]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/ecryptfs/crypto.c
eCryptfs: Remove unnecessary grow_file() function
[mirror_ubuntu-kernels.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
5a0e3ad6 36#include <linux/slab.h>
29335c6a 37#include <asm/unaligned.h>
237fead6
MH
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
237fead6 99 struct scatterlist sg;
565d9724
MH
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
237fead6 105
565d9724 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 107 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
237fead6 113 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
114 "allocate crypto context; rc = [%d]\n",
115 rc);
237fead6
MH
116 goto out;
117 }
565d9724 118 crypt_stat->hash_tfm = desc.tfm;
237fead6 119 }
8a29f2b0
MH
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 124 __func__, rc);
8a29f2b0
MH
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 131 __func__, rc);
8a29f2b0
MH
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 138 __func__, rc);
8a29f2b0
MH
139 goto out;
140 }
237fead6 141out:
8a29f2b0 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
143 return rc;
144}
145
cd9d67df
MH
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
8bba066f
MH
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 157 if (!(*algified_name)) {
8bba066f
MH
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
237fead6
MH
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 172 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
a34f60f7
MH
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
237fead6
MH
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
233}
234
235/**
fcd12835 236 * ecryptfs_destroy_crypt_stat
237fead6
MH
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
fcd12835 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 242{
f4aad16a
MH
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
237fead6 245 if (crypt_stat->tfm)
8bba066f 246 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
237fead6
MH
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
fcd12835 257void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
f4aad16a
MH
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
269 mount_crypt_stat->num_global_auth_toks--;
270 if (auth_tok->global_auth_tok_key
271 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272 key_put(auth_tok->global_auth_tok_key);
273 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 }
275 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
276 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
277}
278
279/**
280 * virt_to_scatterlist
281 * @addr: Virtual address
282 * @size: Size of data; should be an even multiple of the block size
283 * @sg: Pointer to scatterlist array; set to NULL to obtain only
284 * the number of scatterlist structs required in array
285 * @sg_size: Max array size
286 *
287 * Fills in a scatterlist array with page references for a passed
288 * virtual address.
289 *
290 * Returns the number of scatterlist structs in array used
291 */
292int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293 int sg_size)
294{
295 int i = 0;
296 struct page *pg;
297 int offset;
298 int remainder_of_page;
299
68e3f5dd
HX
300 sg_init_table(sg, sg_size);
301
237fead6
MH
302 while (size > 0 && i < sg_size) {
303 pg = virt_to_page(addr);
304 offset = offset_in_page(addr);
642f1490
JA
305 if (sg)
306 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
307 remainder_of_page = PAGE_CACHE_SIZE - offset;
308 if (size >= remainder_of_page) {
309 if (sg)
310 sg[i].length = remainder_of_page;
311 addr += remainder_of_page;
312 size -= remainder_of_page;
313 } else {
314 if (sg)
315 sg[i].length = size;
316 addr += size;
317 size = 0;
318 }
319 i++;
320 }
321 if (size > 0)
322 return -ENOMEM;
323 return i;
324}
325
326/**
327 * encrypt_scatterlist
328 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329 * @dest_sg: Destination of encrypted data
330 * @src_sg: Data to be encrypted
331 * @size: Length of data to be encrypted
332 * @iv: iv to use during encryption
333 *
334 * Returns the number of bytes encrypted; negative value on error
335 */
336static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337 struct scatterlist *dest_sg,
338 struct scatterlist *src_sg, int size,
339 unsigned char *iv)
340{
8bba066f
MH
341 struct blkcipher_desc desc = {
342 .tfm = crypt_stat->tfm,
343 .info = iv,
344 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
345 };
237fead6
MH
346 int rc = 0;
347
348 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 349 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 350 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 351 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
352 crypt_stat->key_size);
353 ecryptfs_dump_hex(crypt_stat->key,
354 crypt_stat->key_size);
355 }
356 /* Consider doing this once, when the file is opened */
357 mutex_lock(&crypt_stat->cs_tfm_mutex);
8e3a6f16
TH
358 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
359 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
360 crypt_stat->key_size);
361 crypt_stat->flags |= ECRYPTFS_KEY_SET;
362 }
237fead6
MH
363 if (rc) {
364 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
365 rc);
366 mutex_unlock(&crypt_stat->cs_tfm_mutex);
367 rc = -EINVAL;
368 goto out;
369 }
370 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 371 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
372 mutex_unlock(&crypt_stat->cs_tfm_mutex);
373out:
374 return rc;
375}
376
0216f7f7
MH
377/**
378 * ecryptfs_lower_offset_for_extent
379 *
380 * Convert an eCryptfs page index into a lower byte offset
381 */
7896b631
AB
382static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
383 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 384{
157f1071
TH
385 (*offset) = ecryptfs_lower_header_size(crypt_stat)
386 + (crypt_stat->extent_size * extent_num);
0216f7f7
MH
387}
388
389/**
390 * ecryptfs_encrypt_extent
391 * @enc_extent_page: Allocated page into which to encrypt the data in
392 * @page
393 * @crypt_stat: crypt_stat containing cryptographic context for the
394 * encryption operation
395 * @page: Page containing plaintext data extent to encrypt
396 * @extent_offset: Page extent offset for use in generating IV
397 *
398 * Encrypts one extent of data.
399 *
400 * Return zero on success; non-zero otherwise
401 */
402static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
403 struct ecryptfs_crypt_stat *crypt_stat,
404 struct page *page,
405 unsigned long extent_offset)
406{
d6a13c17 407 loff_t extent_base;
0216f7f7
MH
408 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
409 int rc;
410
d6a13c17 411 extent_base = (((loff_t)page->index)
0216f7f7
MH
412 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
413 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
414 (extent_base + extent_offset));
415 if (rc) {
888d57bb
JP
416 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
417 "extent [0x%.16llx]; rc = [%d]\n",
418 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
419 goto out;
420 }
421 if (unlikely(ecryptfs_verbosity > 0)) {
422 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423 "with iv:\n");
424 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
425 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426 "encryption:\n");
427 ecryptfs_dump_hex((char *)
428 (page_address(page)
429 + (extent_offset * crypt_stat->extent_size)),
430 8);
431 }
432 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433 page, (extent_offset
434 * crypt_stat->extent_size),
435 crypt_stat->extent_size, extent_iv);
436 if (rc < 0) {
437 printk(KERN_ERR "%s: Error attempting to encrypt page with "
438 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 439 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
440 rc);
441 goto out;
442 }
443 rc = 0;
444 if (unlikely(ecryptfs_verbosity > 0)) {
888d57bb
JP
445 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
446 "rc = [%d]\n",
447 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
448 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449 "encryption:\n");
450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
451 }
452out:
453 return rc;
454}
455
237fead6
MH
456/**
457 * ecryptfs_encrypt_page
0216f7f7
MH
458 * @page: Page mapped from the eCryptfs inode for the file; contains
459 * decrypted content that needs to be encrypted (to a temporary
460 * page; not in place) and written out to the lower file
237fead6
MH
461 *
462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463 * that eCryptfs pages may straddle the lower pages -- for instance,
464 * if the file was created on a machine with an 8K page size
465 * (resulting in an 8K header), and then the file is copied onto a
466 * host with a 32K page size, then when reading page 0 of the eCryptfs
467 * file, 24K of page 0 of the lower file will be read and decrypted,
468 * and then 8K of page 1 of the lower file will be read and decrypted.
469 *
237fead6
MH
470 * Returns zero on success; negative on error
471 */
0216f7f7 472int ecryptfs_encrypt_page(struct page *page)
237fead6 473{
0216f7f7 474 struct inode *ecryptfs_inode;
237fead6 475 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
476 char *enc_extent_virt;
477 struct page *enc_extent_page = NULL;
0216f7f7 478 loff_t extent_offset;
237fead6 479 int rc = 0;
0216f7f7
MH
480
481 ecryptfs_inode = page->mapping->host;
482 crypt_stat =
483 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 484 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
485 enc_extent_page = alloc_page(GFP_USER);
486 if (!enc_extent_page) {
0216f7f7
MH
487 rc = -ENOMEM;
488 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
489 "encrypted extent\n");
490 goto out;
491 }
7fcba054 492 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
493 for (extent_offset = 0;
494 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
495 extent_offset++) {
496 loff_t offset;
497
498 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
499 extent_offset);
237fead6 500 if (rc) {
0216f7f7 501 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 502 "rc = [%d]\n", __func__, rc);
237fead6
MH
503 goto out;
504 }
0216f7f7 505 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
506 &offset, ((((loff_t)page->index)
507 * (PAGE_CACHE_SIZE
508 / crypt_stat->extent_size))
0216f7f7
MH
509 + extent_offset), crypt_stat);
510 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
511 offset, crypt_stat->extent_size);
96a7b9c2 512 if (rc < 0) {
0216f7f7
MH
513 ecryptfs_printk(KERN_ERR, "Error attempting "
514 "to write lower page; rc = [%d]"
515 "\n", rc);
516 goto out;
237fead6 517 }
237fead6 518 }
96a7b9c2 519 rc = 0;
0216f7f7 520out:
7fcba054
ES
521 if (enc_extent_page) {
522 kunmap(enc_extent_page);
523 __free_page(enc_extent_page);
524 }
0216f7f7
MH
525 return rc;
526}
527
528static int ecryptfs_decrypt_extent(struct page *page,
529 struct ecryptfs_crypt_stat *crypt_stat,
530 struct page *enc_extent_page,
531 unsigned long extent_offset)
532{
d6a13c17 533 loff_t extent_base;
0216f7f7
MH
534 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
535 int rc;
536
d6a13c17 537 extent_base = (((loff_t)page->index)
0216f7f7
MH
538 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
539 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
540 (extent_base + extent_offset));
237fead6 541 if (rc) {
888d57bb
JP
542 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
543 "extent [0x%.16llx]; rc = [%d]\n",
544 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
545 goto out;
546 }
547 if (unlikely(ecryptfs_verbosity > 0)) {
548 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
549 "with iv:\n");
550 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
551 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
552 "decryption:\n");
553 ecryptfs_dump_hex((char *)
554 (page_address(enc_extent_page)
555 + (extent_offset * crypt_stat->extent_size)),
556 8);
557 }
558 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
559 (extent_offset
560 * crypt_stat->extent_size),
561 enc_extent_page, 0,
562 crypt_stat->extent_size, extent_iv);
563 if (rc < 0) {
564 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
565 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 566 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
567 rc);
568 goto out;
569 }
570 rc = 0;
571 if (unlikely(ecryptfs_verbosity > 0)) {
888d57bb
JP
572 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
573 "rc = [%d]\n",
574 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
575 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
576 "decryption:\n");
577 ecryptfs_dump_hex((char *)(page_address(page)
578 + (extent_offset
579 * crypt_stat->extent_size)), 8);
237fead6
MH
580 }
581out:
582 return rc;
583}
584
585/**
586 * ecryptfs_decrypt_page
0216f7f7
MH
587 * @page: Page mapped from the eCryptfs inode for the file; data read
588 * and decrypted from the lower file will be written into this
589 * page
237fead6
MH
590 *
591 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592 * that eCryptfs pages may straddle the lower pages -- for instance,
593 * if the file was created on a machine with an 8K page size
594 * (resulting in an 8K header), and then the file is copied onto a
595 * host with a 32K page size, then when reading page 0 of the eCryptfs
596 * file, 24K of page 0 of the lower file will be read and decrypted,
597 * and then 8K of page 1 of the lower file will be read and decrypted.
598 *
599 * Returns zero on success; negative on error
600 */
0216f7f7 601int ecryptfs_decrypt_page(struct page *page)
237fead6 602{
0216f7f7 603 struct inode *ecryptfs_inode;
237fead6 604 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
605 char *enc_extent_virt;
606 struct page *enc_extent_page = NULL;
0216f7f7 607 unsigned long extent_offset;
237fead6 608 int rc = 0;
237fead6 609
0216f7f7
MH
610 ecryptfs_inode = page->mapping->host;
611 crypt_stat =
612 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 613 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
614 enc_extent_page = alloc_page(GFP_USER);
615 if (!enc_extent_page) {
237fead6 616 rc = -ENOMEM;
0216f7f7
MH
617 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
618 "encrypted extent\n");
16a72c45 619 goto out;
237fead6 620 }
7fcba054 621 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
622 for (extent_offset = 0;
623 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
624 extent_offset++) {
625 loff_t offset;
626
627 ecryptfs_lower_offset_for_extent(
628 &offset, ((page->index * (PAGE_CACHE_SIZE
629 / crypt_stat->extent_size))
630 + extent_offset), crypt_stat);
631 rc = ecryptfs_read_lower(enc_extent_virt, offset,
632 crypt_stat->extent_size,
633 ecryptfs_inode);
96a7b9c2 634 if (rc < 0) {
0216f7f7
MH
635 ecryptfs_printk(KERN_ERR, "Error attempting "
636 "to read lower page; rc = [%d]"
637 "\n", rc);
16a72c45 638 goto out;
237fead6 639 }
0216f7f7
MH
640 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
641 extent_offset);
642 if (rc) {
643 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 644 "rc = [%d]\n", __func__, rc);
16a72c45 645 goto out;
237fead6 646 }
237fead6
MH
647 }
648out:
7fcba054
ES
649 if (enc_extent_page) {
650 kunmap(enc_extent_page);
651 __free_page(enc_extent_page);
652 }
237fead6
MH
653 return rc;
654}
655
656/**
657 * decrypt_scatterlist
22e78faf
MH
658 * @crypt_stat: Cryptographic context
659 * @dest_sg: The destination scatterlist to decrypt into
660 * @src_sg: The source scatterlist to decrypt from
661 * @size: The number of bytes to decrypt
662 * @iv: The initialization vector to use for the decryption
237fead6
MH
663 *
664 * Returns the number of bytes decrypted; negative value on error
665 */
666static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
667 struct scatterlist *dest_sg,
668 struct scatterlist *src_sg, int size,
669 unsigned char *iv)
670{
8bba066f
MH
671 struct blkcipher_desc desc = {
672 .tfm = crypt_stat->tfm,
673 .info = iv,
674 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
675 };
237fead6
MH
676 int rc = 0;
677
678 /* Consider doing this once, when the file is opened */
679 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
680 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
681 crypt_stat->key_size);
237fead6
MH
682 if (rc) {
683 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
684 rc);
685 mutex_unlock(&crypt_stat->cs_tfm_mutex);
686 rc = -EINVAL;
687 goto out;
688 }
689 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 690 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
691 mutex_unlock(&crypt_stat->cs_tfm_mutex);
692 if (rc) {
693 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
694 rc);
695 goto out;
696 }
697 rc = size;
698out:
699 return rc;
700}
701
702/**
703 * ecryptfs_encrypt_page_offset
22e78faf
MH
704 * @crypt_stat: The cryptographic context
705 * @dst_page: The page to encrypt into
706 * @dst_offset: The offset in the page to encrypt into
707 * @src_page: The page to encrypt from
708 * @src_offset: The offset in the page to encrypt from
709 * @size: The number of bytes to encrypt
710 * @iv: The initialization vector to use for the encryption
237fead6
MH
711 *
712 * Returns the number of bytes encrypted
713 */
714static int
715ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
716 struct page *dst_page, int dst_offset,
717 struct page *src_page, int src_offset, int size,
718 unsigned char *iv)
719{
720 struct scatterlist src_sg, dst_sg;
721
60c74f81
JA
722 sg_init_table(&src_sg, 1);
723 sg_init_table(&dst_sg, 1);
724
642f1490
JA
725 sg_set_page(&src_sg, src_page, size, src_offset);
726 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
727 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
728}
729
730/**
731 * ecryptfs_decrypt_page_offset
22e78faf
MH
732 * @crypt_stat: The cryptographic context
733 * @dst_page: The page to decrypt into
734 * @dst_offset: The offset in the page to decrypt into
735 * @src_page: The page to decrypt from
736 * @src_offset: The offset in the page to decrypt from
737 * @size: The number of bytes to decrypt
738 * @iv: The initialization vector to use for the decryption
237fead6
MH
739 *
740 * Returns the number of bytes decrypted
741 */
742static int
743ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
744 struct page *dst_page, int dst_offset,
745 struct page *src_page, int src_offset, int size,
746 unsigned char *iv)
747{
748 struct scatterlist src_sg, dst_sg;
749
60c74f81 750 sg_init_table(&src_sg, 1);
642f1490
JA
751 sg_set_page(&src_sg, src_page, size, src_offset);
752
60c74f81 753 sg_init_table(&dst_sg, 1);
642f1490 754 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 755
237fead6
MH
756 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
757}
758
759#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
760
761/**
762 * ecryptfs_init_crypt_ctx
421f91d2 763 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
764 *
765 * Initialize the crypto context.
766 *
767 * TODO: Performance: Keep a cache of initialized cipher contexts;
768 * only init if needed
769 */
770int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
771{
8bba066f 772 char *full_alg_name;
237fead6
MH
773 int rc = -EINVAL;
774
775 if (!crypt_stat->cipher) {
776 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
777 goto out;
778 }
779 ecryptfs_printk(KERN_DEBUG,
780 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 781 "key_size_bits = [%zd]\n",
237fead6
MH
782 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
783 crypt_stat->key_size << 3);
784 if (crypt_stat->tfm) {
785 rc = 0;
786 goto out;
787 }
788 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
789 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
790 crypt_stat->cipher, "cbc");
791 if (rc)
c8161f64 792 goto out_unlock;
8bba066f
MH
793 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
794 CRYPTO_ALG_ASYNC);
795 kfree(full_alg_name);
de88777e
AM
796 if (IS_ERR(crypt_stat->tfm)) {
797 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 798 crypt_stat->tfm = NULL;
237fead6
MH
799 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
800 "Error initializing cipher [%s]\n",
801 crypt_stat->cipher);
c8161f64 802 goto out_unlock;
237fead6 803 }
f1ddcaf3 804 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 805 rc = 0;
c8161f64
ES
806out_unlock:
807 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
808out:
809 return rc;
810}
811
812static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
813{
814 int extent_size_tmp;
815
816 crypt_stat->extent_mask = 0xFFFFFFFF;
817 crypt_stat->extent_shift = 0;
818 if (crypt_stat->extent_size == 0)
819 return;
820 extent_size_tmp = crypt_stat->extent_size;
821 while ((extent_size_tmp & 0x01) == 0) {
822 extent_size_tmp >>= 1;
823 crypt_stat->extent_mask <<= 1;
824 crypt_stat->extent_shift++;
825 }
826}
827
828void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
829{
830 /* Default values; may be overwritten as we are parsing the
831 * packets. */
832 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
833 set_extent_mask_and_shift(crypt_stat);
834 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 835 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 836 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79
MH
837 else {
838 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 839 crypt_stat->metadata_size =
cc11beff 840 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 841 else
fa3ef1cb 842 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
45eaab79 843 }
237fead6
MH
844}
845
846/**
847 * ecryptfs_compute_root_iv
848 * @crypt_stats
849 *
850 * On error, sets the root IV to all 0's.
851 */
852int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
853{
854 int rc = 0;
855 char dst[MD5_DIGEST_SIZE];
856
857 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
858 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 859 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
860 rc = -EINVAL;
861 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
862 "cannot generate root IV\n");
863 goto out;
864 }
865 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
866 crypt_stat->key_size);
867 if (rc) {
868 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
869 "MD5 while generating root IV\n");
870 goto out;
871 }
872 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
873out:
874 if (rc) {
875 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 876 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
877 }
878 return rc;
879}
880
881static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
882{
883 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 884 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
885 ecryptfs_compute_root_iv(crypt_stat);
886 if (unlikely(ecryptfs_verbosity > 0)) {
887 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
888 ecryptfs_dump_hex(crypt_stat->key,
889 crypt_stat->key_size);
890 }
891}
892
17398957
MH
893/**
894 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
895 * @crypt_stat: The inode's cryptographic context
896 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
897 *
898 * This function propagates the mount-wide flags to individual inode
899 * flags.
900 */
901static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
902 struct ecryptfs_crypt_stat *crypt_stat,
903 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
904{
905 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
906 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
907 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
908 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
909 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
910 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
911 if (mount_crypt_stat->flags
912 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
913 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
914 else if (mount_crypt_stat->flags
915 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
916 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
917 }
17398957
MH
918}
919
f4aad16a
MH
920static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
921 struct ecryptfs_crypt_stat *crypt_stat,
922 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
923{
924 struct ecryptfs_global_auth_tok *global_auth_tok;
925 int rc = 0;
926
aa06117f 927 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 928 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 929
f4aad16a
MH
930 list_for_each_entry(global_auth_tok,
931 &mount_crypt_stat->global_auth_tok_list,
932 mount_crypt_stat_list) {
84814d64
TH
933 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
934 continue;
f4aad16a
MH
935 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
936 if (rc) {
937 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
938 goto out;
939 }
940 }
aa06117f 941
f4aad16a 942out:
aa06117f
RD
943 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
944 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
945 return rc;
946}
947
237fead6
MH
948/**
949 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
950 * @crypt_stat: The inode's cryptographic context
951 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
952 *
953 * Default values in the event that policy does not override them.
954 */
955static void ecryptfs_set_default_crypt_stat_vals(
956 struct ecryptfs_crypt_stat *crypt_stat,
957 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
958{
17398957
MH
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 mount_crypt_stat);
237fead6
MH
961 ecryptfs_set_default_sizes(crypt_stat);
962 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
963 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 964 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
965 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
966 crypt_stat->mount_crypt_stat = mount_crypt_stat;
967}
968
969/**
970 * ecryptfs_new_file_context
22e78faf 971 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
972 *
973 * If the crypto context for the file has not yet been established,
974 * this is where we do that. Establishing a new crypto context
975 * involves the following decisions:
976 * - What cipher to use?
977 * - What set of authentication tokens to use?
978 * Here we just worry about getting enough information into the
979 * authentication tokens so that we know that they are available.
980 * We associate the available authentication tokens with the new file
981 * via the set of signatures in the crypt_stat struct. Later, when
982 * the headers are actually written out, we may again defer to
983 * userspace to perform the encryption of the session key; for the
984 * foreseeable future, this will be the case with public key packets.
985 *
986 * Returns zero on success; non-zero otherwise
987 */
237fead6
MH
988int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
989{
237fead6
MH
990 struct ecryptfs_crypt_stat *crypt_stat =
991 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
992 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
993 &ecryptfs_superblock_to_private(
994 ecryptfs_dentry->d_sb)->mount_crypt_stat;
995 int cipher_name_len;
f4aad16a 996 int rc = 0;
237fead6
MH
997
998 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 999 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
1000 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1001 mount_crypt_stat);
1002 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1003 mount_crypt_stat);
1004 if (rc) {
1005 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1006 "to the inode key sigs; rc = [%d]\n", rc);
1007 goto out;
1008 }
1009 cipher_name_len =
1010 strlen(mount_crypt_stat->global_default_cipher_name);
1011 memcpy(crypt_stat->cipher,
1012 mount_crypt_stat->global_default_cipher_name,
1013 cipher_name_len);
1014 crypt_stat->cipher[cipher_name_len] = '\0';
1015 crypt_stat->key_size =
1016 mount_crypt_stat->global_default_cipher_key_size;
1017 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1018 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1019 if (rc)
1020 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1021 "context for cipher [%s]: rc = [%d]\n",
1022 crypt_stat->cipher, rc);
f4aad16a 1023out:
237fead6
MH
1024 return rc;
1025}
1026
1027/**
1028 * contains_ecryptfs_marker - check for the ecryptfs marker
1029 * @data: The data block in which to check
1030 *
1031 * Returns one if marker found; zero if not found
1032 */
dd2a3b7a 1033static int contains_ecryptfs_marker(char *data)
237fead6
MH
1034{
1035 u32 m_1, m_2;
1036
29335c6a
HH
1037 m_1 = get_unaligned_be32(data);
1038 m_2 = get_unaligned_be32(data + 4);
237fead6
MH
1039 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 return 1;
1041 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1043 MAGIC_ECRYPTFS_MARKER);
1044 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1046 return 0;
1047}
1048
1049struct ecryptfs_flag_map_elem {
1050 u32 file_flag;
1051 u32 local_flag;
1052};
1053
1054/* Add support for additional flags by adding elements here. */
1055static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1056 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1057 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1059 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1060};
1061
1062/**
1063 * ecryptfs_process_flags
22e78faf 1064 * @crypt_stat: The cryptographic context
237fead6
MH
1065 * @page_virt: Source data to be parsed
1066 * @bytes_read: Updated with the number of bytes read
1067 *
1068 * Returns zero on success; non-zero if the flag set is invalid
1069 */
1070static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1071 char *page_virt, int *bytes_read)
1072{
1073 int rc = 0;
1074 int i;
1075 u32 flags;
1076
29335c6a 1077 flags = get_unaligned_be32(page_virt);
237fead6
MH
1078 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1079 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1080 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1081 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1082 } else
e2bd99ec 1083 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1084 /* Version is in top 8 bits of the 32-bit flag vector */
1085 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1086 (*bytes_read) = 4;
1087 return rc;
1088}
1089
1090/**
1091 * write_ecryptfs_marker
1092 * @page_virt: The pointer to in a page to begin writing the marker
1093 * @written: Number of bytes written
1094 *
1095 * Marker = 0x3c81b7f5
1096 */
1097static void write_ecryptfs_marker(char *page_virt, size_t *written)
1098{
1099 u32 m_1, m_2;
1100
1101 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1103 put_unaligned_be32(m_1, page_virt);
1104 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1105 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1106 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1107}
1108
f4e60e6b
TH
1109void ecryptfs_write_crypt_stat_flags(char *page_virt,
1110 struct ecryptfs_crypt_stat *crypt_stat,
1111 size_t *written)
237fead6
MH
1112{
1113 u32 flags = 0;
1114 int i;
1115
1116 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1117 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1118 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1119 flags |= ecryptfs_flag_map[i].file_flag;
1120 /* Version is in top 8 bits of the 32-bit flag vector */
1121 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1122 put_unaligned_be32(flags, page_virt);
237fead6
MH
1123 (*written) = 4;
1124}
1125
1126struct ecryptfs_cipher_code_str_map_elem {
1127 char cipher_str[16];
19e66a67 1128 u8 cipher_code;
237fead6
MH
1129};
1130
1131/* Add support for additional ciphers by adding elements here. The
1132 * cipher_code is whatever OpenPGP applicatoins use to identify the
1133 * ciphers. List in order of probability. */
1134static struct ecryptfs_cipher_code_str_map_elem
1135ecryptfs_cipher_code_str_map[] = {
1136 {"aes",RFC2440_CIPHER_AES_128 },
1137 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1138 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1139 {"cast5", RFC2440_CIPHER_CAST_5},
1140 {"twofish", RFC2440_CIPHER_TWOFISH},
1141 {"cast6", RFC2440_CIPHER_CAST_6},
1142 {"aes", RFC2440_CIPHER_AES_192},
1143 {"aes", RFC2440_CIPHER_AES_256}
1144};
1145
1146/**
1147 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1148 * @cipher_name: The string alias for the cipher
1149 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1150 *
1151 * Returns zero on no match, or the cipher code on match
1152 */
9c79f34f 1153u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1154{
1155 int i;
19e66a67 1156 u8 code = 0;
237fead6
MH
1157 struct ecryptfs_cipher_code_str_map_elem *map =
1158 ecryptfs_cipher_code_str_map;
1159
9c79f34f
MH
1160 if (strcmp(cipher_name, "aes") == 0) {
1161 switch (key_bytes) {
237fead6
MH
1162 case 16:
1163 code = RFC2440_CIPHER_AES_128;
1164 break;
1165 case 24:
1166 code = RFC2440_CIPHER_AES_192;
1167 break;
1168 case 32:
1169 code = RFC2440_CIPHER_AES_256;
1170 }
1171 } else {
1172 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1173 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1174 code = map[i].cipher_code;
1175 break;
1176 }
1177 }
1178 return code;
1179}
1180
1181/**
1182 * ecryptfs_cipher_code_to_string
1183 * @str: Destination to write out the cipher name
1184 * @cipher_code: The code to convert to cipher name string
1185 *
1186 * Returns zero on success
1187 */
19e66a67 1188int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1189{
1190 int rc = 0;
1191 int i;
1192
1193 str[0] = '\0';
1194 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1195 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1196 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1197 if (str[0] == '\0') {
1198 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1199 "[%d]\n", cipher_code);
1200 rc = -EINVAL;
1201 }
1202 return rc;
1203}
1204
d7cdc5fe
MH
1205int ecryptfs_read_and_validate_header_region(char *data,
1206 struct inode *ecryptfs_inode)
dd2a3b7a 1207{
d7cdc5fe
MH
1208 struct ecryptfs_crypt_stat *crypt_stat =
1209 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
dd2a3b7a
MH
1210 int rc;
1211
addd65ad
MH
1212 if (crypt_stat->extent_size == 0)
1213 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
d7cdc5fe
MH
1214 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1215 ecryptfs_inode);
96a7b9c2 1216 if (rc < 0) {
d7cdc5fe 1217 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
18d1dbf1 1218 __func__, rc);
dd2a3b7a 1219 goto out;
d7cdc5fe
MH
1220 }
1221 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
dd2a3b7a 1222 rc = -EINVAL;
96a7b9c2
TH
1223 } else
1224 rc = 0;
dd2a3b7a
MH
1225out:
1226 return rc;
1227}
1228
e77a56dd
MH
1229void
1230ecryptfs_write_header_metadata(char *virt,
1231 struct ecryptfs_crypt_stat *crypt_stat,
1232 size_t *written)
237fead6
MH
1233{
1234 u32 header_extent_size;
1235 u16 num_header_extents_at_front;
1236
45eaab79 1237 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1238 num_header_extents_at_front =
fa3ef1cb 1239 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1240 put_unaligned_be32(header_extent_size, virt);
237fead6 1241 virt += 4;
29335c6a 1242 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1243 (*written) = 6;
1244}
1245
237fead6
MH
1246struct kmem_cache *ecryptfs_header_cache_1;
1247struct kmem_cache *ecryptfs_header_cache_2;
1248
1249/**
1250 * ecryptfs_write_headers_virt
22e78faf 1251 * @page_virt: The virtual address to write the headers to
87b811c3 1252 * @max: The size of memory allocated at page_virt
22e78faf
MH
1253 * @size: Set to the number of bytes written by this function
1254 * @crypt_stat: The cryptographic context
1255 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1256 *
1257 * Format version: 1
1258 *
1259 * Header Extent:
1260 * Octets 0-7: Unencrypted file size (big-endian)
1261 * Octets 8-15: eCryptfs special marker
1262 * Octets 16-19: Flags
1263 * Octet 16: File format version number (between 0 and 255)
1264 * Octets 17-18: Reserved
1265 * Octet 19: Bit 1 (lsb): Reserved
1266 * Bit 2: Encrypted?
1267 * Bits 3-8: Reserved
1268 * Octets 20-23: Header extent size (big-endian)
1269 * Octets 24-25: Number of header extents at front of file
1270 * (big-endian)
1271 * Octet 26: Begin RFC 2440 authentication token packet set
1272 * Data Extent 0:
1273 * Lower data (CBC encrypted)
1274 * Data Extent 1:
1275 * Lower data (CBC encrypted)
1276 * ...
1277 *
1278 * Returns zero on success
1279 */
87b811c3
ES
1280static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1281 size_t *size,
dd2a3b7a
MH
1282 struct ecryptfs_crypt_stat *crypt_stat,
1283 struct dentry *ecryptfs_dentry)
237fead6
MH
1284{
1285 int rc;
1286 size_t written;
1287 size_t offset;
1288
1289 offset = ECRYPTFS_FILE_SIZE_BYTES;
1290 write_ecryptfs_marker((page_virt + offset), &written);
1291 offset += written;
f4e60e6b
TH
1292 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1293 &written);
237fead6 1294 offset += written;
e77a56dd
MH
1295 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1296 &written);
237fead6
MH
1297 offset += written;
1298 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1299 ecryptfs_dentry, &written,
87b811c3 1300 max - offset);
237fead6
MH
1301 if (rc)
1302 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1303 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1304 if (size) {
1305 offset += written;
1306 *size = offset;
1307 }
1308 return rc;
1309}
1310
22e78faf 1311static int
8faece5f
TH
1312ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1313 char *virt, size_t virt_len)
dd2a3b7a 1314{
d7cdc5fe 1315 int rc;
dd2a3b7a 1316
cc11beff 1317 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
8faece5f 1318 0, virt_len);
96a7b9c2 1319 if (rc < 0)
d7cdc5fe 1320 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1321 "information to lower file; rc = [%d]\n", __func__, rc);
1322 else
1323 rc = 0;
70456600 1324 return rc;
dd2a3b7a
MH
1325}
1326
22e78faf
MH
1327static int
1328ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1329 char *page_virt, size_t size)
dd2a3b7a
MH
1330{
1331 int rc;
1332
1333 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1334 size, 0);
237fead6
MH
1335 return rc;
1336}
1337
8faece5f
TH
1338static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1339 unsigned int order)
1340{
1341 struct page *page;
1342
1343 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1344 if (page)
1345 return (unsigned long) page_address(page);
1346 return 0;
1347}
1348
237fead6 1349/**
dd2a3b7a 1350 * ecryptfs_write_metadata
22e78faf 1351 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1352 *
1353 * Write the file headers out. This will likely involve a userspace
1354 * callout, in which the session key is encrypted with one or more
1355 * public keys and/or the passphrase necessary to do the encryption is
1356 * retrieved via a prompt. Exactly what happens at this point should
1357 * be policy-dependent.
1358 *
1359 * Returns zero on success; non-zero on error
1360 */
d7cdc5fe 1361int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
237fead6 1362{
d7cdc5fe
MH
1363 struct ecryptfs_crypt_stat *crypt_stat =
1364 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
8faece5f 1365 unsigned int order;
cc11beff 1366 char *virt;
8faece5f 1367 size_t virt_len;
d7cdc5fe 1368 size_t size = 0;
237fead6
MH
1369 int rc = 0;
1370
e2bd99ec
MH
1371 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1372 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1373 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1374 rc = -EINVAL;
1375 goto out;
1376 }
1377 } else {
cc11beff 1378 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1379 __func__);
237fead6 1380 rc = -EINVAL;
237fead6
MH
1381 goto out;
1382 }
fa3ef1cb 1383 virt_len = crypt_stat->metadata_size;
8faece5f 1384 order = get_order(virt_len);
237fead6 1385 /* Released in this function */
8faece5f 1386 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1387 if (!virt) {
18d1dbf1 1388 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1389 rc = -ENOMEM;
1390 goto out;
1391 }
bd4f0fe8 1392 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1393 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1394 ecryptfs_dentry);
237fead6 1395 if (unlikely(rc)) {
cc11beff 1396 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1397 __func__, rc);
237fead6
MH
1398 goto out_free;
1399 }
dd2a3b7a 1400 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1401 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1402 size);
dd2a3b7a 1403 else
8faece5f
TH
1404 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1405 virt_len);
dd2a3b7a 1406 if (rc) {
cc11beff 1407 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1408 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1409 goto out_free;
237fead6 1410 }
237fead6 1411out_free:
8faece5f 1412 free_pages((unsigned long)virt, order);
237fead6
MH
1413out:
1414 return rc;
1415}
1416
dd2a3b7a
MH
1417#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1418#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1419static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1420 char *virt, int *bytes_read,
1421 int validate_header_size)
237fead6
MH
1422{
1423 int rc = 0;
1424 u32 header_extent_size;
1425 u16 num_header_extents_at_front;
1426
29335c6a
HH
1427 header_extent_size = get_unaligned_be32(virt);
1428 virt += sizeof(__be32);
1429 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1430 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1431 * (size_t)header_extent_size));
29335c6a 1432 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1433 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1434 && (crypt_stat->metadata_size
dd2a3b7a 1435 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1436 rc = -EINVAL;
cc11beff 1437 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1438 crypt_stat->metadata_size);
237fead6
MH
1439 }
1440 return rc;
1441}
1442
1443/**
1444 * set_default_header_data
22e78faf 1445 * @crypt_stat: The cryptographic context
237fead6
MH
1446 *
1447 * For version 0 file format; this function is only for backwards
1448 * compatibility for files created with the prior versions of
1449 * eCryptfs.
1450 */
1451static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1452{
fa3ef1cb 1453 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1454}
1455
1456/**
1457 * ecryptfs_read_headers_virt
22e78faf
MH
1458 * @page_virt: The virtual address into which to read the headers
1459 * @crypt_stat: The cryptographic context
1460 * @ecryptfs_dentry: The eCryptfs dentry
1461 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1462 *
1463 * Read/parse the header data. The header format is detailed in the
1464 * comment block for the ecryptfs_write_headers_virt() function.
1465 *
1466 * Returns zero on success
1467 */
1468static int ecryptfs_read_headers_virt(char *page_virt,
1469 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1470 struct dentry *ecryptfs_dentry,
1471 int validate_header_size)
237fead6
MH
1472{
1473 int rc = 0;
1474 int offset;
1475 int bytes_read;
1476
1477 ecryptfs_set_default_sizes(crypt_stat);
1478 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1479 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1480 offset = ECRYPTFS_FILE_SIZE_BYTES;
1481 rc = contains_ecryptfs_marker(page_virt + offset);
1482 if (rc == 0) {
1483 rc = -EINVAL;
1484 goto out;
1485 }
1486 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1487 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1488 &bytes_read);
1489 if (rc) {
1490 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1491 goto out;
1492 }
1493 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1494 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1495 "file version [%d] is supported by this "
1496 "version of eCryptfs\n",
1497 crypt_stat->file_version,
1498 ECRYPTFS_SUPPORTED_FILE_VERSION);
1499 rc = -EINVAL;
1500 goto out;
1501 }
1502 offset += bytes_read;
1503 if (crypt_stat->file_version >= 1) {
1504 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1505 &bytes_read, validate_header_size);
237fead6
MH
1506 if (rc) {
1507 ecryptfs_printk(KERN_WARNING, "Error reading header "
1508 "metadata; rc = [%d]\n", rc);
1509 }
1510 offset += bytes_read;
1511 } else
1512 set_default_header_data(crypt_stat);
1513 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1514 ecryptfs_dentry);
1515out:
1516 return rc;
1517}
1518
1519/**
dd2a3b7a 1520 * ecryptfs_read_xattr_region
22e78faf 1521 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1522 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1523 *
1524 * Attempts to read the crypto metadata from the extended attribute
1525 * region of the lower file.
22e78faf
MH
1526 *
1527 * Returns zero on success; non-zero on error
dd2a3b7a 1528 */
d7cdc5fe 1529int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1530{
d7cdc5fe
MH
1531 struct dentry *lower_dentry =
1532 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1533 ssize_t size;
1534 int rc = 0;
1535
d7cdc5fe
MH
1536 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1537 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1538 if (size < 0) {
25bd8174
MH
1539 if (unlikely(ecryptfs_verbosity > 0))
1540 printk(KERN_INFO "Error attempting to read the [%s] "
1541 "xattr from the lower file; return value = "
1542 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1543 rc = -EINVAL;
1544 goto out;
1545 }
1546out:
1547 return rc;
1548}
1549
1550int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1551 struct dentry *ecryptfs_dentry)
1552{
1553 int rc;
1554
d7cdc5fe 1555 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
dd2a3b7a
MH
1556 if (rc)
1557 goto out;
1558 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1559 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1560 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1561 rc = -EINVAL;
1562 }
1563out:
1564 return rc;
1565}
1566
1567/**
1568 * ecryptfs_read_metadata
1569 *
1570 * Common entry point for reading file metadata. From here, we could
1571 * retrieve the header information from the header region of the file,
1572 * the xattr region of the file, or some other repostory that is
1573 * stored separately from the file itself. The current implementation
1574 * supports retrieving the metadata information from the file contents
1575 * and from the xattr region.
237fead6
MH
1576 *
1577 * Returns zero if valid headers found and parsed; non-zero otherwise
1578 */
d7cdc5fe 1579int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6
MH
1580{
1581 int rc = 0;
1582 char *page_virt = NULL;
d7cdc5fe 1583 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1584 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1585 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1586 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1587 &ecryptfs_superblock_to_private(
1588 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1589
e77a56dd
MH
1590 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1591 mount_crypt_stat);
237fead6 1592 /* Read the first page from the underlying file */
f7267c0c 1593 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
237fead6
MH
1594 if (!page_virt) {
1595 rc = -ENOMEM;
d7cdc5fe 1596 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1597 __func__);
237fead6
MH
1598 goto out;
1599 }
d7cdc5fe
MH
1600 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1601 ecryptfs_inode);
96a7b9c2 1602 if (rc >= 0)
d7cdc5fe
MH
1603 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1604 ecryptfs_dentry,
1605 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1606 if (rc) {
1984c23f 1607 memset(page_virt, 0, PAGE_CACHE_SIZE);
d7cdc5fe 1608 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1609 if (rc) {
1610 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1611 "file header region or xattr region\n");
1612 rc = -EINVAL;
1613 goto out;
1614 }
1615 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1616 ecryptfs_dentry,
1617 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1618 if (rc) {
1619 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1620 "file xattr region either\n");
1621 rc = -EINVAL;
1622 }
1623 if (crypt_stat->mount_crypt_stat->flags
1624 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1625 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1626 } else {
1627 printk(KERN_WARNING "Attempt to access file with "
1628 "crypto metadata only in the extended attribute "
1629 "region, but eCryptfs was mounted without "
1630 "xattr support enabled. eCryptfs will not treat "
1631 "this like an encrypted file.\n");
1632 rc = -EINVAL;
1633 }
237fead6
MH
1634 }
1635out:
1636 if (page_virt) {
1637 memset(page_virt, 0, PAGE_CACHE_SIZE);
1638 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1639 }
1640 return rc;
1641}
1642
51ca58dc
MH
1643/**
1644 * ecryptfs_encrypt_filename - encrypt filename
1645 *
1646 * CBC-encrypts the filename. We do not want to encrypt the same
1647 * filename with the same key and IV, which may happen with hard
1648 * links, so we prepend random bits to each filename.
1649 *
1650 * Returns zero on success; non-zero otherwise
1651 */
1652static int
1653ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1654 struct ecryptfs_crypt_stat *crypt_stat,
1655 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1656{
1657 int rc = 0;
1658
1659 filename->encrypted_filename = NULL;
1660 filename->encrypted_filename_size = 0;
1661 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1662 || (mount_crypt_stat && (mount_crypt_stat->flags
1663 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1664 size_t packet_size;
1665 size_t remaining_bytes;
1666
1667 rc = ecryptfs_write_tag_70_packet(
1668 NULL, NULL,
1669 &filename->encrypted_filename_size,
1670 mount_crypt_stat, NULL,
1671 filename->filename_size);
1672 if (rc) {
1673 printk(KERN_ERR "%s: Error attempting to get packet "
1674 "size for tag 72; rc = [%d]\n", __func__,
1675 rc);
1676 filename->encrypted_filename_size = 0;
1677 goto out;
1678 }
1679 filename->encrypted_filename =
1680 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1681 if (!filename->encrypted_filename) {
1682 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1683 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1684 filename->encrypted_filename_size);
1685 rc = -ENOMEM;
1686 goto out;
1687 }
1688 remaining_bytes = filename->encrypted_filename_size;
1689 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1690 &remaining_bytes,
1691 &packet_size,
1692 mount_crypt_stat,
1693 filename->filename,
1694 filename->filename_size);
1695 if (rc) {
1696 printk(KERN_ERR "%s: Error attempting to generate "
1697 "tag 70 packet; rc = [%d]\n", __func__,
1698 rc);
1699 kfree(filename->encrypted_filename);
1700 filename->encrypted_filename = NULL;
1701 filename->encrypted_filename_size = 0;
1702 goto out;
1703 }
1704 filename->encrypted_filename_size = packet_size;
1705 } else {
1706 printk(KERN_ERR "%s: No support for requested filename "
1707 "encryption method in this release\n", __func__);
df6ad33b 1708 rc = -EOPNOTSUPP;
51ca58dc
MH
1709 goto out;
1710 }
1711out:
1712 return rc;
1713}
1714
1715static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1716 const char *name, size_t name_size)
1717{
1718 int rc = 0;
1719
fd9fc842 1720 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1721 if (!(*copied_name)) {
1722 rc = -ENOMEM;
1723 goto out;
1724 }
1725 memcpy((void *)(*copied_name), (void *)name, name_size);
1726 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1727 * in printing out the
1728 * string in debug
1729 * messages */
fd9fc842 1730 (*copied_name_size) = name_size;
51ca58dc
MH
1731out:
1732 return rc;
1733}
1734
237fead6 1735/**
f4aad16a 1736 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1737 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1738 * @cipher_name: Name of the cipher
1739 * @key_size: Size of the key in bytes
237fead6
MH
1740 *
1741 * Returns zero on success. Any crypto_tfm structs allocated here
1742 * should be released by other functions, such as on a superblock put
1743 * event, regardless of whether this function succeeds for fails.
1744 */
cd9d67df 1745static int
f4aad16a
MH
1746ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1747 char *cipher_name, size_t *key_size)
237fead6
MH
1748{
1749 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1750 char *full_alg_name = NULL;
237fead6
MH
1751 int rc;
1752
e5d9cbde
MH
1753 *key_tfm = NULL;
1754 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1755 rc = -EINVAL;
df261c52 1756 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1757 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1758 goto out;
1759 }
8bba066f
MH
1760 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1761 "ecb");
1762 if (rc)
1763 goto out;
1764 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1765 if (IS_ERR(*key_tfm)) {
1766 rc = PTR_ERR(*key_tfm);
237fead6 1767 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1768 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1769 goto out;
1770 }
8bba066f
MH
1771 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1772 if (*key_size == 0) {
1773 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1774
1775 *key_size = alg->max_keysize;
1776 }
e5d9cbde 1777 get_random_bytes(dummy_key, *key_size);
8bba066f 1778 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1779 if (rc) {
df261c52 1780 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1781 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1782 rc);
237fead6
MH
1783 rc = -EINVAL;
1784 goto out;
1785 }
1786out:
ece550f5 1787 kfree(full_alg_name);
237fead6
MH
1788 return rc;
1789}
f4aad16a
MH
1790
1791struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1792static struct list_head key_tfm_list;
af440f52 1793struct mutex key_tfm_list_mutex;
f4aad16a 1794
7371a382 1795int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1796{
1797 mutex_init(&key_tfm_list_mutex);
1798 INIT_LIST_HEAD(&key_tfm_list);
1799 return 0;
1800}
1801
af440f52
ES
1802/**
1803 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1804 *
1805 * Called only at module unload time
1806 */
fcd12835 1807int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1808{
1809 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1810
1811 mutex_lock(&key_tfm_list_mutex);
1812 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1813 key_tfm_list) {
1814 list_del(&key_tfm->key_tfm_list);
1815 if (key_tfm->key_tfm)
1816 crypto_free_blkcipher(key_tfm->key_tfm);
1817 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1818 }
1819 mutex_unlock(&key_tfm_list_mutex);
1820 return 0;
1821}
1822
1823int
1824ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1825 size_t key_size)
1826{
1827 struct ecryptfs_key_tfm *tmp_tfm;
1828 int rc = 0;
1829
af440f52
ES
1830 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1831
f4aad16a
MH
1832 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1833 if (key_tfm != NULL)
1834 (*key_tfm) = tmp_tfm;
1835 if (!tmp_tfm) {
1836 rc = -ENOMEM;
1837 printk(KERN_ERR "Error attempting to allocate from "
1838 "ecryptfs_key_tfm_cache\n");
1839 goto out;
1840 }
1841 mutex_init(&tmp_tfm->key_tfm_mutex);
1842 strncpy(tmp_tfm->cipher_name, cipher_name,
1843 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1844 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1845 tmp_tfm->key_size = key_size;
5dda6992
MH
1846 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1847 tmp_tfm->cipher_name,
1848 &tmp_tfm->key_size);
1849 if (rc) {
f4aad16a
MH
1850 printk(KERN_ERR "Error attempting to initialize key TFM "
1851 "cipher with name = [%s]; rc = [%d]\n",
1852 tmp_tfm->cipher_name, rc);
1853 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1854 if (key_tfm != NULL)
1855 (*key_tfm) = NULL;
1856 goto out;
1857 }
f4aad16a 1858 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1859out:
1860 return rc;
1861}
1862
af440f52
ES
1863/**
1864 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1865 * @cipher_name: the name of the cipher to search for
1866 * @key_tfm: set to corresponding tfm if found
1867 *
1868 * Searches for cached key_tfm matching @cipher_name
1869 * Must be called with &key_tfm_list_mutex held
1870 * Returns 1 if found, with @key_tfm set
1871 * Returns 0 if not found, with @key_tfm set to NULL
1872 */
1873int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1874{
1875 struct ecryptfs_key_tfm *tmp_key_tfm;
1876
1877 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1878
1879 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1880 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1881 if (key_tfm)
1882 (*key_tfm) = tmp_key_tfm;
1883 return 1;
1884 }
1885 }
1886 if (key_tfm)
1887 (*key_tfm) = NULL;
1888 return 0;
1889}
1890
1891/**
1892 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1893 *
1894 * @tfm: set to cached tfm found, or new tfm created
1895 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1896 * @cipher_name: the name of the cipher to search for and/or add
1897 *
1898 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1899 * Searches for cached item first, and creates new if not found.
1900 * Returns 0 on success, non-zero if adding new cipher failed
1901 */
f4aad16a
MH
1902int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1903 struct mutex **tfm_mutex,
1904 char *cipher_name)
1905{
1906 struct ecryptfs_key_tfm *key_tfm;
1907 int rc = 0;
1908
1909 (*tfm) = NULL;
1910 (*tfm_mutex) = NULL;
af440f52 1911
f4aad16a 1912 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1913 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1914 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1915 if (rc) {
1916 printk(KERN_ERR "Error adding new key_tfm to list; "
1917 "rc = [%d]\n", rc);
f4aad16a
MH
1918 goto out;
1919 }
1920 }
f4aad16a
MH
1921 (*tfm) = key_tfm->key_tfm;
1922 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1923out:
71fd5179 1924 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1925 return rc;
1926}
51ca58dc
MH
1927
1928/* 64 characters forming a 6-bit target field */
1929static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1930 "EFGHIJKLMNOPQRST"
1931 "UVWXYZabcdefghij"
1932 "klmnopqrstuvwxyz");
1933
1934/* We could either offset on every reverse map or just pad some 0x00's
1935 * at the front here */
71c11c37 1936static const unsigned char filename_rev_map[] = {
51ca58dc
MH
1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1942 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1943 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1944 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1945 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1946 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1947 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1948 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1949 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1950 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1951 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1952 0x3D, 0x3E, 0x3F
1953};
1954
1955/**
1956 * ecryptfs_encode_for_filename
1957 * @dst: Destination location for encoded filename
1958 * @dst_size: Size of the encoded filename in bytes
1959 * @src: Source location for the filename to encode
1960 * @src_size: Size of the source in bytes
1961 */
1962void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1963 unsigned char *src, size_t src_size)
1964{
1965 size_t num_blocks;
1966 size_t block_num = 0;
1967 size_t dst_offset = 0;
1968 unsigned char last_block[3];
1969
1970 if (src_size == 0) {
1971 (*dst_size) = 0;
1972 goto out;
1973 }
1974 num_blocks = (src_size / 3);
1975 if ((src_size % 3) == 0) {
1976 memcpy(last_block, (&src[src_size - 3]), 3);
1977 } else {
1978 num_blocks++;
1979 last_block[2] = 0x00;
1980 switch (src_size % 3) {
1981 case 1:
1982 last_block[0] = src[src_size - 1];
1983 last_block[1] = 0x00;
1984 break;
1985 case 2:
1986 last_block[0] = src[src_size - 2];
1987 last_block[1] = src[src_size - 1];
1988 }
1989 }
1990 (*dst_size) = (num_blocks * 4);
1991 if (!dst)
1992 goto out;
1993 while (block_num < num_blocks) {
1994 unsigned char *src_block;
1995 unsigned char dst_block[4];
1996
1997 if (block_num == (num_blocks - 1))
1998 src_block = last_block;
1999 else
2000 src_block = &src[block_num * 3];
2001 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2002 dst_block[1] = (((src_block[0] << 4) & 0x30)
2003 | ((src_block[1] >> 4) & 0x0F));
2004 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2005 | ((src_block[2] >> 6) & 0x03));
2006 dst_block[3] = (src_block[2] & 0x3F);
2007 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2008 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2009 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2010 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2011 block_num++;
2012 }
2013out:
2014 return;
2015}
2016
71c11c37
MH
2017/**
2018 * ecryptfs_decode_from_filename
2019 * @dst: If NULL, this function only sets @dst_size and returns. If
2020 * non-NULL, this function decodes the encoded octets in @src
2021 * into the memory that @dst points to.
2022 * @dst_size: Set to the size of the decoded string.
2023 * @src: The encoded set of octets to decode.
2024 * @src_size: The size of the encoded set of octets to decode.
2025 */
2026static void
2027ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2028 const unsigned char *src, size_t src_size)
51ca58dc
MH
2029{
2030 u8 current_bit_offset = 0;
2031 size_t src_byte_offset = 0;
2032 size_t dst_byte_offset = 0;
51ca58dc
MH
2033
2034 if (dst == NULL) {
71c11c37
MH
2035 /* Not exact; conservatively long. Every block of 4
2036 * encoded characters decodes into a block of 3
2037 * decoded characters. This segment of code provides
2038 * the caller with the maximum amount of allocated
2039 * space that @dst will need to point to in a
2040 * subsequent call. */
51ca58dc
MH
2041 (*dst_size) = (((src_size + 1) * 3) / 4);
2042 goto out;
2043 }
2044 while (src_byte_offset < src_size) {
2045 unsigned char src_byte =
2046 filename_rev_map[(int)src[src_byte_offset]];
2047
2048 switch (current_bit_offset) {
2049 case 0:
2050 dst[dst_byte_offset] = (src_byte << 2);
2051 current_bit_offset = 6;
2052 break;
2053 case 6:
2054 dst[dst_byte_offset++] |= (src_byte >> 4);
2055 dst[dst_byte_offset] = ((src_byte & 0xF)
2056 << 4);
2057 current_bit_offset = 4;
2058 break;
2059 case 4:
2060 dst[dst_byte_offset++] |= (src_byte >> 2);
2061 dst[dst_byte_offset] = (src_byte << 6);
2062 current_bit_offset = 2;
2063 break;
2064 case 2:
2065 dst[dst_byte_offset++] |= (src_byte);
2066 dst[dst_byte_offset] = 0;
2067 current_bit_offset = 0;
2068 break;
2069 }
2070 src_byte_offset++;
2071 }
2072 (*dst_size) = dst_byte_offset;
2073out:
71c11c37 2074 return;
51ca58dc
MH
2075}
2076
2077/**
2078 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2079 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2080 * @name: The plaintext name
2081 * @length: The length of the plaintext
2082 * @encoded_name: The encypted name
2083 *
2084 * Encrypts and encodes a filename into something that constitutes a
2085 * valid filename for a filesystem, with printable characters.
2086 *
2087 * We assume that we have a properly initialized crypto context,
2088 * pointed to by crypt_stat->tfm.
2089 *
2090 * Returns zero on success; non-zero on otherwise
2091 */
2092int ecryptfs_encrypt_and_encode_filename(
2093 char **encoded_name,
2094 size_t *encoded_name_size,
2095 struct ecryptfs_crypt_stat *crypt_stat,
2096 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2097 const char *name, size_t name_size)
2098{
2099 size_t encoded_name_no_prefix_size;
2100 int rc = 0;
2101
2102 (*encoded_name) = NULL;
2103 (*encoded_name_size) = 0;
2104 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2105 || (mount_crypt_stat && (mount_crypt_stat->flags
2106 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2107 struct ecryptfs_filename *filename;
2108
2109 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2110 if (!filename) {
2111 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2112 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2113 sizeof(*filename));
2114 rc = -ENOMEM;
2115 goto out;
2116 }
2117 filename->filename = (char *)name;
2118 filename->filename_size = name_size;
2119 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2120 mount_crypt_stat);
2121 if (rc) {
2122 printk(KERN_ERR "%s: Error attempting to encrypt "
2123 "filename; rc = [%d]\n", __func__, rc);
2124 kfree(filename);
2125 goto out;
2126 }
2127 ecryptfs_encode_for_filename(
2128 NULL, &encoded_name_no_prefix_size,
2129 filename->encrypted_filename,
2130 filename->encrypted_filename_size);
2131 if ((crypt_stat && (crypt_stat->flags
2132 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2133 || (mount_crypt_stat
2134 && (mount_crypt_stat->flags
2135 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2136 (*encoded_name_size) =
2137 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2138 + encoded_name_no_prefix_size);
2139 else
2140 (*encoded_name_size) =
2141 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2142 + encoded_name_no_prefix_size);
2143 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2144 if (!(*encoded_name)) {
2145 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2146 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2147 (*encoded_name_size));
2148 rc = -ENOMEM;
2149 kfree(filename->encrypted_filename);
2150 kfree(filename);
2151 goto out;
2152 }
2153 if ((crypt_stat && (crypt_stat->flags
2154 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2155 || (mount_crypt_stat
2156 && (mount_crypt_stat->flags
2157 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2158 memcpy((*encoded_name),
2159 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2160 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2161 ecryptfs_encode_for_filename(
2162 ((*encoded_name)
2163 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2164 &encoded_name_no_prefix_size,
2165 filename->encrypted_filename,
2166 filename->encrypted_filename_size);
2167 (*encoded_name_size) =
2168 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2169 + encoded_name_no_prefix_size);
2170 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 2171 } else {
df6ad33b 2172 rc = -EOPNOTSUPP;
51ca58dc
MH
2173 }
2174 if (rc) {
2175 printk(KERN_ERR "%s: Error attempting to encode "
2176 "encrypted filename; rc = [%d]\n", __func__,
2177 rc);
2178 kfree((*encoded_name));
2179 (*encoded_name) = NULL;
2180 (*encoded_name_size) = 0;
2181 }
2182 kfree(filename->encrypted_filename);
2183 kfree(filename);
2184 } else {
2185 rc = ecryptfs_copy_filename(encoded_name,
2186 encoded_name_size,
2187 name, name_size);
2188 }
2189out:
2190 return rc;
2191}
2192
2193/**
2194 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2195 * @plaintext_name: The plaintext name
2196 * @plaintext_name_size: The plaintext name size
2197 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2198 * @name: The filename in cipher text
2199 * @name_size: The cipher text name size
2200 *
2201 * Decrypts and decodes the filename.
2202 *
2203 * Returns zero on error; non-zero otherwise
2204 */
2205int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2206 size_t *plaintext_name_size,
2207 struct dentry *ecryptfs_dir_dentry,
2208 const char *name, size_t name_size)
2209{
2aac0cf8
TH
2210 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2211 &ecryptfs_superblock_to_private(
2212 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2213 char *decoded_name;
2214 size_t decoded_name_size;
2215 size_t packet_size;
2216 int rc = 0;
2217
2aac0cf8
TH
2218 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2219 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2220 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2221 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2222 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2223 const char *orig_name = name;
2224 size_t orig_name_size = name_size;
2225
2226 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2227 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2228 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2229 name, name_size);
51ca58dc
MH
2230 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2231 if (!decoded_name) {
2232 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2233 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2234 decoded_name_size);
2235 rc = -ENOMEM;
2236 goto out;
2237 }
71c11c37
MH
2238 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2239 name, name_size);
51ca58dc
MH
2240 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2241 plaintext_name_size,
2242 &packet_size,
2243 mount_crypt_stat,
2244 decoded_name,
2245 decoded_name_size);
2246 if (rc) {
2247 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2248 "from filename; copying through filename "
2249 "as-is\n", __func__);
2250 rc = ecryptfs_copy_filename(plaintext_name,
2251 plaintext_name_size,
2252 orig_name, orig_name_size);
2253 goto out_free;
2254 }
2255 } else {
2256 rc = ecryptfs_copy_filename(plaintext_name,
2257 plaintext_name_size,
2258 name, name_size);
2259 goto out;
2260 }
2261out_free:
2262 kfree(decoded_name);
2263out:
2264 return rc;
2265}