]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/dcache.c
dcache: use a dispose list in select_parent
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
b07ad996 107static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
108 unsigned long hash)
109{
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
9c82ab9c 140static void __d_free(struct rcu_head *head)
1da177e4 141{
9c82ab9c
CH
142 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
143
fd217f4d 144 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
145 if (dname_external(dentry))
146 kfree(dentry->d_name.name);
147 kmem_cache_free(dentry_cache, dentry);
148}
149
150/*
b5c84bf6 151 * no locks, please.
1da177e4
LT
152 */
153static void d_free(struct dentry *dentry)
154{
b7ab39f6 155 BUG_ON(dentry->d_count);
3e880fb5 156 this_cpu_dec(nr_dentry);
1da177e4
LT
157 if (dentry->d_op && dentry->d_op->d_release)
158 dentry->d_op->d_release(dentry);
312d3ca8 159
dea3667b
LT
160 /* if dentry was never visible to RCU, immediate free is OK */
161 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 162 __d_free(&dentry->d_u.d_rcu);
b3423415 163 else
9c82ab9c 164 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
165}
166
31e6b01f
NP
167/**
168 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 169 * @dentry: the target dentry
31e6b01f
NP
170 * After this call, in-progress rcu-walk path lookup will fail. This
171 * should be called after unhashing, and after changing d_inode (if
172 * the dentry has not already been unhashed).
173 */
174static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
175{
176 assert_spin_locked(&dentry->d_lock);
177 /* Go through a barrier */
178 write_seqcount_barrier(&dentry->d_seq);
179}
180
1da177e4
LT
181/*
182 * Release the dentry's inode, using the filesystem
31e6b01f
NP
183 * d_iput() operation if defined. Dentry has no refcount
184 * and is unhashed.
1da177e4 185 */
858119e1 186static void dentry_iput(struct dentry * dentry)
31f3e0b3 187 __releases(dentry->d_lock)
873feea0 188 __releases(dentry->d_inode->i_lock)
1da177e4
LT
189{
190 struct inode *inode = dentry->d_inode;
191 if (inode) {
192 dentry->d_inode = NULL;
193 list_del_init(&dentry->d_alias);
194 spin_unlock(&dentry->d_lock);
873feea0 195 spin_unlock(&inode->i_lock);
f805fbda
LT
196 if (!inode->i_nlink)
197 fsnotify_inoderemove(inode);
1da177e4
LT
198 if (dentry->d_op && dentry->d_op->d_iput)
199 dentry->d_op->d_iput(dentry, inode);
200 else
201 iput(inode);
202 } else {
203 spin_unlock(&dentry->d_lock);
1da177e4
LT
204 }
205}
206
31e6b01f
NP
207/*
208 * Release the dentry's inode, using the filesystem
209 * d_iput() operation if defined. dentry remains in-use.
210 */
211static void dentry_unlink_inode(struct dentry * dentry)
212 __releases(dentry->d_lock)
873feea0 213 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
214{
215 struct inode *inode = dentry->d_inode;
216 dentry->d_inode = NULL;
217 list_del_init(&dentry->d_alias);
218 dentry_rcuwalk_barrier(dentry);
219 spin_unlock(&dentry->d_lock);
873feea0 220 spin_unlock(&inode->i_lock);
31e6b01f
NP
221 if (!inode->i_nlink)
222 fsnotify_inoderemove(inode);
223 if (dentry->d_op && dentry->d_op->d_iput)
224 dentry->d_op->d_iput(dentry, inode);
225 else
226 iput(inode);
227}
228
da3bbdd4 229/*
f0023bc6 230 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
231 */
232static void dentry_lru_add(struct dentry *dentry)
233{
a4633357 234 if (list_empty(&dentry->d_lru)) {
23044507 235 spin_lock(&dcache_lru_lock);
a4633357
CH
236 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
237 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 238 dentry_stat.nr_unused++;
23044507 239 spin_unlock(&dcache_lru_lock);
a4633357 240 }
da3bbdd4
KM
241}
242
23044507
NP
243static void __dentry_lru_del(struct dentry *dentry)
244{
245 list_del_init(&dentry->d_lru);
246 dentry->d_sb->s_nr_dentry_unused--;
247 dentry_stat.nr_unused--;
248}
249
f0023bc6
SW
250/*
251 * Remove a dentry with references from the LRU.
252 */
da3bbdd4
KM
253static void dentry_lru_del(struct dentry *dentry)
254{
255 if (!list_empty(&dentry->d_lru)) {
23044507
NP
256 spin_lock(&dcache_lru_lock);
257 __dentry_lru_del(dentry);
258 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
259 }
260}
261
f0023bc6
SW
262/*
263 * Remove a dentry that is unreferenced and about to be pruned
264 * (unhashed and destroyed) from the LRU, and inform the file system.
265 * This wrapper should be called _prior_ to unhashing a victim dentry.
266 */
267static void dentry_lru_prune(struct dentry *dentry)
268{
269 if (!list_empty(&dentry->d_lru)) {
270 if (dentry->d_flags & DCACHE_OP_PRUNE)
271 dentry->d_op->d_prune(dentry);
272
273 spin_lock(&dcache_lru_lock);
274 __dentry_lru_del(dentry);
275 spin_unlock(&dcache_lru_lock);
276 }
277}
278
b48f03b3 279static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 280{
23044507 281 spin_lock(&dcache_lru_lock);
a4633357 282 if (list_empty(&dentry->d_lru)) {
b48f03b3 283 list_add_tail(&dentry->d_lru, list);
a4633357 284 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 285 dentry_stat.nr_unused++;
a4633357 286 } else {
b48f03b3 287 list_move_tail(&dentry->d_lru, list);
da3bbdd4 288 }
23044507 289 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
290}
291
d52b9086
MS
292/**
293 * d_kill - kill dentry and return parent
294 * @dentry: dentry to kill
ff5fdb61 295 * @parent: parent dentry
d52b9086 296 *
31f3e0b3 297 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
298 *
299 * If this is the root of the dentry tree, return NULL.
23044507 300 *
b5c84bf6
NP
301 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
302 * d_kill.
d52b9086 303 */
2fd6b7f5 304static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 305 __releases(dentry->d_lock)
2fd6b7f5 306 __releases(parent->d_lock)
873feea0 307 __releases(dentry->d_inode->i_lock)
d52b9086 308{
d52b9086 309 list_del(&dentry->d_u.d_child);
c83ce989
TM
310 /*
311 * Inform try_to_ascend() that we are no longer attached to the
312 * dentry tree
313 */
314 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
315 if (parent)
316 spin_unlock(&parent->d_lock);
d52b9086 317 dentry_iput(dentry);
b7ab39f6
NP
318 /*
319 * dentry_iput drops the locks, at which point nobody (except
320 * transient RCU lookups) can reach this dentry.
321 */
d52b9086 322 d_free(dentry);
871c0067 323 return parent;
d52b9086
MS
324}
325
c6627c60
DH
326/*
327 * Unhash a dentry without inserting an RCU walk barrier or checking that
328 * dentry->d_lock is locked. The caller must take care of that, if
329 * appropriate.
330 */
331static void __d_shrink(struct dentry *dentry)
332{
333 if (!d_unhashed(dentry)) {
334 struct hlist_bl_head *b;
335 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
336 b = &dentry->d_sb->s_anon;
337 else
338 b = d_hash(dentry->d_parent, dentry->d_name.hash);
339
340 hlist_bl_lock(b);
341 __hlist_bl_del(&dentry->d_hash);
342 dentry->d_hash.pprev = NULL;
343 hlist_bl_unlock(b);
344 }
345}
346
789680d1
NP
347/**
348 * d_drop - drop a dentry
349 * @dentry: dentry to drop
350 *
351 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
352 * be found through a VFS lookup any more. Note that this is different from
353 * deleting the dentry - d_delete will try to mark the dentry negative if
354 * possible, giving a successful _negative_ lookup, while d_drop will
355 * just make the cache lookup fail.
356 *
357 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
358 * reason (NFS timeouts or autofs deletes).
359 *
360 * __d_drop requires dentry->d_lock.
361 */
362void __d_drop(struct dentry *dentry)
363{
dea3667b 364 if (!d_unhashed(dentry)) {
c6627c60 365 __d_shrink(dentry);
dea3667b 366 dentry_rcuwalk_barrier(dentry);
789680d1
NP
367 }
368}
369EXPORT_SYMBOL(__d_drop);
370
371void d_drop(struct dentry *dentry)
372{
789680d1
NP
373 spin_lock(&dentry->d_lock);
374 __d_drop(dentry);
375 spin_unlock(&dentry->d_lock);
789680d1
NP
376}
377EXPORT_SYMBOL(d_drop);
378
44396f4b
JB
379/*
380 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
381 * @dentry: dentry to drop
382 *
383 * This is called when we do a lookup on a placeholder dentry that needed to be
384 * looked up. The dentry should have been hashed in order for it to be found by
385 * the lookup code, but now needs to be unhashed while we do the actual lookup
386 * and clear the DCACHE_NEED_LOOKUP flag.
387 */
388void d_clear_need_lookup(struct dentry *dentry)
389{
390 spin_lock(&dentry->d_lock);
391 __d_drop(dentry);
392 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
393 spin_unlock(&dentry->d_lock);
394}
395EXPORT_SYMBOL(d_clear_need_lookup);
396
77812a1e
NP
397/*
398 * Finish off a dentry we've decided to kill.
399 * dentry->d_lock must be held, returns with it unlocked.
400 * If ref is non-zero, then decrement the refcount too.
401 * Returns dentry requiring refcount drop, or NULL if we're done.
402 */
403static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
404 __releases(dentry->d_lock)
405{
873feea0 406 struct inode *inode;
77812a1e
NP
407 struct dentry *parent;
408
873feea0
NP
409 inode = dentry->d_inode;
410 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
411relock:
412 spin_unlock(&dentry->d_lock);
413 cpu_relax();
414 return dentry; /* try again with same dentry */
415 }
416 if (IS_ROOT(dentry))
417 parent = NULL;
418 else
419 parent = dentry->d_parent;
420 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
421 if (inode)
422 spin_unlock(&inode->i_lock);
77812a1e
NP
423 goto relock;
424 }
31e6b01f 425
77812a1e
NP
426 if (ref)
427 dentry->d_count--;
f0023bc6
SW
428 /*
429 * if dentry was on the d_lru list delete it from there.
430 * inform the fs via d_prune that this dentry is about to be
431 * unhashed and destroyed.
432 */
433 dentry_lru_prune(dentry);
77812a1e
NP
434 /* if it was on the hash then remove it */
435 __d_drop(dentry);
436 return d_kill(dentry, parent);
437}
438
1da177e4
LT
439/*
440 * This is dput
441 *
442 * This is complicated by the fact that we do not want to put
443 * dentries that are no longer on any hash chain on the unused
444 * list: we'd much rather just get rid of them immediately.
445 *
446 * However, that implies that we have to traverse the dentry
447 * tree upwards to the parents which might _also_ now be
448 * scheduled for deletion (it may have been only waiting for
449 * its last child to go away).
450 *
451 * This tail recursion is done by hand as we don't want to depend
452 * on the compiler to always get this right (gcc generally doesn't).
453 * Real recursion would eat up our stack space.
454 */
455
456/*
457 * dput - release a dentry
458 * @dentry: dentry to release
459 *
460 * Release a dentry. This will drop the usage count and if appropriate
461 * call the dentry unlink method as well as removing it from the queues and
462 * releasing its resources. If the parent dentries were scheduled for release
463 * they too may now get deleted.
1da177e4 464 */
1da177e4
LT
465void dput(struct dentry *dentry)
466{
467 if (!dentry)
468 return;
469
470repeat:
b7ab39f6 471 if (dentry->d_count == 1)
1da177e4 472 might_sleep();
1da177e4 473 spin_lock(&dentry->d_lock);
61f3dee4
NP
474 BUG_ON(!dentry->d_count);
475 if (dentry->d_count > 1) {
476 dentry->d_count--;
1da177e4 477 spin_unlock(&dentry->d_lock);
1da177e4
LT
478 return;
479 }
480
fb045adb 481 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 482 if (dentry->d_op->d_delete(dentry))
61f3dee4 483 goto kill_it;
1da177e4 484 }
265ac902 485
1da177e4
LT
486 /* Unreachable? Get rid of it */
487 if (d_unhashed(dentry))
488 goto kill_it;
265ac902 489
44396f4b
JB
490 /*
491 * If this dentry needs lookup, don't set the referenced flag so that it
492 * is more likely to be cleaned up by the dcache shrinker in case of
493 * memory pressure.
494 */
495 if (!d_need_lookup(dentry))
496 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 497 dentry_lru_add(dentry);
265ac902 498
61f3dee4
NP
499 dentry->d_count--;
500 spin_unlock(&dentry->d_lock);
1da177e4
LT
501 return;
502
d52b9086 503kill_it:
77812a1e 504 dentry = dentry_kill(dentry, 1);
d52b9086
MS
505 if (dentry)
506 goto repeat;
1da177e4 507}
ec4f8605 508EXPORT_SYMBOL(dput);
1da177e4
LT
509
510/**
511 * d_invalidate - invalidate a dentry
512 * @dentry: dentry to invalidate
513 *
514 * Try to invalidate the dentry if it turns out to be
515 * possible. If there are other dentries that can be
516 * reached through this one we can't delete it and we
517 * return -EBUSY. On success we return 0.
518 *
519 * no dcache lock.
520 */
521
522int d_invalidate(struct dentry * dentry)
523{
524 /*
525 * If it's already been dropped, return OK.
526 */
da502956 527 spin_lock(&dentry->d_lock);
1da177e4 528 if (d_unhashed(dentry)) {
da502956 529 spin_unlock(&dentry->d_lock);
1da177e4
LT
530 return 0;
531 }
532 /*
533 * Check whether to do a partial shrink_dcache
534 * to get rid of unused child entries.
535 */
536 if (!list_empty(&dentry->d_subdirs)) {
da502956 537 spin_unlock(&dentry->d_lock);
1da177e4 538 shrink_dcache_parent(dentry);
da502956 539 spin_lock(&dentry->d_lock);
1da177e4
LT
540 }
541
542 /*
543 * Somebody else still using it?
544 *
545 * If it's a directory, we can't drop it
546 * for fear of somebody re-populating it
547 * with children (even though dropping it
548 * would make it unreachable from the root,
549 * we might still populate it if it was a
550 * working directory or similar).
50e69630
AV
551 * We also need to leave mountpoints alone,
552 * directory or not.
1da177e4 553 */
50e69630
AV
554 if (dentry->d_count > 1 && dentry->d_inode) {
555 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 556 spin_unlock(&dentry->d_lock);
1da177e4
LT
557 return -EBUSY;
558 }
559 }
560
561 __d_drop(dentry);
562 spin_unlock(&dentry->d_lock);
1da177e4
LT
563 return 0;
564}
ec4f8605 565EXPORT_SYMBOL(d_invalidate);
1da177e4 566
b5c84bf6 567/* This must be called with d_lock held */
dc0474be 568static inline void __dget_dlock(struct dentry *dentry)
23044507 569{
b7ab39f6 570 dentry->d_count++;
23044507
NP
571}
572
dc0474be 573static inline void __dget(struct dentry *dentry)
1da177e4 574{
23044507 575 spin_lock(&dentry->d_lock);
dc0474be 576 __dget_dlock(dentry);
23044507 577 spin_unlock(&dentry->d_lock);
1da177e4
LT
578}
579
b7ab39f6
NP
580struct dentry *dget_parent(struct dentry *dentry)
581{
582 struct dentry *ret;
583
584repeat:
a734eb45
NP
585 /*
586 * Don't need rcu_dereference because we re-check it was correct under
587 * the lock.
588 */
589 rcu_read_lock();
b7ab39f6 590 ret = dentry->d_parent;
a734eb45
NP
591 spin_lock(&ret->d_lock);
592 if (unlikely(ret != dentry->d_parent)) {
593 spin_unlock(&ret->d_lock);
594 rcu_read_unlock();
b7ab39f6
NP
595 goto repeat;
596 }
a734eb45 597 rcu_read_unlock();
b7ab39f6
NP
598 BUG_ON(!ret->d_count);
599 ret->d_count++;
600 spin_unlock(&ret->d_lock);
b7ab39f6
NP
601 return ret;
602}
603EXPORT_SYMBOL(dget_parent);
604
1da177e4
LT
605/**
606 * d_find_alias - grab a hashed alias of inode
607 * @inode: inode in question
608 * @want_discon: flag, used by d_splice_alias, to request
609 * that only a DISCONNECTED alias be returned.
610 *
611 * If inode has a hashed alias, or is a directory and has any alias,
612 * acquire the reference to alias and return it. Otherwise return NULL.
613 * Notice that if inode is a directory there can be only one alias and
614 * it can be unhashed only if it has no children, or if it is the root
615 * of a filesystem.
616 *
21c0d8fd 617 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 618 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 619 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 620 */
da502956 621static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 622{
da502956 623 struct dentry *alias, *discon_alias;
1da177e4 624
da502956
NP
625again:
626 discon_alias = NULL;
627 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
628 spin_lock(&alias->d_lock);
1da177e4 629 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 630 if (IS_ROOT(alias) &&
da502956 631 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 632 discon_alias = alias;
da502956 633 } else if (!want_discon) {
dc0474be 634 __dget_dlock(alias);
da502956
NP
635 spin_unlock(&alias->d_lock);
636 return alias;
637 }
638 }
639 spin_unlock(&alias->d_lock);
640 }
641 if (discon_alias) {
642 alias = discon_alias;
643 spin_lock(&alias->d_lock);
644 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
645 if (IS_ROOT(alias) &&
646 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 647 __dget_dlock(alias);
da502956 648 spin_unlock(&alias->d_lock);
1da177e4
LT
649 return alias;
650 }
651 }
da502956
NP
652 spin_unlock(&alias->d_lock);
653 goto again;
1da177e4 654 }
da502956 655 return NULL;
1da177e4
LT
656}
657
da502956 658struct dentry *d_find_alias(struct inode *inode)
1da177e4 659{
214fda1f
DH
660 struct dentry *de = NULL;
661
662 if (!list_empty(&inode->i_dentry)) {
873feea0 663 spin_lock(&inode->i_lock);
214fda1f 664 de = __d_find_alias(inode, 0);
873feea0 665 spin_unlock(&inode->i_lock);
214fda1f 666 }
1da177e4
LT
667 return de;
668}
ec4f8605 669EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
670
671/*
672 * Try to kill dentries associated with this inode.
673 * WARNING: you must own a reference to inode.
674 */
675void d_prune_aliases(struct inode *inode)
676{
0cdca3f9 677 struct dentry *dentry;
1da177e4 678restart:
873feea0 679 spin_lock(&inode->i_lock);
0cdca3f9 680 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 681 spin_lock(&dentry->d_lock);
b7ab39f6 682 if (!dentry->d_count) {
dc0474be 683 __dget_dlock(dentry);
1da177e4
LT
684 __d_drop(dentry);
685 spin_unlock(&dentry->d_lock);
873feea0 686 spin_unlock(&inode->i_lock);
1da177e4
LT
687 dput(dentry);
688 goto restart;
689 }
690 spin_unlock(&dentry->d_lock);
691 }
873feea0 692 spin_unlock(&inode->i_lock);
1da177e4 693}
ec4f8605 694EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
695
696/*
77812a1e
NP
697 * Try to throw away a dentry - free the inode, dput the parent.
698 * Requires dentry->d_lock is held, and dentry->d_count == 0.
699 * Releases dentry->d_lock.
d702ccb3 700 *
77812a1e 701 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 702 */
77812a1e 703static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 704 __releases(dentry->d_lock)
1da177e4 705{
77812a1e 706 struct dentry *parent;
d52b9086 707
77812a1e 708 parent = dentry_kill(dentry, 0);
d52b9086 709 /*
77812a1e
NP
710 * If dentry_kill returns NULL, we have nothing more to do.
711 * if it returns the same dentry, trylocks failed. In either
712 * case, just loop again.
713 *
714 * Otherwise, we need to prune ancestors too. This is necessary
715 * to prevent quadratic behavior of shrink_dcache_parent(), but
716 * is also expected to be beneficial in reducing dentry cache
717 * fragmentation.
d52b9086 718 */
77812a1e
NP
719 if (!parent)
720 return;
721 if (parent == dentry)
722 return;
723
724 /* Prune ancestors. */
725 dentry = parent;
d52b9086 726 while (dentry) {
b7ab39f6 727 spin_lock(&dentry->d_lock);
89e60548
NP
728 if (dentry->d_count > 1) {
729 dentry->d_count--;
730 spin_unlock(&dentry->d_lock);
731 return;
732 }
77812a1e 733 dentry = dentry_kill(dentry, 1);
d52b9086 734 }
1da177e4
LT
735}
736
3049cfe2 737static void shrink_dentry_list(struct list_head *list)
1da177e4 738{
da3bbdd4 739 struct dentry *dentry;
da3bbdd4 740
ec33679d
NP
741 rcu_read_lock();
742 for (;;) {
ec33679d
NP
743 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
744 if (&dentry->d_lru == list)
745 break; /* empty */
746 spin_lock(&dentry->d_lock);
747 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
748 spin_unlock(&dentry->d_lock);
23044507
NP
749 continue;
750 }
751
1da177e4
LT
752 /*
753 * We found an inuse dentry which was not removed from
da3bbdd4
KM
754 * the LRU because of laziness during lookup. Do not free
755 * it - just keep it off the LRU list.
1da177e4 756 */
b7ab39f6 757 if (dentry->d_count) {
ec33679d 758 dentry_lru_del(dentry);
da3bbdd4 759 spin_unlock(&dentry->d_lock);
1da177e4
LT
760 continue;
761 }
ec33679d 762
ec33679d 763 rcu_read_unlock();
77812a1e
NP
764
765 try_prune_one_dentry(dentry);
766
ec33679d 767 rcu_read_lock();
da3bbdd4 768 }
ec33679d 769 rcu_read_unlock();
3049cfe2
CH
770}
771
772/**
b48f03b3
DC
773 * prune_dcache_sb - shrink the dcache
774 * @sb: superblock
775 * @count: number of entries to try to free
776 *
777 * Attempt to shrink the superblock dcache LRU by @count entries. This is
778 * done when we need more memory an called from the superblock shrinker
779 * function.
3049cfe2 780 *
b48f03b3
DC
781 * This function may fail to free any resources if all the dentries are in
782 * use.
3049cfe2 783 */
b48f03b3 784void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 785{
3049cfe2
CH
786 struct dentry *dentry;
787 LIST_HEAD(referenced);
788 LIST_HEAD(tmp);
3049cfe2 789
23044507
NP
790relock:
791 spin_lock(&dcache_lru_lock);
3049cfe2
CH
792 while (!list_empty(&sb->s_dentry_lru)) {
793 dentry = list_entry(sb->s_dentry_lru.prev,
794 struct dentry, d_lru);
795 BUG_ON(dentry->d_sb != sb);
796
23044507
NP
797 if (!spin_trylock(&dentry->d_lock)) {
798 spin_unlock(&dcache_lru_lock);
799 cpu_relax();
800 goto relock;
801 }
802
b48f03b3 803 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
804 dentry->d_flags &= ~DCACHE_REFERENCED;
805 list_move(&dentry->d_lru, &referenced);
3049cfe2 806 spin_unlock(&dentry->d_lock);
23044507
NP
807 } else {
808 list_move_tail(&dentry->d_lru, &tmp);
809 spin_unlock(&dentry->d_lock);
b0d40c92 810 if (!--count)
23044507 811 break;
3049cfe2 812 }
ec33679d 813 cond_resched_lock(&dcache_lru_lock);
3049cfe2 814 }
da3bbdd4
KM
815 if (!list_empty(&referenced))
816 list_splice(&referenced, &sb->s_dentry_lru);
23044507 817 spin_unlock(&dcache_lru_lock);
ec33679d
NP
818
819 shrink_dentry_list(&tmp);
da3bbdd4
KM
820}
821
1da177e4
LT
822/**
823 * shrink_dcache_sb - shrink dcache for a superblock
824 * @sb: superblock
825 *
3049cfe2
CH
826 * Shrink the dcache for the specified super block. This is used to free
827 * the dcache before unmounting a file system.
1da177e4 828 */
3049cfe2 829void shrink_dcache_sb(struct super_block *sb)
1da177e4 830{
3049cfe2
CH
831 LIST_HEAD(tmp);
832
23044507 833 spin_lock(&dcache_lru_lock);
3049cfe2
CH
834 while (!list_empty(&sb->s_dentry_lru)) {
835 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 836 spin_unlock(&dcache_lru_lock);
3049cfe2 837 shrink_dentry_list(&tmp);
ec33679d 838 spin_lock(&dcache_lru_lock);
3049cfe2 839 }
23044507 840 spin_unlock(&dcache_lru_lock);
1da177e4 841}
ec4f8605 842EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 843
c636ebdb
DH
844/*
845 * destroy a single subtree of dentries for unmount
846 * - see the comments on shrink_dcache_for_umount() for a description of the
847 * locking
848 */
849static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
850{
851 struct dentry *parent;
852
853 BUG_ON(!IS_ROOT(dentry));
854
c636ebdb
DH
855 for (;;) {
856 /* descend to the first leaf in the current subtree */
43c1c9cd 857 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
858 dentry = list_entry(dentry->d_subdirs.next,
859 struct dentry, d_u.d_child);
c636ebdb
DH
860
861 /* consume the dentries from this leaf up through its parents
862 * until we find one with children or run out altogether */
863 do {
864 struct inode *inode;
865
f0023bc6
SW
866 /*
867 * remove the dentry from the lru, and inform
868 * the fs that this dentry is about to be
869 * unhashed and destroyed.
870 */
871 dentry_lru_prune(dentry);
43c1c9cd
DH
872 __d_shrink(dentry);
873
b7ab39f6 874 if (dentry->d_count != 0) {
c636ebdb
DH
875 printk(KERN_ERR
876 "BUG: Dentry %p{i=%lx,n=%s}"
877 " still in use (%d)"
878 " [unmount of %s %s]\n",
879 dentry,
880 dentry->d_inode ?
881 dentry->d_inode->i_ino : 0UL,
882 dentry->d_name.name,
b7ab39f6 883 dentry->d_count,
c636ebdb
DH
884 dentry->d_sb->s_type->name,
885 dentry->d_sb->s_id);
886 BUG();
887 }
888
2fd6b7f5 889 if (IS_ROOT(dentry)) {
c636ebdb 890 parent = NULL;
2fd6b7f5
NP
891 list_del(&dentry->d_u.d_child);
892 } else {
871c0067 893 parent = dentry->d_parent;
b7ab39f6 894 parent->d_count--;
2fd6b7f5 895 list_del(&dentry->d_u.d_child);
871c0067 896 }
c636ebdb 897
c636ebdb
DH
898 inode = dentry->d_inode;
899 if (inode) {
900 dentry->d_inode = NULL;
901 list_del_init(&dentry->d_alias);
902 if (dentry->d_op && dentry->d_op->d_iput)
903 dentry->d_op->d_iput(dentry, inode);
904 else
905 iput(inode);
906 }
907
908 d_free(dentry);
909
910 /* finished when we fall off the top of the tree,
911 * otherwise we ascend to the parent and move to the
912 * next sibling if there is one */
913 if (!parent)
312d3ca8 914 return;
c636ebdb 915 dentry = parent;
c636ebdb
DH
916 } while (list_empty(&dentry->d_subdirs));
917
918 dentry = list_entry(dentry->d_subdirs.next,
919 struct dentry, d_u.d_child);
920 }
921}
922
923/*
924 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 925 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
926 * - the superblock is detached from all mountings and open files, so the
927 * dentry trees will not be rearranged by the VFS
928 * - s_umount is write-locked, so the memory pressure shrinker will ignore
929 * any dentries belonging to this superblock that it comes across
930 * - the filesystem itself is no longer permitted to rearrange the dentries
931 * in this superblock
932 */
933void shrink_dcache_for_umount(struct super_block *sb)
934{
935 struct dentry *dentry;
936
937 if (down_read_trylock(&sb->s_umount))
938 BUG();
939
940 dentry = sb->s_root;
941 sb->s_root = NULL;
b7ab39f6 942 dentry->d_count--;
c636ebdb
DH
943 shrink_dcache_for_umount_subtree(dentry);
944
ceb5bdc2
NP
945 while (!hlist_bl_empty(&sb->s_anon)) {
946 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
947 shrink_dcache_for_umount_subtree(dentry);
948 }
949}
950
c826cb7d
LT
951/*
952 * This tries to ascend one level of parenthood, but
953 * we can race with renaming, so we need to re-check
954 * the parenthood after dropping the lock and check
955 * that the sequence number still matches.
956 */
957static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
958{
959 struct dentry *new = old->d_parent;
960
961 rcu_read_lock();
962 spin_unlock(&old->d_lock);
963 spin_lock(&new->d_lock);
964
965 /*
966 * might go back up the wrong parent if we have had a rename
967 * or deletion
968 */
969 if (new != old->d_parent ||
c83ce989 970 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
971 (!locked && read_seqretry(&rename_lock, seq))) {
972 spin_unlock(&new->d_lock);
973 new = NULL;
974 }
975 rcu_read_unlock();
976 return new;
977}
978
979
1da177e4
LT
980/*
981 * Search for at least 1 mount point in the dentry's subdirs.
982 * We descend to the next level whenever the d_subdirs
983 * list is non-empty and continue searching.
984 */
985
986/**
987 * have_submounts - check for mounts over a dentry
988 * @parent: dentry to check.
989 *
990 * Return true if the parent or its subdirectories contain
991 * a mount point
992 */
1da177e4
LT
993int have_submounts(struct dentry *parent)
994{
949854d0 995 struct dentry *this_parent;
1da177e4 996 struct list_head *next;
949854d0 997 unsigned seq;
58db63d0 998 int locked = 0;
949854d0 999
949854d0 1000 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1001again:
1002 this_parent = parent;
1da177e4 1003
1da177e4
LT
1004 if (d_mountpoint(parent))
1005 goto positive;
2fd6b7f5 1006 spin_lock(&this_parent->d_lock);
1da177e4
LT
1007repeat:
1008 next = this_parent->d_subdirs.next;
1009resume:
1010 while (next != &this_parent->d_subdirs) {
1011 struct list_head *tmp = next;
5160ee6f 1012 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1013 next = tmp->next;
2fd6b7f5
NP
1014
1015 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1016 /* Have we found a mount point ? */
2fd6b7f5
NP
1017 if (d_mountpoint(dentry)) {
1018 spin_unlock(&dentry->d_lock);
1019 spin_unlock(&this_parent->d_lock);
1da177e4 1020 goto positive;
2fd6b7f5 1021 }
1da177e4 1022 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1023 spin_unlock(&this_parent->d_lock);
1024 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1025 this_parent = dentry;
2fd6b7f5 1026 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1027 goto repeat;
1028 }
2fd6b7f5 1029 spin_unlock(&dentry->d_lock);
1da177e4
LT
1030 }
1031 /*
1032 * All done at this level ... ascend and resume the search.
1033 */
1034 if (this_parent != parent) {
c826cb7d
LT
1035 struct dentry *child = this_parent;
1036 this_parent = try_to_ascend(this_parent, locked, seq);
1037 if (!this_parent)
949854d0 1038 goto rename_retry;
949854d0 1039 next = child->d_u.d_child.next;
1da177e4
LT
1040 goto resume;
1041 }
2fd6b7f5 1042 spin_unlock(&this_parent->d_lock);
58db63d0 1043 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1044 goto rename_retry;
58db63d0
NP
1045 if (locked)
1046 write_sequnlock(&rename_lock);
1da177e4
LT
1047 return 0; /* No mount points found in tree */
1048positive:
58db63d0 1049 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1050 goto rename_retry;
58db63d0
NP
1051 if (locked)
1052 write_sequnlock(&rename_lock);
1da177e4 1053 return 1;
58db63d0
NP
1054
1055rename_retry:
1056 locked = 1;
1057 write_seqlock(&rename_lock);
1058 goto again;
1da177e4 1059}
ec4f8605 1060EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1061
1062/*
1063 * Search the dentry child list for the specified parent,
1064 * and move any unused dentries to the end of the unused
1065 * list for prune_dcache(). We descend to the next level
1066 * whenever the d_subdirs list is non-empty and continue
1067 * searching.
1068 *
1069 * It returns zero iff there are no unused children,
1070 * otherwise it returns the number of children moved to
1071 * the end of the unused list. This may not be the total
1072 * number of unused children, because select_parent can
1073 * drop the lock and return early due to latency
1074 * constraints.
1075 */
b48f03b3 1076static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1077{
949854d0 1078 struct dentry *this_parent;
1da177e4 1079 struct list_head *next;
949854d0 1080 unsigned seq;
1da177e4 1081 int found = 0;
58db63d0 1082 int locked = 0;
1da177e4 1083
949854d0 1084 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1085again:
1086 this_parent = parent;
2fd6b7f5 1087 spin_lock(&this_parent->d_lock);
1da177e4
LT
1088repeat:
1089 next = this_parent->d_subdirs.next;
1090resume:
1091 while (next != &this_parent->d_subdirs) {
1092 struct list_head *tmp = next;
5160ee6f 1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1094 next = tmp->next;
1095
2fd6b7f5 1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1097
b48f03b3
DC
1098 /*
1099 * move only zero ref count dentries to the dispose list.
1da177e4 1100 */
b7ab39f6 1101 if (!dentry->d_count) {
b48f03b3 1102 dentry_lru_move_list(dentry, dispose);
1da177e4 1103 found++;
a4633357
CH
1104 } else {
1105 dentry_lru_del(dentry);
1da177e4
LT
1106 }
1107
1108 /*
1109 * We can return to the caller if we have found some (this
1110 * ensures forward progress). We'll be coming back to find
1111 * the rest.
1112 */
2fd6b7f5
NP
1113 if (found && need_resched()) {
1114 spin_unlock(&dentry->d_lock);
1da177e4 1115 goto out;
2fd6b7f5 1116 }
1da177e4
LT
1117
1118 /*
1119 * Descend a level if the d_subdirs list is non-empty.
1120 */
1121 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1122 spin_unlock(&this_parent->d_lock);
1123 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1124 this_parent = dentry;
2fd6b7f5 1125 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1126 goto repeat;
1127 }
2fd6b7f5
NP
1128
1129 spin_unlock(&dentry->d_lock);
1da177e4
LT
1130 }
1131 /*
1132 * All done at this level ... ascend and resume the search.
1133 */
1134 if (this_parent != parent) {
c826cb7d
LT
1135 struct dentry *child = this_parent;
1136 this_parent = try_to_ascend(this_parent, locked, seq);
1137 if (!this_parent)
949854d0 1138 goto rename_retry;
949854d0 1139 next = child->d_u.d_child.next;
1da177e4
LT
1140 goto resume;
1141 }
1142out:
2fd6b7f5 1143 spin_unlock(&this_parent->d_lock);
58db63d0 1144 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1145 goto rename_retry;
58db63d0
NP
1146 if (locked)
1147 write_sequnlock(&rename_lock);
1da177e4 1148 return found;
58db63d0
NP
1149
1150rename_retry:
1151 if (found)
1152 return found;
1153 locked = 1;
1154 write_seqlock(&rename_lock);
1155 goto again;
1da177e4
LT
1156}
1157
1158/**
1159 * shrink_dcache_parent - prune dcache
1160 * @parent: parent of entries to prune
1161 *
1162 * Prune the dcache to remove unused children of the parent dentry.
1163 */
1da177e4
LT
1164void shrink_dcache_parent(struct dentry * parent)
1165{
b48f03b3 1166 LIST_HEAD(dispose);
1da177e4
LT
1167 int found;
1168
b48f03b3
DC
1169 while ((found = select_parent(parent, &dispose)) != 0)
1170 shrink_dentry_list(&dispose);
1da177e4 1171}
ec4f8605 1172EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1173
1da177e4 1174/**
a4464dbc
AV
1175 * __d_alloc - allocate a dcache entry
1176 * @sb: filesystem it will belong to
1da177e4
LT
1177 * @name: qstr of the name
1178 *
1179 * Allocates a dentry. It returns %NULL if there is insufficient memory
1180 * available. On a success the dentry is returned. The name passed in is
1181 * copied and the copy passed in may be reused after this call.
1182 */
1183
a4464dbc 1184struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1185{
1186 struct dentry *dentry;
1187 char *dname;
1188
e12ba74d 1189 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1190 if (!dentry)
1191 return NULL;
1192
1193 if (name->len > DNAME_INLINE_LEN-1) {
1194 dname = kmalloc(name->len + 1, GFP_KERNEL);
1195 if (!dname) {
1196 kmem_cache_free(dentry_cache, dentry);
1197 return NULL;
1198 }
1199 } else {
1200 dname = dentry->d_iname;
1201 }
1202 dentry->d_name.name = dname;
1203
1204 dentry->d_name.len = name->len;
1205 dentry->d_name.hash = name->hash;
1206 memcpy(dname, name->name, name->len);
1207 dname[name->len] = 0;
1208
b7ab39f6 1209 dentry->d_count = 1;
dea3667b 1210 dentry->d_flags = 0;
1da177e4 1211 spin_lock_init(&dentry->d_lock);
31e6b01f 1212 seqcount_init(&dentry->d_seq);
1da177e4 1213 dentry->d_inode = NULL;
a4464dbc
AV
1214 dentry->d_parent = dentry;
1215 dentry->d_sb = sb;
1da177e4
LT
1216 dentry->d_op = NULL;
1217 dentry->d_fsdata = NULL;
ceb5bdc2 1218 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1219 INIT_LIST_HEAD(&dentry->d_lru);
1220 INIT_LIST_HEAD(&dentry->d_subdirs);
1221 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1222 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1223 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1224
3e880fb5 1225 this_cpu_inc(nr_dentry);
312d3ca8 1226
1da177e4
LT
1227 return dentry;
1228}
a4464dbc
AV
1229
1230/**
1231 * d_alloc - allocate a dcache entry
1232 * @parent: parent of entry to allocate
1233 * @name: qstr of the name
1234 *
1235 * Allocates a dentry. It returns %NULL if there is insufficient memory
1236 * available. On a success the dentry is returned. The name passed in is
1237 * copied and the copy passed in may be reused after this call.
1238 */
1239struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1240{
1241 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1242 if (!dentry)
1243 return NULL;
1244
1245 spin_lock(&parent->d_lock);
1246 /*
1247 * don't need child lock because it is not subject
1248 * to concurrency here
1249 */
1250 __dget_dlock(parent);
1251 dentry->d_parent = parent;
1252 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1253 spin_unlock(&parent->d_lock);
1254
1255 return dentry;
1256}
ec4f8605 1257EXPORT_SYMBOL(d_alloc);
1da177e4 1258
4b936885
NP
1259struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1260{
a4464dbc
AV
1261 struct dentry *dentry = __d_alloc(sb, name);
1262 if (dentry)
4b936885 1263 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1264 return dentry;
1265}
1266EXPORT_SYMBOL(d_alloc_pseudo);
1267
1da177e4
LT
1268struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1269{
1270 struct qstr q;
1271
1272 q.name = name;
1273 q.len = strlen(name);
1274 q.hash = full_name_hash(q.name, q.len);
1275 return d_alloc(parent, &q);
1276}
ef26ca97 1277EXPORT_SYMBOL(d_alloc_name);
1da177e4 1278
fb045adb
NP
1279void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1280{
6f7f7caa
LT
1281 WARN_ON_ONCE(dentry->d_op);
1282 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1283 DCACHE_OP_COMPARE |
1284 DCACHE_OP_REVALIDATE |
1285 DCACHE_OP_DELETE ));
1286 dentry->d_op = op;
1287 if (!op)
1288 return;
1289 if (op->d_hash)
1290 dentry->d_flags |= DCACHE_OP_HASH;
1291 if (op->d_compare)
1292 dentry->d_flags |= DCACHE_OP_COMPARE;
1293 if (op->d_revalidate)
1294 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1295 if (op->d_delete)
1296 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1297 if (op->d_prune)
1298 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1299
1300}
1301EXPORT_SYMBOL(d_set_d_op);
1302
360da900
OH
1303static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1304{
b23fb0a6 1305 spin_lock(&dentry->d_lock);
9875cf80
DH
1306 if (inode) {
1307 if (unlikely(IS_AUTOMOUNT(inode)))
1308 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1309 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1310 }
360da900 1311 dentry->d_inode = inode;
31e6b01f 1312 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1313 spin_unlock(&dentry->d_lock);
360da900
OH
1314 fsnotify_d_instantiate(dentry, inode);
1315}
1316
1da177e4
LT
1317/**
1318 * d_instantiate - fill in inode information for a dentry
1319 * @entry: dentry to complete
1320 * @inode: inode to attach to this dentry
1321 *
1322 * Fill in inode information in the entry.
1323 *
1324 * This turns negative dentries into productive full members
1325 * of society.
1326 *
1327 * NOTE! This assumes that the inode count has been incremented
1328 * (or otherwise set) by the caller to indicate that it is now
1329 * in use by the dcache.
1330 */
1331
1332void d_instantiate(struct dentry *entry, struct inode * inode)
1333{
28133c7b 1334 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1335 if (inode)
1336 spin_lock(&inode->i_lock);
360da900 1337 __d_instantiate(entry, inode);
873feea0
NP
1338 if (inode)
1339 spin_unlock(&inode->i_lock);
1da177e4
LT
1340 security_d_instantiate(entry, inode);
1341}
ec4f8605 1342EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1343
1344/**
1345 * d_instantiate_unique - instantiate a non-aliased dentry
1346 * @entry: dentry to instantiate
1347 * @inode: inode to attach to this dentry
1348 *
1349 * Fill in inode information in the entry. On success, it returns NULL.
1350 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1351 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1352 *
1353 * Note that in order to avoid conflicts with rename() etc, the caller
1354 * had better be holding the parent directory semaphore.
e866cfa9
OD
1355 *
1356 * This also assumes that the inode count has been incremented
1357 * (or otherwise set) by the caller to indicate that it is now
1358 * in use by the dcache.
1da177e4 1359 */
770bfad8
DH
1360static struct dentry *__d_instantiate_unique(struct dentry *entry,
1361 struct inode *inode)
1da177e4
LT
1362{
1363 struct dentry *alias;
1364 int len = entry->d_name.len;
1365 const char *name = entry->d_name.name;
1366 unsigned int hash = entry->d_name.hash;
1367
770bfad8 1368 if (!inode) {
360da900 1369 __d_instantiate(entry, NULL);
770bfad8
DH
1370 return NULL;
1371 }
1372
1da177e4
LT
1373 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1374 struct qstr *qstr = &alias->d_name;
1375
9abca360
NP
1376 /*
1377 * Don't need alias->d_lock here, because aliases with
1378 * d_parent == entry->d_parent are not subject to name or
1379 * parent changes, because the parent inode i_mutex is held.
1380 */
1da177e4
LT
1381 if (qstr->hash != hash)
1382 continue;
1383 if (alias->d_parent != entry->d_parent)
1384 continue;
9d55c369 1385 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1386 continue;
dc0474be 1387 __dget(alias);
1da177e4
LT
1388 return alias;
1389 }
770bfad8 1390
360da900 1391 __d_instantiate(entry, inode);
1da177e4
LT
1392 return NULL;
1393}
770bfad8
DH
1394
1395struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1396{
1397 struct dentry *result;
1398
1399 BUG_ON(!list_empty(&entry->d_alias));
1400
873feea0
NP
1401 if (inode)
1402 spin_lock(&inode->i_lock);
770bfad8 1403 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1404 if (inode)
1405 spin_unlock(&inode->i_lock);
770bfad8
DH
1406
1407 if (!result) {
1408 security_d_instantiate(entry, inode);
1409 return NULL;
1410 }
1411
1412 BUG_ON(!d_unhashed(result));
1413 iput(inode);
1414 return result;
1415}
1416
1da177e4
LT
1417EXPORT_SYMBOL(d_instantiate_unique);
1418
1419/**
1420 * d_alloc_root - allocate root dentry
1421 * @root_inode: inode to allocate the root for
1422 *
1423 * Allocate a root ("/") dentry for the inode given. The inode is
1424 * instantiated and returned. %NULL is returned if there is insufficient
1425 * memory or the inode passed is %NULL.
1426 */
1427
1428struct dentry * d_alloc_root(struct inode * root_inode)
1429{
1430 struct dentry *res = NULL;
1431
1432 if (root_inode) {
1433 static const struct qstr name = { .name = "/", .len = 1 };
1434
a4464dbc
AV
1435 res = __d_alloc(root_inode->i_sb, &name);
1436 if (res)
1da177e4 1437 d_instantiate(res, root_inode);
1da177e4
LT
1438 }
1439 return res;
1440}
ec4f8605 1441EXPORT_SYMBOL(d_alloc_root);
1da177e4 1442
d891eedb
BF
1443static struct dentry * __d_find_any_alias(struct inode *inode)
1444{
1445 struct dentry *alias;
1446
1447 if (list_empty(&inode->i_dentry))
1448 return NULL;
1449 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1450 __dget(alias);
1451 return alias;
1452}
1453
1454static struct dentry * d_find_any_alias(struct inode *inode)
1455{
1456 struct dentry *de;
1457
1458 spin_lock(&inode->i_lock);
1459 de = __d_find_any_alias(inode);
1460 spin_unlock(&inode->i_lock);
1461 return de;
1462}
1463
1464
4ea3ada2
CH
1465/**
1466 * d_obtain_alias - find or allocate a dentry for a given inode
1467 * @inode: inode to allocate the dentry for
1468 *
1469 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1470 * similar open by handle operations. The returned dentry may be anonymous,
1471 * or may have a full name (if the inode was already in the cache).
1472 *
1473 * When called on a directory inode, we must ensure that the inode only ever
1474 * has one dentry. If a dentry is found, that is returned instead of
1475 * allocating a new one.
1476 *
1477 * On successful return, the reference to the inode has been transferred
44003728
CH
1478 * to the dentry. In case of an error the reference on the inode is released.
1479 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1480 * be passed in and will be the error will be propagate to the return value,
1481 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1482 */
1483struct dentry *d_obtain_alias(struct inode *inode)
1484{
9308a612
CH
1485 static const struct qstr anonstring = { .name = "" };
1486 struct dentry *tmp;
1487 struct dentry *res;
4ea3ada2
CH
1488
1489 if (!inode)
44003728 1490 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1491 if (IS_ERR(inode))
1492 return ERR_CAST(inode);
1493
d891eedb 1494 res = d_find_any_alias(inode);
9308a612
CH
1495 if (res)
1496 goto out_iput;
1497
a4464dbc 1498 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1499 if (!tmp) {
1500 res = ERR_PTR(-ENOMEM);
1501 goto out_iput;
4ea3ada2 1502 }
b5c84bf6 1503
873feea0 1504 spin_lock(&inode->i_lock);
d891eedb 1505 res = __d_find_any_alias(inode);
9308a612 1506 if (res) {
873feea0 1507 spin_unlock(&inode->i_lock);
9308a612
CH
1508 dput(tmp);
1509 goto out_iput;
1510 }
1511
1512 /* attach a disconnected dentry */
1513 spin_lock(&tmp->d_lock);
9308a612
CH
1514 tmp->d_inode = inode;
1515 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1516 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1517 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1518 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1519 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1520 spin_unlock(&tmp->d_lock);
873feea0 1521 spin_unlock(&inode->i_lock);
24ff6663 1522 security_d_instantiate(tmp, inode);
9308a612 1523
9308a612
CH
1524 return tmp;
1525
1526 out_iput:
24ff6663
JB
1527 if (res && !IS_ERR(res))
1528 security_d_instantiate(res, inode);
9308a612
CH
1529 iput(inode);
1530 return res;
4ea3ada2 1531}
adc48720 1532EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1533
1534/**
1535 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1536 * @inode: the inode which may have a disconnected dentry
1537 * @dentry: a negative dentry which we want to point to the inode.
1538 *
1539 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1540 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1541 * and return it, else simply d_add the inode to the dentry and return NULL.
1542 *
1543 * This is needed in the lookup routine of any filesystem that is exportable
1544 * (via knfsd) so that we can build dcache paths to directories effectively.
1545 *
1546 * If a dentry was found and moved, then it is returned. Otherwise NULL
1547 * is returned. This matches the expected return value of ->lookup.
1548 *
1549 */
1550struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1551{
1552 struct dentry *new = NULL;
1553
a9049376
AV
1554 if (IS_ERR(inode))
1555 return ERR_CAST(inode);
1556
21c0d8fd 1557 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1558 spin_lock(&inode->i_lock);
1da177e4
LT
1559 new = __d_find_alias(inode, 1);
1560 if (new) {
1561 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1562 spin_unlock(&inode->i_lock);
1da177e4 1563 security_d_instantiate(new, inode);
1da177e4
LT
1564 d_move(new, dentry);
1565 iput(inode);
1566 } else {
873feea0 1567 /* already taking inode->i_lock, so d_add() by hand */
360da900 1568 __d_instantiate(dentry, inode);
873feea0 1569 spin_unlock(&inode->i_lock);
1da177e4
LT
1570 security_d_instantiate(dentry, inode);
1571 d_rehash(dentry);
1572 }
1573 } else
1574 d_add(dentry, inode);
1575 return new;
1576}
ec4f8605 1577EXPORT_SYMBOL(d_splice_alias);
1da177e4 1578
9403540c
BN
1579/**
1580 * d_add_ci - lookup or allocate new dentry with case-exact name
1581 * @inode: the inode case-insensitive lookup has found
1582 * @dentry: the negative dentry that was passed to the parent's lookup func
1583 * @name: the case-exact name to be associated with the returned dentry
1584 *
1585 * This is to avoid filling the dcache with case-insensitive names to the
1586 * same inode, only the actual correct case is stored in the dcache for
1587 * case-insensitive filesystems.
1588 *
1589 * For a case-insensitive lookup match and if the the case-exact dentry
1590 * already exists in in the dcache, use it and return it.
1591 *
1592 * If no entry exists with the exact case name, allocate new dentry with
1593 * the exact case, and return the spliced entry.
1594 */
e45b590b 1595struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1596 struct qstr *name)
1597{
1598 int error;
1599 struct dentry *found;
1600 struct dentry *new;
1601
b6520c81
CH
1602 /*
1603 * First check if a dentry matching the name already exists,
1604 * if not go ahead and create it now.
1605 */
9403540c 1606 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1607 if (!found) {
1608 new = d_alloc(dentry->d_parent, name);
1609 if (!new) {
1610 error = -ENOMEM;
1611 goto err_out;
1612 }
b6520c81 1613
9403540c
BN
1614 found = d_splice_alias(inode, new);
1615 if (found) {
1616 dput(new);
1617 return found;
1618 }
1619 return new;
1620 }
b6520c81
CH
1621
1622 /*
1623 * If a matching dentry exists, and it's not negative use it.
1624 *
1625 * Decrement the reference count to balance the iget() done
1626 * earlier on.
1627 */
9403540c
BN
1628 if (found->d_inode) {
1629 if (unlikely(found->d_inode != inode)) {
1630 /* This can't happen because bad inodes are unhashed. */
1631 BUG_ON(!is_bad_inode(inode));
1632 BUG_ON(!is_bad_inode(found->d_inode));
1633 }
9403540c
BN
1634 iput(inode);
1635 return found;
1636 }
b6520c81 1637
9403540c 1638 /*
44396f4b
JB
1639 * We are going to instantiate this dentry, unhash it and clear the
1640 * lookup flag so we can do that.
9403540c 1641 */
44396f4b
JB
1642 if (unlikely(d_need_lookup(found)))
1643 d_clear_need_lookup(found);
b6520c81 1644
9403540c 1645 /*
9403540c 1646 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1647 * already has a dentry.
9403540c 1648 */
4513d899
AV
1649 new = d_splice_alias(inode, found);
1650 if (new) {
1651 dput(found);
1652 found = new;
9403540c 1653 }
4513d899 1654 return found;
9403540c
BN
1655
1656err_out:
1657 iput(inode);
1658 return ERR_PTR(error);
1659}
ec4f8605 1660EXPORT_SYMBOL(d_add_ci);
1da177e4 1661
31e6b01f
NP
1662/**
1663 * __d_lookup_rcu - search for a dentry (racy, store-free)
1664 * @parent: parent dentry
1665 * @name: qstr of name we wish to find
1666 * @seq: returns d_seq value at the point where the dentry was found
1667 * @inode: returns dentry->d_inode when the inode was found valid.
1668 * Returns: dentry, or NULL
1669 *
1670 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1671 * resolution (store-free path walking) design described in
1672 * Documentation/filesystems/path-lookup.txt.
1673 *
1674 * This is not to be used outside core vfs.
1675 *
1676 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1677 * held, and rcu_read_lock held. The returned dentry must not be stored into
1678 * without taking d_lock and checking d_seq sequence count against @seq
1679 * returned here.
1680 *
1681 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1682 * function.
1683 *
1684 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1685 * the returned dentry, so long as its parent's seqlock is checked after the
1686 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1687 * is formed, giving integrity down the path walk.
1688 */
1689struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1690 unsigned *seq, struct inode **inode)
1691{
1692 unsigned int len = name->len;
1693 unsigned int hash = name->hash;
1694 const unsigned char *str = name->name;
b07ad996 1695 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1696 struct hlist_bl_node *node;
31e6b01f
NP
1697 struct dentry *dentry;
1698
1699 /*
1700 * Note: There is significant duplication with __d_lookup_rcu which is
1701 * required to prevent single threaded performance regressions
1702 * especially on architectures where smp_rmb (in seqcounts) are costly.
1703 * Keep the two functions in sync.
1704 */
1705
1706 /*
1707 * The hash list is protected using RCU.
1708 *
1709 * Carefully use d_seq when comparing a candidate dentry, to avoid
1710 * races with d_move().
1711 *
1712 * It is possible that concurrent renames can mess up our list
1713 * walk here and result in missing our dentry, resulting in the
1714 * false-negative result. d_lookup() protects against concurrent
1715 * renames using rename_lock seqlock.
1716 *
b0a4bb83 1717 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1718 */
b07ad996 1719 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1720 struct inode *i;
1721 const char *tname;
1722 int tlen;
1723
1724 if (dentry->d_name.hash != hash)
1725 continue;
1726
1727seqretry:
1728 *seq = read_seqcount_begin(&dentry->d_seq);
1729 if (dentry->d_parent != parent)
1730 continue;
1731 if (d_unhashed(dentry))
1732 continue;
1733 tlen = dentry->d_name.len;
1734 tname = dentry->d_name.name;
1735 i = dentry->d_inode;
e1bb5782 1736 prefetch(tname);
31e6b01f
NP
1737 /*
1738 * This seqcount check is required to ensure name and
1739 * len are loaded atomically, so as not to walk off the
1740 * edge of memory when walking. If we could load this
1741 * atomically some other way, we could drop this check.
1742 */
1743 if (read_seqcount_retry(&dentry->d_seq, *seq))
1744 goto seqretry;
830c0f0e 1745 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
31e6b01f
NP
1746 if (parent->d_op->d_compare(parent, *inode,
1747 dentry, i,
1748 tlen, tname, name))
1749 continue;
1750 } else {
9d55c369 1751 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1752 continue;
1753 }
1754 /*
1755 * No extra seqcount check is required after the name
1756 * compare. The caller must perform a seqcount check in
1757 * order to do anything useful with the returned dentry
1758 * anyway.
1759 */
1760 *inode = i;
1761 return dentry;
1762 }
1763 return NULL;
1764}
1765
1da177e4
LT
1766/**
1767 * d_lookup - search for a dentry
1768 * @parent: parent dentry
1769 * @name: qstr of name we wish to find
b04f784e 1770 * Returns: dentry, or NULL
1da177e4 1771 *
b04f784e
NP
1772 * d_lookup searches the children of the parent dentry for the name in
1773 * question. If the dentry is found its reference count is incremented and the
1774 * dentry is returned. The caller must use dput to free the entry when it has
1775 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1776 */
31e6b01f 1777struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1778{
31e6b01f 1779 struct dentry *dentry;
949854d0 1780 unsigned seq;
1da177e4
LT
1781
1782 do {
1783 seq = read_seqbegin(&rename_lock);
1784 dentry = __d_lookup(parent, name);
1785 if (dentry)
1786 break;
1787 } while (read_seqretry(&rename_lock, seq));
1788 return dentry;
1789}
ec4f8605 1790EXPORT_SYMBOL(d_lookup);
1da177e4 1791
31e6b01f 1792/**
b04f784e
NP
1793 * __d_lookup - search for a dentry (racy)
1794 * @parent: parent dentry
1795 * @name: qstr of name we wish to find
1796 * Returns: dentry, or NULL
1797 *
1798 * __d_lookup is like d_lookup, however it may (rarely) return a
1799 * false-negative result due to unrelated rename activity.
1800 *
1801 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1802 * however it must be used carefully, eg. with a following d_lookup in
1803 * the case of failure.
1804 *
1805 * __d_lookup callers must be commented.
1806 */
31e6b01f 1807struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1808{
1809 unsigned int len = name->len;
1810 unsigned int hash = name->hash;
1811 const unsigned char *str = name->name;
b07ad996 1812 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1813 struct hlist_bl_node *node;
31e6b01f 1814 struct dentry *found = NULL;
665a7583 1815 struct dentry *dentry;
1da177e4 1816
31e6b01f
NP
1817 /*
1818 * Note: There is significant duplication with __d_lookup_rcu which is
1819 * required to prevent single threaded performance regressions
1820 * especially on architectures where smp_rmb (in seqcounts) are costly.
1821 * Keep the two functions in sync.
1822 */
1823
b04f784e
NP
1824 /*
1825 * The hash list is protected using RCU.
1826 *
1827 * Take d_lock when comparing a candidate dentry, to avoid races
1828 * with d_move().
1829 *
1830 * It is possible that concurrent renames can mess up our list
1831 * walk here and result in missing our dentry, resulting in the
1832 * false-negative result. d_lookup() protects against concurrent
1833 * renames using rename_lock seqlock.
1834 *
b0a4bb83 1835 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1836 */
1da177e4
LT
1837 rcu_read_lock();
1838
b07ad996 1839 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1840 const char *tname;
1841 int tlen;
1da177e4 1842
1da177e4
LT
1843 if (dentry->d_name.hash != hash)
1844 continue;
1da177e4
LT
1845
1846 spin_lock(&dentry->d_lock);
1da177e4
LT
1847 if (dentry->d_parent != parent)
1848 goto next;
d0185c08
LT
1849 if (d_unhashed(dentry))
1850 goto next;
1851
1da177e4
LT
1852 /*
1853 * It is safe to compare names since d_move() cannot
1854 * change the qstr (protected by d_lock).
1855 */
31e6b01f
NP
1856 tlen = dentry->d_name.len;
1857 tname = dentry->d_name.name;
fb045adb 1858 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1859 if (parent->d_op->d_compare(parent, parent->d_inode,
1860 dentry, dentry->d_inode,
31e6b01f 1861 tlen, tname, name))
1da177e4
LT
1862 goto next;
1863 } else {
9d55c369 1864 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1865 goto next;
1866 }
1867
b7ab39f6 1868 dentry->d_count++;
d0185c08 1869 found = dentry;
1da177e4
LT
1870 spin_unlock(&dentry->d_lock);
1871 break;
1872next:
1873 spin_unlock(&dentry->d_lock);
1874 }
1875 rcu_read_unlock();
1876
1877 return found;
1878}
1879
3e7e241f
EB
1880/**
1881 * d_hash_and_lookup - hash the qstr then search for a dentry
1882 * @dir: Directory to search in
1883 * @name: qstr of name we wish to find
1884 *
1885 * On hash failure or on lookup failure NULL is returned.
1886 */
1887struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1888{
1889 struct dentry *dentry = NULL;
1890
1891 /*
1892 * Check for a fs-specific hash function. Note that we must
1893 * calculate the standard hash first, as the d_op->d_hash()
1894 * routine may choose to leave the hash value unchanged.
1895 */
1896 name->hash = full_name_hash(name->name, name->len);
fb045adb 1897 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1898 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1899 goto out;
1900 }
1901 dentry = d_lookup(dir, name);
1902out:
1903 return dentry;
1904}
1905
1da177e4 1906/**
786a5e15 1907 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1908 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1909 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1910 *
1911 * An insecure source has sent us a dentry, here we verify it and dget() it.
1912 * This is used by ncpfs in its readdir implementation.
1913 * Zero is returned in the dentry is invalid.
786a5e15
NP
1914 *
1915 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1916 */
d3a23e16 1917int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1918{
786a5e15 1919 struct dentry *child;
d3a23e16 1920
2fd6b7f5 1921 spin_lock(&dparent->d_lock);
786a5e15
NP
1922 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1923 if (dentry == child) {
2fd6b7f5 1924 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1925 __dget_dlock(dentry);
2fd6b7f5
NP
1926 spin_unlock(&dentry->d_lock);
1927 spin_unlock(&dparent->d_lock);
1da177e4
LT
1928 return 1;
1929 }
1930 }
2fd6b7f5 1931 spin_unlock(&dparent->d_lock);
786a5e15 1932
1da177e4
LT
1933 return 0;
1934}
ec4f8605 1935EXPORT_SYMBOL(d_validate);
1da177e4
LT
1936
1937/*
1938 * When a file is deleted, we have two options:
1939 * - turn this dentry into a negative dentry
1940 * - unhash this dentry and free it.
1941 *
1942 * Usually, we want to just turn this into
1943 * a negative dentry, but if anybody else is
1944 * currently using the dentry or the inode
1945 * we can't do that and we fall back on removing
1946 * it from the hash queues and waiting for
1947 * it to be deleted later when it has no users
1948 */
1949
1950/**
1951 * d_delete - delete a dentry
1952 * @dentry: The dentry to delete
1953 *
1954 * Turn the dentry into a negative dentry if possible, otherwise
1955 * remove it from the hash queues so it can be deleted later
1956 */
1957
1958void d_delete(struct dentry * dentry)
1959{
873feea0 1960 struct inode *inode;
7a91bf7f 1961 int isdir = 0;
1da177e4
LT
1962 /*
1963 * Are we the only user?
1964 */
357f8e65 1965again:
1da177e4 1966 spin_lock(&dentry->d_lock);
873feea0
NP
1967 inode = dentry->d_inode;
1968 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 1969 if (dentry->d_count == 1) {
873feea0 1970 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
1971 spin_unlock(&dentry->d_lock);
1972 cpu_relax();
1973 goto again;
1974 }
13e3c5e5 1975 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 1976 dentry_unlink_inode(dentry);
7a91bf7f 1977 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1978 return;
1979 }
1980
1981 if (!d_unhashed(dentry))
1982 __d_drop(dentry);
1983
1984 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
1985
1986 fsnotify_nameremove(dentry, isdir);
1da177e4 1987}
ec4f8605 1988EXPORT_SYMBOL(d_delete);
1da177e4 1989
b07ad996 1990static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 1991{
ceb5bdc2 1992 BUG_ON(!d_unhashed(entry));
1879fd6a 1993 hlist_bl_lock(b);
dea3667b 1994 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 1995 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 1996 hlist_bl_unlock(b);
1da177e4
LT
1997}
1998
770bfad8
DH
1999static void _d_rehash(struct dentry * entry)
2000{
2001 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2002}
2003
1da177e4
LT
2004/**
2005 * d_rehash - add an entry back to the hash
2006 * @entry: dentry to add to the hash
2007 *
2008 * Adds a dentry to the hash according to its name.
2009 */
2010
2011void d_rehash(struct dentry * entry)
2012{
1da177e4 2013 spin_lock(&entry->d_lock);
770bfad8 2014 _d_rehash(entry);
1da177e4 2015 spin_unlock(&entry->d_lock);
1da177e4 2016}
ec4f8605 2017EXPORT_SYMBOL(d_rehash);
1da177e4 2018
fb2d5b86
NP
2019/**
2020 * dentry_update_name_case - update case insensitive dentry with a new name
2021 * @dentry: dentry to be updated
2022 * @name: new name
2023 *
2024 * Update a case insensitive dentry with new case of name.
2025 *
2026 * dentry must have been returned by d_lookup with name @name. Old and new
2027 * name lengths must match (ie. no d_compare which allows mismatched name
2028 * lengths).
2029 *
2030 * Parent inode i_mutex must be held over d_lookup and into this call (to
2031 * keep renames and concurrent inserts, and readdir(2) away).
2032 */
2033void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2034{
7ebfa57f 2035 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2036 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2037
fb2d5b86 2038 spin_lock(&dentry->d_lock);
31e6b01f 2039 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2040 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2041 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2042 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2043}
2044EXPORT_SYMBOL(dentry_update_name_case);
2045
1da177e4
LT
2046static void switch_names(struct dentry *dentry, struct dentry *target)
2047{
2048 if (dname_external(target)) {
2049 if (dname_external(dentry)) {
2050 /*
2051 * Both external: swap the pointers
2052 */
9a8d5bb4 2053 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2054 } else {
2055 /*
2056 * dentry:internal, target:external. Steal target's
2057 * storage and make target internal.
2058 */
321bcf92
BF
2059 memcpy(target->d_iname, dentry->d_name.name,
2060 dentry->d_name.len + 1);
1da177e4
LT
2061 dentry->d_name.name = target->d_name.name;
2062 target->d_name.name = target->d_iname;
2063 }
2064 } else {
2065 if (dname_external(dentry)) {
2066 /*
2067 * dentry:external, target:internal. Give dentry's
2068 * storage to target and make dentry internal
2069 */
2070 memcpy(dentry->d_iname, target->d_name.name,
2071 target->d_name.len + 1);
2072 target->d_name.name = dentry->d_name.name;
2073 dentry->d_name.name = dentry->d_iname;
2074 } else {
2075 /*
2076 * Both are internal. Just copy target to dentry
2077 */
2078 memcpy(dentry->d_iname, target->d_name.name,
2079 target->d_name.len + 1);
dc711ca3
AV
2080 dentry->d_name.len = target->d_name.len;
2081 return;
1da177e4
LT
2082 }
2083 }
9a8d5bb4 2084 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2085}
2086
2fd6b7f5
NP
2087static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2088{
2089 /*
2090 * XXXX: do we really need to take target->d_lock?
2091 */
2092 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2093 spin_lock(&target->d_parent->d_lock);
2094 else {
2095 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2096 spin_lock(&dentry->d_parent->d_lock);
2097 spin_lock_nested(&target->d_parent->d_lock,
2098 DENTRY_D_LOCK_NESTED);
2099 } else {
2100 spin_lock(&target->d_parent->d_lock);
2101 spin_lock_nested(&dentry->d_parent->d_lock,
2102 DENTRY_D_LOCK_NESTED);
2103 }
2104 }
2105 if (target < dentry) {
2106 spin_lock_nested(&target->d_lock, 2);
2107 spin_lock_nested(&dentry->d_lock, 3);
2108 } else {
2109 spin_lock_nested(&dentry->d_lock, 2);
2110 spin_lock_nested(&target->d_lock, 3);
2111 }
2112}
2113
2114static void dentry_unlock_parents_for_move(struct dentry *dentry,
2115 struct dentry *target)
2116{
2117 if (target->d_parent != dentry->d_parent)
2118 spin_unlock(&dentry->d_parent->d_lock);
2119 if (target->d_parent != target)
2120 spin_unlock(&target->d_parent->d_lock);
2121}
2122
1da177e4 2123/*
2fd6b7f5
NP
2124 * When switching names, the actual string doesn't strictly have to
2125 * be preserved in the target - because we're dropping the target
2126 * anyway. As such, we can just do a simple memcpy() to copy over
2127 * the new name before we switch.
2128 *
2129 * Note that we have to be a lot more careful about getting the hash
2130 * switched - we have to switch the hash value properly even if it
2131 * then no longer matches the actual (corrupted) string of the target.
2132 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2133 */
9eaef27b 2134/*
18367501 2135 * __d_move - move a dentry
1da177e4
LT
2136 * @dentry: entry to move
2137 * @target: new dentry
2138 *
2139 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2140 * dcache entries should not be moved in this way. Caller must hold
2141 * rename_lock, the i_mutex of the source and target directories,
2142 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2143 */
18367501 2144static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2145{
1da177e4
LT
2146 if (!dentry->d_inode)
2147 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2148
2fd6b7f5
NP
2149 BUG_ON(d_ancestor(dentry, target));
2150 BUG_ON(d_ancestor(target, dentry));
2151
2fd6b7f5 2152 dentry_lock_for_move(dentry, target);
1da177e4 2153
31e6b01f
NP
2154 write_seqcount_begin(&dentry->d_seq);
2155 write_seqcount_begin(&target->d_seq);
2156
ceb5bdc2
NP
2157 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2158
2159 /*
2160 * Move the dentry to the target hash queue. Don't bother checking
2161 * for the same hash queue because of how unlikely it is.
2162 */
2163 __d_drop(dentry);
789680d1 2164 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2165
2166 /* Unhash the target: dput() will then get rid of it */
2167 __d_drop(target);
2168
5160ee6f
ED
2169 list_del(&dentry->d_u.d_child);
2170 list_del(&target->d_u.d_child);
1da177e4
LT
2171
2172 /* Switch the names.. */
2173 switch_names(dentry, target);
9a8d5bb4 2174 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2175
2176 /* ... and switch the parents */
2177 if (IS_ROOT(dentry)) {
2178 dentry->d_parent = target->d_parent;
2179 target->d_parent = target;
5160ee6f 2180 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2181 } else {
9a8d5bb4 2182 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2183
2184 /* And add them back to the (new) parent lists */
5160ee6f 2185 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2186 }
2187
5160ee6f 2188 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2189
31e6b01f
NP
2190 write_seqcount_end(&target->d_seq);
2191 write_seqcount_end(&dentry->d_seq);
2192
2fd6b7f5 2193 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2194 spin_unlock(&target->d_lock);
c32ccd87 2195 fsnotify_d_move(dentry);
1da177e4 2196 spin_unlock(&dentry->d_lock);
18367501
AV
2197}
2198
2199/*
2200 * d_move - move a dentry
2201 * @dentry: entry to move
2202 * @target: new dentry
2203 *
2204 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2205 * dcache entries should not be moved in this way. See the locking
2206 * requirements for __d_move.
18367501
AV
2207 */
2208void d_move(struct dentry *dentry, struct dentry *target)
2209{
2210 write_seqlock(&rename_lock);
2211 __d_move(dentry, target);
1da177e4 2212 write_sequnlock(&rename_lock);
9eaef27b 2213}
ec4f8605 2214EXPORT_SYMBOL(d_move);
1da177e4 2215
e2761a11
OH
2216/**
2217 * d_ancestor - search for an ancestor
2218 * @p1: ancestor dentry
2219 * @p2: child dentry
2220 *
2221 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2222 * an ancestor of p2, else NULL.
9eaef27b 2223 */
e2761a11 2224struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2225{
2226 struct dentry *p;
2227
871c0067 2228 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2229 if (p->d_parent == p1)
e2761a11 2230 return p;
9eaef27b 2231 }
e2761a11 2232 return NULL;
9eaef27b
TM
2233}
2234
2235/*
2236 * This helper attempts to cope with remotely renamed directories
2237 *
2238 * It assumes that the caller is already holding
18367501 2239 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2240 *
2241 * Note: If ever the locking in lock_rename() changes, then please
2242 * remember to update this too...
9eaef27b 2243 */
873feea0
NP
2244static struct dentry *__d_unalias(struct inode *inode,
2245 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2246{
2247 struct mutex *m1 = NULL, *m2 = NULL;
2248 struct dentry *ret;
2249
2250 /* If alias and dentry share a parent, then no extra locks required */
2251 if (alias->d_parent == dentry->d_parent)
2252 goto out_unalias;
2253
9eaef27b
TM
2254 /* See lock_rename() */
2255 ret = ERR_PTR(-EBUSY);
2256 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2257 goto out_err;
2258 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2259 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2260 goto out_err;
2261 m2 = &alias->d_parent->d_inode->i_mutex;
2262out_unalias:
18367501 2263 __d_move(alias, dentry);
9eaef27b
TM
2264 ret = alias;
2265out_err:
873feea0 2266 spin_unlock(&inode->i_lock);
9eaef27b
TM
2267 if (m2)
2268 mutex_unlock(m2);
2269 if (m1)
2270 mutex_unlock(m1);
2271 return ret;
2272}
2273
770bfad8
DH
2274/*
2275 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2276 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2277 * returns with anon->d_lock held!
770bfad8
DH
2278 */
2279static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2280{
2281 struct dentry *dparent, *aparent;
2282
2fd6b7f5 2283 dentry_lock_for_move(anon, dentry);
770bfad8 2284
31e6b01f
NP
2285 write_seqcount_begin(&dentry->d_seq);
2286 write_seqcount_begin(&anon->d_seq);
2287
770bfad8
DH
2288 dparent = dentry->d_parent;
2289 aparent = anon->d_parent;
2290
2fd6b7f5
NP
2291 switch_names(dentry, anon);
2292 swap(dentry->d_name.hash, anon->d_name.hash);
2293
770bfad8
DH
2294 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2295 list_del(&dentry->d_u.d_child);
2296 if (!IS_ROOT(dentry))
2297 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2298 else
2299 INIT_LIST_HEAD(&dentry->d_u.d_child);
2300
2301 anon->d_parent = (dparent == dentry) ? anon : dparent;
2302 list_del(&anon->d_u.d_child);
2303 if (!IS_ROOT(anon))
2304 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2305 else
2306 INIT_LIST_HEAD(&anon->d_u.d_child);
2307
31e6b01f
NP
2308 write_seqcount_end(&dentry->d_seq);
2309 write_seqcount_end(&anon->d_seq);
2310
2fd6b7f5
NP
2311 dentry_unlock_parents_for_move(anon, dentry);
2312 spin_unlock(&dentry->d_lock);
2313
2314 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2315 anon->d_flags &= ~DCACHE_DISCONNECTED;
2316}
2317
2318/**
2319 * d_materialise_unique - introduce an inode into the tree
2320 * @dentry: candidate dentry
2321 * @inode: inode to bind to the dentry, to which aliases may be attached
2322 *
2323 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2324 * root directory alias in its place if there is one. Caller must hold the
2325 * i_mutex of the parent directory.
770bfad8
DH
2326 */
2327struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2328{
9eaef27b 2329 struct dentry *actual;
770bfad8
DH
2330
2331 BUG_ON(!d_unhashed(dentry));
2332
770bfad8
DH
2333 if (!inode) {
2334 actual = dentry;
360da900 2335 __d_instantiate(dentry, NULL);
357f8e65
NP
2336 d_rehash(actual);
2337 goto out_nolock;
770bfad8
DH
2338 }
2339
873feea0 2340 spin_lock(&inode->i_lock);
357f8e65 2341
9eaef27b
TM
2342 if (S_ISDIR(inode->i_mode)) {
2343 struct dentry *alias;
2344
2345 /* Does an aliased dentry already exist? */
2346 alias = __d_find_alias(inode, 0);
2347 if (alias) {
2348 actual = alias;
18367501
AV
2349 write_seqlock(&rename_lock);
2350
2351 if (d_ancestor(alias, dentry)) {
2352 /* Check for loops */
2353 actual = ERR_PTR(-ELOOP);
2354 } else if (IS_ROOT(alias)) {
2355 /* Is this an anonymous mountpoint that we
2356 * could splice into our tree? */
9eaef27b 2357 __d_materialise_dentry(dentry, alias);
18367501 2358 write_sequnlock(&rename_lock);
9eaef27b
TM
2359 __d_drop(alias);
2360 goto found;
18367501
AV
2361 } else {
2362 /* Nope, but we must(!) avoid directory
2363 * aliasing */
2364 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2365 }
18367501 2366 write_sequnlock(&rename_lock);
dd179946
DH
2367 if (IS_ERR(actual)) {
2368 if (PTR_ERR(actual) == -ELOOP)
2369 pr_warn_ratelimited(
2370 "VFS: Lookup of '%s' in %s %s"
2371 " would have caused loop\n",
2372 dentry->d_name.name,
2373 inode->i_sb->s_type->name,
2374 inode->i_sb->s_id);
9eaef27b 2375 dput(alias);
dd179946 2376 }
9eaef27b
TM
2377 goto out_nolock;
2378 }
770bfad8
DH
2379 }
2380
2381 /* Add a unique reference */
2382 actual = __d_instantiate_unique(dentry, inode);
2383 if (!actual)
2384 actual = dentry;
357f8e65
NP
2385 else
2386 BUG_ON(!d_unhashed(actual));
770bfad8 2387
770bfad8
DH
2388 spin_lock(&actual->d_lock);
2389found:
2390 _d_rehash(actual);
2391 spin_unlock(&actual->d_lock);
873feea0 2392 spin_unlock(&inode->i_lock);
9eaef27b 2393out_nolock:
770bfad8
DH
2394 if (actual == dentry) {
2395 security_d_instantiate(dentry, inode);
2396 return NULL;
2397 }
2398
2399 iput(inode);
2400 return actual;
770bfad8 2401}
ec4f8605 2402EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2403
cdd16d02 2404static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2405{
2406 *buflen -= namelen;
2407 if (*buflen < 0)
2408 return -ENAMETOOLONG;
2409 *buffer -= namelen;
2410 memcpy(*buffer, str, namelen);
2411 return 0;
2412}
2413
cdd16d02
MS
2414static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2415{
2416 return prepend(buffer, buflen, name->name, name->len);
2417}
2418
1da177e4 2419/**
208898c1 2420 * prepend_path - Prepend path string to a buffer
9d1bc601 2421 * @path: the dentry/vfsmount to report
02125a82 2422 * @root: root vfsmnt/dentry
f2eb6575
MS
2423 * @buffer: pointer to the end of the buffer
2424 * @buflen: pointer to buffer length
552ce544 2425 *
949854d0 2426 * Caller holds the rename_lock.
1da177e4 2427 */
02125a82
AV
2428static int prepend_path(const struct path *path,
2429 const struct path *root,
f2eb6575 2430 char **buffer, int *buflen)
1da177e4 2431{
9d1bc601
MS
2432 struct dentry *dentry = path->dentry;
2433 struct vfsmount *vfsmnt = path->mnt;
0714a533 2434 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2435 bool slash = false;
2436 int error = 0;
6092d048 2437
99b7db7b 2438 br_read_lock(vfsmount_lock);
f2eb6575 2439 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2440 struct dentry * parent;
2441
1da177e4 2442 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2443 /* Global root? */
676da58d 2444 if (!mnt_has_parent(mnt))
1da177e4 2445 goto global_root;
a73324da 2446 dentry = mnt->mnt_mountpoint;
0714a533
AV
2447 mnt = mnt->mnt_parent;
2448 vfsmnt = &mnt->mnt;
1da177e4
LT
2449 continue;
2450 }
2451 parent = dentry->d_parent;
2452 prefetch(parent);
9abca360 2453 spin_lock(&dentry->d_lock);
f2eb6575 2454 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2455 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2456 if (!error)
2457 error = prepend(buffer, buflen, "/", 1);
2458 if (error)
2459 break;
2460
2461 slash = true;
1da177e4
LT
2462 dentry = parent;
2463 }
2464
f2eb6575
MS
2465 if (!error && !slash)
2466 error = prepend(buffer, buflen, "/", 1);
2467
02125a82 2468out:
99b7db7b 2469 br_read_unlock(vfsmount_lock);
f2eb6575 2470 return error;
1da177e4
LT
2471
2472global_root:
98dc568b
MS
2473 /*
2474 * Filesystems needing to implement special "root names"
2475 * should do so with ->d_dname()
2476 */
2477 if (IS_ROOT(dentry) &&
2478 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2479 WARN(1, "Root dentry has weird name <%.*s>\n",
2480 (int) dentry->d_name.len, dentry->d_name.name);
2481 }
02125a82
AV
2482 if (!slash)
2483 error = prepend(buffer, buflen, "/", 1);
2484 if (!error)
143c8c91 2485 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
be285c71 2486 goto out;
f2eb6575 2487}
be285c71 2488
f2eb6575
MS
2489/**
2490 * __d_path - return the path of a dentry
2491 * @path: the dentry/vfsmount to report
02125a82 2492 * @root: root vfsmnt/dentry
cd956a1c 2493 * @buf: buffer to return value in
f2eb6575
MS
2494 * @buflen: buffer length
2495 *
ffd1f4ed 2496 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2497 *
2498 * Returns a pointer into the buffer or an error code if the
2499 * path was too long.
2500 *
be148247 2501 * "buflen" should be positive.
f2eb6575 2502 *
02125a82 2503 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2504 */
02125a82
AV
2505char *__d_path(const struct path *path,
2506 const struct path *root,
f2eb6575
MS
2507 char *buf, int buflen)
2508{
2509 char *res = buf + buflen;
2510 int error;
2511
2512 prepend(&res, &buflen, "\0", 1);
949854d0 2513 write_seqlock(&rename_lock);
f2eb6575 2514 error = prepend_path(path, root, &res, &buflen);
949854d0 2515 write_sequnlock(&rename_lock);
be148247 2516
02125a82
AV
2517 if (error < 0)
2518 return ERR_PTR(error);
2519 if (error > 0)
2520 return NULL;
2521 return res;
2522}
2523
2524char *d_absolute_path(const struct path *path,
2525 char *buf, int buflen)
2526{
2527 struct path root = {};
2528 char *res = buf + buflen;
2529 int error;
2530
2531 prepend(&res, &buflen, "\0", 1);
2532 write_seqlock(&rename_lock);
2533 error = prepend_path(path, &root, &res, &buflen);
2534 write_sequnlock(&rename_lock);
2535
2536 if (error > 1)
2537 error = -EINVAL;
2538 if (error < 0)
f2eb6575 2539 return ERR_PTR(error);
f2eb6575 2540 return res;
1da177e4
LT
2541}
2542
ffd1f4ed
MS
2543/*
2544 * same as __d_path but appends "(deleted)" for unlinked files.
2545 */
02125a82
AV
2546static int path_with_deleted(const struct path *path,
2547 const struct path *root,
2548 char **buf, int *buflen)
ffd1f4ed
MS
2549{
2550 prepend(buf, buflen, "\0", 1);
2551 if (d_unlinked(path->dentry)) {
2552 int error = prepend(buf, buflen, " (deleted)", 10);
2553 if (error)
2554 return error;
2555 }
2556
2557 return prepend_path(path, root, buf, buflen);
2558}
2559
8df9d1a4
MS
2560static int prepend_unreachable(char **buffer, int *buflen)
2561{
2562 return prepend(buffer, buflen, "(unreachable)", 13);
2563}
2564
a03a8a70
JB
2565/**
2566 * d_path - return the path of a dentry
cf28b486 2567 * @path: path to report
a03a8a70
JB
2568 * @buf: buffer to return value in
2569 * @buflen: buffer length
2570 *
2571 * Convert a dentry into an ASCII path name. If the entry has been deleted
2572 * the string " (deleted)" is appended. Note that this is ambiguous.
2573 *
52afeefb
AV
2574 * Returns a pointer into the buffer or an error code if the path was
2575 * too long. Note: Callers should use the returned pointer, not the passed
2576 * in buffer, to use the name! The implementation often starts at an offset
2577 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2578 *
31f3e0b3 2579 * "buflen" should be positive.
a03a8a70 2580 */
20d4fdc1 2581char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2582{
ffd1f4ed 2583 char *res = buf + buflen;
6ac08c39 2584 struct path root;
ffd1f4ed 2585 int error;
1da177e4 2586
c23fbb6b
ED
2587 /*
2588 * We have various synthetic filesystems that never get mounted. On
2589 * these filesystems dentries are never used for lookup purposes, and
2590 * thus don't need to be hashed. They also don't need a name until a
2591 * user wants to identify the object in /proc/pid/fd/. The little hack
2592 * below allows us to generate a name for these objects on demand:
2593 */
cf28b486
JB
2594 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2595 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2596
f7ad3c6b 2597 get_fs_root(current->fs, &root);
949854d0 2598 write_seqlock(&rename_lock);
02125a82
AV
2599 error = path_with_deleted(path, &root, &res, &buflen);
2600 if (error < 0)
ffd1f4ed 2601 res = ERR_PTR(error);
949854d0 2602 write_sequnlock(&rename_lock);
6ac08c39 2603 path_put(&root);
1da177e4
LT
2604 return res;
2605}
ec4f8605 2606EXPORT_SYMBOL(d_path);
1da177e4 2607
8df9d1a4
MS
2608/**
2609 * d_path_with_unreachable - return the path of a dentry
2610 * @path: path to report
2611 * @buf: buffer to return value in
2612 * @buflen: buffer length
2613 *
2614 * The difference from d_path() is that this prepends "(unreachable)"
2615 * to paths which are unreachable from the current process' root.
2616 */
2617char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2618{
2619 char *res = buf + buflen;
2620 struct path root;
8df9d1a4
MS
2621 int error;
2622
2623 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2624 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2625
2626 get_fs_root(current->fs, &root);
949854d0 2627 write_seqlock(&rename_lock);
02125a82
AV
2628 error = path_with_deleted(path, &root, &res, &buflen);
2629 if (error > 0)
8df9d1a4 2630 error = prepend_unreachable(&res, &buflen);
949854d0 2631 write_sequnlock(&rename_lock);
8df9d1a4
MS
2632 path_put(&root);
2633 if (error)
2634 res = ERR_PTR(error);
2635
2636 return res;
2637}
2638
c23fbb6b
ED
2639/*
2640 * Helper function for dentry_operations.d_dname() members
2641 */
2642char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2643 const char *fmt, ...)
2644{
2645 va_list args;
2646 char temp[64];
2647 int sz;
2648
2649 va_start(args, fmt);
2650 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2651 va_end(args);
2652
2653 if (sz > sizeof(temp) || sz > buflen)
2654 return ERR_PTR(-ENAMETOOLONG);
2655
2656 buffer += buflen - sz;
2657 return memcpy(buffer, temp, sz);
2658}
2659
6092d048
RP
2660/*
2661 * Write full pathname from the root of the filesystem into the buffer.
2662 */
ec2447c2 2663static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2664{
2665 char *end = buf + buflen;
2666 char *retval;
2667
6092d048 2668 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2669 if (buflen < 1)
2670 goto Elong;
2671 /* Get '/' right */
2672 retval = end-1;
2673 *retval = '/';
2674
cdd16d02
MS
2675 while (!IS_ROOT(dentry)) {
2676 struct dentry *parent = dentry->d_parent;
9abca360 2677 int error;
6092d048 2678
6092d048 2679 prefetch(parent);
9abca360
NP
2680 spin_lock(&dentry->d_lock);
2681 error = prepend_name(&end, &buflen, &dentry->d_name);
2682 spin_unlock(&dentry->d_lock);
2683 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2684 goto Elong;
2685
2686 retval = end;
2687 dentry = parent;
2688 }
c103135c
AV
2689 return retval;
2690Elong:
2691 return ERR_PTR(-ENAMETOOLONG);
2692}
ec2447c2
NP
2693
2694char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2695{
2696 char *retval;
2697
949854d0 2698 write_seqlock(&rename_lock);
ec2447c2 2699 retval = __dentry_path(dentry, buf, buflen);
949854d0 2700 write_sequnlock(&rename_lock);
ec2447c2
NP
2701
2702 return retval;
2703}
2704EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2705
2706char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2707{
2708 char *p = NULL;
2709 char *retval;
2710
949854d0 2711 write_seqlock(&rename_lock);
c103135c
AV
2712 if (d_unlinked(dentry)) {
2713 p = buf + buflen;
2714 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2715 goto Elong;
2716 buflen++;
2717 }
2718 retval = __dentry_path(dentry, buf, buflen);
949854d0 2719 write_sequnlock(&rename_lock);
c103135c
AV
2720 if (!IS_ERR(retval) && p)
2721 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2722 return retval;
2723Elong:
6092d048
RP
2724 return ERR_PTR(-ENAMETOOLONG);
2725}
2726
1da177e4
LT
2727/*
2728 * NOTE! The user-level library version returns a
2729 * character pointer. The kernel system call just
2730 * returns the length of the buffer filled (which
2731 * includes the ending '\0' character), or a negative
2732 * error value. So libc would do something like
2733 *
2734 * char *getcwd(char * buf, size_t size)
2735 * {
2736 * int retval;
2737 *
2738 * retval = sys_getcwd(buf, size);
2739 * if (retval >= 0)
2740 * return buf;
2741 * errno = -retval;
2742 * return NULL;
2743 * }
2744 */
3cdad428 2745SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2746{
552ce544 2747 int error;
6ac08c39 2748 struct path pwd, root;
552ce544 2749 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2750
2751 if (!page)
2752 return -ENOMEM;
2753
f7ad3c6b 2754 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2755
552ce544 2756 error = -ENOENT;
949854d0 2757 write_seqlock(&rename_lock);
f3da392e 2758 if (!d_unlinked(pwd.dentry)) {
552ce544 2759 unsigned long len;
8df9d1a4
MS
2760 char *cwd = page + PAGE_SIZE;
2761 int buflen = PAGE_SIZE;
1da177e4 2762
8df9d1a4 2763 prepend(&cwd, &buflen, "\0", 1);
02125a82 2764 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2765 write_sequnlock(&rename_lock);
552ce544 2766
02125a82 2767 if (error < 0)
552ce544
LT
2768 goto out;
2769
8df9d1a4 2770 /* Unreachable from current root */
02125a82 2771 if (error > 0) {
8df9d1a4
MS
2772 error = prepend_unreachable(&cwd, &buflen);
2773 if (error)
2774 goto out;
2775 }
2776
552ce544
LT
2777 error = -ERANGE;
2778 len = PAGE_SIZE + page - cwd;
2779 if (len <= size) {
2780 error = len;
2781 if (copy_to_user(buf, cwd, len))
2782 error = -EFAULT;
2783 }
949854d0
NP
2784 } else {
2785 write_sequnlock(&rename_lock);
949854d0 2786 }
1da177e4
LT
2787
2788out:
6ac08c39
JB
2789 path_put(&pwd);
2790 path_put(&root);
1da177e4
LT
2791 free_page((unsigned long) page);
2792 return error;
2793}
2794
2795/*
2796 * Test whether new_dentry is a subdirectory of old_dentry.
2797 *
2798 * Trivially implemented using the dcache structure
2799 */
2800
2801/**
2802 * is_subdir - is new dentry a subdirectory of old_dentry
2803 * @new_dentry: new dentry
2804 * @old_dentry: old dentry
2805 *
2806 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2807 * Returns 0 otherwise.
2808 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2809 */
2810
e2761a11 2811int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2812{
2813 int result;
949854d0 2814 unsigned seq;
1da177e4 2815
e2761a11
OH
2816 if (new_dentry == old_dentry)
2817 return 1;
2818
e2761a11 2819 do {
1da177e4 2820 /* for restarting inner loop in case of seq retry */
1da177e4 2821 seq = read_seqbegin(&rename_lock);
949854d0
NP
2822 /*
2823 * Need rcu_readlock to protect against the d_parent trashing
2824 * due to d_move
2825 */
2826 rcu_read_lock();
e2761a11 2827 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2828 result = 1;
e2761a11
OH
2829 else
2830 result = 0;
949854d0 2831 rcu_read_unlock();
1da177e4 2832 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2833
2834 return result;
2835}
2836
2837void d_genocide(struct dentry *root)
2838{
949854d0 2839 struct dentry *this_parent;
1da177e4 2840 struct list_head *next;
949854d0 2841 unsigned seq;
58db63d0 2842 int locked = 0;
1da177e4 2843
949854d0 2844 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2845again:
2846 this_parent = root;
2fd6b7f5 2847 spin_lock(&this_parent->d_lock);
1da177e4
LT
2848repeat:
2849 next = this_parent->d_subdirs.next;
2850resume:
2851 while (next != &this_parent->d_subdirs) {
2852 struct list_head *tmp = next;
5160ee6f 2853 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2854 next = tmp->next;
949854d0 2855
da502956
NP
2856 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2857 if (d_unhashed(dentry) || !dentry->d_inode) {
2858 spin_unlock(&dentry->d_lock);
1da177e4 2859 continue;
da502956 2860 }
1da177e4 2861 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2862 spin_unlock(&this_parent->d_lock);
2863 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2864 this_parent = dentry;
2fd6b7f5 2865 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2866 goto repeat;
2867 }
949854d0
NP
2868 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2869 dentry->d_flags |= DCACHE_GENOCIDE;
2870 dentry->d_count--;
2871 }
b7ab39f6 2872 spin_unlock(&dentry->d_lock);
1da177e4
LT
2873 }
2874 if (this_parent != root) {
c826cb7d 2875 struct dentry *child = this_parent;
949854d0
NP
2876 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2877 this_parent->d_flags |= DCACHE_GENOCIDE;
2878 this_parent->d_count--;
2879 }
c826cb7d
LT
2880 this_parent = try_to_ascend(this_parent, locked, seq);
2881 if (!this_parent)
949854d0 2882 goto rename_retry;
949854d0 2883 next = child->d_u.d_child.next;
1da177e4
LT
2884 goto resume;
2885 }
2fd6b7f5 2886 spin_unlock(&this_parent->d_lock);
58db63d0 2887 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2888 goto rename_retry;
58db63d0
NP
2889 if (locked)
2890 write_sequnlock(&rename_lock);
2891 return;
2892
2893rename_retry:
2894 locked = 1;
2895 write_seqlock(&rename_lock);
2896 goto again;
1da177e4
LT
2897}
2898
2899/**
2900 * find_inode_number - check for dentry with name
2901 * @dir: directory to check
2902 * @name: Name to find.
2903 *
2904 * Check whether a dentry already exists for the given name,
2905 * and return the inode number if it has an inode. Otherwise
2906 * 0 is returned.
2907 *
2908 * This routine is used to post-process directory listings for
2909 * filesystems using synthetic inode numbers, and is necessary
2910 * to keep getcwd() working.
2911 */
2912
2913ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2914{
2915 struct dentry * dentry;
2916 ino_t ino = 0;
2917
3e7e241f
EB
2918 dentry = d_hash_and_lookup(dir, name);
2919 if (dentry) {
1da177e4
LT
2920 if (dentry->d_inode)
2921 ino = dentry->d_inode->i_ino;
2922 dput(dentry);
2923 }
1da177e4
LT
2924 return ino;
2925}
ec4f8605 2926EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2927
2928static __initdata unsigned long dhash_entries;
2929static int __init set_dhash_entries(char *str)
2930{
2931 if (!str)
2932 return 0;
2933 dhash_entries = simple_strtoul(str, &str, 0);
2934 return 1;
2935}
2936__setup("dhash_entries=", set_dhash_entries);
2937
2938static void __init dcache_init_early(void)
2939{
2940 int loop;
2941
2942 /* If hashes are distributed across NUMA nodes, defer
2943 * hash allocation until vmalloc space is available.
2944 */
2945 if (hashdist)
2946 return;
2947
2948 dentry_hashtable =
2949 alloc_large_system_hash("Dentry cache",
b07ad996 2950 sizeof(struct hlist_bl_head),
1da177e4
LT
2951 dhash_entries,
2952 13,
2953 HASH_EARLY,
2954 &d_hash_shift,
2955 &d_hash_mask,
2956 0);
2957
2958 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2959 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2960}
2961
74bf17cf 2962static void __init dcache_init(void)
1da177e4
LT
2963{
2964 int loop;
2965
2966 /*
2967 * A constructor could be added for stable state like the lists,
2968 * but it is probably not worth it because of the cache nature
2969 * of the dcache.
2970 */
0a31bd5f
CL
2971 dentry_cache = KMEM_CACHE(dentry,
2972 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
2973
2974 /* Hash may have been set up in dcache_init_early */
2975 if (!hashdist)
2976 return;
2977
2978 dentry_hashtable =
2979 alloc_large_system_hash("Dentry cache",
b07ad996 2980 sizeof(struct hlist_bl_head),
1da177e4
LT
2981 dhash_entries,
2982 13,
2983 0,
2984 &d_hash_shift,
2985 &d_hash_mask,
2986 0);
2987
2988 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2989 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2990}
2991
2992/* SLAB cache for __getname() consumers */
e18b890b 2993struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2994EXPORT_SYMBOL(names_cachep);
1da177e4 2995
1da177e4
LT
2996EXPORT_SYMBOL(d_genocide);
2997
1da177e4
LT
2998void __init vfs_caches_init_early(void)
2999{
3000 dcache_init_early();
3001 inode_init_early();
3002}
3003
3004void __init vfs_caches_init(unsigned long mempages)
3005{
3006 unsigned long reserve;
3007
3008 /* Base hash sizes on available memory, with a reserve equal to
3009 150% of current kernel size */
3010
3011 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3012 mempages -= reserve;
3013
3014 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3015 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3016
74bf17cf
DC
3017 dcache_init();
3018 inode_init();
1da177e4 3019 files_init(mempages);
74bf17cf 3020 mnt_init();
1da177e4
LT
3021 bdev_cache_init();
3022 chrdev_init();
3023}