]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/dcache.c
vfs: Remove unnecessary calls of check_submounts_and_drop
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3942c07c 117static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 118static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
121
122/*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
3942c07c 134static long get_nr_dentry(void)
3e880fb5
NP
135{
136 int i;
3942c07c 137 long sum = 0;
3e880fb5
NP
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141}
142
62d36c77
DC
143static long get_nr_dentry_unused(void)
144{
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150}
151
1f7e0616 152int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
153 size_t *lenp, loff_t *ppos)
154{
3e880fb5 155 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 156 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
158}
159#endif
160
5483f18e
LT
161/*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
e419b4cc
LT
165#ifdef CONFIG_DCACHE_WORD_ACCESS
166
167#include <asm/word-at-a-time.h>
168/*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
94753db5 177static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 178{
bfcfaa77 179 unsigned long a,b,mask;
bfcfaa77
LT
180
181 for (;;) {
12f8ad4b 182 a = *(unsigned long *)cs;
e419b4cc 183 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
a5c21dce 194 mask = bytemask_from_count(tcount);
bfcfaa77 195 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
196}
197
bfcfaa77 198#else
e419b4cc 199
94753db5 200static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 201{
5483f18e
LT
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210}
211
e419b4cc
LT
212#endif
213
94753db5
LT
214static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215{
6326c71f 216 const unsigned char *cs;
94753db5
LT
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
6326c71f
LT
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
236}
237
8d85b484
AV
238struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244};
245
246static inline struct external_name *external_name(struct dentry *dentry)
247{
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249}
250
9c82ab9c 251static void __d_free(struct rcu_head *head)
1da177e4 252{
9c82ab9c
CH
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
b3d9b7a3 255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
8d85b484
AV
256 kmem_cache_free(dentry_cache, dentry);
257}
258
259static void __d_free_external(struct rcu_head *head)
260{
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
1da177e4
LT
264 kmem_cache_free(dentry_cache, dentry);
265}
266
b4f0354e
AV
267static void dentry_free(struct dentry *dentry)
268{
8d85b484
AV
269 if (unlikely(dname_external(dentry))) {
270 struct external_name *p = external_name(dentry);
271 if (likely(atomic_dec_and_test(&p->u.count))) {
272 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 return;
274 }
275 }
b4f0354e
AV
276 /* if dentry was never visible to RCU, immediate free is OK */
277 if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 __d_free(&dentry->d_u.d_rcu);
279 else
280 call_rcu(&dentry->d_u.d_rcu, __d_free);
281}
282
31e6b01f
NP
283/**
284 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 285 * @dentry: the target dentry
31e6b01f
NP
286 * After this call, in-progress rcu-walk path lookup will fail. This
287 * should be called after unhashing, and after changing d_inode (if
288 * the dentry has not already been unhashed).
289 */
290static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291{
292 assert_spin_locked(&dentry->d_lock);
293 /* Go through a barrier */
294 write_seqcount_barrier(&dentry->d_seq);
295}
296
1da177e4
LT
297/*
298 * Release the dentry's inode, using the filesystem
31e6b01f
NP
299 * d_iput() operation if defined. Dentry has no refcount
300 * and is unhashed.
1da177e4 301 */
858119e1 302static void dentry_iput(struct dentry * dentry)
31f3e0b3 303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
1da177e4
LT
305{
306 struct inode *inode = dentry->d_inode;
307 if (inode) {
308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
1da177e4 310 spin_unlock(&dentry->d_lock);
873feea0 311 spin_unlock(&inode->i_lock);
f805fbda
LT
312 if (!inode->i_nlink)
313 fsnotify_inoderemove(inode);
1da177e4
LT
314 if (dentry->d_op && dentry->d_op->d_iput)
315 dentry->d_op->d_iput(dentry, inode);
316 else
317 iput(inode);
318 } else {
319 spin_unlock(&dentry->d_lock);
1da177e4
LT
320 }
321}
322
31e6b01f
NP
323/*
324 * Release the dentry's inode, using the filesystem
325 * d_iput() operation if defined. dentry remains in-use.
326 */
327static void dentry_unlink_inode(struct dentry * dentry)
328 __releases(dentry->d_lock)
873feea0 329 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
330{
331 struct inode *inode = dentry->d_inode;
b18825a7 332 __d_clear_type(dentry);
31e6b01f 333 dentry->d_inode = NULL;
b3d9b7a3 334 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
335 dentry_rcuwalk_barrier(dentry);
336 spin_unlock(&dentry->d_lock);
873feea0 337 spin_unlock(&inode->i_lock);
31e6b01f
NP
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344}
345
89dc77bc
LT
346/*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361static void d_lru_add(struct dentry *dentry)
362{
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367}
368
369static void d_lru_del(struct dentry *dentry)
370{
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375}
376
377static void d_shrink_del(struct dentry *dentry)
378{
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383}
384
385static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386{
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391}
392
393/*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399static void d_lru_isolate(struct dentry *dentry)
400{
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_del_init(&dentry->d_lru);
405}
406
407static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags |= DCACHE_SHRINK_LIST;
411 list_move_tail(&dentry->d_lru, list);
412}
413
da3bbdd4 414/*
f6041567 415 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
416 */
417static void dentry_lru_add(struct dentry *dentry)
418{
89dc77bc
LT
419 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 d_lru_add(dentry);
da3bbdd4
KM
421}
422
789680d1
NP
423/**
424 * d_drop - drop a dentry
425 * @dentry: dentry to drop
426 *
427 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428 * be found through a VFS lookup any more. Note that this is different from
429 * deleting the dentry - d_delete will try to mark the dentry negative if
430 * possible, giving a successful _negative_ lookup, while d_drop will
431 * just make the cache lookup fail.
432 *
433 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434 * reason (NFS timeouts or autofs deletes).
435 *
436 * __d_drop requires dentry->d_lock.
437 */
438void __d_drop(struct dentry *dentry)
439{
dea3667b 440 if (!d_unhashed(dentry)) {
b61625d2 441 struct hlist_bl_head *b;
7632e465
BF
442 /*
443 * Hashed dentries are normally on the dentry hashtable,
444 * with the exception of those newly allocated by
445 * d_obtain_alias, which are always IS_ROOT:
446 */
447 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
448 b = &dentry->d_sb->s_anon;
449 else
450 b = d_hash(dentry->d_parent, dentry->d_name.hash);
451
452 hlist_bl_lock(b);
453 __hlist_bl_del(&dentry->d_hash);
454 dentry->d_hash.pprev = NULL;
455 hlist_bl_unlock(b);
dea3667b 456 dentry_rcuwalk_barrier(dentry);
789680d1
NP
457 }
458}
459EXPORT_SYMBOL(__d_drop);
460
461void d_drop(struct dentry *dentry)
462{
789680d1
NP
463 spin_lock(&dentry->d_lock);
464 __d_drop(dentry);
465 spin_unlock(&dentry->d_lock);
789680d1
NP
466}
467EXPORT_SYMBOL(d_drop);
468
e55fd011 469static void __dentry_kill(struct dentry *dentry)
77812a1e 470{
41edf278
AV
471 struct dentry *parent = NULL;
472 bool can_free = true;
41edf278 473 if (!IS_ROOT(dentry))
77812a1e 474 parent = dentry->d_parent;
31e6b01f 475
0d98439e
LT
476 /*
477 * The dentry is now unrecoverably dead to the world.
478 */
479 lockref_mark_dead(&dentry->d_lockref);
480
f0023bc6 481 /*
f0023bc6
SW
482 * inform the fs via d_prune that this dentry is about to be
483 * unhashed and destroyed.
484 */
590fb51f 485 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
486 dentry->d_op->d_prune(dentry);
487
01b60351
AV
488 if (dentry->d_flags & DCACHE_LRU_LIST) {
489 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 d_lru_del(dentry);
01b60351 491 }
77812a1e
NP
492 /* if it was on the hash then remove it */
493 __d_drop(dentry);
03b3b889
AV
494 list_del(&dentry->d_u.d_child);
495 /*
496 * Inform d_walk() that we are no longer attached to the
497 * dentry tree
498 */
499 dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 if (parent)
501 spin_unlock(&parent->d_lock);
502 dentry_iput(dentry);
503 /*
504 * dentry_iput drops the locks, at which point nobody (except
505 * transient RCU lookups) can reach this dentry.
506 */
507 BUG_ON((int)dentry->d_lockref.count > 0);
508 this_cpu_dec(nr_dentry);
509 if (dentry->d_op && dentry->d_op->d_release)
510 dentry->d_op->d_release(dentry);
511
41edf278
AV
512 spin_lock(&dentry->d_lock);
513 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 dentry->d_flags |= DCACHE_MAY_FREE;
515 can_free = false;
516 }
517 spin_unlock(&dentry->d_lock);
41edf278
AV
518 if (likely(can_free))
519 dentry_free(dentry);
e55fd011
AV
520}
521
522/*
523 * Finish off a dentry we've decided to kill.
524 * dentry->d_lock must be held, returns with it unlocked.
525 * If ref is non-zero, then decrement the refcount too.
526 * Returns dentry requiring refcount drop, or NULL if we're done.
527 */
8cbf74da 528static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
529 __releases(dentry->d_lock)
530{
531 struct inode *inode = dentry->d_inode;
532 struct dentry *parent = NULL;
533
534 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 goto failed;
536
537 if (!IS_ROOT(dentry)) {
538 parent = dentry->d_parent;
539 if (unlikely(!spin_trylock(&parent->d_lock))) {
540 if (inode)
541 spin_unlock(&inode->i_lock);
542 goto failed;
543 }
544 }
545
546 __dentry_kill(dentry);
03b3b889 547 return parent;
e55fd011
AV
548
549failed:
8cbf74da
AV
550 spin_unlock(&dentry->d_lock);
551 cpu_relax();
e55fd011 552 return dentry; /* try again with same dentry */
77812a1e
NP
553}
554
046b961b
AV
555static inline struct dentry *lock_parent(struct dentry *dentry)
556{
557 struct dentry *parent = dentry->d_parent;
558 if (IS_ROOT(dentry))
559 return NULL;
c2338f2d
AV
560 if (unlikely((int)dentry->d_lockref.count < 0))
561 return NULL;
046b961b
AV
562 if (likely(spin_trylock(&parent->d_lock)))
563 return parent;
046b961b 564 rcu_read_lock();
c2338f2d 565 spin_unlock(&dentry->d_lock);
046b961b
AV
566again:
567 parent = ACCESS_ONCE(dentry->d_parent);
568 spin_lock(&parent->d_lock);
569 /*
570 * We can't blindly lock dentry until we are sure
571 * that we won't violate the locking order.
572 * Any changes of dentry->d_parent must have
573 * been done with parent->d_lock held, so
574 * spin_lock() above is enough of a barrier
575 * for checking if it's still our child.
576 */
577 if (unlikely(parent != dentry->d_parent)) {
578 spin_unlock(&parent->d_lock);
579 goto again;
580 }
581 rcu_read_unlock();
582 if (parent != dentry)
9f12600f 583 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
584 else
585 parent = NULL;
586 return parent;
587}
588
1da177e4
LT
589/*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606/*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
1da177e4 614 */
1da177e4
LT
615void dput(struct dentry *dentry)
616{
8aab6a27 617 if (unlikely(!dentry))
1da177e4
LT
618 return;
619
620repeat:
98474236 621 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 622 return;
1da177e4 623
8aab6a27
LT
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 629 if (dentry->d_op->d_delete(dentry))
61f3dee4 630 goto kill_it;
1da177e4 631 }
265ac902 632
358eec18
LT
633 if (!(dentry->d_flags & DCACHE_REFERENCED))
634 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 635 dentry_lru_add(dentry);
265ac902 636
98474236 637 dentry->d_lockref.count--;
61f3dee4 638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 return;
640
d52b9086 641kill_it:
8cbf74da 642 dentry = dentry_kill(dentry);
d52b9086
MS
643 if (dentry)
644 goto repeat;
1da177e4 645}
ec4f8605 646EXPORT_SYMBOL(dput);
1da177e4
LT
647
648/**
649 * d_invalidate - invalidate a dentry
650 * @dentry: dentry to invalidate
651 *
652 * Try to invalidate the dentry if it turns out to be
bafc9b75
EB
653 * possible. If there are reasons not to delete it
654 * return -EBUSY. On success return 0.
1da177e4
LT
655 *
656 * no dcache lock.
657 */
658
659int d_invalidate(struct dentry * dentry)
660{
661 /*
662 * If it's already been dropped, return OK.
663 */
da502956 664 spin_lock(&dentry->d_lock);
1da177e4 665 if (d_unhashed(dentry)) {
da502956 666 spin_unlock(&dentry->d_lock);
1da177e4
LT
667 return 0;
668 }
1da177e4 669 spin_unlock(&dentry->d_lock);
bafc9b75
EB
670
671 return check_submounts_and_drop(dentry);
1da177e4 672}
ec4f8605 673EXPORT_SYMBOL(d_invalidate);
1da177e4 674
b5c84bf6 675/* This must be called with d_lock held */
dc0474be 676static inline void __dget_dlock(struct dentry *dentry)
23044507 677{
98474236 678 dentry->d_lockref.count++;
23044507
NP
679}
680
dc0474be 681static inline void __dget(struct dentry *dentry)
1da177e4 682{
98474236 683 lockref_get(&dentry->d_lockref);
1da177e4
LT
684}
685
b7ab39f6
NP
686struct dentry *dget_parent(struct dentry *dentry)
687{
df3d0bbc 688 int gotref;
b7ab39f6
NP
689 struct dentry *ret;
690
df3d0bbc
WL
691 /*
692 * Do optimistic parent lookup without any
693 * locking.
694 */
695 rcu_read_lock();
696 ret = ACCESS_ONCE(dentry->d_parent);
697 gotref = lockref_get_not_zero(&ret->d_lockref);
698 rcu_read_unlock();
699 if (likely(gotref)) {
700 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
701 return ret;
702 dput(ret);
703 }
704
b7ab39f6 705repeat:
a734eb45
NP
706 /*
707 * Don't need rcu_dereference because we re-check it was correct under
708 * the lock.
709 */
710 rcu_read_lock();
b7ab39f6 711 ret = dentry->d_parent;
a734eb45
NP
712 spin_lock(&ret->d_lock);
713 if (unlikely(ret != dentry->d_parent)) {
714 spin_unlock(&ret->d_lock);
715 rcu_read_unlock();
b7ab39f6
NP
716 goto repeat;
717 }
a734eb45 718 rcu_read_unlock();
98474236
WL
719 BUG_ON(!ret->d_lockref.count);
720 ret->d_lockref.count++;
b7ab39f6 721 spin_unlock(&ret->d_lock);
b7ab39f6
NP
722 return ret;
723}
724EXPORT_SYMBOL(dget_parent);
725
1da177e4
LT
726/**
727 * d_find_alias - grab a hashed alias of inode
728 * @inode: inode in question
1da177e4
LT
729 *
730 * If inode has a hashed alias, or is a directory and has any alias,
731 * acquire the reference to alias and return it. Otherwise return NULL.
732 * Notice that if inode is a directory there can be only one alias and
733 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
734 * of a filesystem, or if the directory was renamed and d_revalidate
735 * was the first vfs operation to notice.
1da177e4 736 *
21c0d8fd 737 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 738 * any other hashed alias over that one.
1da177e4 739 */
52ed46f0 740static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 741{
da502956 742 struct dentry *alias, *discon_alias;
1da177e4 743
da502956
NP
744again:
745 discon_alias = NULL;
b67bfe0d 746 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 747 spin_lock(&alias->d_lock);
1da177e4 748 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 749 if (IS_ROOT(alias) &&
da502956 750 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 751 discon_alias = alias;
52ed46f0 752 } else {
dc0474be 753 __dget_dlock(alias);
da502956
NP
754 spin_unlock(&alias->d_lock);
755 return alias;
756 }
757 }
758 spin_unlock(&alias->d_lock);
759 }
760 if (discon_alias) {
761 alias = discon_alias;
762 spin_lock(&alias->d_lock);
763 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
764 __dget_dlock(alias);
765 spin_unlock(&alias->d_lock);
766 return alias;
1da177e4 767 }
da502956
NP
768 spin_unlock(&alias->d_lock);
769 goto again;
1da177e4 770 }
da502956 771 return NULL;
1da177e4
LT
772}
773
da502956 774struct dentry *d_find_alias(struct inode *inode)
1da177e4 775{
214fda1f
DH
776 struct dentry *de = NULL;
777
b3d9b7a3 778 if (!hlist_empty(&inode->i_dentry)) {
873feea0 779 spin_lock(&inode->i_lock);
52ed46f0 780 de = __d_find_alias(inode);
873feea0 781 spin_unlock(&inode->i_lock);
214fda1f 782 }
1da177e4
LT
783 return de;
784}
ec4f8605 785EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
786
787/*
788 * Try to kill dentries associated with this inode.
789 * WARNING: you must own a reference to inode.
790 */
791void d_prune_aliases(struct inode *inode)
792{
0cdca3f9 793 struct dentry *dentry;
1da177e4 794restart:
873feea0 795 spin_lock(&inode->i_lock);
b67bfe0d 796 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 797 spin_lock(&dentry->d_lock);
98474236 798 if (!dentry->d_lockref.count) {
590fb51f
YZ
799 /*
800 * inform the fs via d_prune that this dentry
801 * is about to be unhashed and destroyed.
802 */
803 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
804 !d_unhashed(dentry))
805 dentry->d_op->d_prune(dentry);
806
dc0474be 807 __dget_dlock(dentry);
1da177e4
LT
808 __d_drop(dentry);
809 spin_unlock(&dentry->d_lock);
873feea0 810 spin_unlock(&inode->i_lock);
1da177e4
LT
811 dput(dentry);
812 goto restart;
813 }
814 spin_unlock(&dentry->d_lock);
815 }
873feea0 816 spin_unlock(&inode->i_lock);
1da177e4 817}
ec4f8605 818EXPORT_SYMBOL(d_prune_aliases);
1da177e4 819
3049cfe2 820static void shrink_dentry_list(struct list_head *list)
1da177e4 821{
5c47e6d0 822 struct dentry *dentry, *parent;
da3bbdd4 823
60942f2f 824 while (!list_empty(list)) {
ff2fde99 825 struct inode *inode;
60942f2f 826 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 827 spin_lock(&dentry->d_lock);
046b961b
AV
828 parent = lock_parent(dentry);
829
dd1f6b2e
DC
830 /*
831 * The dispose list is isolated and dentries are not accounted
832 * to the LRU here, so we can simply remove it from the list
833 * here regardless of whether it is referenced or not.
834 */
89dc77bc 835 d_shrink_del(dentry);
dd1f6b2e 836
1da177e4
LT
837 /*
838 * We found an inuse dentry which was not removed from
dd1f6b2e 839 * the LRU because of laziness during lookup. Do not free it.
1da177e4 840 */
41edf278 841 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 842 spin_unlock(&dentry->d_lock);
046b961b
AV
843 if (parent)
844 spin_unlock(&parent->d_lock);
1da177e4
LT
845 continue;
846 }
77812a1e 847
64fd72e0
AV
848
849 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
850 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
851 spin_unlock(&dentry->d_lock);
046b961b
AV
852 if (parent)
853 spin_unlock(&parent->d_lock);
64fd72e0
AV
854 if (can_free)
855 dentry_free(dentry);
856 continue;
857 }
858
ff2fde99
AV
859 inode = dentry->d_inode;
860 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 861 d_shrink_add(dentry, list);
dd1f6b2e 862 spin_unlock(&dentry->d_lock);
046b961b
AV
863 if (parent)
864 spin_unlock(&parent->d_lock);
5c47e6d0 865 continue;
dd1f6b2e 866 }
ff2fde99 867
ff2fde99 868 __dentry_kill(dentry);
046b961b 869
5c47e6d0
AV
870 /*
871 * We need to prune ancestors too. This is necessary to prevent
872 * quadratic behavior of shrink_dcache_parent(), but is also
873 * expected to be beneficial in reducing dentry cache
874 * fragmentation.
875 */
876 dentry = parent;
b2b80195
AV
877 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
878 parent = lock_parent(dentry);
879 if (dentry->d_lockref.count != 1) {
880 dentry->d_lockref.count--;
881 spin_unlock(&dentry->d_lock);
882 if (parent)
883 spin_unlock(&parent->d_lock);
884 break;
885 }
886 inode = dentry->d_inode; /* can't be NULL */
887 if (unlikely(!spin_trylock(&inode->i_lock))) {
888 spin_unlock(&dentry->d_lock);
889 if (parent)
890 spin_unlock(&parent->d_lock);
891 cpu_relax();
892 continue;
893 }
894 __dentry_kill(dentry);
895 dentry = parent;
896 }
da3bbdd4 897 }
3049cfe2
CH
898}
899
f6041567
DC
900static enum lru_status
901dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
902{
903 struct list_head *freeable = arg;
904 struct dentry *dentry = container_of(item, struct dentry, d_lru);
905
906
907 /*
908 * we are inverting the lru lock/dentry->d_lock here,
909 * so use a trylock. If we fail to get the lock, just skip
910 * it
911 */
912 if (!spin_trylock(&dentry->d_lock))
913 return LRU_SKIP;
914
915 /*
916 * Referenced dentries are still in use. If they have active
917 * counts, just remove them from the LRU. Otherwise give them
918 * another pass through the LRU.
919 */
920 if (dentry->d_lockref.count) {
89dc77bc 921 d_lru_isolate(dentry);
f6041567
DC
922 spin_unlock(&dentry->d_lock);
923 return LRU_REMOVED;
924 }
925
926 if (dentry->d_flags & DCACHE_REFERENCED) {
927 dentry->d_flags &= ~DCACHE_REFERENCED;
928 spin_unlock(&dentry->d_lock);
929
930 /*
931 * The list move itself will be made by the common LRU code. At
932 * this point, we've dropped the dentry->d_lock but keep the
933 * lru lock. This is safe to do, since every list movement is
934 * protected by the lru lock even if both locks are held.
935 *
936 * This is guaranteed by the fact that all LRU management
937 * functions are intermediated by the LRU API calls like
938 * list_lru_add and list_lru_del. List movement in this file
939 * only ever occur through this functions or through callbacks
940 * like this one, that are called from the LRU API.
941 *
942 * The only exceptions to this are functions like
943 * shrink_dentry_list, and code that first checks for the
944 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
945 * operating only with stack provided lists after they are
946 * properly isolated from the main list. It is thus, always a
947 * local access.
948 */
949 return LRU_ROTATE;
950 }
951
89dc77bc 952 d_lru_shrink_move(dentry, freeable);
f6041567
DC
953 spin_unlock(&dentry->d_lock);
954
955 return LRU_REMOVED;
956}
957
3049cfe2 958/**
b48f03b3
DC
959 * prune_dcache_sb - shrink the dcache
960 * @sb: superblock
f6041567 961 * @nr_to_scan : number of entries to try to free
9b17c623 962 * @nid: which node to scan for freeable entities
b48f03b3 963 *
f6041567 964 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
965 * done when we need more memory an called from the superblock shrinker
966 * function.
3049cfe2 967 *
b48f03b3
DC
968 * This function may fail to free any resources if all the dentries are in
969 * use.
3049cfe2 970 */
9b17c623
DC
971long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
972 int nid)
3049cfe2 973{
f6041567
DC
974 LIST_HEAD(dispose);
975 long freed;
3049cfe2 976
9b17c623
DC
977 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
978 &dispose, &nr_to_scan);
f6041567 979 shrink_dentry_list(&dispose);
0a234c6d 980 return freed;
da3bbdd4 981}
23044507 982
4e717f5c
GC
983static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
984 spinlock_t *lru_lock, void *arg)
dd1f6b2e 985{
4e717f5c
GC
986 struct list_head *freeable = arg;
987 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 988
4e717f5c
GC
989 /*
990 * we are inverting the lru lock/dentry->d_lock here,
991 * so use a trylock. If we fail to get the lock, just skip
992 * it
993 */
994 if (!spin_trylock(&dentry->d_lock))
995 return LRU_SKIP;
996
89dc77bc 997 d_lru_shrink_move(dentry, freeable);
4e717f5c 998 spin_unlock(&dentry->d_lock);
ec33679d 999
4e717f5c 1000 return LRU_REMOVED;
da3bbdd4
KM
1001}
1002
4e717f5c 1003
1da177e4
LT
1004/**
1005 * shrink_dcache_sb - shrink dcache for a superblock
1006 * @sb: superblock
1007 *
3049cfe2
CH
1008 * Shrink the dcache for the specified super block. This is used to free
1009 * the dcache before unmounting a file system.
1da177e4 1010 */
3049cfe2 1011void shrink_dcache_sb(struct super_block *sb)
1da177e4 1012{
4e717f5c
GC
1013 long freed;
1014
1015 do {
1016 LIST_HEAD(dispose);
1017
1018 freed = list_lru_walk(&sb->s_dentry_lru,
1019 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1020
4e717f5c
GC
1021 this_cpu_sub(nr_dentry_unused, freed);
1022 shrink_dentry_list(&dispose);
1023 } while (freed > 0);
1da177e4 1024}
ec4f8605 1025EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1026
db14fc3a
MS
1027/**
1028 * enum d_walk_ret - action to talke during tree walk
1029 * @D_WALK_CONTINUE: contrinue walk
1030 * @D_WALK_QUIT: quit walk
1031 * @D_WALK_NORETRY: quit when retry is needed
1032 * @D_WALK_SKIP: skip this dentry and its children
1033 */
1034enum d_walk_ret {
1035 D_WALK_CONTINUE,
1036 D_WALK_QUIT,
1037 D_WALK_NORETRY,
1038 D_WALK_SKIP,
1039};
c826cb7d 1040
1da177e4 1041/**
db14fc3a
MS
1042 * d_walk - walk the dentry tree
1043 * @parent: start of walk
1044 * @data: data passed to @enter() and @finish()
1045 * @enter: callback when first entering the dentry
1046 * @finish: callback when successfully finished the walk
1da177e4 1047 *
db14fc3a 1048 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1049 */
db14fc3a
MS
1050static void d_walk(struct dentry *parent, void *data,
1051 enum d_walk_ret (*enter)(void *, struct dentry *),
1052 void (*finish)(void *))
1da177e4 1053{
949854d0 1054 struct dentry *this_parent;
1da177e4 1055 struct list_head *next;
48f5ec21 1056 unsigned seq = 0;
db14fc3a
MS
1057 enum d_walk_ret ret;
1058 bool retry = true;
949854d0 1059
58db63d0 1060again:
48f5ec21 1061 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1062 this_parent = parent;
2fd6b7f5 1063 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1064
1065 ret = enter(data, this_parent);
1066 switch (ret) {
1067 case D_WALK_CONTINUE:
1068 break;
1069 case D_WALK_QUIT:
1070 case D_WALK_SKIP:
1071 goto out_unlock;
1072 case D_WALK_NORETRY:
1073 retry = false;
1074 break;
1075 }
1da177e4
LT
1076repeat:
1077 next = this_parent->d_subdirs.next;
1078resume:
1079 while (next != &this_parent->d_subdirs) {
1080 struct list_head *tmp = next;
5160ee6f 1081 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1082 next = tmp->next;
2fd6b7f5
NP
1083
1084 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1085
1086 ret = enter(data, dentry);
1087 switch (ret) {
1088 case D_WALK_CONTINUE:
1089 break;
1090 case D_WALK_QUIT:
2fd6b7f5 1091 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1092 goto out_unlock;
1093 case D_WALK_NORETRY:
1094 retry = false;
1095 break;
1096 case D_WALK_SKIP:
1097 spin_unlock(&dentry->d_lock);
1098 continue;
2fd6b7f5 1099 }
db14fc3a 1100
1da177e4 1101 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1102 spin_unlock(&this_parent->d_lock);
1103 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1104 this_parent = dentry;
2fd6b7f5 1105 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1106 goto repeat;
1107 }
2fd6b7f5 1108 spin_unlock(&dentry->d_lock);
1da177e4
LT
1109 }
1110 /*
1111 * All done at this level ... ascend and resume the search.
1112 */
1113 if (this_parent != parent) {
c826cb7d 1114 struct dentry *child = this_parent;
31dec132
AV
1115 this_parent = child->d_parent;
1116
1117 rcu_read_lock();
1118 spin_unlock(&child->d_lock);
1119 spin_lock(&this_parent->d_lock);
1120
1121 /*
1122 * might go back up the wrong parent if we have had a rename
1123 * or deletion
1124 */
1125 if (this_parent != child->d_parent ||
1126 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1127 need_seqretry(&rename_lock, seq)) {
1128 spin_unlock(&this_parent->d_lock);
1129 rcu_read_unlock();
949854d0 1130 goto rename_retry;
31dec132
AV
1131 }
1132 rcu_read_unlock();
949854d0 1133 next = child->d_u.d_child.next;
1da177e4
LT
1134 goto resume;
1135 }
48f5ec21 1136 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1137 spin_unlock(&this_parent->d_lock);
949854d0 1138 goto rename_retry;
db14fc3a
MS
1139 }
1140 if (finish)
1141 finish(data);
1142
1143out_unlock:
1144 spin_unlock(&this_parent->d_lock);
48f5ec21 1145 done_seqretry(&rename_lock, seq);
db14fc3a 1146 return;
58db63d0
NP
1147
1148rename_retry:
db14fc3a
MS
1149 if (!retry)
1150 return;
48f5ec21 1151 seq = 1;
58db63d0 1152 goto again;
1da177e4 1153}
db14fc3a
MS
1154
1155/*
1156 * Search for at least 1 mount point in the dentry's subdirs.
1157 * We descend to the next level whenever the d_subdirs
1158 * list is non-empty and continue searching.
1159 */
1160
db14fc3a
MS
1161static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1162{
1163 int *ret = data;
1164 if (d_mountpoint(dentry)) {
1165 *ret = 1;
1166 return D_WALK_QUIT;
1167 }
1168 return D_WALK_CONTINUE;
1169}
1170
69c88dc7
RD
1171/**
1172 * have_submounts - check for mounts over a dentry
1173 * @parent: dentry to check.
1174 *
1175 * Return true if the parent or its subdirectories contain
1176 * a mount point
1177 */
db14fc3a
MS
1178int have_submounts(struct dentry *parent)
1179{
1180 int ret = 0;
1181
1182 d_walk(parent, &ret, check_mount, NULL);
1183
1184 return ret;
1185}
ec4f8605 1186EXPORT_SYMBOL(have_submounts);
1da177e4 1187
eed81007
MS
1188/*
1189 * Called by mount code to set a mountpoint and check if the mountpoint is
1190 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1191 * subtree can become unreachable).
1192 *
1193 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1194 * this reason take rename_lock and d_lock on dentry and ancestors.
1195 */
1196int d_set_mounted(struct dentry *dentry)
1197{
1198 struct dentry *p;
1199 int ret = -ENOENT;
1200 write_seqlock(&rename_lock);
1201 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1202 /* Need exclusion wrt. check_submounts_and_drop() */
1203 spin_lock(&p->d_lock);
1204 if (unlikely(d_unhashed(p))) {
1205 spin_unlock(&p->d_lock);
1206 goto out;
1207 }
1208 spin_unlock(&p->d_lock);
1209 }
1210 spin_lock(&dentry->d_lock);
1211 if (!d_unlinked(dentry)) {
1212 dentry->d_flags |= DCACHE_MOUNTED;
1213 ret = 0;
1214 }
1215 spin_unlock(&dentry->d_lock);
1216out:
1217 write_sequnlock(&rename_lock);
1218 return ret;
1219}
1220
1da177e4 1221/*
fd517909 1222 * Search the dentry child list of the specified parent,
1da177e4
LT
1223 * and move any unused dentries to the end of the unused
1224 * list for prune_dcache(). We descend to the next level
1225 * whenever the d_subdirs list is non-empty and continue
1226 * searching.
1227 *
1228 * It returns zero iff there are no unused children,
1229 * otherwise it returns the number of children moved to
1230 * the end of the unused list. This may not be the total
1231 * number of unused children, because select_parent can
1232 * drop the lock and return early due to latency
1233 * constraints.
1234 */
1da177e4 1235
db14fc3a
MS
1236struct select_data {
1237 struct dentry *start;
1238 struct list_head dispose;
1239 int found;
1240};
23044507 1241
db14fc3a
MS
1242static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1243{
1244 struct select_data *data = _data;
1245 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1246
db14fc3a
MS
1247 if (data->start == dentry)
1248 goto out;
2fd6b7f5 1249
fe91522a 1250 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1251 data->found++;
fe91522a
AV
1252 } else {
1253 if (dentry->d_flags & DCACHE_LRU_LIST)
1254 d_lru_del(dentry);
1255 if (!dentry->d_lockref.count) {
1256 d_shrink_add(dentry, &data->dispose);
1257 data->found++;
1258 }
1da177e4 1259 }
db14fc3a
MS
1260 /*
1261 * We can return to the caller if we have found some (this
1262 * ensures forward progress). We'll be coming back to find
1263 * the rest.
1264 */
fe91522a
AV
1265 if (!list_empty(&data->dispose))
1266 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1267out:
db14fc3a 1268 return ret;
1da177e4
LT
1269}
1270
1271/**
1272 * shrink_dcache_parent - prune dcache
1273 * @parent: parent of entries to prune
1274 *
1275 * Prune the dcache to remove unused children of the parent dentry.
1276 */
db14fc3a 1277void shrink_dcache_parent(struct dentry *parent)
1da177e4 1278{
db14fc3a
MS
1279 for (;;) {
1280 struct select_data data;
1da177e4 1281
db14fc3a
MS
1282 INIT_LIST_HEAD(&data.dispose);
1283 data.start = parent;
1284 data.found = 0;
1285
1286 d_walk(parent, &data, select_collect, NULL);
1287 if (!data.found)
1288 break;
1289
1290 shrink_dentry_list(&data.dispose);
421348f1
GT
1291 cond_resched();
1292 }
1da177e4 1293}
ec4f8605 1294EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1295
9c8c10e2 1296static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1297{
9c8c10e2
AV
1298 /* it has busy descendents; complain about those instead */
1299 if (!list_empty(&dentry->d_subdirs))
1300 return D_WALK_CONTINUE;
42c32608 1301
9c8c10e2
AV
1302 /* root with refcount 1 is fine */
1303 if (dentry == _data && dentry->d_lockref.count == 1)
1304 return D_WALK_CONTINUE;
1305
1306 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1307 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1308 dentry,
1309 dentry->d_inode ?
1310 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1311 dentry,
42c32608
AV
1312 dentry->d_lockref.count,
1313 dentry->d_sb->s_type->name,
1314 dentry->d_sb->s_id);
9c8c10e2
AV
1315 WARN_ON(1);
1316 return D_WALK_CONTINUE;
1317}
1318
1319static void do_one_tree(struct dentry *dentry)
1320{
1321 shrink_dcache_parent(dentry);
1322 d_walk(dentry, dentry, umount_check, NULL);
1323 d_drop(dentry);
1324 dput(dentry);
42c32608
AV
1325}
1326
1327/*
1328 * destroy the dentries attached to a superblock on unmounting
1329 */
1330void shrink_dcache_for_umount(struct super_block *sb)
1331{
1332 struct dentry *dentry;
1333
9c8c10e2 1334 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1335
1336 dentry = sb->s_root;
1337 sb->s_root = NULL;
9c8c10e2 1338 do_one_tree(dentry);
42c32608
AV
1339
1340 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1341 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1342 do_one_tree(dentry);
42c32608
AV
1343 }
1344}
1345
8ed936b5
EB
1346struct detach_data {
1347 struct select_data select;
1348 struct dentry *mountpoint;
1349};
1350static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1351{
8ed936b5 1352 struct detach_data *data = _data;
848ac114
MS
1353
1354 if (d_mountpoint(dentry)) {
8ed936b5
EB
1355 __dget_dlock(dentry);
1356 data->mountpoint = dentry;
848ac114
MS
1357 return D_WALK_QUIT;
1358 }
1359
8ed936b5 1360 return select_collect(&data->select, dentry);
848ac114
MS
1361}
1362
1363static void check_and_drop(void *_data)
1364{
8ed936b5 1365 struct detach_data *data = _data;
848ac114 1366
8ed936b5
EB
1367 if (!data->mountpoint && !data->select.found)
1368 __d_drop(data->select.start);
848ac114
MS
1369}
1370
1371/**
8ed936b5 1372 * check_submounts_and_drop - detach submounts, prune dcache, and drop
848ac114 1373 *
8ed936b5
EB
1374 * The final d_drop is done as an atomic operation relative to
1375 * rename_lock ensuring there are no races with d_set_mounted. This
1376 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1377 *
8ed936b5 1378 * @dentry: dentry to detach, prune and drop
848ac114
MS
1379 */
1380int check_submounts_and_drop(struct dentry *dentry)
1381{
1382 int ret = 0;
1383
1384 /* Negative dentries can be dropped without further checks */
1385 if (!dentry->d_inode) {
1386 d_drop(dentry);
1387 goto out;
1388 }
1389
1390 for (;;) {
8ed936b5 1391 struct detach_data data;
848ac114 1392
8ed936b5
EB
1393 data.mountpoint = NULL;
1394 INIT_LIST_HEAD(&data.select.dispose);
1395 data.select.start = dentry;
1396 data.select.found = 0;
1397
1398 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1399
8ed936b5
EB
1400 if (data.select.found)
1401 shrink_dentry_list(&data.select.dispose);
848ac114 1402
8ed936b5
EB
1403 if (data.mountpoint) {
1404 detach_mounts(data.mountpoint);
1405 dput(data.mountpoint);
1406 }
848ac114 1407
8ed936b5 1408 if (!data.mountpoint && !data.select.found)
848ac114
MS
1409 break;
1410
1411 cond_resched();
1412 }
1413
1414out:
1415 return ret;
1416}
1417EXPORT_SYMBOL(check_submounts_and_drop);
1418
1da177e4 1419/**
a4464dbc
AV
1420 * __d_alloc - allocate a dcache entry
1421 * @sb: filesystem it will belong to
1da177e4
LT
1422 * @name: qstr of the name
1423 *
1424 * Allocates a dentry. It returns %NULL if there is insufficient memory
1425 * available. On a success the dentry is returned. The name passed in is
1426 * copied and the copy passed in may be reused after this call.
1427 */
1428
a4464dbc 1429struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1430{
1431 struct dentry *dentry;
1432 char *dname;
1433
e12ba74d 1434 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1435 if (!dentry)
1436 return NULL;
1437
6326c71f
LT
1438 /*
1439 * We guarantee that the inline name is always NUL-terminated.
1440 * This way the memcpy() done by the name switching in rename
1441 * will still always have a NUL at the end, even if we might
1442 * be overwriting an internal NUL character
1443 */
1444 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4 1445 if (name->len > DNAME_INLINE_LEN-1) {
8d85b484
AV
1446 size_t size = offsetof(struct external_name, name[1]);
1447 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1448 if (!p) {
1da177e4
LT
1449 kmem_cache_free(dentry_cache, dentry);
1450 return NULL;
1451 }
8d85b484
AV
1452 atomic_set(&p->u.count, 1);
1453 dname = p->name;
1da177e4
LT
1454 } else {
1455 dname = dentry->d_iname;
1456 }
1da177e4
LT
1457
1458 dentry->d_name.len = name->len;
1459 dentry->d_name.hash = name->hash;
1460 memcpy(dname, name->name, name->len);
1461 dname[name->len] = 0;
1462
6326c71f
LT
1463 /* Make sure we always see the terminating NUL character */
1464 smp_wmb();
1465 dentry->d_name.name = dname;
1466
98474236 1467 dentry->d_lockref.count = 1;
dea3667b 1468 dentry->d_flags = 0;
1da177e4 1469 spin_lock_init(&dentry->d_lock);
31e6b01f 1470 seqcount_init(&dentry->d_seq);
1da177e4 1471 dentry->d_inode = NULL;
a4464dbc
AV
1472 dentry->d_parent = dentry;
1473 dentry->d_sb = sb;
1da177e4
LT
1474 dentry->d_op = NULL;
1475 dentry->d_fsdata = NULL;
ceb5bdc2 1476 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1477 INIT_LIST_HEAD(&dentry->d_lru);
1478 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1479 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1480 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1481 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1482
3e880fb5 1483 this_cpu_inc(nr_dentry);
312d3ca8 1484
1da177e4
LT
1485 return dentry;
1486}
a4464dbc
AV
1487
1488/**
1489 * d_alloc - allocate a dcache entry
1490 * @parent: parent of entry to allocate
1491 * @name: qstr of the name
1492 *
1493 * Allocates a dentry. It returns %NULL if there is insufficient memory
1494 * available. On a success the dentry is returned. The name passed in is
1495 * copied and the copy passed in may be reused after this call.
1496 */
1497struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1498{
1499 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1500 if (!dentry)
1501 return NULL;
1502
1503 spin_lock(&parent->d_lock);
1504 /*
1505 * don't need child lock because it is not subject
1506 * to concurrency here
1507 */
1508 __dget_dlock(parent);
1509 dentry->d_parent = parent;
1510 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1511 spin_unlock(&parent->d_lock);
1512
1513 return dentry;
1514}
ec4f8605 1515EXPORT_SYMBOL(d_alloc);
1da177e4 1516
e1a24bb0
BF
1517/**
1518 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1519 * @sb: the superblock
1520 * @name: qstr of the name
1521 *
1522 * For a filesystem that just pins its dentries in memory and never
1523 * performs lookups at all, return an unhashed IS_ROOT dentry.
1524 */
4b936885
NP
1525struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1526{
e1a24bb0 1527 return __d_alloc(sb, name);
4b936885
NP
1528}
1529EXPORT_SYMBOL(d_alloc_pseudo);
1530
1da177e4
LT
1531struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1532{
1533 struct qstr q;
1534
1535 q.name = name;
1536 q.len = strlen(name);
1537 q.hash = full_name_hash(q.name, q.len);
1538 return d_alloc(parent, &q);
1539}
ef26ca97 1540EXPORT_SYMBOL(d_alloc_name);
1da177e4 1541
fb045adb
NP
1542void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1543{
6f7f7caa
LT
1544 WARN_ON_ONCE(dentry->d_op);
1545 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1546 DCACHE_OP_COMPARE |
1547 DCACHE_OP_REVALIDATE |
ecf3d1f1 1548 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1549 DCACHE_OP_DELETE ));
1550 dentry->d_op = op;
1551 if (!op)
1552 return;
1553 if (op->d_hash)
1554 dentry->d_flags |= DCACHE_OP_HASH;
1555 if (op->d_compare)
1556 dentry->d_flags |= DCACHE_OP_COMPARE;
1557 if (op->d_revalidate)
1558 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1559 if (op->d_weak_revalidate)
1560 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1561 if (op->d_delete)
1562 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1563 if (op->d_prune)
1564 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1565
1566}
1567EXPORT_SYMBOL(d_set_d_op);
1568
b18825a7
DH
1569static unsigned d_flags_for_inode(struct inode *inode)
1570{
1571 unsigned add_flags = DCACHE_FILE_TYPE;
1572
1573 if (!inode)
1574 return DCACHE_MISS_TYPE;
1575
1576 if (S_ISDIR(inode->i_mode)) {
1577 add_flags = DCACHE_DIRECTORY_TYPE;
1578 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1579 if (unlikely(!inode->i_op->lookup))
1580 add_flags = DCACHE_AUTODIR_TYPE;
1581 else
1582 inode->i_opflags |= IOP_LOOKUP;
1583 }
1584 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1585 if (unlikely(inode->i_op->follow_link))
1586 add_flags = DCACHE_SYMLINK_TYPE;
1587 else
1588 inode->i_opflags |= IOP_NOFOLLOW;
1589 }
1590
1591 if (unlikely(IS_AUTOMOUNT(inode)))
1592 add_flags |= DCACHE_NEED_AUTOMOUNT;
1593 return add_flags;
1594}
1595
360da900
OH
1596static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1597{
b18825a7
DH
1598 unsigned add_flags = d_flags_for_inode(inode);
1599
b23fb0a6 1600 spin_lock(&dentry->d_lock);
22213318 1601 __d_set_type(dentry, add_flags);
b18825a7 1602 if (inode)
b3d9b7a3 1603 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1604 dentry->d_inode = inode;
31e6b01f 1605 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1606 spin_unlock(&dentry->d_lock);
360da900
OH
1607 fsnotify_d_instantiate(dentry, inode);
1608}
1609
1da177e4
LT
1610/**
1611 * d_instantiate - fill in inode information for a dentry
1612 * @entry: dentry to complete
1613 * @inode: inode to attach to this dentry
1614 *
1615 * Fill in inode information in the entry.
1616 *
1617 * This turns negative dentries into productive full members
1618 * of society.
1619 *
1620 * NOTE! This assumes that the inode count has been incremented
1621 * (or otherwise set) by the caller to indicate that it is now
1622 * in use by the dcache.
1623 */
1624
1625void d_instantiate(struct dentry *entry, struct inode * inode)
1626{
b3d9b7a3 1627 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1628 if (inode)
1629 spin_lock(&inode->i_lock);
360da900 1630 __d_instantiate(entry, inode);
873feea0
NP
1631 if (inode)
1632 spin_unlock(&inode->i_lock);
1da177e4
LT
1633 security_d_instantiate(entry, inode);
1634}
ec4f8605 1635EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1636
1637/**
1638 * d_instantiate_unique - instantiate a non-aliased dentry
1639 * @entry: dentry to instantiate
1640 * @inode: inode to attach to this dentry
1641 *
1642 * Fill in inode information in the entry. On success, it returns NULL.
1643 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1644 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1645 *
1646 * Note that in order to avoid conflicts with rename() etc, the caller
1647 * had better be holding the parent directory semaphore.
e866cfa9
OD
1648 *
1649 * This also assumes that the inode count has been incremented
1650 * (or otherwise set) by the caller to indicate that it is now
1651 * in use by the dcache.
1da177e4 1652 */
770bfad8
DH
1653static struct dentry *__d_instantiate_unique(struct dentry *entry,
1654 struct inode *inode)
1da177e4
LT
1655{
1656 struct dentry *alias;
1657 int len = entry->d_name.len;
1658 const char *name = entry->d_name.name;
1659 unsigned int hash = entry->d_name.hash;
1660
770bfad8 1661 if (!inode) {
360da900 1662 __d_instantiate(entry, NULL);
770bfad8
DH
1663 return NULL;
1664 }
1665
b67bfe0d 1666 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1667 /*
1668 * Don't need alias->d_lock here, because aliases with
1669 * d_parent == entry->d_parent are not subject to name or
1670 * parent changes, because the parent inode i_mutex is held.
1671 */
12f8ad4b 1672 if (alias->d_name.hash != hash)
1da177e4
LT
1673 continue;
1674 if (alias->d_parent != entry->d_parent)
1675 continue;
ee983e89
LT
1676 if (alias->d_name.len != len)
1677 continue;
12f8ad4b 1678 if (dentry_cmp(alias, name, len))
1da177e4 1679 continue;
dc0474be 1680 __dget(alias);
1da177e4
LT
1681 return alias;
1682 }
770bfad8 1683
360da900 1684 __d_instantiate(entry, inode);
1da177e4
LT
1685 return NULL;
1686}
770bfad8
DH
1687
1688struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1689{
1690 struct dentry *result;
1691
b3d9b7a3 1692 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1693
873feea0
NP
1694 if (inode)
1695 spin_lock(&inode->i_lock);
770bfad8 1696 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1697 if (inode)
1698 spin_unlock(&inode->i_lock);
770bfad8
DH
1699
1700 if (!result) {
1701 security_d_instantiate(entry, inode);
1702 return NULL;
1703 }
1704
1705 BUG_ON(!d_unhashed(result));
1706 iput(inode);
1707 return result;
1708}
1709
1da177e4
LT
1710EXPORT_SYMBOL(d_instantiate_unique);
1711
b70a80e7
MS
1712/**
1713 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1714 * @entry: dentry to complete
1715 * @inode: inode to attach to this dentry
1716 *
1717 * Fill in inode information in the entry. If a directory alias is found, then
1718 * return an error (and drop inode). Together with d_materialise_unique() this
1719 * guarantees that a directory inode may never have more than one alias.
1720 */
1721int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1722{
1723 BUG_ON(!hlist_unhashed(&entry->d_alias));
1724
1725 spin_lock(&inode->i_lock);
1726 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1727 spin_unlock(&inode->i_lock);
1728 iput(inode);
1729 return -EBUSY;
1730 }
1731 __d_instantiate(entry, inode);
1732 spin_unlock(&inode->i_lock);
1733 security_d_instantiate(entry, inode);
1734
1735 return 0;
1736}
1737EXPORT_SYMBOL(d_instantiate_no_diralias);
1738
adc0e91a
AV
1739struct dentry *d_make_root(struct inode *root_inode)
1740{
1741 struct dentry *res = NULL;
1742
1743 if (root_inode) {
26fe5750 1744 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1745
1746 res = __d_alloc(root_inode->i_sb, &name);
1747 if (res)
1748 d_instantiate(res, root_inode);
1749 else
1750 iput(root_inode);
1751 }
1752 return res;
1753}
1754EXPORT_SYMBOL(d_make_root);
1755
d891eedb
BF
1756static struct dentry * __d_find_any_alias(struct inode *inode)
1757{
1758 struct dentry *alias;
1759
b3d9b7a3 1760 if (hlist_empty(&inode->i_dentry))
d891eedb 1761 return NULL;
b3d9b7a3 1762 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1763 __dget(alias);
1764 return alias;
1765}
1766
46f72b34
SW
1767/**
1768 * d_find_any_alias - find any alias for a given inode
1769 * @inode: inode to find an alias for
1770 *
1771 * If any aliases exist for the given inode, take and return a
1772 * reference for one of them. If no aliases exist, return %NULL.
1773 */
1774struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1775{
1776 struct dentry *de;
1777
1778 spin_lock(&inode->i_lock);
1779 de = __d_find_any_alias(inode);
1780 spin_unlock(&inode->i_lock);
1781 return de;
1782}
46f72b34 1783EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1784
49c7dd28 1785static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1786{
b911a6bd 1787 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1788 struct dentry *tmp;
1789 struct dentry *res;
b18825a7 1790 unsigned add_flags;
4ea3ada2
CH
1791
1792 if (!inode)
44003728 1793 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1794 if (IS_ERR(inode))
1795 return ERR_CAST(inode);
1796
d891eedb 1797 res = d_find_any_alias(inode);
9308a612
CH
1798 if (res)
1799 goto out_iput;
1800
a4464dbc 1801 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1802 if (!tmp) {
1803 res = ERR_PTR(-ENOMEM);
1804 goto out_iput;
4ea3ada2 1805 }
b5c84bf6 1806
873feea0 1807 spin_lock(&inode->i_lock);
d891eedb 1808 res = __d_find_any_alias(inode);
9308a612 1809 if (res) {
873feea0 1810 spin_unlock(&inode->i_lock);
9308a612
CH
1811 dput(tmp);
1812 goto out_iput;
1813 }
1814
1815 /* attach a disconnected dentry */
1a0a397e
BF
1816 add_flags = d_flags_for_inode(inode);
1817
1818 if (disconnected)
1819 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1820
9308a612 1821 spin_lock(&tmp->d_lock);
9308a612 1822 tmp->d_inode = inode;
b18825a7 1823 tmp->d_flags |= add_flags;
b3d9b7a3 1824 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1825 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1826 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1827 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1828 spin_unlock(&tmp->d_lock);
873feea0 1829 spin_unlock(&inode->i_lock);
24ff6663 1830 security_d_instantiate(tmp, inode);
9308a612 1831
9308a612
CH
1832 return tmp;
1833
1834 out_iput:
24ff6663
JB
1835 if (res && !IS_ERR(res))
1836 security_d_instantiate(res, inode);
9308a612
CH
1837 iput(inode);
1838 return res;
4ea3ada2 1839}
1a0a397e
BF
1840
1841/**
1842 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1843 * @inode: inode to allocate the dentry for
1844 *
1845 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1846 * similar open by handle operations. The returned dentry may be anonymous,
1847 * or may have a full name (if the inode was already in the cache).
1848 *
1849 * When called on a directory inode, we must ensure that the inode only ever
1850 * has one dentry. If a dentry is found, that is returned instead of
1851 * allocating a new one.
1852 *
1853 * On successful return, the reference to the inode has been transferred
1854 * to the dentry. In case of an error the reference on the inode is released.
1855 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1856 * be passed in and the error will be propagated to the return value,
1857 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1858 */
1859struct dentry *d_obtain_alias(struct inode *inode)
1860{
1861 return __d_obtain_alias(inode, 1);
1862}
adc48720 1863EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1864
1a0a397e
BF
1865/**
1866 * d_obtain_root - find or allocate a dentry for a given inode
1867 * @inode: inode to allocate the dentry for
1868 *
1869 * Obtain an IS_ROOT dentry for the root of a filesystem.
1870 *
1871 * We must ensure that directory inodes only ever have one dentry. If a
1872 * dentry is found, that is returned instead of allocating a new one.
1873 *
1874 * On successful return, the reference to the inode has been transferred
1875 * to the dentry. In case of an error the reference on the inode is
1876 * released. A %NULL or IS_ERR inode may be passed in and will be the
1877 * error will be propagate to the return value, with a %NULL @inode
1878 * replaced by ERR_PTR(-ESTALE).
1879 */
1880struct dentry *d_obtain_root(struct inode *inode)
1881{
1882 return __d_obtain_alias(inode, 0);
1883}
1884EXPORT_SYMBOL(d_obtain_root);
1885
9403540c
BN
1886/**
1887 * d_add_ci - lookup or allocate new dentry with case-exact name
1888 * @inode: the inode case-insensitive lookup has found
1889 * @dentry: the negative dentry that was passed to the parent's lookup func
1890 * @name: the case-exact name to be associated with the returned dentry
1891 *
1892 * This is to avoid filling the dcache with case-insensitive names to the
1893 * same inode, only the actual correct case is stored in the dcache for
1894 * case-insensitive filesystems.
1895 *
1896 * For a case-insensitive lookup match and if the the case-exact dentry
1897 * already exists in in the dcache, use it and return it.
1898 *
1899 * If no entry exists with the exact case name, allocate new dentry with
1900 * the exact case, and return the spliced entry.
1901 */
e45b590b 1902struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1903 struct qstr *name)
1904{
9403540c
BN
1905 struct dentry *found;
1906 struct dentry *new;
1907
b6520c81
CH
1908 /*
1909 * First check if a dentry matching the name already exists,
1910 * if not go ahead and create it now.
1911 */
9403540c 1912 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1913 if (unlikely(IS_ERR(found)))
1914 goto err_out;
9403540c
BN
1915 if (!found) {
1916 new = d_alloc(dentry->d_parent, name);
1917 if (!new) {
4f522a24 1918 found = ERR_PTR(-ENOMEM);
9403540c
BN
1919 goto err_out;
1920 }
b6520c81 1921
9403540c
BN
1922 found = d_splice_alias(inode, new);
1923 if (found) {
1924 dput(new);
1925 return found;
1926 }
1927 return new;
1928 }
b6520c81
CH
1929
1930 /*
1931 * If a matching dentry exists, and it's not negative use it.
1932 *
1933 * Decrement the reference count to balance the iget() done
1934 * earlier on.
1935 */
9403540c
BN
1936 if (found->d_inode) {
1937 if (unlikely(found->d_inode != inode)) {
1938 /* This can't happen because bad inodes are unhashed. */
1939 BUG_ON(!is_bad_inode(inode));
1940 BUG_ON(!is_bad_inode(found->d_inode));
1941 }
9403540c
BN
1942 iput(inode);
1943 return found;
1944 }
b6520c81 1945
9403540c 1946 /*
9403540c 1947 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1948 * already has a dentry.
9403540c 1949 */
4513d899
AV
1950 new = d_splice_alias(inode, found);
1951 if (new) {
1952 dput(found);
1953 found = new;
9403540c 1954 }
4513d899 1955 return found;
9403540c
BN
1956
1957err_out:
1958 iput(inode);
4f522a24 1959 return found;
9403540c 1960}
ec4f8605 1961EXPORT_SYMBOL(d_add_ci);
1da177e4 1962
12f8ad4b
LT
1963/*
1964 * Do the slow-case of the dentry name compare.
1965 *
1966 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1967 * load the name and length information, so that the
12f8ad4b
LT
1968 * filesystem can rely on them, and can use the 'name' and
1969 * 'len' information without worrying about walking off the
1970 * end of memory etc.
1971 *
1972 * Thus the read_seqcount_retry() and the "duplicate" info
1973 * in arguments (the low-level filesystem should not look
1974 * at the dentry inode or name contents directly, since
1975 * rename can change them while we're in RCU mode).
1976 */
1977enum slow_d_compare {
1978 D_COMP_OK,
1979 D_COMP_NOMATCH,
1980 D_COMP_SEQRETRY,
1981};
1982
1983static noinline enum slow_d_compare slow_dentry_cmp(
1984 const struct dentry *parent,
12f8ad4b
LT
1985 struct dentry *dentry,
1986 unsigned int seq,
1987 const struct qstr *name)
1988{
1989 int tlen = dentry->d_name.len;
1990 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1991
1992 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1993 cpu_relax();
1994 return D_COMP_SEQRETRY;
1995 }
da53be12 1996 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1997 return D_COMP_NOMATCH;
1998 return D_COMP_OK;
1999}
2000
31e6b01f
NP
2001/**
2002 * __d_lookup_rcu - search for a dentry (racy, store-free)
2003 * @parent: parent dentry
2004 * @name: qstr of name we wish to find
1f1e6e52 2005 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2006 * Returns: dentry, or NULL
2007 *
2008 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2009 * resolution (store-free path walking) design described in
2010 * Documentation/filesystems/path-lookup.txt.
2011 *
2012 * This is not to be used outside core vfs.
2013 *
2014 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2015 * held, and rcu_read_lock held. The returned dentry must not be stored into
2016 * without taking d_lock and checking d_seq sequence count against @seq
2017 * returned here.
2018 *
15570086 2019 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2020 * function.
2021 *
2022 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2023 * the returned dentry, so long as its parent's seqlock is checked after the
2024 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2025 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2026 *
2027 * NOTE! The caller *has* to check the resulting dentry against the sequence
2028 * number we've returned before using any of the resulting dentry state!
31e6b01f 2029 */
8966be90
LT
2030struct dentry *__d_lookup_rcu(const struct dentry *parent,
2031 const struct qstr *name,
da53be12 2032 unsigned *seqp)
31e6b01f 2033{
26fe5750 2034 u64 hashlen = name->hash_len;
31e6b01f 2035 const unsigned char *str = name->name;
26fe5750 2036 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2037 struct hlist_bl_node *node;
31e6b01f
NP
2038 struct dentry *dentry;
2039
2040 /*
2041 * Note: There is significant duplication with __d_lookup_rcu which is
2042 * required to prevent single threaded performance regressions
2043 * especially on architectures where smp_rmb (in seqcounts) are costly.
2044 * Keep the two functions in sync.
2045 */
2046
2047 /*
2048 * The hash list is protected using RCU.
2049 *
2050 * Carefully use d_seq when comparing a candidate dentry, to avoid
2051 * races with d_move().
2052 *
2053 * It is possible that concurrent renames can mess up our list
2054 * walk here and result in missing our dentry, resulting in the
2055 * false-negative result. d_lookup() protects against concurrent
2056 * renames using rename_lock seqlock.
2057 *
b0a4bb83 2058 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2059 */
b07ad996 2060 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2061 unsigned seq;
31e6b01f 2062
31e6b01f 2063seqretry:
12f8ad4b
LT
2064 /*
2065 * The dentry sequence count protects us from concurrent
da53be12 2066 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2067 *
2068 * The caller must perform a seqcount check in order
da53be12 2069 * to do anything useful with the returned dentry.
12f8ad4b
LT
2070 *
2071 * NOTE! We do a "raw" seqcount_begin here. That means that
2072 * we don't wait for the sequence count to stabilize if it
2073 * is in the middle of a sequence change. If we do the slow
2074 * dentry compare, we will do seqretries until it is stable,
2075 * and if we end up with a successful lookup, we actually
2076 * want to exit RCU lookup anyway.
2077 */
2078 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2079 if (dentry->d_parent != parent)
2080 continue;
2e321806
LT
2081 if (d_unhashed(dentry))
2082 continue;
12f8ad4b 2083
830c0f0e 2084 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2085 if (dentry->d_name.hash != hashlen_hash(hashlen))
2086 continue;
da53be12
LT
2087 *seqp = seq;
2088 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2089 case D_COMP_OK:
2090 return dentry;
2091 case D_COMP_NOMATCH:
31e6b01f 2092 continue;
12f8ad4b
LT
2093 default:
2094 goto seqretry;
2095 }
31e6b01f 2096 }
12f8ad4b 2097
26fe5750 2098 if (dentry->d_name.hash_len != hashlen)
ee983e89 2099 continue;
da53be12 2100 *seqp = seq;
26fe5750 2101 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2102 return dentry;
31e6b01f
NP
2103 }
2104 return NULL;
2105}
2106
1da177e4
LT
2107/**
2108 * d_lookup - search for a dentry
2109 * @parent: parent dentry
2110 * @name: qstr of name we wish to find
b04f784e 2111 * Returns: dentry, or NULL
1da177e4 2112 *
b04f784e
NP
2113 * d_lookup searches the children of the parent dentry for the name in
2114 * question. If the dentry is found its reference count is incremented and the
2115 * dentry is returned. The caller must use dput to free the entry when it has
2116 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2117 */
da2d8455 2118struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2119{
31e6b01f 2120 struct dentry *dentry;
949854d0 2121 unsigned seq;
1da177e4
LT
2122
2123 do {
2124 seq = read_seqbegin(&rename_lock);
2125 dentry = __d_lookup(parent, name);
2126 if (dentry)
2127 break;
2128 } while (read_seqretry(&rename_lock, seq));
2129 return dentry;
2130}
ec4f8605 2131EXPORT_SYMBOL(d_lookup);
1da177e4 2132
31e6b01f 2133/**
b04f784e
NP
2134 * __d_lookup - search for a dentry (racy)
2135 * @parent: parent dentry
2136 * @name: qstr of name we wish to find
2137 * Returns: dentry, or NULL
2138 *
2139 * __d_lookup is like d_lookup, however it may (rarely) return a
2140 * false-negative result due to unrelated rename activity.
2141 *
2142 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2143 * however it must be used carefully, eg. with a following d_lookup in
2144 * the case of failure.
2145 *
2146 * __d_lookup callers must be commented.
2147 */
a713ca2a 2148struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2149{
2150 unsigned int len = name->len;
2151 unsigned int hash = name->hash;
2152 const unsigned char *str = name->name;
b07ad996 2153 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2154 struct hlist_bl_node *node;
31e6b01f 2155 struct dentry *found = NULL;
665a7583 2156 struct dentry *dentry;
1da177e4 2157
31e6b01f
NP
2158 /*
2159 * Note: There is significant duplication with __d_lookup_rcu which is
2160 * required to prevent single threaded performance regressions
2161 * especially on architectures where smp_rmb (in seqcounts) are costly.
2162 * Keep the two functions in sync.
2163 */
2164
b04f784e
NP
2165 /*
2166 * The hash list is protected using RCU.
2167 *
2168 * Take d_lock when comparing a candidate dentry, to avoid races
2169 * with d_move().
2170 *
2171 * It is possible that concurrent renames can mess up our list
2172 * walk here and result in missing our dentry, resulting in the
2173 * false-negative result. d_lookup() protects against concurrent
2174 * renames using rename_lock seqlock.
2175 *
b0a4bb83 2176 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2177 */
1da177e4
LT
2178 rcu_read_lock();
2179
b07ad996 2180 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2181
1da177e4
LT
2182 if (dentry->d_name.hash != hash)
2183 continue;
1da177e4
LT
2184
2185 spin_lock(&dentry->d_lock);
1da177e4
LT
2186 if (dentry->d_parent != parent)
2187 goto next;
d0185c08
LT
2188 if (d_unhashed(dentry))
2189 goto next;
2190
1da177e4
LT
2191 /*
2192 * It is safe to compare names since d_move() cannot
2193 * change the qstr (protected by d_lock).
2194 */
fb045adb 2195 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2196 int tlen = dentry->d_name.len;
2197 const char *tname = dentry->d_name.name;
da53be12 2198 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2199 goto next;
2200 } else {
ee983e89
LT
2201 if (dentry->d_name.len != len)
2202 goto next;
12f8ad4b 2203 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2204 goto next;
2205 }
2206
98474236 2207 dentry->d_lockref.count++;
d0185c08 2208 found = dentry;
1da177e4
LT
2209 spin_unlock(&dentry->d_lock);
2210 break;
2211next:
2212 spin_unlock(&dentry->d_lock);
2213 }
2214 rcu_read_unlock();
2215
2216 return found;
2217}
2218
3e7e241f
EB
2219/**
2220 * d_hash_and_lookup - hash the qstr then search for a dentry
2221 * @dir: Directory to search in
2222 * @name: qstr of name we wish to find
2223 *
4f522a24 2224 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2225 */
2226struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2227{
3e7e241f
EB
2228 /*
2229 * Check for a fs-specific hash function. Note that we must
2230 * calculate the standard hash first, as the d_op->d_hash()
2231 * routine may choose to leave the hash value unchanged.
2232 */
2233 name->hash = full_name_hash(name->name, name->len);
fb045adb 2234 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2235 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2236 if (unlikely(err < 0))
2237 return ERR_PTR(err);
3e7e241f 2238 }
4f522a24 2239 return d_lookup(dir, name);
3e7e241f 2240}
4f522a24 2241EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2242
1da177e4 2243/**
786a5e15 2244 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2245 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2246 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2247 *
2248 * An insecure source has sent us a dentry, here we verify it and dget() it.
2249 * This is used by ncpfs in its readdir implementation.
2250 * Zero is returned in the dentry is invalid.
786a5e15
NP
2251 *
2252 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2253 */
d3a23e16 2254int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2255{
786a5e15 2256 struct dentry *child;
d3a23e16 2257
2fd6b7f5 2258 spin_lock(&dparent->d_lock);
786a5e15
NP
2259 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2260 if (dentry == child) {
2fd6b7f5 2261 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2262 __dget_dlock(dentry);
2fd6b7f5
NP
2263 spin_unlock(&dentry->d_lock);
2264 spin_unlock(&dparent->d_lock);
1da177e4
LT
2265 return 1;
2266 }
2267 }
2fd6b7f5 2268 spin_unlock(&dparent->d_lock);
786a5e15 2269
1da177e4
LT
2270 return 0;
2271}
ec4f8605 2272EXPORT_SYMBOL(d_validate);
1da177e4
LT
2273
2274/*
2275 * When a file is deleted, we have two options:
2276 * - turn this dentry into a negative dentry
2277 * - unhash this dentry and free it.
2278 *
2279 * Usually, we want to just turn this into
2280 * a negative dentry, but if anybody else is
2281 * currently using the dentry or the inode
2282 * we can't do that and we fall back on removing
2283 * it from the hash queues and waiting for
2284 * it to be deleted later when it has no users
2285 */
2286
2287/**
2288 * d_delete - delete a dentry
2289 * @dentry: The dentry to delete
2290 *
2291 * Turn the dentry into a negative dentry if possible, otherwise
2292 * remove it from the hash queues so it can be deleted later
2293 */
2294
2295void d_delete(struct dentry * dentry)
2296{
873feea0 2297 struct inode *inode;
7a91bf7f 2298 int isdir = 0;
1da177e4
LT
2299 /*
2300 * Are we the only user?
2301 */
357f8e65 2302again:
1da177e4 2303 spin_lock(&dentry->d_lock);
873feea0
NP
2304 inode = dentry->d_inode;
2305 isdir = S_ISDIR(inode->i_mode);
98474236 2306 if (dentry->d_lockref.count == 1) {
1fe0c023 2307 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2308 spin_unlock(&dentry->d_lock);
2309 cpu_relax();
2310 goto again;
2311 }
13e3c5e5 2312 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2313 dentry_unlink_inode(dentry);
7a91bf7f 2314 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2315 return;
2316 }
2317
2318 if (!d_unhashed(dentry))
2319 __d_drop(dentry);
2320
2321 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2322
2323 fsnotify_nameremove(dentry, isdir);
1da177e4 2324}
ec4f8605 2325EXPORT_SYMBOL(d_delete);
1da177e4 2326
b07ad996 2327static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2328{
ceb5bdc2 2329 BUG_ON(!d_unhashed(entry));
1879fd6a 2330 hlist_bl_lock(b);
dea3667b 2331 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2332 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2333 hlist_bl_unlock(b);
1da177e4
LT
2334}
2335
770bfad8
DH
2336static void _d_rehash(struct dentry * entry)
2337{
2338 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2339}
2340
1da177e4
LT
2341/**
2342 * d_rehash - add an entry back to the hash
2343 * @entry: dentry to add to the hash
2344 *
2345 * Adds a dentry to the hash according to its name.
2346 */
2347
2348void d_rehash(struct dentry * entry)
2349{
1da177e4 2350 spin_lock(&entry->d_lock);
770bfad8 2351 _d_rehash(entry);
1da177e4 2352 spin_unlock(&entry->d_lock);
1da177e4 2353}
ec4f8605 2354EXPORT_SYMBOL(d_rehash);
1da177e4 2355
fb2d5b86
NP
2356/**
2357 * dentry_update_name_case - update case insensitive dentry with a new name
2358 * @dentry: dentry to be updated
2359 * @name: new name
2360 *
2361 * Update a case insensitive dentry with new case of name.
2362 *
2363 * dentry must have been returned by d_lookup with name @name. Old and new
2364 * name lengths must match (ie. no d_compare which allows mismatched name
2365 * lengths).
2366 *
2367 * Parent inode i_mutex must be held over d_lookup and into this call (to
2368 * keep renames and concurrent inserts, and readdir(2) away).
2369 */
2370void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2371{
7ebfa57f 2372 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2373 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2374
fb2d5b86 2375 spin_lock(&dentry->d_lock);
31e6b01f 2376 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2377 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2378 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2379 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2380}
2381EXPORT_SYMBOL(dentry_update_name_case);
2382
8d85b484 2383static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2384{
8d85b484
AV
2385 if (unlikely(dname_external(target))) {
2386 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2387 /*
2388 * Both external: swap the pointers
2389 */
9a8d5bb4 2390 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2391 } else {
2392 /*
2393 * dentry:internal, target:external. Steal target's
2394 * storage and make target internal.
2395 */
321bcf92
BF
2396 memcpy(target->d_iname, dentry->d_name.name,
2397 dentry->d_name.len + 1);
1da177e4
LT
2398 dentry->d_name.name = target->d_name.name;
2399 target->d_name.name = target->d_iname;
2400 }
2401 } else {
8d85b484 2402 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2403 /*
2404 * dentry:external, target:internal. Give dentry's
2405 * storage to target and make dentry internal
2406 */
2407 memcpy(dentry->d_iname, target->d_name.name,
2408 target->d_name.len + 1);
2409 target->d_name.name = dentry->d_name.name;
2410 dentry->d_name.name = dentry->d_iname;
2411 } else {
2412 /*
da1ce067 2413 * Both are internal.
1da177e4 2414 */
da1ce067
MS
2415 unsigned int i;
2416 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2417 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2418 swap(((long *) &dentry->d_iname)[i],
2419 ((long *) &target->d_iname)[i]);
2420 }
1da177e4
LT
2421 }
2422 }
a28ddb87 2423 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2424}
2425
8d85b484
AV
2426static void copy_name(struct dentry *dentry, struct dentry *target)
2427{
2428 struct external_name *old_name = NULL;
2429 if (unlikely(dname_external(dentry)))
2430 old_name = external_name(dentry);
2431 if (unlikely(dname_external(target))) {
2432 atomic_inc(&external_name(target)->u.count);
2433 dentry->d_name = target->d_name;
2434 } else {
2435 memcpy(dentry->d_iname, target->d_name.name,
2436 target->d_name.len + 1);
2437 dentry->d_name.name = dentry->d_iname;
2438 dentry->d_name.hash_len = target->d_name.hash_len;
2439 }
2440 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2441 kfree_rcu(old_name, u.head);
2442}
2443
2fd6b7f5
NP
2444static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2445{
2446 /*
2447 * XXXX: do we really need to take target->d_lock?
2448 */
2449 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2450 spin_lock(&target->d_parent->d_lock);
2451 else {
2452 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2453 spin_lock(&dentry->d_parent->d_lock);
2454 spin_lock_nested(&target->d_parent->d_lock,
2455 DENTRY_D_LOCK_NESTED);
2456 } else {
2457 spin_lock(&target->d_parent->d_lock);
2458 spin_lock_nested(&dentry->d_parent->d_lock,
2459 DENTRY_D_LOCK_NESTED);
2460 }
2461 }
2462 if (target < dentry) {
2463 spin_lock_nested(&target->d_lock, 2);
2464 spin_lock_nested(&dentry->d_lock, 3);
2465 } else {
2466 spin_lock_nested(&dentry->d_lock, 2);
2467 spin_lock_nested(&target->d_lock, 3);
2468 }
2469}
2470
986c0194 2471static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2472{
2473 if (target->d_parent != dentry->d_parent)
2474 spin_unlock(&dentry->d_parent->d_lock);
2475 if (target->d_parent != target)
2476 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2477 spin_unlock(&target->d_lock);
2478 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2479}
2480
1da177e4 2481/*
2fd6b7f5
NP
2482 * When switching names, the actual string doesn't strictly have to
2483 * be preserved in the target - because we're dropping the target
2484 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2485 * the new name before we switch, unless we are going to rehash
2486 * it. Note that if we *do* unhash the target, we are not allowed
2487 * to rehash it without giving it a new name/hash key - whether
2488 * we swap or overwrite the names here, resulting name won't match
2489 * the reality in filesystem; it's only there for d_path() purposes.
2490 * Note that all of this is happening under rename_lock, so the
2491 * any hash lookup seeing it in the middle of manipulations will
2492 * be discarded anyway. So we do not care what happens to the hash
2493 * key in that case.
1da177e4 2494 */
9eaef27b 2495/*
18367501 2496 * __d_move - move a dentry
1da177e4
LT
2497 * @dentry: entry to move
2498 * @target: new dentry
da1ce067 2499 * @exchange: exchange the two dentries
1da177e4
LT
2500 *
2501 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2502 * dcache entries should not be moved in this way. Caller must hold
2503 * rename_lock, the i_mutex of the source and target directories,
2504 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2505 */
da1ce067
MS
2506static void __d_move(struct dentry *dentry, struct dentry *target,
2507 bool exchange)
1da177e4 2508{
1da177e4
LT
2509 if (!dentry->d_inode)
2510 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2511
2fd6b7f5
NP
2512 BUG_ON(d_ancestor(dentry, target));
2513 BUG_ON(d_ancestor(target, dentry));
2514
2fd6b7f5 2515 dentry_lock_for_move(dentry, target);
1da177e4 2516
31e6b01f 2517 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2518 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2519
ceb5bdc2
NP
2520 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2521
2522 /*
2523 * Move the dentry to the target hash queue. Don't bother checking
2524 * for the same hash queue because of how unlikely it is.
2525 */
2526 __d_drop(dentry);
789680d1 2527 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2528
da1ce067
MS
2529 /*
2530 * Unhash the target (d_delete() is not usable here). If exchanging
2531 * the two dentries, then rehash onto the other's hash queue.
2532 */
1da177e4 2533 __d_drop(target);
da1ce067
MS
2534 if (exchange) {
2535 __d_rehash(target,
2536 d_hash(dentry->d_parent, dentry->d_name.hash));
2537 }
1da177e4 2538
1da177e4 2539 /* Switch the names.. */
8d85b484
AV
2540 if (exchange)
2541 swap_names(dentry, target);
2542 else
2543 copy_name(dentry, target);
1da177e4 2544
63cf427a 2545 /* ... and switch them in the tree */
1da177e4 2546 if (IS_ROOT(dentry)) {
63cf427a 2547 /* splicing a tree */
1da177e4
LT
2548 dentry->d_parent = target->d_parent;
2549 target->d_parent = target;
9d8cd306 2550 list_del_init(&target->d_u.d_child);
63cf427a 2551 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1da177e4 2552 } else {
63cf427a 2553 /* swapping two dentries */
9a8d5bb4 2554 swap(dentry->d_parent, target->d_parent);
9d8cd306 2555 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
63cf427a
AV
2556 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2557 if (exchange)
2558 fsnotify_d_move(target);
2559 fsnotify_d_move(dentry);
1da177e4
LT
2560 }
2561
31e6b01f
NP
2562 write_seqcount_end(&target->d_seq);
2563 write_seqcount_end(&dentry->d_seq);
2564
986c0194 2565 dentry_unlock_for_move(dentry, target);
18367501
AV
2566}
2567
2568/*
2569 * d_move - move a dentry
2570 * @dentry: entry to move
2571 * @target: new dentry
2572 *
2573 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2574 * dcache entries should not be moved in this way. See the locking
2575 * requirements for __d_move.
18367501
AV
2576 */
2577void d_move(struct dentry *dentry, struct dentry *target)
2578{
2579 write_seqlock(&rename_lock);
da1ce067 2580 __d_move(dentry, target, false);
1da177e4 2581 write_sequnlock(&rename_lock);
9eaef27b 2582}
ec4f8605 2583EXPORT_SYMBOL(d_move);
1da177e4 2584
da1ce067
MS
2585/*
2586 * d_exchange - exchange two dentries
2587 * @dentry1: first dentry
2588 * @dentry2: second dentry
2589 */
2590void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2591{
2592 write_seqlock(&rename_lock);
2593
2594 WARN_ON(!dentry1->d_inode);
2595 WARN_ON(!dentry2->d_inode);
2596 WARN_ON(IS_ROOT(dentry1));
2597 WARN_ON(IS_ROOT(dentry2));
2598
2599 __d_move(dentry1, dentry2, true);
2600
2601 write_sequnlock(&rename_lock);
2602}
2603
e2761a11
OH
2604/**
2605 * d_ancestor - search for an ancestor
2606 * @p1: ancestor dentry
2607 * @p2: child dentry
2608 *
2609 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2610 * an ancestor of p2, else NULL.
9eaef27b 2611 */
e2761a11 2612struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2613{
2614 struct dentry *p;
2615
871c0067 2616 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2617 if (p->d_parent == p1)
e2761a11 2618 return p;
9eaef27b 2619 }
e2761a11 2620 return NULL;
9eaef27b
TM
2621}
2622
2623/*
2624 * This helper attempts to cope with remotely renamed directories
2625 *
2626 * It assumes that the caller is already holding
18367501 2627 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2628 *
2629 * Note: If ever the locking in lock_rename() changes, then please
2630 * remember to update this too...
9eaef27b 2631 */
873feea0
NP
2632static struct dentry *__d_unalias(struct inode *inode,
2633 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2634{
2635 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2636 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2637
2638 /* If alias and dentry share a parent, then no extra locks required */
2639 if (alias->d_parent == dentry->d_parent)
2640 goto out_unalias;
2641
9eaef27b 2642 /* See lock_rename() */
9eaef27b
TM
2643 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2644 goto out_err;
2645 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2646 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2647 goto out_err;
2648 m2 = &alias->d_parent->d_inode->i_mutex;
2649out_unalias:
8ed936b5
EB
2650 __d_move(alias, dentry, false);
2651 ret = alias;
9eaef27b 2652out_err:
873feea0 2653 spin_unlock(&inode->i_lock);
9eaef27b
TM
2654 if (m2)
2655 mutex_unlock(m2);
2656 if (m1)
2657 mutex_unlock(m1);
2658 return ret;
2659}
2660
3f70bd51
BF
2661/**
2662 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2663 * @inode: the inode which may have a disconnected dentry
2664 * @dentry: a negative dentry which we want to point to the inode.
2665 *
da093a9b
BF
2666 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2667 * place of the given dentry and return it, else simply d_add the inode
2668 * to the dentry and return NULL.
3f70bd51 2669 *
908790fa
BF
2670 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2671 * we should error out: directories can't have multiple aliases.
2672 *
3f70bd51
BF
2673 * This is needed in the lookup routine of any filesystem that is exportable
2674 * (via knfsd) so that we can build dcache paths to directories effectively.
2675 *
2676 * If a dentry was found and moved, then it is returned. Otherwise NULL
2677 * is returned. This matches the expected return value of ->lookup.
2678 *
2679 * Cluster filesystems may call this function with a negative, hashed dentry.
2680 * In that case, we know that the inode will be a regular file, and also this
2681 * will only occur during atomic_open. So we need to check for the dentry
2682 * being already hashed only in the final case.
2683 */
2684struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2685{
2686 struct dentry *new = NULL;
2687
2688 if (IS_ERR(inode))
2689 return ERR_CAST(inode);
2690
2691 if (inode && S_ISDIR(inode->i_mode)) {
2692 spin_lock(&inode->i_lock);
908790fa 2693 new = __d_find_any_alias(inode);
3f70bd51 2694 if (new) {
da093a9b 2695 if (!IS_ROOT(new)) {
908790fa
BF
2696 spin_unlock(&inode->i_lock);
2697 dput(new);
2698 return ERR_PTR(-EIO);
2699 }
95ad5c29
BF
2700 if (d_ancestor(new, dentry)) {
2701 spin_unlock(&inode->i_lock);
2702 dput(new);
2703 return ERR_PTR(-EIO);
2704 }
75a2352d 2705 write_seqlock(&rename_lock);
63cf427a 2706 __d_move(new, dentry, false);
75a2352d 2707 write_sequnlock(&rename_lock);
3f70bd51
BF
2708 spin_unlock(&inode->i_lock);
2709 security_d_instantiate(new, inode);
3f70bd51
BF
2710 iput(inode);
2711 } else {
2712 /* already taking inode->i_lock, so d_add() by hand */
2713 __d_instantiate(dentry, inode);
2714 spin_unlock(&inode->i_lock);
2715 security_d_instantiate(dentry, inode);
2716 d_rehash(dentry);
2717 }
2718 } else {
2719 d_instantiate(dentry, inode);
2720 if (d_unhashed(dentry))
2721 d_rehash(dentry);
2722 }
2723 return new;
2724}
2725EXPORT_SYMBOL(d_splice_alias);
2726
770bfad8
DH
2727/**
2728 * d_materialise_unique - introduce an inode into the tree
2729 * @dentry: candidate dentry
2730 * @inode: inode to bind to the dentry, to which aliases may be attached
2731 *
2732 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2733 * root directory alias in its place if there is one. Caller must hold the
2734 * i_mutex of the parent directory.
770bfad8
DH
2735 */
2736struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2737{
9eaef27b 2738 struct dentry *actual;
770bfad8
DH
2739
2740 BUG_ON(!d_unhashed(dentry));
2741
770bfad8
DH
2742 if (!inode) {
2743 actual = dentry;
360da900 2744 __d_instantiate(dentry, NULL);
357f8e65
NP
2745 d_rehash(actual);
2746 goto out_nolock;
770bfad8
DH
2747 }
2748
873feea0 2749 spin_lock(&inode->i_lock);
357f8e65 2750
9eaef27b
TM
2751 if (S_ISDIR(inode->i_mode)) {
2752 struct dentry *alias;
2753
2754 /* Does an aliased dentry already exist? */
52ed46f0 2755 alias = __d_find_alias(inode);
9eaef27b
TM
2756 if (alias) {
2757 actual = alias;
18367501
AV
2758 write_seqlock(&rename_lock);
2759
2760 if (d_ancestor(alias, dentry)) {
2761 /* Check for loops */
2762 actual = ERR_PTR(-ELOOP);
b18dafc8 2763 spin_unlock(&inode->i_lock);
18367501
AV
2764 } else if (IS_ROOT(alias)) {
2765 /* Is this an anonymous mountpoint that we
2766 * could splice into our tree? */
63cf427a 2767 __d_move(alias, dentry, false);
18367501 2768 write_sequnlock(&rename_lock);
9eaef27b 2769 goto found;
18367501
AV
2770 } else {
2771 /* Nope, but we must(!) avoid directory
b18dafc8 2772 * aliasing. This drops inode->i_lock */
18367501 2773 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2774 }
18367501 2775 write_sequnlock(&rename_lock);
dd179946
DH
2776 if (IS_ERR(actual)) {
2777 if (PTR_ERR(actual) == -ELOOP)
2778 pr_warn_ratelimited(
2779 "VFS: Lookup of '%s' in %s %s"
2780 " would have caused loop\n",
2781 dentry->d_name.name,
2782 inode->i_sb->s_type->name,
2783 inode->i_sb->s_id);
9eaef27b 2784 dput(alias);
dd179946 2785 }
9eaef27b
TM
2786 goto out_nolock;
2787 }
770bfad8
DH
2788 }
2789
2790 /* Add a unique reference */
2791 actual = __d_instantiate_unique(dentry, inode);
2792 if (!actual)
2793 actual = dentry;
770bfad8 2794
8527dd71 2795 d_rehash(actual);
5cc3821b 2796found:
873feea0 2797 spin_unlock(&inode->i_lock);
9eaef27b 2798out_nolock:
770bfad8
DH
2799 if (actual == dentry) {
2800 security_d_instantiate(dentry, inode);
2801 return NULL;
2802 }
2803
2804 iput(inode);
2805 return actual;
770bfad8 2806}
ec4f8605 2807EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2808
cdd16d02 2809static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2810{
2811 *buflen -= namelen;
2812 if (*buflen < 0)
2813 return -ENAMETOOLONG;
2814 *buffer -= namelen;
2815 memcpy(*buffer, str, namelen);
2816 return 0;
2817}
2818
232d2d60
WL
2819/**
2820 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2821 * @buffer: buffer pointer
2822 * @buflen: allocated length of the buffer
2823 * @name: name string and length qstr structure
232d2d60
WL
2824 *
2825 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2826 * make sure that either the old or the new name pointer and length are
2827 * fetched. However, there may be mismatch between length and pointer.
2828 * The length cannot be trusted, we need to copy it byte-by-byte until
2829 * the length is reached or a null byte is found. It also prepends "/" at
2830 * the beginning of the name. The sequence number check at the caller will
2831 * retry it again when a d_move() does happen. So any garbage in the buffer
2832 * due to mismatched pointer and length will be discarded.
6d13f694
AV
2833 *
2834 * Data dependency barrier is needed to make sure that we see that terminating
2835 * NUL. Alpha strikes again, film at 11...
232d2d60 2836 */
cdd16d02
MS
2837static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2838{
232d2d60
WL
2839 const char *dname = ACCESS_ONCE(name->name);
2840 u32 dlen = ACCESS_ONCE(name->len);
2841 char *p;
2842
6d13f694
AV
2843 smp_read_barrier_depends();
2844
232d2d60 2845 *buflen -= dlen + 1;
e825196d
AV
2846 if (*buflen < 0)
2847 return -ENAMETOOLONG;
232d2d60
WL
2848 p = *buffer -= dlen + 1;
2849 *p++ = '/';
2850 while (dlen--) {
2851 char c = *dname++;
2852 if (!c)
2853 break;
2854 *p++ = c;
2855 }
2856 return 0;
cdd16d02
MS
2857}
2858
1da177e4 2859/**
208898c1 2860 * prepend_path - Prepend path string to a buffer
9d1bc601 2861 * @path: the dentry/vfsmount to report
02125a82 2862 * @root: root vfsmnt/dentry
f2eb6575
MS
2863 * @buffer: pointer to the end of the buffer
2864 * @buflen: pointer to buffer length
552ce544 2865 *
18129977
WL
2866 * The function will first try to write out the pathname without taking any
2867 * lock other than the RCU read lock to make sure that dentries won't go away.
2868 * It only checks the sequence number of the global rename_lock as any change
2869 * in the dentry's d_seq will be preceded by changes in the rename_lock
2870 * sequence number. If the sequence number had been changed, it will restart
2871 * the whole pathname back-tracing sequence again by taking the rename_lock.
2872 * In this case, there is no need to take the RCU read lock as the recursive
2873 * parent pointer references will keep the dentry chain alive as long as no
2874 * rename operation is performed.
1da177e4 2875 */
02125a82
AV
2876static int prepend_path(const struct path *path,
2877 const struct path *root,
f2eb6575 2878 char **buffer, int *buflen)
1da177e4 2879{
ede4cebc
AV
2880 struct dentry *dentry;
2881 struct vfsmount *vfsmnt;
2882 struct mount *mnt;
f2eb6575 2883 int error = 0;
48a066e7 2884 unsigned seq, m_seq = 0;
232d2d60
WL
2885 char *bptr;
2886 int blen;
6092d048 2887
48f5ec21 2888 rcu_read_lock();
48a066e7
AV
2889restart_mnt:
2890 read_seqbegin_or_lock(&mount_lock, &m_seq);
2891 seq = 0;
4ec6c2ae 2892 rcu_read_lock();
232d2d60
WL
2893restart:
2894 bptr = *buffer;
2895 blen = *buflen;
48a066e7 2896 error = 0;
ede4cebc
AV
2897 dentry = path->dentry;
2898 vfsmnt = path->mnt;
2899 mnt = real_mount(vfsmnt);
232d2d60 2900 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2901 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2902 struct dentry * parent;
2903
1da177e4 2904 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2905 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2906 /* Global root? */
48a066e7
AV
2907 if (mnt != parent) {
2908 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2909 mnt = parent;
232d2d60
WL
2910 vfsmnt = &mnt->mnt;
2911 continue;
2912 }
2913 /*
2914 * Filesystems needing to implement special "root names"
2915 * should do so with ->d_dname()
2916 */
2917 if (IS_ROOT(dentry) &&
2918 (dentry->d_name.len != 1 ||
2919 dentry->d_name.name[0] != '/')) {
2920 WARN(1, "Root dentry has weird name <%.*s>\n",
2921 (int) dentry->d_name.len,
2922 dentry->d_name.name);
2923 }
2924 if (!error)
2925 error = is_mounted(vfsmnt) ? 1 : 2;
2926 break;
1da177e4
LT
2927 }
2928 parent = dentry->d_parent;
2929 prefetch(parent);
232d2d60 2930 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2931 if (error)
2932 break;
2933
1da177e4
LT
2934 dentry = parent;
2935 }
48f5ec21
AV
2936 if (!(seq & 1))
2937 rcu_read_unlock();
2938 if (need_seqretry(&rename_lock, seq)) {
2939 seq = 1;
232d2d60 2940 goto restart;
48f5ec21
AV
2941 }
2942 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2943
2944 if (!(m_seq & 1))
2945 rcu_read_unlock();
48a066e7
AV
2946 if (need_seqretry(&mount_lock, m_seq)) {
2947 m_seq = 1;
2948 goto restart_mnt;
2949 }
2950 done_seqretry(&mount_lock, m_seq);
1da177e4 2951
232d2d60
WL
2952 if (error >= 0 && bptr == *buffer) {
2953 if (--blen < 0)
2954 error = -ENAMETOOLONG;
2955 else
2956 *--bptr = '/';
2957 }
2958 *buffer = bptr;
2959 *buflen = blen;
7ea600b5 2960 return error;
f2eb6575 2961}
be285c71 2962
f2eb6575
MS
2963/**
2964 * __d_path - return the path of a dentry
2965 * @path: the dentry/vfsmount to report
02125a82 2966 * @root: root vfsmnt/dentry
cd956a1c 2967 * @buf: buffer to return value in
f2eb6575
MS
2968 * @buflen: buffer length
2969 *
ffd1f4ed 2970 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2971 *
2972 * Returns a pointer into the buffer or an error code if the
2973 * path was too long.
2974 *
be148247 2975 * "buflen" should be positive.
f2eb6575 2976 *
02125a82 2977 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2978 */
02125a82
AV
2979char *__d_path(const struct path *path,
2980 const struct path *root,
f2eb6575
MS
2981 char *buf, int buflen)
2982{
2983 char *res = buf + buflen;
2984 int error;
2985
2986 prepend(&res, &buflen, "\0", 1);
f2eb6575 2987 error = prepend_path(path, root, &res, &buflen);
be148247 2988
02125a82
AV
2989 if (error < 0)
2990 return ERR_PTR(error);
2991 if (error > 0)
2992 return NULL;
2993 return res;
2994}
2995
2996char *d_absolute_path(const struct path *path,
2997 char *buf, int buflen)
2998{
2999 struct path root = {};
3000 char *res = buf + buflen;
3001 int error;
3002
3003 prepend(&res, &buflen, "\0", 1);
02125a82 3004 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3005
3006 if (error > 1)
3007 error = -EINVAL;
3008 if (error < 0)
f2eb6575 3009 return ERR_PTR(error);
f2eb6575 3010 return res;
1da177e4
LT
3011}
3012
ffd1f4ed
MS
3013/*
3014 * same as __d_path but appends "(deleted)" for unlinked files.
3015 */
02125a82
AV
3016static int path_with_deleted(const struct path *path,
3017 const struct path *root,
3018 char **buf, int *buflen)
ffd1f4ed
MS
3019{
3020 prepend(buf, buflen, "\0", 1);
3021 if (d_unlinked(path->dentry)) {
3022 int error = prepend(buf, buflen, " (deleted)", 10);
3023 if (error)
3024 return error;
3025 }
3026
3027 return prepend_path(path, root, buf, buflen);
3028}
3029
8df9d1a4
MS
3030static int prepend_unreachable(char **buffer, int *buflen)
3031{
3032 return prepend(buffer, buflen, "(unreachable)", 13);
3033}
3034
68f0d9d9
LT
3035static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3036{
3037 unsigned seq;
3038
3039 do {
3040 seq = read_seqcount_begin(&fs->seq);
3041 *root = fs->root;
3042 } while (read_seqcount_retry(&fs->seq, seq));
3043}
3044
a03a8a70
JB
3045/**
3046 * d_path - return the path of a dentry
cf28b486 3047 * @path: path to report
a03a8a70
JB
3048 * @buf: buffer to return value in
3049 * @buflen: buffer length
3050 *
3051 * Convert a dentry into an ASCII path name. If the entry has been deleted
3052 * the string " (deleted)" is appended. Note that this is ambiguous.
3053 *
52afeefb
AV
3054 * Returns a pointer into the buffer or an error code if the path was
3055 * too long. Note: Callers should use the returned pointer, not the passed
3056 * in buffer, to use the name! The implementation often starts at an offset
3057 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3058 *
31f3e0b3 3059 * "buflen" should be positive.
a03a8a70 3060 */
20d4fdc1 3061char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3062{
ffd1f4ed 3063 char *res = buf + buflen;
6ac08c39 3064 struct path root;
ffd1f4ed 3065 int error;
1da177e4 3066
c23fbb6b
ED
3067 /*
3068 * We have various synthetic filesystems that never get mounted. On
3069 * these filesystems dentries are never used for lookup purposes, and
3070 * thus don't need to be hashed. They also don't need a name until a
3071 * user wants to identify the object in /proc/pid/fd/. The little hack
3072 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3073 *
3074 * Some pseudo inodes are mountable. When they are mounted
3075 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3076 * and instead have d_path return the mounted path.
c23fbb6b 3077 */
f48cfddc
EB
3078 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3079 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3080 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3081
68f0d9d9
LT
3082 rcu_read_lock();
3083 get_fs_root_rcu(current->fs, &root);
02125a82 3084 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3085 rcu_read_unlock();
3086
02125a82 3087 if (error < 0)
ffd1f4ed 3088 res = ERR_PTR(error);
1da177e4
LT
3089 return res;
3090}
ec4f8605 3091EXPORT_SYMBOL(d_path);
1da177e4 3092
c23fbb6b
ED
3093/*
3094 * Helper function for dentry_operations.d_dname() members
3095 */
3096char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3097 const char *fmt, ...)
3098{
3099 va_list args;
3100 char temp[64];
3101 int sz;
3102
3103 va_start(args, fmt);
3104 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3105 va_end(args);
3106
3107 if (sz > sizeof(temp) || sz > buflen)
3108 return ERR_PTR(-ENAMETOOLONG);
3109
3110 buffer += buflen - sz;
3111 return memcpy(buffer, temp, sz);
3112}
3113
118b2302
AV
3114char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3115{
3116 char *end = buffer + buflen;
3117 /* these dentries are never renamed, so d_lock is not needed */
3118 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3119 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3120 prepend(&end, &buflen, "/", 1))
3121 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3122 return end;
118b2302 3123}
31bbe16f 3124EXPORT_SYMBOL(simple_dname);
118b2302 3125
6092d048
RP
3126/*
3127 * Write full pathname from the root of the filesystem into the buffer.
3128 */
f6500801 3129static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3130{
f6500801 3131 struct dentry *dentry;
232d2d60
WL
3132 char *end, *retval;
3133 int len, seq = 0;
3134 int error = 0;
6092d048 3135
f6500801
AV
3136 if (buflen < 2)
3137 goto Elong;
3138
48f5ec21 3139 rcu_read_lock();
232d2d60 3140restart:
f6500801 3141 dentry = d;
232d2d60
WL
3142 end = buf + buflen;
3143 len = buflen;
3144 prepend(&end, &len, "\0", 1);
6092d048
RP
3145 /* Get '/' right */
3146 retval = end-1;
3147 *retval = '/';
232d2d60 3148 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3149 while (!IS_ROOT(dentry)) {
3150 struct dentry *parent = dentry->d_parent;
6092d048 3151
6092d048 3152 prefetch(parent);
232d2d60
WL
3153 error = prepend_name(&end, &len, &dentry->d_name);
3154 if (error)
3155 break;
6092d048
RP
3156
3157 retval = end;
3158 dentry = parent;
3159 }
48f5ec21
AV
3160 if (!(seq & 1))
3161 rcu_read_unlock();
3162 if (need_seqretry(&rename_lock, seq)) {
3163 seq = 1;
232d2d60 3164 goto restart;
48f5ec21
AV
3165 }
3166 done_seqretry(&rename_lock, seq);
232d2d60
WL
3167 if (error)
3168 goto Elong;
c103135c
AV
3169 return retval;
3170Elong:
3171 return ERR_PTR(-ENAMETOOLONG);
3172}
ec2447c2
NP
3173
3174char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3175{
232d2d60 3176 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3177}
3178EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3179
3180char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3181{
3182 char *p = NULL;
3183 char *retval;
3184
c103135c
AV
3185 if (d_unlinked(dentry)) {
3186 p = buf + buflen;
3187 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3188 goto Elong;
3189 buflen++;
3190 }
3191 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3192 if (!IS_ERR(retval) && p)
3193 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3194 return retval;
3195Elong:
6092d048
RP
3196 return ERR_PTR(-ENAMETOOLONG);
3197}
3198
8b19e341
LT
3199static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3200 struct path *pwd)
5762482f 3201{
8b19e341
LT
3202 unsigned seq;
3203
3204 do {
3205 seq = read_seqcount_begin(&fs->seq);
3206 *root = fs->root;
3207 *pwd = fs->pwd;
3208 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3209}
3210
1da177e4
LT
3211/*
3212 * NOTE! The user-level library version returns a
3213 * character pointer. The kernel system call just
3214 * returns the length of the buffer filled (which
3215 * includes the ending '\0' character), or a negative
3216 * error value. So libc would do something like
3217 *
3218 * char *getcwd(char * buf, size_t size)
3219 * {
3220 * int retval;
3221 *
3222 * retval = sys_getcwd(buf, size);
3223 * if (retval >= 0)
3224 * return buf;
3225 * errno = -retval;
3226 * return NULL;
3227 * }
3228 */
3cdad428 3229SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3230{
552ce544 3231 int error;
6ac08c39 3232 struct path pwd, root;
3272c544 3233 char *page = __getname();
1da177e4
LT
3234
3235 if (!page)
3236 return -ENOMEM;
3237
8b19e341
LT
3238 rcu_read_lock();
3239 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3240
552ce544 3241 error = -ENOENT;
f3da392e 3242 if (!d_unlinked(pwd.dentry)) {
552ce544 3243 unsigned long len;
3272c544
LT
3244 char *cwd = page + PATH_MAX;
3245 int buflen = PATH_MAX;
1da177e4 3246
8df9d1a4 3247 prepend(&cwd, &buflen, "\0", 1);
02125a82 3248 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3249 rcu_read_unlock();
552ce544 3250
02125a82 3251 if (error < 0)
552ce544
LT
3252 goto out;
3253
8df9d1a4 3254 /* Unreachable from current root */
02125a82 3255 if (error > 0) {
8df9d1a4
MS
3256 error = prepend_unreachable(&cwd, &buflen);
3257 if (error)
3258 goto out;
3259 }
3260
552ce544 3261 error = -ERANGE;
3272c544 3262 len = PATH_MAX + page - cwd;
552ce544
LT
3263 if (len <= size) {
3264 error = len;
3265 if (copy_to_user(buf, cwd, len))
3266 error = -EFAULT;
3267 }
949854d0 3268 } else {
ff812d72 3269 rcu_read_unlock();
949854d0 3270 }
1da177e4
LT
3271
3272out:
3272c544 3273 __putname(page);
1da177e4
LT
3274 return error;
3275}
3276
3277/*
3278 * Test whether new_dentry is a subdirectory of old_dentry.
3279 *
3280 * Trivially implemented using the dcache structure
3281 */
3282
3283/**
3284 * is_subdir - is new dentry a subdirectory of old_dentry
3285 * @new_dentry: new dentry
3286 * @old_dentry: old dentry
3287 *
3288 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3289 * Returns 0 otherwise.
3290 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3291 */
3292
e2761a11 3293int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3294{
3295 int result;
949854d0 3296 unsigned seq;
1da177e4 3297
e2761a11
OH
3298 if (new_dentry == old_dentry)
3299 return 1;
3300
e2761a11 3301 do {
1da177e4 3302 /* for restarting inner loop in case of seq retry */
1da177e4 3303 seq = read_seqbegin(&rename_lock);
949854d0
NP
3304 /*
3305 * Need rcu_readlock to protect against the d_parent trashing
3306 * due to d_move
3307 */
3308 rcu_read_lock();
e2761a11 3309 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3310 result = 1;
e2761a11
OH
3311 else
3312 result = 0;
949854d0 3313 rcu_read_unlock();
1da177e4 3314 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3315
3316 return result;
3317}
3318
db14fc3a 3319static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3320{
db14fc3a
MS
3321 struct dentry *root = data;
3322 if (dentry != root) {
3323 if (d_unhashed(dentry) || !dentry->d_inode)
3324 return D_WALK_SKIP;
1da177e4 3325
01ddc4ed
MS
3326 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3327 dentry->d_flags |= DCACHE_GENOCIDE;
3328 dentry->d_lockref.count--;
3329 }
1da177e4 3330 }
db14fc3a
MS
3331 return D_WALK_CONTINUE;
3332}
58db63d0 3333
db14fc3a
MS
3334void d_genocide(struct dentry *parent)
3335{
3336 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3337}
3338
60545d0d 3339void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3340{
60545d0d
AV
3341 inode_dec_link_count(inode);
3342 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3343 !hlist_unhashed(&dentry->d_alias) ||
3344 !d_unlinked(dentry));
3345 spin_lock(&dentry->d_parent->d_lock);
3346 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3347 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3348 (unsigned long long)inode->i_ino);
3349 spin_unlock(&dentry->d_lock);
3350 spin_unlock(&dentry->d_parent->d_lock);
3351 d_instantiate(dentry, inode);
1da177e4 3352}
60545d0d 3353EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3354
3355static __initdata unsigned long dhash_entries;
3356static int __init set_dhash_entries(char *str)
3357{
3358 if (!str)
3359 return 0;
3360 dhash_entries = simple_strtoul(str, &str, 0);
3361 return 1;
3362}
3363__setup("dhash_entries=", set_dhash_entries);
3364
3365static void __init dcache_init_early(void)
3366{
074b8517 3367 unsigned int loop;
1da177e4
LT
3368
3369 /* If hashes are distributed across NUMA nodes, defer
3370 * hash allocation until vmalloc space is available.
3371 */
3372 if (hashdist)
3373 return;
3374
3375 dentry_hashtable =
3376 alloc_large_system_hash("Dentry cache",
b07ad996 3377 sizeof(struct hlist_bl_head),
1da177e4
LT
3378 dhash_entries,
3379 13,
3380 HASH_EARLY,
3381 &d_hash_shift,
3382 &d_hash_mask,
31fe62b9 3383 0,
1da177e4
LT
3384 0);
3385
074b8517 3386 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3387 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3388}
3389
74bf17cf 3390static void __init dcache_init(void)
1da177e4 3391{
074b8517 3392 unsigned int loop;
1da177e4
LT
3393
3394 /*
3395 * A constructor could be added for stable state like the lists,
3396 * but it is probably not worth it because of the cache nature
3397 * of the dcache.
3398 */
0a31bd5f
CL
3399 dentry_cache = KMEM_CACHE(dentry,
3400 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3401
3402 /* Hash may have been set up in dcache_init_early */
3403 if (!hashdist)
3404 return;
3405
3406 dentry_hashtable =
3407 alloc_large_system_hash("Dentry cache",
b07ad996 3408 sizeof(struct hlist_bl_head),
1da177e4
LT
3409 dhash_entries,
3410 13,
3411 0,
3412 &d_hash_shift,
3413 &d_hash_mask,
31fe62b9 3414 0,
1da177e4
LT
3415 0);
3416
074b8517 3417 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3418 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3419}
3420
3421/* SLAB cache for __getname() consumers */
e18b890b 3422struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3423EXPORT_SYMBOL(names_cachep);
1da177e4 3424
1da177e4
LT
3425EXPORT_SYMBOL(d_genocide);
3426
1da177e4
LT
3427void __init vfs_caches_init_early(void)
3428{
3429 dcache_init_early();
3430 inode_init_early();
3431}
3432
3433void __init vfs_caches_init(unsigned long mempages)
3434{
3435 unsigned long reserve;
3436
3437 /* Base hash sizes on available memory, with a reserve equal to
3438 150% of current kernel size */
3439
3440 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3441 mempages -= reserve;
3442
3443 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3444 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3445
74bf17cf
DC
3446 dcache_init();
3447 inode_init();
1da177e4 3448 files_init(mempages);
74bf17cf 3449 mnt_init();
1da177e4
LT
3450 bdev_cache_init();
3451 chrdev_init();
3452}