]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/direct-io.c
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
[mirror_ubuntu-jammy-kernel.git] / fs / direct-io.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
e1f8e874 9 * 04Jul2002 Andrew Morton
1da177e4
LT
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
e1f8e874 13 * 29Oct2002 Andrew Morton
1da177e4
LT
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/mm.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/pagemap.h>
98c4d57d 31#include <linux/task_io_accounting_ops.h>
1da177e4
LT
32#include <linux/bio.h>
33#include <linux/wait.h>
34#include <linux/err.h>
35#include <linux/blkdev.h>
36#include <linux/buffer_head.h>
37#include <linux/rwsem.h>
38#include <linux/uio.h>
60063497 39#include <linux/atomic.h>
65dd2aa9 40#include <linux/prefetch.h>
1da177e4 41
b16155a0
EB
42#include "internal.h"
43
1da177e4
LT
44/*
45 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 46 * the size of a structure in the slab cache
1da177e4
LT
47 */
48#define DIO_PAGES 64
49
ffe51f01
LC
50/*
51 * Flags for dio_complete()
52 */
53#define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
54#define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
55
1da177e4
LT
56/*
57 * This code generally works in units of "dio_blocks". A dio_block is
58 * somewhere between the hard sector size and the filesystem block size. it
59 * is determined on a per-invocation basis. When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
1da177e4
LT
66 */
67
eb28be2b
AK
68/* dio_state only used in the submission path */
69
70struct dio_submit {
1da177e4 71 struct bio *bio; /* bio under assembly */
1da177e4
LT
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
82 sector_t block_in_file; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 85 int reap_counter; /* rate limit reaping */
1da177e4 86 sector_t final_block_in_request;/* doesn't change */
1da177e4 87 int boundary; /* prev block is at a boundary */
1d8fa7a2 88 get_block_t *get_block; /* block mapping function */
facd07b0 89 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 90
facd07b0 91 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
1da177e4
LT
95
96 /*
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
99 * dio_bio_add_page().
100 */
101 struct page *cur_page; /* The page */
102 unsigned cur_page_offset; /* Offset into it, in bytes */
103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block; /* Where it starts */
facd07b0 105 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 106
7b2c99d1 107 struct iov_iter *iter;
1da177e4
LT
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
1da177e4
LT
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
7b2c99d1 114 size_t from, to;
eb28be2b
AK
115};
116
117/* dio_state communicated between submission path and end_io */
118struct dio {
119 int flags; /* doesn't change */
8a4c1e42
MC
120 int op;
121 int op_flags;
15c4f638 122 blk_qc_t bio_cookie;
74d46992 123 struct gendisk *bio_disk;
0dc2bc49 124 struct inode *inode;
eb28be2b
AK
125 loff_t i_size; /* i_size when submitted */
126 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 127
18772641 128 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
129
130 /* BIO completion state */
131 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
132 int page_errors; /* errno from get_user_pages() */
133 int is_async; /* is IO async ? */
7b7a8665 134 bool defer_completion; /* defer AIO completion to workqueue? */
53cbf3b1 135 bool should_dirty; /* if pages should be dirtied */
0dc2bc49 136 int io_error; /* IO error in completion path */
eb28be2b
AK
137 unsigned long refcount; /* direct_io_worker() and bios */
138 struct bio *bio_list; /* singly linked via bi_private */
139 struct task_struct *waiter; /* waiting task (NULL if none) */
140
141 /* AIO related stuff */
142 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
143 ssize_t result; /* IO result */
144
23aee091
JM
145 /*
146 * pages[] (and any fields placed after it) are not zeroed out at
147 * allocation time. Don't add new fields after pages[] unless you
148 * wish that they not be zeroed.
149 */
7b7a8665
CH
150 union {
151 struct page *pages[DIO_PAGES]; /* page buffer */
152 struct work_struct complete_work;/* deferred AIO completion */
153 };
6e8267f5
AK
154} ____cacheline_aligned_in_smp;
155
156static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
157
158/*
159 * How many pages are in the queue?
160 */
eb28be2b 161static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 162{
eb28be2b 163 return sdio->tail - sdio->head;
1da177e4
LT
164}
165
166/*
167 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
168 */
ba253fbf 169static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 170{
7b2c99d1 171 ssize_t ret;
1da177e4 172
2c80929c 173 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 174 &sdio->from);
1da177e4 175
8a4c1e42 176 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
557ed1fa 177 struct page *page = ZERO_PAGE(0);
1da177e4
LT
178 /*
179 * A memory fault, but the filesystem has some outstanding
180 * mapped blocks. We need to use those blocks up to avoid
181 * leaking stale data in the file.
182 */
183 if (dio->page_errors == 0)
184 dio->page_errors = ret;
09cbfeaf 185 get_page(page);
b5810039 186 dio->pages[0] = page;
eb28be2b
AK
187 sdio->head = 0;
188 sdio->tail = 1;
7b2c99d1
AV
189 sdio->from = 0;
190 sdio->to = PAGE_SIZE;
191 return 0;
1da177e4
LT
192 }
193
194 if (ret >= 0) {
7b2c99d1
AV
195 iov_iter_advance(sdio->iter, ret);
196 ret += sdio->from;
eb28be2b 197 sdio->head = 0;
7b2c99d1
AV
198 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
199 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
200 return 0;
1da177e4 201 }
1da177e4
LT
202 return ret;
203}
204
205/*
206 * Get another userspace page. Returns an ERR_PTR on error. Pages are
207 * buffered inside the dio so that we can call get_user_pages() against a
208 * decent number of pages, less frequently. To provide nicer use of the
209 * L1 cache.
210 */
ba253fbf 211static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 212 struct dio_submit *sdio)
1da177e4 213{
eb28be2b 214 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
215 int ret;
216
eb28be2b 217 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
218 if (ret)
219 return ERR_PTR(ret);
eb28be2b 220 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 221 }
6fcc5420 222 return dio->pages[sdio->head];
1da177e4
LT
223}
224
c70d868f 225/*
6d544bb4 226 * dio_complete() - called when all DIO BIO I/O has been completed
6d544bb4 227 *
7b7a8665
CH
228 * This drops i_dio_count, lets interested parties know that a DIO operation
229 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
230 *
231 * It lets the filesystem know if it registered an interest earlier via
232 * get_block. Pass the private field of the map buffer_head so that
233 * filesystems can use it to hold additional state between get_block calls and
234 * dio_complete.
1da177e4 235 */
ffe51f01 236static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
1da177e4 237{
716b9bc0 238 loff_t offset = dio->iocb->ki_pos;
6d544bb4 239 ssize_t transferred = 0;
332391a9 240 int err;
6d544bb4 241
8459d86a
ZB
242 /*
243 * AIO submission can race with bio completion to get here while
244 * expecting to have the last io completed by bio completion.
245 * In that case -EIOCBQUEUED is in fact not an error we want
246 * to preserve through this call.
247 */
248 if (ret == -EIOCBQUEUED)
249 ret = 0;
250
6d544bb4
ZB
251 if (dio->result) {
252 transferred = dio->result;
253
254 /* Check for short read case */
8a4c1e42
MC
255 if ((dio->op == REQ_OP_READ) &&
256 ((offset + transferred) > dio->i_size))
6d544bb4 257 transferred = dio->i_size - offset;
4038acdb
AV
258 /* ignore EFAULT if some IO has been done */
259 if (unlikely(ret == -EFAULT) && transferred)
260 ret = 0;
6d544bb4
ZB
261 }
262
6d544bb4
ZB
263 if (ret == 0)
264 ret = dio->page_errors;
265 if (ret == 0)
266 ret = dio->io_error;
267 if (ret == 0)
268 ret = transferred;
269
5e25c269
EG
270 if (dio->end_io) {
271 // XXX: ki_pos??
272 err = dio->end_io(dio->iocb, offset, ret, dio->private);
273 if (err)
274 ret = err;
275 }
276
332391a9
LC
277 /*
278 * Try again to invalidate clean pages which might have been cached by
279 * non-direct readahead, or faulted in by get_user_pages() if the source
280 * of the write was an mmap'ed region of the file we're writing. Either
281 * one is a pretty crazy thing to do, so we don't support it 100%. If
282 * this invalidation fails, tough, the write still worked...
5e25c269
EG
283 *
284 * And this page cache invalidation has to be after dio->end_io(), as
285 * some filesystems convert unwritten extents to real allocations in
286 * end_io() when necessary, otherwise a racing buffer read would cache
287 * zeros from unwritten extents.
332391a9 288 */
ffe51f01
LC
289 if (flags & DIO_COMPLETE_INVALIDATE &&
290 ret > 0 && dio->op == REQ_OP_WRITE &&
332391a9
LC
291 dio->inode->i_mapping->nrpages) {
292 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
293 offset >> PAGE_SHIFT,
294 (offset + ret - 1) >> PAGE_SHIFT);
5a9d929d
DW
295 if (err)
296 dio_warn_stale_pagecache(dio->iocb->ki_filp);
332391a9
LC
297 }
298
ce3077ee 299 inode_dio_end(dio->inode);
fe0f07d0 300
ffe51f01 301 if (flags & DIO_COMPLETE_ASYNC) {
e2592217
CH
302 /*
303 * generic_write_sync expects ki_pos to have been updated
304 * already, but the submission path only does this for
305 * synchronous I/O.
306 */
307 dio->iocb->ki_pos += transferred;
02afc27f 308
41e817bc
MH
309 if (ret > 0 && dio->op == REQ_OP_WRITE)
310 ret = generic_write_sync(dio->iocb, ret);
04b2fa9f 311 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 312 }
40e2e973 313
7b7a8665 314 kmem_cache_free(dio_cache, dio);
6d544bb4 315 return ret;
1da177e4
LT
316}
317
7b7a8665
CH
318static void dio_aio_complete_work(struct work_struct *work)
319{
320 struct dio *dio = container_of(work, struct dio, complete_work);
321
ffe51f01 322 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
7b7a8665
CH
323}
324
4e4cbee9 325static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 326
1da177e4
LT
327/*
328 * Asynchronous IO callback.
329 */
4246a0b6 330static void dio_bio_end_aio(struct bio *bio)
1da177e4
LT
331{
332 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
333 unsigned long remaining;
334 unsigned long flags;
332391a9 335 bool defer_completion = false;
1da177e4 336
1da177e4
LT
337 /* cleanup the bio */
338 dio_bio_complete(dio, bio);
0273201e 339
5eb6c7a2
ZB
340 spin_lock_irqsave(&dio->bio_lock, flags);
341 remaining = --dio->refcount;
342 if (remaining == 1 && dio->waiter)
20258b2b 343 wake_up_process(dio->waiter);
5eb6c7a2 344 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 345
8459d86a 346 if (remaining == 0) {
332391a9
LC
347 /*
348 * Defer completion when defer_completion is set or
349 * when the inode has pages mapped and this is AIO write.
350 * We need to invalidate those pages because there is a
351 * chance they contain stale data in the case buffered IO
352 * went in between AIO submission and completion into the
353 * same region.
354 */
355 if (dio->result)
356 defer_completion = dio->defer_completion ||
357 (dio->op == REQ_OP_WRITE &&
358 dio->inode->i_mapping->nrpages);
359 if (defer_completion) {
7b7a8665
CH
360 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361 queue_work(dio->inode->i_sb->s_dio_done_wq,
362 &dio->complete_work);
363 } else {
ffe51f01 364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
7b7a8665 365 }
8459d86a 366 }
1da177e4
LT
367}
368
369/*
370 * The BIO completion handler simply queues the BIO up for the process-context
371 * handler.
372 *
373 * During I/O bi_private points at the dio. After I/O, bi_private is used to
374 * implement a singly-linked list of completed BIOs, at dio->bio_list.
375 */
4246a0b6 376static void dio_bio_end_io(struct bio *bio)
1da177e4
LT
377{
378 struct dio *dio = bio->bi_private;
379 unsigned long flags;
380
1da177e4
LT
381 spin_lock_irqsave(&dio->bio_lock, flags);
382 bio->bi_private = dio->bio_list;
383 dio->bio_list = bio;
5eb6c7a2 384 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
385 wake_up_process(dio->waiter);
386 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
387}
388
ba253fbf 389static inline void
eb28be2b
AK
390dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
391 struct block_device *bdev,
392 sector_t first_sector, int nr_vecs)
1da177e4
LT
393{
394 struct bio *bio;
395
20d9600c 396 /*
0eb0b63c
CH
397 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
398 * we request a valid number of vectors.
20d9600c 399 */
1da177e4 400 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4 401
74d46992 402 bio_set_dev(bio, bdev);
4f024f37 403 bio->bi_iter.bi_sector = first_sector;
8a4c1e42 404 bio_set_op_attrs(bio, dio->op, dio->op_flags);
1da177e4
LT
405 if (dio->is_async)
406 bio->bi_end_io = dio_bio_end_aio;
407 else
408 bio->bi_end_io = dio_bio_end_io;
409
45d06cf7
JA
410 bio->bi_write_hint = dio->iocb->ki_hint;
411
eb28be2b
AK
412 sdio->bio = bio;
413 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
414}
415
416/*
417 * In the AIO read case we speculatively dirty the pages before starting IO.
418 * During IO completion, any of these pages which happen to have been written
419 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
420 *
421 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 422 */
ba253fbf 423static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 424{
eb28be2b 425 struct bio *bio = sdio->bio;
5eb6c7a2 426 unsigned long flags;
1da177e4
LT
427
428 bio->bi_private = dio;
0cf41e5e
PB
429 /* don't account direct I/O as memory stall */
430 bio_clear_flag(bio, BIO_WORKINGSET);
5eb6c7a2
ZB
431
432 spin_lock_irqsave(&dio->bio_lock, flags);
433 dio->refcount++;
434 spin_unlock_irqrestore(&dio->bio_lock, flags);
435
8a4c1e42 436 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
1da177e4 437 bio_set_pages_dirty(bio);
5eb6c7a2 438
309dca30 439 dio->bio_disk = bio->bi_bdev->bd_disk;
c1c53460 440
15c4f638 441 if (sdio->submit_io) {
8a4c1e42 442 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
15c4f638 443 dio->bio_cookie = BLK_QC_T_NONE;
c1c53460 444 } else
4e49ea4a 445 dio->bio_cookie = submit_bio(bio);
1da177e4 446
eb28be2b
AK
447 sdio->bio = NULL;
448 sdio->boundary = 0;
449 sdio->logical_offset_in_bio = 0;
1da177e4
LT
450}
451
452/*
453 * Release any resources in case of a failure
454 */
ba253fbf 455static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 456{
7b2c99d1 457 while (sdio->head < sdio->tail)
09cbfeaf 458 put_page(dio->pages[sdio->head++]);
1da177e4
LT
459}
460
461/*
0273201e
ZB
462 * Wait for the next BIO to complete. Remove it and return it. NULL is
463 * returned once all BIOs have been completed. This must only be called once
464 * all bios have been issued so that dio->refcount can only decrease. This
3d742d4b 465 * requires that the caller hold a reference on the dio.
1da177e4
LT
466 */
467static struct bio *dio_await_one(struct dio *dio)
468{
469 unsigned long flags;
0273201e 470 struct bio *bio = NULL;
1da177e4
LT
471
472 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
473
474 /*
475 * Wait as long as the list is empty and there are bios in flight. bio
476 * completion drops the count, maybe adds to the list, and wakes while
477 * holding the bio_lock so we don't need set_current_state()'s barrier
478 * and can call it after testing our condition.
479 */
480 while (dio->refcount > 1 && dio->bio_list == NULL) {
481 __set_current_state(TASK_UNINTERRUPTIBLE);
482 dio->waiter = current;
483 spin_unlock_irqrestore(&dio->bio_lock, flags);
c43c83a2 484 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
0a1b8b87 485 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
e6249cdd 486 blk_io_schedule();
5eb6c7a2
ZB
487 /* wake up sets us TASK_RUNNING */
488 spin_lock_irqsave(&dio->bio_lock, flags);
489 dio->waiter = NULL;
1da177e4 490 }
0273201e
ZB
491 if (dio->bio_list) {
492 bio = dio->bio_list;
493 dio->bio_list = bio->bi_private;
494 }
1da177e4
LT
495 spin_unlock_irqrestore(&dio->bio_lock, flags);
496 return bio;
497}
498
499/*
500 * Process one completed BIO. No locks are held.
501 */
4e4cbee9 502static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
1da177e4 503{
4e4cbee9 504 blk_status_t err = bio->bi_status;
d7c8aa85 505 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
1da177e4 506
03a07c92
GR
507 if (err) {
508 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
509 dio->io_error = -EAGAIN;
510 else
511 dio->io_error = -EIO;
512 }
1da177e4 513
d7c8aa85 514 if (dio->is_async && should_dirty) {
7ddc971f 515 bio_check_pages_dirty(bio); /* transfers ownership */
1da177e4 516 } else {
d7c8aa85 517 bio_release_pages(bio, should_dirty);
1da177e4
LT
518 bio_put(bio);
519 }
9b81c842 520 return err;
1da177e4
LT
521}
522
523/*
0273201e
ZB
524 * Wait on and process all in-flight BIOs. This must only be called once
525 * all bios have been issued so that the refcount can only decrease.
526 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 527 * errors are propagated through dio->io_error and should be propagated via
0273201e 528 * dio_complete().
1da177e4 529 */
6d544bb4 530static void dio_await_completion(struct dio *dio)
1da177e4 531{
0273201e
ZB
532 struct bio *bio;
533 do {
534 bio = dio_await_one(dio);
535 if (bio)
536 dio_bio_complete(dio, bio);
537 } while (bio);
1da177e4
LT
538}
539
540/*
541 * A really large O_DIRECT read or write can generate a lot of BIOs. So
542 * to keep the memory consumption sane we periodically reap any completed BIOs
543 * during the BIO generation phase.
544 *
545 * This also helps to limit the peak amount of pinned userspace memory.
546 */
ba253fbf 547static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
548{
549 int ret = 0;
550
eb28be2b 551 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
552 while (dio->bio_list) {
553 unsigned long flags;
554 struct bio *bio;
555 int ret2;
556
557 spin_lock_irqsave(&dio->bio_lock, flags);
558 bio = dio->bio_list;
559 dio->bio_list = bio->bi_private;
560 spin_unlock_irqrestore(&dio->bio_lock, flags);
4e4cbee9 561 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
1da177e4
LT
562 if (ret == 0)
563 ret = ret2;
564 }
eb28be2b 565 sdio->reap_counter = 0;
1da177e4
LT
566 }
567 return ret;
568}
569
7b7a8665
CH
570/*
571 * Create workqueue for deferred direct IO completions. We allocate the
572 * workqueue when it's first needed. This avoids creating workqueue for
573 * filesystems that don't need it and also allows us to create the workqueue
574 * late enough so the we can include s_id in the name of the workqueue.
575 */
ec1b8260 576int sb_init_dio_done_wq(struct super_block *sb)
7b7a8665 577{
45150c43 578 struct workqueue_struct *old;
7b7a8665
CH
579 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
580 WQ_MEM_RECLAIM, 0,
581 sb->s_id);
582 if (!wq)
583 return -ENOMEM;
584 /*
585 * This has to be atomic as more DIOs can race to create the workqueue
586 */
45150c43 587 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 588 /* Someone created workqueue before us? Free ours... */
45150c43 589 if (old)
7b7a8665
CH
590 destroy_workqueue(wq);
591 return 0;
592}
593
594static int dio_set_defer_completion(struct dio *dio)
595{
596 struct super_block *sb = dio->inode->i_sb;
597
598 if (dio->defer_completion)
599 return 0;
600 dio->defer_completion = true;
601 if (!sb->s_dio_done_wq)
602 return sb_init_dio_done_wq(sb);
603 return 0;
604}
605
1da177e4
LT
606/*
607 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 608 * of available blocks at sdio->blocks_available. These are in units of the
93407472 609 * fs blocksize, i_blocksize(inode).
1da177e4
LT
610 *
611 * The fs is allowed to map lots of blocks at once. If it wants to do that,
612 * it uses the passed inode-relative block number as the file offset, as usual.
613 *
1d8fa7a2 614 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
615 * has remaining to do. The fs should not map more than this number of blocks.
616 *
617 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
618 * indicate how much contiguous disk space has been made available at
619 * bh->b_blocknr.
620 *
621 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
622 * This isn't very efficient...
623 *
624 * In the case of filesystem holes: the fs may return an arbitrarily-large
625 * hole by returning an appropriate value in b_size and by clearing
626 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 627 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 628 */
18772641
AK
629static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
630 struct buffer_head *map_bh)
1da177e4
LT
631{
632 int ret;
1da177e4 633 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 634 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 635 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 636 int create;
ab73857e 637 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
8b9433eb 638 loff_t i_size;
1da177e4
LT
639
640 /*
641 * If there was a memory error and we've overwritten all the
642 * mapped blocks then we can now return that memory error
643 */
644 ret = dio->page_errors;
645 if (ret == 0) {
eb28be2b
AK
646 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
647 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
648 fs_endblk = (sdio->final_block_in_request - 1) >>
649 sdio->blkfactor;
650 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 651
3c674e74 652 map_bh->b_state = 0;
ab73857e 653 map_bh->b_size = fs_count << i_blkbits;
3c674e74 654
5fe878ae 655 /*
9ecd10b7
EG
656 * For writes that could fill holes inside i_size on a
657 * DIO_SKIP_HOLES filesystem we forbid block creations: only
658 * overwrites are permitted. We will return early to the caller
659 * once we see an unmapped buffer head returned, and the caller
660 * will fall back to buffered I/O.
5fe878ae
CH
661 *
662 * Otherwise the decision is left to the get_blocks method,
663 * which may decide to handle it or also return an unmapped
664 * buffer head.
665 */
8a4c1e42 666 create = dio->op == REQ_OP_WRITE;
5fe878ae 667 if (dio->flags & DIO_SKIP_HOLES) {
8b9433eb
EF
668 i_size = i_size_read(dio->inode);
669 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
1da177e4 670 create = 0;
1da177e4 671 }
3c674e74 672
eb28be2b 673 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 674 map_bh, create);
18772641
AK
675
676 /* Store for completion */
677 dio->private = map_bh->b_private;
7b7a8665
CH
678
679 if (ret == 0 && buffer_defer_completion(map_bh))
680 ret = dio_set_defer_completion(dio);
1da177e4
LT
681 }
682 return ret;
683}
684
685/*
686 * There is no bio. Make one now.
687 */
ba253fbf
AK
688static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
689 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
690{
691 sector_t sector;
692 int ret, nr_pages;
693
eb28be2b 694 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
695 if (ret)
696 goto out;
eb28be2b 697 sector = start_sector << (sdio->blkbits - 9);
5f7136db 698 nr_pages = bio_max_segs(sdio->pages_in_io);
1da177e4 699 BUG_ON(nr_pages <= 0);
18772641 700 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 701 sdio->boundary = 0;
1da177e4
LT
702out:
703 return ret;
704}
705
706/*
707 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
708 * that was successful then update final_block_in_bio and take a ref against
709 * the just-added page.
710 *
711 * Return zero on success. Non-zero means the caller needs to start a new BIO.
712 */
ba253fbf 713static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
714{
715 int ret;
716
eb28be2b
AK
717 ret = bio_add_page(sdio->bio, sdio->cur_page,
718 sdio->cur_page_len, sdio->cur_page_offset);
719 if (ret == sdio->cur_page_len) {
1da177e4
LT
720 /*
721 * Decrement count only, if we are done with this page
722 */
eb28be2b
AK
723 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
724 sdio->pages_in_io--;
09cbfeaf 725 get_page(sdio->cur_page);
eb28be2b
AK
726 sdio->final_block_in_bio = sdio->cur_page_block +
727 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
728 ret = 0;
729 } else {
730 ret = 1;
731 }
732 return ret;
733}
734
735/*
736 * Put cur_page under IO. The section of cur_page which is described by
737 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
738 * starts on-disk at cur_page_block.
739 *
740 * We take a ref against the page here (on behalf of its presence in the bio).
741 *
742 * The caller of this function is responsible for removing cur_page from the
743 * dio, and for dropping the refcount which came from that presence.
744 */
ba253fbf
AK
745static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
746 struct buffer_head *map_bh)
1da177e4
LT
747{
748 int ret = 0;
749
eb28be2b
AK
750 if (sdio->bio) {
751 loff_t cur_offset = sdio->cur_page_fs_offset;
752 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 753 sdio->bio->bi_iter.bi_size;
c2c6ca41 754
1da177e4 755 /*
c2c6ca41
JB
756 * See whether this new request is contiguous with the old.
757 *
f0940cee
NK
758 * Btrfs cannot handle having logically non-contiguous requests
759 * submitted. For example if you have
c2c6ca41
JB
760 *
761 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 762 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
763 *
764 * We cannot submit those pages together as one BIO. So if our
765 * current logical offset in the file does not equal what would
766 * be the next logical offset in the bio, submit the bio we
767 * have.
1da177e4 768 */
eb28be2b 769 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 770 cur_offset != bio_next_offset)
eb28be2b 771 dio_bio_submit(dio, sdio);
1da177e4
LT
772 }
773
eb28be2b 774 if (sdio->bio == NULL) {
18772641 775 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
776 if (ret)
777 goto out;
778 }
779
eb28be2b
AK
780 if (dio_bio_add_page(sdio) != 0) {
781 dio_bio_submit(dio, sdio);
18772641 782 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 783 if (ret == 0) {
eb28be2b 784 ret = dio_bio_add_page(sdio);
1da177e4
LT
785 BUG_ON(ret != 0);
786 }
787 }
788out:
789 return ret;
790}
791
792/*
793 * An autonomous function to put a chunk of a page under deferred IO.
794 *
795 * The caller doesn't actually know (or care) whether this piece of page is in
796 * a BIO, or is under IO or whatever. We just take care of all possible
797 * situations here. The separation between the logic of do_direct_IO() and
798 * that of submit_page_section() is important for clarity. Please don't break.
799 *
800 * The chunk of page starts on-disk at blocknr.
801 *
802 * We perform deferred IO, by recording the last-submitted page inside our
803 * private part of the dio structure. If possible, we just expand the IO
804 * across that page here.
805 *
806 * If that doesn't work out then we put the old page into the bio and add this
807 * page to the dio instead.
808 */
ba253fbf 809static inline int
eb28be2b 810submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
811 unsigned offset, unsigned len, sector_t blocknr,
812 struct buffer_head *map_bh)
1da177e4
LT
813{
814 int ret = 0;
df41872b 815 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
1da177e4 816
8a4c1e42 817 if (dio->op == REQ_OP_WRITE) {
98c4d57d
AM
818 /*
819 * Read accounting is performed in submit_bio()
820 */
821 task_io_account_write(len);
822 }
823
1da177e4
LT
824 /*
825 * Can we just grow the current page's presence in the dio?
826 */
eb28be2b
AK
827 if (sdio->cur_page == page &&
828 sdio->cur_page_offset + sdio->cur_page_len == offset &&
829 sdio->cur_page_block +
830 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
831 sdio->cur_page_len += len;
1da177e4
LT
832 goto out;
833 }
834
835 /*
836 * If there's a deferred page already there then send it.
837 */
eb28be2b 838 if (sdio->cur_page) {
18772641 839 ret = dio_send_cur_page(dio, sdio, map_bh);
09cbfeaf 840 put_page(sdio->cur_page);
eb28be2b 841 sdio->cur_page = NULL;
1da177e4 842 if (ret)
b1058b98 843 return ret;
1da177e4
LT
844 }
845
09cbfeaf 846 get_page(page); /* It is in dio */
eb28be2b
AK
847 sdio->cur_page = page;
848 sdio->cur_page_offset = offset;
849 sdio->cur_page_len = len;
850 sdio->cur_page_block = blocknr;
851 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 852out:
b1058b98 853 /*
df41872b 854 * If boundary then we want to schedule the IO now to
b1058b98
JK
855 * avoid metadata seeks.
856 */
df41872b 857 if (boundary) {
b1058b98 858 ret = dio_send_cur_page(dio, sdio, map_bh);
899f0429
AG
859 if (sdio->bio)
860 dio_bio_submit(dio, sdio);
09cbfeaf 861 put_page(sdio->cur_page);
b1058b98
JK
862 sdio->cur_page = NULL;
863 }
1da177e4
LT
864 return ret;
865}
866
1da177e4
LT
867/*
868 * If we are not writing the entire block and get_block() allocated
869 * the block for us, we need to fill-in the unused portion of the
870 * block with zeros. This happens only if user-buffer, fileoffset or
871 * io length is not filesystem block-size multiple.
872 *
873 * `end' is zero if we're doing the start of the IO, 1 at the end of the
874 * IO.
875 */
ba253fbf
AK
876static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
877 int end, struct buffer_head *map_bh)
1da177e4
LT
878{
879 unsigned dio_blocks_per_fs_block;
880 unsigned this_chunk_blocks; /* In dio_blocks */
881 unsigned this_chunk_bytes;
882 struct page *page;
883
eb28be2b 884 sdio->start_zero_done = 1;
18772641 885 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
886 return;
887
eb28be2b
AK
888 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
889 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
890
891 if (!this_chunk_blocks)
892 return;
893
894 /*
895 * We need to zero out part of an fs block. It is either at the
896 * beginning or the end of the fs block.
897 */
898 if (end)
899 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
900
eb28be2b 901 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 902
557ed1fa 903 page = ZERO_PAGE(0);
eb28be2b 904 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 905 sdio->next_block_for_io, map_bh))
1da177e4
LT
906 return;
907
eb28be2b 908 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
909}
910
911/*
912 * Walk the user pages, and the file, mapping blocks to disk and generating
913 * a sequence of (page,offset,len,block) mappings. These mappings are injected
914 * into submit_page_section(), which takes care of the next stage of submission
915 *
916 * Direct IO against a blockdev is different from a file. Because we can
917 * happily perform page-sized but 512-byte aligned IOs. It is important that
918 * blockdev IO be able to have fine alignment and large sizes.
919 *
1d8fa7a2 920 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
921 * with the size of IO which is permitted at this offset and this i_blkbits.
922 *
923 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 924 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
925 * fine alignment but still allows this function to work in PAGE_SIZE units.
926 */
18772641
AK
927static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
928 struct buffer_head *map_bh)
1da177e4 929{
eb28be2b 930 const unsigned blkbits = sdio->blkbits;
dd545b52 931 const unsigned i_blkbits = blkbits + sdio->blkfactor;
1da177e4
LT
932 int ret = 0;
933
eb28be2b 934 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
935 struct page *page;
936 size_t from, to;
6fcc5420
BH
937
938 page = dio_get_page(dio, sdio);
1da177e4
LT
939 if (IS_ERR(page)) {
940 ret = PTR_ERR(page);
941 goto out;
942 }
6fcc5420
BH
943 from = sdio->head ? 0 : sdio->from;
944 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
945 sdio->head++;
1da177e4 946
7b2c99d1 947 while (from < to) {
1da177e4
LT
948 unsigned this_chunk_bytes; /* # of bytes mapped */
949 unsigned this_chunk_blocks; /* # of blocks */
950 unsigned u;
951
eb28be2b 952 if (sdio->blocks_available == 0) {
1da177e4
LT
953 /*
954 * Need to go and map some more disk
955 */
956 unsigned long blkmask;
957 unsigned long dio_remainder;
958
18772641 959 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4 960 if (ret) {
09cbfeaf 961 put_page(page);
1da177e4
LT
962 goto out;
963 }
964 if (!buffer_mapped(map_bh))
965 goto do_holes;
966
eb28be2b 967 sdio->blocks_available =
f734c89c 968 map_bh->b_size >> blkbits;
eb28be2b
AK
969 sdio->next_block_for_io =
970 map_bh->b_blocknr << sdio->blkfactor;
f734c89c
JK
971 if (buffer_new(map_bh)) {
972 clean_bdev_aliases(
973 map_bh->b_bdev,
974 map_bh->b_blocknr,
dd545b52 975 map_bh->b_size >> i_blkbits);
f734c89c 976 }
1da177e4 977
eb28be2b 978 if (!sdio->blkfactor)
1da177e4
LT
979 goto do_holes;
980
eb28be2b
AK
981 blkmask = (1 << sdio->blkfactor) - 1;
982 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
983
984 /*
985 * If we are at the start of IO and that IO
986 * starts partway into a fs-block,
987 * dio_remainder will be non-zero. If the IO
988 * is a read then we can simply advance the IO
989 * cursor to the first block which is to be
990 * read. But if the IO is a write and the
991 * block was newly allocated we cannot do that;
992 * the start of the fs block must be zeroed out
993 * on-disk
994 */
995 if (!buffer_new(map_bh))
eb28be2b
AK
996 sdio->next_block_for_io += dio_remainder;
997 sdio->blocks_available -= dio_remainder;
1da177e4
LT
998 }
999do_holes:
1000 /* Handle holes */
1001 if (!buffer_mapped(map_bh)) {
35dc8161 1002 loff_t i_size_aligned;
1da177e4
LT
1003
1004 /* AKPM: eargh, -ENOTBLK is a hack */
8a4c1e42 1005 if (dio->op == REQ_OP_WRITE) {
09cbfeaf 1006 put_page(page);
1da177e4
LT
1007 return -ENOTBLK;
1008 }
1009
35dc8161
JM
1010 /*
1011 * Be sure to account for a partial block as the
1012 * last block in the file
1013 */
1014 i_size_aligned = ALIGN(i_size_read(dio->inode),
1015 1 << blkbits);
eb28be2b 1016 if (sdio->block_in_file >=
35dc8161 1017 i_size_aligned >> blkbits) {
1da177e4 1018 /* We hit eof */
09cbfeaf 1019 put_page(page);
1da177e4
LT
1020 goto out;
1021 }
7b2c99d1 1022 zero_user(page, from, 1 << blkbits);
eb28be2b 1023 sdio->block_in_file++;
7b2c99d1 1024 from += 1 << blkbits;
3320c60b 1025 dio->result += 1 << blkbits;
1da177e4
LT
1026 goto next_block;
1027 }
1028
1029 /*
1030 * If we're performing IO which has an alignment which
1031 * is finer than the underlying fs, go check to see if
1032 * we must zero out the start of this block.
1033 */
eb28be2b 1034 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1035 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1036
1037 /*
1038 * Work out, in this_chunk_blocks, how much disk we
1039 * can add to this page
1040 */
eb28be2b 1041 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1042 u = (to - from) >> blkbits;
1da177e4
LT
1043 if (this_chunk_blocks > u)
1044 this_chunk_blocks = u;
eb28be2b 1045 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1046 if (this_chunk_blocks > u)
1047 this_chunk_blocks = u;
1048 this_chunk_bytes = this_chunk_blocks << blkbits;
1049 BUG_ON(this_chunk_bytes == 0);
1050
092c8d46
JK
1051 if (this_chunk_blocks == sdio->blocks_available)
1052 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1053 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1054 from,
eb28be2b 1055 this_chunk_bytes,
18772641
AK
1056 sdio->next_block_for_io,
1057 map_bh);
1da177e4 1058 if (ret) {
09cbfeaf 1059 put_page(page);
1da177e4
LT
1060 goto out;
1061 }
eb28be2b 1062 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1063
eb28be2b 1064 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1065 from += this_chunk_bytes;
1066 dio->result += this_chunk_bytes;
eb28be2b 1067 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1068next_block:
eb28be2b
AK
1069 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1070 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1071 break;
1072 }
1073
1074 /* Drop the ref which was taken in get_user_pages() */
09cbfeaf 1075 put_page(page);
1da177e4
LT
1076 }
1077out:
1078 return ret;
1079}
1080
847cc637 1081static inline int drop_refcount(struct dio *dio)
1da177e4 1082{
847cc637 1083 int ret2;
5eb6c7a2 1084 unsigned long flags;
1da177e4 1085
8459d86a
ZB
1086 /*
1087 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1088 * operation. AIO can if it was a broken operation described above or
1089 * in fact if all the bios race to complete before we get here. In
1090 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1091 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1092 *
1093 * This is managed by the bio_lock instead of being an atomic_t so that
1094 * completion paths can drop their ref and use the remaining count to
1095 * decide to wake the submission path atomically.
8459d86a 1096 */
5eb6c7a2
ZB
1097 spin_lock_irqsave(&dio->bio_lock, flags);
1098 ret2 = --dio->refcount;
1099 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1100 return ret2;
1da177e4
LT
1101}
1102
eafdc7d1
CH
1103/*
1104 * This is a library function for use by filesystem drivers.
1105 *
1106 * The locking rules are governed by the flags parameter:
1107 * - if the flags value contains DIO_LOCKING we use a fancy locking
1108 * scheme for dumb filesystems.
1109 * For writes this function is called under i_mutex and returns with
1110 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1111 * taken and dropped again before returning.
eafdc7d1
CH
1112 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1113 * internal locking but rather rely on the filesystem to synchronize
1114 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1115 *
1116 * To help with locking against truncate we incremented the i_dio_count
1117 * counter before starting direct I/O, and decrement it once we are done.
1118 * Truncate can wait for it to reach zero to provide exclusion. It is
1119 * expected that filesystem provide exclusion between new direct I/O
1120 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1121 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1122 *
1123 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1124 * is always inlined. Otherwise gcc is unable to split the structure into
1125 * individual fields and will generate much worse code. This is important
1126 * for the whole file.
eafdc7d1 1127 */
65dd2aa9 1128static inline ssize_t
17f8c842
OS
1129do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1130 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1131 get_block_t get_block, dio_iodone_t end_io,
17f8c842 1132 dio_submit_t submit_io, int flags)
1da177e4 1133{
6aa7de05 1134 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
ab73857e 1135 unsigned blkbits = i_blkbits;
1da177e4
LT
1136 unsigned blocksize_mask = (1 << blkbits) - 1;
1137 ssize_t retval = -EINVAL;
1c0ff0f1 1138 const size_t count = iov_iter_count(iter);
c8b8e32d 1139 loff_t offset = iocb->ki_pos;
1c0ff0f1 1140 const loff_t end = offset + count;
1da177e4 1141 struct dio *dio;
eb28be2b 1142 struct dio_submit sdio = { 0, };
847cc637 1143 struct buffer_head map_bh = { 0, };
647d1e4c 1144 struct blk_plug plug;
886a3911 1145 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4 1146
65dd2aa9
AK
1147 /*
1148 * Avoid references to bdev if not absolutely needed to give
1149 * the early prefetch in the caller enough time.
1150 */
1da177e4 1151
f9b5570d 1152 /* watch out for a 0 len io from a tricksy fs */
1c0ff0f1 1153 if (iov_iter_rw(iter) == READ && !count)
f9b5570d
CH
1154 return 0;
1155
6e8267f5 1156 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4 1157 if (!dio)
46d71602 1158 return -ENOMEM;
23aee091
JM
1159 /*
1160 * Believe it or not, zeroing out the page array caused a .5%
1161 * performance regression in a database benchmark. So, we take
1162 * care to only zero out what's needed.
1163 */
1164 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1165
5fe878ae 1166 dio->flags = flags;
0a9164cb
GKB
1167 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1168 /* will be released by direct_io_worker */
1169 inode_lock(inode);
1da177e4
LT
1170 }
1171
74cedf9b
JK
1172 /* Once we sampled i_size check for reads beyond EOF */
1173 dio->i_size = i_size_read(inode);
1174 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
2d4594ac 1175 retval = 0;
46d71602 1176 goto fail_dio;
74cedf9b
JK
1177 }
1178
41b21af3
GKB
1179 if (align & blocksize_mask) {
1180 if (bdev)
1181 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1182 blocksize_mask = (1 << blkbits) - 1;
1183 if (align & blocksize_mask)
1184 goto fail_dio;
1185 }
1186
0a9164cb
GKB
1187 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1188 struct address_space *mapping = iocb->ki_filp->f_mapping;
1189
1190 retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1191 if (retval)
1192 goto fail_dio;
74cedf9b
JK
1193 }
1194
1da177e4 1195 /*
60392573
CH
1196 * For file extending writes updating i_size before data writeouts
1197 * complete can expose uninitialized blocks in dumb filesystems.
1198 * In that case we need to wait for I/O completion even if asked
1199 * for an asynchronous write.
1da177e4 1200 */
60392573
CH
1201 if (is_sync_kiocb(iocb))
1202 dio->is_async = false;
c8f4c36f 1203 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
60392573
CH
1204 dio->is_async = false;
1205 else
1206 dio->is_async = true;
1207
847cc637 1208 dio->inode = inode;
8a4c1e42
MC
1209 if (iov_iter_rw(iter) == WRITE) {
1210 dio->op = REQ_OP_WRITE;
70fd7614 1211 dio->op_flags = REQ_SYNC | REQ_IDLE;
03a07c92
GR
1212 if (iocb->ki_flags & IOCB_NOWAIT)
1213 dio->op_flags |= REQ_NOWAIT;
8a4c1e42
MC
1214 } else {
1215 dio->op = REQ_OP_READ;
1216 }
d1e36282
JA
1217 if (iocb->ki_flags & IOCB_HIPRI)
1218 dio->op_flags |= REQ_HIPRI;
02afc27f
CH
1219
1220 /*
1221 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1222 * so that we can call ->fsync.
1223 */
332391a9
LC
1224 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1225 retval = 0;
d9c10e5b 1226 if (iocb->ki_flags & IOCB_DSYNC)
332391a9
LC
1227 retval = dio_set_defer_completion(dio);
1228 else if (!dio->inode->i_sb->s_dio_done_wq) {
1229 /*
1230 * In case of AIO write racing with buffered read we
1231 * need to defer completion. We can't decide this now,
1232 * however the workqueue needs to be initialized here.
1233 */
1234 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1235 }
46d71602
GKB
1236 if (retval)
1237 goto fail_dio;
02afc27f
CH
1238 }
1239
1240 /*
1241 * Will be decremented at I/O completion time.
1242 */
ce3077ee 1243 inode_dio_begin(inode);
02afc27f
CH
1244
1245 retval = 0;
847cc637 1246 sdio.blkbits = blkbits;
ab73857e 1247 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1248 sdio.block_in_file = offset >> blkbits;
1249
1250 sdio.get_block = get_block;
1251 dio->end_io = end_io;
1252 sdio.submit_io = submit_io;
1253 sdio.final_block_in_bio = -1;
1254 sdio.next_block_for_io = -1;
1255
1256 dio->iocb = iocb;
847cc637
AK
1257
1258 spin_lock_init(&dio->bio_lock);
1259 dio->refcount = 1;
1260
00e23707 1261 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
7b2c99d1 1262 sdio.iter = iter;
1c0ff0f1 1263 sdio.final_block_in_request = end >> blkbits;
7b2c99d1 1264
847cc637
AK
1265 /*
1266 * In case of non-aligned buffers, we may need 2 more
1267 * pages since we need to zero out first and last block.
1268 */
1269 if (unlikely(sdio.blkfactor))
1270 sdio.pages_in_io = 2;
1271
f67da30c 1272 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1273
647d1e4c
FW
1274 blk_start_plug(&plug);
1275
7b2c99d1
AV
1276 retval = do_direct_IO(dio, &sdio, &map_bh);
1277 if (retval)
1278 dio_cleanup(dio, &sdio);
847cc637
AK
1279
1280 if (retval == -ENOTBLK) {
1281 /*
1282 * The remaining part of the request will be
3d742d4b 1283 * handled by buffered I/O when we return
847cc637
AK
1284 */
1285 retval = 0;
1286 }
1287 /*
1288 * There may be some unwritten disk at the end of a part-written
1289 * fs-block-sized block. Go zero that now.
1290 */
1291 dio_zero_block(dio, &sdio, 1, &map_bh);
1292
1293 if (sdio.cur_page) {
1294 ssize_t ret2;
1295
1296 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1297 if (retval == 0)
1298 retval = ret2;
09cbfeaf 1299 put_page(sdio.cur_page);
847cc637
AK
1300 sdio.cur_page = NULL;
1301 }
1302 if (sdio.bio)
1303 dio_bio_submit(dio, &sdio);
1304
647d1e4c
FW
1305 blk_finish_plug(&plug);
1306
847cc637
AK
1307 /*
1308 * It is possible that, we return short IO due to end of file.
1309 * In that case, we need to release all the pages we got hold on.
1310 */
1311 dio_cleanup(dio, &sdio);
1312
1313 /*
1314 * All block lookups have been performed. For READ requests
1315 * we can let i_mutex go now that its achieved its purpose
1316 * of protecting us from looking up uninitialized blocks.
1317 */
17f8c842 1318 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
5955102c 1319 inode_unlock(dio->inode);
847cc637
AK
1320
1321 /*
1322 * The only time we want to leave bios in flight is when a successful
1323 * partial aio read or full aio write have been setup. In that case
1324 * bio completion will call aio_complete. The only time it's safe to
1325 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1326 * This had *better* be the only place that raises -EIOCBQUEUED.
1327 */
1328 BUG_ON(retval == -EIOCBQUEUED);
1329 if (dio->is_async && retval == 0 && dio->result &&
17f8c842 1330 (iov_iter_rw(iter) == READ || dio->result == count))
847cc637 1331 retval = -EIOCBQUEUED;
af436472 1332 else
847cc637
AK
1333 dio_await_completion(dio);
1334
1335 if (drop_refcount(dio) == 0) {
ffe51f01 1336 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
847cc637
AK
1337 } else
1338 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1339
46d71602
GKB
1340 return retval;
1341
1342fail_dio:
1343 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1344 inode_unlock(inode);
1345
1346 kmem_cache_free(dio_cache, dio);
7bb46a67
NP
1347 return retval;
1348}
65dd2aa9 1349
17f8c842
OS
1350ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1351 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1352 get_block_t get_block,
17f8c842
OS
1353 dio_iodone_t end_io, dio_submit_t submit_io,
1354 int flags)
65dd2aa9
AK
1355{
1356 /*
1357 * The block device state is needed in the end to finally
1358 * submit everything. Since it's likely to be cache cold
1359 * prefetch it here as first thing to hide some of the
1360 * latency.
1361 *
1362 * Attempt to prefetch the pieces we likely need later.
1363 */
1364 prefetch(&bdev->bd_disk->part_tbl);
e556f6ba
CH
1365 prefetch(bdev->bd_disk->queue);
1366 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES);
65dd2aa9 1367
c8b8e32d 1368 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
17f8c842 1369 end_io, submit_io, flags);
65dd2aa9
AK
1370}
1371
1da177e4 1372EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1373
1374static __init int dio_init(void)
1375{
1376 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1377 return 0;
1378}
1379module_init(dio_init)