]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/dcache.c
parallel lookups machinery, part 2
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
1da177e4
LT
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
1da177e4 101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d 110 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 111 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
112}
113
1da177e4
LT
114/* Statistics gathering. */
115struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117};
118
3942c07c 119static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 120static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
123
124/*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
3942c07c 136static long get_nr_dentry(void)
3e880fb5
NP
137{
138 int i;
3942c07c 139 long sum = 0;
3e880fb5
NP
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143}
144
62d36c77
DC
145static long get_nr_dentry_unused(void)
146{
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152}
153
1f7e0616 154int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
155 size_t *lenp, loff_t *ppos)
156{
3e880fb5 157 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 158 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
160}
161#endif
162
5483f18e
LT
163/*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
e419b4cc
LT
167#ifdef CONFIG_DCACHE_WORD_ACCESS
168
169#include <asm/word-at-a-time.h>
170/*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 180{
bfcfaa77 181 unsigned long a,b,mask;
bfcfaa77
LT
182
183 for (;;) {
12f8ad4b 184 a = *(unsigned long *)cs;
e419b4cc 185 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
a5c21dce 196 mask = bytemask_from_count(tcount);
bfcfaa77 197 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
198}
199
bfcfaa77 200#else
e419b4cc 201
94753db5 202static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 203{
5483f18e
LT
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212}
213
e419b4cc
LT
214#endif
215
94753db5
LT
216static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217{
6326c71f 218 const unsigned char *cs;
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
6326c71f
LT
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
260static void __d_free_external(struct rcu_head *head)
261{
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 263 kfree(external_name(dentry));
1da177e4
LT
264 kmem_cache_free(dentry_cache, dentry);
265}
266
810bb172
AV
267static inline int dname_external(const struct dentry *dentry)
268{
269 return dentry->d_name.name != dentry->d_iname;
270}
271
4bf46a27
DH
272static inline void __d_set_inode_and_type(struct dentry *dentry,
273 struct inode *inode,
274 unsigned type_flags)
275{
276 unsigned flags;
277
278 dentry->d_inode = inode;
4bf46a27
DH
279 flags = READ_ONCE(dentry->d_flags);
280 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
281 flags |= type_flags;
282 WRITE_ONCE(dentry->d_flags, flags);
283}
284
4bf46a27
DH
285static inline void __d_clear_type_and_inode(struct dentry *dentry)
286{
287 unsigned flags = READ_ONCE(dentry->d_flags);
288
289 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
291 dentry->d_inode = NULL;
292}
293
b4f0354e
AV
294static void dentry_free(struct dentry *dentry)
295{
946e51f2 296 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
297 if (unlikely(dname_external(dentry))) {
298 struct external_name *p = external_name(dentry);
299 if (likely(atomic_dec_and_test(&p->u.count))) {
300 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
301 return;
302 }
303 }
b4f0354e
AV
304 /* if dentry was never visible to RCU, immediate free is OK */
305 if (!(dentry->d_flags & DCACHE_RCUACCESS))
306 __d_free(&dentry->d_u.d_rcu);
307 else
308 call_rcu(&dentry->d_u.d_rcu, __d_free);
309}
310
31e6b01f 311/**
a7c6f571 312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
ff5fdb61 313 * @dentry: the target dentry
31e6b01f
NP
314 * After this call, in-progress rcu-walk path lookup will fail. This
315 * should be called after unhashing, and after changing d_inode (if
316 * the dentry has not already been unhashed).
317 */
a7c6f571 318static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
31e6b01f 319{
a7c6f571
PZ
320 lockdep_assert_held(&dentry->d_lock);
321 /* Go through am invalidation barrier */
322 write_seqcount_invalidate(&dentry->d_seq);
31e6b01f
NP
323}
324
1da177e4
LT
325/*
326 * Release the dentry's inode, using the filesystem
31e6b01f
NP
327 * d_iput() operation if defined. Dentry has no refcount
328 * and is unhashed.
1da177e4 329 */
858119e1 330static void dentry_iput(struct dentry * dentry)
31f3e0b3 331 __releases(dentry->d_lock)
873feea0 332 __releases(dentry->d_inode->i_lock)
1da177e4
LT
333{
334 struct inode *inode = dentry->d_inode;
335 if (inode) {
4bf46a27 336 __d_clear_type_and_inode(dentry);
946e51f2 337 hlist_del_init(&dentry->d_u.d_alias);
1da177e4 338 spin_unlock(&dentry->d_lock);
873feea0 339 spin_unlock(&inode->i_lock);
f805fbda
LT
340 if (!inode->i_nlink)
341 fsnotify_inoderemove(inode);
1da177e4
LT
342 if (dentry->d_op && dentry->d_op->d_iput)
343 dentry->d_op->d_iput(dentry, inode);
344 else
345 iput(inode);
346 } else {
347 spin_unlock(&dentry->d_lock);
1da177e4
LT
348 }
349}
350
31e6b01f
NP
351/*
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined. dentry remains in-use.
354 */
355static void dentry_unlink_inode(struct dentry * dentry)
356 __releases(dentry->d_lock)
873feea0 357 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
358{
359 struct inode *inode = dentry->d_inode;
a528aca7
AV
360
361 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 362 __d_clear_type_and_inode(dentry);
946e51f2 363 hlist_del_init(&dentry->d_u.d_alias);
a528aca7 364 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 365 spin_unlock(&dentry->d_lock);
873feea0 366 spin_unlock(&inode->i_lock);
31e6b01f
NP
367 if (!inode->i_nlink)
368 fsnotify_inoderemove(inode);
369 if (dentry->d_op && dentry->d_op->d_iput)
370 dentry->d_op->d_iput(dentry, inode);
371 else
372 iput(inode);
373}
374
89dc77bc
LT
375/*
376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377 * is in use - which includes both the "real" per-superblock
378 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 *
380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381 * on the shrink list (ie not on the superblock LRU list).
382 *
383 * The per-cpu "nr_dentry_unused" counters are updated with
384 * the DCACHE_LRU_LIST bit.
385 *
386 * These helper functions make sure we always follow the
387 * rules. d_lock must be held by the caller.
388 */
389#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
390static void d_lru_add(struct dentry *dentry)
391{
392 D_FLAG_VERIFY(dentry, 0);
393 dentry->d_flags |= DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
395 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396}
397
398static void d_lru_del(struct dentry *dentry)
399{
400 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401 dentry->d_flags &= ~DCACHE_LRU_LIST;
402 this_cpu_dec(nr_dentry_unused);
403 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404}
405
406static void d_shrink_del(struct dentry *dentry)
407{
408 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 list_del_init(&dentry->d_lru);
410 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 this_cpu_dec(nr_dentry_unused);
412}
413
414static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415{
416 D_FLAG_VERIFY(dentry, 0);
417 list_add(&dentry->d_lru, list);
418 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419 this_cpu_inc(nr_dentry_unused);
420}
421
422/*
423 * These can only be called under the global LRU lock, ie during the
424 * callback for freeing the LRU list. "isolate" removes it from the
425 * LRU lists entirely, while shrink_move moves it to the indicated
426 * private list.
427 */
3f97b163 428static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
429{
430 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431 dentry->d_flags &= ~DCACHE_LRU_LIST;
432 this_cpu_dec(nr_dentry_unused);
3f97b163 433 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
434}
435
3f97b163
VD
436static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437 struct list_head *list)
89dc77bc
LT
438{
439 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 441 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
442}
443
da3bbdd4 444/*
f6041567 445 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
446 */
447static void dentry_lru_add(struct dentry *dentry)
448{
89dc77bc
LT
449 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 d_lru_add(dentry);
da3bbdd4
KM
451}
452
789680d1
NP
453/**
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
456 *
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
462 *
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
465 *
466 * __d_drop requires dentry->d_lock.
467 */
468void __d_drop(struct dentry *dentry)
469{
dea3667b 470 if (!d_unhashed(dentry)) {
b61625d2 471 struct hlist_bl_head *b;
7632e465
BF
472 /*
473 * Hashed dentries are normally on the dentry hashtable,
474 * with the exception of those newly allocated by
475 * d_obtain_alias, which are always IS_ROOT:
476 */
477 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
478 b = &dentry->d_sb->s_anon;
479 else
480 b = d_hash(dentry->d_parent, dentry->d_name.hash);
481
482 hlist_bl_lock(b);
483 __hlist_bl_del(&dentry->d_hash);
484 dentry->d_hash.pprev = NULL;
485 hlist_bl_unlock(b);
a7c6f571 486 dentry_rcuwalk_invalidate(dentry);
789680d1
NP
487 }
488}
489EXPORT_SYMBOL(__d_drop);
490
491void d_drop(struct dentry *dentry)
492{
789680d1
NP
493 spin_lock(&dentry->d_lock);
494 __d_drop(dentry);
495 spin_unlock(&dentry->d_lock);
789680d1
NP
496}
497EXPORT_SYMBOL(d_drop);
498
e55fd011 499static void __dentry_kill(struct dentry *dentry)
77812a1e 500{
41edf278
AV
501 struct dentry *parent = NULL;
502 bool can_free = true;
41edf278 503 if (!IS_ROOT(dentry))
77812a1e 504 parent = dentry->d_parent;
31e6b01f 505
0d98439e
LT
506 /*
507 * The dentry is now unrecoverably dead to the world.
508 */
509 lockref_mark_dead(&dentry->d_lockref);
510
f0023bc6 511 /*
f0023bc6
SW
512 * inform the fs via d_prune that this dentry is about to be
513 * unhashed and destroyed.
514 */
29266201 515 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
516 dentry->d_op->d_prune(dentry);
517
01b60351
AV
518 if (dentry->d_flags & DCACHE_LRU_LIST) {
519 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
520 d_lru_del(dentry);
01b60351 521 }
77812a1e
NP
522 /* if it was on the hash then remove it */
523 __d_drop(dentry);
ca5358ef 524 __list_del_entry(&dentry->d_child);
03b3b889
AV
525 /*
526 * Inform d_walk() that we are no longer attached to the
527 * dentry tree
528 */
529 dentry->d_flags |= DCACHE_DENTRY_KILLED;
530 if (parent)
531 spin_unlock(&parent->d_lock);
532 dentry_iput(dentry);
533 /*
534 * dentry_iput drops the locks, at which point nobody (except
535 * transient RCU lookups) can reach this dentry.
536 */
360f5479 537 BUG_ON(dentry->d_lockref.count > 0);
03b3b889
AV
538 this_cpu_dec(nr_dentry);
539 if (dentry->d_op && dentry->d_op->d_release)
540 dentry->d_op->d_release(dentry);
541
41edf278
AV
542 spin_lock(&dentry->d_lock);
543 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
544 dentry->d_flags |= DCACHE_MAY_FREE;
545 can_free = false;
546 }
547 spin_unlock(&dentry->d_lock);
41edf278
AV
548 if (likely(can_free))
549 dentry_free(dentry);
e55fd011
AV
550}
551
552/*
553 * Finish off a dentry we've decided to kill.
554 * dentry->d_lock must be held, returns with it unlocked.
555 * If ref is non-zero, then decrement the refcount too.
556 * Returns dentry requiring refcount drop, or NULL if we're done.
557 */
8cbf74da 558static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
559 __releases(dentry->d_lock)
560{
561 struct inode *inode = dentry->d_inode;
562 struct dentry *parent = NULL;
563
564 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
565 goto failed;
566
567 if (!IS_ROOT(dentry)) {
568 parent = dentry->d_parent;
569 if (unlikely(!spin_trylock(&parent->d_lock))) {
570 if (inode)
571 spin_unlock(&inode->i_lock);
572 goto failed;
573 }
574 }
575
576 __dentry_kill(dentry);
03b3b889 577 return parent;
e55fd011
AV
578
579failed:
8cbf74da
AV
580 spin_unlock(&dentry->d_lock);
581 cpu_relax();
e55fd011 582 return dentry; /* try again with same dentry */
77812a1e
NP
583}
584
046b961b
AV
585static inline struct dentry *lock_parent(struct dentry *dentry)
586{
587 struct dentry *parent = dentry->d_parent;
588 if (IS_ROOT(dentry))
589 return NULL;
360f5479 590 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 591 return NULL;
046b961b
AV
592 if (likely(spin_trylock(&parent->d_lock)))
593 return parent;
046b961b 594 rcu_read_lock();
c2338f2d 595 spin_unlock(&dentry->d_lock);
046b961b
AV
596again:
597 parent = ACCESS_ONCE(dentry->d_parent);
598 spin_lock(&parent->d_lock);
599 /*
600 * We can't blindly lock dentry until we are sure
601 * that we won't violate the locking order.
602 * Any changes of dentry->d_parent must have
603 * been done with parent->d_lock held, so
604 * spin_lock() above is enough of a barrier
605 * for checking if it's still our child.
606 */
607 if (unlikely(parent != dentry->d_parent)) {
608 spin_unlock(&parent->d_lock);
609 goto again;
610 }
611 rcu_read_unlock();
612 if (parent != dentry)
9f12600f 613 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
614 else
615 parent = NULL;
616 return parent;
617}
618
360f5479
LT
619/*
620 * Try to do a lockless dput(), and return whether that was successful.
621 *
622 * If unsuccessful, we return false, having already taken the dentry lock.
623 *
624 * The caller needs to hold the RCU read lock, so that the dentry is
625 * guaranteed to stay around even if the refcount goes down to zero!
626 */
627static inline bool fast_dput(struct dentry *dentry)
628{
629 int ret;
630 unsigned int d_flags;
631
632 /*
633 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 634 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
635 */
636 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
637 return lockref_put_or_lock(&dentry->d_lockref);
638
639 /*
640 * .. otherwise, we can try to just decrement the
641 * lockref optimistically.
642 */
643 ret = lockref_put_return(&dentry->d_lockref);
644
645 /*
646 * If the lockref_put_return() failed due to the lock being held
647 * by somebody else, the fast path has failed. We will need to
648 * get the lock, and then check the count again.
649 */
650 if (unlikely(ret < 0)) {
651 spin_lock(&dentry->d_lock);
652 if (dentry->d_lockref.count > 1) {
653 dentry->d_lockref.count--;
654 spin_unlock(&dentry->d_lock);
655 return 1;
656 }
657 return 0;
658 }
659
660 /*
661 * If we weren't the last ref, we're done.
662 */
663 if (ret)
664 return 1;
665
666 /*
667 * Careful, careful. The reference count went down
668 * to zero, but we don't hold the dentry lock, so
669 * somebody else could get it again, and do another
670 * dput(), and we need to not race with that.
671 *
672 * However, there is a very special and common case
673 * where we don't care, because there is nothing to
674 * do: the dentry is still hashed, it does not have
675 * a 'delete' op, and it's referenced and already on
676 * the LRU list.
677 *
678 * NOTE! Since we aren't locked, these values are
679 * not "stable". However, it is sufficient that at
680 * some point after we dropped the reference the
681 * dentry was hashed and the flags had the proper
682 * value. Other dentry users may have re-gotten
683 * a reference to the dentry and change that, but
684 * our work is done - we can leave the dentry
685 * around with a zero refcount.
686 */
687 smp_rmb();
688 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 689 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
690
691 /* Nothing to do? Dropping the reference was all we needed? */
692 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
693 return 1;
694
695 /*
696 * Not the fast normal case? Get the lock. We've already decremented
697 * the refcount, but we'll need to re-check the situation after
698 * getting the lock.
699 */
700 spin_lock(&dentry->d_lock);
701
702 /*
703 * Did somebody else grab a reference to it in the meantime, and
704 * we're no longer the last user after all? Alternatively, somebody
705 * else could have killed it and marked it dead. Either way, we
706 * don't need to do anything else.
707 */
708 if (dentry->d_lockref.count) {
709 spin_unlock(&dentry->d_lock);
710 return 1;
711 }
712
713 /*
714 * Re-get the reference we optimistically dropped. We hold the
715 * lock, and we just tested that it was zero, so we can just
716 * set it to 1.
717 */
718 dentry->d_lockref.count = 1;
719 return 0;
720}
721
722
1da177e4
LT
723/*
724 * This is dput
725 *
726 * This is complicated by the fact that we do not want to put
727 * dentries that are no longer on any hash chain on the unused
728 * list: we'd much rather just get rid of them immediately.
729 *
730 * However, that implies that we have to traverse the dentry
731 * tree upwards to the parents which might _also_ now be
732 * scheduled for deletion (it may have been only waiting for
733 * its last child to go away).
734 *
735 * This tail recursion is done by hand as we don't want to depend
736 * on the compiler to always get this right (gcc generally doesn't).
737 * Real recursion would eat up our stack space.
738 */
739
740/*
741 * dput - release a dentry
742 * @dentry: dentry to release
743 *
744 * Release a dentry. This will drop the usage count and if appropriate
745 * call the dentry unlink method as well as removing it from the queues and
746 * releasing its resources. If the parent dentries were scheduled for release
747 * they too may now get deleted.
1da177e4 748 */
1da177e4
LT
749void dput(struct dentry *dentry)
750{
8aab6a27 751 if (unlikely(!dentry))
1da177e4
LT
752 return;
753
754repeat:
360f5479
LT
755 rcu_read_lock();
756 if (likely(fast_dput(dentry))) {
757 rcu_read_unlock();
1da177e4 758 return;
360f5479
LT
759 }
760
761 /* Slow case: now with the dentry lock held */
762 rcu_read_unlock();
1da177e4 763
85c7f810
AV
764 WARN_ON(d_in_lookup(dentry));
765
8aab6a27
LT
766 /* Unreachable? Get rid of it */
767 if (unlikely(d_unhashed(dentry)))
768 goto kill_it;
769
75a6f82a
AV
770 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
771 goto kill_it;
772
8aab6a27 773 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 774 if (dentry->d_op->d_delete(dentry))
61f3dee4 775 goto kill_it;
1da177e4 776 }
265ac902 777
358eec18
LT
778 if (!(dentry->d_flags & DCACHE_REFERENCED))
779 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 780 dentry_lru_add(dentry);
265ac902 781
98474236 782 dentry->d_lockref.count--;
61f3dee4 783 spin_unlock(&dentry->d_lock);
1da177e4
LT
784 return;
785
d52b9086 786kill_it:
8cbf74da 787 dentry = dentry_kill(dentry);
d52b9086
MS
788 if (dentry)
789 goto repeat;
1da177e4 790}
ec4f8605 791EXPORT_SYMBOL(dput);
1da177e4 792
1da177e4 793
b5c84bf6 794/* This must be called with d_lock held */
dc0474be 795static inline void __dget_dlock(struct dentry *dentry)
23044507 796{
98474236 797 dentry->d_lockref.count++;
23044507
NP
798}
799
dc0474be 800static inline void __dget(struct dentry *dentry)
1da177e4 801{
98474236 802 lockref_get(&dentry->d_lockref);
1da177e4
LT
803}
804
b7ab39f6
NP
805struct dentry *dget_parent(struct dentry *dentry)
806{
df3d0bbc 807 int gotref;
b7ab39f6
NP
808 struct dentry *ret;
809
df3d0bbc
WL
810 /*
811 * Do optimistic parent lookup without any
812 * locking.
813 */
814 rcu_read_lock();
815 ret = ACCESS_ONCE(dentry->d_parent);
816 gotref = lockref_get_not_zero(&ret->d_lockref);
817 rcu_read_unlock();
818 if (likely(gotref)) {
819 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
820 return ret;
821 dput(ret);
822 }
823
b7ab39f6 824repeat:
a734eb45
NP
825 /*
826 * Don't need rcu_dereference because we re-check it was correct under
827 * the lock.
828 */
829 rcu_read_lock();
b7ab39f6 830 ret = dentry->d_parent;
a734eb45
NP
831 spin_lock(&ret->d_lock);
832 if (unlikely(ret != dentry->d_parent)) {
833 spin_unlock(&ret->d_lock);
834 rcu_read_unlock();
b7ab39f6
NP
835 goto repeat;
836 }
a734eb45 837 rcu_read_unlock();
98474236
WL
838 BUG_ON(!ret->d_lockref.count);
839 ret->d_lockref.count++;
b7ab39f6 840 spin_unlock(&ret->d_lock);
b7ab39f6
NP
841 return ret;
842}
843EXPORT_SYMBOL(dget_parent);
844
1da177e4
LT
845/**
846 * d_find_alias - grab a hashed alias of inode
847 * @inode: inode in question
1da177e4
LT
848 *
849 * If inode has a hashed alias, or is a directory and has any alias,
850 * acquire the reference to alias and return it. Otherwise return NULL.
851 * Notice that if inode is a directory there can be only one alias and
852 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
853 * of a filesystem, or if the directory was renamed and d_revalidate
854 * was the first vfs operation to notice.
1da177e4 855 *
21c0d8fd 856 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 857 * any other hashed alias over that one.
1da177e4 858 */
52ed46f0 859static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 860{
da502956 861 struct dentry *alias, *discon_alias;
1da177e4 862
da502956
NP
863again:
864 discon_alias = NULL;
946e51f2 865 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 866 spin_lock(&alias->d_lock);
1da177e4 867 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 868 if (IS_ROOT(alias) &&
da502956 869 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 870 discon_alias = alias;
52ed46f0 871 } else {
dc0474be 872 __dget_dlock(alias);
da502956
NP
873 spin_unlock(&alias->d_lock);
874 return alias;
875 }
876 }
877 spin_unlock(&alias->d_lock);
878 }
879 if (discon_alias) {
880 alias = discon_alias;
881 spin_lock(&alias->d_lock);
882 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
883 __dget_dlock(alias);
884 spin_unlock(&alias->d_lock);
885 return alias;
1da177e4 886 }
da502956
NP
887 spin_unlock(&alias->d_lock);
888 goto again;
1da177e4 889 }
da502956 890 return NULL;
1da177e4
LT
891}
892
da502956 893struct dentry *d_find_alias(struct inode *inode)
1da177e4 894{
214fda1f
DH
895 struct dentry *de = NULL;
896
b3d9b7a3 897 if (!hlist_empty(&inode->i_dentry)) {
873feea0 898 spin_lock(&inode->i_lock);
52ed46f0 899 de = __d_find_alias(inode);
873feea0 900 spin_unlock(&inode->i_lock);
214fda1f 901 }
1da177e4
LT
902 return de;
903}
ec4f8605 904EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
905
906/*
907 * Try to kill dentries associated with this inode.
908 * WARNING: you must own a reference to inode.
909 */
910void d_prune_aliases(struct inode *inode)
911{
0cdca3f9 912 struct dentry *dentry;
1da177e4 913restart:
873feea0 914 spin_lock(&inode->i_lock);
946e51f2 915 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 916 spin_lock(&dentry->d_lock);
98474236 917 if (!dentry->d_lockref.count) {
29355c39
AV
918 struct dentry *parent = lock_parent(dentry);
919 if (likely(!dentry->d_lockref.count)) {
920 __dentry_kill(dentry);
4a7795d3 921 dput(parent);
29355c39
AV
922 goto restart;
923 }
924 if (parent)
925 spin_unlock(&parent->d_lock);
1da177e4
LT
926 }
927 spin_unlock(&dentry->d_lock);
928 }
873feea0 929 spin_unlock(&inode->i_lock);
1da177e4 930}
ec4f8605 931EXPORT_SYMBOL(d_prune_aliases);
1da177e4 932
3049cfe2 933static void shrink_dentry_list(struct list_head *list)
1da177e4 934{
5c47e6d0 935 struct dentry *dentry, *parent;
da3bbdd4 936
60942f2f 937 while (!list_empty(list)) {
ff2fde99 938 struct inode *inode;
60942f2f 939 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 940 spin_lock(&dentry->d_lock);
046b961b
AV
941 parent = lock_parent(dentry);
942
dd1f6b2e
DC
943 /*
944 * The dispose list is isolated and dentries are not accounted
945 * to the LRU here, so we can simply remove it from the list
946 * here regardless of whether it is referenced or not.
947 */
89dc77bc 948 d_shrink_del(dentry);
dd1f6b2e 949
1da177e4
LT
950 /*
951 * We found an inuse dentry which was not removed from
dd1f6b2e 952 * the LRU because of laziness during lookup. Do not free it.
1da177e4 953 */
360f5479 954 if (dentry->d_lockref.count > 0) {
da3bbdd4 955 spin_unlock(&dentry->d_lock);
046b961b
AV
956 if (parent)
957 spin_unlock(&parent->d_lock);
1da177e4
LT
958 continue;
959 }
77812a1e 960
64fd72e0
AV
961
962 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
963 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
964 spin_unlock(&dentry->d_lock);
046b961b
AV
965 if (parent)
966 spin_unlock(&parent->d_lock);
64fd72e0
AV
967 if (can_free)
968 dentry_free(dentry);
969 continue;
970 }
971
ff2fde99
AV
972 inode = dentry->d_inode;
973 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 974 d_shrink_add(dentry, list);
dd1f6b2e 975 spin_unlock(&dentry->d_lock);
046b961b
AV
976 if (parent)
977 spin_unlock(&parent->d_lock);
5c47e6d0 978 continue;
dd1f6b2e 979 }
ff2fde99 980
ff2fde99 981 __dentry_kill(dentry);
046b961b 982
5c47e6d0
AV
983 /*
984 * We need to prune ancestors too. This is necessary to prevent
985 * quadratic behavior of shrink_dcache_parent(), but is also
986 * expected to be beneficial in reducing dentry cache
987 * fragmentation.
988 */
989 dentry = parent;
b2b80195
AV
990 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
991 parent = lock_parent(dentry);
992 if (dentry->d_lockref.count != 1) {
993 dentry->d_lockref.count--;
994 spin_unlock(&dentry->d_lock);
995 if (parent)
996 spin_unlock(&parent->d_lock);
997 break;
998 }
999 inode = dentry->d_inode; /* can't be NULL */
1000 if (unlikely(!spin_trylock(&inode->i_lock))) {
1001 spin_unlock(&dentry->d_lock);
1002 if (parent)
1003 spin_unlock(&parent->d_lock);
1004 cpu_relax();
1005 continue;
1006 }
1007 __dentry_kill(dentry);
1008 dentry = parent;
1009 }
da3bbdd4 1010 }
3049cfe2
CH
1011}
1012
3f97b163
VD
1013static enum lru_status dentry_lru_isolate(struct list_head *item,
1014 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1015{
1016 struct list_head *freeable = arg;
1017 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1018
1019
1020 /*
1021 * we are inverting the lru lock/dentry->d_lock here,
1022 * so use a trylock. If we fail to get the lock, just skip
1023 * it
1024 */
1025 if (!spin_trylock(&dentry->d_lock))
1026 return LRU_SKIP;
1027
1028 /*
1029 * Referenced dentries are still in use. If they have active
1030 * counts, just remove them from the LRU. Otherwise give them
1031 * another pass through the LRU.
1032 */
1033 if (dentry->d_lockref.count) {
3f97b163 1034 d_lru_isolate(lru, dentry);
f6041567
DC
1035 spin_unlock(&dentry->d_lock);
1036 return LRU_REMOVED;
1037 }
1038
1039 if (dentry->d_flags & DCACHE_REFERENCED) {
1040 dentry->d_flags &= ~DCACHE_REFERENCED;
1041 spin_unlock(&dentry->d_lock);
1042
1043 /*
1044 * The list move itself will be made by the common LRU code. At
1045 * this point, we've dropped the dentry->d_lock but keep the
1046 * lru lock. This is safe to do, since every list movement is
1047 * protected by the lru lock even if both locks are held.
1048 *
1049 * This is guaranteed by the fact that all LRU management
1050 * functions are intermediated by the LRU API calls like
1051 * list_lru_add and list_lru_del. List movement in this file
1052 * only ever occur through this functions or through callbacks
1053 * like this one, that are called from the LRU API.
1054 *
1055 * The only exceptions to this are functions like
1056 * shrink_dentry_list, and code that first checks for the
1057 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1058 * operating only with stack provided lists after they are
1059 * properly isolated from the main list. It is thus, always a
1060 * local access.
1061 */
1062 return LRU_ROTATE;
1063 }
1064
3f97b163 1065 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1066 spin_unlock(&dentry->d_lock);
1067
1068 return LRU_REMOVED;
1069}
1070
3049cfe2 1071/**
b48f03b3
DC
1072 * prune_dcache_sb - shrink the dcache
1073 * @sb: superblock
503c358c 1074 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1075 *
503c358c
VD
1076 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1077 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1078 * function.
3049cfe2 1079 *
b48f03b3
DC
1080 * This function may fail to free any resources if all the dentries are in
1081 * use.
3049cfe2 1082 */
503c358c 1083long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1084{
f6041567
DC
1085 LIST_HEAD(dispose);
1086 long freed;
3049cfe2 1087
503c358c
VD
1088 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1089 dentry_lru_isolate, &dispose);
f6041567 1090 shrink_dentry_list(&dispose);
0a234c6d 1091 return freed;
da3bbdd4 1092}
23044507 1093
4e717f5c 1094static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1095 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1096{
4e717f5c
GC
1097 struct list_head *freeable = arg;
1098 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1099
4e717f5c
GC
1100 /*
1101 * we are inverting the lru lock/dentry->d_lock here,
1102 * so use a trylock. If we fail to get the lock, just skip
1103 * it
1104 */
1105 if (!spin_trylock(&dentry->d_lock))
1106 return LRU_SKIP;
1107
3f97b163 1108 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1109 spin_unlock(&dentry->d_lock);
ec33679d 1110
4e717f5c 1111 return LRU_REMOVED;
da3bbdd4
KM
1112}
1113
4e717f5c 1114
1da177e4
LT
1115/**
1116 * shrink_dcache_sb - shrink dcache for a superblock
1117 * @sb: superblock
1118 *
3049cfe2
CH
1119 * Shrink the dcache for the specified super block. This is used to free
1120 * the dcache before unmounting a file system.
1da177e4 1121 */
3049cfe2 1122void shrink_dcache_sb(struct super_block *sb)
1da177e4 1123{
4e717f5c
GC
1124 long freed;
1125
1126 do {
1127 LIST_HEAD(dispose);
1128
1129 freed = list_lru_walk(&sb->s_dentry_lru,
1130 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1131
4e717f5c
GC
1132 this_cpu_sub(nr_dentry_unused, freed);
1133 shrink_dentry_list(&dispose);
1134 } while (freed > 0);
1da177e4 1135}
ec4f8605 1136EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1137
db14fc3a
MS
1138/**
1139 * enum d_walk_ret - action to talke during tree walk
1140 * @D_WALK_CONTINUE: contrinue walk
1141 * @D_WALK_QUIT: quit walk
1142 * @D_WALK_NORETRY: quit when retry is needed
1143 * @D_WALK_SKIP: skip this dentry and its children
1144 */
1145enum d_walk_ret {
1146 D_WALK_CONTINUE,
1147 D_WALK_QUIT,
1148 D_WALK_NORETRY,
1149 D_WALK_SKIP,
1150};
c826cb7d 1151
1da177e4 1152/**
db14fc3a
MS
1153 * d_walk - walk the dentry tree
1154 * @parent: start of walk
1155 * @data: data passed to @enter() and @finish()
1156 * @enter: callback when first entering the dentry
1157 * @finish: callback when successfully finished the walk
1da177e4 1158 *
db14fc3a 1159 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1160 */
db14fc3a
MS
1161static void d_walk(struct dentry *parent, void *data,
1162 enum d_walk_ret (*enter)(void *, struct dentry *),
1163 void (*finish)(void *))
1da177e4 1164{
949854d0 1165 struct dentry *this_parent;
1da177e4 1166 struct list_head *next;
48f5ec21 1167 unsigned seq = 0;
db14fc3a
MS
1168 enum d_walk_ret ret;
1169 bool retry = true;
949854d0 1170
58db63d0 1171again:
48f5ec21 1172 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1173 this_parent = parent;
2fd6b7f5 1174 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1175
1176 ret = enter(data, this_parent);
1177 switch (ret) {
1178 case D_WALK_CONTINUE:
1179 break;
1180 case D_WALK_QUIT:
1181 case D_WALK_SKIP:
1182 goto out_unlock;
1183 case D_WALK_NORETRY:
1184 retry = false;
1185 break;
1186 }
1da177e4
LT
1187repeat:
1188 next = this_parent->d_subdirs.next;
1189resume:
1190 while (next != &this_parent->d_subdirs) {
1191 struct list_head *tmp = next;
946e51f2 1192 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1193 next = tmp->next;
2fd6b7f5
NP
1194
1195 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1196
1197 ret = enter(data, dentry);
1198 switch (ret) {
1199 case D_WALK_CONTINUE:
1200 break;
1201 case D_WALK_QUIT:
2fd6b7f5 1202 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1203 goto out_unlock;
1204 case D_WALK_NORETRY:
1205 retry = false;
1206 break;
1207 case D_WALK_SKIP:
1208 spin_unlock(&dentry->d_lock);
1209 continue;
2fd6b7f5 1210 }
db14fc3a 1211
1da177e4 1212 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1213 spin_unlock(&this_parent->d_lock);
1214 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1215 this_parent = dentry;
2fd6b7f5 1216 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1217 goto repeat;
1218 }
2fd6b7f5 1219 spin_unlock(&dentry->d_lock);
1da177e4
LT
1220 }
1221 /*
1222 * All done at this level ... ascend and resume the search.
1223 */
ca5358ef
AV
1224 rcu_read_lock();
1225ascend:
1da177e4 1226 if (this_parent != parent) {
c826cb7d 1227 struct dentry *child = this_parent;
31dec132
AV
1228 this_parent = child->d_parent;
1229
31dec132
AV
1230 spin_unlock(&child->d_lock);
1231 spin_lock(&this_parent->d_lock);
1232
ca5358ef
AV
1233 /* might go back up the wrong parent if we have had a rename. */
1234 if (need_seqretry(&rename_lock, seq))
949854d0 1235 goto rename_retry;
2159184e
AV
1236 /* go into the first sibling still alive */
1237 do {
1238 next = child->d_child.next;
ca5358ef
AV
1239 if (next == &this_parent->d_subdirs)
1240 goto ascend;
1241 child = list_entry(next, struct dentry, d_child);
2159184e 1242 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1243 rcu_read_unlock();
1da177e4
LT
1244 goto resume;
1245 }
ca5358ef 1246 if (need_seqretry(&rename_lock, seq))
949854d0 1247 goto rename_retry;
ca5358ef 1248 rcu_read_unlock();
db14fc3a
MS
1249 if (finish)
1250 finish(data);
1251
1252out_unlock:
1253 spin_unlock(&this_parent->d_lock);
48f5ec21 1254 done_seqretry(&rename_lock, seq);
db14fc3a 1255 return;
58db63d0
NP
1256
1257rename_retry:
ca5358ef
AV
1258 spin_unlock(&this_parent->d_lock);
1259 rcu_read_unlock();
1260 BUG_ON(seq & 1);
db14fc3a
MS
1261 if (!retry)
1262 return;
48f5ec21 1263 seq = 1;
58db63d0 1264 goto again;
1da177e4 1265}
db14fc3a
MS
1266
1267/*
1268 * Search for at least 1 mount point in the dentry's subdirs.
1269 * We descend to the next level whenever the d_subdirs
1270 * list is non-empty and continue searching.
1271 */
1272
db14fc3a
MS
1273static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1274{
1275 int *ret = data;
1276 if (d_mountpoint(dentry)) {
1277 *ret = 1;
1278 return D_WALK_QUIT;
1279 }
1280 return D_WALK_CONTINUE;
1281}
1282
69c88dc7
RD
1283/**
1284 * have_submounts - check for mounts over a dentry
1285 * @parent: dentry to check.
1286 *
1287 * Return true if the parent or its subdirectories contain
1288 * a mount point
1289 */
db14fc3a
MS
1290int have_submounts(struct dentry *parent)
1291{
1292 int ret = 0;
1293
1294 d_walk(parent, &ret, check_mount, NULL);
1295
1296 return ret;
1297}
ec4f8605 1298EXPORT_SYMBOL(have_submounts);
1da177e4 1299
eed81007
MS
1300/*
1301 * Called by mount code to set a mountpoint and check if the mountpoint is
1302 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1303 * subtree can become unreachable).
1304 *
1ffe46d1 1305 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1306 * this reason take rename_lock and d_lock on dentry and ancestors.
1307 */
1308int d_set_mounted(struct dentry *dentry)
1309{
1310 struct dentry *p;
1311 int ret = -ENOENT;
1312 write_seqlock(&rename_lock);
1313 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1314 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1315 spin_lock(&p->d_lock);
1316 if (unlikely(d_unhashed(p))) {
1317 spin_unlock(&p->d_lock);
1318 goto out;
1319 }
1320 spin_unlock(&p->d_lock);
1321 }
1322 spin_lock(&dentry->d_lock);
1323 if (!d_unlinked(dentry)) {
1324 dentry->d_flags |= DCACHE_MOUNTED;
1325 ret = 0;
1326 }
1327 spin_unlock(&dentry->d_lock);
1328out:
1329 write_sequnlock(&rename_lock);
1330 return ret;
1331}
1332
1da177e4 1333/*
fd517909 1334 * Search the dentry child list of the specified parent,
1da177e4
LT
1335 * and move any unused dentries to the end of the unused
1336 * list for prune_dcache(). We descend to the next level
1337 * whenever the d_subdirs list is non-empty and continue
1338 * searching.
1339 *
1340 * It returns zero iff there are no unused children,
1341 * otherwise it returns the number of children moved to
1342 * the end of the unused list. This may not be the total
1343 * number of unused children, because select_parent can
1344 * drop the lock and return early due to latency
1345 * constraints.
1346 */
1da177e4 1347
db14fc3a
MS
1348struct select_data {
1349 struct dentry *start;
1350 struct list_head dispose;
1351 int found;
1352};
23044507 1353
db14fc3a
MS
1354static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1355{
1356 struct select_data *data = _data;
1357 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1358
db14fc3a
MS
1359 if (data->start == dentry)
1360 goto out;
2fd6b7f5 1361
fe91522a 1362 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1363 data->found++;
fe91522a
AV
1364 } else {
1365 if (dentry->d_flags & DCACHE_LRU_LIST)
1366 d_lru_del(dentry);
1367 if (!dentry->d_lockref.count) {
1368 d_shrink_add(dentry, &data->dispose);
1369 data->found++;
1370 }
1da177e4 1371 }
db14fc3a
MS
1372 /*
1373 * We can return to the caller if we have found some (this
1374 * ensures forward progress). We'll be coming back to find
1375 * the rest.
1376 */
fe91522a
AV
1377 if (!list_empty(&data->dispose))
1378 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1379out:
db14fc3a 1380 return ret;
1da177e4
LT
1381}
1382
1383/**
1384 * shrink_dcache_parent - prune dcache
1385 * @parent: parent of entries to prune
1386 *
1387 * Prune the dcache to remove unused children of the parent dentry.
1388 */
db14fc3a 1389void shrink_dcache_parent(struct dentry *parent)
1da177e4 1390{
db14fc3a
MS
1391 for (;;) {
1392 struct select_data data;
1da177e4 1393
db14fc3a
MS
1394 INIT_LIST_HEAD(&data.dispose);
1395 data.start = parent;
1396 data.found = 0;
1397
1398 d_walk(parent, &data, select_collect, NULL);
1399 if (!data.found)
1400 break;
1401
1402 shrink_dentry_list(&data.dispose);
421348f1
GT
1403 cond_resched();
1404 }
1da177e4 1405}
ec4f8605 1406EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1407
9c8c10e2 1408static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1409{
9c8c10e2
AV
1410 /* it has busy descendents; complain about those instead */
1411 if (!list_empty(&dentry->d_subdirs))
1412 return D_WALK_CONTINUE;
42c32608 1413
9c8c10e2
AV
1414 /* root with refcount 1 is fine */
1415 if (dentry == _data && dentry->d_lockref.count == 1)
1416 return D_WALK_CONTINUE;
1417
1418 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1419 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1420 dentry,
1421 dentry->d_inode ?
1422 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1423 dentry,
42c32608
AV
1424 dentry->d_lockref.count,
1425 dentry->d_sb->s_type->name,
1426 dentry->d_sb->s_id);
9c8c10e2
AV
1427 WARN_ON(1);
1428 return D_WALK_CONTINUE;
1429}
1430
1431static void do_one_tree(struct dentry *dentry)
1432{
1433 shrink_dcache_parent(dentry);
1434 d_walk(dentry, dentry, umount_check, NULL);
1435 d_drop(dentry);
1436 dput(dentry);
42c32608
AV
1437}
1438
1439/*
1440 * destroy the dentries attached to a superblock on unmounting
1441 */
1442void shrink_dcache_for_umount(struct super_block *sb)
1443{
1444 struct dentry *dentry;
1445
9c8c10e2 1446 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1447
1448 dentry = sb->s_root;
1449 sb->s_root = NULL;
9c8c10e2 1450 do_one_tree(dentry);
42c32608
AV
1451
1452 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1453 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1454 do_one_tree(dentry);
42c32608
AV
1455 }
1456}
1457
8ed936b5
EB
1458struct detach_data {
1459 struct select_data select;
1460 struct dentry *mountpoint;
1461};
1462static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1463{
8ed936b5 1464 struct detach_data *data = _data;
848ac114
MS
1465
1466 if (d_mountpoint(dentry)) {
8ed936b5
EB
1467 __dget_dlock(dentry);
1468 data->mountpoint = dentry;
848ac114
MS
1469 return D_WALK_QUIT;
1470 }
1471
8ed936b5 1472 return select_collect(&data->select, dentry);
848ac114
MS
1473}
1474
1475static void check_and_drop(void *_data)
1476{
8ed936b5 1477 struct detach_data *data = _data;
848ac114 1478
8ed936b5
EB
1479 if (!data->mountpoint && !data->select.found)
1480 __d_drop(data->select.start);
848ac114
MS
1481}
1482
1483/**
1ffe46d1
EB
1484 * d_invalidate - detach submounts, prune dcache, and drop
1485 * @dentry: dentry to invalidate (aka detach, prune and drop)
1486 *
1ffe46d1 1487 * no dcache lock.
848ac114 1488 *
8ed936b5
EB
1489 * The final d_drop is done as an atomic operation relative to
1490 * rename_lock ensuring there are no races with d_set_mounted. This
1491 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1492 */
5542aa2f 1493void d_invalidate(struct dentry *dentry)
848ac114 1494{
1ffe46d1
EB
1495 /*
1496 * If it's already been dropped, return OK.
1497 */
1498 spin_lock(&dentry->d_lock);
1499 if (d_unhashed(dentry)) {
1500 spin_unlock(&dentry->d_lock);
5542aa2f 1501 return;
1ffe46d1
EB
1502 }
1503 spin_unlock(&dentry->d_lock);
1504
848ac114
MS
1505 /* Negative dentries can be dropped without further checks */
1506 if (!dentry->d_inode) {
1507 d_drop(dentry);
5542aa2f 1508 return;
848ac114
MS
1509 }
1510
1511 for (;;) {
8ed936b5 1512 struct detach_data data;
848ac114 1513
8ed936b5
EB
1514 data.mountpoint = NULL;
1515 INIT_LIST_HEAD(&data.select.dispose);
1516 data.select.start = dentry;
1517 data.select.found = 0;
1518
1519 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1520
8ed936b5
EB
1521 if (data.select.found)
1522 shrink_dentry_list(&data.select.dispose);
848ac114 1523
8ed936b5
EB
1524 if (data.mountpoint) {
1525 detach_mounts(data.mountpoint);
1526 dput(data.mountpoint);
1527 }
848ac114 1528
8ed936b5 1529 if (!data.mountpoint && !data.select.found)
848ac114
MS
1530 break;
1531
1532 cond_resched();
1533 }
848ac114 1534}
1ffe46d1 1535EXPORT_SYMBOL(d_invalidate);
848ac114 1536
1da177e4 1537/**
a4464dbc
AV
1538 * __d_alloc - allocate a dcache entry
1539 * @sb: filesystem it will belong to
1da177e4
LT
1540 * @name: qstr of the name
1541 *
1542 * Allocates a dentry. It returns %NULL if there is insufficient memory
1543 * available. On a success the dentry is returned. The name passed in is
1544 * copied and the copy passed in may be reused after this call.
1545 */
1546
a4464dbc 1547struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1548{
1549 struct dentry *dentry;
1550 char *dname;
1551
e12ba74d 1552 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1553 if (!dentry)
1554 return NULL;
1555
6326c71f
LT
1556 /*
1557 * We guarantee that the inline name is always NUL-terminated.
1558 * This way the memcpy() done by the name switching in rename
1559 * will still always have a NUL at the end, even if we might
1560 * be overwriting an internal NUL character
1561 */
1562 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4 1563 if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1564 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1565 struct external_name *p = kmalloc(size + name->len,
1566 GFP_KERNEL_ACCOUNT);
8d85b484 1567 if (!p) {
1da177e4
LT
1568 kmem_cache_free(dentry_cache, dentry);
1569 return NULL;
1570 }
8d85b484
AV
1571 atomic_set(&p->u.count, 1);
1572 dname = p->name;
df4c0e36
AR
1573 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1574 kasan_unpoison_shadow(dname,
1575 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1576 } else {
1577 dname = dentry->d_iname;
1578 }
1da177e4
LT
1579
1580 dentry->d_name.len = name->len;
1581 dentry->d_name.hash = name->hash;
1582 memcpy(dname, name->name, name->len);
1583 dname[name->len] = 0;
1584
6326c71f
LT
1585 /* Make sure we always see the terminating NUL character */
1586 smp_wmb();
1587 dentry->d_name.name = dname;
1588
98474236 1589 dentry->d_lockref.count = 1;
dea3667b 1590 dentry->d_flags = 0;
1da177e4 1591 spin_lock_init(&dentry->d_lock);
31e6b01f 1592 seqcount_init(&dentry->d_seq);
1da177e4 1593 dentry->d_inode = NULL;
a4464dbc
AV
1594 dentry->d_parent = dentry;
1595 dentry->d_sb = sb;
1da177e4
LT
1596 dentry->d_op = NULL;
1597 dentry->d_fsdata = NULL;
ceb5bdc2 1598 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1599 INIT_LIST_HEAD(&dentry->d_lru);
1600 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1601 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1602 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1603 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1604
3e880fb5 1605 this_cpu_inc(nr_dentry);
312d3ca8 1606
1da177e4
LT
1607 return dentry;
1608}
a4464dbc
AV
1609
1610/**
1611 * d_alloc - allocate a dcache entry
1612 * @parent: parent of entry to allocate
1613 * @name: qstr of the name
1614 *
1615 * Allocates a dentry. It returns %NULL if there is insufficient memory
1616 * available. On a success the dentry is returned. The name passed in is
1617 * copied and the copy passed in may be reused after this call.
1618 */
1619struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1620{
1621 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1622 if (!dentry)
1623 return NULL;
1624
1625 spin_lock(&parent->d_lock);
1626 /*
1627 * don't need child lock because it is not subject
1628 * to concurrency here
1629 */
1630 __dget_dlock(parent);
1631 dentry->d_parent = parent;
946e51f2 1632 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1633 spin_unlock(&parent->d_lock);
1634
1635 return dentry;
1636}
ec4f8605 1637EXPORT_SYMBOL(d_alloc);
1da177e4 1638
e1a24bb0
BF
1639/**
1640 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1641 * @sb: the superblock
1642 * @name: qstr of the name
1643 *
1644 * For a filesystem that just pins its dentries in memory and never
1645 * performs lookups at all, return an unhashed IS_ROOT dentry.
1646 */
4b936885
NP
1647struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1648{
e1a24bb0 1649 return __d_alloc(sb, name);
4b936885
NP
1650}
1651EXPORT_SYMBOL(d_alloc_pseudo);
1652
1da177e4
LT
1653struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1654{
1655 struct qstr q;
1656
1657 q.name = name;
1658 q.len = strlen(name);
1659 q.hash = full_name_hash(q.name, q.len);
1660 return d_alloc(parent, &q);
1661}
ef26ca97 1662EXPORT_SYMBOL(d_alloc_name);
1da177e4 1663
fb045adb
NP
1664void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1665{
6f7f7caa
LT
1666 WARN_ON_ONCE(dentry->d_op);
1667 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1668 DCACHE_OP_COMPARE |
1669 DCACHE_OP_REVALIDATE |
ecf3d1f1 1670 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1671 DCACHE_OP_DELETE |
d101a125
MS
1672 DCACHE_OP_SELECT_INODE |
1673 DCACHE_OP_REAL));
fb045adb
NP
1674 dentry->d_op = op;
1675 if (!op)
1676 return;
1677 if (op->d_hash)
1678 dentry->d_flags |= DCACHE_OP_HASH;
1679 if (op->d_compare)
1680 dentry->d_flags |= DCACHE_OP_COMPARE;
1681 if (op->d_revalidate)
1682 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1683 if (op->d_weak_revalidate)
1684 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1685 if (op->d_delete)
1686 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1687 if (op->d_prune)
1688 dentry->d_flags |= DCACHE_OP_PRUNE;
4bacc9c9
DH
1689 if (op->d_select_inode)
1690 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
d101a125
MS
1691 if (op->d_real)
1692 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1693
1694}
1695EXPORT_SYMBOL(d_set_d_op);
1696
df1a085a
DH
1697
1698/*
1699 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1700 * @dentry - The dentry to mark
1701 *
1702 * Mark a dentry as falling through to the lower layer (as set with
1703 * d_pin_lower()). This flag may be recorded on the medium.
1704 */
1705void d_set_fallthru(struct dentry *dentry)
1706{
1707 spin_lock(&dentry->d_lock);
1708 dentry->d_flags |= DCACHE_FALLTHRU;
1709 spin_unlock(&dentry->d_lock);
1710}
1711EXPORT_SYMBOL(d_set_fallthru);
1712
b18825a7
DH
1713static unsigned d_flags_for_inode(struct inode *inode)
1714{
44bdb5e5 1715 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1716
1717 if (!inode)
1718 return DCACHE_MISS_TYPE;
1719
1720 if (S_ISDIR(inode->i_mode)) {
1721 add_flags = DCACHE_DIRECTORY_TYPE;
1722 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1723 if (unlikely(!inode->i_op->lookup))
1724 add_flags = DCACHE_AUTODIR_TYPE;
1725 else
1726 inode->i_opflags |= IOP_LOOKUP;
1727 }
44bdb5e5
DH
1728 goto type_determined;
1729 }
1730
1731 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1732 if (unlikely(inode->i_op->get_link)) {
b18825a7 1733 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1734 goto type_determined;
1735 }
1736 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1737 }
1738
44bdb5e5
DH
1739 if (unlikely(!S_ISREG(inode->i_mode)))
1740 add_flags = DCACHE_SPECIAL_TYPE;
1741
1742type_determined:
b18825a7
DH
1743 if (unlikely(IS_AUTOMOUNT(inode)))
1744 add_flags |= DCACHE_NEED_AUTOMOUNT;
1745 return add_flags;
1746}
1747
360da900
OH
1748static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1749{
b18825a7 1750 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1751 WARN_ON(d_in_lookup(dentry));
b18825a7 1752
b23fb0a6 1753 spin_lock(&dentry->d_lock);
de689f5e 1754 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1755 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1756 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1757 raw_write_seqcount_end(&dentry->d_seq);
de689f5e 1758 __fsnotify_d_instantiate(dentry);
b23fb0a6 1759 spin_unlock(&dentry->d_lock);
360da900
OH
1760}
1761
1da177e4
LT
1762/**
1763 * d_instantiate - fill in inode information for a dentry
1764 * @entry: dentry to complete
1765 * @inode: inode to attach to this dentry
1766 *
1767 * Fill in inode information in the entry.
1768 *
1769 * This turns negative dentries into productive full members
1770 * of society.
1771 *
1772 * NOTE! This assumes that the inode count has been incremented
1773 * (or otherwise set) by the caller to indicate that it is now
1774 * in use by the dcache.
1775 */
1776
1777void d_instantiate(struct dentry *entry, struct inode * inode)
1778{
946e51f2 1779 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1780 if (inode) {
b9680917 1781 security_d_instantiate(entry, inode);
873feea0 1782 spin_lock(&inode->i_lock);
de689f5e 1783 __d_instantiate(entry, inode);
873feea0 1784 spin_unlock(&inode->i_lock);
de689f5e 1785 }
1da177e4 1786}
ec4f8605 1787EXPORT_SYMBOL(d_instantiate);
1da177e4 1788
b70a80e7
MS
1789/**
1790 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1791 * @entry: dentry to complete
1792 * @inode: inode to attach to this dentry
1793 *
1794 * Fill in inode information in the entry. If a directory alias is found, then
1795 * return an error (and drop inode). Together with d_materialise_unique() this
1796 * guarantees that a directory inode may never have more than one alias.
1797 */
1798int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1799{
946e51f2 1800 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1801
b9680917 1802 security_d_instantiate(entry, inode);
b70a80e7
MS
1803 spin_lock(&inode->i_lock);
1804 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1805 spin_unlock(&inode->i_lock);
1806 iput(inode);
1807 return -EBUSY;
1808 }
1809 __d_instantiate(entry, inode);
1810 spin_unlock(&inode->i_lock);
b70a80e7
MS
1811
1812 return 0;
1813}
1814EXPORT_SYMBOL(d_instantiate_no_diralias);
1815
adc0e91a
AV
1816struct dentry *d_make_root(struct inode *root_inode)
1817{
1818 struct dentry *res = NULL;
1819
1820 if (root_inode) {
26fe5750 1821 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1822
1823 res = __d_alloc(root_inode->i_sb, &name);
1824 if (res)
1825 d_instantiate(res, root_inode);
1826 else
1827 iput(root_inode);
1828 }
1829 return res;
1830}
1831EXPORT_SYMBOL(d_make_root);
1832
d891eedb
BF
1833static struct dentry * __d_find_any_alias(struct inode *inode)
1834{
1835 struct dentry *alias;
1836
b3d9b7a3 1837 if (hlist_empty(&inode->i_dentry))
d891eedb 1838 return NULL;
946e51f2 1839 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1840 __dget(alias);
1841 return alias;
1842}
1843
46f72b34
SW
1844/**
1845 * d_find_any_alias - find any alias for a given inode
1846 * @inode: inode to find an alias for
1847 *
1848 * If any aliases exist for the given inode, take and return a
1849 * reference for one of them. If no aliases exist, return %NULL.
1850 */
1851struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1852{
1853 struct dentry *de;
1854
1855 spin_lock(&inode->i_lock);
1856 de = __d_find_any_alias(inode);
1857 spin_unlock(&inode->i_lock);
1858 return de;
1859}
46f72b34 1860EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1861
49c7dd28 1862static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1863{
b911a6bd 1864 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1865 struct dentry *tmp;
1866 struct dentry *res;
b18825a7 1867 unsigned add_flags;
4ea3ada2
CH
1868
1869 if (!inode)
44003728 1870 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1871 if (IS_ERR(inode))
1872 return ERR_CAST(inode);
1873
d891eedb 1874 res = d_find_any_alias(inode);
9308a612
CH
1875 if (res)
1876 goto out_iput;
1877
a4464dbc 1878 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1879 if (!tmp) {
1880 res = ERR_PTR(-ENOMEM);
1881 goto out_iput;
4ea3ada2 1882 }
b5c84bf6 1883
b9680917 1884 security_d_instantiate(tmp, inode);
873feea0 1885 spin_lock(&inode->i_lock);
d891eedb 1886 res = __d_find_any_alias(inode);
9308a612 1887 if (res) {
873feea0 1888 spin_unlock(&inode->i_lock);
9308a612
CH
1889 dput(tmp);
1890 goto out_iput;
1891 }
1892
1893 /* attach a disconnected dentry */
1a0a397e
BF
1894 add_flags = d_flags_for_inode(inode);
1895
1896 if (disconnected)
1897 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1898
9308a612 1899 spin_lock(&tmp->d_lock);
4bf46a27 1900 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1901 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1902 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1903 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1904 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1905 spin_unlock(&tmp->d_lock);
873feea0 1906 spin_unlock(&inode->i_lock);
9308a612 1907
9308a612
CH
1908 return tmp;
1909
1910 out_iput:
1911 iput(inode);
1912 return res;
4ea3ada2 1913}
1a0a397e
BF
1914
1915/**
1916 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1917 * @inode: inode to allocate the dentry for
1918 *
1919 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1920 * similar open by handle operations. The returned dentry may be anonymous,
1921 * or may have a full name (if the inode was already in the cache).
1922 *
1923 * When called on a directory inode, we must ensure that the inode only ever
1924 * has one dentry. If a dentry is found, that is returned instead of
1925 * allocating a new one.
1926 *
1927 * On successful return, the reference to the inode has been transferred
1928 * to the dentry. In case of an error the reference on the inode is released.
1929 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1930 * be passed in and the error will be propagated to the return value,
1931 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1932 */
1933struct dentry *d_obtain_alias(struct inode *inode)
1934{
1935 return __d_obtain_alias(inode, 1);
1936}
adc48720 1937EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1938
1a0a397e
BF
1939/**
1940 * d_obtain_root - find or allocate a dentry for a given inode
1941 * @inode: inode to allocate the dentry for
1942 *
1943 * Obtain an IS_ROOT dentry for the root of a filesystem.
1944 *
1945 * We must ensure that directory inodes only ever have one dentry. If a
1946 * dentry is found, that is returned instead of allocating a new one.
1947 *
1948 * On successful return, the reference to the inode has been transferred
1949 * to the dentry. In case of an error the reference on the inode is
1950 * released. A %NULL or IS_ERR inode may be passed in and will be the
1951 * error will be propagate to the return value, with a %NULL @inode
1952 * replaced by ERR_PTR(-ESTALE).
1953 */
1954struct dentry *d_obtain_root(struct inode *inode)
1955{
1956 return __d_obtain_alias(inode, 0);
1957}
1958EXPORT_SYMBOL(d_obtain_root);
1959
9403540c
BN
1960/**
1961 * d_add_ci - lookup or allocate new dentry with case-exact name
1962 * @inode: the inode case-insensitive lookup has found
1963 * @dentry: the negative dentry that was passed to the parent's lookup func
1964 * @name: the case-exact name to be associated with the returned dentry
1965 *
1966 * This is to avoid filling the dcache with case-insensitive names to the
1967 * same inode, only the actual correct case is stored in the dcache for
1968 * case-insensitive filesystems.
1969 *
1970 * For a case-insensitive lookup match and if the the case-exact dentry
1971 * already exists in in the dcache, use it and return it.
1972 *
1973 * If no entry exists with the exact case name, allocate new dentry with
1974 * the exact case, and return the spliced entry.
1975 */
e45b590b 1976struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1977 struct qstr *name)
1978{
9403540c
BN
1979 struct dentry *found;
1980 struct dentry *new;
1981
b6520c81
CH
1982 /*
1983 * First check if a dentry matching the name already exists,
1984 * if not go ahead and create it now.
1985 */
9403540c 1986 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1987 if (!found) {
1988 new = d_alloc(dentry->d_parent, name);
1989 if (!new) {
4f522a24 1990 found = ERR_PTR(-ENOMEM);
427c77d4
AV
1991 } else {
1992 found = d_splice_alias(inode, new);
1993 if (found) {
1994 dput(new);
1995 return found;
1996 }
1997 return new;
9403540c 1998 }
9403540c 1999 }
9403540c 2000 iput(inode);
4f522a24 2001 return found;
9403540c 2002}
ec4f8605 2003EXPORT_SYMBOL(d_add_ci);
1da177e4 2004
12f8ad4b
LT
2005/*
2006 * Do the slow-case of the dentry name compare.
2007 *
2008 * Unlike the dentry_cmp() function, we need to atomically
da53be12 2009 * load the name and length information, so that the
12f8ad4b
LT
2010 * filesystem can rely on them, and can use the 'name' and
2011 * 'len' information without worrying about walking off the
2012 * end of memory etc.
2013 *
2014 * Thus the read_seqcount_retry() and the "duplicate" info
2015 * in arguments (the low-level filesystem should not look
2016 * at the dentry inode or name contents directly, since
2017 * rename can change them while we're in RCU mode).
2018 */
2019enum slow_d_compare {
2020 D_COMP_OK,
2021 D_COMP_NOMATCH,
2022 D_COMP_SEQRETRY,
2023};
2024
2025static noinline enum slow_d_compare slow_dentry_cmp(
2026 const struct dentry *parent,
12f8ad4b
LT
2027 struct dentry *dentry,
2028 unsigned int seq,
2029 const struct qstr *name)
2030{
2031 int tlen = dentry->d_name.len;
2032 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2033
2034 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2035 cpu_relax();
2036 return D_COMP_SEQRETRY;
2037 }
da53be12 2038 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2039 return D_COMP_NOMATCH;
2040 return D_COMP_OK;
2041}
2042
31e6b01f
NP
2043/**
2044 * __d_lookup_rcu - search for a dentry (racy, store-free)
2045 * @parent: parent dentry
2046 * @name: qstr of name we wish to find
1f1e6e52 2047 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2048 * Returns: dentry, or NULL
2049 *
2050 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2051 * resolution (store-free path walking) design described in
2052 * Documentation/filesystems/path-lookup.txt.
2053 *
2054 * This is not to be used outside core vfs.
2055 *
2056 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2057 * held, and rcu_read_lock held. The returned dentry must not be stored into
2058 * without taking d_lock and checking d_seq sequence count against @seq
2059 * returned here.
2060 *
15570086 2061 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2062 * function.
2063 *
2064 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2065 * the returned dentry, so long as its parent's seqlock is checked after the
2066 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2067 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2068 *
2069 * NOTE! The caller *has* to check the resulting dentry against the sequence
2070 * number we've returned before using any of the resulting dentry state!
31e6b01f 2071 */
8966be90
LT
2072struct dentry *__d_lookup_rcu(const struct dentry *parent,
2073 const struct qstr *name,
da53be12 2074 unsigned *seqp)
31e6b01f 2075{
26fe5750 2076 u64 hashlen = name->hash_len;
31e6b01f 2077 const unsigned char *str = name->name;
26fe5750 2078 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2079 struct hlist_bl_node *node;
31e6b01f
NP
2080 struct dentry *dentry;
2081
2082 /*
2083 * Note: There is significant duplication with __d_lookup_rcu which is
2084 * required to prevent single threaded performance regressions
2085 * especially on architectures where smp_rmb (in seqcounts) are costly.
2086 * Keep the two functions in sync.
2087 */
2088
2089 /*
2090 * The hash list is protected using RCU.
2091 *
2092 * Carefully use d_seq when comparing a candidate dentry, to avoid
2093 * races with d_move().
2094 *
2095 * It is possible that concurrent renames can mess up our list
2096 * walk here and result in missing our dentry, resulting in the
2097 * false-negative result. d_lookup() protects against concurrent
2098 * renames using rename_lock seqlock.
2099 *
b0a4bb83 2100 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2101 */
b07ad996 2102 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2103 unsigned seq;
31e6b01f 2104
31e6b01f 2105seqretry:
12f8ad4b
LT
2106 /*
2107 * The dentry sequence count protects us from concurrent
da53be12 2108 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2109 *
2110 * The caller must perform a seqcount check in order
da53be12 2111 * to do anything useful with the returned dentry.
12f8ad4b
LT
2112 *
2113 * NOTE! We do a "raw" seqcount_begin here. That means that
2114 * we don't wait for the sequence count to stabilize if it
2115 * is in the middle of a sequence change. If we do the slow
2116 * dentry compare, we will do seqretries until it is stable,
2117 * and if we end up with a successful lookup, we actually
2118 * want to exit RCU lookup anyway.
2119 */
2120 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2121 if (dentry->d_parent != parent)
2122 continue;
2e321806
LT
2123 if (d_unhashed(dentry))
2124 continue;
12f8ad4b 2125
830c0f0e 2126 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2127 if (dentry->d_name.hash != hashlen_hash(hashlen))
2128 continue;
da53be12
LT
2129 *seqp = seq;
2130 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2131 case D_COMP_OK:
2132 return dentry;
2133 case D_COMP_NOMATCH:
31e6b01f 2134 continue;
12f8ad4b
LT
2135 default:
2136 goto seqretry;
2137 }
31e6b01f 2138 }
12f8ad4b 2139
26fe5750 2140 if (dentry->d_name.hash_len != hashlen)
ee983e89 2141 continue;
da53be12 2142 *seqp = seq;
26fe5750 2143 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2144 return dentry;
31e6b01f
NP
2145 }
2146 return NULL;
2147}
2148
1da177e4
LT
2149/**
2150 * d_lookup - search for a dentry
2151 * @parent: parent dentry
2152 * @name: qstr of name we wish to find
b04f784e 2153 * Returns: dentry, or NULL
1da177e4 2154 *
b04f784e
NP
2155 * d_lookup searches the children of the parent dentry for the name in
2156 * question. If the dentry is found its reference count is incremented and the
2157 * dentry is returned. The caller must use dput to free the entry when it has
2158 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2159 */
da2d8455 2160struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2161{
31e6b01f 2162 struct dentry *dentry;
949854d0 2163 unsigned seq;
1da177e4 2164
b8314f93
DY
2165 do {
2166 seq = read_seqbegin(&rename_lock);
2167 dentry = __d_lookup(parent, name);
2168 if (dentry)
1da177e4
LT
2169 break;
2170 } while (read_seqretry(&rename_lock, seq));
2171 return dentry;
2172}
ec4f8605 2173EXPORT_SYMBOL(d_lookup);
1da177e4 2174
31e6b01f 2175/**
b04f784e
NP
2176 * __d_lookup - search for a dentry (racy)
2177 * @parent: parent dentry
2178 * @name: qstr of name we wish to find
2179 * Returns: dentry, or NULL
2180 *
2181 * __d_lookup is like d_lookup, however it may (rarely) return a
2182 * false-negative result due to unrelated rename activity.
2183 *
2184 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2185 * however it must be used carefully, eg. with a following d_lookup in
2186 * the case of failure.
2187 *
2188 * __d_lookup callers must be commented.
2189 */
a713ca2a 2190struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2191{
2192 unsigned int len = name->len;
2193 unsigned int hash = name->hash;
2194 const unsigned char *str = name->name;
b07ad996 2195 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2196 struct hlist_bl_node *node;
31e6b01f 2197 struct dentry *found = NULL;
665a7583 2198 struct dentry *dentry;
1da177e4 2199
31e6b01f
NP
2200 /*
2201 * Note: There is significant duplication with __d_lookup_rcu which is
2202 * required to prevent single threaded performance regressions
2203 * especially on architectures where smp_rmb (in seqcounts) are costly.
2204 * Keep the two functions in sync.
2205 */
2206
b04f784e
NP
2207 /*
2208 * The hash list is protected using RCU.
2209 *
2210 * Take d_lock when comparing a candidate dentry, to avoid races
2211 * with d_move().
2212 *
2213 * It is possible that concurrent renames can mess up our list
2214 * walk here and result in missing our dentry, resulting in the
2215 * false-negative result. d_lookup() protects against concurrent
2216 * renames using rename_lock seqlock.
2217 *
b0a4bb83 2218 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2219 */
1da177e4
LT
2220 rcu_read_lock();
2221
b07ad996 2222 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2223
1da177e4
LT
2224 if (dentry->d_name.hash != hash)
2225 continue;
1da177e4
LT
2226
2227 spin_lock(&dentry->d_lock);
1da177e4
LT
2228 if (dentry->d_parent != parent)
2229 goto next;
d0185c08
LT
2230 if (d_unhashed(dentry))
2231 goto next;
2232
1da177e4
LT
2233 /*
2234 * It is safe to compare names since d_move() cannot
2235 * change the qstr (protected by d_lock).
2236 */
fb045adb 2237 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2238 int tlen = dentry->d_name.len;
2239 const char *tname = dentry->d_name.name;
da53be12 2240 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2241 goto next;
2242 } else {
ee983e89
LT
2243 if (dentry->d_name.len != len)
2244 goto next;
12f8ad4b 2245 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2246 goto next;
2247 }
2248
98474236 2249 dentry->d_lockref.count++;
d0185c08 2250 found = dentry;
1da177e4
LT
2251 spin_unlock(&dentry->d_lock);
2252 break;
2253next:
2254 spin_unlock(&dentry->d_lock);
2255 }
2256 rcu_read_unlock();
2257
2258 return found;
2259}
2260
3e7e241f
EB
2261/**
2262 * d_hash_and_lookup - hash the qstr then search for a dentry
2263 * @dir: Directory to search in
2264 * @name: qstr of name we wish to find
2265 *
4f522a24 2266 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2267 */
2268struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2269{
3e7e241f
EB
2270 /*
2271 * Check for a fs-specific hash function. Note that we must
2272 * calculate the standard hash first, as the d_op->d_hash()
2273 * routine may choose to leave the hash value unchanged.
2274 */
2275 name->hash = full_name_hash(name->name, name->len);
fb045adb 2276 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2277 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2278 if (unlikely(err < 0))
2279 return ERR_PTR(err);
3e7e241f 2280 }
4f522a24 2281 return d_lookup(dir, name);
3e7e241f 2282}
4f522a24 2283EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2284
1da177e4
LT
2285/*
2286 * When a file is deleted, we have two options:
2287 * - turn this dentry into a negative dentry
2288 * - unhash this dentry and free it.
2289 *
2290 * Usually, we want to just turn this into
2291 * a negative dentry, but if anybody else is
2292 * currently using the dentry or the inode
2293 * we can't do that and we fall back on removing
2294 * it from the hash queues and waiting for
2295 * it to be deleted later when it has no users
2296 */
2297
2298/**
2299 * d_delete - delete a dentry
2300 * @dentry: The dentry to delete
2301 *
2302 * Turn the dentry into a negative dentry if possible, otherwise
2303 * remove it from the hash queues so it can be deleted later
2304 */
2305
2306void d_delete(struct dentry * dentry)
2307{
873feea0 2308 struct inode *inode;
7a91bf7f 2309 int isdir = 0;
1da177e4
LT
2310 /*
2311 * Are we the only user?
2312 */
357f8e65 2313again:
1da177e4 2314 spin_lock(&dentry->d_lock);
873feea0
NP
2315 inode = dentry->d_inode;
2316 isdir = S_ISDIR(inode->i_mode);
98474236 2317 if (dentry->d_lockref.count == 1) {
1fe0c023 2318 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2319 spin_unlock(&dentry->d_lock);
2320 cpu_relax();
2321 goto again;
2322 }
13e3c5e5 2323 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2324 dentry_unlink_inode(dentry);
7a91bf7f 2325 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2326 return;
2327 }
2328
2329 if (!d_unhashed(dentry))
2330 __d_drop(dentry);
2331
2332 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2333
2334 fsnotify_nameremove(dentry, isdir);
1da177e4 2335}
ec4f8605 2336EXPORT_SYMBOL(d_delete);
1da177e4 2337
b07ad996 2338static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2339{
ceb5bdc2 2340 BUG_ON(!d_unhashed(entry));
1879fd6a 2341 hlist_bl_lock(b);
dea3667b 2342 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2343 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2344 hlist_bl_unlock(b);
1da177e4
LT
2345}
2346
770bfad8
DH
2347static void _d_rehash(struct dentry * entry)
2348{
2349 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2350}
2351
1da177e4
LT
2352/**
2353 * d_rehash - add an entry back to the hash
2354 * @entry: dentry to add to the hash
2355 *
2356 * Adds a dentry to the hash according to its name.
2357 */
2358
2359void d_rehash(struct dentry * entry)
2360{
1da177e4 2361 spin_lock(&entry->d_lock);
770bfad8 2362 _d_rehash(entry);
1da177e4 2363 spin_unlock(&entry->d_lock);
1da177e4 2364}
ec4f8605 2365EXPORT_SYMBOL(d_rehash);
1da177e4 2366
84e710da
AV
2367static inline unsigned start_dir_add(struct inode *dir)
2368{
2369
2370 for (;;) {
2371 unsigned n = dir->i_dir_seq;
2372 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2373 return n;
2374 cpu_relax();
2375 }
2376}
2377
2378static inline void end_dir_add(struct inode *dir, unsigned n)
2379{
2380 smp_store_release(&dir->i_dir_seq, n + 2);
2381}
2382
85c7f810
AV
2383void __d_lookup_done(struct dentry *dentry)
2384{
2385 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2386 /* more stuff will land here */
2387}
2388EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2389
2390/* inode->i_lock held if inode is non-NULL */
2391
2392static inline void __d_add(struct dentry *dentry, struct inode *inode)
2393{
84e710da
AV
2394 struct inode *dir = NULL;
2395 unsigned n;
0568d705 2396 spin_lock(&dentry->d_lock);
84e710da
AV
2397 if (unlikely(d_in_lookup(dentry))) {
2398 dir = dentry->d_parent->d_inode;
2399 n = start_dir_add(dir);
85c7f810 2400 __d_lookup_done(dentry);
84e710da 2401 }
ed782b5a 2402 if (inode) {
0568d705
AV
2403 unsigned add_flags = d_flags_for_inode(inode);
2404 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2405 raw_write_seqcount_begin(&dentry->d_seq);
2406 __d_set_inode_and_type(dentry, inode, add_flags);
2407 raw_write_seqcount_end(&dentry->d_seq);
2408 __fsnotify_d_instantiate(dentry);
ed782b5a 2409 }
0568d705 2410 _d_rehash(dentry);
84e710da
AV
2411 if (dir)
2412 end_dir_add(dir, n);
0568d705
AV
2413 spin_unlock(&dentry->d_lock);
2414 if (inode)
2415 spin_unlock(&inode->i_lock);
ed782b5a
AV
2416}
2417
34d0d19d
AV
2418/**
2419 * d_add - add dentry to hash queues
2420 * @entry: dentry to add
2421 * @inode: The inode to attach to this dentry
2422 *
2423 * This adds the entry to the hash queues and initializes @inode.
2424 * The entry was actually filled in earlier during d_alloc().
2425 */
2426
2427void d_add(struct dentry *entry, struct inode *inode)
2428{
b9680917
AV
2429 if (inode) {
2430 security_d_instantiate(entry, inode);
ed782b5a 2431 spin_lock(&inode->i_lock);
b9680917 2432 }
ed782b5a 2433 __d_add(entry, inode);
34d0d19d
AV
2434}
2435EXPORT_SYMBOL(d_add);
2436
668d0cd5
AV
2437/**
2438 * d_exact_alias - find and hash an exact unhashed alias
2439 * @entry: dentry to add
2440 * @inode: The inode to go with this dentry
2441 *
2442 * If an unhashed dentry with the same name/parent and desired
2443 * inode already exists, hash and return it. Otherwise, return
2444 * NULL.
2445 *
2446 * Parent directory should be locked.
2447 */
2448struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2449{
2450 struct dentry *alias;
2451 int len = entry->d_name.len;
2452 const char *name = entry->d_name.name;
2453 unsigned int hash = entry->d_name.hash;
2454
2455 spin_lock(&inode->i_lock);
2456 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2457 /*
2458 * Don't need alias->d_lock here, because aliases with
2459 * d_parent == entry->d_parent are not subject to name or
2460 * parent changes, because the parent inode i_mutex is held.
2461 */
2462 if (alias->d_name.hash != hash)
2463 continue;
2464 if (alias->d_parent != entry->d_parent)
2465 continue;
2466 if (alias->d_name.len != len)
2467 continue;
2468 if (dentry_cmp(alias, name, len))
2469 continue;
2470 spin_lock(&alias->d_lock);
2471 if (!d_unhashed(alias)) {
2472 spin_unlock(&alias->d_lock);
2473 alias = NULL;
2474 } else {
2475 __dget_dlock(alias);
2476 _d_rehash(alias);
2477 spin_unlock(&alias->d_lock);
2478 }
2479 spin_unlock(&inode->i_lock);
2480 return alias;
2481 }
2482 spin_unlock(&inode->i_lock);
2483 return NULL;
2484}
2485EXPORT_SYMBOL(d_exact_alias);
2486
fb2d5b86
NP
2487/**
2488 * dentry_update_name_case - update case insensitive dentry with a new name
2489 * @dentry: dentry to be updated
2490 * @name: new name
2491 *
2492 * Update a case insensitive dentry with new case of name.
2493 *
2494 * dentry must have been returned by d_lookup with name @name. Old and new
2495 * name lengths must match (ie. no d_compare which allows mismatched name
2496 * lengths).
2497 *
2498 * Parent inode i_mutex must be held over d_lookup and into this call (to
2499 * keep renames and concurrent inserts, and readdir(2) away).
2500 */
2501void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2502{
5955102c 2503 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2504 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2505
fb2d5b86 2506 spin_lock(&dentry->d_lock);
31e6b01f 2507 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2508 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2509 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2510 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2511}
2512EXPORT_SYMBOL(dentry_update_name_case);
2513
8d85b484 2514static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2515{
8d85b484
AV
2516 if (unlikely(dname_external(target))) {
2517 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2518 /*
2519 * Both external: swap the pointers
2520 */
9a8d5bb4 2521 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2522 } else {
2523 /*
2524 * dentry:internal, target:external. Steal target's
2525 * storage and make target internal.
2526 */
321bcf92
BF
2527 memcpy(target->d_iname, dentry->d_name.name,
2528 dentry->d_name.len + 1);
1da177e4
LT
2529 dentry->d_name.name = target->d_name.name;
2530 target->d_name.name = target->d_iname;
2531 }
2532 } else {
8d85b484 2533 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2534 /*
2535 * dentry:external, target:internal. Give dentry's
2536 * storage to target and make dentry internal
2537 */
2538 memcpy(dentry->d_iname, target->d_name.name,
2539 target->d_name.len + 1);
2540 target->d_name.name = dentry->d_name.name;
2541 dentry->d_name.name = dentry->d_iname;
2542 } else {
2543 /*
da1ce067 2544 * Both are internal.
1da177e4 2545 */
da1ce067
MS
2546 unsigned int i;
2547 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2548 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2549 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2550 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2551 swap(((long *) &dentry->d_iname)[i],
2552 ((long *) &target->d_iname)[i]);
2553 }
1da177e4
LT
2554 }
2555 }
a28ddb87 2556 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2557}
2558
8d85b484
AV
2559static void copy_name(struct dentry *dentry, struct dentry *target)
2560{
2561 struct external_name *old_name = NULL;
2562 if (unlikely(dname_external(dentry)))
2563 old_name = external_name(dentry);
2564 if (unlikely(dname_external(target))) {
2565 atomic_inc(&external_name(target)->u.count);
2566 dentry->d_name = target->d_name;
2567 } else {
2568 memcpy(dentry->d_iname, target->d_name.name,
2569 target->d_name.len + 1);
2570 dentry->d_name.name = dentry->d_iname;
2571 dentry->d_name.hash_len = target->d_name.hash_len;
2572 }
2573 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2574 kfree_rcu(old_name, u.head);
2575}
2576
2fd6b7f5
NP
2577static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2578{
2579 /*
2580 * XXXX: do we really need to take target->d_lock?
2581 */
2582 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2583 spin_lock(&target->d_parent->d_lock);
2584 else {
2585 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2586 spin_lock(&dentry->d_parent->d_lock);
2587 spin_lock_nested(&target->d_parent->d_lock,
2588 DENTRY_D_LOCK_NESTED);
2589 } else {
2590 spin_lock(&target->d_parent->d_lock);
2591 spin_lock_nested(&dentry->d_parent->d_lock,
2592 DENTRY_D_LOCK_NESTED);
2593 }
2594 }
2595 if (target < dentry) {
2596 spin_lock_nested(&target->d_lock, 2);
2597 spin_lock_nested(&dentry->d_lock, 3);
2598 } else {
2599 spin_lock_nested(&dentry->d_lock, 2);
2600 spin_lock_nested(&target->d_lock, 3);
2601 }
2602}
2603
986c0194 2604static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2605{
2606 if (target->d_parent != dentry->d_parent)
2607 spin_unlock(&dentry->d_parent->d_lock);
2608 if (target->d_parent != target)
2609 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2610 spin_unlock(&target->d_lock);
2611 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2612}
2613
1da177e4 2614/*
2fd6b7f5
NP
2615 * When switching names, the actual string doesn't strictly have to
2616 * be preserved in the target - because we're dropping the target
2617 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2618 * the new name before we switch, unless we are going to rehash
2619 * it. Note that if we *do* unhash the target, we are not allowed
2620 * to rehash it without giving it a new name/hash key - whether
2621 * we swap or overwrite the names here, resulting name won't match
2622 * the reality in filesystem; it's only there for d_path() purposes.
2623 * Note that all of this is happening under rename_lock, so the
2624 * any hash lookup seeing it in the middle of manipulations will
2625 * be discarded anyway. So we do not care what happens to the hash
2626 * key in that case.
1da177e4 2627 */
9eaef27b 2628/*
18367501 2629 * __d_move - move a dentry
1da177e4
LT
2630 * @dentry: entry to move
2631 * @target: new dentry
da1ce067 2632 * @exchange: exchange the two dentries
1da177e4
LT
2633 *
2634 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2635 * dcache entries should not be moved in this way. Caller must hold
2636 * rename_lock, the i_mutex of the source and target directories,
2637 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2638 */
da1ce067
MS
2639static void __d_move(struct dentry *dentry, struct dentry *target,
2640 bool exchange)
1da177e4 2641{
84e710da
AV
2642 struct inode *dir = NULL;
2643 unsigned n;
1da177e4
LT
2644 if (!dentry->d_inode)
2645 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2646
2fd6b7f5
NP
2647 BUG_ON(d_ancestor(dentry, target));
2648 BUG_ON(d_ancestor(target, dentry));
2649
2fd6b7f5 2650 dentry_lock_for_move(dentry, target);
84e710da
AV
2651 if (unlikely(d_in_lookup(target))) {
2652 dir = target->d_parent->d_inode;
2653 n = start_dir_add(dir);
85c7f810 2654 __d_lookup_done(target);
84e710da 2655 }
1da177e4 2656
31e6b01f 2657 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2658 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2659
ceb5bdc2
NP
2660 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2661
2662 /*
2663 * Move the dentry to the target hash queue. Don't bother checking
2664 * for the same hash queue because of how unlikely it is.
2665 */
2666 __d_drop(dentry);
789680d1 2667 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2668
da1ce067
MS
2669 /*
2670 * Unhash the target (d_delete() is not usable here). If exchanging
2671 * the two dentries, then rehash onto the other's hash queue.
2672 */
1da177e4 2673 __d_drop(target);
da1ce067
MS
2674 if (exchange) {
2675 __d_rehash(target,
2676 d_hash(dentry->d_parent, dentry->d_name.hash));
2677 }
1da177e4 2678
1da177e4 2679 /* Switch the names.. */
8d85b484
AV
2680 if (exchange)
2681 swap_names(dentry, target);
2682 else
2683 copy_name(dentry, target);
1da177e4 2684
63cf427a 2685 /* ... and switch them in the tree */
1da177e4 2686 if (IS_ROOT(dentry)) {
63cf427a 2687 /* splicing a tree */
1da177e4
LT
2688 dentry->d_parent = target->d_parent;
2689 target->d_parent = target;
946e51f2
AV
2690 list_del_init(&target->d_child);
2691 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2692 } else {
63cf427a 2693 /* swapping two dentries */
9a8d5bb4 2694 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2695 list_move(&target->d_child, &target->d_parent->d_subdirs);
2696 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a
AV
2697 if (exchange)
2698 fsnotify_d_move(target);
2699 fsnotify_d_move(dentry);
1da177e4
LT
2700 }
2701
31e6b01f
NP
2702 write_seqcount_end(&target->d_seq);
2703 write_seqcount_end(&dentry->d_seq);
2704
84e710da
AV
2705 if (dir)
2706 end_dir_add(dir, n);
986c0194 2707 dentry_unlock_for_move(dentry, target);
18367501
AV
2708}
2709
2710/*
2711 * d_move - move a dentry
2712 * @dentry: entry to move
2713 * @target: new dentry
2714 *
2715 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2716 * dcache entries should not be moved in this way. See the locking
2717 * requirements for __d_move.
18367501
AV
2718 */
2719void d_move(struct dentry *dentry, struct dentry *target)
2720{
2721 write_seqlock(&rename_lock);
da1ce067 2722 __d_move(dentry, target, false);
1da177e4 2723 write_sequnlock(&rename_lock);
9eaef27b 2724}
ec4f8605 2725EXPORT_SYMBOL(d_move);
1da177e4 2726
da1ce067
MS
2727/*
2728 * d_exchange - exchange two dentries
2729 * @dentry1: first dentry
2730 * @dentry2: second dentry
2731 */
2732void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2733{
2734 write_seqlock(&rename_lock);
2735
2736 WARN_ON(!dentry1->d_inode);
2737 WARN_ON(!dentry2->d_inode);
2738 WARN_ON(IS_ROOT(dentry1));
2739 WARN_ON(IS_ROOT(dentry2));
2740
2741 __d_move(dentry1, dentry2, true);
2742
2743 write_sequnlock(&rename_lock);
2744}
2745
e2761a11
OH
2746/**
2747 * d_ancestor - search for an ancestor
2748 * @p1: ancestor dentry
2749 * @p2: child dentry
2750 *
2751 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2752 * an ancestor of p2, else NULL.
9eaef27b 2753 */
e2761a11 2754struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2755{
2756 struct dentry *p;
2757
871c0067 2758 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2759 if (p->d_parent == p1)
e2761a11 2760 return p;
9eaef27b 2761 }
e2761a11 2762 return NULL;
9eaef27b
TM
2763}
2764
2765/*
2766 * This helper attempts to cope with remotely renamed directories
2767 *
2768 * It assumes that the caller is already holding
a03e283b 2769 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2770 *
2771 * Note: If ever the locking in lock_rename() changes, then please
2772 * remember to update this too...
9eaef27b 2773 */
b5ae6b15 2774static int __d_unalias(struct inode *inode,
873feea0 2775 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2776{
2777 struct mutex *m1 = NULL, *m2 = NULL;
3d330dc1 2778 int ret = -ESTALE;
9eaef27b
TM
2779
2780 /* If alias and dentry share a parent, then no extra locks required */
2781 if (alias->d_parent == dentry->d_parent)
2782 goto out_unalias;
2783
9eaef27b 2784 /* See lock_rename() */
9eaef27b
TM
2785 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2786 goto out_err;
2787 m1 = &dentry->d_sb->s_vfs_rename_mutex;
5955102c 2788 if (!inode_trylock(alias->d_parent->d_inode))
9eaef27b
TM
2789 goto out_err;
2790 m2 = &alias->d_parent->d_inode->i_mutex;
2791out_unalias:
8ed936b5 2792 __d_move(alias, dentry, false);
b5ae6b15 2793 ret = 0;
9eaef27b 2794out_err:
9eaef27b
TM
2795 if (m2)
2796 mutex_unlock(m2);
2797 if (m1)
2798 mutex_unlock(m1);
2799 return ret;
2800}
2801
3f70bd51
BF
2802/**
2803 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2804 * @inode: the inode which may have a disconnected dentry
2805 * @dentry: a negative dentry which we want to point to the inode.
2806 *
da093a9b
BF
2807 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2808 * place of the given dentry and return it, else simply d_add the inode
2809 * to the dentry and return NULL.
3f70bd51 2810 *
908790fa
BF
2811 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2812 * we should error out: directories can't have multiple aliases.
2813 *
3f70bd51
BF
2814 * This is needed in the lookup routine of any filesystem that is exportable
2815 * (via knfsd) so that we can build dcache paths to directories effectively.
2816 *
2817 * If a dentry was found and moved, then it is returned. Otherwise NULL
2818 * is returned. This matches the expected return value of ->lookup.
2819 *
2820 * Cluster filesystems may call this function with a negative, hashed dentry.
2821 * In that case, we know that the inode will be a regular file, and also this
2822 * will only occur during atomic_open. So we need to check for the dentry
2823 * being already hashed only in the final case.
2824 */
2825struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2826{
3f70bd51
BF
2827 if (IS_ERR(inode))
2828 return ERR_CAST(inode);
2829
770bfad8
DH
2830 BUG_ON(!d_unhashed(dentry));
2831
de689f5e 2832 if (!inode)
b5ae6b15 2833 goto out;
de689f5e 2834
b9680917 2835 security_d_instantiate(dentry, inode);
873feea0 2836 spin_lock(&inode->i_lock);
9eaef27b 2837 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2838 struct dentry *new = __d_find_any_alias(inode);
2839 if (unlikely(new)) {
a03e283b
EB
2840 /* The reference to new ensures it remains an alias */
2841 spin_unlock(&inode->i_lock);
18367501 2842 write_seqlock(&rename_lock);
b5ae6b15
AV
2843 if (unlikely(d_ancestor(new, dentry))) {
2844 write_sequnlock(&rename_lock);
b5ae6b15
AV
2845 dput(new);
2846 new = ERR_PTR(-ELOOP);
2847 pr_warn_ratelimited(
2848 "VFS: Lookup of '%s' in %s %s"
2849 " would have caused loop\n",
2850 dentry->d_name.name,
2851 inode->i_sb->s_type->name,
2852 inode->i_sb->s_id);
2853 } else if (!IS_ROOT(new)) {
2854 int err = __d_unalias(inode, dentry, new);
18367501 2855 write_sequnlock(&rename_lock);
b5ae6b15
AV
2856 if (err) {
2857 dput(new);
2858 new = ERR_PTR(err);
2859 }
18367501 2860 } else {
b5ae6b15
AV
2861 __d_move(new, dentry, false);
2862 write_sequnlock(&rename_lock);
dd179946 2863 }
b5ae6b15
AV
2864 iput(inode);
2865 return new;
9eaef27b 2866 }
770bfad8 2867 }
b5ae6b15 2868out:
ed782b5a 2869 __d_add(dentry, inode);
b5ae6b15 2870 return NULL;
770bfad8 2871}
b5ae6b15 2872EXPORT_SYMBOL(d_splice_alias);
770bfad8 2873
cdd16d02 2874static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2875{
2876 *buflen -= namelen;
2877 if (*buflen < 0)
2878 return -ENAMETOOLONG;
2879 *buffer -= namelen;
2880 memcpy(*buffer, str, namelen);
2881 return 0;
2882}
2883
232d2d60
WL
2884/**
2885 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2886 * @buffer: buffer pointer
2887 * @buflen: allocated length of the buffer
2888 * @name: name string and length qstr structure
232d2d60
WL
2889 *
2890 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2891 * make sure that either the old or the new name pointer and length are
2892 * fetched. However, there may be mismatch between length and pointer.
2893 * The length cannot be trusted, we need to copy it byte-by-byte until
2894 * the length is reached or a null byte is found. It also prepends "/" at
2895 * the beginning of the name. The sequence number check at the caller will
2896 * retry it again when a d_move() does happen. So any garbage in the buffer
2897 * due to mismatched pointer and length will be discarded.
6d13f694
AV
2898 *
2899 * Data dependency barrier is needed to make sure that we see that terminating
2900 * NUL. Alpha strikes again, film at 11...
232d2d60 2901 */
cdd16d02
MS
2902static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2903{
232d2d60
WL
2904 const char *dname = ACCESS_ONCE(name->name);
2905 u32 dlen = ACCESS_ONCE(name->len);
2906 char *p;
2907
6d13f694
AV
2908 smp_read_barrier_depends();
2909
232d2d60 2910 *buflen -= dlen + 1;
e825196d
AV
2911 if (*buflen < 0)
2912 return -ENAMETOOLONG;
232d2d60
WL
2913 p = *buffer -= dlen + 1;
2914 *p++ = '/';
2915 while (dlen--) {
2916 char c = *dname++;
2917 if (!c)
2918 break;
2919 *p++ = c;
2920 }
2921 return 0;
cdd16d02
MS
2922}
2923
1da177e4 2924/**
208898c1 2925 * prepend_path - Prepend path string to a buffer
9d1bc601 2926 * @path: the dentry/vfsmount to report
02125a82 2927 * @root: root vfsmnt/dentry
f2eb6575
MS
2928 * @buffer: pointer to the end of the buffer
2929 * @buflen: pointer to buffer length
552ce544 2930 *
18129977
WL
2931 * The function will first try to write out the pathname without taking any
2932 * lock other than the RCU read lock to make sure that dentries won't go away.
2933 * It only checks the sequence number of the global rename_lock as any change
2934 * in the dentry's d_seq will be preceded by changes in the rename_lock
2935 * sequence number. If the sequence number had been changed, it will restart
2936 * the whole pathname back-tracing sequence again by taking the rename_lock.
2937 * In this case, there is no need to take the RCU read lock as the recursive
2938 * parent pointer references will keep the dentry chain alive as long as no
2939 * rename operation is performed.
1da177e4 2940 */
02125a82
AV
2941static int prepend_path(const struct path *path,
2942 const struct path *root,
f2eb6575 2943 char **buffer, int *buflen)
1da177e4 2944{
ede4cebc
AV
2945 struct dentry *dentry;
2946 struct vfsmount *vfsmnt;
2947 struct mount *mnt;
f2eb6575 2948 int error = 0;
48a066e7 2949 unsigned seq, m_seq = 0;
232d2d60
WL
2950 char *bptr;
2951 int blen;
6092d048 2952
48f5ec21 2953 rcu_read_lock();
48a066e7
AV
2954restart_mnt:
2955 read_seqbegin_or_lock(&mount_lock, &m_seq);
2956 seq = 0;
4ec6c2ae 2957 rcu_read_lock();
232d2d60
WL
2958restart:
2959 bptr = *buffer;
2960 blen = *buflen;
48a066e7 2961 error = 0;
ede4cebc
AV
2962 dentry = path->dentry;
2963 vfsmnt = path->mnt;
2964 mnt = real_mount(vfsmnt);
232d2d60 2965 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2966 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2967 struct dentry * parent;
2968
1da177e4 2969 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2970 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
2971 /* Escaped? */
2972 if (dentry != vfsmnt->mnt_root) {
2973 bptr = *buffer;
2974 blen = *buflen;
2975 error = 3;
2976 break;
2977 }
552ce544 2978 /* Global root? */
48a066e7
AV
2979 if (mnt != parent) {
2980 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2981 mnt = parent;
232d2d60
WL
2982 vfsmnt = &mnt->mnt;
2983 continue;
2984 }
232d2d60
WL
2985 if (!error)
2986 error = is_mounted(vfsmnt) ? 1 : 2;
2987 break;
1da177e4
LT
2988 }
2989 parent = dentry->d_parent;
2990 prefetch(parent);
232d2d60 2991 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2992 if (error)
2993 break;
2994
1da177e4
LT
2995 dentry = parent;
2996 }
48f5ec21
AV
2997 if (!(seq & 1))
2998 rcu_read_unlock();
2999 if (need_seqretry(&rename_lock, seq)) {
3000 seq = 1;
232d2d60 3001 goto restart;
48f5ec21
AV
3002 }
3003 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3004
3005 if (!(m_seq & 1))
3006 rcu_read_unlock();
48a066e7
AV
3007 if (need_seqretry(&mount_lock, m_seq)) {
3008 m_seq = 1;
3009 goto restart_mnt;
3010 }
3011 done_seqretry(&mount_lock, m_seq);
1da177e4 3012
232d2d60
WL
3013 if (error >= 0 && bptr == *buffer) {
3014 if (--blen < 0)
3015 error = -ENAMETOOLONG;
3016 else
3017 *--bptr = '/';
3018 }
3019 *buffer = bptr;
3020 *buflen = blen;
7ea600b5 3021 return error;
f2eb6575 3022}
be285c71 3023
f2eb6575
MS
3024/**
3025 * __d_path - return the path of a dentry
3026 * @path: the dentry/vfsmount to report
02125a82 3027 * @root: root vfsmnt/dentry
cd956a1c 3028 * @buf: buffer to return value in
f2eb6575
MS
3029 * @buflen: buffer length
3030 *
ffd1f4ed 3031 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3032 *
3033 * Returns a pointer into the buffer or an error code if the
3034 * path was too long.
3035 *
be148247 3036 * "buflen" should be positive.
f2eb6575 3037 *
02125a82 3038 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3039 */
02125a82
AV
3040char *__d_path(const struct path *path,
3041 const struct path *root,
f2eb6575
MS
3042 char *buf, int buflen)
3043{
3044 char *res = buf + buflen;
3045 int error;
3046
3047 prepend(&res, &buflen, "\0", 1);
f2eb6575 3048 error = prepend_path(path, root, &res, &buflen);
be148247 3049
02125a82
AV
3050 if (error < 0)
3051 return ERR_PTR(error);
3052 if (error > 0)
3053 return NULL;
3054 return res;
3055}
3056
3057char *d_absolute_path(const struct path *path,
3058 char *buf, int buflen)
3059{
3060 struct path root = {};
3061 char *res = buf + buflen;
3062 int error;
3063
3064 prepend(&res, &buflen, "\0", 1);
02125a82 3065 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3066
3067 if (error > 1)
3068 error = -EINVAL;
3069 if (error < 0)
f2eb6575 3070 return ERR_PTR(error);
f2eb6575 3071 return res;
1da177e4
LT
3072}
3073
ffd1f4ed
MS
3074/*
3075 * same as __d_path but appends "(deleted)" for unlinked files.
3076 */
02125a82
AV
3077static int path_with_deleted(const struct path *path,
3078 const struct path *root,
3079 char **buf, int *buflen)
ffd1f4ed
MS
3080{
3081 prepend(buf, buflen, "\0", 1);
3082 if (d_unlinked(path->dentry)) {
3083 int error = prepend(buf, buflen, " (deleted)", 10);
3084 if (error)
3085 return error;
3086 }
3087
3088 return prepend_path(path, root, buf, buflen);
3089}
3090
8df9d1a4
MS
3091static int prepend_unreachable(char **buffer, int *buflen)
3092{
3093 return prepend(buffer, buflen, "(unreachable)", 13);
3094}
3095
68f0d9d9
LT
3096static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3097{
3098 unsigned seq;
3099
3100 do {
3101 seq = read_seqcount_begin(&fs->seq);
3102 *root = fs->root;
3103 } while (read_seqcount_retry(&fs->seq, seq));
3104}
3105
a03a8a70
JB
3106/**
3107 * d_path - return the path of a dentry
cf28b486 3108 * @path: path to report
a03a8a70
JB
3109 * @buf: buffer to return value in
3110 * @buflen: buffer length
3111 *
3112 * Convert a dentry into an ASCII path name. If the entry has been deleted
3113 * the string " (deleted)" is appended. Note that this is ambiguous.
3114 *
52afeefb
AV
3115 * Returns a pointer into the buffer or an error code if the path was
3116 * too long. Note: Callers should use the returned pointer, not the passed
3117 * in buffer, to use the name! The implementation often starts at an offset
3118 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3119 *
31f3e0b3 3120 * "buflen" should be positive.
a03a8a70 3121 */
20d4fdc1 3122char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3123{
ffd1f4ed 3124 char *res = buf + buflen;
6ac08c39 3125 struct path root;
ffd1f4ed 3126 int error;
1da177e4 3127
c23fbb6b
ED
3128 /*
3129 * We have various synthetic filesystems that never get mounted. On
3130 * these filesystems dentries are never used for lookup purposes, and
3131 * thus don't need to be hashed. They also don't need a name until a
3132 * user wants to identify the object in /proc/pid/fd/. The little hack
3133 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3134 *
3135 * Some pseudo inodes are mountable. When they are mounted
3136 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3137 * and instead have d_path return the mounted path.
c23fbb6b 3138 */
f48cfddc
EB
3139 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3140 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3141 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3142
68f0d9d9
LT
3143 rcu_read_lock();
3144 get_fs_root_rcu(current->fs, &root);
02125a82 3145 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3146 rcu_read_unlock();
3147
02125a82 3148 if (error < 0)
ffd1f4ed 3149 res = ERR_PTR(error);
1da177e4
LT
3150 return res;
3151}
ec4f8605 3152EXPORT_SYMBOL(d_path);
1da177e4 3153
c23fbb6b
ED
3154/*
3155 * Helper function for dentry_operations.d_dname() members
3156 */
3157char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3158 const char *fmt, ...)
3159{
3160 va_list args;
3161 char temp[64];
3162 int sz;
3163
3164 va_start(args, fmt);
3165 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3166 va_end(args);
3167
3168 if (sz > sizeof(temp) || sz > buflen)
3169 return ERR_PTR(-ENAMETOOLONG);
3170
3171 buffer += buflen - sz;
3172 return memcpy(buffer, temp, sz);
3173}
3174
118b2302
AV
3175char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3176{
3177 char *end = buffer + buflen;
3178 /* these dentries are never renamed, so d_lock is not needed */
3179 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3180 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3181 prepend(&end, &buflen, "/", 1))
3182 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3183 return end;
118b2302 3184}
31bbe16f 3185EXPORT_SYMBOL(simple_dname);
118b2302 3186
6092d048
RP
3187/*
3188 * Write full pathname from the root of the filesystem into the buffer.
3189 */
f6500801 3190static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3191{
f6500801 3192 struct dentry *dentry;
232d2d60
WL
3193 char *end, *retval;
3194 int len, seq = 0;
3195 int error = 0;
6092d048 3196
f6500801
AV
3197 if (buflen < 2)
3198 goto Elong;
3199
48f5ec21 3200 rcu_read_lock();
232d2d60 3201restart:
f6500801 3202 dentry = d;
232d2d60
WL
3203 end = buf + buflen;
3204 len = buflen;
3205 prepend(&end, &len, "\0", 1);
6092d048
RP
3206 /* Get '/' right */
3207 retval = end-1;
3208 *retval = '/';
232d2d60 3209 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3210 while (!IS_ROOT(dentry)) {
3211 struct dentry *parent = dentry->d_parent;
6092d048 3212
6092d048 3213 prefetch(parent);
232d2d60
WL
3214 error = prepend_name(&end, &len, &dentry->d_name);
3215 if (error)
3216 break;
6092d048
RP
3217
3218 retval = end;
3219 dentry = parent;
3220 }
48f5ec21
AV
3221 if (!(seq & 1))
3222 rcu_read_unlock();
3223 if (need_seqretry(&rename_lock, seq)) {
3224 seq = 1;
232d2d60 3225 goto restart;
48f5ec21
AV
3226 }
3227 done_seqretry(&rename_lock, seq);
232d2d60
WL
3228 if (error)
3229 goto Elong;
c103135c
AV
3230 return retval;
3231Elong:
3232 return ERR_PTR(-ENAMETOOLONG);
3233}
ec2447c2
NP
3234
3235char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3236{
232d2d60 3237 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3238}
3239EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3240
3241char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3242{
3243 char *p = NULL;
3244 char *retval;
3245
c103135c
AV
3246 if (d_unlinked(dentry)) {
3247 p = buf + buflen;
3248 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3249 goto Elong;
3250 buflen++;
3251 }
3252 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3253 if (!IS_ERR(retval) && p)
3254 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3255 return retval;
3256Elong:
6092d048
RP
3257 return ERR_PTR(-ENAMETOOLONG);
3258}
3259
8b19e341
LT
3260static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3261 struct path *pwd)
5762482f 3262{
8b19e341
LT
3263 unsigned seq;
3264
3265 do {
3266 seq = read_seqcount_begin(&fs->seq);
3267 *root = fs->root;
3268 *pwd = fs->pwd;
3269 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3270}
3271
1da177e4
LT
3272/*
3273 * NOTE! The user-level library version returns a
3274 * character pointer. The kernel system call just
3275 * returns the length of the buffer filled (which
3276 * includes the ending '\0' character), or a negative
3277 * error value. So libc would do something like
3278 *
3279 * char *getcwd(char * buf, size_t size)
3280 * {
3281 * int retval;
3282 *
3283 * retval = sys_getcwd(buf, size);
3284 * if (retval >= 0)
3285 * return buf;
3286 * errno = -retval;
3287 * return NULL;
3288 * }
3289 */
3cdad428 3290SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3291{
552ce544 3292 int error;
6ac08c39 3293 struct path pwd, root;
3272c544 3294 char *page = __getname();
1da177e4
LT
3295
3296 if (!page)
3297 return -ENOMEM;
3298
8b19e341
LT
3299 rcu_read_lock();
3300 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3301
552ce544 3302 error = -ENOENT;
f3da392e 3303 if (!d_unlinked(pwd.dentry)) {
552ce544 3304 unsigned long len;
3272c544
LT
3305 char *cwd = page + PATH_MAX;
3306 int buflen = PATH_MAX;
1da177e4 3307
8df9d1a4 3308 prepend(&cwd, &buflen, "\0", 1);
02125a82 3309 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3310 rcu_read_unlock();
552ce544 3311
02125a82 3312 if (error < 0)
552ce544
LT
3313 goto out;
3314
8df9d1a4 3315 /* Unreachable from current root */
02125a82 3316 if (error > 0) {
8df9d1a4
MS
3317 error = prepend_unreachable(&cwd, &buflen);
3318 if (error)
3319 goto out;
3320 }
3321
552ce544 3322 error = -ERANGE;
3272c544 3323 len = PATH_MAX + page - cwd;
552ce544
LT
3324 if (len <= size) {
3325 error = len;
3326 if (copy_to_user(buf, cwd, len))
3327 error = -EFAULT;
3328 }
949854d0 3329 } else {
ff812d72 3330 rcu_read_unlock();
949854d0 3331 }
1da177e4
LT
3332
3333out:
3272c544 3334 __putname(page);
1da177e4
LT
3335 return error;
3336}
3337
3338/*
3339 * Test whether new_dentry is a subdirectory of old_dentry.
3340 *
3341 * Trivially implemented using the dcache structure
3342 */
3343
3344/**
3345 * is_subdir - is new dentry a subdirectory of old_dentry
3346 * @new_dentry: new dentry
3347 * @old_dentry: old dentry
3348 *
a6e5787f
YB
3349 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3350 * Returns false otherwise.
1da177e4
LT
3351 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3352 */
3353
a6e5787f 3354bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3355{
a6e5787f 3356 bool result;
949854d0 3357 unsigned seq;
1da177e4 3358
e2761a11 3359 if (new_dentry == old_dentry)
a6e5787f 3360 return true;
e2761a11 3361
e2761a11 3362 do {
1da177e4 3363 /* for restarting inner loop in case of seq retry */
1da177e4 3364 seq = read_seqbegin(&rename_lock);
949854d0
NP
3365 /*
3366 * Need rcu_readlock to protect against the d_parent trashing
3367 * due to d_move
3368 */
3369 rcu_read_lock();
e2761a11 3370 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3371 result = true;
e2761a11 3372 else
a6e5787f 3373 result = false;
949854d0 3374 rcu_read_unlock();
1da177e4 3375 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3376
3377 return result;
3378}
3379
db14fc3a 3380static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3381{
db14fc3a
MS
3382 struct dentry *root = data;
3383 if (dentry != root) {
3384 if (d_unhashed(dentry) || !dentry->d_inode)
3385 return D_WALK_SKIP;
1da177e4 3386
01ddc4ed
MS
3387 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3388 dentry->d_flags |= DCACHE_GENOCIDE;
3389 dentry->d_lockref.count--;
3390 }
1da177e4 3391 }
db14fc3a
MS
3392 return D_WALK_CONTINUE;
3393}
58db63d0 3394
db14fc3a
MS
3395void d_genocide(struct dentry *parent)
3396{
3397 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3398}
3399
60545d0d 3400void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3401{
60545d0d
AV
3402 inode_dec_link_count(inode);
3403 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3404 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3405 !d_unlinked(dentry));
3406 spin_lock(&dentry->d_parent->d_lock);
3407 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3408 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3409 (unsigned long long)inode->i_ino);
3410 spin_unlock(&dentry->d_lock);
3411 spin_unlock(&dentry->d_parent->d_lock);
3412 d_instantiate(dentry, inode);
1da177e4 3413}
60545d0d 3414EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3415
3416static __initdata unsigned long dhash_entries;
3417static int __init set_dhash_entries(char *str)
3418{
3419 if (!str)
3420 return 0;
3421 dhash_entries = simple_strtoul(str, &str, 0);
3422 return 1;
3423}
3424__setup("dhash_entries=", set_dhash_entries);
3425
3426static void __init dcache_init_early(void)
3427{
074b8517 3428 unsigned int loop;
1da177e4
LT
3429
3430 /* If hashes are distributed across NUMA nodes, defer
3431 * hash allocation until vmalloc space is available.
3432 */
3433 if (hashdist)
3434 return;
3435
3436 dentry_hashtable =
3437 alloc_large_system_hash("Dentry cache",
b07ad996 3438 sizeof(struct hlist_bl_head),
1da177e4
LT
3439 dhash_entries,
3440 13,
3441 HASH_EARLY,
3442 &d_hash_shift,
3443 &d_hash_mask,
31fe62b9 3444 0,
1da177e4
LT
3445 0);
3446
074b8517 3447 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3448 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3449}
3450
74bf17cf 3451static void __init dcache_init(void)
1da177e4 3452{
074b8517 3453 unsigned int loop;
1da177e4
LT
3454
3455 /*
3456 * A constructor could be added for stable state like the lists,
3457 * but it is probably not worth it because of the cache nature
3458 * of the dcache.
3459 */
0a31bd5f 3460 dentry_cache = KMEM_CACHE(dentry,
5d097056 3461 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3462
3463 /* Hash may have been set up in dcache_init_early */
3464 if (!hashdist)
3465 return;
3466
3467 dentry_hashtable =
3468 alloc_large_system_hash("Dentry cache",
b07ad996 3469 sizeof(struct hlist_bl_head),
1da177e4
LT
3470 dhash_entries,
3471 13,
3472 0,
3473 &d_hash_shift,
3474 &d_hash_mask,
31fe62b9 3475 0,
1da177e4
LT
3476 0);
3477
074b8517 3478 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3479 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3480}
3481
3482/* SLAB cache for __getname() consumers */
e18b890b 3483struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3484EXPORT_SYMBOL(names_cachep);
1da177e4 3485
1da177e4
LT
3486EXPORT_SYMBOL(d_genocide);
3487
1da177e4
LT
3488void __init vfs_caches_init_early(void)
3489{
3490 dcache_init_early();
3491 inode_init_early();
3492}
3493
4248b0da 3494void __init vfs_caches_init(void)
1da177e4 3495{
1da177e4 3496 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3497 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3498
74bf17cf
DC
3499 dcache_init();
3500 inode_init();
4248b0da
MG
3501 files_init();
3502 files_maxfiles_init();
74bf17cf 3503 mnt_init();
1da177e4
LT
3504 bdev_cache_init();
3505 chrdev_init();
3506}