004 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1005 next = tmp->next;
2fd6b7f5
NP
1006
1007 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1008 /* Have we found a mount point ? */
2fd6b7f5
NP
1009 if (d_mountpoint(dentry)) {
1010 spin_unlock(&dentry->d_lock);
1011 spin_unlock(&this_parent->d_lock);
1da177e4 1012 goto positive;
2fd6b7f5 1013 }
1da177e4 1014 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1015 spin_unlock(&this_parent->d_lock);
1016 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1017 this_parent = dentry;
2fd6b7f5 1018 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1019 goto repeat;
1020 }
2fd6b7f5 1021 spin_unlock(&dentry->d_lock);
1da177e4
LT
1022 }
1023 /*
1024 * All done at this level ... ascend and resume the search.
1025 */
1026 if (this_parent != parent) {
949854d0
NP
1027 struct dentry *tmp;
1028 struct dentry *child;
1029
1030 tmp = this_parent->d_parent;
1031 rcu_read_lock();
2fd6b7f5 1032 spin_unlock(&this_parent->d_lock);
949854d0
NP
1033 child = this_parent;
1034 this_parent = tmp;
2fd6b7f5 1035 spin_lock(&this_parent->d_lock);
949854d0
NP
1036 /* might go back up the wrong parent if we have had a rename
1037 * or deletion */
1038 if (this_parent != child->d_parent ||
58db63d0 1039 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1040 spin_unlock(&this_parent->d_lock);
949854d0
NP
1041 rcu_read_unlock();
1042 goto rename_retry;
1043 }
1044 rcu_read_unlock();
1045 next = child->d_u.d_child.next;
1da177e4
LT
1046 goto resume;
1047 }
2fd6b7f5 1048 spin_unlock(&this_parent->d_lock);
58db63d0 1049 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1050 goto rename_retry;
58db63d0
NP
1051 if (locked)
1052 write_sequnlock(&rename_lock);
1da177e4
LT
1053 return 0; /* No mount points found in tree */
1054positive:
58db63d0 1055 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1056 goto rename_retry;
58db63d0
NP
1057 if (locked)
1058 write_sequnlock(&rename_lock);
1da177e4 1059 return 1;
58db63d0
NP
1060
1061rename_retry:
1062 locked = 1;
1063 write_seqlock(&rename_lock);
1064 goto again;
1da177e4 1065}
ec4f8605 1066EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1067
1068/*
1069 * Search the dentry child list for the specified parent,
1070 * and move any unused dentries to the end of the unused
1071 * list for prune_dcache(). We descend to the next level
1072 * whenever the d_subdirs list is non-empty and continue
1073 * searching.
1074 *
1075 * It returns zero iff there are no unused children,
1076 * otherwise it returns the number of children moved to
1077 * the end of the unused list. This may not be the total
1078 * number of unused children, because select_parent can
1079 * drop the lock and return early due to latency
1080 * constraints.
1081 */
1082static int select_parent(struct dentry * parent)
1083{
949854d0 1084 struct dentry *this_parent;
1da177e4 1085 struct list_head *next;
949854d0 1086 unsigned seq;
1da177e4 1087 int found = 0;
58db63d0 1088 int locked = 0;
1da177e4 1089
949854d0 1090 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1091again:
1092 this_parent = parent;
2fd6b7f5 1093 spin_lock(&this_parent->d_lock);
1da177e4
LT
1094repeat:
1095 next = this_parent->d_subdirs.next;
1096resume:
1097 while (next != &this_parent->d_subdirs) {
1098 struct list_head *tmp = next;
5160ee6f 1099 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1100 next = tmp->next;
1101
2fd6b7f5 1102 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1103
1da177e4
LT
1104 /*
1105 * move only zero ref count dentries to the end
1106 * of the unused list for prune_dcache
1107 */
b7ab39f6 1108 if (!dentry->d_count) {
a4633357 1109 dentry_lru_move_tail(dentry);
1da177e4 1110 found++;
a4633357
CH
1111 } else {
1112 dentry_lru_del(dentry);
1da177e4
LT
1113 }
1114
1115 /*
1116 * We can return to the caller if we have found some (this
1117 * ensures forward progress). We'll be coming back to find
1118 * the rest.
1119 */
2fd6b7f5
NP
1120 if (found && need_resched()) {
1121 spin_unlock(&dentry->d_lock);
1da177e4 1122 goto out;
2fd6b7f5 1123 }
1da177e4
LT
1124
1125 /*
1126 * Descend a level if the d_subdirs list is non-empty.
1127 */
1128 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1129 spin_unlock(&this_parent->d_lock);
1130 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1131 this_parent = dentry;
2fd6b7f5 1132 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1133 goto repeat;
1134 }
2fd6b7f5
NP
1135
1136 spin_unlock(&dentry->d_lock);
1da177e4
LT
1137 }
1138 /*
1139 * All done at this level ... ascend and resume the search.
1140 */
1141 if (this_parent != parent) {
2fd6b7f5 1142 struct dentry *tmp;
949854d0
NP
1143 struct dentry *child;
1144
2fd6b7f5 1145 tmp = this_parent->d_parent;
949854d0 1146 rcu_read_lock();
2fd6b7f5 1147 spin_unlock(&this_parent->d_lock);
949854d0 1148 child = this_parent;
2fd6b7f5
NP
1149 this_parent = tmp;
1150 spin_lock(&this_parent->d_lock);
949854d0
NP
1151 /* might go back up the wrong parent if we have had a rename
1152 * or deletion */
1153 if (this_parent != child->d_parent ||
58db63d0 1154 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1155 spin_unlock(&this_parent->d_lock);
949854d0
NP
1156 rcu_read_unlock();
1157 goto rename_retry;
1158 }
1159 rcu_read_unlock();
1160 next = child->d_u.d_child.next;
1da177e4
LT
1161 goto resume;
1162 }
1163out:
2fd6b7f5 1164 spin_unlock(&this_parent->d_lock);
58db63d0 1165 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1166 goto rename_retry;
58db63d0
NP
1167 if (locked)
1168 write_sequnlock(&rename_lock);
1da177e4 1169 return found;
58db63d0
NP
1170
1171rename_retry:
1172 if (found)
1173 return found;
1174 locked = 1;
1175 write_seqlock(&rename_lock);
1176 goto again;
1da177e4
LT
1177}
1178
1179/**
1180 * shrink_dcache_parent - prune dcache
1181 * @parent: parent of entries to prune
1182 *
1183 * Prune the dcache to remove unused children of the parent dentry.
1184 */
1185
1186void shrink_dcache_parent(struct dentry * parent)
1187{
da3bbdd4 1188 struct super_block *sb = parent->d_sb;
1da177e4
LT
1189 int found;
1190
1191 while ((found = select_parent(parent)) != 0)
da3bbdd4 1192 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1193}
ec4f8605 1194EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1195
1da177e4
LT
1196/*
1197 * Scan `nr' dentries and return the number which remain.
1198 *
1199 * We need to avoid reentering the filesystem if the caller is performing a
1200 * GFP_NOFS allocation attempt. One example deadlock is:
1201 *
1202 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1203 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1204 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1205 *
1206 * In this case we return -1 to tell the caller that we baled.
1207 */
7f8275d0 1208static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1209{
1210 if (nr) {
1211 if (!(gfp_mask & __GFP_FS))
1212 return -1;
da3bbdd4 1213 prune_dcache(nr);
1da177e4 1214 }
312d3ca8 1215
86c8749e 1216 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1217}
1218
8e1f936b
RR
1219static struct shrinker dcache_shrinker = {
1220 .shrink = shrink_dcache_memory,
1221 .seeks = DEFAULT_SEEKS,
1222};
1223
1da177e4
LT
1224/**
1225 * d_alloc - allocate a dcache entry
1226 * @parent: parent of entry to allocate
1227 * @name: qstr of the name
1228 *
1229 * Allocates a dentry. It returns %NULL if there is insufficient memory
1230 * available. On a success the dentry is returned. The name passed in is
1231 * copied and the copy passed in may be reused after this call.
1232 */
1233
1234struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1235{
1236 struct dentry *dentry;
1237 char *dname;
1238
e12ba74d 1239 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1240 if (!dentry)
1241 return NULL;
1242
1243 if (name->len > DNAME_INLINE_LEN-1) {
1244 dname = kmalloc(name->len + 1, GFP_KERNEL);
1245 if (!dname) {
1246 kmem_cache_free(dentry_cache, dentry);
1247 return NULL;
1248 }
1249 } else {
1250 dname = dentry->d_iname;
1251 }
1252 dentry->d_name.name = dname;
1253
1254 dentry->d_name.len = name->len;
1255 dentry->d_name.hash = name->hash;
1256 memcpy(dname, name->name, name->len);
1257 dname[name->len] = 0;
1258
b7ab39f6 1259 dentry->d_count = 1;
1da177e4
LT
1260 dentry->d_flags = DCACHE_UNHASHED;
1261 spin_lock_init(&dentry->d_lock);
31e6b01f 1262 seqcount_init(&dentry->d_seq);
1da177e4
LT
1263 dentry->d_inode = NULL;
1264 dentry->d_parent = NULL;
1265 dentry->d_sb = NULL;
1266 dentry->d_op = NULL;
1267 dentry->d_fsdata = NULL;
1da177e4
LT
1268 INIT_HLIST_NODE(&dentry->d_hash);
1269 INIT_LIST_HEAD(&dentry->d_lru);
1270 INIT_LIST_HEAD(&dentry->d_subdirs);
1271 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1272 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1273
1274 if (parent) {
2fd6b7f5 1275 spin_lock(&parent->d_lock);
89ad485f
NP
1276 /*
1277 * don't need child lock because it is not subject
1278 * to concurrency here
1279 */
dc0474be
NP
1280 __dget_dlock(parent);
1281 dentry->d_parent = parent;
1da177e4 1282 dentry->d_sb = parent->d_sb;
5160ee6f 1283 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5 1284 spin_unlock(&parent->d_lock);
2fd6b7f5 1285 }
1da177e4 1286
3e880fb5 1287 this_cpu_inc(nr_dentry);
312d3ca8 1288
1da177e4
LT
1289 return dentry;
1290}
ec4f8605 1291EXPORT_SYMBOL(d_alloc);
1da177e4
LT
1292
1293struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1294{
1295 struct qstr q;
1296
1297 q.name = name;
1298 q.len = strlen(name);
1299 q.hash = full_name_hash(q.name, q.len);
1300 return d_alloc(parent, &q);
1301}
ef26ca97 1302EXPORT_SYMBOL(d_alloc_name);
1da177e4 1303
360da900
OH
1304static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1305{
b23fb0a6 1306 spin_lock(&dentry->d_lock);
360da900
OH
1307 if (inode)
1308 list_add(&dentry->d_alias, &inode->i_dentry);
1309 dentry->d_inode = inode;
31e6b01f 1310 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1311 spin_unlock(&dentry->d_lock);
360da900
OH
1312 fsnotify_d_instantiate(dentry, inode);
1313}
1314
1da177e4
LT
1315/**
1316 * d_instantiate - fill in inode information for a dentry
1317 * @entry: dentry to complete
1318 * @inode: inode to attach to this dentry
1319 *
1320 * Fill in inode information in the entry.
1321 *
1322 * This turns negative dentries into productive full members
1323 * of society.
1324 *
1325 * NOTE! This assumes that the inode count has been incremented
1326 * (or otherwise set) by the caller to indicate that it is now
1327 * in use by the dcache.
1328 */
1329
1330void d_instantiate(struct dentry *entry, struct inode * inode)
1331{
28133c7b 1332 BUG_ON(!list_empty(&entry->d_alias));
b23fb0a6 1333 spin_lock(&dcache_inode_lock);
360da900 1334 __d_instantiate(entry, inode);
b23fb0a6 1335 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1336 security_d_instantiate(entry, inode);
1337}
ec4f8605 1338EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1339
1340/**
1341 * d_instantiate_unique - instantiate a non-aliased dentry
1342 * @entry: dentry to instantiate
1343 * @inode: inode to attach to this dentry
1344 *
1345 * Fill in inode information in the entry. On success, it returns NULL.
1346 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1347 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1348 *
1349 * Note that in order to avoid conflicts with rename() etc, the caller
1350 * had better be holding the parent directory semaphore.
e866cfa9
OD
1351 *
1352 * This also assumes that the inode count has been incremented
1353 * (or otherwise set) by the caller to indicate that it is now
1354 * in use by the dcache.
1da177e4 1355 */
770bfad8
DH
1356static struct dentry *__d_instantiate_unique(struct dentry *entry,
1357 struct inode *inode)
1da177e4
LT
1358{
1359 struct dentry *alias;
1360 int len = entry->d_name.len;
1361 const char *name = entry->d_name.name;
1362 unsigned int hash = entry->d_name.hash;
1363
770bfad8 1364 if (!inode) {
360da900 1365 __d_instantiate(entry, NULL);
770bfad8
DH
1366 return NULL;
1367 }
1368
1da177e4
LT
1369 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1370 struct qstr *qstr = &alias->d_name;
1371
9abca360
NP
1372 /*
1373 * Don't need alias->d_lock here, because aliases with
1374 * d_parent == entry->d_parent are not subject to name or
1375 * parent changes, because the parent inode i_mutex is held.
1376 */
1da177e4
LT
1377 if (qstr->hash != hash)
1378 continue;
1379 if (alias->d_parent != entry->d_parent)
1380 continue;
1381 if (qstr->len != len)
1382 continue;
1383 if (memcmp(qstr->name, name, len))
1384 continue;
dc0474be 1385 __dget(alias);
1da177e4
LT
1386 return alias;
1387 }
770bfad8 1388
360da900 1389 __d_instantiate(entry, inode);
1da177e4
LT
1390 return NULL;
1391}
770bfad8
DH
1392
1393struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1394{
1395 struct dentry *result;
1396
1397 BUG_ON(!list_empty(&entry->d_alias));
1398
b23fb0a6 1399 spin_lock(&dcache_inode_lock);
770bfad8 1400 result = __d_instantiate_unique(entry, inode);
b23fb0a6 1401 spin_unlock(&dcache_inode_lock);
770bfad8
DH
1402
1403 if (!result) {
1404 security_d_instantiate(entry, inode);
1405 return NULL;
1406 }
1407
1408 BUG_ON(!d_unhashed(result));
1409 iput(inode);
1410 return result;
1411}
1412
1da177e4
LT
1413EXPORT_SYMBOL(d_instantiate_unique);
1414
1415/**
1416 * d_alloc_root - allocate root dentry
1417 * @root_inode: inode to allocate the root for
1418 *
1419 * Allocate a root ("/") dentry for the inode given. The inode is
1420 * instantiated and returned. %NULL is returned if there is insufficient
1421 * memory or the inode passed is %NULL.
1422 */
1423
1424struct dentry * d_alloc_root(struct inode * root_inode)
1425{
1426 struct dentry *res = NULL;
1427
1428 if (root_inode) {
1429 static const struct qstr name = { .name = "/", .len = 1 };
1430
1431 res = d_alloc(NULL, &name);
1432 if (res) {
1433 res->d_sb = root_inode->i_sb;
1434 res->d_parent = res;
1435 d_instantiate(res, root_inode);
1436 }
1437 }
1438 return res;
1439}
ec4f8605 1440EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1441
1442static inline struct hlist_head *d_hash(struct dentry *parent,
1443 unsigned long hash)
1444{
1445 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1446 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1447 return dentry_hashtable + (hash & D_HASHMASK);
1448}
1449
4ea3ada2
CH
1450/**
1451 * d_obtain_alias - find or allocate a dentry for a given inode
1452 * @inode: inode to allocate the dentry for
1453 *
1454 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1455 * similar open by handle operations. The returned dentry may be anonymous,
1456 * or may have a full name (if the inode was already in the cache).
1457 *
1458 * When called on a directory inode, we must ensure that the inode only ever
1459 * has one dentry. If a dentry is found, that is returned instead of
1460 * allocating a new one.
1461 *
1462 * On successful return, the reference to the inode has been transferred
44003728
CH
1463 * to the dentry. In case of an error the reference on the inode is released.
1464 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1465 * be passed in and will be the error will be propagate to the return value,
1466 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1467 */
1468struct dentry *d_obtain_alias(struct inode *inode)
1469{
9308a612
CH
1470 static const struct qstr anonstring = { .name = "" };
1471 struct dentry *tmp;
1472 struct dentry *res;
4ea3ada2
CH
1473
1474 if (!inode)
44003728 1475 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1476 if (IS_ERR(inode))
1477 return ERR_CAST(inode);
1478
9308a612
CH
1479 res = d_find_alias(inode);
1480 if (res)
1481 goto out_iput;
1482
1483 tmp = d_alloc(NULL, &anonstring);
1484 if (!tmp) {
1485 res = ERR_PTR(-ENOMEM);
1486 goto out_iput;
4ea3ada2 1487 }
9308a612
CH
1488 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1489
b5c84bf6 1490
b23fb0a6 1491 spin_lock(&dcache_inode_lock);
9308a612
CH
1492 res = __d_find_alias(inode, 0);
1493 if (res) {
b23fb0a6 1494 spin_unlock(&dcache_inode_lock);
9308a612
CH
1495 dput(tmp);
1496 goto out_iput;
1497 }
1498
1499 /* attach a disconnected dentry */
1500 spin_lock(&tmp->d_lock);
1501 tmp->d_sb = inode->i_sb;
1502 tmp->d_inode = inode;
1503 tmp->d_flags |= DCACHE_DISCONNECTED;
1504 tmp->d_flags &= ~DCACHE_UNHASHED;
1505 list_add(&tmp->d_alias, &inode->i_dentry);
789680d1 1506 spin_lock(&dcache_hash_lock);
9308a612 1507 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
789680d1 1508 spin_unlock(&dcache_hash_lock);
9308a612 1509 spin_unlock(&tmp->d_lock);
b23fb0a6 1510 spin_unlock(&dcache_inode_lock);
9308a612 1511
9308a612
CH
1512 return tmp;
1513
1514 out_iput:
1515 iput(inode);
1516 return res;
4ea3ada2 1517}
adc48720 1518EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1519
1520/**
1521 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1522 * @inode: the inode which may have a disconnected dentry
1523 * @dentry: a negative dentry which we want to point to the inode.
1524 *
1525 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1526 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1527 * and return it, else simply d_add the inode to the dentry and return NULL.
1528 *
1529 * This is needed in the lookup routine of any filesystem that is exportable
1530 * (via knfsd) so that we can build dcache paths to directories effectively.
1531 *
1532 * If a dentry was found and moved, then it is returned. Otherwise NULL
1533 * is returned. This matches the expected return value of ->lookup.
1534 *
1535 */
1536struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1537{
1538 struct dentry *new = NULL;
1539
21c0d8fd 1540 if (inode && S_ISDIR(inode->i_mode)) {
b23fb0a6 1541 spin_lock(&dcache_inode_lock);
1da177e4
LT
1542 new = __d_find_alias(inode, 1);
1543 if (new) {
1544 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
b23fb0a6 1545 spin_unlock(&dcache_inode_lock);
1da177e4 1546 security_d_instantiate(new, inode);
1da177e4
LT
1547 d_move(new, dentry);
1548 iput(inode);
1549 } else {
b5c84bf6 1550 /* already taking dcache_inode_lock, so d_add() by hand */
360da900 1551 __d_instantiate(dentry, inode);
b23fb0a6 1552 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1553 security_d_instantiate(dentry, inode);
1554 d_rehash(dentry);
1555 }
1556 } else
1557 d_add(dentry, inode);
1558 return new;
1559}
ec4f8605 1560EXPORT_SYMBOL(d_splice_alias);
1da177e4 1561
9403540c
BN
1562/**
1563 * d_add_ci - lookup or allocate new dentry with case-exact name
1564 * @inode: the inode case-insensitive lookup has found
1565 * @dentry: the negative dentry that was passed to the parent's lookup func
1566 * @name: the case-exact name to be associated with the returned dentry
1567 *
1568 * This is to avoid filling the dcache with case-insensitive names to the
1569 * same inode, only the actual correct case is stored in the dcache for
1570 * case-insensitive filesystems.
1571 *
1572 * For a case-insensitive lookup match and if the the case-exact dentry
1573 * already exists in in the dcache, use it and return it.
1574 *
1575 * If no entry exists with the exact case name, allocate new dentry with
1576 * the exact case, and return the spliced entry.
1577 */
e45b590b 1578struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1579 struct qstr *name)
1580{
1581 int error;
1582 struct dentry *found;
1583 struct dentry *new;
1584
b6520c81
CH
1585 /*
1586 * First check if a dentry matching the name already exists,
1587 * if not go ahead and create it now.
1588 */
9403540c 1589 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1590 if (!found) {
1591 new = d_alloc(dentry->d_parent, name);
1592 if (!new) {
1593 error = -ENOMEM;
1594 goto err_out;
1595 }
b6520c81 1596
9403540c
BN
1597 found = d_splice_alias(inode, new);
1598 if (found) {
1599 dput(new);
1600 return found;
1601 }
1602 return new;
1603 }
b6520c81
CH
1604
1605 /*
1606 * If a matching dentry exists, and it's not negative use it.
1607 *
1608 * Decrement the reference count to balance the iget() done
1609 * earlier on.
1610 */
9403540c
BN
1611 if (found->d_inode) {
1612 if (unlikely(found->d_inode != inode)) {
1613 /* This can't happen because bad inodes are unhashed. */
1614 BUG_ON(!is_bad_inode(inode));
1615 BUG_ON(!is_bad_inode(found->d_inode));
1616 }
9403540c
BN
1617 iput(inode);
1618 return found;
1619 }
b6520c81 1620
9403540c
BN
1621 /*
1622 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1623 * already has a dentry.
9403540c 1624 */
b23fb0a6 1625 spin_lock(&dcache_inode_lock);
b6520c81 1626 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1627 __d_instantiate(found, inode);
b23fb0a6 1628 spin_unlock(&dcache_inode_lock);
9403540c
BN
1629 security_d_instantiate(found, inode);
1630 return found;
1631 }
b6520c81 1632
9403540c 1633 /*
b6520c81
CH
1634 * In case a directory already has a (disconnected) entry grab a
1635 * reference to it, move it in place and use it.
9403540c
BN
1636 */
1637 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
dc0474be 1638 __dget(new);
b23fb0a6 1639 spin_unlock(&dcache_inode_lock);
9403540c 1640 security_d_instantiate(found, inode);
9403540c 1641 d_move(new, found);
9403540c 1642 iput(inode);
9403540c 1643 dput(found);
9403540c
BN
1644 return new;
1645
1646err_out:
1647 iput(inode);
1648 return ERR_PTR(error);
1649}
ec4f8605 1650EXPORT_SYMBOL(d_add_ci);
1da177e4 1651
31e6b01f
NP
1652/**
1653 * __d_lookup_rcu - search for a dentry (racy, store-free)
1654 * @parent: parent dentry
1655 * @name: qstr of name we wish to find
1656 * @seq: returns d_seq value at the point where the dentry was found
1657 * @inode: returns dentry->d_inode when the inode was found valid.
1658 * Returns: dentry, or NULL
1659 *
1660 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1661 * resolution (store-free path walking) design described in
1662 * Documentation/filesystems/path-lookup.txt.
1663 *
1664 * This is not to be used outside core vfs.
1665 *
1666 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1667 * held, and rcu_read_lock held. The returned dentry must not be stored into
1668 * without taking d_lock and checking d_seq sequence count against @seq
1669 * returned here.
1670 *
1671 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1672 * function.
1673 *
1674 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1675 * the returned dentry, so long as its parent's seqlock is checked after the
1676 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1677 * is formed, giving integrity down the path walk.
1678 */
1679struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1680 unsigned *seq, struct inode **inode)
1681{
1682 unsigned int len = name->len;
1683 unsigned int hash = name->hash;
1684 const unsigned char *str = name->name;
1685 struct hlist_head *head = d_hash(parent, hash);
1686 struct hlist_node *node;
1687 struct dentry *dentry;
1688
1689 /*
1690 * Note: There is significant duplication with __d_lookup_rcu which is
1691 * required to prevent single threaded performance regressions
1692 * especially on architectures where smp_rmb (in seqcounts) are costly.
1693 * Keep the two functions in sync.
1694 */
1695
1696 /*
1697 * The hash list is protected using RCU.
1698 *
1699 * Carefully use d_seq when comparing a candidate dentry, to avoid
1700 * races with d_move().
1701 *
1702 * It is possible that concurrent renames can mess up our list
1703 * walk here and result in missing our dentry, resulting in the
1704 * false-negative result. d_lookup() protects against concurrent
1705 * renames using rename_lock seqlock.
1706 *
1707 * See Documentation/vfs/dcache-locking.txt for more details.
1708 */
1709 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1710 struct inode *i;
1711 const char *tname;
1712 int tlen;
1713
1714 if (dentry->d_name.hash != hash)
1715 continue;
1716
1717seqretry:
1718 *seq = read_seqcount_begin(&dentry->d_seq);
1719 if (dentry->d_parent != parent)
1720 continue;
1721 if (d_unhashed(dentry))
1722 continue;
1723 tlen = dentry->d_name.len;
1724 tname = dentry->d_name.name;
1725 i = dentry->d_inode;
1726 /*
1727 * This seqcount check is required to ensure name and
1728 * len are loaded atomically, so as not to walk off the
1729 * edge of memory when walking. If we could load this
1730 * atomically some other way, we could drop this check.
1731 */
1732 if (read_seqcount_retry(&dentry->d_seq, *seq))
1733 goto seqretry;
1734 if (parent->d_op && parent->d_op->d_compare) {
1735 if (parent->d_op->d_compare(parent, *inode,
1736 dentry, i,
1737 tlen, tname, name))
1738 continue;
1739 } else {
1740 if (tlen != len)
1741 continue;
1742 if (memcmp(tname, str, tlen))
1743 continue;
1744 }
1745 /*
1746 * No extra seqcount check is required after the name
1747 * compare. The caller must perform a seqcount check in
1748 * order to do anything useful with the returned dentry
1749 * anyway.
1750 */
1751 *inode = i;
1752 return dentry;
1753 }
1754 return NULL;
1755}
1756
1da177e4
LT
1757/**
1758 * d_lookup - search for a dentry
1759 * @parent: parent dentry
1760 * @name: qstr of name we wish to find
b04f784e 1761 * Returns: dentry, or NULL
1da177e4 1762 *
b04f784e
NP
1763 * d_lookup searches the children of the parent dentry for the name in
1764 * question. If the dentry is found its reference count is incremented and the
1765 * dentry is returned. The caller must use dput to free the entry when it has
1766 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1767 */
31e6b01f 1768struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1769{
31e6b01f 1770 struct dentry *dentry;
949854d0 1771 unsigned seq;
1da177e4
LT
1772
1773 do {
1774 seq = read_seqbegin(&rename_lock);
1775 dentry = __d_lookup(parent, name);
1776 if (dentry)
1777 break;
1778 } while (read_seqretry(&rename_lock, seq));
1779 return dentry;
1780}
ec4f8605 1781EXPORT_SYMBOL(d_lookup);
1da177e4 1782
31e6b01f 1783/**
b04f784e
NP
1784 * __d_lookup - search for a dentry (racy)
1785 * @parent: parent dentry
1786 * @name: qstr of name we wish to find
1787 * Returns: dentry, or NULL
1788 *
1789 * __d_lookup is like d_lookup, however it may (rarely) return a
1790 * false-negative result due to unrelated rename activity.
1791 *
1792 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1793 * however it must be used carefully, eg. with a following d_lookup in
1794 * the case of failure.
1795 *
1796 * __d_lookup callers must be commented.
1797 */
31e6b01f 1798struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1799{
1800 unsigned int len = name->len;
1801 unsigned int hash = name->hash;
1802 const unsigned char *str = name->name;
1803 struct hlist_head *head = d_hash(parent,hash);
1da177e4 1804 struct hlist_node *node;
31e6b01f 1805 struct dentry *found = NULL;
665a7583 1806 struct dentry *dentry;
1da177e4 1807
31e6b01f
NP
1808 /*
1809 * Note: There is significant duplication with __d_lookup_rcu which is
1810 * required to prevent single threaded performance regressions
1811 * especially on architectures where smp_rmb (in seqcounts) are costly.
1812 * Keep the two functions in sync.
1813 */
1814
b04f784e
NP
1815 /*
1816 * The hash list is protected using RCU.
1817 *
1818 * Take d_lock when comparing a candidate dentry, to avoid races
1819 * with d_move().
1820 *
1821 * It is possible that concurrent renames can mess up our list
1822 * walk here and result in missing our dentry, resulting in the
1823 * false-negative result. d_lookup() protects against concurrent
1824 * renames using rename_lock seqlock.
1825 *
1826 * See Documentation/vfs/dcache-locking.txt for more details.
1827 */
1da177e4
LT
1828 rcu_read_lock();
1829
665a7583 1830 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
31e6b01f
NP
1831 const char *tname;
1832 int tlen;
1da177e4 1833
1da177e4
LT
1834 if (dentry->d_name.hash != hash)
1835 continue;
1da177e4
LT
1836
1837 spin_lock(&dentry->d_lock);
1da177e4
LT
1838 if (dentry->d_parent != parent)
1839 goto next;
d0185c08
LT
1840 if (d_unhashed(dentry))
1841 goto next;
1842
1da177e4
LT
1843 /*
1844 * It is safe to compare names since d_move() cannot
1845 * change the qstr (protected by d_lock).
1846 */
31e6b01f
NP
1847 tlen = dentry->d_name.len;
1848 tname = dentry->d_name.name;
1da177e4 1849 if (parent->d_op && parent->d_op->d_compare) {
621e155a
NP
1850 if (parent->d_op->d_compare(parent, parent->d_inode,
1851 dentry, dentry->d_inode,
31e6b01f 1852 tlen, tname, name))
1da177e4
LT
1853 goto next;
1854 } else {
31e6b01f 1855 if (tlen != len)
1da177e4 1856 goto next;
31e6b01f 1857 if (memcmp(tname, str, tlen))
1da177e4
LT
1858 goto next;
1859 }
1860
b7ab39f6 1861 dentry->d_count++;
d0185c08 1862 found = dentry;
1da177e4
LT
1863 spin_unlock(&dentry->d_lock);
1864 break;
1865next:
1866 spin_unlock(&dentry->d_lock);
1867 }
1868 rcu_read_unlock();
1869
1870 return found;
1871}
1872
3e7e241f
EB
1873/**
1874 * d_hash_and_lookup - hash the qstr then search for a dentry
1875 * @dir: Directory to search in
1876 * @name: qstr of name we wish to find
1877 *
1878 * On hash failure or on lookup failure NULL is returned.
1879 */
1880struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1881{
1882 struct dentry *dentry = NULL;
1883
1884 /*
1885 * Check for a fs-specific hash function. Note that we must
1886 * calculate the standard hash first, as the d_op->d_hash()
1887 * routine may choose to leave the hash value unchanged.
1888 */
1889 name->hash = full_name_hash(name->name, name->len);
1890 if (dir->d_op && dir->d_op->d_hash) {
b1e6a015 1891 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1892 goto out;
1893 }
1894 dentry = d_lookup(dir, name);
1895out:
1896 return dentry;
1897}
1898
1da177e4 1899/**
786a5e15 1900 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1901 * @dentry: The dentry alleged to be valid child of @dparent
1902 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1903 *
1904 * An insecure source has sent us a dentry, here we verify it and dget() it.
1905 * This is used by ncpfs in its readdir implementation.
1906 * Zero is returned in the dentry is invalid.
786a5e15
NP
1907 *
1908 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1909 */
d3a23e16 1910int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1911{
786a5e15 1912 struct dentry *child;
d3a23e16 1913
2fd6b7f5 1914 spin_lock(&dparent->d_lock);
786a5e15
NP
1915 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1916 if (dentry == child) {
2fd6b7f5 1917 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1918 __dget_dlock(dentry);
2fd6b7f5
NP
1919 spin_unlock(&dentry->d_lock);
1920 spin_unlock(&dparent->d_lock);
1da177e4
LT
1921 return 1;
1922 }
1923 }
2fd6b7f5 1924 spin_unlock(&dparent->d_lock);
786a5e15 1925
1da177e4
LT
1926 return 0;
1927}
ec4f8605 1928EXPORT_SYMBOL(d_validate);
1da177e4
LT
1929
1930/*
1931 * When a file is deleted, we have two options:
1932 * - turn this dentry into a negative dentry
1933 * - unhash this dentry and free it.
1934 *
1935 * Usually, we want to just turn this into
1936 * a negative dentry, but if anybody else is
1937 * currently using the dentry or the inode
1938 * we can't do that and we fall back on removing
1939 * it from the hash queues and waiting for
1940 * it to be deleted later when it has no users
1941 */
1942
1943/**
1944 * d_delete - delete a dentry
1945 * @dentry: The dentry to delete
1946 *
1947 * Turn the dentry into a negative dentry if possible, otherwise
1948 * remove it from the hash queues so it can be deleted later
1949 */
1950
1951void d_delete(struct dentry * dentry)
1952{
7a91bf7f 1953 int isdir = 0;
1da177e4
LT
1954 /*
1955 * Are we the only user?
1956 */
357f8e65 1957again:
1da177e4 1958 spin_lock(&dentry->d_lock);
7a91bf7f 1959 isdir = S_ISDIR(dentry->d_inode->i_mode);
b7ab39f6 1960 if (dentry->d_count == 1) {
357f8e65
NP
1961 if (!spin_trylock(&dcache_inode_lock)) {
1962 spin_unlock(&dentry->d_lock);
1963 cpu_relax();
1964 goto again;
1965 }
13e3c5e5 1966 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 1967 dentry_unlink_inode(dentry);
7a91bf7f 1968 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1969 return;
1970 }
1971
1972 if (!d_unhashed(dentry))
1973 __d_drop(dentry);
1974
1975 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
1976
1977 fsnotify_nameremove(dentry, isdir);
1da177e4 1978}
ec4f8605 1979EXPORT_SYMBOL(d_delete);
1da177e4
LT
1980
1981static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1982{
1983
1984 entry->d_flags &= ~DCACHE_UNHASHED;
1985 hlist_add_head_rcu(&entry->d_hash, list);
1986}
1987
770bfad8
DH
1988static void _d_rehash(struct dentry * entry)
1989{
1990 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1991}
1992
1da177e4
LT
1993/**
1994 * d_rehash - add an entry back to the hash
1995 * @entry: dentry to add to the hash
1996 *
1997 * Adds a dentry to the hash according to its name.
1998 */
1999
2000void d_rehash(struct dentry * entry)
2001{
1da177e4 2002 spin_lock(&entry->d_lock);
789680d1 2003 spin_lock(&dcache_hash_lock);
770bfad8 2004 _d_rehash(entry);
789680d1 2005 spin_unlock(&dcache_hash_lock);
1da177e4 2006 spin_unlock(&entry->d_lock);
1da177e4 2007}
ec4f8605 2008EXPORT_SYMBOL(d_rehash);
1da177e4 2009
fb2d5b86
NP
2010/**
2011 * dentry_update_name_case - update case insensitive dentry with a new name
2012 * @dentry: dentry to be updated
2013 * @name: new name
2014 *
2015 * Update a case insensitive dentry with new case of name.
2016 *
2017 * dentry must have been returned by d_lookup with name @name. Old and new
2018 * name lengths must match (ie. no d_compare which allows mismatched name
2019 * lengths).
2020 *
2021 * Parent inode i_mutex must be held over d_lookup and into this call (to
2022 * keep renames and concurrent inserts, and readdir(2) away).
2023 */
2024void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2025{
2026 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2027 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2028
fb2d5b86 2029 spin_lock(&dentry->d_lock);
31e6b01f 2030 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2031 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2032 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2033 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2034}
2035EXPORT_SYMBOL(dentry_update_name_case);
2036
1da177e4
LT
2037static void switch_names(struct dentry *dentry, struct dentry *target)
2038{
2039 if (dname_external(target)) {
2040 if (dname_external(dentry)) {
2041 /*
2042 * Both external: swap the pointers
2043 */
9a8d5bb4 2044 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2045 } else {
2046 /*
2047 * dentry:internal, target:external. Steal target's
2048 * storage and make target internal.
2049 */
321bcf92
BF
2050 memcpy(target->d_iname, dentry->d_name.name,
2051 dentry->d_name.len + 1);
1da177e4
LT
2052 dentry->d_name.name = target->d_name.name;
2053 target->d_name.name = target->d_iname;
2054 }
2055 } else {
2056 if (dname_external(dentry)) {
2057 /*
2058 * dentry:external, target:internal. Give dentry's
2059 * storage to target and make dentry internal
2060 */
2061 memcpy(dentry->d_iname, target->d_name.name,
2062 target->d_name.len + 1);
2063 target->d_name.name = dentry->d_name.name;
2064 dentry->d_name.name = dentry->d_iname;
2065 } else {
2066 /*
2067 * Both are internal. Just copy target to dentry
2068 */
2069 memcpy(dentry->d_iname, target->d_name.name,
2070 target->d_name.len + 1);
dc711ca3
AV
2071 dentry->d_name.len = target->d_name.len;
2072 return;
1da177e4
LT
2073 }
2074 }
9a8d5bb4 2075 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2076}
2077
2fd6b7f5
NP
2078static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2079{
2080 /*
2081 * XXXX: do we really need to take target->d_lock?
2082 */
2083 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2084 spin_lock(&target->d_parent->d_lock);
2085 else {
2086 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2087 spin_lock(&dentry->d_parent->d_lock);
2088 spin_lock_nested(&target->d_parent->d_lock,
2089 DENTRY_D_LOCK_NESTED);
2090 } else {
2091 spin_lock(&target->d_parent->d_lock);
2092 spin_lock_nested(&dentry->d_parent->d_lock,
2093 DENTRY_D_LOCK_NESTED);
2094 }
2095 }
2096 if (target < dentry) {
2097 spin_lock_nested(&target->d_lock, 2);
2098 spin_lock_nested(&dentry->d_lock, 3);
2099 } else {
2100 spin_lock_nested(&dentry->d_lock, 2);
2101 spin_lock_nested(&target->d_lock, 3);
2102 }
2103}
2104
2105static void dentry_unlock_parents_for_move(struct dentry *dentry,
2106 struct dentry *target)
2107{
2108 if (target->d_parent != dentry->d_parent)
2109 spin_unlock(&dentry->d_parent->d_lock);
2110 if (target->d_parent != target)
2111 spin_unlock(&target->d_parent->d_lock);
2112}
2113
1da177e4 2114/*
2fd6b7f5
NP
2115 * When switching names, the actual string doesn't strictly have to
2116 * be preserved in the target - because we're dropping the target
2117 * anyway. As such, we can just do a simple memcpy() to copy over
2118 * the new name before we switch.
2119 *
2120 * Note that we have to be a lot more careful about getting the hash
2121 * switched - we have to switch the hash value properly even if it
2122 * then no longer matches the actual (corrupted) string of the target.
2123 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2124 */
9eaef27b 2125/*
b5c84bf6 2126 * d_move - move a dentry
1da177e4
LT
2127 * @dentry: entry to move
2128 * @target: new dentry
2129 *
2130 * Update the dcache to reflect the move of a file name. Negative
2131 * dcache entries should not be moved in this way.
2132 */
b5c84bf6 2133void d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2134{
1da177e4
LT
2135 if (!dentry->d_inode)
2136 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2137
2fd6b7f5
NP
2138 BUG_ON(d_ancestor(dentry, target));
2139 BUG_ON(d_ancestor(target, dentry));
2140
1da177e4 2141 write_seqlock(&rename_lock);
2fd6b7f5
NP
2142
2143 dentry_lock_for_move(dentry, target);
1da177e4 2144
31e6b01f
NP
2145 write_seqcount_begin(&dentry->d_seq);
2146 write_seqcount_begin(&target->d_seq);
2147
1da177e4 2148 /* Move the dentry to the target hash queue, if on different bucket */
789680d1
NP
2149 spin_lock(&dcache_hash_lock);
2150 if (!d_unhashed(dentry))
2151 hlist_del_rcu(&dentry->d_hash);
2152 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2153 spin_unlock(&dcache_hash_lock);
1da177e4
LT
2154
2155 /* Unhash the target: dput() will then get rid of it */
31e6b01f 2156 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
1da177e4
LT
2157 __d_drop(target);
2158
5160ee6f
ED
2159 list_del(&dentry->d_u.d_child);
2160 list_del(&target->d_u.d_child);
1da177e4
LT
2161
2162 /* Switch the names.. */
2163 switch_names(dentry, target);
9a8d5bb4 2164 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2165
2166 /* ... and switch the parents */
2167 if (IS_ROOT(dentry)) {
2168 dentry->d_parent = target->d_parent;
2169 target->d_parent = target;
5160ee6f 2170 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2171 } else {
9a8d5bb4 2172 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2173
2174 /* And add them back to the (new) parent lists */
5160ee6f 2175 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2176 }
2177
5160ee6f 2178 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2179
31e6b01f
NP
2180 write_seqcount_end(&target->d_seq);
2181 write_seqcount_end(&dentry->d_seq);
2182
2fd6b7f5 2183 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2184 spin_unlock(&target->d_lock);
c32ccd87 2185 fsnotify_d_move(dentry);
1da177e4
LT
2186 spin_unlock(&dentry->d_lock);
2187 write_sequnlock(&rename_lock);
9eaef27b 2188}
ec4f8605 2189EXPORT_SYMBOL(d_move);
1da177e4 2190
e2761a11
OH
2191/**
2192 * d_ancestor - search for an ancestor
2193 * @p1: ancestor dentry
2194 * @p2: child dentry
2195 *
2196 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2197 * an ancestor of p2, else NULL.
9eaef27b 2198 */
e2761a11 2199struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2200{
2201 struct dentry *p;
2202
871c0067 2203 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2204 if (p->d_parent == p1)
e2761a11 2205 return p;
9eaef27b 2206 }
e2761a11 2207 return NULL;
9eaef27b
TM
2208}
2209
2210/*
2211 * This helper attempts to cope with remotely renamed directories
2212 *
2213 * It assumes that the caller is already holding
b5c84bf6 2214 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
9eaef27b
TM
2215 *
2216 * Note: If ever the locking in lock_rename() changes, then please
2217 * remember to update this too...
9eaef27b
TM
2218 */
2219static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
b23fb0a6 2220 __releases(dcache_inode_lock)
9eaef27b
TM
2221{
2222 struct mutex *m1 = NULL, *m2 = NULL;
2223 struct dentry *ret;
2224
2225 /* If alias and dentry share a parent, then no extra locks required */
2226 if (alias->d_parent == dentry->d_parent)
2227 goto out_unalias;
2228
2229 /* Check for loops */
2230 ret = ERR_PTR(-ELOOP);
e2761a11 2231 if (d_ancestor(alias, dentry))
9eaef27b
TM
2232 goto out_err;
2233
2234 /* See lock_rename() */
2235 ret = ERR_PTR(-EBUSY);
2236 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2237 goto out_err;
2238 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2239 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2240 goto out_err;
2241 m2 = &alias->d_parent->d_inode->i_mutex;
2242out_unalias:
b5c84bf6 2243 d_move(alias, dentry);
9eaef27b
TM
2244 ret = alias;
2245out_err:
b23fb0a6 2246 spin_unlock(&dcache_inode_lock);
9eaef27b
TM
2247 if (m2)
2248 mutex_unlock(m2);
2249 if (m1)
2250 mutex_unlock(m1);
2251 return ret;
2252}
2253
770bfad8
DH
2254/*
2255 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2256 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2257 * returns with anon->d_lock held!
770bfad8
DH
2258 */
2259static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2260{
2261 struct dentry *dparent, *aparent;
2262
2fd6b7f5 2263 dentry_lock_for_move(anon, dentry);
770bfad8 2264
31e6b01f
NP
2265 write_seqcount_begin(&dentry->d_seq);
2266 write_seqcount_begin(&anon->d_seq);
2267
770bfad8
DH
2268 dparent = dentry->d_parent;
2269 aparent = anon->d_parent;
2270
2fd6b7f5
NP
2271 switch_names(dentry, anon);
2272 swap(dentry->d_name.hash, anon->d_name.hash);
2273
770bfad8
DH
2274 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2275 list_del(&dentry->d_u.d_child);
2276 if (!IS_ROOT(dentry))
2277 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2278 else
2279 INIT_LIST_HEAD(&dentry->d_u.d_child);
2280
2281 anon->d_parent = (dparent == dentry) ? anon : dparent;
2282 list_del(&anon->d_u.d_child);
2283 if (!IS_ROOT(anon))
2284 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2285 else
2286 INIT_LIST_HEAD(&anon->d_u.d_child);
2287
31e6b01f
NP
2288 write_seqcount_end(&dentry->d_seq);
2289 write_seqcount_end(&anon->d_seq);
2290
2fd6b7f5
NP
2291 dentry_unlock_parents_for_move(anon, dentry);
2292 spin_unlock(&dentry->d_lock);
2293
2294 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2295 anon->d_flags &= ~DCACHE_DISCONNECTED;
2296}
2297
2298/**
2299 * d_materialise_unique - introduce an inode into the tree
2300 * @dentry: candidate dentry
2301 * @inode: inode to bind to the dentry, to which aliases may be attached
2302 *
2303 * Introduces an dentry into the tree, substituting an extant disconnected
2304 * root directory alias in its place if there is one
2305 */
2306struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2307{
9eaef27b 2308 struct dentry *actual;
770bfad8
DH
2309
2310 BUG_ON(!d_unhashed(dentry));
2311
770bfad8
DH
2312 if (!inode) {
2313 actual = dentry;
360da900 2314 __d_instantiate(dentry, NULL);
357f8e65
NP
2315 d_rehash(actual);
2316 goto out_nolock;
770bfad8
DH
2317 }
2318
357f8e65
NP
2319 spin_lock(&dcache_inode_lock);
2320
9eaef27b
TM
2321 if (S_ISDIR(inode->i_mode)) {
2322 struct dentry *alias;
2323
2324 /* Does an aliased dentry already exist? */
2325 alias = __d_find_alias(inode, 0);
2326 if (alias) {
2327 actual = alias;
2328 /* Is this an anonymous mountpoint that we could splice
2329 * into our tree? */
2330 if (IS_ROOT(alias)) {
9eaef27b
TM
2331 __d_materialise_dentry(dentry, alias);
2332 __d_drop(alias);
2333 goto found;
2334 }
2335 /* Nope, but we must(!) avoid directory aliasing */
2336 actual = __d_unalias(dentry, alias);
2337 if (IS_ERR(actual))
2338 dput(alias);
2339 goto out_nolock;
2340 }
770bfad8
DH
2341 }
2342
2343 /* Add a unique reference */
2344 actual = __d_instantiate_unique(dentry, inode);
2345 if (!actual)
2346 actual = dentry;
357f8e65
NP
2347 else
2348 BUG_ON(!d_unhashed(actual));
770bfad8 2349
770bfad8
DH
2350 spin_lock(&actual->d_lock);
2351found:
789680d1 2352 spin_lock(&dcache_hash_lock);
770bfad8 2353 _d_rehash(actual);
789680d1 2354 spin_unlock(&dcache_hash_lock);
770bfad8 2355 spin_unlock(&actual->d_lock);
b23fb0a6 2356 spin_unlock(&dcache_inode_lock);
9eaef27b 2357out_nolock:
770bfad8
DH
2358 if (actual == dentry) {
2359 security_d_instantiate(dentry, inode);
2360 return NULL;
2361 }
2362
2363 iput(inode);
2364 return actual;
770bfad8 2365}
ec4f8605 2366EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2367
cdd16d02 2368static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2369{
2370 *buflen -= namelen;
2371 if (*buflen < 0)
2372 return -ENAMETOOLONG;
2373 *buffer -= namelen;
2374 memcpy(*buffer, str, namelen);
2375 return 0;
2376}
2377
cdd16d02
MS
2378static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2379{
2380 return prepend(buffer, buflen, name->name, name->len);
2381}
2382
1da177e4 2383/**
f2eb6575
MS
2384 * Prepend path string to a buffer
2385 *
9d1bc601
MS
2386 * @path: the dentry/vfsmount to report
2387 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2388 * @buffer: pointer to the end of the buffer
2389 * @buflen: pointer to buffer length
552ce544 2390 *
949854d0 2391 * Caller holds the rename_lock.
9d1bc601
MS
2392 *
2393 * If path is not reachable from the supplied root, then the value of
2394 * root is changed (without modifying refcounts).
1da177e4 2395 */
f2eb6575
MS
2396static int prepend_path(const struct path *path, struct path *root,
2397 char **buffer, int *buflen)
1da177e4 2398{
9d1bc601
MS
2399 struct dentry *dentry = path->dentry;
2400 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2401 bool slash = false;
2402 int error = 0;
6092d048 2403
99b7db7b 2404 br_read_lock(vfsmount_lock);
f2eb6575 2405 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2406 struct dentry * parent;
2407
1da177e4 2408 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2409 /* Global root? */
1da177e4 2410 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2411 goto global_root;
2412 }
2413 dentry = vfsmnt->mnt_mountpoint;
2414 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2415 continue;
2416 }
2417 parent = dentry->d_parent;
2418 prefetch(parent);
9abca360 2419 spin_lock(&dentry->d_lock);
f2eb6575 2420 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2421 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2422 if (!error)
2423 error = prepend(buffer, buflen, "/", 1);
2424 if (error)
2425 break;
2426
2427 slash = true;
1da177e4
LT
2428 dentry = parent;
2429 }
2430
be285c71 2431out:
f2eb6575
MS
2432 if (!error && !slash)
2433 error = prepend(buffer, buflen, "/", 1);
2434
99b7db7b 2435 br_read_unlock(vfsmount_lock);
f2eb6575 2436 return error;
1da177e4
LT
2437
2438global_root:
98dc568b
MS
2439 /*
2440 * Filesystems needing to implement special "root names"
2441 * should do so with ->d_dname()
2442 */
2443 if (IS_ROOT(dentry) &&
2444 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2445 WARN(1, "Root dentry has weird name <%.*s>\n",
2446 (int) dentry->d_name.len, dentry->d_name.name);
2447 }
9d1bc601
MS
2448 root->mnt = vfsmnt;
2449 root->dentry = dentry;
be285c71 2450 goto out;
f2eb6575 2451}
be285c71 2452
f2eb6575
MS
2453/**
2454 * __d_path - return the path of a dentry
2455 * @path: the dentry/vfsmount to report
2456 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2457 * @buf: buffer to return value in
f2eb6575
MS
2458 * @buflen: buffer length
2459 *
ffd1f4ed 2460 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2461 *
2462 * Returns a pointer into the buffer or an error code if the
2463 * path was too long.
2464 *
be148247 2465 * "buflen" should be positive.
f2eb6575
MS
2466 *
2467 * If path is not reachable from the supplied root, then the value of
2468 * root is changed (without modifying refcounts).
2469 */
2470char *__d_path(const struct path *path, struct path *root,
2471 char *buf, int buflen)
2472{
2473 char *res = buf + buflen;
2474 int error;
2475
2476 prepend(&res, &buflen, "\0", 1);
949854d0 2477 write_seqlock(&rename_lock);
f2eb6575 2478 error = prepend_path(path, root, &res, &buflen);
949854d0 2479 write_sequnlock(&rename_lock);
be148247 2480
f2eb6575
MS
2481 if (error)
2482 return ERR_PTR(error);
f2eb6575 2483 return res;
1da177e4
LT
2484}
2485
ffd1f4ed
MS
2486/*
2487 * same as __d_path but appends "(deleted)" for unlinked files.
2488 */
2489static int path_with_deleted(const struct path *path, struct path *root,
2490 char **buf, int *buflen)
2491{
2492 prepend(buf, buflen, "\0", 1);
2493 if (d_unlinked(path->dentry)) {
2494 int error = prepend(buf, buflen, " (deleted)", 10);
2495 if (error)
2496 return error;
2497 }
2498
2499 return prepend_path(path, root, buf, buflen);
2500}
2501
8df9d1a4
MS
2502static int prepend_unreachable(char **buffer, int *buflen)
2503{
2504 return prepend(buffer, buflen, "(unreachable)", 13);
2505}
2506
a03a8a70
JB
2507/**
2508 * d_path - return the path of a dentry
cf28b486 2509 * @path: path to report
a03a8a70
JB
2510 * @buf: buffer to return value in
2511 * @buflen: buffer length
2512 *
2513 * Convert a dentry into an ASCII path name. If the entry has been deleted
2514 * the string " (deleted)" is appended. Note that this is ambiguous.
2515 *
52afeefb
AV
2516 * Returns a pointer into the buffer or an error code if the path was
2517 * too long. Note: Callers should use the returned pointer, not the passed
2518 * in buffer, to use the name! The implementation often starts at an offset
2519 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2520 *
31f3e0b3 2521 * "buflen" should be positive.
a03a8a70 2522 */
20d4fdc1 2523char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2524{
ffd1f4ed 2525 char *res = buf + buflen;
6ac08c39 2526 struct path root;
9d1bc601 2527 struct path tmp;
ffd1f4ed 2528 int error;
1da177e4 2529
c23fbb6b
ED
2530 /*
2531 * We have various synthetic filesystems that never get mounted. On
2532 * these filesystems dentries are never used for lookup purposes, and
2533 * thus don't need to be hashed. They also don't need a name until a
2534 * user wants to identify the object in /proc/pid/fd/. The little hack
2535 * below allows us to generate a name for these objects on demand:
2536 */
cf28b486
JB
2537 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2538 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2539
f7ad3c6b 2540 get_fs_root(current->fs, &root);
949854d0 2541 write_seqlock(&rename_lock);
9d1bc601 2542 tmp = root;
ffd1f4ed
MS
2543 error = path_with_deleted(path, &tmp, &res, &buflen);
2544 if (error)
2545 res = ERR_PTR(error);
949854d0 2546 write_sequnlock(&rename_lock);
6ac08c39 2547 path_put(&root);
1da177e4
LT
2548 return res;
2549}
ec4f8605 2550EXPORT_SYMBOL(d_path);
1da177e4 2551
8df9d1a4
MS
2552/**
2553 * d_path_with_unreachable - return the path of a dentry
2554 * @path: path to report
2555 * @buf: buffer to return value in
2556 * @buflen: buffer length
2557 *
2558 * The difference from d_path() is that this prepends "(unreachable)"
2559 * to paths which are unreachable from the current process' root.
2560 */
2561char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2562{
2563 char *res = buf + buflen;
2564 struct path root;
2565 struct path tmp;
2566 int error;
2567
2568 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2569 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2570
2571 get_fs_root(current->fs, &root);
949854d0 2572 write_seqlock(&rename_lock);
8df9d1a4
MS
2573 tmp = root;
2574 error = path_with_deleted(path, &tmp, &res, &buflen);
2575 if (!error && !path_equal(&tmp, &root))
2576 error = prepend_unreachable(&res, &buflen);
949854d0 2577 write_sequnlock(&rename_lock);
8df9d1a4
MS
2578 path_put(&root);
2579 if (error)
2580 res = ERR_PTR(error);
2581
2582 return res;
2583}
2584
c23fbb6b
ED
2585/*
2586 * Helper function for dentry_operations.d_dname() members
2587 */
2588char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2589 const char *fmt, ...)
2590{
2591 va_list args;
2592 char temp[64];
2593 int sz;
2594
2595 va_start(args, fmt);
2596 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2597 va_end(args);
2598
2599 if (sz > sizeof(temp) || sz > buflen)
2600 return ERR_PTR(-ENAMETOOLONG);
2601
2602 buffer += buflen - sz;
2603 return memcpy(buffer, temp, sz);
2604}
2605
6092d048
RP
2606/*
2607 * Write full pathname from the root of the filesystem into the buffer.
2608 */
ec2447c2 2609static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2610{
2611 char *end = buf + buflen;
2612 char *retval;
2613
6092d048 2614 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2615 if (buflen < 1)
2616 goto Elong;
2617 /* Get '/' right */
2618 retval = end-1;
2619 *retval = '/';
2620
cdd16d02
MS
2621 while (!IS_ROOT(dentry)) {
2622 struct dentry *parent = dentry->d_parent;
9abca360 2623 int error;
6092d048 2624
6092d048 2625 prefetch(parent);
9abca360
NP
2626 spin_lock(&dentry->d_lock);
2627 error = prepend_name(&end, &buflen, &dentry->d_name);
2628 spin_unlock(&dentry->d_lock);
2629 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2630 goto Elong;
2631
2632 retval = end;
2633 dentry = parent;
2634 }
c103135c
AV
2635 return retval;
2636Elong:
2637 return ERR_PTR(-ENAMETOOLONG);
2638}
ec2447c2
NP
2639
2640char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2641{
2642 char *retval;
2643
949854d0 2644 write_seqlock(&rename_lock);
ec2447c2 2645 retval = __dentry_path(dentry, buf, buflen);
949854d0 2646 write_sequnlock(&rename_lock);
ec2447c2
NP
2647
2648 return retval;
2649}
2650EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2651
2652char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2653{
2654 char *p = NULL;
2655 char *retval;
2656
949854d0 2657 write_seqlock(&rename_lock);
c103135c
AV
2658 if (d_unlinked(dentry)) {
2659 p = buf + buflen;
2660 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2661 goto Elong;
2662 buflen++;
2663 }
2664 retval = __dentry_path(dentry, buf, buflen);
949854d0 2665 write_sequnlock(&rename_lock);
c103135c
AV
2666 if (!IS_ERR(retval) && p)
2667 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2668 return retval;
2669Elong:
6092d048
RP
2670 return ERR_PTR(-ENAMETOOLONG);
2671}
2672
1da177e4
LT
2673/*
2674 * NOTE! The user-level library version returns a
2675 * character pointer. The kernel system call just
2676 * returns the length of the buffer filled (which
2677 * includes the ending '\0' character), or a negative
2678 * error value. So libc would do something like
2679 *
2680 * char *getcwd(char * buf, size_t size)
2681 * {
2682 * int retval;
2683 *
2684 * retval = sys_getcwd(buf, size);
2685 * if (retval >= 0)
2686 * return buf;
2687 * errno = -retval;
2688 * return NULL;
2689 * }
2690 */
3cdad428 2691SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2692{
552ce544 2693 int error;
6ac08c39 2694 struct path pwd, root;
552ce544 2695 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2696
2697 if (!page)
2698 return -ENOMEM;
2699
f7ad3c6b 2700 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2701
552ce544 2702 error = -ENOENT;
949854d0 2703 write_seqlock(&rename_lock);
f3da392e 2704 if (!d_unlinked(pwd.dentry)) {
552ce544 2705 unsigned long len;
9d1bc601 2706 struct path tmp = root;
8df9d1a4
MS
2707 char *cwd = page + PAGE_SIZE;
2708 int buflen = PAGE_SIZE;
1da177e4 2709
8df9d1a4
MS
2710 prepend(&cwd, &buflen, "\0", 1);
2711 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2712 write_sequnlock(&rename_lock);
552ce544 2713
8df9d1a4 2714 if (error)
552ce544
LT
2715 goto out;
2716
8df9d1a4
MS
2717 /* Unreachable from current root */
2718 if (!path_equal(&tmp, &root)) {
2719 error = prepend_unreachable(&cwd, &buflen);
2720 if (error)
2721 goto out;
2722 }
2723
552ce544
LT
2724 error = -ERANGE;
2725 len = PAGE_SIZE + page - cwd;
2726 if (len <= size) {
2727 error = len;
2728 if (copy_to_user(buf, cwd, len))
2729 error = -EFAULT;
2730 }
949854d0
NP
2731 } else {
2732 write_sequnlock(&rename_lock);
949854d0 2733 }
1da177e4
LT
2734
2735out:
6ac08c39
JB
2736 path_put(&pwd);
2737 path_put(&root);
1da177e4
LT
2738 free_page((unsigned long) page);
2739 return error;
2740}
2741
2742/*
2743 * Test whether new_dentry is a subdirectory of old_dentry.
2744 *
2745 * Trivially implemented using the dcache structure
2746 */
2747
2748/**
2749 * is_subdir - is new dentry a subdirectory of old_dentry
2750 * @new_dentry: new dentry
2751 * @old_dentry: old dentry
2752 *
2753 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2754 * Returns 0 otherwise.
2755 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2756 */
2757
e2761a11 2758int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2759{
2760 int result;
949854d0 2761 unsigned seq;
1da177e4 2762
e2761a11
OH
2763 if (new_dentry == old_dentry)
2764 return 1;
2765
e2761a11 2766 do {
1da177e4 2767 /* for restarting inner loop in case of seq retry */
1da177e4 2768 seq = read_seqbegin(&rename_lock);
949854d0
NP
2769 /*
2770 * Need rcu_readlock to protect against the d_parent trashing
2771 * due to d_move
2772 */
2773 rcu_read_lock();
e2761a11 2774 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2775 result = 1;
e2761a11
OH
2776 else
2777 result = 0;
949854d0 2778 rcu_read_unlock();
1da177e4 2779 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2780
2781 return result;
2782}
2783
2096f759
AV
2784int path_is_under(struct path *path1, struct path *path2)
2785{
2786 struct vfsmount *mnt = path1->mnt;
2787 struct dentry *dentry = path1->dentry;
2788 int res;
99b7db7b
NP
2789
2790 br_read_lock(vfsmount_lock);
2096f759
AV
2791 if (mnt != path2->mnt) {
2792 for (;;) {
2793 if (mnt->mnt_parent == mnt) {
99b7db7b 2794 br_read_unlock(vfsmount_lock);
2096f759
AV
2795 return 0;
2796 }
2797 if (mnt->mnt_parent == path2->mnt)
2798 break;
2799 mnt = mnt->mnt_parent;
2800 }
2801 dentry = mnt->mnt_mountpoint;
2802 }
2803 res = is_subdir(dentry, path2->dentry);
99b7db7b 2804 br_read_unlock(vfsmount_lock);
2096f759
AV
2805 return res;
2806}
2807EXPORT_SYMBOL(path_is_under);
2808
1da177e4
LT
2809void d_genocide(struct dentry *root)
2810{
949854d0 2811 struct dentry *this_parent;
1da177e4 2812 struct list_head *next;
949854d0 2813 unsigned seq;
58db63d0 2814 int locked = 0;
1da177e4 2815
949854d0 2816 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2817again:
2818 this_parent = root;
2fd6b7f5 2819 spin_lock(&this_parent->d_lock);
1da177e4
LT
2820repeat:
2821 next = this_parent->d_subdirs.next;
2822resume:
2823 while (next != &this_parent->d_subdirs) {
2824 struct list_head *tmp = next;
5160ee6f 2825 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2826 next = tmp->next;
949854d0 2827
da502956
NP
2828 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2829 if (d_unhashed(dentry) || !dentry->d_inode) {
2830 spin_unlock(&dentry->d_lock);
1da177e4 2831 continue;
da502956 2832 }
1da177e4 2833 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2834 spin_unlock(&this_parent->d_lock);
2835 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2836 this_parent = dentry;
2fd6b7f5 2837 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2838 goto repeat;
2839 }
949854d0
NP
2840 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2841 dentry->d_flags |= DCACHE_GENOCIDE;
2842 dentry->d_count--;
2843 }
b7ab39f6 2844 spin_unlock(&dentry->d_lock);
1da177e4
LT
2845 }
2846 if (this_parent != root) {
949854d0
NP
2847 struct dentry *tmp;
2848 struct dentry *child;
2849
2850 tmp = this_parent->d_parent;
2851 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2852 this_parent->d_flags |= DCACHE_GENOCIDE;
2853 this_parent->d_count--;
2854 }
2855 rcu_read_lock();
b7ab39f6 2856 spin_unlock(&this_parent->d_lock);
949854d0
NP
2857 child = this_parent;
2858 this_parent = tmp;
2fd6b7f5 2859 spin_lock(&this_parent->d_lock);
949854d0
NP
2860 /* might go back up the wrong parent if we have had a rename
2861 * or deletion */
2862 if (this_parent != child->d_parent ||
58db63d0 2863 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 2864 spin_unlock(&this_parent->d_lock);
949854d0
NP
2865 rcu_read_unlock();
2866 goto rename_retry;
2867 }
2868 rcu_read_unlock();
2869 next = child->d_u.d_child.next;
1da177e4
LT
2870 goto resume;
2871 }
2fd6b7f5 2872 spin_unlock(&this_parent->d_lock);
58db63d0 2873 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2874 goto rename_retry;
58db63d0
NP
2875 if (locked)
2876 write_sequnlock(&rename_lock);
2877 return;
2878
2879rename_retry:
2880 locked = 1;
2881 write_seqlock(&rename_lock);
2882 goto again;
1da177e4
LT
2883}
2884
2885/**
2886 * find_inode_number - check for dentry with name
2887 * @dir: directory to check
2888 * @name: Name to find.
2889 *
2890 * Check whether a dentry already exists for the given name,
2891 * and return the inode number if it has an inode. Otherwise
2892 * 0 is returned.
2893 *
2894 * This routine is used to post-process directory listings for
2895 * filesystems using synthetic inode numbers, and is necessary
2896 * to keep getcwd() working.
2897 */
2898
2899ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2900{
2901 struct dentry * dentry;
2902 ino_t ino = 0;
2903
3e7e241f
EB
2904 dentry = d_hash_and_lookup(dir, name);
2905 if (dentry) {
1da177e4
LT
2906 if (dentry->d_inode)
2907 ino = dentry->d_inode->i_ino;
2908 dput(dentry);
2909 }
1da177e4
LT
2910 return ino;
2911}
ec4f8605 2912EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2913
2914static __initdata unsigned long dhash_entries;
2915static int __init set_dhash_entries(char *str)
2916{
2917 if (!str)
2918 return 0;
2919 dhash_entries = simple_strtoul(str, &str, 0);
2920 return 1;
2921}
2922__setup("dhash_entries=", set_dhash_entries);
2923
2924static void __init dcache_init_early(void)
2925{
2926 int loop;
2927
2928 /* If hashes are distributed across NUMA nodes, defer
2929 * hash allocation until vmalloc space is available.
2930 */
2931 if (hashdist)
2932 return;
2933
2934 dentry_hashtable =
2935 alloc_large_system_hash("Dentry cache",
2936 sizeof(struct hlist_head),
2937 dhash_entries,
2938 13,
2939 HASH_EARLY,
2940 &d_hash_shift,
2941 &d_hash_mask,
2942 0);
2943
2944 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2945 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2946}
2947
74bf17cf 2948static void __init dcache_init(void)
1da177e4
LT
2949{
2950 int loop;
2951
2952 /*
2953 * A constructor could be added for stable state like the lists,
2954 * but it is probably not worth it because of the cache nature
2955 * of the dcache.
2956 */
0a31bd5f
CL
2957 dentry_cache = KMEM_CACHE(dentry,
2958 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2959
8e1f936b 2960 register_shrinker(&dcache_shrinker);
1da177e4
LT
2961
2962 /* Hash may have been set up in dcache_init_early */
2963 if (!hashdist)
2964 return;
2965
2966 dentry_hashtable =
2967 alloc_large_system_hash("Dentry cache",
2968 sizeof(struct hlist_head),
2969 dhash_entries,
2970 13,
2971 0,
2972 &d_hash_shift,
2973 &d_hash_mask,
2974 0);
2975
2976 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2977 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2978}
2979
2980/* SLAB cache for __getname() consumers */
e18b890b 2981struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2982EXPORT_SYMBOL(names_cachep);
1da177e4 2983
1da177e4
LT
2984EXPORT_SYMBOL(d_genocide);
2985
1da177e4
LT
2986void __init vfs_caches_init_early(void)
2987{
2988 dcache_init_early();
2989 inode_init_early();
2990}
2991
2992void __init vfs_caches_init(unsigned long mempages)
2993{
2994 unsigned long reserve;
2995
2996 /* Base hash sizes on available memory, with a reserve equal to
2997 150% of current kernel size */
2998
2999 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3000 mempages -= reserve;
3001
3002 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3003 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3004
74bf17cf
DC
3005 dcache_init();
3006 inode_init();
1da177e4 3007 files_init(mempages);
74bf17cf 3008 mnt_init();
1da177e4
LT
3009 bdev_cache_init();
3010 chrdev_init();
3011}