]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/dcache.c
split dentry_kill()
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
789680d1
NP
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
dea3667b 415 if (!d_unhashed(dentry)) {
b61625d2 416 struct hlist_bl_head *b;
7632e465
BF
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
dea3667b 431 dentry_rcuwalk_barrier(dentry);
789680d1
NP
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
789680d1
NP
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
789680d1
NP
441}
442EXPORT_SYMBOL(d_drop);
443
e55fd011 444static void __dentry_kill(struct dentry *dentry)
77812a1e 445{
41edf278
AV
446 struct dentry *parent = NULL;
447 bool can_free = true;
41edf278 448 if (!IS_ROOT(dentry))
77812a1e 449 parent = dentry->d_parent;
31e6b01f 450
0d98439e
LT
451 /*
452 * The dentry is now unrecoverably dead to the world.
453 */
454 lockref_mark_dead(&dentry->d_lockref);
455
f0023bc6 456 /*
f0023bc6
SW
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
459 */
590fb51f 460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
461 dentry->d_op->d_prune(dentry);
462
01b60351
AV
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
01b60351 466 }
77812a1e
NP
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
03b3b889
AV
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
486
41edf278
AV
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
491 }
492 spin_unlock(&dentry->d_lock);
41edf278
AV
493 if (likely(can_free))
494 dentry_free(dentry);
e55fd011
AV
495}
496
497/*
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
502 */
503static struct dentry *
504dentry_kill(struct dentry *dentry, int unlock_on_failure)
505 __releases(dentry->d_lock)
506{
507 struct inode *inode = dentry->d_inode;
508 struct dentry *parent = NULL;
509
510 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
511 goto failed;
512
513 if (!IS_ROOT(dentry)) {
514 parent = dentry->d_parent;
515 if (unlikely(!spin_trylock(&parent->d_lock))) {
516 if (inode)
517 spin_unlock(&inode->i_lock);
518 goto failed;
519 }
520 }
521
522 __dentry_kill(dentry);
03b3b889 523 return parent;
e55fd011
AV
524
525failed:
526 if (unlock_on_failure) {
527 spin_unlock(&dentry->d_lock);
528 cpu_relax();
529 }
530 return dentry; /* try again with same dentry */
77812a1e
NP
531}
532
1da177e4
LT
533/*
534 * This is dput
535 *
536 * This is complicated by the fact that we do not want to put
537 * dentries that are no longer on any hash chain on the unused
538 * list: we'd much rather just get rid of them immediately.
539 *
540 * However, that implies that we have to traverse the dentry
541 * tree upwards to the parents which might _also_ now be
542 * scheduled for deletion (it may have been only waiting for
543 * its last child to go away).
544 *
545 * This tail recursion is done by hand as we don't want to depend
546 * on the compiler to always get this right (gcc generally doesn't).
547 * Real recursion would eat up our stack space.
548 */
549
550/*
551 * dput - release a dentry
552 * @dentry: dentry to release
553 *
554 * Release a dentry. This will drop the usage count and if appropriate
555 * call the dentry unlink method as well as removing it from the queues and
556 * releasing its resources. If the parent dentries were scheduled for release
557 * they too may now get deleted.
1da177e4 558 */
1da177e4
LT
559void dput(struct dentry *dentry)
560{
8aab6a27 561 if (unlikely(!dentry))
1da177e4
LT
562 return;
563
564repeat:
98474236 565 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 566 return;
1da177e4 567
8aab6a27
LT
568 /* Unreachable? Get rid of it */
569 if (unlikely(d_unhashed(dentry)))
570 goto kill_it;
571
572 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 573 if (dentry->d_op->d_delete(dentry))
61f3dee4 574 goto kill_it;
1da177e4 575 }
265ac902 576
358eec18
LT
577 if (!(dentry->d_flags & DCACHE_REFERENCED))
578 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 579 dentry_lru_add(dentry);
265ac902 580
98474236 581 dentry->d_lockref.count--;
61f3dee4 582 spin_unlock(&dentry->d_lock);
1da177e4
LT
583 return;
584
d52b9086 585kill_it:
dd1f6b2e 586 dentry = dentry_kill(dentry, 1);
d52b9086
MS
587 if (dentry)
588 goto repeat;
1da177e4 589}
ec4f8605 590EXPORT_SYMBOL(dput);
1da177e4
LT
591
592/**
593 * d_invalidate - invalidate a dentry
594 * @dentry: dentry to invalidate
595 *
596 * Try to invalidate the dentry if it turns out to be
597 * possible. If there are other dentries that can be
598 * reached through this one we can't delete it and we
599 * return -EBUSY. On success we return 0.
600 *
601 * no dcache lock.
602 */
603
604int d_invalidate(struct dentry * dentry)
605{
606 /*
607 * If it's already been dropped, return OK.
608 */
da502956 609 spin_lock(&dentry->d_lock);
1da177e4 610 if (d_unhashed(dentry)) {
da502956 611 spin_unlock(&dentry->d_lock);
1da177e4
LT
612 return 0;
613 }
614 /*
615 * Check whether to do a partial shrink_dcache
616 * to get rid of unused child entries.
617 */
618 if (!list_empty(&dentry->d_subdirs)) {
da502956 619 spin_unlock(&dentry->d_lock);
1da177e4 620 shrink_dcache_parent(dentry);
da502956 621 spin_lock(&dentry->d_lock);
1da177e4
LT
622 }
623
624 /*
625 * Somebody else still using it?
626 *
627 * If it's a directory, we can't drop it
628 * for fear of somebody re-populating it
629 * with children (even though dropping it
630 * would make it unreachable from the root,
631 * we might still populate it if it was a
632 * working directory or similar).
50e69630
AV
633 * We also need to leave mountpoints alone,
634 * directory or not.
1da177e4 635 */
98474236 636 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 637 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 return -EBUSY;
640 }
641 }
642
643 __d_drop(dentry);
644 spin_unlock(&dentry->d_lock);
1da177e4
LT
645 return 0;
646}
ec4f8605 647EXPORT_SYMBOL(d_invalidate);
1da177e4 648
b5c84bf6 649/* This must be called with d_lock held */
dc0474be 650static inline void __dget_dlock(struct dentry *dentry)
23044507 651{
98474236 652 dentry->d_lockref.count++;
23044507
NP
653}
654
dc0474be 655static inline void __dget(struct dentry *dentry)
1da177e4 656{
98474236 657 lockref_get(&dentry->d_lockref);
1da177e4
LT
658}
659
b7ab39f6
NP
660struct dentry *dget_parent(struct dentry *dentry)
661{
df3d0bbc 662 int gotref;
b7ab39f6
NP
663 struct dentry *ret;
664
df3d0bbc
WL
665 /*
666 * Do optimistic parent lookup without any
667 * locking.
668 */
669 rcu_read_lock();
670 ret = ACCESS_ONCE(dentry->d_parent);
671 gotref = lockref_get_not_zero(&ret->d_lockref);
672 rcu_read_unlock();
673 if (likely(gotref)) {
674 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
675 return ret;
676 dput(ret);
677 }
678
b7ab39f6 679repeat:
a734eb45
NP
680 /*
681 * Don't need rcu_dereference because we re-check it was correct under
682 * the lock.
683 */
684 rcu_read_lock();
b7ab39f6 685 ret = dentry->d_parent;
a734eb45
NP
686 spin_lock(&ret->d_lock);
687 if (unlikely(ret != dentry->d_parent)) {
688 spin_unlock(&ret->d_lock);
689 rcu_read_unlock();
b7ab39f6
NP
690 goto repeat;
691 }
a734eb45 692 rcu_read_unlock();
98474236
WL
693 BUG_ON(!ret->d_lockref.count);
694 ret->d_lockref.count++;
b7ab39f6 695 spin_unlock(&ret->d_lock);
b7ab39f6
NP
696 return ret;
697}
698EXPORT_SYMBOL(dget_parent);
699
1da177e4
LT
700/**
701 * d_find_alias - grab a hashed alias of inode
702 * @inode: inode in question
32ba9c3f
LT
703 * @want_discon: flag, used by d_splice_alias, to request
704 * that only a DISCONNECTED alias be returned.
1da177e4
LT
705 *
706 * If inode has a hashed alias, or is a directory and has any alias,
707 * acquire the reference to alias and return it. Otherwise return NULL.
708 * Notice that if inode is a directory there can be only one alias and
709 * it can be unhashed only if it has no children, or if it is the root
710 * of a filesystem.
711 *
21c0d8fd 712 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
713 * any other hashed alias over that one unless @want_discon is set,
714 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 715 */
32ba9c3f 716static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 717{
da502956 718 struct dentry *alias, *discon_alias;
1da177e4 719
da502956
NP
720again:
721 discon_alias = NULL;
b67bfe0d 722 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 723 spin_lock(&alias->d_lock);
1da177e4 724 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 725 if (IS_ROOT(alias) &&
da502956 726 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 727 discon_alias = alias;
32ba9c3f 728 } else if (!want_discon) {
dc0474be 729 __dget_dlock(alias);
da502956
NP
730 spin_unlock(&alias->d_lock);
731 return alias;
732 }
733 }
734 spin_unlock(&alias->d_lock);
735 }
736 if (discon_alias) {
737 alias = discon_alias;
738 spin_lock(&alias->d_lock);
739 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
740 if (IS_ROOT(alias) &&
741 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 742 __dget_dlock(alias);
da502956 743 spin_unlock(&alias->d_lock);
1da177e4
LT
744 return alias;
745 }
746 }
da502956
NP
747 spin_unlock(&alias->d_lock);
748 goto again;
1da177e4 749 }
da502956 750 return NULL;
1da177e4
LT
751}
752
da502956 753struct dentry *d_find_alias(struct inode *inode)
1da177e4 754{
214fda1f
DH
755 struct dentry *de = NULL;
756
b3d9b7a3 757 if (!hlist_empty(&inode->i_dentry)) {
873feea0 758 spin_lock(&inode->i_lock);
32ba9c3f 759 de = __d_find_alias(inode, 0);
873feea0 760 spin_unlock(&inode->i_lock);
214fda1f 761 }
1da177e4
LT
762 return de;
763}
ec4f8605 764EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
765
766/*
767 * Try to kill dentries associated with this inode.
768 * WARNING: you must own a reference to inode.
769 */
770void d_prune_aliases(struct inode *inode)
771{
0cdca3f9 772 struct dentry *dentry;
1da177e4 773restart:
873feea0 774 spin_lock(&inode->i_lock);
b67bfe0d 775 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 776 spin_lock(&dentry->d_lock);
98474236 777 if (!dentry->d_lockref.count) {
590fb51f
YZ
778 /*
779 * inform the fs via d_prune that this dentry
780 * is about to be unhashed and destroyed.
781 */
782 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
783 !d_unhashed(dentry))
784 dentry->d_op->d_prune(dentry);
785
dc0474be 786 __dget_dlock(dentry);
1da177e4
LT
787 __d_drop(dentry);
788 spin_unlock(&dentry->d_lock);
873feea0 789 spin_unlock(&inode->i_lock);
1da177e4
LT
790 dput(dentry);
791 goto restart;
792 }
793 spin_unlock(&dentry->d_lock);
794 }
873feea0 795 spin_unlock(&inode->i_lock);
1da177e4 796}
ec4f8605 797EXPORT_SYMBOL(d_prune_aliases);
1da177e4 798
3049cfe2 799static void shrink_dentry_list(struct list_head *list)
1da177e4 800{
5c47e6d0 801 struct dentry *dentry, *parent;
da3bbdd4 802
60942f2f
MS
803 while (!list_empty(list)) {
804 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 805 spin_lock(&dentry->d_lock);
dd1f6b2e
DC
806 /*
807 * The dispose list is isolated and dentries are not accounted
808 * to the LRU here, so we can simply remove it from the list
809 * here regardless of whether it is referenced or not.
810 */
89dc77bc 811 d_shrink_del(dentry);
dd1f6b2e 812
1da177e4
LT
813 /*
814 * We found an inuse dentry which was not removed from
dd1f6b2e 815 * the LRU because of laziness during lookup. Do not free it.
1da177e4 816 */
41edf278 817 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 818 spin_unlock(&dentry->d_lock);
1da177e4
LT
819 continue;
820 }
77812a1e 821
64fd72e0
AV
822
823 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
824 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
825 spin_unlock(&dentry->d_lock);
826 if (can_free)
827 dentry_free(dentry);
828 continue;
829 }
830
5c47e6d0 831 parent = dentry_kill(dentry, 0);
89dc77bc 832 /*
5c47e6d0 833 * If dentry_kill returns NULL, we have nothing more to do.
89dc77bc 834 */
60942f2f 835 if (!parent)
5c47e6d0 836 continue;
60942f2f 837
5c47e6d0
AV
838 if (unlikely(parent == dentry)) {
839 /*
840 * trylocks have failed and d_lock has been held the
841 * whole time, so it could not have been added to any
842 * other lists. Just add it back to the shrink list.
843 */
89dc77bc 844 d_shrink_add(dentry, list);
dd1f6b2e 845 spin_unlock(&dentry->d_lock);
5c47e6d0 846 continue;
dd1f6b2e 847 }
5c47e6d0
AV
848 /*
849 * We need to prune ancestors too. This is necessary to prevent
850 * quadratic behavior of shrink_dcache_parent(), but is also
851 * expected to be beneficial in reducing dentry cache
852 * fragmentation.
853 */
854 dentry = parent;
855 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
856 dentry = dentry_kill(dentry, 1);
da3bbdd4 857 }
3049cfe2
CH
858}
859
f6041567
DC
860static enum lru_status
861dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
862{
863 struct list_head *freeable = arg;
864 struct dentry *dentry = container_of(item, struct dentry, d_lru);
865
866
867 /*
868 * we are inverting the lru lock/dentry->d_lock here,
869 * so use a trylock. If we fail to get the lock, just skip
870 * it
871 */
872 if (!spin_trylock(&dentry->d_lock))
873 return LRU_SKIP;
874
875 /*
876 * Referenced dentries are still in use. If they have active
877 * counts, just remove them from the LRU. Otherwise give them
878 * another pass through the LRU.
879 */
880 if (dentry->d_lockref.count) {
89dc77bc 881 d_lru_isolate(dentry);
f6041567
DC
882 spin_unlock(&dentry->d_lock);
883 return LRU_REMOVED;
884 }
885
886 if (dentry->d_flags & DCACHE_REFERENCED) {
887 dentry->d_flags &= ~DCACHE_REFERENCED;
888 spin_unlock(&dentry->d_lock);
889
890 /*
891 * The list move itself will be made by the common LRU code. At
892 * this point, we've dropped the dentry->d_lock but keep the
893 * lru lock. This is safe to do, since every list movement is
894 * protected by the lru lock even if both locks are held.
895 *
896 * This is guaranteed by the fact that all LRU management
897 * functions are intermediated by the LRU API calls like
898 * list_lru_add and list_lru_del. List movement in this file
899 * only ever occur through this functions or through callbacks
900 * like this one, that are called from the LRU API.
901 *
902 * The only exceptions to this are functions like
903 * shrink_dentry_list, and code that first checks for the
904 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
905 * operating only with stack provided lists after they are
906 * properly isolated from the main list. It is thus, always a
907 * local access.
908 */
909 return LRU_ROTATE;
910 }
911
89dc77bc 912 d_lru_shrink_move(dentry, freeable);
f6041567
DC
913 spin_unlock(&dentry->d_lock);
914
915 return LRU_REMOVED;
916}
917
3049cfe2 918/**
b48f03b3
DC
919 * prune_dcache_sb - shrink the dcache
920 * @sb: superblock
f6041567 921 * @nr_to_scan : number of entries to try to free
9b17c623 922 * @nid: which node to scan for freeable entities
b48f03b3 923 *
f6041567 924 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
925 * done when we need more memory an called from the superblock shrinker
926 * function.
3049cfe2 927 *
b48f03b3
DC
928 * This function may fail to free any resources if all the dentries are in
929 * use.
3049cfe2 930 */
9b17c623
DC
931long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
932 int nid)
3049cfe2 933{
f6041567
DC
934 LIST_HEAD(dispose);
935 long freed;
3049cfe2 936
9b17c623
DC
937 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
938 &dispose, &nr_to_scan);
f6041567 939 shrink_dentry_list(&dispose);
0a234c6d 940 return freed;
da3bbdd4 941}
23044507 942
4e717f5c
GC
943static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
944 spinlock_t *lru_lock, void *arg)
dd1f6b2e 945{
4e717f5c
GC
946 struct list_head *freeable = arg;
947 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 948
4e717f5c
GC
949 /*
950 * we are inverting the lru lock/dentry->d_lock here,
951 * so use a trylock. If we fail to get the lock, just skip
952 * it
953 */
954 if (!spin_trylock(&dentry->d_lock))
955 return LRU_SKIP;
956
89dc77bc 957 d_lru_shrink_move(dentry, freeable);
4e717f5c 958 spin_unlock(&dentry->d_lock);
ec33679d 959
4e717f5c 960 return LRU_REMOVED;
da3bbdd4
KM
961}
962
4e717f5c 963
1da177e4
LT
964/**
965 * shrink_dcache_sb - shrink dcache for a superblock
966 * @sb: superblock
967 *
3049cfe2
CH
968 * Shrink the dcache for the specified super block. This is used to free
969 * the dcache before unmounting a file system.
1da177e4 970 */
3049cfe2 971void shrink_dcache_sb(struct super_block *sb)
1da177e4 972{
4e717f5c
GC
973 long freed;
974
975 do {
976 LIST_HEAD(dispose);
977
978 freed = list_lru_walk(&sb->s_dentry_lru,
979 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 980
4e717f5c
GC
981 this_cpu_sub(nr_dentry_unused, freed);
982 shrink_dentry_list(&dispose);
983 } while (freed > 0);
1da177e4 984}
ec4f8605 985EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 986
db14fc3a
MS
987/**
988 * enum d_walk_ret - action to talke during tree walk
989 * @D_WALK_CONTINUE: contrinue walk
990 * @D_WALK_QUIT: quit walk
991 * @D_WALK_NORETRY: quit when retry is needed
992 * @D_WALK_SKIP: skip this dentry and its children
993 */
994enum d_walk_ret {
995 D_WALK_CONTINUE,
996 D_WALK_QUIT,
997 D_WALK_NORETRY,
998 D_WALK_SKIP,
999};
c826cb7d 1000
1da177e4 1001/**
db14fc3a
MS
1002 * d_walk - walk the dentry tree
1003 * @parent: start of walk
1004 * @data: data passed to @enter() and @finish()
1005 * @enter: callback when first entering the dentry
1006 * @finish: callback when successfully finished the walk
1da177e4 1007 *
db14fc3a 1008 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1009 */
db14fc3a
MS
1010static void d_walk(struct dentry *parent, void *data,
1011 enum d_walk_ret (*enter)(void *, struct dentry *),
1012 void (*finish)(void *))
1da177e4 1013{
949854d0 1014 struct dentry *this_parent;
1da177e4 1015 struct list_head *next;
48f5ec21 1016 unsigned seq = 0;
db14fc3a
MS
1017 enum d_walk_ret ret;
1018 bool retry = true;
949854d0 1019
58db63d0 1020again:
48f5ec21 1021 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1022 this_parent = parent;
2fd6b7f5 1023 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1024
1025 ret = enter(data, this_parent);
1026 switch (ret) {
1027 case D_WALK_CONTINUE:
1028 break;
1029 case D_WALK_QUIT:
1030 case D_WALK_SKIP:
1031 goto out_unlock;
1032 case D_WALK_NORETRY:
1033 retry = false;
1034 break;
1035 }
1da177e4
LT
1036repeat:
1037 next = this_parent->d_subdirs.next;
1038resume:
1039 while (next != &this_parent->d_subdirs) {
1040 struct list_head *tmp = next;
5160ee6f 1041 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1042 next = tmp->next;
2fd6b7f5
NP
1043
1044 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1045
1046 ret = enter(data, dentry);
1047 switch (ret) {
1048 case D_WALK_CONTINUE:
1049 break;
1050 case D_WALK_QUIT:
2fd6b7f5 1051 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1052 goto out_unlock;
1053 case D_WALK_NORETRY:
1054 retry = false;
1055 break;
1056 case D_WALK_SKIP:
1057 spin_unlock(&dentry->d_lock);
1058 continue;
2fd6b7f5 1059 }
db14fc3a 1060
1da177e4 1061 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1062 spin_unlock(&this_parent->d_lock);
1063 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1064 this_parent = dentry;
2fd6b7f5 1065 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1066 goto repeat;
1067 }
2fd6b7f5 1068 spin_unlock(&dentry->d_lock);
1da177e4
LT
1069 }
1070 /*
1071 * All done at this level ... ascend and resume the search.
1072 */
1073 if (this_parent != parent) {
c826cb7d 1074 struct dentry *child = this_parent;
31dec132
AV
1075 this_parent = child->d_parent;
1076
1077 rcu_read_lock();
1078 spin_unlock(&child->d_lock);
1079 spin_lock(&this_parent->d_lock);
1080
1081 /*
1082 * might go back up the wrong parent if we have had a rename
1083 * or deletion
1084 */
1085 if (this_parent != child->d_parent ||
1086 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1087 need_seqretry(&rename_lock, seq)) {
1088 spin_unlock(&this_parent->d_lock);
1089 rcu_read_unlock();
949854d0 1090 goto rename_retry;
31dec132
AV
1091 }
1092 rcu_read_unlock();
949854d0 1093 next = child->d_u.d_child.next;
1da177e4
LT
1094 goto resume;
1095 }
48f5ec21 1096 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1097 spin_unlock(&this_parent->d_lock);
949854d0 1098 goto rename_retry;
db14fc3a
MS
1099 }
1100 if (finish)
1101 finish(data);
1102
1103out_unlock:
1104 spin_unlock(&this_parent->d_lock);
48f5ec21 1105 done_seqretry(&rename_lock, seq);
db14fc3a 1106 return;
58db63d0
NP
1107
1108rename_retry:
db14fc3a
MS
1109 if (!retry)
1110 return;
48f5ec21 1111 seq = 1;
58db63d0 1112 goto again;
1da177e4 1113}
db14fc3a
MS
1114
1115/*
1116 * Search for at least 1 mount point in the dentry's subdirs.
1117 * We descend to the next level whenever the d_subdirs
1118 * list is non-empty and continue searching.
1119 */
1120
db14fc3a
MS
1121static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1122{
1123 int *ret = data;
1124 if (d_mountpoint(dentry)) {
1125 *ret = 1;
1126 return D_WALK_QUIT;
1127 }
1128 return D_WALK_CONTINUE;
1129}
1130
69c88dc7
RD
1131/**
1132 * have_submounts - check for mounts over a dentry
1133 * @parent: dentry to check.
1134 *
1135 * Return true if the parent or its subdirectories contain
1136 * a mount point
1137 */
db14fc3a
MS
1138int have_submounts(struct dentry *parent)
1139{
1140 int ret = 0;
1141
1142 d_walk(parent, &ret, check_mount, NULL);
1143
1144 return ret;
1145}
ec4f8605 1146EXPORT_SYMBOL(have_submounts);
1da177e4 1147
eed81007
MS
1148/*
1149 * Called by mount code to set a mountpoint and check if the mountpoint is
1150 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1151 * subtree can become unreachable).
1152 *
1153 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1154 * this reason take rename_lock and d_lock on dentry and ancestors.
1155 */
1156int d_set_mounted(struct dentry *dentry)
1157{
1158 struct dentry *p;
1159 int ret = -ENOENT;
1160 write_seqlock(&rename_lock);
1161 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1162 /* Need exclusion wrt. check_submounts_and_drop() */
1163 spin_lock(&p->d_lock);
1164 if (unlikely(d_unhashed(p))) {
1165 spin_unlock(&p->d_lock);
1166 goto out;
1167 }
1168 spin_unlock(&p->d_lock);
1169 }
1170 spin_lock(&dentry->d_lock);
1171 if (!d_unlinked(dentry)) {
1172 dentry->d_flags |= DCACHE_MOUNTED;
1173 ret = 0;
1174 }
1175 spin_unlock(&dentry->d_lock);
1176out:
1177 write_sequnlock(&rename_lock);
1178 return ret;
1179}
1180
1da177e4 1181/*
fd517909 1182 * Search the dentry child list of the specified parent,
1da177e4
LT
1183 * and move any unused dentries to the end of the unused
1184 * list for prune_dcache(). We descend to the next level
1185 * whenever the d_subdirs list is non-empty and continue
1186 * searching.
1187 *
1188 * It returns zero iff there are no unused children,
1189 * otherwise it returns the number of children moved to
1190 * the end of the unused list. This may not be the total
1191 * number of unused children, because select_parent can
1192 * drop the lock and return early due to latency
1193 * constraints.
1194 */
1da177e4 1195
db14fc3a
MS
1196struct select_data {
1197 struct dentry *start;
1198 struct list_head dispose;
1199 int found;
1200};
23044507 1201
db14fc3a
MS
1202static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1203{
1204 struct select_data *data = _data;
1205 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1206
db14fc3a
MS
1207 if (data->start == dentry)
1208 goto out;
2fd6b7f5 1209
fe91522a 1210 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1211 data->found++;
fe91522a
AV
1212 } else {
1213 if (dentry->d_flags & DCACHE_LRU_LIST)
1214 d_lru_del(dentry);
1215 if (!dentry->d_lockref.count) {
1216 d_shrink_add(dentry, &data->dispose);
1217 data->found++;
1218 }
1da177e4 1219 }
db14fc3a
MS
1220 /*
1221 * We can return to the caller if we have found some (this
1222 * ensures forward progress). We'll be coming back to find
1223 * the rest.
1224 */
fe91522a
AV
1225 if (!list_empty(&data->dispose))
1226 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1227out:
db14fc3a 1228 return ret;
1da177e4
LT
1229}
1230
1231/**
1232 * shrink_dcache_parent - prune dcache
1233 * @parent: parent of entries to prune
1234 *
1235 * Prune the dcache to remove unused children of the parent dentry.
1236 */
db14fc3a 1237void shrink_dcache_parent(struct dentry *parent)
1da177e4 1238{
db14fc3a
MS
1239 for (;;) {
1240 struct select_data data;
1da177e4 1241
db14fc3a
MS
1242 INIT_LIST_HEAD(&data.dispose);
1243 data.start = parent;
1244 data.found = 0;
1245
1246 d_walk(parent, &data, select_collect, NULL);
1247 if (!data.found)
1248 break;
1249
1250 shrink_dentry_list(&data.dispose);
421348f1
GT
1251 cond_resched();
1252 }
1da177e4 1253}
ec4f8605 1254EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1255
9c8c10e2 1256static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1257{
9c8c10e2
AV
1258 /* it has busy descendents; complain about those instead */
1259 if (!list_empty(&dentry->d_subdirs))
1260 return D_WALK_CONTINUE;
42c32608 1261
9c8c10e2
AV
1262 /* root with refcount 1 is fine */
1263 if (dentry == _data && dentry->d_lockref.count == 1)
1264 return D_WALK_CONTINUE;
1265
1266 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1267 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1268 dentry,
1269 dentry->d_inode ?
1270 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1271 dentry,
42c32608
AV
1272 dentry->d_lockref.count,
1273 dentry->d_sb->s_type->name,
1274 dentry->d_sb->s_id);
9c8c10e2
AV
1275 WARN_ON(1);
1276 return D_WALK_CONTINUE;
1277}
1278
1279static void do_one_tree(struct dentry *dentry)
1280{
1281 shrink_dcache_parent(dentry);
1282 d_walk(dentry, dentry, umount_check, NULL);
1283 d_drop(dentry);
1284 dput(dentry);
42c32608
AV
1285}
1286
1287/*
1288 * destroy the dentries attached to a superblock on unmounting
1289 */
1290void shrink_dcache_for_umount(struct super_block *sb)
1291{
1292 struct dentry *dentry;
1293
9c8c10e2 1294 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1295
1296 dentry = sb->s_root;
1297 sb->s_root = NULL;
9c8c10e2 1298 do_one_tree(dentry);
42c32608
AV
1299
1300 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1301 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1302 do_one_tree(dentry);
42c32608
AV
1303 }
1304}
1305
848ac114
MS
1306static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1307{
1308 struct select_data *data = _data;
1309
1310 if (d_mountpoint(dentry)) {
1311 data->found = -EBUSY;
1312 return D_WALK_QUIT;
1313 }
1314
1315 return select_collect(_data, dentry);
1316}
1317
1318static void check_and_drop(void *_data)
1319{
1320 struct select_data *data = _data;
1321
1322 if (d_mountpoint(data->start))
1323 data->found = -EBUSY;
1324 if (!data->found)
1325 __d_drop(data->start);
1326}
1327
1328/**
1329 * check_submounts_and_drop - prune dcache, check for submounts and drop
1330 *
1331 * All done as a single atomic operation relative to has_unlinked_ancestor().
1332 * Returns 0 if successfully unhashed @parent. If there were submounts then
1333 * return -EBUSY.
1334 *
1335 * @dentry: dentry to prune and drop
1336 */
1337int check_submounts_and_drop(struct dentry *dentry)
1338{
1339 int ret = 0;
1340
1341 /* Negative dentries can be dropped without further checks */
1342 if (!dentry->d_inode) {
1343 d_drop(dentry);
1344 goto out;
1345 }
1346
1347 for (;;) {
1348 struct select_data data;
1349
1350 INIT_LIST_HEAD(&data.dispose);
1351 data.start = dentry;
1352 data.found = 0;
1353
1354 d_walk(dentry, &data, check_and_collect, check_and_drop);
1355 ret = data.found;
1356
1357 if (!list_empty(&data.dispose))
1358 shrink_dentry_list(&data.dispose);
1359
1360 if (ret <= 0)
1361 break;
1362
1363 cond_resched();
1364 }
1365
1366out:
1367 return ret;
1368}
1369EXPORT_SYMBOL(check_submounts_and_drop);
1370
1da177e4 1371/**
a4464dbc
AV
1372 * __d_alloc - allocate a dcache entry
1373 * @sb: filesystem it will belong to
1da177e4
LT
1374 * @name: qstr of the name
1375 *
1376 * Allocates a dentry. It returns %NULL if there is insufficient memory
1377 * available. On a success the dentry is returned. The name passed in is
1378 * copied and the copy passed in may be reused after this call.
1379 */
1380
a4464dbc 1381struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1382{
1383 struct dentry *dentry;
1384 char *dname;
1385
e12ba74d 1386 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1387 if (!dentry)
1388 return NULL;
1389
6326c71f
LT
1390 /*
1391 * We guarantee that the inline name is always NUL-terminated.
1392 * This way the memcpy() done by the name switching in rename
1393 * will still always have a NUL at the end, even if we might
1394 * be overwriting an internal NUL character
1395 */
1396 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1397 if (name->len > DNAME_INLINE_LEN-1) {
1398 dname = kmalloc(name->len + 1, GFP_KERNEL);
1399 if (!dname) {
1400 kmem_cache_free(dentry_cache, dentry);
1401 return NULL;
1402 }
1403 } else {
1404 dname = dentry->d_iname;
1405 }
1da177e4
LT
1406
1407 dentry->d_name.len = name->len;
1408 dentry->d_name.hash = name->hash;
1409 memcpy(dname, name->name, name->len);
1410 dname[name->len] = 0;
1411
6326c71f
LT
1412 /* Make sure we always see the terminating NUL character */
1413 smp_wmb();
1414 dentry->d_name.name = dname;
1415
98474236 1416 dentry->d_lockref.count = 1;
dea3667b 1417 dentry->d_flags = 0;
1da177e4 1418 spin_lock_init(&dentry->d_lock);
31e6b01f 1419 seqcount_init(&dentry->d_seq);
1da177e4 1420 dentry->d_inode = NULL;
a4464dbc
AV
1421 dentry->d_parent = dentry;
1422 dentry->d_sb = sb;
1da177e4
LT
1423 dentry->d_op = NULL;
1424 dentry->d_fsdata = NULL;
ceb5bdc2 1425 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1426 INIT_LIST_HEAD(&dentry->d_lru);
1427 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1428 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1429 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1430 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1431
3e880fb5 1432 this_cpu_inc(nr_dentry);
312d3ca8 1433
1da177e4
LT
1434 return dentry;
1435}
a4464dbc
AV
1436
1437/**
1438 * d_alloc - allocate a dcache entry
1439 * @parent: parent of entry to allocate
1440 * @name: qstr of the name
1441 *
1442 * Allocates a dentry. It returns %NULL if there is insufficient memory
1443 * available. On a success the dentry is returned. The name passed in is
1444 * copied and the copy passed in may be reused after this call.
1445 */
1446struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1447{
1448 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1449 if (!dentry)
1450 return NULL;
1451
1452 spin_lock(&parent->d_lock);
1453 /*
1454 * don't need child lock because it is not subject
1455 * to concurrency here
1456 */
1457 __dget_dlock(parent);
1458 dentry->d_parent = parent;
1459 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1460 spin_unlock(&parent->d_lock);
1461
1462 return dentry;
1463}
ec4f8605 1464EXPORT_SYMBOL(d_alloc);
1da177e4 1465
e1a24bb0
BF
1466/**
1467 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1468 * @sb: the superblock
1469 * @name: qstr of the name
1470 *
1471 * For a filesystem that just pins its dentries in memory and never
1472 * performs lookups at all, return an unhashed IS_ROOT dentry.
1473 */
4b936885
NP
1474struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1475{
e1a24bb0 1476 return __d_alloc(sb, name);
4b936885
NP
1477}
1478EXPORT_SYMBOL(d_alloc_pseudo);
1479
1da177e4
LT
1480struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1481{
1482 struct qstr q;
1483
1484 q.name = name;
1485 q.len = strlen(name);
1486 q.hash = full_name_hash(q.name, q.len);
1487 return d_alloc(parent, &q);
1488}
ef26ca97 1489EXPORT_SYMBOL(d_alloc_name);
1da177e4 1490
fb045adb
NP
1491void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1492{
6f7f7caa
LT
1493 WARN_ON_ONCE(dentry->d_op);
1494 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1495 DCACHE_OP_COMPARE |
1496 DCACHE_OP_REVALIDATE |
ecf3d1f1 1497 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1498 DCACHE_OP_DELETE ));
1499 dentry->d_op = op;
1500 if (!op)
1501 return;
1502 if (op->d_hash)
1503 dentry->d_flags |= DCACHE_OP_HASH;
1504 if (op->d_compare)
1505 dentry->d_flags |= DCACHE_OP_COMPARE;
1506 if (op->d_revalidate)
1507 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1508 if (op->d_weak_revalidate)
1509 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1510 if (op->d_delete)
1511 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1512 if (op->d_prune)
1513 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1514
1515}
1516EXPORT_SYMBOL(d_set_d_op);
1517
b18825a7
DH
1518static unsigned d_flags_for_inode(struct inode *inode)
1519{
1520 unsigned add_flags = DCACHE_FILE_TYPE;
1521
1522 if (!inode)
1523 return DCACHE_MISS_TYPE;
1524
1525 if (S_ISDIR(inode->i_mode)) {
1526 add_flags = DCACHE_DIRECTORY_TYPE;
1527 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1528 if (unlikely(!inode->i_op->lookup))
1529 add_flags = DCACHE_AUTODIR_TYPE;
1530 else
1531 inode->i_opflags |= IOP_LOOKUP;
1532 }
1533 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1534 if (unlikely(inode->i_op->follow_link))
1535 add_flags = DCACHE_SYMLINK_TYPE;
1536 else
1537 inode->i_opflags |= IOP_NOFOLLOW;
1538 }
1539
1540 if (unlikely(IS_AUTOMOUNT(inode)))
1541 add_flags |= DCACHE_NEED_AUTOMOUNT;
1542 return add_flags;
1543}
1544
360da900
OH
1545static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1546{
b18825a7
DH
1547 unsigned add_flags = d_flags_for_inode(inode);
1548
b23fb0a6 1549 spin_lock(&dentry->d_lock);
22213318 1550 __d_set_type(dentry, add_flags);
b18825a7 1551 if (inode)
b3d9b7a3 1552 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1553 dentry->d_inode = inode;
31e6b01f 1554 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1555 spin_unlock(&dentry->d_lock);
360da900
OH
1556 fsnotify_d_instantiate(dentry, inode);
1557}
1558
1da177e4
LT
1559/**
1560 * d_instantiate - fill in inode information for a dentry
1561 * @entry: dentry to complete
1562 * @inode: inode to attach to this dentry
1563 *
1564 * Fill in inode information in the entry.
1565 *
1566 * This turns negative dentries into productive full members
1567 * of society.
1568 *
1569 * NOTE! This assumes that the inode count has been incremented
1570 * (or otherwise set) by the caller to indicate that it is now
1571 * in use by the dcache.
1572 */
1573
1574void d_instantiate(struct dentry *entry, struct inode * inode)
1575{
b3d9b7a3 1576 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1577 if (inode)
1578 spin_lock(&inode->i_lock);
360da900 1579 __d_instantiate(entry, inode);
873feea0
NP
1580 if (inode)
1581 spin_unlock(&inode->i_lock);
1da177e4
LT
1582 security_d_instantiate(entry, inode);
1583}
ec4f8605 1584EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1585
1586/**
1587 * d_instantiate_unique - instantiate a non-aliased dentry
1588 * @entry: dentry to instantiate
1589 * @inode: inode to attach to this dentry
1590 *
1591 * Fill in inode information in the entry. On success, it returns NULL.
1592 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1593 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1594 *
1595 * Note that in order to avoid conflicts with rename() etc, the caller
1596 * had better be holding the parent directory semaphore.
e866cfa9
OD
1597 *
1598 * This also assumes that the inode count has been incremented
1599 * (or otherwise set) by the caller to indicate that it is now
1600 * in use by the dcache.
1da177e4 1601 */
770bfad8
DH
1602static struct dentry *__d_instantiate_unique(struct dentry *entry,
1603 struct inode *inode)
1da177e4
LT
1604{
1605 struct dentry *alias;
1606 int len = entry->d_name.len;
1607 const char *name = entry->d_name.name;
1608 unsigned int hash = entry->d_name.hash;
1609
770bfad8 1610 if (!inode) {
360da900 1611 __d_instantiate(entry, NULL);
770bfad8
DH
1612 return NULL;
1613 }
1614
b67bfe0d 1615 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1616 /*
1617 * Don't need alias->d_lock here, because aliases with
1618 * d_parent == entry->d_parent are not subject to name or
1619 * parent changes, because the parent inode i_mutex is held.
1620 */
12f8ad4b 1621 if (alias->d_name.hash != hash)
1da177e4
LT
1622 continue;
1623 if (alias->d_parent != entry->d_parent)
1624 continue;
ee983e89
LT
1625 if (alias->d_name.len != len)
1626 continue;
12f8ad4b 1627 if (dentry_cmp(alias, name, len))
1da177e4 1628 continue;
dc0474be 1629 __dget(alias);
1da177e4
LT
1630 return alias;
1631 }
770bfad8 1632
360da900 1633 __d_instantiate(entry, inode);
1da177e4
LT
1634 return NULL;
1635}
770bfad8
DH
1636
1637struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1638{
1639 struct dentry *result;
1640
b3d9b7a3 1641 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1642
873feea0
NP
1643 if (inode)
1644 spin_lock(&inode->i_lock);
770bfad8 1645 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1646 if (inode)
1647 spin_unlock(&inode->i_lock);
770bfad8
DH
1648
1649 if (!result) {
1650 security_d_instantiate(entry, inode);
1651 return NULL;
1652 }
1653
1654 BUG_ON(!d_unhashed(result));
1655 iput(inode);
1656 return result;
1657}
1658
1da177e4
LT
1659EXPORT_SYMBOL(d_instantiate_unique);
1660
b70a80e7
MS
1661/**
1662 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1663 * @entry: dentry to complete
1664 * @inode: inode to attach to this dentry
1665 *
1666 * Fill in inode information in the entry. If a directory alias is found, then
1667 * return an error (and drop inode). Together with d_materialise_unique() this
1668 * guarantees that a directory inode may never have more than one alias.
1669 */
1670int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1671{
1672 BUG_ON(!hlist_unhashed(&entry->d_alias));
1673
1674 spin_lock(&inode->i_lock);
1675 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1676 spin_unlock(&inode->i_lock);
1677 iput(inode);
1678 return -EBUSY;
1679 }
1680 __d_instantiate(entry, inode);
1681 spin_unlock(&inode->i_lock);
1682 security_d_instantiate(entry, inode);
1683
1684 return 0;
1685}
1686EXPORT_SYMBOL(d_instantiate_no_diralias);
1687
adc0e91a
AV
1688struct dentry *d_make_root(struct inode *root_inode)
1689{
1690 struct dentry *res = NULL;
1691
1692 if (root_inode) {
26fe5750 1693 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1694
1695 res = __d_alloc(root_inode->i_sb, &name);
1696 if (res)
1697 d_instantiate(res, root_inode);
1698 else
1699 iput(root_inode);
1700 }
1701 return res;
1702}
1703EXPORT_SYMBOL(d_make_root);
1704
d891eedb
BF
1705static struct dentry * __d_find_any_alias(struct inode *inode)
1706{
1707 struct dentry *alias;
1708
b3d9b7a3 1709 if (hlist_empty(&inode->i_dentry))
d891eedb 1710 return NULL;
b3d9b7a3 1711 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1712 __dget(alias);
1713 return alias;
1714}
1715
46f72b34
SW
1716/**
1717 * d_find_any_alias - find any alias for a given inode
1718 * @inode: inode to find an alias for
1719 *
1720 * If any aliases exist for the given inode, take and return a
1721 * reference for one of them. If no aliases exist, return %NULL.
1722 */
1723struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1724{
1725 struct dentry *de;
1726
1727 spin_lock(&inode->i_lock);
1728 de = __d_find_any_alias(inode);
1729 spin_unlock(&inode->i_lock);
1730 return de;
1731}
46f72b34 1732EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1733
4ea3ada2
CH
1734/**
1735 * d_obtain_alias - find or allocate a dentry for a given inode
1736 * @inode: inode to allocate the dentry for
1737 *
1738 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1739 * similar open by handle operations. The returned dentry may be anonymous,
1740 * or may have a full name (if the inode was already in the cache).
1741 *
1742 * When called on a directory inode, we must ensure that the inode only ever
1743 * has one dentry. If a dentry is found, that is returned instead of
1744 * allocating a new one.
1745 *
1746 * On successful return, the reference to the inode has been transferred
44003728
CH
1747 * to the dentry. In case of an error the reference on the inode is released.
1748 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1749 * be passed in and will be the error will be propagate to the return value,
1750 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1751 */
1752struct dentry *d_obtain_alias(struct inode *inode)
1753{
b911a6bd 1754 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1755 struct dentry *tmp;
1756 struct dentry *res;
b18825a7 1757 unsigned add_flags;
4ea3ada2
CH
1758
1759 if (!inode)
44003728 1760 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1761 if (IS_ERR(inode))
1762 return ERR_CAST(inode);
1763
d891eedb 1764 res = d_find_any_alias(inode);
9308a612
CH
1765 if (res)
1766 goto out_iput;
1767
a4464dbc 1768 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1769 if (!tmp) {
1770 res = ERR_PTR(-ENOMEM);
1771 goto out_iput;
4ea3ada2 1772 }
b5c84bf6 1773
873feea0 1774 spin_lock(&inode->i_lock);
d891eedb 1775 res = __d_find_any_alias(inode);
9308a612 1776 if (res) {
873feea0 1777 spin_unlock(&inode->i_lock);
9308a612
CH
1778 dput(tmp);
1779 goto out_iput;
1780 }
1781
1782 /* attach a disconnected dentry */
b18825a7
DH
1783 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1784
9308a612 1785 spin_lock(&tmp->d_lock);
9308a612 1786 tmp->d_inode = inode;
b18825a7 1787 tmp->d_flags |= add_flags;
b3d9b7a3 1788 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1789 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1790 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1791 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1792 spin_unlock(&tmp->d_lock);
873feea0 1793 spin_unlock(&inode->i_lock);
24ff6663 1794 security_d_instantiate(tmp, inode);
9308a612 1795
9308a612
CH
1796 return tmp;
1797
1798 out_iput:
24ff6663
JB
1799 if (res && !IS_ERR(res))
1800 security_d_instantiate(res, inode);
9308a612
CH
1801 iput(inode);
1802 return res;
4ea3ada2 1803}
adc48720 1804EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1805
1806/**
1807 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1808 * @inode: the inode which may have a disconnected dentry
1809 * @dentry: a negative dentry which we want to point to the inode.
1810 *
1811 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1812 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1813 * and return it, else simply d_add the inode to the dentry and return NULL.
1814 *
1815 * This is needed in the lookup routine of any filesystem that is exportable
1816 * (via knfsd) so that we can build dcache paths to directories effectively.
1817 *
1818 * If a dentry was found and moved, then it is returned. Otherwise NULL
1819 * is returned. This matches the expected return value of ->lookup.
1820 *
6d4ade98
SW
1821 * Cluster filesystems may call this function with a negative, hashed dentry.
1822 * In that case, we know that the inode will be a regular file, and also this
1823 * will only occur during atomic_open. So we need to check for the dentry
1824 * being already hashed only in the final case.
1da177e4
LT
1825 */
1826struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1827{
1828 struct dentry *new = NULL;
1829
a9049376
AV
1830 if (IS_ERR(inode))
1831 return ERR_CAST(inode);
1832
21c0d8fd 1833 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1834 spin_lock(&inode->i_lock);
32ba9c3f 1835 new = __d_find_alias(inode, 1);
1da177e4 1836 if (new) {
32ba9c3f 1837 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1838 spin_unlock(&inode->i_lock);
1da177e4 1839 security_d_instantiate(new, inode);
1da177e4
LT
1840 d_move(new, dentry);
1841 iput(inode);
1842 } else {
873feea0 1843 /* already taking inode->i_lock, so d_add() by hand */
360da900 1844 __d_instantiate(dentry, inode);
873feea0 1845 spin_unlock(&inode->i_lock);
1da177e4
LT
1846 security_d_instantiate(dentry, inode);
1847 d_rehash(dentry);
1848 }
6d4ade98
SW
1849 } else {
1850 d_instantiate(dentry, inode);
1851 if (d_unhashed(dentry))
1852 d_rehash(dentry);
1853 }
1da177e4
LT
1854 return new;
1855}
ec4f8605 1856EXPORT_SYMBOL(d_splice_alias);
1da177e4 1857
9403540c
BN
1858/**
1859 * d_add_ci - lookup or allocate new dentry with case-exact name
1860 * @inode: the inode case-insensitive lookup has found
1861 * @dentry: the negative dentry that was passed to the parent's lookup func
1862 * @name: the case-exact name to be associated with the returned dentry
1863 *
1864 * This is to avoid filling the dcache with case-insensitive names to the
1865 * same inode, only the actual correct case is stored in the dcache for
1866 * case-insensitive filesystems.
1867 *
1868 * For a case-insensitive lookup match and if the the case-exact dentry
1869 * already exists in in the dcache, use it and return it.
1870 *
1871 * If no entry exists with the exact case name, allocate new dentry with
1872 * the exact case, and return the spliced entry.
1873 */
e45b590b 1874struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1875 struct qstr *name)
1876{
9403540c
BN
1877 struct dentry *found;
1878 struct dentry *new;
1879
b6520c81
CH
1880 /*
1881 * First check if a dentry matching the name already exists,
1882 * if not go ahead and create it now.
1883 */
9403540c 1884 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1885 if (unlikely(IS_ERR(found)))
1886 goto err_out;
9403540c
BN
1887 if (!found) {
1888 new = d_alloc(dentry->d_parent, name);
1889 if (!new) {
4f522a24 1890 found = ERR_PTR(-ENOMEM);
9403540c
BN
1891 goto err_out;
1892 }
b6520c81 1893
9403540c
BN
1894 found = d_splice_alias(inode, new);
1895 if (found) {
1896 dput(new);
1897 return found;
1898 }
1899 return new;
1900 }
b6520c81
CH
1901
1902 /*
1903 * If a matching dentry exists, and it's not negative use it.
1904 *
1905 * Decrement the reference count to balance the iget() done
1906 * earlier on.
1907 */
9403540c
BN
1908 if (found->d_inode) {
1909 if (unlikely(found->d_inode != inode)) {
1910 /* This can't happen because bad inodes are unhashed. */
1911 BUG_ON(!is_bad_inode(inode));
1912 BUG_ON(!is_bad_inode(found->d_inode));
1913 }
9403540c
BN
1914 iput(inode);
1915 return found;
1916 }
b6520c81 1917
9403540c 1918 /*
9403540c 1919 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1920 * already has a dentry.
9403540c 1921 */
4513d899
AV
1922 new = d_splice_alias(inode, found);
1923 if (new) {
1924 dput(found);
1925 found = new;
9403540c 1926 }
4513d899 1927 return found;
9403540c
BN
1928
1929err_out:
1930 iput(inode);
4f522a24 1931 return found;
9403540c 1932}
ec4f8605 1933EXPORT_SYMBOL(d_add_ci);
1da177e4 1934
12f8ad4b
LT
1935/*
1936 * Do the slow-case of the dentry name compare.
1937 *
1938 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1939 * load the name and length information, so that the
12f8ad4b
LT
1940 * filesystem can rely on them, and can use the 'name' and
1941 * 'len' information without worrying about walking off the
1942 * end of memory etc.
1943 *
1944 * Thus the read_seqcount_retry() and the "duplicate" info
1945 * in arguments (the low-level filesystem should not look
1946 * at the dentry inode or name contents directly, since
1947 * rename can change them while we're in RCU mode).
1948 */
1949enum slow_d_compare {
1950 D_COMP_OK,
1951 D_COMP_NOMATCH,
1952 D_COMP_SEQRETRY,
1953};
1954
1955static noinline enum slow_d_compare slow_dentry_cmp(
1956 const struct dentry *parent,
12f8ad4b
LT
1957 struct dentry *dentry,
1958 unsigned int seq,
1959 const struct qstr *name)
1960{
1961 int tlen = dentry->d_name.len;
1962 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1963
1964 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1965 cpu_relax();
1966 return D_COMP_SEQRETRY;
1967 }
da53be12 1968 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1969 return D_COMP_NOMATCH;
1970 return D_COMP_OK;
1971}
1972
31e6b01f
NP
1973/**
1974 * __d_lookup_rcu - search for a dentry (racy, store-free)
1975 * @parent: parent dentry
1976 * @name: qstr of name we wish to find
1f1e6e52 1977 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1978 * Returns: dentry, or NULL
1979 *
1980 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1981 * resolution (store-free path walking) design described in
1982 * Documentation/filesystems/path-lookup.txt.
1983 *
1984 * This is not to be used outside core vfs.
1985 *
1986 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1987 * held, and rcu_read_lock held. The returned dentry must not be stored into
1988 * without taking d_lock and checking d_seq sequence count against @seq
1989 * returned here.
1990 *
15570086 1991 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
1992 * function.
1993 *
1994 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1995 * the returned dentry, so long as its parent's seqlock is checked after the
1996 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1997 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1998 *
1999 * NOTE! The caller *has* to check the resulting dentry against the sequence
2000 * number we've returned before using any of the resulting dentry state!
31e6b01f 2001 */
8966be90
LT
2002struct dentry *__d_lookup_rcu(const struct dentry *parent,
2003 const struct qstr *name,
da53be12 2004 unsigned *seqp)
31e6b01f 2005{
26fe5750 2006 u64 hashlen = name->hash_len;
31e6b01f 2007 const unsigned char *str = name->name;
26fe5750 2008 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2009 struct hlist_bl_node *node;
31e6b01f
NP
2010 struct dentry *dentry;
2011
2012 /*
2013 * Note: There is significant duplication with __d_lookup_rcu which is
2014 * required to prevent single threaded performance regressions
2015 * especially on architectures where smp_rmb (in seqcounts) are costly.
2016 * Keep the two functions in sync.
2017 */
2018
2019 /*
2020 * The hash list is protected using RCU.
2021 *
2022 * Carefully use d_seq when comparing a candidate dentry, to avoid
2023 * races with d_move().
2024 *
2025 * It is possible that concurrent renames can mess up our list
2026 * walk here and result in missing our dentry, resulting in the
2027 * false-negative result. d_lookup() protects against concurrent
2028 * renames using rename_lock seqlock.
2029 *
b0a4bb83 2030 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2031 */
b07ad996 2032 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2033 unsigned seq;
31e6b01f 2034
31e6b01f 2035seqretry:
12f8ad4b
LT
2036 /*
2037 * The dentry sequence count protects us from concurrent
da53be12 2038 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2039 *
2040 * The caller must perform a seqcount check in order
da53be12 2041 * to do anything useful with the returned dentry.
12f8ad4b
LT
2042 *
2043 * NOTE! We do a "raw" seqcount_begin here. That means that
2044 * we don't wait for the sequence count to stabilize if it
2045 * is in the middle of a sequence change. If we do the slow
2046 * dentry compare, we will do seqretries until it is stable,
2047 * and if we end up with a successful lookup, we actually
2048 * want to exit RCU lookup anyway.
2049 */
2050 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2051 if (dentry->d_parent != parent)
2052 continue;
2e321806
LT
2053 if (d_unhashed(dentry))
2054 continue;
12f8ad4b 2055
830c0f0e 2056 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2057 if (dentry->d_name.hash != hashlen_hash(hashlen))
2058 continue;
da53be12
LT
2059 *seqp = seq;
2060 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2061 case D_COMP_OK:
2062 return dentry;
2063 case D_COMP_NOMATCH:
31e6b01f 2064 continue;
12f8ad4b
LT
2065 default:
2066 goto seqretry;
2067 }
31e6b01f 2068 }
12f8ad4b 2069
26fe5750 2070 if (dentry->d_name.hash_len != hashlen)
ee983e89 2071 continue;
da53be12 2072 *seqp = seq;
26fe5750 2073 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2074 return dentry;
31e6b01f
NP
2075 }
2076 return NULL;
2077}
2078
1da177e4
LT
2079/**
2080 * d_lookup - search for a dentry
2081 * @parent: parent dentry
2082 * @name: qstr of name we wish to find
b04f784e 2083 * Returns: dentry, or NULL
1da177e4 2084 *
b04f784e
NP
2085 * d_lookup searches the children of the parent dentry for the name in
2086 * question. If the dentry is found its reference count is incremented and the
2087 * dentry is returned. The caller must use dput to free the entry when it has
2088 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2089 */
da2d8455 2090struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2091{
31e6b01f 2092 struct dentry *dentry;
949854d0 2093 unsigned seq;
1da177e4
LT
2094
2095 do {
2096 seq = read_seqbegin(&rename_lock);
2097 dentry = __d_lookup(parent, name);
2098 if (dentry)
2099 break;
2100 } while (read_seqretry(&rename_lock, seq));
2101 return dentry;
2102}
ec4f8605 2103EXPORT_SYMBOL(d_lookup);
1da177e4 2104
31e6b01f 2105/**
b04f784e
NP
2106 * __d_lookup - search for a dentry (racy)
2107 * @parent: parent dentry
2108 * @name: qstr of name we wish to find
2109 * Returns: dentry, or NULL
2110 *
2111 * __d_lookup is like d_lookup, however it may (rarely) return a
2112 * false-negative result due to unrelated rename activity.
2113 *
2114 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2115 * however it must be used carefully, eg. with a following d_lookup in
2116 * the case of failure.
2117 *
2118 * __d_lookup callers must be commented.
2119 */
a713ca2a 2120struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2121{
2122 unsigned int len = name->len;
2123 unsigned int hash = name->hash;
2124 const unsigned char *str = name->name;
b07ad996 2125 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2126 struct hlist_bl_node *node;
31e6b01f 2127 struct dentry *found = NULL;
665a7583 2128 struct dentry *dentry;
1da177e4 2129
31e6b01f
NP
2130 /*
2131 * Note: There is significant duplication with __d_lookup_rcu which is
2132 * required to prevent single threaded performance regressions
2133 * especially on architectures where smp_rmb (in seqcounts) are costly.
2134 * Keep the two functions in sync.
2135 */
2136
b04f784e
NP
2137 /*
2138 * The hash list is protected using RCU.
2139 *
2140 * Take d_lock when comparing a candidate dentry, to avoid races
2141 * with d_move().
2142 *
2143 * It is possible that concurrent renames can mess up our list
2144 * walk here and result in missing our dentry, resulting in the
2145 * false-negative result. d_lookup() protects against concurrent
2146 * renames using rename_lock seqlock.
2147 *
b0a4bb83 2148 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2149 */
1da177e4
LT
2150 rcu_read_lock();
2151
b07ad996 2152 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2153
1da177e4
LT
2154 if (dentry->d_name.hash != hash)
2155 continue;
1da177e4
LT
2156
2157 spin_lock(&dentry->d_lock);
1da177e4
LT
2158 if (dentry->d_parent != parent)
2159 goto next;
d0185c08
LT
2160 if (d_unhashed(dentry))
2161 goto next;
2162
1da177e4
LT
2163 /*
2164 * It is safe to compare names since d_move() cannot
2165 * change the qstr (protected by d_lock).
2166 */
fb045adb 2167 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2168 int tlen = dentry->d_name.len;
2169 const char *tname = dentry->d_name.name;
da53be12 2170 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2171 goto next;
2172 } else {
ee983e89
LT
2173 if (dentry->d_name.len != len)
2174 goto next;
12f8ad4b 2175 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2176 goto next;
2177 }
2178
98474236 2179 dentry->d_lockref.count++;
d0185c08 2180 found = dentry;
1da177e4
LT
2181 spin_unlock(&dentry->d_lock);
2182 break;
2183next:
2184 spin_unlock(&dentry->d_lock);
2185 }
2186 rcu_read_unlock();
2187
2188 return found;
2189}
2190
3e7e241f
EB
2191/**
2192 * d_hash_and_lookup - hash the qstr then search for a dentry
2193 * @dir: Directory to search in
2194 * @name: qstr of name we wish to find
2195 *
4f522a24 2196 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2197 */
2198struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2199{
3e7e241f
EB
2200 /*
2201 * Check for a fs-specific hash function. Note that we must
2202 * calculate the standard hash first, as the d_op->d_hash()
2203 * routine may choose to leave the hash value unchanged.
2204 */
2205 name->hash = full_name_hash(name->name, name->len);
fb045adb 2206 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2207 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2208 if (unlikely(err < 0))
2209 return ERR_PTR(err);
3e7e241f 2210 }
4f522a24 2211 return d_lookup(dir, name);
3e7e241f 2212}
4f522a24 2213EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2214
1da177e4 2215/**
786a5e15 2216 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2217 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2218 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2219 *
2220 * An insecure source has sent us a dentry, here we verify it and dget() it.
2221 * This is used by ncpfs in its readdir implementation.
2222 * Zero is returned in the dentry is invalid.
786a5e15
NP
2223 *
2224 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2225 */
d3a23e16 2226int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2227{
786a5e15 2228 struct dentry *child;
d3a23e16 2229
2fd6b7f5 2230 spin_lock(&dparent->d_lock);
786a5e15
NP
2231 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2232 if (dentry == child) {
2fd6b7f5 2233 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2234 __dget_dlock(dentry);
2fd6b7f5
NP
2235 spin_unlock(&dentry->d_lock);
2236 spin_unlock(&dparent->d_lock);
1da177e4
LT
2237 return 1;
2238 }
2239 }
2fd6b7f5 2240 spin_unlock(&dparent->d_lock);
786a5e15 2241
1da177e4
LT
2242 return 0;
2243}
ec4f8605 2244EXPORT_SYMBOL(d_validate);
1da177e4
LT
2245
2246/*
2247 * When a file is deleted, we have two options:
2248 * - turn this dentry into a negative dentry
2249 * - unhash this dentry and free it.
2250 *
2251 * Usually, we want to just turn this into
2252 * a negative dentry, but if anybody else is
2253 * currently using the dentry or the inode
2254 * we can't do that and we fall back on removing
2255 * it from the hash queues and waiting for
2256 * it to be deleted later when it has no users
2257 */
2258
2259/**
2260 * d_delete - delete a dentry
2261 * @dentry: The dentry to delete
2262 *
2263 * Turn the dentry into a negative dentry if possible, otherwise
2264 * remove it from the hash queues so it can be deleted later
2265 */
2266
2267void d_delete(struct dentry * dentry)
2268{
873feea0 2269 struct inode *inode;
7a91bf7f 2270 int isdir = 0;
1da177e4
LT
2271 /*
2272 * Are we the only user?
2273 */
357f8e65 2274again:
1da177e4 2275 spin_lock(&dentry->d_lock);
873feea0
NP
2276 inode = dentry->d_inode;
2277 isdir = S_ISDIR(inode->i_mode);
98474236 2278 if (dentry->d_lockref.count == 1) {
1fe0c023 2279 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2280 spin_unlock(&dentry->d_lock);
2281 cpu_relax();
2282 goto again;
2283 }
13e3c5e5 2284 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2285 dentry_unlink_inode(dentry);
7a91bf7f 2286 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2287 return;
2288 }
2289
2290 if (!d_unhashed(dentry))
2291 __d_drop(dentry);
2292
2293 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2294
2295 fsnotify_nameremove(dentry, isdir);
1da177e4 2296}
ec4f8605 2297EXPORT_SYMBOL(d_delete);
1da177e4 2298
b07ad996 2299static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2300{
ceb5bdc2 2301 BUG_ON(!d_unhashed(entry));
1879fd6a 2302 hlist_bl_lock(b);
dea3667b 2303 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2304 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2305 hlist_bl_unlock(b);
1da177e4
LT
2306}
2307
770bfad8
DH
2308static void _d_rehash(struct dentry * entry)
2309{
2310 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2311}
2312
1da177e4
LT
2313/**
2314 * d_rehash - add an entry back to the hash
2315 * @entry: dentry to add to the hash
2316 *
2317 * Adds a dentry to the hash according to its name.
2318 */
2319
2320void d_rehash(struct dentry * entry)
2321{
1da177e4 2322 spin_lock(&entry->d_lock);
770bfad8 2323 _d_rehash(entry);
1da177e4 2324 spin_unlock(&entry->d_lock);
1da177e4 2325}
ec4f8605 2326EXPORT_SYMBOL(d_rehash);
1da177e4 2327
fb2d5b86
NP
2328/**
2329 * dentry_update_name_case - update case insensitive dentry with a new name
2330 * @dentry: dentry to be updated
2331 * @name: new name
2332 *
2333 * Update a case insensitive dentry with new case of name.
2334 *
2335 * dentry must have been returned by d_lookup with name @name. Old and new
2336 * name lengths must match (ie. no d_compare which allows mismatched name
2337 * lengths).
2338 *
2339 * Parent inode i_mutex must be held over d_lookup and into this call (to
2340 * keep renames and concurrent inserts, and readdir(2) away).
2341 */
2342void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2343{
7ebfa57f 2344 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2345 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2346
fb2d5b86 2347 spin_lock(&dentry->d_lock);
31e6b01f 2348 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2349 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2350 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2351 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2352}
2353EXPORT_SYMBOL(dentry_update_name_case);
2354
1da177e4
LT
2355static void switch_names(struct dentry *dentry, struct dentry *target)
2356{
2357 if (dname_external(target)) {
2358 if (dname_external(dentry)) {
2359 /*
2360 * Both external: swap the pointers
2361 */
9a8d5bb4 2362 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2363 } else {
2364 /*
2365 * dentry:internal, target:external. Steal target's
2366 * storage and make target internal.
2367 */
321bcf92
BF
2368 memcpy(target->d_iname, dentry->d_name.name,
2369 dentry->d_name.len + 1);
1da177e4
LT
2370 dentry->d_name.name = target->d_name.name;
2371 target->d_name.name = target->d_iname;
2372 }
2373 } else {
2374 if (dname_external(dentry)) {
2375 /*
2376 * dentry:external, target:internal. Give dentry's
2377 * storage to target and make dentry internal
2378 */
2379 memcpy(dentry->d_iname, target->d_name.name,
2380 target->d_name.len + 1);
2381 target->d_name.name = dentry->d_name.name;
2382 dentry->d_name.name = dentry->d_iname;
2383 } else {
2384 /*
da1ce067 2385 * Both are internal.
1da177e4 2386 */
da1ce067
MS
2387 unsigned int i;
2388 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2389 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2390 swap(((long *) &dentry->d_iname)[i],
2391 ((long *) &target->d_iname)[i]);
2392 }
1da177e4
LT
2393 }
2394 }
9a8d5bb4 2395 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2396}
2397
2fd6b7f5
NP
2398static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2399{
2400 /*
2401 * XXXX: do we really need to take target->d_lock?
2402 */
2403 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2404 spin_lock(&target->d_parent->d_lock);
2405 else {
2406 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2407 spin_lock(&dentry->d_parent->d_lock);
2408 spin_lock_nested(&target->d_parent->d_lock,
2409 DENTRY_D_LOCK_NESTED);
2410 } else {
2411 spin_lock(&target->d_parent->d_lock);
2412 spin_lock_nested(&dentry->d_parent->d_lock,
2413 DENTRY_D_LOCK_NESTED);
2414 }
2415 }
2416 if (target < dentry) {
2417 spin_lock_nested(&target->d_lock, 2);
2418 spin_lock_nested(&dentry->d_lock, 3);
2419 } else {
2420 spin_lock_nested(&dentry->d_lock, 2);
2421 spin_lock_nested(&target->d_lock, 3);
2422 }
2423}
2424
2425static void dentry_unlock_parents_for_move(struct dentry *dentry,
2426 struct dentry *target)
2427{
2428 if (target->d_parent != dentry->d_parent)
2429 spin_unlock(&dentry->d_parent->d_lock);
2430 if (target->d_parent != target)
2431 spin_unlock(&target->d_parent->d_lock);
2432}
2433
1da177e4 2434/*
2fd6b7f5
NP
2435 * When switching names, the actual string doesn't strictly have to
2436 * be preserved in the target - because we're dropping the target
2437 * anyway. As such, we can just do a simple memcpy() to copy over
2438 * the new name before we switch.
2439 *
2440 * Note that we have to be a lot more careful about getting the hash
2441 * switched - we have to switch the hash value properly even if it
2442 * then no longer matches the actual (corrupted) string of the target.
2443 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2444 */
9eaef27b 2445/*
18367501 2446 * __d_move - move a dentry
1da177e4
LT
2447 * @dentry: entry to move
2448 * @target: new dentry
da1ce067 2449 * @exchange: exchange the two dentries
1da177e4
LT
2450 *
2451 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2452 * dcache entries should not be moved in this way. Caller must hold
2453 * rename_lock, the i_mutex of the source and target directories,
2454 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2455 */
da1ce067
MS
2456static void __d_move(struct dentry *dentry, struct dentry *target,
2457 bool exchange)
1da177e4 2458{
1da177e4
LT
2459 if (!dentry->d_inode)
2460 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2461
2fd6b7f5
NP
2462 BUG_ON(d_ancestor(dentry, target));
2463 BUG_ON(d_ancestor(target, dentry));
2464
2fd6b7f5 2465 dentry_lock_for_move(dentry, target);
1da177e4 2466
31e6b01f 2467 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2468 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2469
ceb5bdc2
NP
2470 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2471
2472 /*
2473 * Move the dentry to the target hash queue. Don't bother checking
2474 * for the same hash queue because of how unlikely it is.
2475 */
2476 __d_drop(dentry);
789680d1 2477 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2478
da1ce067
MS
2479 /*
2480 * Unhash the target (d_delete() is not usable here). If exchanging
2481 * the two dentries, then rehash onto the other's hash queue.
2482 */
1da177e4 2483 __d_drop(target);
da1ce067
MS
2484 if (exchange) {
2485 __d_rehash(target,
2486 d_hash(dentry->d_parent, dentry->d_name.hash));
2487 }
1da177e4 2488
5160ee6f
ED
2489 list_del(&dentry->d_u.d_child);
2490 list_del(&target->d_u.d_child);
1da177e4
LT
2491
2492 /* Switch the names.. */
2493 switch_names(dentry, target);
9a8d5bb4 2494 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2495
2496 /* ... and switch the parents */
2497 if (IS_ROOT(dentry)) {
2498 dentry->d_parent = target->d_parent;
2499 target->d_parent = target;
5160ee6f 2500 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2501 } else {
9a8d5bb4 2502 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2503
2504 /* And add them back to the (new) parent lists */
5160ee6f 2505 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2506 }
2507
5160ee6f 2508 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2509
31e6b01f
NP
2510 write_seqcount_end(&target->d_seq);
2511 write_seqcount_end(&dentry->d_seq);
2512
2fd6b7f5 2513 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2514 if (exchange)
2515 fsnotify_d_move(target);
1da177e4 2516 spin_unlock(&target->d_lock);
c32ccd87 2517 fsnotify_d_move(dentry);
1da177e4 2518 spin_unlock(&dentry->d_lock);
18367501
AV
2519}
2520
2521/*
2522 * d_move - move a dentry
2523 * @dentry: entry to move
2524 * @target: new dentry
2525 *
2526 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2527 * dcache entries should not be moved in this way. See the locking
2528 * requirements for __d_move.
18367501
AV
2529 */
2530void d_move(struct dentry *dentry, struct dentry *target)
2531{
2532 write_seqlock(&rename_lock);
da1ce067 2533 __d_move(dentry, target, false);
1da177e4 2534 write_sequnlock(&rename_lock);
9eaef27b 2535}
ec4f8605 2536EXPORT_SYMBOL(d_move);
1da177e4 2537
da1ce067
MS
2538/*
2539 * d_exchange - exchange two dentries
2540 * @dentry1: first dentry
2541 * @dentry2: second dentry
2542 */
2543void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2544{
2545 write_seqlock(&rename_lock);
2546
2547 WARN_ON(!dentry1->d_inode);
2548 WARN_ON(!dentry2->d_inode);
2549 WARN_ON(IS_ROOT(dentry1));
2550 WARN_ON(IS_ROOT(dentry2));
2551
2552 __d_move(dentry1, dentry2, true);
2553
2554 write_sequnlock(&rename_lock);
2555}
2556
e2761a11
OH
2557/**
2558 * d_ancestor - search for an ancestor
2559 * @p1: ancestor dentry
2560 * @p2: child dentry
2561 *
2562 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2563 * an ancestor of p2, else NULL.
9eaef27b 2564 */
e2761a11 2565struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2566{
2567 struct dentry *p;
2568
871c0067 2569 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2570 if (p->d_parent == p1)
e2761a11 2571 return p;
9eaef27b 2572 }
e2761a11 2573 return NULL;
9eaef27b
TM
2574}
2575
2576/*
2577 * This helper attempts to cope with remotely renamed directories
2578 *
2579 * It assumes that the caller is already holding
18367501 2580 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2581 *
2582 * Note: If ever the locking in lock_rename() changes, then please
2583 * remember to update this too...
9eaef27b 2584 */
873feea0
NP
2585static struct dentry *__d_unalias(struct inode *inode,
2586 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2587{
2588 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2589 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2590
2591 /* If alias and dentry share a parent, then no extra locks required */
2592 if (alias->d_parent == dentry->d_parent)
2593 goto out_unalias;
2594
9eaef27b 2595 /* See lock_rename() */
9eaef27b
TM
2596 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2597 goto out_err;
2598 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2599 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2600 goto out_err;
2601 m2 = &alias->d_parent->d_inode->i_mutex;
2602out_unalias:
ee3efa91 2603 if (likely(!d_mountpoint(alias))) {
da1ce067 2604 __d_move(alias, dentry, false);
ee3efa91
AV
2605 ret = alias;
2606 }
9eaef27b 2607out_err:
873feea0 2608 spin_unlock(&inode->i_lock);
9eaef27b
TM
2609 if (m2)
2610 mutex_unlock(m2);
2611 if (m1)
2612 mutex_unlock(m1);
2613 return ret;
2614}
2615
770bfad8
DH
2616/*
2617 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2618 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2619 * returns with anon->d_lock held!
770bfad8
DH
2620 */
2621static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2622{
740da42e 2623 struct dentry *dparent;
770bfad8 2624
2fd6b7f5 2625 dentry_lock_for_move(anon, dentry);
770bfad8 2626
31e6b01f 2627 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2628 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2629
770bfad8 2630 dparent = dentry->d_parent;
770bfad8 2631
2fd6b7f5
NP
2632 switch_names(dentry, anon);
2633 swap(dentry->d_name.hash, anon->d_name.hash);
2634
740da42e
AV
2635 dentry->d_parent = dentry;
2636 list_del_init(&dentry->d_u.d_child);
2637 anon->d_parent = dparent;
9ed53b12 2638 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2639
31e6b01f
NP
2640 write_seqcount_end(&dentry->d_seq);
2641 write_seqcount_end(&anon->d_seq);
2642
2fd6b7f5
NP
2643 dentry_unlock_parents_for_move(anon, dentry);
2644 spin_unlock(&dentry->d_lock);
2645
2646 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2647}
2648
2649/**
2650 * d_materialise_unique - introduce an inode into the tree
2651 * @dentry: candidate dentry
2652 * @inode: inode to bind to the dentry, to which aliases may be attached
2653 *
2654 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2655 * root directory alias in its place if there is one. Caller must hold the
2656 * i_mutex of the parent directory.
770bfad8
DH
2657 */
2658struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2659{
9eaef27b 2660 struct dentry *actual;
770bfad8
DH
2661
2662 BUG_ON(!d_unhashed(dentry));
2663
770bfad8
DH
2664 if (!inode) {
2665 actual = dentry;
360da900 2666 __d_instantiate(dentry, NULL);
357f8e65
NP
2667 d_rehash(actual);
2668 goto out_nolock;
770bfad8
DH
2669 }
2670
873feea0 2671 spin_lock(&inode->i_lock);
357f8e65 2672
9eaef27b
TM
2673 if (S_ISDIR(inode->i_mode)) {
2674 struct dentry *alias;
2675
2676 /* Does an aliased dentry already exist? */
32ba9c3f 2677 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2678 if (alias) {
2679 actual = alias;
18367501
AV
2680 write_seqlock(&rename_lock);
2681
2682 if (d_ancestor(alias, dentry)) {
2683 /* Check for loops */
2684 actual = ERR_PTR(-ELOOP);
b18dafc8 2685 spin_unlock(&inode->i_lock);
18367501
AV
2686 } else if (IS_ROOT(alias)) {
2687 /* Is this an anonymous mountpoint that we
2688 * could splice into our tree? */
9eaef27b 2689 __d_materialise_dentry(dentry, alias);
18367501 2690 write_sequnlock(&rename_lock);
9eaef27b
TM
2691 __d_drop(alias);
2692 goto found;
18367501
AV
2693 } else {
2694 /* Nope, but we must(!) avoid directory
b18dafc8 2695 * aliasing. This drops inode->i_lock */
18367501 2696 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2697 }
18367501 2698 write_sequnlock(&rename_lock);
dd179946
DH
2699 if (IS_ERR(actual)) {
2700 if (PTR_ERR(actual) == -ELOOP)
2701 pr_warn_ratelimited(
2702 "VFS: Lookup of '%s' in %s %s"
2703 " would have caused loop\n",
2704 dentry->d_name.name,
2705 inode->i_sb->s_type->name,
2706 inode->i_sb->s_id);
9eaef27b 2707 dput(alias);
dd179946 2708 }
9eaef27b
TM
2709 goto out_nolock;
2710 }
770bfad8
DH
2711 }
2712
2713 /* Add a unique reference */
2714 actual = __d_instantiate_unique(dentry, inode);
2715 if (!actual)
2716 actual = dentry;
357f8e65
NP
2717 else
2718 BUG_ON(!d_unhashed(actual));
770bfad8 2719
770bfad8
DH
2720 spin_lock(&actual->d_lock);
2721found:
2722 _d_rehash(actual);
2723 spin_unlock(&actual->d_lock);
873feea0 2724 spin_unlock(&inode->i_lock);
9eaef27b 2725out_nolock:
770bfad8
DH
2726 if (actual == dentry) {
2727 security_d_instantiate(dentry, inode);
2728 return NULL;
2729 }
2730
2731 iput(inode);
2732 return actual;
770bfad8 2733}
ec4f8605 2734EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2735
cdd16d02 2736static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2737{
2738 *buflen -= namelen;
2739 if (*buflen < 0)
2740 return -ENAMETOOLONG;
2741 *buffer -= namelen;
2742 memcpy(*buffer, str, namelen);
2743 return 0;
2744}
2745
232d2d60
WL
2746/**
2747 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2748 * @buffer: buffer pointer
2749 * @buflen: allocated length of the buffer
2750 * @name: name string and length qstr structure
232d2d60
WL
2751 *
2752 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2753 * make sure that either the old or the new name pointer and length are
2754 * fetched. However, there may be mismatch between length and pointer.
2755 * The length cannot be trusted, we need to copy it byte-by-byte until
2756 * the length is reached or a null byte is found. It also prepends "/" at
2757 * the beginning of the name. The sequence number check at the caller will
2758 * retry it again when a d_move() does happen. So any garbage in the buffer
2759 * due to mismatched pointer and length will be discarded.
2760 */
cdd16d02
MS
2761static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2762{
232d2d60
WL
2763 const char *dname = ACCESS_ONCE(name->name);
2764 u32 dlen = ACCESS_ONCE(name->len);
2765 char *p;
2766
232d2d60 2767 *buflen -= dlen + 1;
e825196d
AV
2768 if (*buflen < 0)
2769 return -ENAMETOOLONG;
232d2d60
WL
2770 p = *buffer -= dlen + 1;
2771 *p++ = '/';
2772 while (dlen--) {
2773 char c = *dname++;
2774 if (!c)
2775 break;
2776 *p++ = c;
2777 }
2778 return 0;
cdd16d02
MS
2779}
2780
1da177e4 2781/**
208898c1 2782 * prepend_path - Prepend path string to a buffer
9d1bc601 2783 * @path: the dentry/vfsmount to report
02125a82 2784 * @root: root vfsmnt/dentry
f2eb6575
MS
2785 * @buffer: pointer to the end of the buffer
2786 * @buflen: pointer to buffer length
552ce544 2787 *
18129977
WL
2788 * The function will first try to write out the pathname without taking any
2789 * lock other than the RCU read lock to make sure that dentries won't go away.
2790 * It only checks the sequence number of the global rename_lock as any change
2791 * in the dentry's d_seq will be preceded by changes in the rename_lock
2792 * sequence number. If the sequence number had been changed, it will restart
2793 * the whole pathname back-tracing sequence again by taking the rename_lock.
2794 * In this case, there is no need to take the RCU read lock as the recursive
2795 * parent pointer references will keep the dentry chain alive as long as no
2796 * rename operation is performed.
1da177e4 2797 */
02125a82
AV
2798static int prepend_path(const struct path *path,
2799 const struct path *root,
f2eb6575 2800 char **buffer, int *buflen)
1da177e4 2801{
ede4cebc
AV
2802 struct dentry *dentry;
2803 struct vfsmount *vfsmnt;
2804 struct mount *mnt;
f2eb6575 2805 int error = 0;
48a066e7 2806 unsigned seq, m_seq = 0;
232d2d60
WL
2807 char *bptr;
2808 int blen;
6092d048 2809
48f5ec21 2810 rcu_read_lock();
48a066e7
AV
2811restart_mnt:
2812 read_seqbegin_or_lock(&mount_lock, &m_seq);
2813 seq = 0;
4ec6c2ae 2814 rcu_read_lock();
232d2d60
WL
2815restart:
2816 bptr = *buffer;
2817 blen = *buflen;
48a066e7 2818 error = 0;
ede4cebc
AV
2819 dentry = path->dentry;
2820 vfsmnt = path->mnt;
2821 mnt = real_mount(vfsmnt);
232d2d60 2822 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2823 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2824 struct dentry * parent;
2825
1da177e4 2826 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2827 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2828 /* Global root? */
48a066e7
AV
2829 if (mnt != parent) {
2830 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2831 mnt = parent;
232d2d60
WL
2832 vfsmnt = &mnt->mnt;
2833 continue;
2834 }
2835 /*
2836 * Filesystems needing to implement special "root names"
2837 * should do so with ->d_dname()
2838 */
2839 if (IS_ROOT(dentry) &&
2840 (dentry->d_name.len != 1 ||
2841 dentry->d_name.name[0] != '/')) {
2842 WARN(1, "Root dentry has weird name <%.*s>\n",
2843 (int) dentry->d_name.len,
2844 dentry->d_name.name);
2845 }
2846 if (!error)
2847 error = is_mounted(vfsmnt) ? 1 : 2;
2848 break;
1da177e4
LT
2849 }
2850 parent = dentry->d_parent;
2851 prefetch(parent);
232d2d60 2852 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2853 if (error)
2854 break;
2855
1da177e4
LT
2856 dentry = parent;
2857 }
48f5ec21
AV
2858 if (!(seq & 1))
2859 rcu_read_unlock();
2860 if (need_seqretry(&rename_lock, seq)) {
2861 seq = 1;
232d2d60 2862 goto restart;
48f5ec21
AV
2863 }
2864 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2865
2866 if (!(m_seq & 1))
2867 rcu_read_unlock();
48a066e7
AV
2868 if (need_seqretry(&mount_lock, m_seq)) {
2869 m_seq = 1;
2870 goto restart_mnt;
2871 }
2872 done_seqretry(&mount_lock, m_seq);
1da177e4 2873
232d2d60
WL
2874 if (error >= 0 && bptr == *buffer) {
2875 if (--blen < 0)
2876 error = -ENAMETOOLONG;
2877 else
2878 *--bptr = '/';
2879 }
2880 *buffer = bptr;
2881 *buflen = blen;
7ea600b5 2882 return error;
f2eb6575 2883}
be285c71 2884
f2eb6575
MS
2885/**
2886 * __d_path - return the path of a dentry
2887 * @path: the dentry/vfsmount to report
02125a82 2888 * @root: root vfsmnt/dentry
cd956a1c 2889 * @buf: buffer to return value in
f2eb6575
MS
2890 * @buflen: buffer length
2891 *
ffd1f4ed 2892 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2893 *
2894 * Returns a pointer into the buffer or an error code if the
2895 * path was too long.
2896 *
be148247 2897 * "buflen" should be positive.
f2eb6575 2898 *
02125a82 2899 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2900 */
02125a82
AV
2901char *__d_path(const struct path *path,
2902 const struct path *root,
f2eb6575
MS
2903 char *buf, int buflen)
2904{
2905 char *res = buf + buflen;
2906 int error;
2907
2908 prepend(&res, &buflen, "\0", 1);
f2eb6575 2909 error = prepend_path(path, root, &res, &buflen);
be148247 2910
02125a82
AV
2911 if (error < 0)
2912 return ERR_PTR(error);
2913 if (error > 0)
2914 return NULL;
2915 return res;
2916}
2917
2918char *d_absolute_path(const struct path *path,
2919 char *buf, int buflen)
2920{
2921 struct path root = {};
2922 char *res = buf + buflen;
2923 int error;
2924
2925 prepend(&res, &buflen, "\0", 1);
02125a82 2926 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2927
2928 if (error > 1)
2929 error = -EINVAL;
2930 if (error < 0)
f2eb6575 2931 return ERR_PTR(error);
f2eb6575 2932 return res;
1da177e4
LT
2933}
2934
ffd1f4ed
MS
2935/*
2936 * same as __d_path but appends "(deleted)" for unlinked files.
2937 */
02125a82
AV
2938static int path_with_deleted(const struct path *path,
2939 const struct path *root,
2940 char **buf, int *buflen)
ffd1f4ed
MS
2941{
2942 prepend(buf, buflen, "\0", 1);
2943 if (d_unlinked(path->dentry)) {
2944 int error = prepend(buf, buflen, " (deleted)", 10);
2945 if (error)
2946 return error;
2947 }
2948
2949 return prepend_path(path, root, buf, buflen);
2950}
2951
8df9d1a4
MS
2952static int prepend_unreachable(char **buffer, int *buflen)
2953{
2954 return prepend(buffer, buflen, "(unreachable)", 13);
2955}
2956
68f0d9d9
LT
2957static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2958{
2959 unsigned seq;
2960
2961 do {
2962 seq = read_seqcount_begin(&fs->seq);
2963 *root = fs->root;
2964 } while (read_seqcount_retry(&fs->seq, seq));
2965}
2966
a03a8a70
JB
2967/**
2968 * d_path - return the path of a dentry
cf28b486 2969 * @path: path to report
a03a8a70
JB
2970 * @buf: buffer to return value in
2971 * @buflen: buffer length
2972 *
2973 * Convert a dentry into an ASCII path name. If the entry has been deleted
2974 * the string " (deleted)" is appended. Note that this is ambiguous.
2975 *
52afeefb
AV
2976 * Returns a pointer into the buffer or an error code if the path was
2977 * too long. Note: Callers should use the returned pointer, not the passed
2978 * in buffer, to use the name! The implementation often starts at an offset
2979 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2980 *
31f3e0b3 2981 * "buflen" should be positive.
a03a8a70 2982 */
20d4fdc1 2983char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2984{
ffd1f4ed 2985 char *res = buf + buflen;
6ac08c39 2986 struct path root;
ffd1f4ed 2987 int error;
1da177e4 2988
c23fbb6b
ED
2989 /*
2990 * We have various synthetic filesystems that never get mounted. On
2991 * these filesystems dentries are never used for lookup purposes, and
2992 * thus don't need to be hashed. They also don't need a name until a
2993 * user wants to identify the object in /proc/pid/fd/. The little hack
2994 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
2995 *
2996 * Some pseudo inodes are mountable. When they are mounted
2997 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2998 * and instead have d_path return the mounted path.
c23fbb6b 2999 */
f48cfddc
EB
3000 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3001 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3002 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3003
68f0d9d9
LT
3004 rcu_read_lock();
3005 get_fs_root_rcu(current->fs, &root);
02125a82 3006 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3007 rcu_read_unlock();
3008
02125a82 3009 if (error < 0)
ffd1f4ed 3010 res = ERR_PTR(error);
1da177e4
LT
3011 return res;
3012}
ec4f8605 3013EXPORT_SYMBOL(d_path);
1da177e4 3014
c23fbb6b
ED
3015/*
3016 * Helper function for dentry_operations.d_dname() members
3017 */
3018char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3019 const char *fmt, ...)
3020{
3021 va_list args;
3022 char temp[64];
3023 int sz;
3024
3025 va_start(args, fmt);
3026 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3027 va_end(args);
3028
3029 if (sz > sizeof(temp) || sz > buflen)
3030 return ERR_PTR(-ENAMETOOLONG);
3031
3032 buffer += buflen - sz;
3033 return memcpy(buffer, temp, sz);
3034}
3035
118b2302
AV
3036char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3037{
3038 char *end = buffer + buflen;
3039 /* these dentries are never renamed, so d_lock is not needed */
3040 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3041 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3042 prepend(&end, &buflen, "/", 1))
3043 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3044 return end;
118b2302 3045}
31bbe16f 3046EXPORT_SYMBOL(simple_dname);
118b2302 3047
6092d048
RP
3048/*
3049 * Write full pathname from the root of the filesystem into the buffer.
3050 */
f6500801 3051static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3052{
f6500801 3053 struct dentry *dentry;
232d2d60
WL
3054 char *end, *retval;
3055 int len, seq = 0;
3056 int error = 0;
6092d048 3057
f6500801
AV
3058 if (buflen < 2)
3059 goto Elong;
3060
48f5ec21 3061 rcu_read_lock();
232d2d60 3062restart:
f6500801 3063 dentry = d;
232d2d60
WL
3064 end = buf + buflen;
3065 len = buflen;
3066 prepend(&end, &len, "\0", 1);
6092d048
RP
3067 /* Get '/' right */
3068 retval = end-1;
3069 *retval = '/';
232d2d60 3070 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3071 while (!IS_ROOT(dentry)) {
3072 struct dentry *parent = dentry->d_parent;
6092d048 3073
6092d048 3074 prefetch(parent);
232d2d60
WL
3075 error = prepend_name(&end, &len, &dentry->d_name);
3076 if (error)
3077 break;
6092d048
RP
3078
3079 retval = end;
3080 dentry = parent;
3081 }
48f5ec21
AV
3082 if (!(seq & 1))
3083 rcu_read_unlock();
3084 if (need_seqretry(&rename_lock, seq)) {
3085 seq = 1;
232d2d60 3086 goto restart;
48f5ec21
AV
3087 }
3088 done_seqretry(&rename_lock, seq);
232d2d60
WL
3089 if (error)
3090 goto Elong;
c103135c
AV
3091 return retval;
3092Elong:
3093 return ERR_PTR(-ENAMETOOLONG);
3094}
ec2447c2
NP
3095
3096char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3097{
232d2d60 3098 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3099}
3100EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3101
3102char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3103{
3104 char *p = NULL;
3105 char *retval;
3106
c103135c
AV
3107 if (d_unlinked(dentry)) {
3108 p = buf + buflen;
3109 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3110 goto Elong;
3111 buflen++;
3112 }
3113 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3114 if (!IS_ERR(retval) && p)
3115 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3116 return retval;
3117Elong:
6092d048
RP
3118 return ERR_PTR(-ENAMETOOLONG);
3119}
3120
8b19e341
LT
3121static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3122 struct path *pwd)
5762482f 3123{
8b19e341
LT
3124 unsigned seq;
3125
3126 do {
3127 seq = read_seqcount_begin(&fs->seq);
3128 *root = fs->root;
3129 *pwd = fs->pwd;
3130 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3131}
3132
1da177e4
LT
3133/*
3134 * NOTE! The user-level library version returns a
3135 * character pointer. The kernel system call just
3136 * returns the length of the buffer filled (which
3137 * includes the ending '\0' character), or a negative
3138 * error value. So libc would do something like
3139 *
3140 * char *getcwd(char * buf, size_t size)
3141 * {
3142 * int retval;
3143 *
3144 * retval = sys_getcwd(buf, size);
3145 * if (retval >= 0)
3146 * return buf;
3147 * errno = -retval;
3148 * return NULL;
3149 * }
3150 */
3cdad428 3151SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3152{
552ce544 3153 int error;
6ac08c39 3154 struct path pwd, root;
3272c544 3155 char *page = __getname();
1da177e4
LT
3156
3157 if (!page)
3158 return -ENOMEM;
3159
8b19e341
LT
3160 rcu_read_lock();
3161 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3162
552ce544 3163 error = -ENOENT;
f3da392e 3164 if (!d_unlinked(pwd.dentry)) {
552ce544 3165 unsigned long len;
3272c544
LT
3166 char *cwd = page + PATH_MAX;
3167 int buflen = PATH_MAX;
1da177e4 3168
8df9d1a4 3169 prepend(&cwd, &buflen, "\0", 1);
02125a82 3170 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3171 rcu_read_unlock();
552ce544 3172
02125a82 3173 if (error < 0)
552ce544
LT
3174 goto out;
3175
8df9d1a4 3176 /* Unreachable from current root */
02125a82 3177 if (error > 0) {
8df9d1a4
MS
3178 error = prepend_unreachable(&cwd, &buflen);
3179 if (error)
3180 goto out;
3181 }
3182
552ce544 3183 error = -ERANGE;
3272c544 3184 len = PATH_MAX + page - cwd;
552ce544
LT
3185 if (len <= size) {
3186 error = len;
3187 if (copy_to_user(buf, cwd, len))
3188 error = -EFAULT;
3189 }
949854d0 3190 } else {
ff812d72 3191 rcu_read_unlock();
949854d0 3192 }
1da177e4
LT
3193
3194out:
3272c544 3195 __putname(page);
1da177e4
LT
3196 return error;
3197}
3198
3199/*
3200 * Test whether new_dentry is a subdirectory of old_dentry.
3201 *
3202 * Trivially implemented using the dcache structure
3203 */
3204
3205/**
3206 * is_subdir - is new dentry a subdirectory of old_dentry
3207 * @new_dentry: new dentry
3208 * @old_dentry: old dentry
3209 *
3210 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3211 * Returns 0 otherwise.
3212 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3213 */
3214
e2761a11 3215int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3216{
3217 int result;
949854d0 3218 unsigned seq;
1da177e4 3219
e2761a11
OH
3220 if (new_dentry == old_dentry)
3221 return 1;
3222
e2761a11 3223 do {
1da177e4 3224 /* for restarting inner loop in case of seq retry */
1da177e4 3225 seq = read_seqbegin(&rename_lock);
949854d0
NP
3226 /*
3227 * Need rcu_readlock to protect against the d_parent trashing
3228 * due to d_move
3229 */
3230 rcu_read_lock();
e2761a11 3231 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3232 result = 1;
e2761a11
OH
3233 else
3234 result = 0;
949854d0 3235 rcu_read_unlock();
1da177e4 3236 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3237
3238 return result;
3239}
3240
db14fc3a 3241static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3242{
db14fc3a
MS
3243 struct dentry *root = data;
3244 if (dentry != root) {
3245 if (d_unhashed(dentry) || !dentry->d_inode)
3246 return D_WALK_SKIP;
1da177e4 3247
01ddc4ed
MS
3248 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3249 dentry->d_flags |= DCACHE_GENOCIDE;
3250 dentry->d_lockref.count--;
3251 }
1da177e4 3252 }
db14fc3a
MS
3253 return D_WALK_CONTINUE;
3254}
58db63d0 3255
db14fc3a
MS
3256void d_genocide(struct dentry *parent)
3257{
3258 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3259}
3260
60545d0d 3261void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3262{
60545d0d
AV
3263 inode_dec_link_count(inode);
3264 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3265 !hlist_unhashed(&dentry->d_alias) ||
3266 !d_unlinked(dentry));
3267 spin_lock(&dentry->d_parent->d_lock);
3268 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3269 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3270 (unsigned long long)inode->i_ino);
3271 spin_unlock(&dentry->d_lock);
3272 spin_unlock(&dentry->d_parent->d_lock);
3273 d_instantiate(dentry, inode);
1da177e4 3274}
60545d0d 3275EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3276
3277static __initdata unsigned long dhash_entries;
3278static int __init set_dhash_entries(char *str)
3279{
3280 if (!str)
3281 return 0;
3282 dhash_entries = simple_strtoul(str, &str, 0);
3283 return 1;
3284}
3285__setup("dhash_entries=", set_dhash_entries);
3286
3287static void __init dcache_init_early(void)
3288{
074b8517 3289 unsigned int loop;
1da177e4
LT
3290
3291 /* If hashes are distributed across NUMA nodes, defer
3292 * hash allocation until vmalloc space is available.
3293 */
3294 if (hashdist)
3295 return;
3296
3297 dentry_hashtable =
3298 alloc_large_system_hash("Dentry cache",
b07ad996 3299 sizeof(struct hlist_bl_head),
1da177e4
LT
3300 dhash_entries,
3301 13,
3302 HASH_EARLY,
3303 &d_hash_shift,
3304 &d_hash_mask,
31fe62b9 3305 0,
1da177e4
LT
3306 0);
3307
074b8517 3308 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3309 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3310}
3311
74bf17cf 3312static void __init dcache_init(void)
1da177e4 3313{
074b8517 3314 unsigned int loop;
1da177e4
LT
3315
3316 /*
3317 * A constructor could be added for stable state like the lists,
3318 * but it is probably not worth it because of the cache nature
3319 * of the dcache.
3320 */
0a31bd5f
CL
3321 dentry_cache = KMEM_CACHE(dentry,
3322 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3323
3324 /* Hash may have been set up in dcache_init_early */
3325 if (!hashdist)
3326 return;
3327
3328 dentry_hashtable =
3329 alloc_large_system_hash("Dentry cache",
b07ad996 3330 sizeof(struct hlist_bl_head),
1da177e4
LT
3331 dhash_entries,
3332 13,
3333 0,
3334 &d_hash_shift,
3335 &d_hash_mask,
31fe62b9 3336 0,
1da177e4
LT
3337 0);
3338
074b8517 3339 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3340 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3341}
3342
3343/* SLAB cache for __getname() consumers */
e18b890b 3344struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3345EXPORT_SYMBOL(names_cachep);
1da177e4 3346
1da177e4
LT
3347EXPORT_SYMBOL(d_genocide);
3348
1da177e4
LT
3349void __init vfs_caches_init_early(void)
3350{
3351 dcache_init_early();
3352 inode_init_early();
3353}
3354
3355void __init vfs_caches_init(unsigned long mempages)
3356{
3357 unsigned long reserve;
3358
3359 /* Base hash sizes on available memory, with a reserve equal to
3360 150% of current kernel size */
3361
3362 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3363 mempages -= reserve;
3364
3365 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3366 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3367
74bf17cf
DC
3368 dcache_init();
3369 inode_init();
1da177e4 3370 files_init(mempages);
74bf17cf 3371 mnt_init();
1da177e4
LT
3372 bdev_cache_init();
3373 chrdev_init();
3374}