]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
fs: Use rename lock and RCU for multi-step operations
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
b23fb0a6
NP
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
23044507
NP
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
b23fb0a6 54 * - d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
57 * dcache_lock
b23fb0a6
NP
58 * dcache_inode_lock
59 * dentry->d_lock
60 * dcache_lru_lock
61 * dcache_hash_lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
789680d1
NP
70 * if (dentry1 < dentry2)
71 * dentry1->d_lock
72 * dentry2->d_lock
73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
b23fb0a6 77__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
789680d1 78static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
23044507 79static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
789680d1 80__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
74c3cbe3 81__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 82
949854d0 83EXPORT_SYMBOL(rename_lock);
b23fb0a6 84EXPORT_SYMBOL(dcache_inode_lock);
1da177e4
LT
85EXPORT_SYMBOL(dcache_lock);
86
e18b890b 87static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
88
89#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
90
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
104static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
105
106/* Statistics gathering. */
107struct dentry_stat_t dentry_stat = {
108 .age_limit = 45,
109};
110
3e880fb5 111static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
112
113#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
114static int get_nr_dentry(void)
115{
116 int i;
117 int sum = 0;
118 for_each_possible_cpu(i)
119 sum += per_cpu(nr_dentry, i);
120 return sum < 0 ? 0 : sum;
121}
122
312d3ca8
CH
123int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
124 size_t *lenp, loff_t *ppos)
125{
3e880fb5 126 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
127 return proc_dointvec(table, write, buffer, lenp, ppos);
128}
129#endif
130
9c82ab9c 131static void __d_free(struct rcu_head *head)
1da177e4 132{
9c82ab9c
CH
133 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
134
fd217f4d 135 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
136 if (dname_external(dentry))
137 kfree(dentry->d_name.name);
138 kmem_cache_free(dentry_cache, dentry);
139}
140
141/*
312d3ca8 142 * no dcache_lock, please.
1da177e4
LT
143 */
144static void d_free(struct dentry *dentry)
145{
b7ab39f6 146 BUG_ON(dentry->d_count);
3e880fb5 147 this_cpu_dec(nr_dentry);
1da177e4
LT
148 if (dentry->d_op && dentry->d_op->d_release)
149 dentry->d_op->d_release(dentry);
312d3ca8 150
b3423415 151 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 152 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 153 __d_free(&dentry->d_u.d_rcu);
b3423415 154 else
9c82ab9c 155 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
156}
157
158/*
159 * Release the dentry's inode, using the filesystem
160 * d_iput() operation if defined.
1da177e4 161 */
858119e1 162static void dentry_iput(struct dentry * dentry)
31f3e0b3 163 __releases(dentry->d_lock)
b23fb0a6 164 __releases(dcache_inode_lock)
31f3e0b3 165 __releases(dcache_lock)
1da177e4
LT
166{
167 struct inode *inode = dentry->d_inode;
168 if (inode) {
169 dentry->d_inode = NULL;
170 list_del_init(&dentry->d_alias);
171 spin_unlock(&dentry->d_lock);
b23fb0a6 172 spin_unlock(&dcache_inode_lock);
1da177e4 173 spin_unlock(&dcache_lock);
f805fbda
LT
174 if (!inode->i_nlink)
175 fsnotify_inoderemove(inode);
1da177e4
LT
176 if (dentry->d_op && dentry->d_op->d_iput)
177 dentry->d_op->d_iput(dentry, inode);
178 else
179 iput(inode);
180 } else {
181 spin_unlock(&dentry->d_lock);
b23fb0a6 182 spin_unlock(&dcache_inode_lock);
1da177e4
LT
183 spin_unlock(&dcache_lock);
184 }
185}
186
da3bbdd4 187/*
23044507 188 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
189 */
190static void dentry_lru_add(struct dentry *dentry)
191{
a4633357 192 if (list_empty(&dentry->d_lru)) {
23044507 193 spin_lock(&dcache_lru_lock);
a4633357
CH
194 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
195 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 196 dentry_stat.nr_unused++;
23044507 197 spin_unlock(&dcache_lru_lock);
a4633357 198 }
da3bbdd4
KM
199}
200
23044507
NP
201static void __dentry_lru_del(struct dentry *dentry)
202{
203 list_del_init(&dentry->d_lru);
204 dentry->d_sb->s_nr_dentry_unused--;
205 dentry_stat.nr_unused--;
206}
207
da3bbdd4
KM
208static void dentry_lru_del(struct dentry *dentry)
209{
210 if (!list_empty(&dentry->d_lru)) {
23044507
NP
211 spin_lock(&dcache_lru_lock);
212 __dentry_lru_del(dentry);
213 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
214 }
215}
216
a4633357 217static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 218{
23044507 219 spin_lock(&dcache_lru_lock);
a4633357
CH
220 if (list_empty(&dentry->d_lru)) {
221 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
222 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 223 dentry_stat.nr_unused++;
a4633357
CH
224 } else {
225 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 226 }
23044507 227 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
228}
229
d52b9086
MS
230/**
231 * d_kill - kill dentry and return parent
232 * @dentry: dentry to kill
233 *
31f3e0b3 234 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
235 *
236 * If this is the root of the dentry tree, return NULL.
23044507 237 *
2fd6b7f5
NP
238 * dcache_lock and d_lock and d_parent->d_lock must be held by caller, and
239 * are dropped by d_kill.
d52b9086 240 */
2fd6b7f5 241static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 242 __releases(dentry->d_lock)
2fd6b7f5 243 __releases(parent->d_lock)
b23fb0a6 244 __releases(dcache_inode_lock)
31f3e0b3 245 __releases(dcache_lock)
d52b9086 246{
949854d0 247 dentry->d_parent = NULL;
d52b9086 248 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
249 if (parent)
250 spin_unlock(&parent->d_lock);
d52b9086 251 dentry_iput(dentry);
b7ab39f6
NP
252 /*
253 * dentry_iput drops the locks, at which point nobody (except
254 * transient RCU lookups) can reach this dentry.
255 */
d52b9086 256 d_free(dentry);
871c0067 257 return parent;
d52b9086
MS
258}
259
789680d1
NP
260/**
261 * d_drop - drop a dentry
262 * @dentry: dentry to drop
263 *
264 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
265 * be found through a VFS lookup any more. Note that this is different from
266 * deleting the dentry - d_delete will try to mark the dentry negative if
267 * possible, giving a successful _negative_ lookup, while d_drop will
268 * just make the cache lookup fail.
269 *
270 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
271 * reason (NFS timeouts or autofs deletes).
272 *
273 * __d_drop requires dentry->d_lock.
274 */
275void __d_drop(struct dentry *dentry)
276{
277 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
278 dentry->d_flags |= DCACHE_UNHASHED;
279 spin_lock(&dcache_hash_lock);
280 hlist_del_rcu(&dentry->d_hash);
281 spin_unlock(&dcache_hash_lock);
282 }
283}
284EXPORT_SYMBOL(__d_drop);
285
286void d_drop(struct dentry *dentry)
287{
288 spin_lock(&dcache_lock);
289 spin_lock(&dentry->d_lock);
290 __d_drop(dentry);
291 spin_unlock(&dentry->d_lock);
292 spin_unlock(&dcache_lock);
293}
294EXPORT_SYMBOL(d_drop);
295
1da177e4
LT
296/*
297 * This is dput
298 *
299 * This is complicated by the fact that we do not want to put
300 * dentries that are no longer on any hash chain on the unused
301 * list: we'd much rather just get rid of them immediately.
302 *
303 * However, that implies that we have to traverse the dentry
304 * tree upwards to the parents which might _also_ now be
305 * scheduled for deletion (it may have been only waiting for
306 * its last child to go away).
307 *
308 * This tail recursion is done by hand as we don't want to depend
309 * on the compiler to always get this right (gcc generally doesn't).
310 * Real recursion would eat up our stack space.
311 */
312
313/*
314 * dput - release a dentry
315 * @dentry: dentry to release
316 *
317 * Release a dentry. This will drop the usage count and if appropriate
318 * call the dentry unlink method as well as removing it from the queues and
319 * releasing its resources. If the parent dentries were scheduled for release
320 * they too may now get deleted.
321 *
322 * no dcache lock, please.
323 */
324
325void dput(struct dentry *dentry)
326{
2fd6b7f5 327 struct dentry *parent;
1da177e4
LT
328 if (!dentry)
329 return;
330
331repeat:
b7ab39f6 332 if (dentry->d_count == 1)
1da177e4 333 might_sleep();
1da177e4 334 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
335 if (IS_ROOT(dentry))
336 parent = NULL;
337 else
338 parent = dentry->d_parent;
b7ab39f6
NP
339 if (dentry->d_count == 1) {
340 if (!spin_trylock(&dcache_lock)) {
341 /*
342 * Something of a livelock possibility we could avoid
343 * by taking dcache_lock and trying again, but we
344 * want to reduce dcache_lock anyway so this will
345 * get improved.
346 */
b23fb0a6 347drop1:
b7ab39f6
NP
348 spin_unlock(&dentry->d_lock);
349 goto repeat;
350 }
b23fb0a6
NP
351 if (!spin_trylock(&dcache_inode_lock)) {
352drop2:
2fd6b7f5 353 spin_unlock(&dcache_lock);
b23fb0a6
NP
354 goto drop1;
355 }
356 if (parent && !spin_trylock(&parent->d_lock)) {
357 spin_unlock(&dcache_inode_lock);
358 goto drop2;
2fd6b7f5 359 }
b7ab39f6
NP
360 }
361 dentry->d_count--;
362 if (dentry->d_count) {
1da177e4 363 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
364 if (parent)
365 spin_unlock(&parent->d_lock);
1da177e4
LT
366 spin_unlock(&dcache_lock);
367 return;
368 }
369
370 /*
371 * AV: ->d_delete() is _NOT_ allowed to block now.
372 */
373 if (dentry->d_op && dentry->d_op->d_delete) {
374 if (dentry->d_op->d_delete(dentry))
375 goto unhash_it;
376 }
265ac902 377
1da177e4
LT
378 /* Unreachable? Get rid of it */
379 if (d_unhashed(dentry))
380 goto kill_it;
265ac902
NP
381
382 /* Otherwise leave it cached and ensure it's on the LRU */
383 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 384 dentry_lru_add(dentry);
265ac902 385
1da177e4 386 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
387 if (parent)
388 spin_unlock(&parent->d_lock);
b23fb0a6 389 spin_unlock(&dcache_inode_lock);
1da177e4
LT
390 spin_unlock(&dcache_lock);
391 return;
392
393unhash_it:
394 __d_drop(dentry);
d52b9086 395kill_it:
da3bbdd4
KM
396 /* if dentry was on the d_lru list delete it from there */
397 dentry_lru_del(dentry);
2fd6b7f5 398 dentry = d_kill(dentry, parent);
d52b9086
MS
399 if (dentry)
400 goto repeat;
1da177e4 401}
ec4f8605 402EXPORT_SYMBOL(dput);
1da177e4
LT
403
404/**
405 * d_invalidate - invalidate a dentry
406 * @dentry: dentry to invalidate
407 *
408 * Try to invalidate the dentry if it turns out to be
409 * possible. If there are other dentries that can be
410 * reached through this one we can't delete it and we
411 * return -EBUSY. On success we return 0.
412 *
413 * no dcache lock.
414 */
415
416int d_invalidate(struct dentry * dentry)
417{
418 /*
419 * If it's already been dropped, return OK.
420 */
421 spin_lock(&dcache_lock);
da502956 422 spin_lock(&dentry->d_lock);
1da177e4 423 if (d_unhashed(dentry)) {
da502956 424 spin_unlock(&dentry->d_lock);
1da177e4
LT
425 spin_unlock(&dcache_lock);
426 return 0;
427 }
428 /*
429 * Check whether to do a partial shrink_dcache
430 * to get rid of unused child entries.
431 */
432 if (!list_empty(&dentry->d_subdirs)) {
da502956 433 spin_unlock(&dentry->d_lock);
1da177e4
LT
434 spin_unlock(&dcache_lock);
435 shrink_dcache_parent(dentry);
436 spin_lock(&dcache_lock);
da502956 437 spin_lock(&dentry->d_lock);
1da177e4
LT
438 }
439
440 /*
441 * Somebody else still using it?
442 *
443 * If it's a directory, we can't drop it
444 * for fear of somebody re-populating it
445 * with children (even though dropping it
446 * would make it unreachable from the root,
447 * we might still populate it if it was a
448 * working directory or similar).
449 */
b7ab39f6 450 if (dentry->d_count > 1) {
1da177e4
LT
451 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
452 spin_unlock(&dentry->d_lock);
453 spin_unlock(&dcache_lock);
454 return -EBUSY;
455 }
456 }
457
458 __d_drop(dentry);
459 spin_unlock(&dentry->d_lock);
460 spin_unlock(&dcache_lock);
461 return 0;
462}
ec4f8605 463EXPORT_SYMBOL(d_invalidate);
1da177e4 464
b7ab39f6 465/* This must be called with dcache_lock and d_lock held */
23044507
NP
466static inline struct dentry * __dget_locked_dlock(struct dentry *dentry)
467{
b7ab39f6 468 dentry->d_count++;
23044507
NP
469 dentry_lru_del(dentry);
470 return dentry;
471}
472
b7ab39f6 473/* This should be called _only_ with dcache_lock held */
1da177e4
LT
474static inline struct dentry * __dget_locked(struct dentry *dentry)
475{
23044507 476 spin_lock(&dentry->d_lock);
b7ab39f6 477 __dget_locked_dlock(dentry);
23044507 478 spin_unlock(&dentry->d_lock);
1da177e4
LT
479 return dentry;
480}
481
b7ab39f6
NP
482struct dentry * dget_locked_dlock(struct dentry *dentry)
483{
484 return __dget_locked_dlock(dentry);
485}
486
1da177e4
LT
487struct dentry * dget_locked(struct dentry *dentry)
488{
489 return __dget_locked(dentry);
490}
ec4f8605 491EXPORT_SYMBOL(dget_locked);
1da177e4 492
b7ab39f6
NP
493struct dentry *dget_parent(struct dentry *dentry)
494{
495 struct dentry *ret;
496
497repeat:
498 spin_lock(&dentry->d_lock);
499 ret = dentry->d_parent;
500 if (!ret)
501 goto out;
502 if (dentry == ret) {
503 ret->d_count++;
504 goto out;
505 }
506 if (!spin_trylock(&ret->d_lock)) {
507 spin_unlock(&dentry->d_lock);
508 cpu_relax();
509 goto repeat;
510 }
511 BUG_ON(!ret->d_count);
512 ret->d_count++;
513 spin_unlock(&ret->d_lock);
514out:
515 spin_unlock(&dentry->d_lock);
516 return ret;
517}
518EXPORT_SYMBOL(dget_parent);
519
1da177e4
LT
520/**
521 * d_find_alias - grab a hashed alias of inode
522 * @inode: inode in question
523 * @want_discon: flag, used by d_splice_alias, to request
524 * that only a DISCONNECTED alias be returned.
525 *
526 * If inode has a hashed alias, or is a directory and has any alias,
527 * acquire the reference to alias and return it. Otherwise return NULL.
528 * Notice that if inode is a directory there can be only one alias and
529 * it can be unhashed only if it has no children, or if it is the root
530 * of a filesystem.
531 *
21c0d8fd 532 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 533 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 534 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 535 */
da502956 536static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 537{
da502956 538 struct dentry *alias, *discon_alias;
1da177e4 539
da502956
NP
540again:
541 discon_alias = NULL;
542 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
543 spin_lock(&alias->d_lock);
1da177e4 544 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 545 if (IS_ROOT(alias) &&
da502956 546 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 547 discon_alias = alias;
da502956
NP
548 } else if (!want_discon) {
549 __dget_locked_dlock(alias);
550 spin_unlock(&alias->d_lock);
551 return alias;
552 }
553 }
554 spin_unlock(&alias->d_lock);
555 }
556 if (discon_alias) {
557 alias = discon_alias;
558 spin_lock(&alias->d_lock);
559 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
560 if (IS_ROOT(alias) &&
561 (alias->d_flags & DCACHE_DISCONNECTED)) {
562 __dget_locked_dlock(alias);
563 spin_unlock(&alias->d_lock);
1da177e4
LT
564 return alias;
565 }
566 }
da502956
NP
567 spin_unlock(&alias->d_lock);
568 goto again;
1da177e4 569 }
da502956 570 return NULL;
1da177e4
LT
571}
572
da502956 573struct dentry *d_find_alias(struct inode *inode)
1da177e4 574{
214fda1f
DH
575 struct dentry *de = NULL;
576
577 if (!list_empty(&inode->i_dentry)) {
578 spin_lock(&dcache_lock);
b23fb0a6 579 spin_lock(&dcache_inode_lock);
214fda1f 580 de = __d_find_alias(inode, 0);
b23fb0a6 581 spin_unlock(&dcache_inode_lock);
214fda1f
DH
582 spin_unlock(&dcache_lock);
583 }
1da177e4
LT
584 return de;
585}
ec4f8605 586EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
587
588/*
589 * Try to kill dentries associated with this inode.
590 * WARNING: you must own a reference to inode.
591 */
592void d_prune_aliases(struct inode *inode)
593{
0cdca3f9 594 struct dentry *dentry;
1da177e4
LT
595restart:
596 spin_lock(&dcache_lock);
b23fb0a6 597 spin_lock(&dcache_inode_lock);
0cdca3f9 598 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 599 spin_lock(&dentry->d_lock);
b7ab39f6 600 if (!dentry->d_count) {
23044507 601 __dget_locked_dlock(dentry);
1da177e4
LT
602 __d_drop(dentry);
603 spin_unlock(&dentry->d_lock);
b23fb0a6 604 spin_unlock(&dcache_inode_lock);
1da177e4
LT
605 spin_unlock(&dcache_lock);
606 dput(dentry);
607 goto restart;
608 }
609 spin_unlock(&dentry->d_lock);
610 }
b23fb0a6 611 spin_unlock(&dcache_inode_lock);
1da177e4
LT
612 spin_unlock(&dcache_lock);
613}
ec4f8605 614EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
615
616/*
d702ccb3
AM
617 * Throw away a dentry - free the inode, dput the parent. This requires that
618 * the LRU list has already been removed.
619 *
85864e10
MS
620 * Try to prune ancestors as well. This is necessary to prevent
621 * quadratic behavior of shrink_dcache_parent(), but is also expected
622 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 623 */
2fd6b7f5 624static void prune_one_dentry(struct dentry *dentry, struct dentry *parent)
31f3e0b3 625 __releases(dentry->d_lock)
2fd6b7f5 626 __releases(parent->d_lock)
b23fb0a6 627 __releases(dcache_inode_lock)
31f3e0b3 628 __releases(dcache_lock)
1da177e4 629{
1da177e4 630 __d_drop(dentry);
2fd6b7f5 631 dentry = d_kill(dentry, parent);
d52b9086
MS
632
633 /*
634 * Prune ancestors. Locking is simpler than in dput(),
635 * because dcache_lock needs to be taken anyway.
636 */
d52b9086 637 while (dentry) {
23044507 638 spin_lock(&dcache_lock);
b23fb0a6 639 spin_lock(&dcache_inode_lock);
2fd6b7f5 640again:
b7ab39f6 641 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
642 if (IS_ROOT(dentry))
643 parent = NULL;
644 else
645 parent = dentry->d_parent;
646 if (parent && !spin_trylock(&parent->d_lock)) {
647 spin_unlock(&dentry->d_lock);
648 goto again;
649 }
b7ab39f6
NP
650 dentry->d_count--;
651 if (dentry->d_count) {
2fd6b7f5
NP
652 if (parent)
653 spin_unlock(&parent->d_lock);
b7ab39f6 654 spin_unlock(&dentry->d_lock);
b23fb0a6 655 spin_unlock(&dcache_inode_lock);
23044507 656 spin_unlock(&dcache_lock);
d52b9086 657 return;
23044507 658 }
d52b9086 659
a4633357 660 dentry_lru_del(dentry);
d52b9086 661 __d_drop(dentry);
2fd6b7f5 662 dentry = d_kill(dentry, parent);
d52b9086 663 }
1da177e4
LT
664}
665
3049cfe2 666static void shrink_dentry_list(struct list_head *list)
1da177e4 667{
da3bbdd4 668 struct dentry *dentry;
da3bbdd4 669
3049cfe2 670 while (!list_empty(list)) {
2fd6b7f5
NP
671 struct dentry *parent;
672
3049cfe2 673 dentry = list_entry(list->prev, struct dentry, d_lru);
23044507
NP
674
675 if (!spin_trylock(&dentry->d_lock)) {
2fd6b7f5 676relock:
23044507
NP
677 spin_unlock(&dcache_lru_lock);
678 cpu_relax();
679 spin_lock(&dcache_lru_lock);
680 continue;
681 }
682
1da177e4
LT
683 /*
684 * We found an inuse dentry which was not removed from
da3bbdd4
KM
685 * the LRU because of laziness during lookup. Do not free
686 * it - just keep it off the LRU list.
1da177e4 687 */
b7ab39f6 688 if (dentry->d_count) {
2fd6b7f5 689 __dentry_lru_del(dentry);
da3bbdd4 690 spin_unlock(&dentry->d_lock);
1da177e4
LT
691 continue;
692 }
2fd6b7f5
NP
693 if (IS_ROOT(dentry))
694 parent = NULL;
695 else
696 parent = dentry->d_parent;
697 if (parent && !spin_trylock(&parent->d_lock)) {
698 spin_unlock(&dentry->d_lock);
699 goto relock;
700 }
701 __dentry_lru_del(dentry);
23044507
NP
702 spin_unlock(&dcache_lru_lock);
703
2fd6b7f5 704 prune_one_dentry(dentry, parent);
b23fb0a6 705 /* dcache_lock, dcache_inode_lock and dentry->d_lock dropped */
23044507 706 spin_lock(&dcache_lock);
b23fb0a6 707 spin_lock(&dcache_inode_lock);
23044507 708 spin_lock(&dcache_lru_lock);
da3bbdd4 709 }
3049cfe2
CH
710}
711
712/**
713 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
714 * @sb: superblock to shrink dentry LRU.
715 * @count: number of entries to prune
716 * @flags: flags to control the dentry processing
717 *
718 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
719 */
720static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
721{
722 /* called from prune_dcache() and shrink_dcache_parent() */
723 struct dentry *dentry;
724 LIST_HEAD(referenced);
725 LIST_HEAD(tmp);
726 int cnt = *count;
727
728 spin_lock(&dcache_lock);
b23fb0a6 729 spin_lock(&dcache_inode_lock);
23044507
NP
730relock:
731 spin_lock(&dcache_lru_lock);
3049cfe2
CH
732 while (!list_empty(&sb->s_dentry_lru)) {
733 dentry = list_entry(sb->s_dentry_lru.prev,
734 struct dentry, d_lru);
735 BUG_ON(dentry->d_sb != sb);
736
23044507
NP
737 if (!spin_trylock(&dentry->d_lock)) {
738 spin_unlock(&dcache_lru_lock);
739 cpu_relax();
740 goto relock;
741 }
742
3049cfe2
CH
743 /*
744 * If we are honouring the DCACHE_REFERENCED flag and the
745 * dentry has this flag set, don't free it. Clear the flag
746 * and put it back on the LRU.
747 */
23044507
NP
748 if (flags & DCACHE_REFERENCED &&
749 dentry->d_flags & DCACHE_REFERENCED) {
750 dentry->d_flags &= ~DCACHE_REFERENCED;
751 list_move(&dentry->d_lru, &referenced);
3049cfe2 752 spin_unlock(&dentry->d_lock);
23044507
NP
753 } else {
754 list_move_tail(&dentry->d_lru, &tmp);
755 spin_unlock(&dentry->d_lock);
756 if (!--cnt)
757 break;
3049cfe2 758 }
23044507 759 /* XXX: re-add cond_resched_lock when dcache_lock goes away */
3049cfe2
CH
760 }
761
762 *count = cnt;
763 shrink_dentry_list(&tmp);
764
da3bbdd4
KM
765 if (!list_empty(&referenced))
766 list_splice(&referenced, &sb->s_dentry_lru);
23044507 767 spin_unlock(&dcache_lru_lock);
b23fb0a6 768 spin_unlock(&dcache_inode_lock);
da3bbdd4
KM
769 spin_unlock(&dcache_lock);
770}
771
772/**
773 * prune_dcache - shrink the dcache
774 * @count: number of entries to try to free
775 *
776 * Shrink the dcache. This is done when we need more memory, or simply when we
777 * need to unmount something (at which point we need to unuse all dentries).
778 *
779 * This function may fail to free any resources if all the dentries are in use.
780 */
781static void prune_dcache(int count)
782{
dca33252 783 struct super_block *sb, *p = NULL;
da3bbdd4 784 int w_count;
86c8749e 785 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
786 int prune_ratio;
787 int pruned;
788
789 if (unused == 0 || count == 0)
790 return;
791 spin_lock(&dcache_lock);
da3bbdd4
KM
792 if (count >= unused)
793 prune_ratio = 1;
794 else
795 prune_ratio = unused / count;
796 spin_lock(&sb_lock);
dca33252 797 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
798 if (list_empty(&sb->s_instances))
799 continue;
da3bbdd4 800 if (sb->s_nr_dentry_unused == 0)
1da177e4 801 continue;
da3bbdd4
KM
802 sb->s_count++;
803 /* Now, we reclaim unused dentrins with fairness.
804 * We reclaim them same percentage from each superblock.
805 * We calculate number of dentries to scan on this sb
806 * as follows, but the implementation is arranged to avoid
807 * overflows:
808 * number of dentries to scan on this sb =
809 * count * (number of dentries on this sb /
810 * number of dentries in the machine)
0feae5c4 811 */
da3bbdd4
KM
812 spin_unlock(&sb_lock);
813 if (prune_ratio != 1)
814 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
815 else
816 w_count = sb->s_nr_dentry_unused;
817 pruned = w_count;
0feae5c4 818 /*
da3bbdd4
KM
819 * We need to be sure this filesystem isn't being unmounted,
820 * otherwise we could race with generic_shutdown_super(), and
821 * end up holding a reference to an inode while the filesystem
822 * is unmounted. So we try to get s_umount, and make sure
823 * s_root isn't NULL.
0feae5c4 824 */
da3bbdd4
KM
825 if (down_read_trylock(&sb->s_umount)) {
826 if ((sb->s_root != NULL) &&
827 (!list_empty(&sb->s_dentry_lru))) {
828 spin_unlock(&dcache_lock);
829 __shrink_dcache_sb(sb, &w_count,
830 DCACHE_REFERENCED);
831 pruned -= w_count;
832 spin_lock(&dcache_lock);
0feae5c4 833 }
da3bbdd4 834 up_read(&sb->s_umount);
0feae5c4 835 }
da3bbdd4 836 spin_lock(&sb_lock);
dca33252
AV
837 if (p)
838 __put_super(p);
da3bbdd4 839 count -= pruned;
dca33252 840 p = sb;
79893c17
AV
841 /* more work left to do? */
842 if (count <= 0)
843 break;
1da177e4 844 }
dca33252
AV
845 if (p)
846 __put_super(p);
da3bbdd4 847 spin_unlock(&sb_lock);
1da177e4
LT
848 spin_unlock(&dcache_lock);
849}
850
1da177e4
LT
851/**
852 * shrink_dcache_sb - shrink dcache for a superblock
853 * @sb: superblock
854 *
3049cfe2
CH
855 * Shrink the dcache for the specified super block. This is used to free
856 * the dcache before unmounting a file system.
1da177e4 857 */
3049cfe2 858void shrink_dcache_sb(struct super_block *sb)
1da177e4 859{
3049cfe2
CH
860 LIST_HEAD(tmp);
861
862 spin_lock(&dcache_lock);
b23fb0a6 863 spin_lock(&dcache_inode_lock);
23044507 864 spin_lock(&dcache_lru_lock);
3049cfe2
CH
865 while (!list_empty(&sb->s_dentry_lru)) {
866 list_splice_init(&sb->s_dentry_lru, &tmp);
867 shrink_dentry_list(&tmp);
868 }
23044507 869 spin_unlock(&dcache_lru_lock);
b23fb0a6 870 spin_unlock(&dcache_inode_lock);
3049cfe2 871 spin_unlock(&dcache_lock);
1da177e4 872}
ec4f8605 873EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 874
c636ebdb
DH
875/*
876 * destroy a single subtree of dentries for unmount
877 * - see the comments on shrink_dcache_for_umount() for a description of the
878 * locking
879 */
880static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
881{
882 struct dentry *parent;
f8713576 883 unsigned detached = 0;
c636ebdb
DH
884
885 BUG_ON(!IS_ROOT(dentry));
886
887 /* detach this root from the system */
888 spin_lock(&dcache_lock);
23044507 889 spin_lock(&dentry->d_lock);
a4633357 890 dentry_lru_del(dentry);
c636ebdb 891 __d_drop(dentry);
da502956 892 spin_unlock(&dentry->d_lock);
c636ebdb
DH
893 spin_unlock(&dcache_lock);
894
895 for (;;) {
896 /* descend to the first leaf in the current subtree */
897 while (!list_empty(&dentry->d_subdirs)) {
898 struct dentry *loop;
899
900 /* this is a branch with children - detach all of them
901 * from the system in one go */
902 spin_lock(&dcache_lock);
2fd6b7f5 903 spin_lock(&dentry->d_lock);
c636ebdb
DH
904 list_for_each_entry(loop, &dentry->d_subdirs,
905 d_u.d_child) {
2fd6b7f5
NP
906 spin_lock_nested(&loop->d_lock,
907 DENTRY_D_LOCK_NESTED);
a4633357 908 dentry_lru_del(loop);
c636ebdb 909 __d_drop(loop);
da502956 910 spin_unlock(&loop->d_lock);
c636ebdb 911 }
2fd6b7f5 912 spin_unlock(&dentry->d_lock);
c636ebdb
DH
913 spin_unlock(&dcache_lock);
914
915 /* move to the first child */
916 dentry = list_entry(dentry->d_subdirs.next,
917 struct dentry, d_u.d_child);
918 }
919
920 /* consume the dentries from this leaf up through its parents
921 * until we find one with children or run out altogether */
922 do {
923 struct inode *inode;
924
b7ab39f6 925 if (dentry->d_count != 0) {
c636ebdb
DH
926 printk(KERN_ERR
927 "BUG: Dentry %p{i=%lx,n=%s}"
928 " still in use (%d)"
929 " [unmount of %s %s]\n",
930 dentry,
931 dentry->d_inode ?
932 dentry->d_inode->i_ino : 0UL,
933 dentry->d_name.name,
b7ab39f6 934 dentry->d_count,
c636ebdb
DH
935 dentry->d_sb->s_type->name,
936 dentry->d_sb->s_id);
937 BUG();
938 }
939
2fd6b7f5 940 if (IS_ROOT(dentry)) {
c636ebdb 941 parent = NULL;
2fd6b7f5
NP
942 list_del(&dentry->d_u.d_child);
943 } else {
871c0067 944 parent = dentry->d_parent;
b7ab39f6
NP
945 spin_lock(&parent->d_lock);
946 parent->d_count--;
2fd6b7f5 947 list_del(&dentry->d_u.d_child);
b7ab39f6 948 spin_unlock(&parent->d_lock);
871c0067 949 }
c636ebdb 950
f8713576 951 detached++;
c636ebdb
DH
952
953 inode = dentry->d_inode;
954 if (inode) {
955 dentry->d_inode = NULL;
956 list_del_init(&dentry->d_alias);
957 if (dentry->d_op && dentry->d_op->d_iput)
958 dentry->d_op->d_iput(dentry, inode);
959 else
960 iput(inode);
961 }
962
963 d_free(dentry);
964
965 /* finished when we fall off the top of the tree,
966 * otherwise we ascend to the parent and move to the
967 * next sibling if there is one */
968 if (!parent)
312d3ca8 969 return;
c636ebdb 970 dentry = parent;
c636ebdb
DH
971 } while (list_empty(&dentry->d_subdirs));
972
973 dentry = list_entry(dentry->d_subdirs.next,
974 struct dentry, d_u.d_child);
975 }
976}
977
978/*
979 * destroy the dentries attached to a superblock on unmounting
980 * - we don't need to use dentry->d_lock, and only need dcache_lock when
981 * removing the dentry from the system lists and hashes because:
982 * - the superblock is detached from all mountings and open files, so the
983 * dentry trees will not be rearranged by the VFS
984 * - s_umount is write-locked, so the memory pressure shrinker will ignore
985 * any dentries belonging to this superblock that it comes across
986 * - the filesystem itself is no longer permitted to rearrange the dentries
987 * in this superblock
988 */
989void shrink_dcache_for_umount(struct super_block *sb)
990{
991 struct dentry *dentry;
992
993 if (down_read_trylock(&sb->s_umount))
994 BUG();
995
996 dentry = sb->s_root;
997 sb->s_root = NULL;
b7ab39f6
NP
998 spin_lock(&dentry->d_lock);
999 dentry->d_count--;
1000 spin_unlock(&dentry->d_lock);
c636ebdb
DH
1001 shrink_dcache_for_umount_subtree(dentry);
1002
1003 while (!hlist_empty(&sb->s_anon)) {
1004 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
1005 shrink_dcache_for_umount_subtree(dentry);
1006 }
1007}
1008
1da177e4
LT
1009/*
1010 * Search for at least 1 mount point in the dentry's subdirs.
1011 * We descend to the next level whenever the d_subdirs
1012 * list is non-empty and continue searching.
1013 */
1014
1015/**
1016 * have_submounts - check for mounts over a dentry
1017 * @parent: dentry to check.
1018 *
1019 * Return true if the parent or its subdirectories contain
1020 * a mount point
1021 */
1da177e4
LT
1022int have_submounts(struct dentry *parent)
1023{
949854d0 1024 struct dentry *this_parent;
1da177e4 1025 struct list_head *next;
949854d0
NP
1026 unsigned seq;
1027
1028rename_retry:
1029 this_parent = parent;
1030 seq = read_seqbegin(&rename_lock);
1da177e4
LT
1031
1032 spin_lock(&dcache_lock);
1033 if (d_mountpoint(parent))
1034 goto positive;
2fd6b7f5 1035 spin_lock(&this_parent->d_lock);
1da177e4
LT
1036repeat:
1037 next = this_parent->d_subdirs.next;
1038resume:
1039 while (next != &this_parent->d_subdirs) {
1040 struct list_head *tmp = next;
5160ee6f 1041 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1042 next = tmp->next;
2fd6b7f5
NP
1043
1044 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1045 /* Have we found a mount point ? */
2fd6b7f5
NP
1046 if (d_mountpoint(dentry)) {
1047 spin_unlock(&dentry->d_lock);
1048 spin_unlock(&this_parent->d_lock);
1da177e4 1049 goto positive;
2fd6b7f5 1050 }
1da177e4 1051 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1052 spin_unlock(&this_parent->d_lock);
1053 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1054 this_parent = dentry;
2fd6b7f5 1055 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1056 goto repeat;
1057 }
2fd6b7f5 1058 spin_unlock(&dentry->d_lock);
1da177e4
LT
1059 }
1060 /*
1061 * All done at this level ... ascend and resume the search.
1062 */
1063 if (this_parent != parent) {
949854d0
NP
1064 struct dentry *tmp;
1065 struct dentry *child;
1066
1067 tmp = this_parent->d_parent;
1068 rcu_read_lock();
2fd6b7f5 1069 spin_unlock(&this_parent->d_lock);
949854d0
NP
1070 child = this_parent;
1071 this_parent = tmp;
2fd6b7f5 1072 spin_lock(&this_parent->d_lock);
949854d0
NP
1073 /* might go back up the wrong parent if we have had a rename
1074 * or deletion */
1075 if (this_parent != child->d_parent ||
1076 read_seqretry(&rename_lock, seq)) {
1077 spin_unlock(&this_parent->d_lock);
1078 spin_unlock(&dcache_lock);
1079 rcu_read_unlock();
1080 goto rename_retry;
1081 }
1082 rcu_read_unlock();
1083 next = child->d_u.d_child.next;
1da177e4
LT
1084 goto resume;
1085 }
2fd6b7f5 1086 spin_unlock(&this_parent->d_lock);
1da177e4 1087 spin_unlock(&dcache_lock);
949854d0
NP
1088 if (read_seqretry(&rename_lock, seq))
1089 goto rename_retry;
1da177e4
LT
1090 return 0; /* No mount points found in tree */
1091positive:
1092 spin_unlock(&dcache_lock);
949854d0
NP
1093 if (read_seqretry(&rename_lock, seq))
1094 goto rename_retry;
1da177e4
LT
1095 return 1;
1096}
ec4f8605 1097EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1098
1099/*
1100 * Search the dentry child list for the specified parent,
1101 * and move any unused dentries to the end of the unused
1102 * list for prune_dcache(). We descend to the next level
1103 * whenever the d_subdirs list is non-empty and continue
1104 * searching.
1105 *
1106 * It returns zero iff there are no unused children,
1107 * otherwise it returns the number of children moved to
1108 * the end of the unused list. This may not be the total
1109 * number of unused children, because select_parent can
1110 * drop the lock and return early due to latency
1111 * constraints.
1112 */
1113static int select_parent(struct dentry * parent)
1114{
949854d0 1115 struct dentry *this_parent;
1da177e4 1116 struct list_head *next;
949854d0 1117 unsigned seq;
1da177e4
LT
1118 int found = 0;
1119
949854d0
NP
1120rename_retry:
1121 this_parent = parent;
1122 seq = read_seqbegin(&rename_lock);
1123
1da177e4 1124 spin_lock(&dcache_lock);
2fd6b7f5 1125 spin_lock(&this_parent->d_lock);
1da177e4
LT
1126repeat:
1127 next = this_parent->d_subdirs.next;
1128resume:
1129 while (next != &this_parent->d_subdirs) {
1130 struct list_head *tmp = next;
5160ee6f 1131 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1132 next = tmp->next;
1133
2fd6b7f5 1134 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1135
1da177e4
LT
1136 /*
1137 * move only zero ref count dentries to the end
1138 * of the unused list for prune_dcache
1139 */
b7ab39f6 1140 if (!dentry->d_count) {
a4633357 1141 dentry_lru_move_tail(dentry);
1da177e4 1142 found++;
a4633357
CH
1143 } else {
1144 dentry_lru_del(dentry);
1da177e4
LT
1145 }
1146
1147 /*
1148 * We can return to the caller if we have found some (this
1149 * ensures forward progress). We'll be coming back to find
1150 * the rest.
1151 */
2fd6b7f5
NP
1152 if (found && need_resched()) {
1153 spin_unlock(&dentry->d_lock);
1da177e4 1154 goto out;
2fd6b7f5 1155 }
1da177e4
LT
1156
1157 /*
1158 * Descend a level if the d_subdirs list is non-empty.
1159 */
1160 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1161 spin_unlock(&this_parent->d_lock);
1162 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1163 this_parent = dentry;
2fd6b7f5 1164 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1165 goto repeat;
1166 }
2fd6b7f5
NP
1167
1168 spin_unlock(&dentry->d_lock);
1da177e4
LT
1169 }
1170 /*
1171 * All done at this level ... ascend and resume the search.
1172 */
1173 if (this_parent != parent) {
2fd6b7f5 1174 struct dentry *tmp;
949854d0
NP
1175 struct dentry *child;
1176
2fd6b7f5 1177 tmp = this_parent->d_parent;
949854d0 1178 rcu_read_lock();
2fd6b7f5 1179 spin_unlock(&this_parent->d_lock);
949854d0 1180 child = this_parent;
2fd6b7f5
NP
1181 this_parent = tmp;
1182 spin_lock(&this_parent->d_lock);
949854d0
NP
1183 /* might go back up the wrong parent if we have had a rename
1184 * or deletion */
1185 if (this_parent != child->d_parent ||
1186 read_seqretry(&rename_lock, seq)) {
1187 spin_unlock(&this_parent->d_lock);
1188 spin_unlock(&dcache_lock);
1189 rcu_read_unlock();
1190 goto rename_retry;
1191 }
1192 rcu_read_unlock();
1193 next = child->d_u.d_child.next;
1da177e4
LT
1194 goto resume;
1195 }
1196out:
2fd6b7f5 1197 spin_unlock(&this_parent->d_lock);
1da177e4 1198 spin_unlock(&dcache_lock);
949854d0
NP
1199 if (read_seqretry(&rename_lock, seq))
1200 goto rename_retry;
1da177e4
LT
1201 return found;
1202}
1203
1204/**
1205 * shrink_dcache_parent - prune dcache
1206 * @parent: parent of entries to prune
1207 *
1208 * Prune the dcache to remove unused children of the parent dentry.
1209 */
1210
1211void shrink_dcache_parent(struct dentry * parent)
1212{
da3bbdd4 1213 struct super_block *sb = parent->d_sb;
1da177e4
LT
1214 int found;
1215
1216 while ((found = select_parent(parent)) != 0)
da3bbdd4 1217 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1218}
ec4f8605 1219EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1220
1da177e4
LT
1221/*
1222 * Scan `nr' dentries and return the number which remain.
1223 *
1224 * We need to avoid reentering the filesystem if the caller is performing a
1225 * GFP_NOFS allocation attempt. One example deadlock is:
1226 *
1227 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1228 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1229 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1230 *
1231 * In this case we return -1 to tell the caller that we baled.
1232 */
7f8275d0 1233static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1234{
1235 if (nr) {
1236 if (!(gfp_mask & __GFP_FS))
1237 return -1;
da3bbdd4 1238 prune_dcache(nr);
1da177e4 1239 }
312d3ca8 1240
86c8749e 1241 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1242}
1243
8e1f936b
RR
1244static struct shrinker dcache_shrinker = {
1245 .shrink = shrink_dcache_memory,
1246 .seeks = DEFAULT_SEEKS,
1247};
1248
1da177e4
LT
1249/**
1250 * d_alloc - allocate a dcache entry
1251 * @parent: parent of entry to allocate
1252 * @name: qstr of the name
1253 *
1254 * Allocates a dentry. It returns %NULL if there is insufficient memory
1255 * available. On a success the dentry is returned. The name passed in is
1256 * copied and the copy passed in may be reused after this call.
1257 */
1258
1259struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1260{
1261 struct dentry *dentry;
1262 char *dname;
1263
e12ba74d 1264 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1265 if (!dentry)
1266 return NULL;
1267
1268 if (name->len > DNAME_INLINE_LEN-1) {
1269 dname = kmalloc(name->len + 1, GFP_KERNEL);
1270 if (!dname) {
1271 kmem_cache_free(dentry_cache, dentry);
1272 return NULL;
1273 }
1274 } else {
1275 dname = dentry->d_iname;
1276 }
1277 dentry->d_name.name = dname;
1278
1279 dentry->d_name.len = name->len;
1280 dentry->d_name.hash = name->hash;
1281 memcpy(dname, name->name, name->len);
1282 dname[name->len] = 0;
1283
b7ab39f6 1284 dentry->d_count = 1;
1da177e4
LT
1285 dentry->d_flags = DCACHE_UNHASHED;
1286 spin_lock_init(&dentry->d_lock);
1287 dentry->d_inode = NULL;
1288 dentry->d_parent = NULL;
1289 dentry->d_sb = NULL;
1290 dentry->d_op = NULL;
1291 dentry->d_fsdata = NULL;
1292 dentry->d_mounted = 0;
1da177e4
LT
1293 INIT_HLIST_NODE(&dentry->d_hash);
1294 INIT_LIST_HEAD(&dentry->d_lru);
1295 INIT_LIST_HEAD(&dentry->d_subdirs);
1296 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1297 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1298
1299 if (parent) {
2fd6b7f5
NP
1300 spin_lock(&dcache_lock);
1301 spin_lock(&parent->d_lock);
1302 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1303 dentry->d_parent = dget_dlock(parent);
1da177e4 1304 dentry->d_sb = parent->d_sb;
5160ee6f 1305 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5
NP
1306 spin_unlock(&dentry->d_lock);
1307 spin_unlock(&parent->d_lock);
1308 spin_unlock(&dcache_lock);
1309 }
1da177e4 1310
3e880fb5 1311 this_cpu_inc(nr_dentry);
312d3ca8 1312
1da177e4
LT
1313 return dentry;
1314}
ec4f8605 1315EXPORT_SYMBOL(d_alloc);
1da177e4
LT
1316
1317struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1318{
1319 struct qstr q;
1320
1321 q.name = name;
1322 q.len = strlen(name);
1323 q.hash = full_name_hash(q.name, q.len);
1324 return d_alloc(parent, &q);
1325}
ef26ca97 1326EXPORT_SYMBOL(d_alloc_name);
1da177e4 1327
360da900
OH
1328/* the caller must hold dcache_lock */
1329static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1330{
b23fb0a6 1331 spin_lock(&dentry->d_lock);
360da900
OH
1332 if (inode)
1333 list_add(&dentry->d_alias, &inode->i_dentry);
1334 dentry->d_inode = inode;
b23fb0a6 1335 spin_unlock(&dentry->d_lock);
360da900
OH
1336 fsnotify_d_instantiate(dentry, inode);
1337}
1338
1da177e4
LT
1339/**
1340 * d_instantiate - fill in inode information for a dentry
1341 * @entry: dentry to complete
1342 * @inode: inode to attach to this dentry
1343 *
1344 * Fill in inode information in the entry.
1345 *
1346 * This turns negative dentries into productive full members
1347 * of society.
1348 *
1349 * NOTE! This assumes that the inode count has been incremented
1350 * (or otherwise set) by the caller to indicate that it is now
1351 * in use by the dcache.
1352 */
1353
1354void d_instantiate(struct dentry *entry, struct inode * inode)
1355{
28133c7b 1356 BUG_ON(!list_empty(&entry->d_alias));
1da177e4 1357 spin_lock(&dcache_lock);
b23fb0a6 1358 spin_lock(&dcache_inode_lock);
360da900 1359 __d_instantiate(entry, inode);
b23fb0a6 1360 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1361 spin_unlock(&dcache_lock);
1362 security_d_instantiate(entry, inode);
1363}
ec4f8605 1364EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1365
1366/**
1367 * d_instantiate_unique - instantiate a non-aliased dentry
1368 * @entry: dentry to instantiate
1369 * @inode: inode to attach to this dentry
1370 *
1371 * Fill in inode information in the entry. On success, it returns NULL.
1372 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1373 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1374 *
1375 * Note that in order to avoid conflicts with rename() etc, the caller
1376 * had better be holding the parent directory semaphore.
e866cfa9
OD
1377 *
1378 * This also assumes that the inode count has been incremented
1379 * (or otherwise set) by the caller to indicate that it is now
1380 * in use by the dcache.
1da177e4 1381 */
770bfad8
DH
1382static struct dentry *__d_instantiate_unique(struct dentry *entry,
1383 struct inode *inode)
1da177e4
LT
1384{
1385 struct dentry *alias;
1386 int len = entry->d_name.len;
1387 const char *name = entry->d_name.name;
1388 unsigned int hash = entry->d_name.hash;
1389
770bfad8 1390 if (!inode) {
360da900 1391 __d_instantiate(entry, NULL);
770bfad8
DH
1392 return NULL;
1393 }
1394
1da177e4
LT
1395 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1396 struct qstr *qstr = &alias->d_name;
1397
9abca360
NP
1398 /*
1399 * Don't need alias->d_lock here, because aliases with
1400 * d_parent == entry->d_parent are not subject to name or
1401 * parent changes, because the parent inode i_mutex is held.
1402 */
1da177e4
LT
1403 if (qstr->hash != hash)
1404 continue;
1405 if (alias->d_parent != entry->d_parent)
1406 continue;
1407 if (qstr->len != len)
1408 continue;
1409 if (memcmp(qstr->name, name, len))
1410 continue;
1411 dget_locked(alias);
1da177e4
LT
1412 return alias;
1413 }
770bfad8 1414
360da900 1415 __d_instantiate(entry, inode);
1da177e4
LT
1416 return NULL;
1417}
770bfad8
DH
1418
1419struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1420{
1421 struct dentry *result;
1422
1423 BUG_ON(!list_empty(&entry->d_alias));
1424
1425 spin_lock(&dcache_lock);
b23fb0a6 1426 spin_lock(&dcache_inode_lock);
770bfad8 1427 result = __d_instantiate_unique(entry, inode);
b23fb0a6 1428 spin_unlock(&dcache_inode_lock);
770bfad8
DH
1429 spin_unlock(&dcache_lock);
1430
1431 if (!result) {
1432 security_d_instantiate(entry, inode);
1433 return NULL;
1434 }
1435
1436 BUG_ON(!d_unhashed(result));
1437 iput(inode);
1438 return result;
1439}
1440
1da177e4
LT
1441EXPORT_SYMBOL(d_instantiate_unique);
1442
1443/**
1444 * d_alloc_root - allocate root dentry
1445 * @root_inode: inode to allocate the root for
1446 *
1447 * Allocate a root ("/") dentry for the inode given. The inode is
1448 * instantiated and returned. %NULL is returned if there is insufficient
1449 * memory or the inode passed is %NULL.
1450 */
1451
1452struct dentry * d_alloc_root(struct inode * root_inode)
1453{
1454 struct dentry *res = NULL;
1455
1456 if (root_inode) {
1457 static const struct qstr name = { .name = "/", .len = 1 };
1458
1459 res = d_alloc(NULL, &name);
1460 if (res) {
1461 res->d_sb = root_inode->i_sb;
1462 res->d_parent = res;
1463 d_instantiate(res, root_inode);
1464 }
1465 }
1466 return res;
1467}
ec4f8605 1468EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1469
1470static inline struct hlist_head *d_hash(struct dentry *parent,
1471 unsigned long hash)
1472{
1473 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1474 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1475 return dentry_hashtable + (hash & D_HASHMASK);
1476}
1477
4ea3ada2
CH
1478/**
1479 * d_obtain_alias - find or allocate a dentry for a given inode
1480 * @inode: inode to allocate the dentry for
1481 *
1482 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1483 * similar open by handle operations. The returned dentry may be anonymous,
1484 * or may have a full name (if the inode was already in the cache).
1485 *
1486 * When called on a directory inode, we must ensure that the inode only ever
1487 * has one dentry. If a dentry is found, that is returned instead of
1488 * allocating a new one.
1489 *
1490 * On successful return, the reference to the inode has been transferred
44003728
CH
1491 * to the dentry. In case of an error the reference on the inode is released.
1492 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1493 * be passed in and will be the error will be propagate to the return value,
1494 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1495 */
1496struct dentry *d_obtain_alias(struct inode *inode)
1497{
9308a612
CH
1498 static const struct qstr anonstring = { .name = "" };
1499 struct dentry *tmp;
1500 struct dentry *res;
4ea3ada2
CH
1501
1502 if (!inode)
44003728 1503 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1504 if (IS_ERR(inode))
1505 return ERR_CAST(inode);
1506
9308a612
CH
1507 res = d_find_alias(inode);
1508 if (res)
1509 goto out_iput;
1510
1511 tmp = d_alloc(NULL, &anonstring);
1512 if (!tmp) {
1513 res = ERR_PTR(-ENOMEM);
1514 goto out_iput;
4ea3ada2 1515 }
9308a612
CH
1516 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1517
1518 spin_lock(&dcache_lock);
b23fb0a6 1519 spin_lock(&dcache_inode_lock);
9308a612
CH
1520 res = __d_find_alias(inode, 0);
1521 if (res) {
b23fb0a6 1522 spin_unlock(&dcache_inode_lock);
9308a612
CH
1523 spin_unlock(&dcache_lock);
1524 dput(tmp);
1525 goto out_iput;
1526 }
1527
1528 /* attach a disconnected dentry */
1529 spin_lock(&tmp->d_lock);
1530 tmp->d_sb = inode->i_sb;
1531 tmp->d_inode = inode;
1532 tmp->d_flags |= DCACHE_DISCONNECTED;
1533 tmp->d_flags &= ~DCACHE_UNHASHED;
1534 list_add(&tmp->d_alias, &inode->i_dentry);
789680d1 1535 spin_lock(&dcache_hash_lock);
9308a612 1536 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
789680d1 1537 spin_unlock(&dcache_hash_lock);
9308a612 1538 spin_unlock(&tmp->d_lock);
b23fb0a6 1539 spin_unlock(&dcache_inode_lock);
9308a612
CH
1540
1541 spin_unlock(&dcache_lock);
1542 return tmp;
1543
1544 out_iput:
1545 iput(inode);
1546 return res;
4ea3ada2 1547}
adc48720 1548EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1549
1550/**
1551 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1552 * @inode: the inode which may have a disconnected dentry
1553 * @dentry: a negative dentry which we want to point to the inode.
1554 *
1555 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1556 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1557 * and return it, else simply d_add the inode to the dentry and return NULL.
1558 *
1559 * This is needed in the lookup routine of any filesystem that is exportable
1560 * (via knfsd) so that we can build dcache paths to directories effectively.
1561 *
1562 * If a dentry was found and moved, then it is returned. Otherwise NULL
1563 * is returned. This matches the expected return value of ->lookup.
1564 *
1565 */
1566struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1567{
1568 struct dentry *new = NULL;
1569
21c0d8fd 1570 if (inode && S_ISDIR(inode->i_mode)) {
1da177e4 1571 spin_lock(&dcache_lock);
b23fb0a6 1572 spin_lock(&dcache_inode_lock);
1da177e4
LT
1573 new = __d_find_alias(inode, 1);
1574 if (new) {
1575 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
b23fb0a6 1576 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1577 spin_unlock(&dcache_lock);
1578 security_d_instantiate(new, inode);
1da177e4
LT
1579 d_move(new, dentry);
1580 iput(inode);
1581 } else {
360da900
OH
1582 /* already taking dcache_lock, so d_add() by hand */
1583 __d_instantiate(dentry, inode);
b23fb0a6 1584 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1585 spin_unlock(&dcache_lock);
1586 security_d_instantiate(dentry, inode);
1587 d_rehash(dentry);
1588 }
1589 } else
1590 d_add(dentry, inode);
1591 return new;
1592}
ec4f8605 1593EXPORT_SYMBOL(d_splice_alias);
1da177e4 1594
9403540c
BN
1595/**
1596 * d_add_ci - lookup or allocate new dentry with case-exact name
1597 * @inode: the inode case-insensitive lookup has found
1598 * @dentry: the negative dentry that was passed to the parent's lookup func
1599 * @name: the case-exact name to be associated with the returned dentry
1600 *
1601 * This is to avoid filling the dcache with case-insensitive names to the
1602 * same inode, only the actual correct case is stored in the dcache for
1603 * case-insensitive filesystems.
1604 *
1605 * For a case-insensitive lookup match and if the the case-exact dentry
1606 * already exists in in the dcache, use it and return it.
1607 *
1608 * If no entry exists with the exact case name, allocate new dentry with
1609 * the exact case, and return the spliced entry.
1610 */
e45b590b 1611struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1612 struct qstr *name)
1613{
1614 int error;
1615 struct dentry *found;
1616 struct dentry *new;
1617
b6520c81
CH
1618 /*
1619 * First check if a dentry matching the name already exists,
1620 * if not go ahead and create it now.
1621 */
9403540c 1622 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1623 if (!found) {
1624 new = d_alloc(dentry->d_parent, name);
1625 if (!new) {
1626 error = -ENOMEM;
1627 goto err_out;
1628 }
b6520c81 1629
9403540c
BN
1630 found = d_splice_alias(inode, new);
1631 if (found) {
1632 dput(new);
1633 return found;
1634 }
1635 return new;
1636 }
b6520c81
CH
1637
1638 /*
1639 * If a matching dentry exists, and it's not negative use it.
1640 *
1641 * Decrement the reference count to balance the iget() done
1642 * earlier on.
1643 */
9403540c
BN
1644 if (found->d_inode) {
1645 if (unlikely(found->d_inode != inode)) {
1646 /* This can't happen because bad inodes are unhashed. */
1647 BUG_ON(!is_bad_inode(inode));
1648 BUG_ON(!is_bad_inode(found->d_inode));
1649 }
9403540c
BN
1650 iput(inode);
1651 return found;
1652 }
b6520c81 1653
9403540c
BN
1654 /*
1655 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1656 * already has a dentry.
9403540c 1657 */
9403540c 1658 spin_lock(&dcache_lock);
b23fb0a6 1659 spin_lock(&dcache_inode_lock);
b6520c81 1660 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1661 __d_instantiate(found, inode);
b23fb0a6 1662 spin_unlock(&dcache_inode_lock);
9403540c
BN
1663 spin_unlock(&dcache_lock);
1664 security_d_instantiate(found, inode);
1665 return found;
1666 }
b6520c81 1667
9403540c 1668 /*
b6520c81
CH
1669 * In case a directory already has a (disconnected) entry grab a
1670 * reference to it, move it in place and use it.
9403540c
BN
1671 */
1672 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1673 dget_locked(new);
b23fb0a6 1674 spin_unlock(&dcache_inode_lock);
9403540c 1675 spin_unlock(&dcache_lock);
9403540c 1676 security_d_instantiate(found, inode);
9403540c 1677 d_move(new, found);
9403540c 1678 iput(inode);
9403540c 1679 dput(found);
9403540c
BN
1680 return new;
1681
1682err_out:
1683 iput(inode);
1684 return ERR_PTR(error);
1685}
ec4f8605 1686EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1687
1688/**
1689 * d_lookup - search for a dentry
1690 * @parent: parent dentry
1691 * @name: qstr of name we wish to find
b04f784e 1692 * Returns: dentry, or NULL
1da177e4 1693 *
b04f784e
NP
1694 * d_lookup searches the children of the parent dentry for the name in
1695 * question. If the dentry is found its reference count is incremented and the
1696 * dentry is returned. The caller must use dput to free the entry when it has
1697 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1698 */
1da177e4
LT
1699struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1700{
1701 struct dentry * dentry = NULL;
949854d0 1702 unsigned seq;
1da177e4
LT
1703
1704 do {
1705 seq = read_seqbegin(&rename_lock);
1706 dentry = __d_lookup(parent, name);
1707 if (dentry)
1708 break;
1709 } while (read_seqretry(&rename_lock, seq));
1710 return dentry;
1711}
ec4f8605 1712EXPORT_SYMBOL(d_lookup);
1da177e4 1713
b04f784e
NP
1714/*
1715 * __d_lookup - search for a dentry (racy)
1716 * @parent: parent dentry
1717 * @name: qstr of name we wish to find
1718 * Returns: dentry, or NULL
1719 *
1720 * __d_lookup is like d_lookup, however it may (rarely) return a
1721 * false-negative result due to unrelated rename activity.
1722 *
1723 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1724 * however it must be used carefully, eg. with a following d_lookup in
1725 * the case of failure.
1726 *
1727 * __d_lookup callers must be commented.
1728 */
1da177e4
LT
1729struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1730{
1731 unsigned int len = name->len;
1732 unsigned int hash = name->hash;
1733 const unsigned char *str = name->name;
1734 struct hlist_head *head = d_hash(parent,hash);
1735 struct dentry *found = NULL;
1736 struct hlist_node *node;
665a7583 1737 struct dentry *dentry;
1da177e4 1738
b04f784e
NP
1739 /*
1740 * The hash list is protected using RCU.
1741 *
1742 * Take d_lock when comparing a candidate dentry, to avoid races
1743 * with d_move().
1744 *
1745 * It is possible that concurrent renames can mess up our list
1746 * walk here and result in missing our dentry, resulting in the
1747 * false-negative result. d_lookup() protects against concurrent
1748 * renames using rename_lock seqlock.
1749 *
1750 * See Documentation/vfs/dcache-locking.txt for more details.
1751 */
1da177e4
LT
1752 rcu_read_lock();
1753
665a7583 1754 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1755 struct qstr *qstr;
1756
1da177e4
LT
1757 if (dentry->d_name.hash != hash)
1758 continue;
1759 if (dentry->d_parent != parent)
1760 continue;
1761
1762 spin_lock(&dentry->d_lock);
1763
1764 /*
1765 * Recheck the dentry after taking the lock - d_move may have
b04f784e
NP
1766 * changed things. Don't bother checking the hash because
1767 * we're about to compare the whole name anyway.
1da177e4
LT
1768 */
1769 if (dentry->d_parent != parent)
1770 goto next;
1771
d0185c08
LT
1772 /* non-existing due to RCU? */
1773 if (d_unhashed(dentry))
1774 goto next;
1775
1da177e4
LT
1776 /*
1777 * It is safe to compare names since d_move() cannot
1778 * change the qstr (protected by d_lock).
1779 */
1780 qstr = &dentry->d_name;
1781 if (parent->d_op && parent->d_op->d_compare) {
621e155a
NP
1782 if (parent->d_op->d_compare(parent, parent->d_inode,
1783 dentry, dentry->d_inode,
1784 qstr->len, qstr->name, name))
1da177e4
LT
1785 goto next;
1786 } else {
1787 if (qstr->len != len)
1788 goto next;
1789 if (memcmp(qstr->name, str, len))
1790 goto next;
1791 }
1792
b7ab39f6 1793 dentry->d_count++;
d0185c08 1794 found = dentry;
1da177e4
LT
1795 spin_unlock(&dentry->d_lock);
1796 break;
1797next:
1798 spin_unlock(&dentry->d_lock);
1799 }
1800 rcu_read_unlock();
1801
1802 return found;
1803}
1804
3e7e241f
EB
1805/**
1806 * d_hash_and_lookup - hash the qstr then search for a dentry
1807 * @dir: Directory to search in
1808 * @name: qstr of name we wish to find
1809 *
1810 * On hash failure or on lookup failure NULL is returned.
1811 */
1812struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1813{
1814 struct dentry *dentry = NULL;
1815
1816 /*
1817 * Check for a fs-specific hash function. Note that we must
1818 * calculate the standard hash first, as the d_op->d_hash()
1819 * routine may choose to leave the hash value unchanged.
1820 */
1821 name->hash = full_name_hash(name->name, name->len);
1822 if (dir->d_op && dir->d_op->d_hash) {
b1e6a015 1823 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1824 goto out;
1825 }
1826 dentry = d_lookup(dir, name);
1827out:
1828 return dentry;
1829}
1830
1da177e4 1831/**
786a5e15 1832 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1833 * @dentry: The dentry alleged to be valid child of @dparent
1834 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1835 *
1836 * An insecure source has sent us a dentry, here we verify it and dget() it.
1837 * This is used by ncpfs in its readdir implementation.
1838 * Zero is returned in the dentry is invalid.
786a5e15
NP
1839 *
1840 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1841 */
d3a23e16 1842int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1843{
786a5e15 1844 struct dentry *child;
d3a23e16
NP
1845
1846 spin_lock(&dcache_lock);
2fd6b7f5 1847 spin_lock(&dparent->d_lock);
786a5e15
NP
1848 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1849 if (dentry == child) {
2fd6b7f5
NP
1850 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1851 __dget_locked_dlock(dentry);
1852 spin_unlock(&dentry->d_lock);
1853 spin_unlock(&dparent->d_lock);
d3a23e16 1854 spin_unlock(&dcache_lock);
1da177e4
LT
1855 return 1;
1856 }
1857 }
2fd6b7f5 1858 spin_unlock(&dparent->d_lock);
d3a23e16 1859 spin_unlock(&dcache_lock);
786a5e15 1860
1da177e4
LT
1861 return 0;
1862}
ec4f8605 1863EXPORT_SYMBOL(d_validate);
1da177e4
LT
1864
1865/*
1866 * When a file is deleted, we have two options:
1867 * - turn this dentry into a negative dentry
1868 * - unhash this dentry and free it.
1869 *
1870 * Usually, we want to just turn this into
1871 * a negative dentry, but if anybody else is
1872 * currently using the dentry or the inode
1873 * we can't do that and we fall back on removing
1874 * it from the hash queues and waiting for
1875 * it to be deleted later when it has no users
1876 */
1877
1878/**
1879 * d_delete - delete a dentry
1880 * @dentry: The dentry to delete
1881 *
1882 * Turn the dentry into a negative dentry if possible, otherwise
1883 * remove it from the hash queues so it can be deleted later
1884 */
1885
1886void d_delete(struct dentry * dentry)
1887{
7a91bf7f 1888 int isdir = 0;
1da177e4
LT
1889 /*
1890 * Are we the only user?
1891 */
1892 spin_lock(&dcache_lock);
b23fb0a6 1893 spin_lock(&dcache_inode_lock);
1da177e4 1894 spin_lock(&dentry->d_lock);
7a91bf7f 1895 isdir = S_ISDIR(dentry->d_inode->i_mode);
b7ab39f6 1896 if (dentry->d_count == 1) {
13e3c5e5 1897 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1898 dentry_iput(dentry);
7a91bf7f 1899 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1900 return;
1901 }
1902
1903 if (!d_unhashed(dentry))
1904 __d_drop(dentry);
1905
1906 spin_unlock(&dentry->d_lock);
b23fb0a6 1907 spin_unlock(&dcache_inode_lock);
1da177e4 1908 spin_unlock(&dcache_lock);
7a91bf7f
JM
1909
1910 fsnotify_nameremove(dentry, isdir);
1da177e4 1911}
ec4f8605 1912EXPORT_SYMBOL(d_delete);
1da177e4
LT
1913
1914static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1915{
1916
1917 entry->d_flags &= ~DCACHE_UNHASHED;
1918 hlist_add_head_rcu(&entry->d_hash, list);
1919}
1920
770bfad8
DH
1921static void _d_rehash(struct dentry * entry)
1922{
1923 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1924}
1925
1da177e4
LT
1926/**
1927 * d_rehash - add an entry back to the hash
1928 * @entry: dentry to add to the hash
1929 *
1930 * Adds a dentry to the hash according to its name.
1931 */
1932
1933void d_rehash(struct dentry * entry)
1934{
1da177e4
LT
1935 spin_lock(&dcache_lock);
1936 spin_lock(&entry->d_lock);
789680d1 1937 spin_lock(&dcache_hash_lock);
770bfad8 1938 _d_rehash(entry);
789680d1 1939 spin_unlock(&dcache_hash_lock);
1da177e4
LT
1940 spin_unlock(&entry->d_lock);
1941 spin_unlock(&dcache_lock);
1942}
ec4f8605 1943EXPORT_SYMBOL(d_rehash);
1da177e4 1944
fb2d5b86
NP
1945/**
1946 * dentry_update_name_case - update case insensitive dentry with a new name
1947 * @dentry: dentry to be updated
1948 * @name: new name
1949 *
1950 * Update a case insensitive dentry with new case of name.
1951 *
1952 * dentry must have been returned by d_lookup with name @name. Old and new
1953 * name lengths must match (ie. no d_compare which allows mismatched name
1954 * lengths).
1955 *
1956 * Parent inode i_mutex must be held over d_lookup and into this call (to
1957 * keep renames and concurrent inserts, and readdir(2) away).
1958 */
1959void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1960{
1961 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1962 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1963
1964 spin_lock(&dcache_lock);
1965 spin_lock(&dentry->d_lock);
1966 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1967 spin_unlock(&dentry->d_lock);
1968 spin_unlock(&dcache_lock);
1969}
1970EXPORT_SYMBOL(dentry_update_name_case);
1971
1da177e4
LT
1972static void switch_names(struct dentry *dentry, struct dentry *target)
1973{
1974 if (dname_external(target)) {
1975 if (dname_external(dentry)) {
1976 /*
1977 * Both external: swap the pointers
1978 */
9a8d5bb4 1979 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1980 } else {
1981 /*
1982 * dentry:internal, target:external. Steal target's
1983 * storage and make target internal.
1984 */
321bcf92
BF
1985 memcpy(target->d_iname, dentry->d_name.name,
1986 dentry->d_name.len + 1);
1da177e4
LT
1987 dentry->d_name.name = target->d_name.name;
1988 target->d_name.name = target->d_iname;
1989 }
1990 } else {
1991 if (dname_external(dentry)) {
1992 /*
1993 * dentry:external, target:internal. Give dentry's
1994 * storage to target and make dentry internal
1995 */
1996 memcpy(dentry->d_iname, target->d_name.name,
1997 target->d_name.len + 1);
1998 target->d_name.name = dentry->d_name.name;
1999 dentry->d_name.name = dentry->d_iname;
2000 } else {
2001 /*
2002 * Both are internal. Just copy target to dentry
2003 */
2004 memcpy(dentry->d_iname, target->d_name.name,
2005 target->d_name.len + 1);
dc711ca3
AV
2006 dentry->d_name.len = target->d_name.len;
2007 return;
1da177e4
LT
2008 }
2009 }
9a8d5bb4 2010 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2011}
2012
2fd6b7f5
NP
2013static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2014{
2015 /*
2016 * XXXX: do we really need to take target->d_lock?
2017 */
2018 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2019 spin_lock(&target->d_parent->d_lock);
2020 else {
2021 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2022 spin_lock(&dentry->d_parent->d_lock);
2023 spin_lock_nested(&target->d_parent->d_lock,
2024 DENTRY_D_LOCK_NESTED);
2025 } else {
2026 spin_lock(&target->d_parent->d_lock);
2027 spin_lock_nested(&dentry->d_parent->d_lock,
2028 DENTRY_D_LOCK_NESTED);
2029 }
2030 }
2031 if (target < dentry) {
2032 spin_lock_nested(&target->d_lock, 2);
2033 spin_lock_nested(&dentry->d_lock, 3);
2034 } else {
2035 spin_lock_nested(&dentry->d_lock, 2);
2036 spin_lock_nested(&target->d_lock, 3);
2037 }
2038}
2039
2040static void dentry_unlock_parents_for_move(struct dentry *dentry,
2041 struct dentry *target)
2042{
2043 if (target->d_parent != dentry->d_parent)
2044 spin_unlock(&dentry->d_parent->d_lock);
2045 if (target->d_parent != target)
2046 spin_unlock(&target->d_parent->d_lock);
2047}
2048
1da177e4 2049/*
2fd6b7f5
NP
2050 * When switching names, the actual string doesn't strictly have to
2051 * be preserved in the target - because we're dropping the target
2052 * anyway. As such, we can just do a simple memcpy() to copy over
2053 * the new name before we switch.
2054 *
2055 * Note that we have to be a lot more careful about getting the hash
2056 * switched - we have to switch the hash value properly even if it
2057 * then no longer matches the actual (corrupted) string of the target.
2058 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2059 */
9eaef27b
TM
2060/*
2061 * d_move_locked - move a dentry
1da177e4
LT
2062 * @dentry: entry to move
2063 * @target: new dentry
2064 *
2065 * Update the dcache to reflect the move of a file name. Negative
2066 * dcache entries should not be moved in this way.
2067 */
9eaef27b 2068static void d_move_locked(struct dentry * dentry, struct dentry * target)
1da177e4 2069{
1da177e4
LT
2070 if (!dentry->d_inode)
2071 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2072
2fd6b7f5
NP
2073 BUG_ON(d_ancestor(dentry, target));
2074 BUG_ON(d_ancestor(target, dentry));
2075
1da177e4 2076 write_seqlock(&rename_lock);
2fd6b7f5
NP
2077
2078 dentry_lock_for_move(dentry, target);
1da177e4
LT
2079
2080 /* Move the dentry to the target hash queue, if on different bucket */
789680d1
NP
2081 spin_lock(&dcache_hash_lock);
2082 if (!d_unhashed(dentry))
2083 hlist_del_rcu(&dentry->d_hash);
2084 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2085 spin_unlock(&dcache_hash_lock);
1da177e4
LT
2086
2087 /* Unhash the target: dput() will then get rid of it */
2088 __d_drop(target);
2089
5160ee6f
ED
2090 list_del(&dentry->d_u.d_child);
2091 list_del(&target->d_u.d_child);
1da177e4
LT
2092
2093 /* Switch the names.. */
2094 switch_names(dentry, target);
9a8d5bb4 2095 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2096
2097 /* ... and switch the parents */
2098 if (IS_ROOT(dentry)) {
2099 dentry->d_parent = target->d_parent;
2100 target->d_parent = target;
5160ee6f 2101 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2102 } else {
9a8d5bb4 2103 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2104
2105 /* And add them back to the (new) parent lists */
5160ee6f 2106 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2107 }
2108
5160ee6f 2109 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5
NP
2110
2111 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2112 spin_unlock(&target->d_lock);
c32ccd87 2113 fsnotify_d_move(dentry);
1da177e4
LT
2114 spin_unlock(&dentry->d_lock);
2115 write_sequnlock(&rename_lock);
9eaef27b
TM
2116}
2117
2118/**
2119 * d_move - move a dentry
2120 * @dentry: entry to move
2121 * @target: new dentry
2122 *
2123 * Update the dcache to reflect the move of a file name. Negative
2124 * dcache entries should not be moved in this way.
2125 */
2126
2127void d_move(struct dentry * dentry, struct dentry * target)
2128{
2129 spin_lock(&dcache_lock);
2130 d_move_locked(dentry, target);
1da177e4
LT
2131 spin_unlock(&dcache_lock);
2132}
ec4f8605 2133EXPORT_SYMBOL(d_move);
1da177e4 2134
e2761a11
OH
2135/**
2136 * d_ancestor - search for an ancestor
2137 * @p1: ancestor dentry
2138 * @p2: child dentry
2139 *
2140 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2141 * an ancestor of p2, else NULL.
9eaef27b 2142 */
e2761a11 2143struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2144{
2145 struct dentry *p;
2146
871c0067 2147 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2148 if (p->d_parent == p1)
e2761a11 2149 return p;
9eaef27b 2150 }
e2761a11 2151 return NULL;
9eaef27b
TM
2152}
2153
2154/*
2155 * This helper attempts to cope with remotely renamed directories
2156 *
2157 * It assumes that the caller is already holding
2158 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
2159 *
2160 * Note: If ever the locking in lock_rename() changes, then please
2161 * remember to update this too...
9eaef27b
TM
2162 */
2163static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
31f3e0b3 2164 __releases(dcache_lock)
b23fb0a6 2165 __releases(dcache_inode_lock)
9eaef27b
TM
2166{
2167 struct mutex *m1 = NULL, *m2 = NULL;
2168 struct dentry *ret;
2169
2170 /* If alias and dentry share a parent, then no extra locks required */
2171 if (alias->d_parent == dentry->d_parent)
2172 goto out_unalias;
2173
2174 /* Check for loops */
2175 ret = ERR_PTR(-ELOOP);
e2761a11 2176 if (d_ancestor(alias, dentry))
9eaef27b
TM
2177 goto out_err;
2178
2179 /* See lock_rename() */
2180 ret = ERR_PTR(-EBUSY);
2181 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2182 goto out_err;
2183 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2184 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2185 goto out_err;
2186 m2 = &alias->d_parent->d_inode->i_mutex;
2187out_unalias:
2188 d_move_locked(alias, dentry);
2189 ret = alias;
2190out_err:
b23fb0a6 2191 spin_unlock(&dcache_inode_lock);
9eaef27b
TM
2192 spin_unlock(&dcache_lock);
2193 if (m2)
2194 mutex_unlock(m2);
2195 if (m1)
2196 mutex_unlock(m1);
2197 return ret;
2198}
2199
770bfad8
DH
2200/*
2201 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2202 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2203 * returns with anon->d_lock held!
770bfad8
DH
2204 */
2205static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2206{
2207 struct dentry *dparent, *aparent;
2208
2fd6b7f5 2209 dentry_lock_for_move(anon, dentry);
770bfad8
DH
2210
2211 dparent = dentry->d_parent;
2212 aparent = anon->d_parent;
2213
2fd6b7f5
NP
2214 switch_names(dentry, anon);
2215 swap(dentry->d_name.hash, anon->d_name.hash);
2216
770bfad8
DH
2217 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2218 list_del(&dentry->d_u.d_child);
2219 if (!IS_ROOT(dentry))
2220 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2221 else
2222 INIT_LIST_HEAD(&dentry->d_u.d_child);
2223
2224 anon->d_parent = (dparent == dentry) ? anon : dparent;
2225 list_del(&anon->d_u.d_child);
2226 if (!IS_ROOT(anon))
2227 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2228 else
2229 INIT_LIST_HEAD(&anon->d_u.d_child);
2230
2fd6b7f5
NP
2231 dentry_unlock_parents_for_move(anon, dentry);
2232 spin_unlock(&dentry->d_lock);
2233
2234 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2235 anon->d_flags &= ~DCACHE_DISCONNECTED;
2236}
2237
2238/**
2239 * d_materialise_unique - introduce an inode into the tree
2240 * @dentry: candidate dentry
2241 * @inode: inode to bind to the dentry, to which aliases may be attached
2242 *
2243 * Introduces an dentry into the tree, substituting an extant disconnected
2244 * root directory alias in its place if there is one
2245 */
2246struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2247{
9eaef27b 2248 struct dentry *actual;
770bfad8
DH
2249
2250 BUG_ON(!d_unhashed(dentry));
2251
2252 spin_lock(&dcache_lock);
b23fb0a6 2253 spin_lock(&dcache_inode_lock);
770bfad8
DH
2254
2255 if (!inode) {
2256 actual = dentry;
360da900 2257 __d_instantiate(dentry, NULL);
770bfad8
DH
2258 goto found_lock;
2259 }
2260
9eaef27b
TM
2261 if (S_ISDIR(inode->i_mode)) {
2262 struct dentry *alias;
2263
2264 /* Does an aliased dentry already exist? */
2265 alias = __d_find_alias(inode, 0);
2266 if (alias) {
2267 actual = alias;
2268 /* Is this an anonymous mountpoint that we could splice
2269 * into our tree? */
2270 if (IS_ROOT(alias)) {
9eaef27b
TM
2271 __d_materialise_dentry(dentry, alias);
2272 __d_drop(alias);
2273 goto found;
2274 }
2275 /* Nope, but we must(!) avoid directory aliasing */
2276 actual = __d_unalias(dentry, alias);
2277 if (IS_ERR(actual))
2278 dput(alias);
2279 goto out_nolock;
2280 }
770bfad8
DH
2281 }
2282
2283 /* Add a unique reference */
2284 actual = __d_instantiate_unique(dentry, inode);
2285 if (!actual)
2286 actual = dentry;
2287 else if (unlikely(!d_unhashed(actual)))
2288 goto shouldnt_be_hashed;
2289
2290found_lock:
2291 spin_lock(&actual->d_lock);
2292found:
789680d1 2293 spin_lock(&dcache_hash_lock);
770bfad8 2294 _d_rehash(actual);
789680d1 2295 spin_unlock(&dcache_hash_lock);
770bfad8 2296 spin_unlock(&actual->d_lock);
b23fb0a6 2297 spin_unlock(&dcache_inode_lock);
770bfad8 2298 spin_unlock(&dcache_lock);
9eaef27b 2299out_nolock:
770bfad8
DH
2300 if (actual == dentry) {
2301 security_d_instantiate(dentry, inode);
2302 return NULL;
2303 }
2304
2305 iput(inode);
2306 return actual;
2307
770bfad8 2308shouldnt_be_hashed:
b23fb0a6 2309 spin_unlock(&dcache_inode_lock);
770bfad8
DH
2310 spin_unlock(&dcache_lock);
2311 BUG();
770bfad8 2312}
ec4f8605 2313EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2314
cdd16d02 2315static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2316{
2317 *buflen -= namelen;
2318 if (*buflen < 0)
2319 return -ENAMETOOLONG;
2320 *buffer -= namelen;
2321 memcpy(*buffer, str, namelen);
2322 return 0;
2323}
2324
cdd16d02
MS
2325static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2326{
2327 return prepend(buffer, buflen, name->name, name->len);
2328}
2329
1da177e4 2330/**
f2eb6575
MS
2331 * Prepend path string to a buffer
2332 *
9d1bc601
MS
2333 * @path: the dentry/vfsmount to report
2334 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2335 * @buffer: pointer to the end of the buffer
2336 * @buflen: pointer to buffer length
552ce544 2337 *
949854d0 2338 * Caller holds the rename_lock.
9d1bc601
MS
2339 *
2340 * If path is not reachable from the supplied root, then the value of
2341 * root is changed (without modifying refcounts).
1da177e4 2342 */
f2eb6575
MS
2343static int prepend_path(const struct path *path, struct path *root,
2344 char **buffer, int *buflen)
1da177e4 2345{
9d1bc601
MS
2346 struct dentry *dentry = path->dentry;
2347 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2348 bool slash = false;
2349 int error = 0;
6092d048 2350
99b7db7b 2351 br_read_lock(vfsmount_lock);
f2eb6575 2352 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2353 struct dentry * parent;
2354
1da177e4 2355 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2356 /* Global root? */
1da177e4 2357 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2358 goto global_root;
2359 }
2360 dentry = vfsmnt->mnt_mountpoint;
2361 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2362 continue;
2363 }
2364 parent = dentry->d_parent;
2365 prefetch(parent);
9abca360 2366 spin_lock(&dentry->d_lock);
f2eb6575 2367 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2368 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2369 if (!error)
2370 error = prepend(buffer, buflen, "/", 1);
2371 if (error)
2372 break;
2373
2374 slash = true;
1da177e4
LT
2375 dentry = parent;
2376 }
2377
be285c71 2378out:
f2eb6575
MS
2379 if (!error && !slash)
2380 error = prepend(buffer, buflen, "/", 1);
2381
99b7db7b 2382 br_read_unlock(vfsmount_lock);
f2eb6575 2383 return error;
1da177e4
LT
2384
2385global_root:
98dc568b
MS
2386 /*
2387 * Filesystems needing to implement special "root names"
2388 * should do so with ->d_dname()
2389 */
2390 if (IS_ROOT(dentry) &&
2391 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2392 WARN(1, "Root dentry has weird name <%.*s>\n",
2393 (int) dentry->d_name.len, dentry->d_name.name);
2394 }
9d1bc601
MS
2395 root->mnt = vfsmnt;
2396 root->dentry = dentry;
be285c71 2397 goto out;
f2eb6575 2398}
be285c71 2399
f2eb6575
MS
2400/**
2401 * __d_path - return the path of a dentry
2402 * @path: the dentry/vfsmount to report
2403 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2404 * @buf: buffer to return value in
f2eb6575
MS
2405 * @buflen: buffer length
2406 *
ffd1f4ed 2407 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2408 *
2409 * Returns a pointer into the buffer or an error code if the
2410 * path was too long.
2411 *
be148247 2412 * "buflen" should be positive.
f2eb6575
MS
2413 *
2414 * If path is not reachable from the supplied root, then the value of
2415 * root is changed (without modifying refcounts).
2416 */
2417char *__d_path(const struct path *path, struct path *root,
2418 char *buf, int buflen)
2419{
2420 char *res = buf + buflen;
2421 int error;
2422
2423 prepend(&res, &buflen, "\0", 1);
be148247 2424 spin_lock(&dcache_lock);
949854d0 2425 write_seqlock(&rename_lock);
f2eb6575 2426 error = prepend_path(path, root, &res, &buflen);
949854d0 2427 write_sequnlock(&rename_lock);
be148247
CH
2428 spin_unlock(&dcache_lock);
2429
f2eb6575
MS
2430 if (error)
2431 return ERR_PTR(error);
f2eb6575 2432 return res;
1da177e4
LT
2433}
2434
ffd1f4ed
MS
2435/*
2436 * same as __d_path but appends "(deleted)" for unlinked files.
2437 */
2438static int path_with_deleted(const struct path *path, struct path *root,
2439 char **buf, int *buflen)
2440{
2441 prepend(buf, buflen, "\0", 1);
2442 if (d_unlinked(path->dentry)) {
2443 int error = prepend(buf, buflen, " (deleted)", 10);
2444 if (error)
2445 return error;
2446 }
2447
2448 return prepend_path(path, root, buf, buflen);
2449}
2450
8df9d1a4
MS
2451static int prepend_unreachable(char **buffer, int *buflen)
2452{
2453 return prepend(buffer, buflen, "(unreachable)", 13);
2454}
2455
a03a8a70
JB
2456/**
2457 * d_path - return the path of a dentry
cf28b486 2458 * @path: path to report
a03a8a70
JB
2459 * @buf: buffer to return value in
2460 * @buflen: buffer length
2461 *
2462 * Convert a dentry into an ASCII path name. If the entry has been deleted
2463 * the string " (deleted)" is appended. Note that this is ambiguous.
2464 *
52afeefb
AV
2465 * Returns a pointer into the buffer or an error code if the path was
2466 * too long. Note: Callers should use the returned pointer, not the passed
2467 * in buffer, to use the name! The implementation often starts at an offset
2468 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2469 *
31f3e0b3 2470 * "buflen" should be positive.
a03a8a70 2471 */
20d4fdc1 2472char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2473{
ffd1f4ed 2474 char *res = buf + buflen;
6ac08c39 2475 struct path root;
9d1bc601 2476 struct path tmp;
ffd1f4ed 2477 int error;
1da177e4 2478
c23fbb6b
ED
2479 /*
2480 * We have various synthetic filesystems that never get mounted. On
2481 * these filesystems dentries are never used for lookup purposes, and
2482 * thus don't need to be hashed. They also don't need a name until a
2483 * user wants to identify the object in /proc/pid/fd/. The little hack
2484 * below allows us to generate a name for these objects on demand:
2485 */
cf28b486
JB
2486 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2487 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2488
f7ad3c6b 2489 get_fs_root(current->fs, &root);
552ce544 2490 spin_lock(&dcache_lock);
949854d0 2491 write_seqlock(&rename_lock);
9d1bc601 2492 tmp = root;
ffd1f4ed
MS
2493 error = path_with_deleted(path, &tmp, &res, &buflen);
2494 if (error)
2495 res = ERR_PTR(error);
949854d0 2496 write_sequnlock(&rename_lock);
552ce544 2497 spin_unlock(&dcache_lock);
6ac08c39 2498 path_put(&root);
1da177e4
LT
2499 return res;
2500}
ec4f8605 2501EXPORT_SYMBOL(d_path);
1da177e4 2502
8df9d1a4
MS
2503/**
2504 * d_path_with_unreachable - return the path of a dentry
2505 * @path: path to report
2506 * @buf: buffer to return value in
2507 * @buflen: buffer length
2508 *
2509 * The difference from d_path() is that this prepends "(unreachable)"
2510 * to paths which are unreachable from the current process' root.
2511 */
2512char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2513{
2514 char *res = buf + buflen;
2515 struct path root;
2516 struct path tmp;
2517 int error;
2518
2519 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2520 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2521
2522 get_fs_root(current->fs, &root);
2523 spin_lock(&dcache_lock);
949854d0 2524 write_seqlock(&rename_lock);
8df9d1a4
MS
2525 tmp = root;
2526 error = path_with_deleted(path, &tmp, &res, &buflen);
2527 if (!error && !path_equal(&tmp, &root))
2528 error = prepend_unreachable(&res, &buflen);
949854d0 2529 write_sequnlock(&rename_lock);
8df9d1a4
MS
2530 spin_unlock(&dcache_lock);
2531 path_put(&root);
2532 if (error)
2533 res = ERR_PTR(error);
2534
2535 return res;
2536}
2537
c23fbb6b
ED
2538/*
2539 * Helper function for dentry_operations.d_dname() members
2540 */
2541char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2542 const char *fmt, ...)
2543{
2544 va_list args;
2545 char temp[64];
2546 int sz;
2547
2548 va_start(args, fmt);
2549 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2550 va_end(args);
2551
2552 if (sz > sizeof(temp) || sz > buflen)
2553 return ERR_PTR(-ENAMETOOLONG);
2554
2555 buffer += buflen - sz;
2556 return memcpy(buffer, temp, sz);
2557}
2558
6092d048
RP
2559/*
2560 * Write full pathname from the root of the filesystem into the buffer.
2561 */
ec2447c2 2562static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2563{
2564 char *end = buf + buflen;
2565 char *retval;
2566
6092d048 2567 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2568 if (buflen < 1)
2569 goto Elong;
2570 /* Get '/' right */
2571 retval = end-1;
2572 *retval = '/';
2573
cdd16d02
MS
2574 while (!IS_ROOT(dentry)) {
2575 struct dentry *parent = dentry->d_parent;
9abca360 2576 int error;
6092d048 2577
6092d048 2578 prefetch(parent);
9abca360
NP
2579 spin_lock(&dentry->d_lock);
2580 error = prepend_name(&end, &buflen, &dentry->d_name);
2581 spin_unlock(&dentry->d_lock);
2582 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2583 goto Elong;
2584
2585 retval = end;
2586 dentry = parent;
2587 }
c103135c
AV
2588 return retval;
2589Elong:
2590 return ERR_PTR(-ENAMETOOLONG);
2591}
ec2447c2
NP
2592
2593char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2594{
2595 char *retval;
2596
2597 spin_lock(&dcache_lock);
949854d0 2598 write_seqlock(&rename_lock);
ec2447c2 2599 retval = __dentry_path(dentry, buf, buflen);
949854d0 2600 write_sequnlock(&rename_lock);
ec2447c2
NP
2601 spin_unlock(&dcache_lock);
2602
2603 return retval;
2604}
2605EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2606
2607char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2608{
2609 char *p = NULL;
2610 char *retval;
2611
2612 spin_lock(&dcache_lock);
949854d0 2613 write_seqlock(&rename_lock);
c103135c
AV
2614 if (d_unlinked(dentry)) {
2615 p = buf + buflen;
2616 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2617 goto Elong;
2618 buflen++;
2619 }
2620 retval = __dentry_path(dentry, buf, buflen);
949854d0 2621 write_sequnlock(&rename_lock);
6092d048 2622 spin_unlock(&dcache_lock);
c103135c
AV
2623 if (!IS_ERR(retval) && p)
2624 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2625 return retval;
2626Elong:
2627 spin_unlock(&dcache_lock);
2628 return ERR_PTR(-ENAMETOOLONG);
2629}
2630
1da177e4
LT
2631/*
2632 * NOTE! The user-level library version returns a
2633 * character pointer. The kernel system call just
2634 * returns the length of the buffer filled (which
2635 * includes the ending '\0' character), or a negative
2636 * error value. So libc would do something like
2637 *
2638 * char *getcwd(char * buf, size_t size)
2639 * {
2640 * int retval;
2641 *
2642 * retval = sys_getcwd(buf, size);
2643 * if (retval >= 0)
2644 * return buf;
2645 * errno = -retval;
2646 * return NULL;
2647 * }
2648 */
3cdad428 2649SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2650{
552ce544 2651 int error;
6ac08c39 2652 struct path pwd, root;
552ce544 2653 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2654
2655 if (!page)
2656 return -ENOMEM;
2657
f7ad3c6b 2658 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2659
552ce544 2660 error = -ENOENT;
552ce544 2661 spin_lock(&dcache_lock);
949854d0 2662 write_seqlock(&rename_lock);
f3da392e 2663 if (!d_unlinked(pwd.dentry)) {
552ce544 2664 unsigned long len;
9d1bc601 2665 struct path tmp = root;
8df9d1a4
MS
2666 char *cwd = page + PAGE_SIZE;
2667 int buflen = PAGE_SIZE;
1da177e4 2668
8df9d1a4
MS
2669 prepend(&cwd, &buflen, "\0", 1);
2670 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2671 write_sequnlock(&rename_lock);
552ce544
LT
2672 spin_unlock(&dcache_lock);
2673
8df9d1a4 2674 if (error)
552ce544
LT
2675 goto out;
2676
8df9d1a4
MS
2677 /* Unreachable from current root */
2678 if (!path_equal(&tmp, &root)) {
2679 error = prepend_unreachable(&cwd, &buflen);
2680 if (error)
2681 goto out;
2682 }
2683
552ce544
LT
2684 error = -ERANGE;
2685 len = PAGE_SIZE + page - cwd;
2686 if (len <= size) {
2687 error = len;
2688 if (copy_to_user(buf, cwd, len))
2689 error = -EFAULT;
2690 }
949854d0
NP
2691 } else {
2692 write_sequnlock(&rename_lock);
552ce544 2693 spin_unlock(&dcache_lock);
949854d0 2694 }
1da177e4
LT
2695
2696out:
6ac08c39
JB
2697 path_put(&pwd);
2698 path_put(&root);
1da177e4
LT
2699 free_page((unsigned long) page);
2700 return error;
2701}
2702
2703/*
2704 * Test whether new_dentry is a subdirectory of old_dentry.
2705 *
2706 * Trivially implemented using the dcache structure
2707 */
2708
2709/**
2710 * is_subdir - is new dentry a subdirectory of old_dentry
2711 * @new_dentry: new dentry
2712 * @old_dentry: old dentry
2713 *
2714 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2715 * Returns 0 otherwise.
2716 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2717 */
2718
e2761a11 2719int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2720{
2721 int result;
949854d0 2722 unsigned seq;
1da177e4 2723
e2761a11
OH
2724 if (new_dentry == old_dentry)
2725 return 1;
2726
e2761a11 2727 do {
1da177e4 2728 /* for restarting inner loop in case of seq retry */
1da177e4 2729 seq = read_seqbegin(&rename_lock);
949854d0
NP
2730 /*
2731 * Need rcu_readlock to protect against the d_parent trashing
2732 * due to d_move
2733 */
2734 rcu_read_lock();
e2761a11 2735 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2736 result = 1;
e2761a11
OH
2737 else
2738 result = 0;
949854d0 2739 rcu_read_unlock();
1da177e4 2740 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2741
2742 return result;
2743}
2744
2096f759
AV
2745int path_is_under(struct path *path1, struct path *path2)
2746{
2747 struct vfsmount *mnt = path1->mnt;
2748 struct dentry *dentry = path1->dentry;
2749 int res;
99b7db7b
NP
2750
2751 br_read_lock(vfsmount_lock);
2096f759
AV
2752 if (mnt != path2->mnt) {
2753 for (;;) {
2754 if (mnt->mnt_parent == mnt) {
99b7db7b 2755 br_read_unlock(vfsmount_lock);
2096f759
AV
2756 return 0;
2757 }
2758 if (mnt->mnt_parent == path2->mnt)
2759 break;
2760 mnt = mnt->mnt_parent;
2761 }
2762 dentry = mnt->mnt_mountpoint;
2763 }
2764 res = is_subdir(dentry, path2->dentry);
99b7db7b 2765 br_read_unlock(vfsmount_lock);
2096f759
AV
2766 return res;
2767}
2768EXPORT_SYMBOL(path_is_under);
2769
1da177e4
LT
2770void d_genocide(struct dentry *root)
2771{
949854d0 2772 struct dentry *this_parent;
1da177e4 2773 struct list_head *next;
949854d0 2774 unsigned seq;
1da177e4 2775
949854d0
NP
2776rename_retry:
2777 this_parent = root;
2778 seq = read_seqbegin(&rename_lock);
1da177e4 2779 spin_lock(&dcache_lock);
2fd6b7f5 2780 spin_lock(&this_parent->d_lock);
1da177e4
LT
2781repeat:
2782 next = this_parent->d_subdirs.next;
2783resume:
2784 while (next != &this_parent->d_subdirs) {
2785 struct list_head *tmp = next;
5160ee6f 2786 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2787 next = tmp->next;
949854d0 2788
da502956
NP
2789 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2790 if (d_unhashed(dentry) || !dentry->d_inode) {
2791 spin_unlock(&dentry->d_lock);
1da177e4 2792 continue;
da502956 2793 }
1da177e4 2794 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2795 spin_unlock(&this_parent->d_lock);
2796 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2797 this_parent = dentry;
2fd6b7f5 2798 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2799 goto repeat;
2800 }
949854d0
NP
2801 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2802 dentry->d_flags |= DCACHE_GENOCIDE;
2803 dentry->d_count--;
2804 }
b7ab39f6 2805 spin_unlock(&dentry->d_lock);
1da177e4
LT
2806 }
2807 if (this_parent != root) {
949854d0
NP
2808 struct dentry *tmp;
2809 struct dentry *child;
2810
2811 tmp = this_parent->d_parent;
2812 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2813 this_parent->d_flags |= DCACHE_GENOCIDE;
2814 this_parent->d_count--;
2815 }
2816 rcu_read_lock();
b7ab39f6 2817 spin_unlock(&this_parent->d_lock);
949854d0
NP
2818 child = this_parent;
2819 this_parent = tmp;
2fd6b7f5 2820 spin_lock(&this_parent->d_lock);
949854d0
NP
2821 /* might go back up the wrong parent if we have had a rename
2822 * or deletion */
2823 if (this_parent != child->d_parent ||
2824 read_seqretry(&rename_lock, seq)) {
2825 spin_unlock(&this_parent->d_lock);
2826 spin_unlock(&dcache_lock);
2827 rcu_read_unlock();
2828 goto rename_retry;
2829 }
2830 rcu_read_unlock();
2831 next = child->d_u.d_child.next;
1da177e4
LT
2832 goto resume;
2833 }
2fd6b7f5 2834 spin_unlock(&this_parent->d_lock);
1da177e4 2835 spin_unlock(&dcache_lock);
949854d0
NP
2836 if (read_seqretry(&rename_lock, seq))
2837 goto rename_retry;
1da177e4
LT
2838}
2839
2840/**
2841 * find_inode_number - check for dentry with name
2842 * @dir: directory to check
2843 * @name: Name to find.
2844 *
2845 * Check whether a dentry already exists for the given name,
2846 * and return the inode number if it has an inode. Otherwise
2847 * 0 is returned.
2848 *
2849 * This routine is used to post-process directory listings for
2850 * filesystems using synthetic inode numbers, and is necessary
2851 * to keep getcwd() working.
2852 */
2853
2854ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2855{
2856 struct dentry * dentry;
2857 ino_t ino = 0;
2858
3e7e241f
EB
2859 dentry = d_hash_and_lookup(dir, name);
2860 if (dentry) {
1da177e4
LT
2861 if (dentry->d_inode)
2862 ino = dentry->d_inode->i_ino;
2863 dput(dentry);
2864 }
1da177e4
LT
2865 return ino;
2866}
ec4f8605 2867EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2868
2869static __initdata unsigned long dhash_entries;
2870static int __init set_dhash_entries(char *str)
2871{
2872 if (!str)
2873 return 0;
2874 dhash_entries = simple_strtoul(str, &str, 0);
2875 return 1;
2876}
2877__setup("dhash_entries=", set_dhash_entries);
2878
2879static void __init dcache_init_early(void)
2880{
2881 int loop;
2882
2883 /* If hashes are distributed across NUMA nodes, defer
2884 * hash allocation until vmalloc space is available.
2885 */
2886 if (hashdist)
2887 return;
2888
2889 dentry_hashtable =
2890 alloc_large_system_hash("Dentry cache",
2891 sizeof(struct hlist_head),
2892 dhash_entries,
2893 13,
2894 HASH_EARLY,
2895 &d_hash_shift,
2896 &d_hash_mask,
2897 0);
2898
2899 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2900 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2901}
2902
74bf17cf 2903static void __init dcache_init(void)
1da177e4
LT
2904{
2905 int loop;
2906
2907 /*
2908 * A constructor could be added for stable state like the lists,
2909 * but it is probably not worth it because of the cache nature
2910 * of the dcache.
2911 */
0a31bd5f
CL
2912 dentry_cache = KMEM_CACHE(dentry,
2913 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2914
8e1f936b 2915 register_shrinker(&dcache_shrinker);
1da177e4
LT
2916
2917 /* Hash may have been set up in dcache_init_early */
2918 if (!hashdist)
2919 return;
2920
2921 dentry_hashtable =
2922 alloc_large_system_hash("Dentry cache",
2923 sizeof(struct hlist_head),
2924 dhash_entries,
2925 13,
2926 0,
2927 &d_hash_shift,
2928 &d_hash_mask,
2929 0);
2930
2931 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2932 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2933}
2934
2935/* SLAB cache for __getname() consumers */
e18b890b 2936struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2937EXPORT_SYMBOL(names_cachep);
1da177e4 2938
1da177e4
LT
2939EXPORT_SYMBOL(d_genocide);
2940
1da177e4
LT
2941void __init vfs_caches_init_early(void)
2942{
2943 dcache_init_early();
2944 inode_init_early();
2945}
2946
2947void __init vfs_caches_init(unsigned long mempages)
2948{
2949 unsigned long reserve;
2950
2951 /* Base hash sizes on available memory, with a reserve equal to
2952 150% of current kernel size */
2953
2954 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2955 mempages -= reserve;
2956
2957 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2958 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2959
74bf17cf
DC
2960 dcache_init();
2961 inode_init();
1da177e4 2962 files_init(mempages);
74bf17cf 2963 mnt_init();
1da177e4
LT
2964 bdev_cache_init();
2965 chrdev_init();
2966}