]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ecryptfs/crypto.c
Linux 3.9
[mirror_ubuntu-zesty-kernel.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
5a0e3ad6 36#include <linux/slab.h>
29335c6a 37#include <asm/unaligned.h>
237fead6
MH
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
237fead6 99 struct scatterlist sg;
565d9724
MH
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
237fead6 105
565d9724 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 107 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
237fead6 113 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
114 "allocate crypto context; rc = [%d]\n",
115 rc);
237fead6
MH
116 goto out;
117 }
565d9724 118 crypt_stat->hash_tfm = desc.tfm;
237fead6 119 }
8a29f2b0
MH
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 124 __func__, rc);
8a29f2b0
MH
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 131 __func__, rc);
8a29f2b0
MH
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 138 __func__, rc);
8a29f2b0
MH
139 goto out;
140 }
237fead6 141out:
8a29f2b0 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
143 return rc;
144}
145
cd9d67df
MH
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
8bba066f
MH
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 157 if (!(*algified_name)) {
8bba066f
MH
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
237fead6
MH
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 172 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
a34f60f7
MH
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
237fead6
MH
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
233}
234
235/**
fcd12835 236 * ecryptfs_destroy_crypt_stat
237fead6
MH
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
fcd12835 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 242{
f4aad16a
MH
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
237fead6 245 if (crypt_stat->tfm)
8bba066f 246 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
237fead6
MH
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
fcd12835 257void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
f4aad16a
MH
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
f4aad16a
MH
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
68e3f5dd
HX
299 sg_init_table(sg, sg_size);
300
237fead6
MH
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
a07c48ad 304 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
305 remainder_of_page = PAGE_CACHE_SIZE - offset;
306 if (size >= remainder_of_page) {
a07c48ad 307 sg[i].length = remainder_of_page;
237fead6
MH
308 addr += remainder_of_page;
309 size -= remainder_of_page;
310 } else {
a07c48ad 311 sg[i].length = size;
237fead6
MH
312 addr += size;
313 size = 0;
314 }
315 i++;
316 }
317 if (size > 0)
318 return -ENOMEM;
319 return i;
320}
321
322/**
323 * encrypt_scatterlist
324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325 * @dest_sg: Destination of encrypted data
326 * @src_sg: Data to be encrypted
327 * @size: Length of data to be encrypted
328 * @iv: iv to use during encryption
329 *
330 * Returns the number of bytes encrypted; negative value on error
331 */
332static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
333 struct scatterlist *dest_sg,
334 struct scatterlist *src_sg, int size,
335 unsigned char *iv)
336{
8bba066f
MH
337 struct blkcipher_desc desc = {
338 .tfm = crypt_stat->tfm,
339 .info = iv,
340 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
341 };
237fead6
MH
342 int rc = 0;
343
344 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 345 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6 346 if (unlikely(ecryptfs_verbosity > 0)) {
f24b3887 347 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
237fead6
MH
348 crypt_stat->key_size);
349 ecryptfs_dump_hex(crypt_stat->key,
350 crypt_stat->key_size);
351 }
352 /* Consider doing this once, when the file is opened */
353 mutex_lock(&crypt_stat->cs_tfm_mutex);
8e3a6f16
TH
354 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
355 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
356 crypt_stat->key_size);
357 crypt_stat->flags |= ECRYPTFS_KEY_SET;
358 }
237fead6
MH
359 if (rc) {
360 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
361 rc);
362 mutex_unlock(&crypt_stat->cs_tfm_mutex);
363 rc = -EINVAL;
364 goto out;
365 }
366 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 367 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
368 mutex_unlock(&crypt_stat->cs_tfm_mutex);
369out:
370 return rc;
371}
372
0216f7f7
MH
373/**
374 * ecryptfs_lower_offset_for_extent
375 *
376 * Convert an eCryptfs page index into a lower byte offset
377 */
7896b631
AB
378static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
379 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 380{
157f1071
TH
381 (*offset) = ecryptfs_lower_header_size(crypt_stat)
382 + (crypt_stat->extent_size * extent_num);
0216f7f7
MH
383}
384
385/**
386 * ecryptfs_encrypt_extent
387 * @enc_extent_page: Allocated page into which to encrypt the data in
388 * @page
389 * @crypt_stat: crypt_stat containing cryptographic context for the
390 * encryption operation
391 * @page: Page containing plaintext data extent to encrypt
392 * @extent_offset: Page extent offset for use in generating IV
393 *
394 * Encrypts one extent of data.
395 *
396 * Return zero on success; non-zero otherwise
397 */
398static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
399 struct ecryptfs_crypt_stat *crypt_stat,
400 struct page *page,
401 unsigned long extent_offset)
402{
d6a13c17 403 loff_t extent_base;
0216f7f7
MH
404 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
405 int rc;
406
d6a13c17 407 extent_base = (((loff_t)page->index)
0216f7f7
MH
408 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
409 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
410 (extent_base + extent_offset));
411 if (rc) {
888d57bb
JP
412 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
413 "extent [0x%.16llx]; rc = [%d]\n",
414 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
415 goto out;
416 }
0216f7f7
MH
417 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
418 page, (extent_offset
419 * crypt_stat->extent_size),
420 crypt_stat->extent_size, extent_iv);
421 if (rc < 0) {
422 printk(KERN_ERR "%s: Error attempting to encrypt page with "
423 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 424 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
425 rc);
426 goto out;
427 }
428 rc = 0;
0216f7f7
MH
429out:
430 return rc;
431}
432
237fead6
MH
433/**
434 * ecryptfs_encrypt_page
0216f7f7
MH
435 * @page: Page mapped from the eCryptfs inode for the file; contains
436 * decrypted content that needs to be encrypted (to a temporary
437 * page; not in place) and written out to the lower file
237fead6
MH
438 *
439 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
440 * that eCryptfs pages may straddle the lower pages -- for instance,
441 * if the file was created on a machine with an 8K page size
442 * (resulting in an 8K header), and then the file is copied onto a
443 * host with a 32K page size, then when reading page 0 of the eCryptfs
444 * file, 24K of page 0 of the lower file will be read and decrypted,
445 * and then 8K of page 1 of the lower file will be read and decrypted.
446 *
237fead6
MH
447 * Returns zero on success; negative on error
448 */
0216f7f7 449int ecryptfs_encrypt_page(struct page *page)
237fead6 450{
0216f7f7 451 struct inode *ecryptfs_inode;
237fead6 452 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
453 char *enc_extent_virt;
454 struct page *enc_extent_page = NULL;
0216f7f7 455 loff_t extent_offset;
237fead6 456 int rc = 0;
0216f7f7
MH
457
458 ecryptfs_inode = page->mapping->host;
459 crypt_stat =
460 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 461 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
462 enc_extent_page = alloc_page(GFP_USER);
463 if (!enc_extent_page) {
0216f7f7
MH
464 rc = -ENOMEM;
465 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
466 "encrypted extent\n");
467 goto out;
468 }
7fcba054 469 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
470 for (extent_offset = 0;
471 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
472 extent_offset++) {
473 loff_t offset;
474
475 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
476 extent_offset);
237fead6 477 if (rc) {
0216f7f7 478 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 479 "rc = [%d]\n", __func__, rc);
237fead6
MH
480 goto out;
481 }
0216f7f7 482 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
483 &offset, ((((loff_t)page->index)
484 * (PAGE_CACHE_SIZE
485 / crypt_stat->extent_size))
0216f7f7
MH
486 + extent_offset), crypt_stat);
487 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
488 offset, crypt_stat->extent_size);
96a7b9c2 489 if (rc < 0) {
0216f7f7
MH
490 ecryptfs_printk(KERN_ERR, "Error attempting "
491 "to write lower page; rc = [%d]"
492 "\n", rc);
493 goto out;
237fead6 494 }
237fead6 495 }
96a7b9c2 496 rc = 0;
0216f7f7 497out:
7fcba054
ES
498 if (enc_extent_page) {
499 kunmap(enc_extent_page);
500 __free_page(enc_extent_page);
501 }
0216f7f7
MH
502 return rc;
503}
504
505static int ecryptfs_decrypt_extent(struct page *page,
506 struct ecryptfs_crypt_stat *crypt_stat,
507 struct page *enc_extent_page,
508 unsigned long extent_offset)
509{
d6a13c17 510 loff_t extent_base;
0216f7f7
MH
511 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
512 int rc;
513
d6a13c17 514 extent_base = (((loff_t)page->index)
0216f7f7
MH
515 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
516 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
517 (extent_base + extent_offset));
237fead6 518 if (rc) {
888d57bb
JP
519 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
520 "extent [0x%.16llx]; rc = [%d]\n",
521 (unsigned long long)(extent_base + extent_offset), rc);
0216f7f7
MH
522 goto out;
523 }
0216f7f7
MH
524 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
525 (extent_offset
526 * crypt_stat->extent_size),
527 enc_extent_page, 0,
528 crypt_stat->extent_size, extent_iv);
529 if (rc < 0) {
530 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
531 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 532 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
533 rc);
534 goto out;
535 }
536 rc = 0;
237fead6
MH
537out:
538 return rc;
539}
540
541/**
542 * ecryptfs_decrypt_page
0216f7f7
MH
543 * @page: Page mapped from the eCryptfs inode for the file; data read
544 * and decrypted from the lower file will be written into this
545 * page
237fead6
MH
546 *
547 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
548 * that eCryptfs pages may straddle the lower pages -- for instance,
549 * if the file was created on a machine with an 8K page size
550 * (resulting in an 8K header), and then the file is copied onto a
551 * host with a 32K page size, then when reading page 0 of the eCryptfs
552 * file, 24K of page 0 of the lower file will be read and decrypted,
553 * and then 8K of page 1 of the lower file will be read and decrypted.
554 *
555 * Returns zero on success; negative on error
556 */
0216f7f7 557int ecryptfs_decrypt_page(struct page *page)
237fead6 558{
0216f7f7 559 struct inode *ecryptfs_inode;
237fead6 560 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
561 char *enc_extent_virt;
562 struct page *enc_extent_page = NULL;
0216f7f7 563 unsigned long extent_offset;
237fead6 564 int rc = 0;
237fead6 565
0216f7f7
MH
566 ecryptfs_inode = page->mapping->host;
567 crypt_stat =
568 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 569 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
570 enc_extent_page = alloc_page(GFP_USER);
571 if (!enc_extent_page) {
237fead6 572 rc = -ENOMEM;
0216f7f7
MH
573 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
574 "encrypted extent\n");
16a72c45 575 goto out;
237fead6 576 }
7fcba054 577 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
578 for (extent_offset = 0;
579 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
580 extent_offset++) {
581 loff_t offset;
582
583 ecryptfs_lower_offset_for_extent(
584 &offset, ((page->index * (PAGE_CACHE_SIZE
585 / crypt_stat->extent_size))
586 + extent_offset), crypt_stat);
587 rc = ecryptfs_read_lower(enc_extent_virt, offset,
588 crypt_stat->extent_size,
589 ecryptfs_inode);
96a7b9c2 590 if (rc < 0) {
0216f7f7
MH
591 ecryptfs_printk(KERN_ERR, "Error attempting "
592 "to read lower page; rc = [%d]"
593 "\n", rc);
16a72c45 594 goto out;
237fead6 595 }
0216f7f7
MH
596 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
597 extent_offset);
598 if (rc) {
599 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 600 "rc = [%d]\n", __func__, rc);
16a72c45 601 goto out;
237fead6 602 }
237fead6
MH
603 }
604out:
7fcba054
ES
605 if (enc_extent_page) {
606 kunmap(enc_extent_page);
607 __free_page(enc_extent_page);
608 }
237fead6
MH
609 return rc;
610}
611
612/**
613 * decrypt_scatterlist
22e78faf
MH
614 * @crypt_stat: Cryptographic context
615 * @dest_sg: The destination scatterlist to decrypt into
616 * @src_sg: The source scatterlist to decrypt from
617 * @size: The number of bytes to decrypt
618 * @iv: The initialization vector to use for the decryption
237fead6
MH
619 *
620 * Returns the number of bytes decrypted; negative value on error
621 */
622static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
623 struct scatterlist *dest_sg,
624 struct scatterlist *src_sg, int size,
625 unsigned char *iv)
626{
8bba066f
MH
627 struct blkcipher_desc desc = {
628 .tfm = crypt_stat->tfm,
629 .info = iv,
630 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
631 };
237fead6
MH
632 int rc = 0;
633
634 /* Consider doing this once, when the file is opened */
635 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
636 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
637 crypt_stat->key_size);
237fead6
MH
638 if (rc) {
639 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
640 rc);
641 mutex_unlock(&crypt_stat->cs_tfm_mutex);
642 rc = -EINVAL;
643 goto out;
644 }
645 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 646 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
647 mutex_unlock(&crypt_stat->cs_tfm_mutex);
648 if (rc) {
649 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
650 rc);
651 goto out;
652 }
653 rc = size;
654out:
655 return rc;
656}
657
658/**
659 * ecryptfs_encrypt_page_offset
22e78faf
MH
660 * @crypt_stat: The cryptographic context
661 * @dst_page: The page to encrypt into
662 * @dst_offset: The offset in the page to encrypt into
663 * @src_page: The page to encrypt from
664 * @src_offset: The offset in the page to encrypt from
665 * @size: The number of bytes to encrypt
666 * @iv: The initialization vector to use for the encryption
237fead6
MH
667 *
668 * Returns the number of bytes encrypted
669 */
670static int
671ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
672 struct page *dst_page, int dst_offset,
673 struct page *src_page, int src_offset, int size,
674 unsigned char *iv)
675{
676 struct scatterlist src_sg, dst_sg;
677
60c74f81
JA
678 sg_init_table(&src_sg, 1);
679 sg_init_table(&dst_sg, 1);
680
642f1490
JA
681 sg_set_page(&src_sg, src_page, size, src_offset);
682 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
683 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
684}
685
686/**
687 * ecryptfs_decrypt_page_offset
22e78faf
MH
688 * @crypt_stat: The cryptographic context
689 * @dst_page: The page to decrypt into
690 * @dst_offset: The offset in the page to decrypt into
691 * @src_page: The page to decrypt from
692 * @src_offset: The offset in the page to decrypt from
693 * @size: The number of bytes to decrypt
694 * @iv: The initialization vector to use for the decryption
237fead6
MH
695 *
696 * Returns the number of bytes decrypted
697 */
698static int
699ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
700 struct page *dst_page, int dst_offset,
701 struct page *src_page, int src_offset, int size,
702 unsigned char *iv)
703{
704 struct scatterlist src_sg, dst_sg;
705
60c74f81 706 sg_init_table(&src_sg, 1);
642f1490
JA
707 sg_set_page(&src_sg, src_page, size, src_offset);
708
60c74f81 709 sg_init_table(&dst_sg, 1);
642f1490 710 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 711
237fead6
MH
712 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
713}
714
715#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
716
717/**
718 * ecryptfs_init_crypt_ctx
421f91d2 719 * @crypt_stat: Uninitialized crypt stats structure
237fead6
MH
720 *
721 * Initialize the crypto context.
722 *
723 * TODO: Performance: Keep a cache of initialized cipher contexts;
724 * only init if needed
725 */
726int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
727{
8bba066f 728 char *full_alg_name;
237fead6
MH
729 int rc = -EINVAL;
730
731 if (!crypt_stat->cipher) {
732 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
733 goto out;
734 }
735 ecryptfs_printk(KERN_DEBUG,
736 "Initializing cipher [%s]; strlen = [%d]; "
f24b3887 737 "key_size_bits = [%zd]\n",
237fead6
MH
738 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
739 crypt_stat->key_size << 3);
740 if (crypt_stat->tfm) {
741 rc = 0;
742 goto out;
743 }
744 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
745 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
746 crypt_stat->cipher, "cbc");
747 if (rc)
c8161f64 748 goto out_unlock;
8bba066f
MH
749 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
750 CRYPTO_ALG_ASYNC);
751 kfree(full_alg_name);
de88777e
AM
752 if (IS_ERR(crypt_stat->tfm)) {
753 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 754 crypt_stat->tfm = NULL;
237fead6
MH
755 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
756 "Error initializing cipher [%s]\n",
757 crypt_stat->cipher);
c8161f64 758 goto out_unlock;
237fead6 759 }
f1ddcaf3 760 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 761 rc = 0;
c8161f64
ES
762out_unlock:
763 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
764out:
765 return rc;
766}
767
768static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
769{
770 int extent_size_tmp;
771
772 crypt_stat->extent_mask = 0xFFFFFFFF;
773 crypt_stat->extent_shift = 0;
774 if (crypt_stat->extent_size == 0)
775 return;
776 extent_size_tmp = crypt_stat->extent_size;
777 while ((extent_size_tmp & 0x01) == 0) {
778 extent_size_tmp >>= 1;
779 crypt_stat->extent_mask <<= 1;
780 crypt_stat->extent_shift++;
781 }
782}
783
784void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
785{
786 /* Default values; may be overwritten as we are parsing the
787 * packets. */
788 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
789 set_extent_mask_and_shift(crypt_stat);
790 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 791 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
fa3ef1cb 792 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79
MH
793 else {
794 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
fa3ef1cb 795 crypt_stat->metadata_size =
cc11beff 796 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 797 else
fa3ef1cb 798 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
45eaab79 799 }
237fead6
MH
800}
801
802/**
803 * ecryptfs_compute_root_iv
804 * @crypt_stats
805 *
806 * On error, sets the root IV to all 0's.
807 */
808int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
809{
810 int rc = 0;
811 char dst[MD5_DIGEST_SIZE];
812
813 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
814 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 815 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
816 rc = -EINVAL;
817 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
818 "cannot generate root IV\n");
819 goto out;
820 }
821 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
822 crypt_stat->key_size);
823 if (rc) {
824 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
825 "MD5 while generating root IV\n");
826 goto out;
827 }
828 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
829out:
830 if (rc) {
831 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 832 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
833 }
834 return rc;
835}
836
837static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
838{
839 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 840 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
841 ecryptfs_compute_root_iv(crypt_stat);
842 if (unlikely(ecryptfs_verbosity > 0)) {
843 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
844 ecryptfs_dump_hex(crypt_stat->key,
845 crypt_stat->key_size);
846 }
847}
848
17398957
MH
849/**
850 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
851 * @crypt_stat: The inode's cryptographic context
852 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
853 *
854 * This function propagates the mount-wide flags to individual inode
855 * flags.
856 */
857static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
858 struct ecryptfs_crypt_stat *crypt_stat,
859 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
860{
861 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
862 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
863 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
864 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
865 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
866 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
867 if (mount_crypt_stat->flags
868 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
869 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
870 else if (mount_crypt_stat->flags
871 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
872 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
873 }
17398957
MH
874}
875
f4aad16a
MH
876static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
877 struct ecryptfs_crypt_stat *crypt_stat,
878 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
879{
880 struct ecryptfs_global_auth_tok *global_auth_tok;
881 int rc = 0;
882
aa06117f 883 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 884 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 885
f4aad16a
MH
886 list_for_each_entry(global_auth_tok,
887 &mount_crypt_stat->global_auth_tok_list,
888 mount_crypt_stat_list) {
84814d64
TH
889 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
890 continue;
f4aad16a
MH
891 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
892 if (rc) {
893 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
894 goto out;
895 }
896 }
aa06117f 897
f4aad16a 898out:
aa06117f
RD
899 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
900 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
901 return rc;
902}
903
237fead6
MH
904/**
905 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
906 * @crypt_stat: The inode's cryptographic context
907 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
908 *
909 * Default values in the event that policy does not override them.
910 */
911static void ecryptfs_set_default_crypt_stat_vals(
912 struct ecryptfs_crypt_stat *crypt_stat,
913 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
914{
17398957
MH
915 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
916 mount_crypt_stat);
237fead6
MH
917 ecryptfs_set_default_sizes(crypt_stat);
918 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
919 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 920 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
921 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
922 crypt_stat->mount_crypt_stat = mount_crypt_stat;
923}
924
925/**
926 * ecryptfs_new_file_context
b59db43a 927 * @ecryptfs_inode: The eCryptfs inode
237fead6
MH
928 *
929 * If the crypto context for the file has not yet been established,
930 * this is where we do that. Establishing a new crypto context
931 * involves the following decisions:
932 * - What cipher to use?
933 * - What set of authentication tokens to use?
934 * Here we just worry about getting enough information into the
935 * authentication tokens so that we know that they are available.
936 * We associate the available authentication tokens with the new file
937 * via the set of signatures in the crypt_stat struct. Later, when
938 * the headers are actually written out, we may again defer to
939 * userspace to perform the encryption of the session key; for the
940 * foreseeable future, this will be the case with public key packets.
941 *
942 * Returns zero on success; non-zero otherwise
943 */
b59db43a 944int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
237fead6 945{
237fead6 946 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 947 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
237fead6
MH
948 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
949 &ecryptfs_superblock_to_private(
b59db43a 950 ecryptfs_inode->i_sb)->mount_crypt_stat;
237fead6 951 int cipher_name_len;
f4aad16a 952 int rc = 0;
237fead6
MH
953
954 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 955 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
956 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
957 mount_crypt_stat);
958 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
959 mount_crypt_stat);
960 if (rc) {
961 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
962 "to the inode key sigs; rc = [%d]\n", rc);
963 goto out;
964 }
965 cipher_name_len =
966 strlen(mount_crypt_stat->global_default_cipher_name);
967 memcpy(crypt_stat->cipher,
968 mount_crypt_stat->global_default_cipher_name,
969 cipher_name_len);
970 crypt_stat->cipher[cipher_name_len] = '\0';
971 crypt_stat->key_size =
972 mount_crypt_stat->global_default_cipher_key_size;
973 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
974 rc = ecryptfs_init_crypt_ctx(crypt_stat);
975 if (rc)
976 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
977 "context for cipher [%s]: rc = [%d]\n",
978 crypt_stat->cipher, rc);
f4aad16a 979out:
237fead6
MH
980 return rc;
981}
982
983/**
7a86617e 984 * ecryptfs_validate_marker - check for the ecryptfs marker
237fead6
MH
985 * @data: The data block in which to check
986 *
7a86617e 987 * Returns zero if marker found; -EINVAL if not found
237fead6 988 */
7a86617e 989static int ecryptfs_validate_marker(char *data)
237fead6
MH
990{
991 u32 m_1, m_2;
992
29335c6a
HH
993 m_1 = get_unaligned_be32(data);
994 m_2 = get_unaligned_be32(data + 4);
237fead6 995 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
7a86617e 996 return 0;
237fead6
MH
997 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
998 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
999 MAGIC_ECRYPTFS_MARKER);
1000 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1001 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
7a86617e 1002 return -EINVAL;
237fead6
MH
1003}
1004
1005struct ecryptfs_flag_map_elem {
1006 u32 file_flag;
1007 u32 local_flag;
1008};
1009
1010/* Add support for additional flags by adding elements here. */
1011static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1012 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1013 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1014 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1015 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1016};
1017
1018/**
1019 * ecryptfs_process_flags
22e78faf 1020 * @crypt_stat: The cryptographic context
237fead6
MH
1021 * @page_virt: Source data to be parsed
1022 * @bytes_read: Updated with the number of bytes read
1023 *
1024 * Returns zero on success; non-zero if the flag set is invalid
1025 */
1026static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1027 char *page_virt, int *bytes_read)
1028{
1029 int rc = 0;
1030 int i;
1031 u32 flags;
1032
29335c6a 1033 flags = get_unaligned_be32(page_virt);
237fead6
MH
1034 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1035 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1036 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1037 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1038 } else
e2bd99ec 1039 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1040 /* Version is in top 8 bits of the 32-bit flag vector */
1041 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1042 (*bytes_read) = 4;
1043 return rc;
1044}
1045
1046/**
1047 * write_ecryptfs_marker
1048 * @page_virt: The pointer to in a page to begin writing the marker
1049 * @written: Number of bytes written
1050 *
1051 * Marker = 0x3c81b7f5
1052 */
1053static void write_ecryptfs_marker(char *page_virt, size_t *written)
1054{
1055 u32 m_1, m_2;
1056
1057 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1058 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1059 put_unaligned_be32(m_1, page_virt);
1060 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1061 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1062 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1063}
1064
f4e60e6b
TH
1065void ecryptfs_write_crypt_stat_flags(char *page_virt,
1066 struct ecryptfs_crypt_stat *crypt_stat,
1067 size_t *written)
237fead6
MH
1068{
1069 u32 flags = 0;
1070 int i;
1071
1072 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1073 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1074 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1075 flags |= ecryptfs_flag_map[i].file_flag;
1076 /* Version is in top 8 bits of the 32-bit flag vector */
1077 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1078 put_unaligned_be32(flags, page_virt);
237fead6
MH
1079 (*written) = 4;
1080}
1081
1082struct ecryptfs_cipher_code_str_map_elem {
1083 char cipher_str[16];
19e66a67 1084 u8 cipher_code;
237fead6
MH
1085};
1086
1087/* Add support for additional ciphers by adding elements here. The
1088 * cipher_code is whatever OpenPGP applicatoins use to identify the
1089 * ciphers. List in order of probability. */
1090static struct ecryptfs_cipher_code_str_map_elem
1091ecryptfs_cipher_code_str_map[] = {
1092 {"aes",RFC2440_CIPHER_AES_128 },
1093 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1094 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1095 {"cast5", RFC2440_CIPHER_CAST_5},
1096 {"twofish", RFC2440_CIPHER_TWOFISH},
1097 {"cast6", RFC2440_CIPHER_CAST_6},
1098 {"aes", RFC2440_CIPHER_AES_192},
1099 {"aes", RFC2440_CIPHER_AES_256}
1100};
1101
1102/**
1103 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1104 * @cipher_name: The string alias for the cipher
1105 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1106 *
1107 * Returns zero on no match, or the cipher code on match
1108 */
9c79f34f 1109u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1110{
1111 int i;
19e66a67 1112 u8 code = 0;
237fead6
MH
1113 struct ecryptfs_cipher_code_str_map_elem *map =
1114 ecryptfs_cipher_code_str_map;
1115
9c79f34f
MH
1116 if (strcmp(cipher_name, "aes") == 0) {
1117 switch (key_bytes) {
237fead6
MH
1118 case 16:
1119 code = RFC2440_CIPHER_AES_128;
1120 break;
1121 case 24:
1122 code = RFC2440_CIPHER_AES_192;
1123 break;
1124 case 32:
1125 code = RFC2440_CIPHER_AES_256;
1126 }
1127 } else {
1128 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1129 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1130 code = map[i].cipher_code;
1131 break;
1132 }
1133 }
1134 return code;
1135}
1136
1137/**
1138 * ecryptfs_cipher_code_to_string
1139 * @str: Destination to write out the cipher name
1140 * @cipher_code: The code to convert to cipher name string
1141 *
1142 * Returns zero on success
1143 */
19e66a67 1144int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1145{
1146 int rc = 0;
1147 int i;
1148
1149 str[0] = '\0';
1150 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1151 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1152 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1153 if (str[0] == '\0') {
1154 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1155 "[%d]\n", cipher_code);
1156 rc = -EINVAL;
1157 }
1158 return rc;
1159}
1160
778aeb42 1161int ecryptfs_read_and_validate_header_region(struct inode *inode)
dd2a3b7a 1162{
778aeb42
TH
1163 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1164 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1165 int rc;
1166
778aeb42
TH
1167 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1168 inode);
1169 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1170 return rc >= 0 ? -EINVAL : rc;
1171 rc = ecryptfs_validate_marker(marker);
1172 if (!rc)
1173 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1174 return rc;
1175}
1176
e77a56dd
MH
1177void
1178ecryptfs_write_header_metadata(char *virt,
1179 struct ecryptfs_crypt_stat *crypt_stat,
1180 size_t *written)
237fead6
MH
1181{
1182 u32 header_extent_size;
1183 u16 num_header_extents_at_front;
1184
45eaab79 1185 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1186 num_header_extents_at_front =
fa3ef1cb 1187 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
29335c6a 1188 put_unaligned_be32(header_extent_size, virt);
237fead6 1189 virt += 4;
29335c6a 1190 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1191 (*written) = 6;
1192}
1193
30632870 1194struct kmem_cache *ecryptfs_header_cache;
237fead6
MH
1195
1196/**
1197 * ecryptfs_write_headers_virt
22e78faf 1198 * @page_virt: The virtual address to write the headers to
87b811c3 1199 * @max: The size of memory allocated at page_virt
22e78faf
MH
1200 * @size: Set to the number of bytes written by this function
1201 * @crypt_stat: The cryptographic context
1202 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1203 *
1204 * Format version: 1
1205 *
1206 * Header Extent:
1207 * Octets 0-7: Unencrypted file size (big-endian)
1208 * Octets 8-15: eCryptfs special marker
1209 * Octets 16-19: Flags
1210 * Octet 16: File format version number (between 0 and 255)
1211 * Octets 17-18: Reserved
1212 * Octet 19: Bit 1 (lsb): Reserved
1213 * Bit 2: Encrypted?
1214 * Bits 3-8: Reserved
1215 * Octets 20-23: Header extent size (big-endian)
1216 * Octets 24-25: Number of header extents at front of file
1217 * (big-endian)
1218 * Octet 26: Begin RFC 2440 authentication token packet set
1219 * Data Extent 0:
1220 * Lower data (CBC encrypted)
1221 * Data Extent 1:
1222 * Lower data (CBC encrypted)
1223 * ...
1224 *
1225 * Returns zero on success
1226 */
87b811c3
ES
1227static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1228 size_t *size,
dd2a3b7a
MH
1229 struct ecryptfs_crypt_stat *crypt_stat,
1230 struct dentry *ecryptfs_dentry)
237fead6
MH
1231{
1232 int rc;
1233 size_t written;
1234 size_t offset;
1235
1236 offset = ECRYPTFS_FILE_SIZE_BYTES;
1237 write_ecryptfs_marker((page_virt + offset), &written);
1238 offset += written;
f4e60e6b
TH
1239 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1240 &written);
237fead6 1241 offset += written;
e77a56dd
MH
1242 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1243 &written);
237fead6
MH
1244 offset += written;
1245 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1246 ecryptfs_dentry, &written,
87b811c3 1247 max - offset);
237fead6
MH
1248 if (rc)
1249 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1250 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1251 if (size) {
1252 offset += written;
1253 *size = offset;
1254 }
1255 return rc;
1256}
1257
22e78faf 1258static int
b59db43a 1259ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
8faece5f 1260 char *virt, size_t virt_len)
dd2a3b7a 1261{
d7cdc5fe 1262 int rc;
dd2a3b7a 1263
b59db43a 1264 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
8faece5f 1265 0, virt_len);
96a7b9c2 1266 if (rc < 0)
d7cdc5fe 1267 printk(KERN_ERR "%s: Error attempting to write header "
96a7b9c2
TH
1268 "information to lower file; rc = [%d]\n", __func__, rc);
1269 else
1270 rc = 0;
70456600 1271 return rc;
dd2a3b7a
MH
1272}
1273
22e78faf
MH
1274static int
1275ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1276 char *page_virt, size_t size)
dd2a3b7a
MH
1277{
1278 int rc;
1279
1280 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1281 size, 0);
237fead6
MH
1282 return rc;
1283}
1284
8faece5f
TH
1285static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1286 unsigned int order)
1287{
1288 struct page *page;
1289
1290 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1291 if (page)
1292 return (unsigned long) page_address(page);
1293 return 0;
1294}
1295
237fead6 1296/**
dd2a3b7a 1297 * ecryptfs_write_metadata
b59db43a
TH
1298 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1299 * @ecryptfs_inode: The newly created eCryptfs inode
237fead6
MH
1300 *
1301 * Write the file headers out. This will likely involve a userspace
1302 * callout, in which the session key is encrypted with one or more
1303 * public keys and/or the passphrase necessary to do the encryption is
1304 * retrieved via a prompt. Exactly what happens at this point should
1305 * be policy-dependent.
1306 *
1307 * Returns zero on success; non-zero on error
1308 */
b59db43a
TH
1309int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1310 struct inode *ecryptfs_inode)
237fead6 1311{
d7cdc5fe 1312 struct ecryptfs_crypt_stat *crypt_stat =
b59db43a 1313 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
8faece5f 1314 unsigned int order;
cc11beff 1315 char *virt;
8faece5f 1316 size_t virt_len;
d7cdc5fe 1317 size_t size = 0;
237fead6
MH
1318 int rc = 0;
1319
e2bd99ec
MH
1320 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1321 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1322 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1323 rc = -EINVAL;
1324 goto out;
1325 }
1326 } else {
cc11beff 1327 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1328 __func__);
237fead6 1329 rc = -EINVAL;
237fead6
MH
1330 goto out;
1331 }
fa3ef1cb 1332 virt_len = crypt_stat->metadata_size;
8faece5f 1333 order = get_order(virt_len);
237fead6 1334 /* Released in this function */
8faece5f 1335 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1336 if (!virt) {
18d1dbf1 1337 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1338 rc = -ENOMEM;
1339 goto out;
1340 }
bd4f0fe8 1341 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
8faece5f
TH
1342 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1343 ecryptfs_dentry);
237fead6 1344 if (unlikely(rc)) {
cc11beff 1345 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1346 __func__, rc);
237fead6
MH
1347 goto out_free;
1348 }
dd2a3b7a 1349 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1350 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1351 size);
dd2a3b7a 1352 else
b59db43a 1353 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
8faece5f 1354 virt_len);
dd2a3b7a 1355 if (rc) {
cc11beff 1356 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1357 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1358 goto out_free;
237fead6 1359 }
237fead6 1360out_free:
8faece5f 1361 free_pages((unsigned long)virt, order);
237fead6
MH
1362out:
1363 return rc;
1364}
1365
dd2a3b7a
MH
1366#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1367#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1368static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1369 char *virt, int *bytes_read,
1370 int validate_header_size)
237fead6
MH
1371{
1372 int rc = 0;
1373 u32 header_extent_size;
1374 u16 num_header_extents_at_front;
1375
29335c6a
HH
1376 header_extent_size = get_unaligned_be32(virt);
1377 virt += sizeof(__be32);
1378 num_header_extents_at_front = get_unaligned_be16(virt);
fa3ef1cb
TH
1379 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1380 * (size_t)header_extent_size));
29335c6a 1381 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1382 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
fa3ef1cb 1383 && (crypt_stat->metadata_size
dd2a3b7a 1384 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1385 rc = -EINVAL;
cc11beff 1386 printk(KERN_WARNING "Invalid header size: [%zd]\n",
fa3ef1cb 1387 crypt_stat->metadata_size);
237fead6
MH
1388 }
1389 return rc;
1390}
1391
1392/**
1393 * set_default_header_data
22e78faf 1394 * @crypt_stat: The cryptographic context
237fead6
MH
1395 *
1396 * For version 0 file format; this function is only for backwards
1397 * compatibility for files created with the prior versions of
1398 * eCryptfs.
1399 */
1400static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1401{
fa3ef1cb 1402 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1403}
1404
3aeb86ea
TH
1405void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1406{
1407 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1408 struct ecryptfs_crypt_stat *crypt_stat;
1409 u64 file_size;
1410
1411 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1412 mount_crypt_stat =
1413 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1414 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1415 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1416 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1417 file_size += crypt_stat->metadata_size;
1418 } else
1419 file_size = get_unaligned_be64(page_virt);
1420 i_size_write(inode, (loff_t)file_size);
1421 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1422}
1423
237fead6
MH
1424/**
1425 * ecryptfs_read_headers_virt
22e78faf
MH
1426 * @page_virt: The virtual address into which to read the headers
1427 * @crypt_stat: The cryptographic context
1428 * @ecryptfs_dentry: The eCryptfs dentry
1429 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1430 *
1431 * Read/parse the header data. The header format is detailed in the
1432 * comment block for the ecryptfs_write_headers_virt() function.
1433 *
1434 * Returns zero on success
1435 */
1436static int ecryptfs_read_headers_virt(char *page_virt,
1437 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1438 struct dentry *ecryptfs_dentry,
1439 int validate_header_size)
237fead6
MH
1440{
1441 int rc = 0;
1442 int offset;
1443 int bytes_read;
1444
1445 ecryptfs_set_default_sizes(crypt_stat);
1446 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1447 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1448 offset = ECRYPTFS_FILE_SIZE_BYTES;
7a86617e
TH
1449 rc = ecryptfs_validate_marker(page_virt + offset);
1450 if (rc)
237fead6 1451 goto out;
3aeb86ea
TH
1452 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1453 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
237fead6
MH
1454 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1455 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1456 &bytes_read);
1457 if (rc) {
1458 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1459 goto out;
1460 }
1461 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1462 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1463 "file version [%d] is supported by this "
1464 "version of eCryptfs\n",
1465 crypt_stat->file_version,
1466 ECRYPTFS_SUPPORTED_FILE_VERSION);
1467 rc = -EINVAL;
1468 goto out;
1469 }
1470 offset += bytes_read;
1471 if (crypt_stat->file_version >= 1) {
1472 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1473 &bytes_read, validate_header_size);
237fead6
MH
1474 if (rc) {
1475 ecryptfs_printk(KERN_WARNING, "Error reading header "
1476 "metadata; rc = [%d]\n", rc);
1477 }
1478 offset += bytes_read;
1479 } else
1480 set_default_header_data(crypt_stat);
1481 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1482 ecryptfs_dentry);
1483out:
1484 return rc;
1485}
1486
1487/**
dd2a3b7a 1488 * ecryptfs_read_xattr_region
22e78faf 1489 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1490 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1491 *
1492 * Attempts to read the crypto metadata from the extended attribute
1493 * region of the lower file.
22e78faf
MH
1494 *
1495 * Returns zero on success; non-zero on error
dd2a3b7a 1496 */
d7cdc5fe 1497int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1498{
d7cdc5fe
MH
1499 struct dentry *lower_dentry =
1500 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1501 ssize_t size;
1502 int rc = 0;
1503
d7cdc5fe
MH
1504 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1505 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1506 if (size < 0) {
25bd8174
MH
1507 if (unlikely(ecryptfs_verbosity > 0))
1508 printk(KERN_INFO "Error attempting to read the [%s] "
1509 "xattr from the lower file; return value = "
1510 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1511 rc = -EINVAL;
1512 goto out;
1513 }
1514out:
1515 return rc;
1516}
1517
778aeb42 1518int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
3b06b3eb 1519 struct inode *inode)
dd2a3b7a 1520{
778aeb42
TH
1521 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1522 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
dd2a3b7a
MH
1523 int rc;
1524
778aeb42
TH
1525 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1526 ECRYPTFS_XATTR_NAME, file_size,
1527 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1528 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1529 return rc >= 0 ? -EINVAL : rc;
1530 rc = ecryptfs_validate_marker(marker);
1531 if (!rc)
1532 ecryptfs_i_size_init(file_size, inode);
dd2a3b7a
MH
1533 return rc;
1534}
1535
1536/**
1537 * ecryptfs_read_metadata
1538 *
1539 * Common entry point for reading file metadata. From here, we could
1540 * retrieve the header information from the header region of the file,
1541 * the xattr region of the file, or some other repostory that is
1542 * stored separately from the file itself. The current implementation
1543 * supports retrieving the metadata information from the file contents
1544 * and from the xattr region.
237fead6
MH
1545 *
1546 * Returns zero if valid headers found and parsed; non-zero otherwise
1547 */
d7cdc5fe 1548int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6 1549{
bb450361
TG
1550 int rc;
1551 char *page_virt;
d7cdc5fe 1552 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1553 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1554 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1555 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1556 &ecryptfs_superblock_to_private(
1557 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1558
e77a56dd
MH
1559 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1560 mount_crypt_stat);
237fead6 1561 /* Read the first page from the underlying file */
30632870 1562 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
237fead6
MH
1563 if (!page_virt) {
1564 rc = -ENOMEM;
d7cdc5fe 1565 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1566 __func__);
237fead6
MH
1567 goto out;
1568 }
d7cdc5fe
MH
1569 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1570 ecryptfs_inode);
96a7b9c2 1571 if (rc >= 0)
d7cdc5fe
MH
1572 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1573 ecryptfs_dentry,
1574 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1575 if (rc) {
bb450361 1576 /* metadata is not in the file header, so try xattrs */
1984c23f 1577 memset(page_virt, 0, PAGE_CACHE_SIZE);
d7cdc5fe 1578 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1579 if (rc) {
1580 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1581 "file header region or xattr region, inode %lu\n",
1582 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1583 rc = -EINVAL;
1584 goto out;
1585 }
1586 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1587 ecryptfs_dentry,
1588 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1589 if (rc) {
1590 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
30373dc0
TG
1591 "file xattr region either, inode %lu\n",
1592 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1593 rc = -EINVAL;
1594 }
1595 if (crypt_stat->mount_crypt_stat->flags
1596 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1597 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1598 } else {
1599 printk(KERN_WARNING "Attempt to access file with "
1600 "crypto metadata only in the extended attribute "
1601 "region, but eCryptfs was mounted without "
1602 "xattr support enabled. eCryptfs will not treat "
30373dc0
TG
1603 "this like an encrypted file, inode %lu\n",
1604 ecryptfs_inode->i_ino);
dd2a3b7a
MH
1605 rc = -EINVAL;
1606 }
237fead6
MH
1607 }
1608out:
1609 if (page_virt) {
1610 memset(page_virt, 0, PAGE_CACHE_SIZE);
30632870 1611 kmem_cache_free(ecryptfs_header_cache, page_virt);
237fead6
MH
1612 }
1613 return rc;
1614}
1615
51ca58dc
MH
1616/**
1617 * ecryptfs_encrypt_filename - encrypt filename
1618 *
1619 * CBC-encrypts the filename. We do not want to encrypt the same
1620 * filename with the same key and IV, which may happen with hard
1621 * links, so we prepend random bits to each filename.
1622 *
1623 * Returns zero on success; non-zero otherwise
1624 */
1625static int
1626ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1627 struct ecryptfs_crypt_stat *crypt_stat,
1628 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1629{
1630 int rc = 0;
1631
1632 filename->encrypted_filename = NULL;
1633 filename->encrypted_filename_size = 0;
1634 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1635 || (mount_crypt_stat && (mount_crypt_stat->flags
1636 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1637 size_t packet_size;
1638 size_t remaining_bytes;
1639
1640 rc = ecryptfs_write_tag_70_packet(
1641 NULL, NULL,
1642 &filename->encrypted_filename_size,
1643 mount_crypt_stat, NULL,
1644 filename->filename_size);
1645 if (rc) {
1646 printk(KERN_ERR "%s: Error attempting to get packet "
1647 "size for tag 72; rc = [%d]\n", __func__,
1648 rc);
1649 filename->encrypted_filename_size = 0;
1650 goto out;
1651 }
1652 filename->encrypted_filename =
1653 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1654 if (!filename->encrypted_filename) {
1655 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1656 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1657 filename->encrypted_filename_size);
1658 rc = -ENOMEM;
1659 goto out;
1660 }
1661 remaining_bytes = filename->encrypted_filename_size;
1662 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1663 &remaining_bytes,
1664 &packet_size,
1665 mount_crypt_stat,
1666 filename->filename,
1667 filename->filename_size);
1668 if (rc) {
1669 printk(KERN_ERR "%s: Error attempting to generate "
1670 "tag 70 packet; rc = [%d]\n", __func__,
1671 rc);
1672 kfree(filename->encrypted_filename);
1673 filename->encrypted_filename = NULL;
1674 filename->encrypted_filename_size = 0;
1675 goto out;
1676 }
1677 filename->encrypted_filename_size = packet_size;
1678 } else {
1679 printk(KERN_ERR "%s: No support for requested filename "
1680 "encryption method in this release\n", __func__);
df6ad33b 1681 rc = -EOPNOTSUPP;
51ca58dc
MH
1682 goto out;
1683 }
1684out:
1685 return rc;
1686}
1687
1688static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1689 const char *name, size_t name_size)
1690{
1691 int rc = 0;
1692
fd9fc842 1693 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1694 if (!(*copied_name)) {
1695 rc = -ENOMEM;
1696 goto out;
1697 }
1698 memcpy((void *)(*copied_name), (void *)name, name_size);
1699 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1700 * in printing out the
1701 * string in debug
1702 * messages */
fd9fc842 1703 (*copied_name_size) = name_size;
51ca58dc
MH
1704out:
1705 return rc;
1706}
1707
237fead6 1708/**
f4aad16a 1709 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1710 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1711 * @cipher_name: Name of the cipher
1712 * @key_size: Size of the key in bytes
237fead6
MH
1713 *
1714 * Returns zero on success. Any crypto_tfm structs allocated here
1715 * should be released by other functions, such as on a superblock put
1716 * event, regardless of whether this function succeeds for fails.
1717 */
cd9d67df 1718static int
f4aad16a
MH
1719ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1720 char *cipher_name, size_t *key_size)
237fead6
MH
1721{
1722 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
ece550f5 1723 char *full_alg_name = NULL;
237fead6
MH
1724 int rc;
1725
e5d9cbde
MH
1726 *key_tfm = NULL;
1727 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1728 rc = -EINVAL;
df261c52 1729 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1730 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1731 goto out;
1732 }
8bba066f
MH
1733 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1734 "ecb");
1735 if (rc)
1736 goto out;
1737 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
8bba066f
MH
1738 if (IS_ERR(*key_tfm)) {
1739 rc = PTR_ERR(*key_tfm);
237fead6 1740 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1741 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1742 goto out;
1743 }
8bba066f
MH
1744 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1745 if (*key_size == 0) {
1746 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1747
1748 *key_size = alg->max_keysize;
1749 }
e5d9cbde 1750 get_random_bytes(dummy_key, *key_size);
8bba066f 1751 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1752 if (rc) {
df261c52 1753 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1754 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1755 rc);
237fead6
MH
1756 rc = -EINVAL;
1757 goto out;
1758 }
1759out:
ece550f5 1760 kfree(full_alg_name);
237fead6
MH
1761 return rc;
1762}
f4aad16a
MH
1763
1764struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1765static struct list_head key_tfm_list;
af440f52 1766struct mutex key_tfm_list_mutex;
f4aad16a 1767
7371a382 1768int __init ecryptfs_init_crypto(void)
f4aad16a
MH
1769{
1770 mutex_init(&key_tfm_list_mutex);
1771 INIT_LIST_HEAD(&key_tfm_list);
1772 return 0;
1773}
1774
af440f52
ES
1775/**
1776 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1777 *
1778 * Called only at module unload time
1779 */
fcd12835 1780int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1781{
1782 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1783
1784 mutex_lock(&key_tfm_list_mutex);
1785 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1786 key_tfm_list) {
1787 list_del(&key_tfm->key_tfm_list);
1788 if (key_tfm->key_tfm)
1789 crypto_free_blkcipher(key_tfm->key_tfm);
1790 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1791 }
1792 mutex_unlock(&key_tfm_list_mutex);
1793 return 0;
1794}
1795
1796int
1797ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1798 size_t key_size)
1799{
1800 struct ecryptfs_key_tfm *tmp_tfm;
1801 int rc = 0;
1802
af440f52
ES
1803 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1804
f4aad16a
MH
1805 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1806 if (key_tfm != NULL)
1807 (*key_tfm) = tmp_tfm;
1808 if (!tmp_tfm) {
1809 rc = -ENOMEM;
1810 printk(KERN_ERR "Error attempting to allocate from "
1811 "ecryptfs_key_tfm_cache\n");
1812 goto out;
1813 }
1814 mutex_init(&tmp_tfm->key_tfm_mutex);
1815 strncpy(tmp_tfm->cipher_name, cipher_name,
1816 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1817 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1818 tmp_tfm->key_size = key_size;
5dda6992
MH
1819 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1820 tmp_tfm->cipher_name,
1821 &tmp_tfm->key_size);
1822 if (rc) {
f4aad16a
MH
1823 printk(KERN_ERR "Error attempting to initialize key TFM "
1824 "cipher with name = [%s]; rc = [%d]\n",
1825 tmp_tfm->cipher_name, rc);
1826 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1827 if (key_tfm != NULL)
1828 (*key_tfm) = NULL;
1829 goto out;
1830 }
f4aad16a 1831 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1832out:
1833 return rc;
1834}
1835
af440f52
ES
1836/**
1837 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1838 * @cipher_name: the name of the cipher to search for
1839 * @key_tfm: set to corresponding tfm if found
1840 *
1841 * Searches for cached key_tfm matching @cipher_name
1842 * Must be called with &key_tfm_list_mutex held
1843 * Returns 1 if found, with @key_tfm set
1844 * Returns 0 if not found, with @key_tfm set to NULL
1845 */
1846int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1847{
1848 struct ecryptfs_key_tfm *tmp_key_tfm;
1849
1850 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1851
1852 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1853 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1854 if (key_tfm)
1855 (*key_tfm) = tmp_key_tfm;
1856 return 1;
1857 }
1858 }
1859 if (key_tfm)
1860 (*key_tfm) = NULL;
1861 return 0;
1862}
1863
1864/**
1865 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1866 *
1867 * @tfm: set to cached tfm found, or new tfm created
1868 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1869 * @cipher_name: the name of the cipher to search for and/or add
1870 *
1871 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1872 * Searches for cached item first, and creates new if not found.
1873 * Returns 0 on success, non-zero if adding new cipher failed
1874 */
f4aad16a
MH
1875int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1876 struct mutex **tfm_mutex,
1877 char *cipher_name)
1878{
1879 struct ecryptfs_key_tfm *key_tfm;
1880 int rc = 0;
1881
1882 (*tfm) = NULL;
1883 (*tfm_mutex) = NULL;
af440f52 1884
f4aad16a 1885 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1886 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1887 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1888 if (rc) {
1889 printk(KERN_ERR "Error adding new key_tfm to list; "
1890 "rc = [%d]\n", rc);
f4aad16a
MH
1891 goto out;
1892 }
1893 }
f4aad16a
MH
1894 (*tfm) = key_tfm->key_tfm;
1895 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1896out:
71fd5179 1897 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1898 return rc;
1899}
51ca58dc
MH
1900
1901/* 64 characters forming a 6-bit target field */
1902static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1903 "EFGHIJKLMNOPQRST"
1904 "UVWXYZabcdefghij"
1905 "klmnopqrstuvwxyz");
1906
1907/* We could either offset on every reverse map or just pad some 0x00's
1908 * at the front here */
0f751e64 1909static const unsigned char filename_rev_map[256] = {
51ca58dc
MH
1910 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1911 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1912 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1916 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1917 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1918 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1919 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1920 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1921 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1922 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1923 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1924 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0f751e64 1925 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
51ca58dc
MH
1926};
1927
1928/**
1929 * ecryptfs_encode_for_filename
1930 * @dst: Destination location for encoded filename
1931 * @dst_size: Size of the encoded filename in bytes
1932 * @src: Source location for the filename to encode
1933 * @src_size: Size of the source in bytes
1934 */
37028758 1935static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
51ca58dc
MH
1936 unsigned char *src, size_t src_size)
1937{
1938 size_t num_blocks;
1939 size_t block_num = 0;
1940 size_t dst_offset = 0;
1941 unsigned char last_block[3];
1942
1943 if (src_size == 0) {
1944 (*dst_size) = 0;
1945 goto out;
1946 }
1947 num_blocks = (src_size / 3);
1948 if ((src_size % 3) == 0) {
1949 memcpy(last_block, (&src[src_size - 3]), 3);
1950 } else {
1951 num_blocks++;
1952 last_block[2] = 0x00;
1953 switch (src_size % 3) {
1954 case 1:
1955 last_block[0] = src[src_size - 1];
1956 last_block[1] = 0x00;
1957 break;
1958 case 2:
1959 last_block[0] = src[src_size - 2];
1960 last_block[1] = src[src_size - 1];
1961 }
1962 }
1963 (*dst_size) = (num_blocks * 4);
1964 if (!dst)
1965 goto out;
1966 while (block_num < num_blocks) {
1967 unsigned char *src_block;
1968 unsigned char dst_block[4];
1969
1970 if (block_num == (num_blocks - 1))
1971 src_block = last_block;
1972 else
1973 src_block = &src[block_num * 3];
1974 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1975 dst_block[1] = (((src_block[0] << 4) & 0x30)
1976 | ((src_block[1] >> 4) & 0x0F));
1977 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1978 | ((src_block[2] >> 6) & 0x03));
1979 dst_block[3] = (src_block[2] & 0x3F);
1980 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1981 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1982 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1983 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1984 block_num++;
1985 }
1986out:
1987 return;
1988}
1989
4a26620d
TH
1990static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1991{
1992 /* Not exact; conservatively long. Every block of 4
1993 * encoded characters decodes into a block of 3
1994 * decoded characters. This segment of code provides
1995 * the caller with the maximum amount of allocated
1996 * space that @dst will need to point to in a
1997 * subsequent call. */
1998 return ((encoded_size + 1) * 3) / 4;
1999}
2000
71c11c37
MH
2001/**
2002 * ecryptfs_decode_from_filename
2003 * @dst: If NULL, this function only sets @dst_size and returns. If
2004 * non-NULL, this function decodes the encoded octets in @src
2005 * into the memory that @dst points to.
2006 * @dst_size: Set to the size of the decoded string.
2007 * @src: The encoded set of octets to decode.
2008 * @src_size: The size of the encoded set of octets to decode.
2009 */
2010static void
2011ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2012 const unsigned char *src, size_t src_size)
51ca58dc
MH
2013{
2014 u8 current_bit_offset = 0;
2015 size_t src_byte_offset = 0;
2016 size_t dst_byte_offset = 0;
51ca58dc
MH
2017
2018 if (dst == NULL) {
4a26620d 2019 (*dst_size) = ecryptfs_max_decoded_size(src_size);
51ca58dc
MH
2020 goto out;
2021 }
2022 while (src_byte_offset < src_size) {
2023 unsigned char src_byte =
2024 filename_rev_map[(int)src[src_byte_offset]];
2025
2026 switch (current_bit_offset) {
2027 case 0:
2028 dst[dst_byte_offset] = (src_byte << 2);
2029 current_bit_offset = 6;
2030 break;
2031 case 6:
2032 dst[dst_byte_offset++] |= (src_byte >> 4);
2033 dst[dst_byte_offset] = ((src_byte & 0xF)
2034 << 4);
2035 current_bit_offset = 4;
2036 break;
2037 case 4:
2038 dst[dst_byte_offset++] |= (src_byte >> 2);
2039 dst[dst_byte_offset] = (src_byte << 6);
2040 current_bit_offset = 2;
2041 break;
2042 case 2:
2043 dst[dst_byte_offset++] |= (src_byte);
2044 dst[dst_byte_offset] = 0;
2045 current_bit_offset = 0;
2046 break;
2047 }
2048 src_byte_offset++;
2049 }
2050 (*dst_size) = dst_byte_offset;
2051out:
71c11c37 2052 return;
51ca58dc
MH
2053}
2054
2055/**
2056 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2057 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2058 * @name: The plaintext name
2059 * @length: The length of the plaintext
2060 * @encoded_name: The encypted name
2061 *
2062 * Encrypts and encodes a filename into something that constitutes a
2063 * valid filename for a filesystem, with printable characters.
2064 *
2065 * We assume that we have a properly initialized crypto context,
2066 * pointed to by crypt_stat->tfm.
2067 *
2068 * Returns zero on success; non-zero on otherwise
2069 */
2070int ecryptfs_encrypt_and_encode_filename(
2071 char **encoded_name,
2072 size_t *encoded_name_size,
2073 struct ecryptfs_crypt_stat *crypt_stat,
2074 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2075 const char *name, size_t name_size)
2076{
2077 size_t encoded_name_no_prefix_size;
2078 int rc = 0;
2079
2080 (*encoded_name) = NULL;
2081 (*encoded_name_size) = 0;
2082 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2083 || (mount_crypt_stat && (mount_crypt_stat->flags
2084 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2085 struct ecryptfs_filename *filename;
2086
2087 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2088 if (!filename) {
2089 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2090 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2091 sizeof(*filename));
2092 rc = -ENOMEM;
2093 goto out;
2094 }
2095 filename->filename = (char *)name;
2096 filename->filename_size = name_size;
2097 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2098 mount_crypt_stat);
2099 if (rc) {
2100 printk(KERN_ERR "%s: Error attempting to encrypt "
2101 "filename; rc = [%d]\n", __func__, rc);
2102 kfree(filename);
2103 goto out;
2104 }
2105 ecryptfs_encode_for_filename(
2106 NULL, &encoded_name_no_prefix_size,
2107 filename->encrypted_filename,
2108 filename->encrypted_filename_size);
2109 if ((crypt_stat && (crypt_stat->flags
2110 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2111 || (mount_crypt_stat
2112 && (mount_crypt_stat->flags
2113 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2114 (*encoded_name_size) =
2115 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2116 + encoded_name_no_prefix_size);
2117 else
2118 (*encoded_name_size) =
2119 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2120 + encoded_name_no_prefix_size);
2121 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2122 if (!(*encoded_name)) {
2123 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2124 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2125 (*encoded_name_size));
2126 rc = -ENOMEM;
2127 kfree(filename->encrypted_filename);
2128 kfree(filename);
2129 goto out;
2130 }
2131 if ((crypt_stat && (crypt_stat->flags
2132 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2133 || (mount_crypt_stat
2134 && (mount_crypt_stat->flags
2135 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2136 memcpy((*encoded_name),
2137 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2138 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2139 ecryptfs_encode_for_filename(
2140 ((*encoded_name)
2141 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2142 &encoded_name_no_prefix_size,
2143 filename->encrypted_filename,
2144 filename->encrypted_filename_size);
2145 (*encoded_name_size) =
2146 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2147 + encoded_name_no_prefix_size);
2148 (*encoded_name)[(*encoded_name_size)] = '\0';
51ca58dc 2149 } else {
df6ad33b 2150 rc = -EOPNOTSUPP;
51ca58dc
MH
2151 }
2152 if (rc) {
2153 printk(KERN_ERR "%s: Error attempting to encode "
2154 "encrypted filename; rc = [%d]\n", __func__,
2155 rc);
2156 kfree((*encoded_name));
2157 (*encoded_name) = NULL;
2158 (*encoded_name_size) = 0;
2159 }
2160 kfree(filename->encrypted_filename);
2161 kfree(filename);
2162 } else {
2163 rc = ecryptfs_copy_filename(encoded_name,
2164 encoded_name_size,
2165 name, name_size);
2166 }
2167out:
2168 return rc;
2169}
2170
2171/**
2172 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2173 * @plaintext_name: The plaintext name
2174 * @plaintext_name_size: The plaintext name size
2175 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2176 * @name: The filename in cipher text
2177 * @name_size: The cipher text name size
2178 *
2179 * Decrypts and decodes the filename.
2180 *
2181 * Returns zero on error; non-zero otherwise
2182 */
2183int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2184 size_t *plaintext_name_size,
2185 struct dentry *ecryptfs_dir_dentry,
2186 const char *name, size_t name_size)
2187{
2aac0cf8
TH
2188 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2189 &ecryptfs_superblock_to_private(
2190 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2191 char *decoded_name;
2192 size_t decoded_name_size;
2193 size_t packet_size;
2194 int rc = 0;
2195
2aac0cf8
TH
2196 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2197 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2198 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2199 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2200 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2201 const char *orig_name = name;
2202 size_t orig_name_size = name_size;
2203
2204 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2205 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2206 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2207 name, name_size);
51ca58dc
MH
2208 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2209 if (!decoded_name) {
2210 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2211 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2212 decoded_name_size);
2213 rc = -ENOMEM;
2214 goto out;
2215 }
71c11c37
MH
2216 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2217 name, name_size);
51ca58dc
MH
2218 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2219 plaintext_name_size,
2220 &packet_size,
2221 mount_crypt_stat,
2222 decoded_name,
2223 decoded_name_size);
2224 if (rc) {
2225 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2226 "from filename; copying through filename "
2227 "as-is\n", __func__);
2228 rc = ecryptfs_copy_filename(plaintext_name,
2229 plaintext_name_size,
2230 orig_name, orig_name_size);
2231 goto out_free;
2232 }
2233 } else {
2234 rc = ecryptfs_copy_filename(plaintext_name,
2235 plaintext_name_size,
2236 name, name_size);
2237 goto out;
2238 }
2239out_free:
2240 kfree(decoded_name);
2241out:
2242 return rc;
2243}
4a26620d
TH
2244
2245#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2246
2247int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2248 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2249{
2250 struct blkcipher_desc desc;
2251 struct mutex *tfm_mutex;
2252 size_t cipher_blocksize;
2253 int rc;
2254
2255 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2256 (*namelen) = lower_namelen;
2257 return 0;
2258 }
2259
2260 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2261 mount_crypt_stat->global_default_fn_cipher_name);
2262 if (unlikely(rc)) {
2263 (*namelen) = 0;
2264 return rc;
2265 }
2266
2267 mutex_lock(tfm_mutex);
2268 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2269 mutex_unlock(tfm_mutex);
2270
2271 /* Return an exact amount for the common cases */
2272 if (lower_namelen == NAME_MAX
2273 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2274 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2275 return 0;
2276 }
2277
2278 /* Return a safe estimate for the uncommon cases */
2279 (*namelen) = lower_namelen;
2280 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2281 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2282 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2283 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2284 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2285 /* Worst case is that the filename is padded nearly a full block size */
2286 (*namelen) -= cipher_blocksize - 1;
2287
2288 if ((*namelen) < 0)
2289 (*namelen) = 0;
2290
2291 return 0;
2292}