]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/eventpoll.c
ext4: check for inconsistent extents between index and leaf block
[mirror_ubuntu-focal-kernel.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4
LT
111
112/*
5071f97e
DL
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
1da177e4 115 */
5071f97e 116struct nested_call_node {
1da177e4 117 struct list_head llink;
5071f97e 118 void *cookie;
3fe4a975 119 void *ctx;
1da177e4
LT
120};
121
122/*
5071f97e
DL
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
1da177e4 125 */
5071f97e
DL
126struct nested_calls {
127 struct list_head tasks_call_list;
1da177e4
LT
128 spinlock_t lock;
129};
130
d47de16c
DL
131/*
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
136 */
137struct epitem {
ae10b2b4
JB
138 union {
139 /* RB tree node links this structure to the eventpoll RB tree */
140 struct rb_node rbn;
141 /* Used to free the struct epitem */
142 struct rcu_head rcu;
143 };
d47de16c
DL
144
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink;
147
c7ea7630
DL
148 /*
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
151 */
152 struct epitem *next;
153
d47de16c
DL
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd;
156
157 /* Number of active wait queue attached to poll operations */
158 int nwait;
159
160 /* List containing poll wait queues */
161 struct list_head pwqlist;
162
163 /* The "container" of this item */
164 struct eventpoll *ep;
165
d47de16c
DL
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink;
168
4d7e30d9 169 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 170 struct wakeup_source __rcu *ws;
4d7e30d9 171
c7ea7630
DL
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event;
d47de16c
DL
174};
175
1da177e4
LT
176/*
177 * This structure is stored inside the "private_data" member of the file
bf6a41db 178 * structure and represents the main data structure for the eventpoll
1da177e4
LT
179 * interface.
180 */
181struct eventpoll {
1da177e4 182 /*
d47de16c
DL
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
1da177e4 187 */
d47de16c 188 struct mutex mtx;
1da177e4
LT
189
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq;
192
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait;
195
196 /* List of ready file descriptors */
197 struct list_head rdllist;
198
a218cc49
RP
199 /* Lock which protects rdllist and ovflist */
200 rwlock_t lock;
201
67647d0f 202 /* RB tree root used to store monitored fd structs */
b2ac2ea6 203 struct rb_root_cached rbr;
d47de16c
DL
204
205 /*
206 * This is a single linked list that chains all the "struct epitem" that
25985edc 207 * happened while transferring ready events to userspace w/out
a218cc49 208 * holding ->lock.
d47de16c
DL
209 */
210 struct epitem *ovflist;
7ef9964e 211
4d7e30d9
AH
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source *ws;
214
7ef9964e
DL
215 /* The user that created the eventpoll descriptor */
216 struct user_struct *user;
28d82dc1
JB
217
218 struct file *file;
219
220 /* used to optimize loop detection check */
140932e2 221 u64 gen;
bf3b9f63
SS
222
223#ifdef CONFIG_NET_RX_BUSY_POLL
224 /* used to track busy poll napi_id */
225 unsigned int napi_id;
226#endif
1da177e4
LT
227};
228
229/* Wait structure used by the poll hooks */
230struct eppoll_entry {
231 /* List header used to link this structure to the "struct epitem" */
232 struct list_head llink;
233
234 /* The "base" pointer is set to the container "struct epitem" */
4f0989db 235 struct epitem *base;
1da177e4
LT
236
237 /*
238 * Wait queue item that will be linked to the target file wait
239 * queue head.
240 */
ac6424b9 241 wait_queue_entry_t wait;
1da177e4
LT
242
243 /* The wait queue head that linked the "wait" wait queue item */
244 wait_queue_head_t *whead;
245};
246
1da177e4
LT
247/* Wrapper struct used by poll queueing */
248struct ep_pqueue {
249 poll_table pt;
250 struct epitem *epi;
251};
252
5071f97e
DL
253/* Used by the ep_send_events() function as callback private data */
254struct ep_send_events_data {
255 int maxevents;
256 struct epoll_event __user *events;
d7ebbe46 257 int res;
5071f97e
DL
258};
259
7ef9964e
DL
260/*
261 * Configuration options available inside /proc/sys/fs/epoll/
262 */
7ef9964e 263/* Maximum number of epoll watched descriptors, per user */
52bd19f7 264static long max_user_watches __read_mostly;
7ef9964e 265
1da177e4 266/*
d47de16c 267 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 268 */
7ef9964e 269static DEFINE_MUTEX(epmutex);
1da177e4 270
140932e2
AV
271static u64 loop_check_gen = 0;
272
22bacca4
DL
273/* Used to check for epoll file descriptor inclusion loops */
274static struct nested_calls poll_loop_ncalls;
275
1da177e4 276/* Slab cache used to allocate "struct epitem" */
e18b890b 277static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
278
279/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 280static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 281
28d82dc1
JB
282/*
283 * List of files with newly added links, where we may need to limit the number
284 * of emanating paths. Protected by the epmutex.
285 */
286static LIST_HEAD(tfile_check_list);
287
7ef9964e
DL
288#ifdef CONFIG_SYSCTL
289
290#include <linux/sysctl.h>
291
eec4844f 292static long long_zero;
52bd19f7 293static long long_max = LONG_MAX;
7ef9964e 294
1f7e0616 295struct ctl_table epoll_table[] = {
7ef9964e
DL
296 {
297 .procname = "max_user_watches",
298 .data = &max_user_watches,
52bd19f7 299 .maxlen = sizeof(max_user_watches),
7ef9964e 300 .mode = 0644,
52bd19f7 301 .proc_handler = proc_doulongvec_minmax,
eec4844f 302 .extra1 = &long_zero,
52bd19f7 303 .extra2 = &long_max,
7ef9964e 304 },
ab09203e 305 { }
7ef9964e
DL
306};
307#endif /* CONFIG_SYSCTL */
308
28d82dc1
JB
309static const struct file_operations eventpoll_fops;
310
311static inline int is_file_epoll(struct file *f)
312{
313 return f->f_op == &eventpoll_fops;
314}
b030a4dd 315
67647d0f 316/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
317static inline void ep_set_ffd(struct epoll_filefd *ffd,
318 struct file *file, int fd)
319{
320 ffd->file = file;
321 ffd->fd = fd;
322}
323
67647d0f 324/* Compare RB tree keys */
b030a4dd
PE
325static inline int ep_cmp_ffd(struct epoll_filefd *p1,
326 struct epoll_filefd *p2)
327{
328 return (p1->file > p2->file ? +1:
329 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
330}
331
b030a4dd 332/* Tells us if the item is currently linked */
992991c0 333static inline int ep_is_linked(struct epitem *epi)
b030a4dd 334{
992991c0 335 return !list_empty(&epi->rdllink);
b030a4dd
PE
336}
337
ac6424b9 338static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
339{
340 return container_of(p, struct eppoll_entry, wait);
341}
342
b030a4dd 343/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 344static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
345{
346 return container_of(p, struct eppoll_entry, wait)->base;
347}
348
349/* Get the "struct epitem" from an epoll queue wrapper */
cdac75e6 350static inline struct epitem *ep_item_from_epqueue(poll_table *p)
b030a4dd
PE
351{
352 return container_of(p, struct ep_pqueue, pt)->epi;
353}
354
355/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
6192bd53 356static inline int ep_op_has_event(int op)
b030a4dd 357{
a80a6b85 358 return op != EPOLL_CTL_DEL;
b030a4dd
PE
359}
360
1da177e4 361/* Initialize the poll safe wake up structure */
5071f97e 362static void ep_nested_calls_init(struct nested_calls *ncalls)
1da177e4 363{
5071f97e
DL
364 INIT_LIST_HEAD(&ncalls->tasks_call_list);
365 spin_lock_init(&ncalls->lock);
1da177e4
LT
366}
367
3fb0e584
DL
368/**
369 * ep_events_available - Checks if ready events might be available.
370 *
371 * @ep: Pointer to the eventpoll context.
372 *
373 * Returns: Returns a value different than zero if ready events are available,
374 * or zero otherwise.
375 */
376static inline int ep_events_available(struct eventpoll *ep)
377{
c5a282e9
DB
378 return !list_empty_careful(&ep->rdllist) ||
379 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
380}
381
bf3b9f63
SS
382#ifdef CONFIG_NET_RX_BUSY_POLL
383static bool ep_busy_loop_end(void *p, unsigned long start_time)
384{
385 struct eventpoll *ep = p;
386
387 return ep_events_available(ep) || busy_loop_timeout(start_time);
388}
bf3b9f63
SS
389
390/*
391 * Busy poll if globally on and supporting sockets found && no events,
392 * busy loop will return if need_resched or ep_events_available.
393 *
394 * we must do our busy polling with irqs enabled
395 */
396static void ep_busy_loop(struct eventpoll *ep, int nonblock)
397{
bf3b9f63
SS
398 unsigned int napi_id = READ_ONCE(ep->napi_id);
399
400 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
401 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
bf3b9f63
SS
402}
403
404static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
405{
bf3b9f63
SS
406 if (ep->napi_id)
407 ep->napi_id = 0;
bf3b9f63
SS
408}
409
410/*
411 * Set epoll busy poll NAPI ID from sk.
412 */
413static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
414{
bf3b9f63
SS
415 struct eventpoll *ep;
416 unsigned int napi_id;
417 struct socket *sock;
418 struct sock *sk;
419 int err;
420
421 if (!net_busy_loop_on())
422 return;
423
424 sock = sock_from_file(epi->ffd.file, &err);
425 if (!sock)
426 return;
427
428 sk = sock->sk;
429 if (!sk)
430 return;
431
432 napi_id = READ_ONCE(sk->sk_napi_id);
433 ep = epi->ep;
434
435 /* Non-NAPI IDs can be rejected
436 * or
437 * Nothing to do if we already have this ID
438 */
439 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
440 return;
441
442 /* record NAPI ID for use in next busy poll */
443 ep->napi_id = napi_id;
bf3b9f63
SS
444}
445
514056d5
DB
446#else
447
448static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
449{
450}
451
452static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
453{
454}
455
456static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
457{
458}
459
460#endif /* CONFIG_NET_RX_BUSY_POLL */
461
5071f97e
DL
462/**
463 * ep_call_nested - Perform a bound (possibly) nested call, by checking
464 * that the recursion limit is not exceeded, and that
465 * the same nested call (by the meaning of same cookie) is
466 * no re-entered.
467 *
468 * @ncalls: Pointer to the nested_calls structure to be used for this call.
5071f97e
DL
469 * @nproc: Nested call core function pointer.
470 * @priv: Opaque data to be passed to the @nproc callback.
471 * @cookie: Cookie to be used to identify this nested call.
3fe4a975 472 * @ctx: This instance context.
5071f97e
DL
473 *
474 * Returns: Returns the code returned by the @nproc callback, or -1 if
475 * the maximum recursion limit has been exceeded.
1da177e4 476 */
74bdc129 477static int ep_call_nested(struct nested_calls *ncalls,
5071f97e 478 int (*nproc)(void *, void *, int), void *priv,
3fe4a975 479 void *cookie, void *ctx)
1da177e4 480{
5071f97e 481 int error, call_nests = 0;
1da177e4 482 unsigned long flags;
5071f97e
DL
483 struct list_head *lsthead = &ncalls->tasks_call_list;
484 struct nested_call_node *tncur;
485 struct nested_call_node tnode;
1da177e4 486
5071f97e 487 spin_lock_irqsave(&ncalls->lock, flags);
1da177e4 488
5071f97e
DL
489 /*
490 * Try to see if the current task is already inside this wakeup call.
491 * We use a list here, since the population inside this set is always
492 * very much limited.
493 */
b70c3940 494 list_for_each_entry(tncur, lsthead, llink) {
3fe4a975 495 if (tncur->ctx == ctx &&
74bdc129 496 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
1da177e4
LT
497 /*
498 * Ops ... loop detected or maximum nest level reached.
499 * We abort this wake by breaking the cycle itself.
500 */
abff55ce
TB
501 error = -1;
502 goto out_unlock;
1da177e4
LT
503 }
504 }
505
5071f97e 506 /* Add the current task and cookie to the list */
3fe4a975 507 tnode.ctx = ctx;
5071f97e 508 tnode.cookie = cookie;
1da177e4
LT
509 list_add(&tnode.llink, lsthead);
510
5071f97e 511 spin_unlock_irqrestore(&ncalls->lock, flags);
1da177e4 512
5071f97e
DL
513 /* Call the nested function */
514 error = (*nproc)(priv, cookie, call_nests);
1da177e4
LT
515
516 /* Remove the current task from the list */
5071f97e 517 spin_lock_irqsave(&ncalls->lock, flags);
1da177e4 518 list_del(&tnode.llink);
3fe4a975 519out_unlock:
5071f97e
DL
520 spin_unlock_irqrestore(&ncalls->lock, flags);
521
522 return error;
523}
524
02edc6fc
SR
525/*
526 * As described in commit 0ccf831cb lockdep: annotate epoll
527 * the use of wait queues used by epoll is done in a very controlled
528 * manner. Wake ups can nest inside each other, but are never done
529 * with the same locking. For example:
530 *
531 * dfd = socket(...);
532 * efd1 = epoll_create();
533 * efd2 = epoll_create();
534 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
535 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
536 *
537 * When a packet arrives to the device underneath "dfd", the net code will
538 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
539 * callback wakeup entry on that queue, and the wake_up() performed by the
540 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
541 * (efd1) notices that it may have some event ready, so it needs to wake up
542 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
543 * that ends up in another wake_up(), after having checked about the
544 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
545 * avoid stack blasting.
546 *
547 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
548 * this special case of epoll.
549 */
2dfa4eea 550#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd
JB
551
552static struct nested_calls poll_safewake_ncalls;
553
554static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
2dfa4eea
DL
555{
556 unsigned long flags;
57a173bd 557 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
2dfa4eea 558
57a173bd 559 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
a9a08845 560 wake_up_locked_poll(wqueue, EPOLLIN);
2dfa4eea 561 spin_unlock_irqrestore(&wqueue->lock, flags);
2dfa4eea 562
5071f97e
DL
563 return 0;
564}
565
5071f97e
DL
566static void ep_poll_safewake(wait_queue_head_t *wq)
567{
3fe4a975
DL
568 int this_cpu = get_cpu();
569
74bdc129 570 ep_call_nested(&poll_safewake_ncalls,
3fe4a975
DL
571 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
572
573 put_cpu();
1da177e4
LT
574}
575
57a173bd
JB
576#else
577
578static void ep_poll_safewake(wait_queue_head_t *wq)
579{
a9a08845 580 wake_up_poll(wq, EPOLLIN);
57a173bd
JB
581}
582
583#endif
584
971316f0
ON
585static void ep_remove_wait_queue(struct eppoll_entry *pwq)
586{
587 wait_queue_head_t *whead;
588
589 rcu_read_lock();
138e4ad6
ON
590 /*
591 * If it is cleared by POLLFREE, it should be rcu-safe.
592 * If we read NULL we need a barrier paired with
593 * smp_store_release() in ep_poll_callback(), otherwise
594 * we rely on whead->lock.
595 */
596 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
597 if (whead)
598 remove_wait_queue(whead, &pwq->wait);
599 rcu_read_unlock();
600}
601
1da177e4 602/*
d1bc90dd
TB
603 * This function unregisters poll callbacks from the associated file
604 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
605 * ep_free).
1da177e4 606 */
7699acd1 607static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 608{
7699acd1
DL
609 struct list_head *lsthead = &epi->pwqlist;
610 struct eppoll_entry *pwq;
1da177e4 611
d1bc90dd
TB
612 while (!list_empty(lsthead)) {
613 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
1da177e4 614
d1bc90dd 615 list_del(&pwq->llink);
971316f0 616 ep_remove_wait_queue(pwq);
d1bc90dd 617 kmem_cache_free(pwq_cache, pwq);
1da177e4 618 }
1da177e4
LT
619}
620
eea1d585
EW
621/* call only when ep->mtx is held */
622static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
623{
624 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
625}
626
627/* call only when ep->mtx is held */
628static inline void ep_pm_stay_awake(struct epitem *epi)
629{
630 struct wakeup_source *ws = ep_wakeup_source(epi);
631
632 if (ws)
633 __pm_stay_awake(ws);
634}
635
636static inline bool ep_has_wakeup_source(struct epitem *epi)
637{
638 return rcu_access_pointer(epi->ws) ? true : false;
639}
640
641/* call when ep->mtx cannot be held (ep_poll_callback) */
642static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
643{
644 struct wakeup_source *ws;
645
646 rcu_read_lock();
647 ws = rcu_dereference(epi->ws);
648 if (ws)
649 __pm_stay_awake(ws);
650 rcu_read_unlock();
651}
652
5071f97e
DL
653/**
654 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
655 * the scan code, to call f_op->poll(). Also allows for
656 * O(NumReady) performance.
657 *
658 * @ep: Pointer to the epoll private data structure.
659 * @sproc: Pointer to the scan callback.
660 * @priv: Private opaque data passed to the @sproc callback.
d8805e63 661 * @depth: The current depth of recursive f_op->poll calls.
67347fe4 662 * @ep_locked: caller already holds ep->mtx
5071f97e
DL
663 *
664 * Returns: The same integer error code returned by the @sproc callback.
665 */
d85e2aa2
AV
666static __poll_t ep_scan_ready_list(struct eventpoll *ep,
667 __poll_t (*sproc)(struct eventpoll *,
5071f97e 668 struct list_head *, void *),
67347fe4 669 void *priv, int depth, bool ep_locked)
5071f97e 670{
d85e2aa2
AV
671 __poll_t res;
672 int pwake = 0;
5071f97e 673 struct epitem *epi, *nepi;
296e236e 674 LIST_HEAD(txlist);
5071f97e 675
92e64178
DB
676 lockdep_assert_irqs_enabled();
677
5071f97e
DL
678 /*
679 * We need to lock this because we could be hit by
e057e15f 680 * eventpoll_release_file() and epoll_ctl().
5071f97e 681 */
67347fe4
JB
682
683 if (!ep_locked)
684 mutex_lock_nested(&ep->mtx, depth);
5071f97e
DL
685
686 /*
687 * Steal the ready list, and re-init the original one to the
688 * empty list. Also, set ep->ovflist to NULL so that events
689 * happening while looping w/out locks, are not lost. We cannot
690 * have the poll callback to queue directly on ep->rdllist,
691 * because we want the "sproc" callback to be able to do it
692 * in a lockless way.
693 */
a218cc49 694 write_lock_irq(&ep->lock);
296e236e 695 list_splice_init(&ep->rdllist, &txlist);
c5a282e9 696 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 697 write_unlock_irq(&ep->lock);
5071f97e
DL
698
699 /*
700 * Now call the callback function.
701 */
d85e2aa2 702 res = (*sproc)(ep, &txlist, priv);
5071f97e 703
a218cc49 704 write_lock_irq(&ep->lock);
5071f97e
DL
705 /*
706 * During the time we spent inside the "sproc" callback, some
707 * other events might have been queued by the poll callback.
708 * We re-insert them inside the main ready-list here.
709 */
c5a282e9 710 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
711 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
712 /*
713 * We need to check if the item is already in the list.
714 * During the "sproc" callback execution time, items are
715 * queued into ->ovflist but the "txlist" might already
716 * contain them, and the list_splice() below takes care of them.
717 */
992991c0 718 if (!ep_is_linked(epi)) {
c141175d
RP
719 /*
720 * ->ovflist is LIFO, so we have to reverse it in order
721 * to keep in FIFO.
722 */
723 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 724 ep_pm_stay_awake(epi);
4d7e30d9 725 }
5071f97e
DL
726 }
727 /*
728 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
729 * releasing the lock, events will be queued in the normal way inside
730 * ep->rdllist.
731 */
c5a282e9 732 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
733
734 /*
735 * Quickly re-inject items left on "txlist".
736 */
737 list_splice(&txlist, &ep->rdllist);
4d7e30d9 738 __pm_relax(ep->ws);
5071f97e
DL
739
740 if (!list_empty(&ep->rdllist)) {
741 /*
296e236e
DL
742 * Wake up (if active) both the eventpoll wait list and
743 * the ->poll() wait list (delayed after we release the lock).
5071f97e
DL
744 */
745 if (waitqueue_active(&ep->wq))
a218cc49 746 wake_up(&ep->wq);
5071f97e
DL
747 if (waitqueue_active(&ep->poll_wait))
748 pwake++;
749 }
a218cc49 750 write_unlock_irq(&ep->lock);
5071f97e 751
67347fe4
JB
752 if (!ep_locked)
753 mutex_unlock(&ep->mtx);
5071f97e
DL
754
755 /* We have to call this outside the lock */
756 if (pwake)
757 ep_poll_safewake(&ep->poll_wait);
758
d85e2aa2 759 return res;
5071f97e
DL
760}
761
ae10b2b4
JB
762static void epi_rcu_free(struct rcu_head *head)
763{
764 struct epitem *epi = container_of(head, struct epitem, rcu);
765 kmem_cache_free(epi_cache, epi);
766}
767
7699acd1
DL
768/*
769 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 770 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
771 */
772static int ep_remove(struct eventpoll *ep, struct epitem *epi)
773{
7699acd1 774 struct file *file = epi->ffd.file;
1da177e4 775
92e64178
DB
776 lockdep_assert_irqs_enabled();
777
1da177e4 778 /*
ee8ef0a4 779 * Removes poll wait queue hooks.
1da177e4 780 */
7699acd1 781 ep_unregister_pollwait(ep, epi);
1da177e4 782
7699acd1 783 /* Remove the current item from the list of epoll hooks */
68499914 784 spin_lock(&file->f_lock);
ae10b2b4 785 list_del_rcu(&epi->fllink);
68499914 786 spin_unlock(&file->f_lock);
1da177e4 787
b2ac2ea6 788 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 789
a218cc49 790 write_lock_irq(&ep->lock);
992991c0 791 if (ep_is_linked(epi))
c7ea7630 792 list_del_init(&epi->rdllink);
a218cc49 793 write_unlock_irq(&ep->lock);
1da177e4 794
eea1d585 795 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
796 /*
797 * At this point it is safe to free the eventpoll item. Use the union
798 * field epi->rcu, since we are trying to minimize the size of
799 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
800 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
801 * use of the rbn field.
802 */
803 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 804
52bd19f7 805 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 806
c7ea7630 807 return 0;
1da177e4
LT
808}
809
7699acd1 810static void ep_free(struct eventpoll *ep)
1da177e4 811{
7699acd1
DL
812 struct rb_node *rbp;
813 struct epitem *epi;
1da177e4 814
7699acd1
DL
815 /* We need to release all tasks waiting for these file */
816 if (waitqueue_active(&ep->poll_wait))
5071f97e 817 ep_poll_safewake(&ep->poll_wait);
1da177e4 818
7699acd1
DL
819 /*
820 * We need to lock this because we could be hit by
821 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 822 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
823 * is on the way to be removed and no one has references to it
824 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 825 * holding "epmutex" is sufficient here.
7699acd1
DL
826 */
827 mutex_lock(&epmutex);
1da177e4
LT
828
829 /*
7699acd1 830 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 831 */
b2ac2ea6 832 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
833 epi = rb_entry(rbp, struct epitem, rbn);
834
835 ep_unregister_pollwait(ep, epi);
91cf5ab6 836 cond_resched();
7699acd1 837 }
1da177e4
LT
838
839 /*
7699acd1
DL
840 * Walks through the whole tree by freeing each "struct epitem". At this
841 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 842 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 843 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
844 * We do not need to lock ep->mtx, either, we only do it to prevent
845 * a lockdep warning.
1da177e4 846 */
ddf676c3 847 mutex_lock(&ep->mtx);
b2ac2ea6 848 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
849 epi = rb_entry(rbp, struct epitem, rbn);
850 ep_remove(ep, epi);
91cf5ab6 851 cond_resched();
7699acd1 852 }
ddf676c3 853 mutex_unlock(&ep->mtx);
1da177e4 854
7699acd1 855 mutex_unlock(&epmutex);
d47de16c 856 mutex_destroy(&ep->mtx);
7ef9964e 857 free_uid(ep->user);
4d7e30d9 858 wakeup_source_unregister(ep->ws);
f0ee9aab 859 kfree(ep);
7699acd1 860}
1da177e4 861
7699acd1
DL
862static int ep_eventpoll_release(struct inode *inode, struct file *file)
863{
864 struct eventpoll *ep = file->private_data;
1da177e4 865
f0ee9aab 866 if (ep)
7699acd1 867 ep_free(ep);
7699acd1 868
7699acd1 869 return 0;
1da177e4
LT
870}
871
d85e2aa2 872static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
37b5e521
JB
873 void *priv);
874static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
875 poll_table *pt);
876
877/*
878 * Differs from ep_eventpoll_poll() in that internal callers already have
879 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
880 * is correctly annotated.
881 */
d85e2aa2 882static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 883 int depth)
450d89ec 884{
37b5e521
JB
885 struct eventpoll *ep;
886 bool locked;
887
450d89ec 888 pt->_key = epi->event.events;
37b5e521 889 if (!is_file_epoll(epi->ffd.file))
9965ed17 890 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
450d89ec 891
37b5e521
JB
892 ep = epi->ffd.file->private_data;
893 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
894 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
450d89ec 895
37b5e521
JB
896 return ep_scan_ready_list(epi->ffd.file->private_data,
897 ep_read_events_proc, &depth, depth,
898 locked) & epi->event.events;
450d89ec
EW
899}
900
d85e2aa2 901static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 902 void *priv)
5071f97e
DL
903{
904 struct epitem *epi, *tmp;
626cf236 905 poll_table pt;
37b5e521 906 int depth = *(int *)priv;
5071f97e 907
626cf236 908 init_poll_funcptr(&pt, NULL);
37b5e521 909 depth++;
450d89ec 910
5071f97e 911 list_for_each_entry_safe(epi, tmp, head, rdllink) {
37b5e521 912 if (ep_item_poll(epi, &pt, depth)) {
a9a08845 913 return EPOLLIN | EPOLLRDNORM;
37b5e521 914 } else {
5071f97e
DL
915 /*
916 * Item has been dropped into the ready list by the poll
917 * callback, but it's not actually ready, as far as
918 * caller requested events goes. We can remove it here.
919 */
eea1d585 920 __pm_relax(ep_wakeup_source(epi));
5071f97e 921 list_del_init(&epi->rdllink);
296e236e 922 }
5071f97e
DL
923 }
924
925 return 0;
926}
927
a11e1d43 928static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e
BN
929{
930 struct eventpoll *ep = file->private_data;
931 int depth = 0;
7699acd1 932
a11e1d43
LT
933 /* Insert inside our poll wait queue */
934 poll_wait(file, &ep->poll_wait, wait);
935
5071f97e
DL
936 /*
937 * Proceed to find out if wanted events are really available inside
37b5e521 938 * the ready list.
5071f97e 939 */
37b5e521
JB
940 return ep_scan_ready_list(ep, ep_read_events_proc,
941 &depth, depth, false);
7699acd1
DL
942}
943
138d22b5 944#ifdef CONFIG_PROC_FS
a3816ab0 945static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
946{
947 struct eventpoll *ep = f->private_data;
948 struct rb_node *rbp;
138d22b5
CG
949
950 mutex_lock(&ep->mtx);
b2ac2ea6 951 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 952 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 953 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 954
77493f04
CG
955 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
956 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 957 epi->ffd.fd, epi->event.events,
77493f04
CG
958 (long long)epi->event.data,
959 (long long)epi->ffd.file->f_pos,
960 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 961 if (seq_has_overflowed(m))
138d22b5
CG
962 break;
963 }
964 mutex_unlock(&ep->mtx);
138d22b5
CG
965}
966#endif
967
7699acd1
DL
968/* File callbacks that implement the eventpoll file behaviour */
969static const struct file_operations eventpoll_fops = {
138d22b5
CG
970#ifdef CONFIG_PROC_FS
971 .show_fdinfo = ep_show_fdinfo,
972#endif
7699acd1 973 .release = ep_eventpoll_release,
a11e1d43 974 .poll = ep_eventpoll_poll,
6038f373 975 .llseek = noop_llseek,
7699acd1
DL
976};
977
b611967d 978/*
7699acd1
DL
979 * This is called from eventpoll_release() to unlink files from the eventpoll
980 * interface. We need to have this facility to cleanup correctly files that are
981 * closed without being removed from the eventpoll interface.
b611967d 982 */
7699acd1 983void eventpoll_release_file(struct file *file)
b611967d 984{
7699acd1 985 struct eventpoll *ep;
ebe06187 986 struct epitem *epi, *next;
b611967d
DL
987
988 /*
68499914 989 * We don't want to get "file->f_lock" because it is not
7699acd1 990 * necessary. It is not necessary because we're in the "struct file"
25985edc 991 * cleanup path, and this means that no one is using this file anymore.
5071f97e 992 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 993 * point, the file counter already went to zero and fget() would fail.
d47de16c 994 * The only hit might come from ep_free() but by holding the mutex
7699acd1 995 * will correctly serialize the operation. We do need to acquire
d47de16c 996 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 997 * from anywhere but ep_free().
68499914
JC
998 *
999 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 1000 */
7699acd1 1001 mutex_lock(&epmutex);
ebe06187 1002 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
7699acd1 1003 ep = epi->ep;
d8805e63 1004 mutex_lock_nested(&ep->mtx, 0);
7699acd1 1005 ep_remove(ep, epi);
d47de16c 1006 mutex_unlock(&ep->mtx);
b611967d 1007 }
7699acd1 1008 mutex_unlock(&epmutex);
b611967d
DL
1009}
1010
53d2be79 1011static int ep_alloc(struct eventpoll **pep)
1da177e4 1012{
7ef9964e
DL
1013 int error;
1014 struct user_struct *user;
1015 struct eventpoll *ep;
1da177e4 1016
7ef9964e 1017 user = get_current_user();
7ef9964e
DL
1018 error = -ENOMEM;
1019 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1020 if (unlikely(!ep))
1021 goto free_uid;
1da177e4 1022
d47de16c 1023 mutex_init(&ep->mtx);
a218cc49 1024 rwlock_init(&ep->lock);
1da177e4
LT
1025 init_waitqueue_head(&ep->wq);
1026 init_waitqueue_head(&ep->poll_wait);
1027 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 1028 ep->rbr = RB_ROOT_CACHED;
d47de16c 1029 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 1030 ep->user = user;
1da177e4 1031
53d2be79 1032 *pep = ep;
1da177e4 1033
1da177e4 1034 return 0;
7ef9964e
DL
1035
1036free_uid:
1037 free_uid(user);
1038 return error;
1da177e4
LT
1039}
1040
1da177e4 1041/*
c7ea7630
DL
1042 * Search the file inside the eventpoll tree. The RB tree operations
1043 * are protected by the "mtx" mutex, and ep_find() must be called with
1044 * "mtx" held.
1da177e4
LT
1045 */
1046static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1047{
1048 int kcmp;
1da177e4
LT
1049 struct rb_node *rbp;
1050 struct epitem *epi, *epir = NULL;
1051 struct epoll_filefd ffd;
1052
b030a4dd 1053 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 1054 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 1055 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 1056 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
1057 if (kcmp > 0)
1058 rbp = rbp->rb_right;
1059 else if (kcmp < 0)
1060 rbp = rbp->rb_left;
1061 else {
1da177e4
LT
1062 epir = epi;
1063 break;
1064 }
1065 }
1da177e4 1066
1da177e4
LT
1067 return epir;
1068}
1069
92ef6da3 1070#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
1071static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1072{
1073 struct rb_node *rbp;
1074 struct epitem *epi;
1075
b2ac2ea6 1076 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
1077 epi = rb_entry(rbp, struct epitem, rbn);
1078 if (epi->ffd.fd == tfd) {
1079 if (toff == 0)
1080 return epi;
1081 else
1082 toff--;
1083 }
1084 cond_resched();
1085 }
1086
1087 return NULL;
1088}
1089
1090struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1091 unsigned long toff)
1092{
1093 struct file *file_raw;
1094 struct eventpoll *ep;
1095 struct epitem *epi;
1096
1097 if (!is_file_epoll(file))
1098 return ERR_PTR(-EINVAL);
1099
1100 ep = file->private_data;
1101
1102 mutex_lock(&ep->mtx);
1103 epi = ep_find_tfd(ep, tfd, toff);
1104 if (epi)
1105 file_raw = epi->ffd.file;
1106 else
1107 file_raw = ERR_PTR(-ENOENT);
1108 mutex_unlock(&ep->mtx);
1109
1110 return file_raw;
1111}
92ef6da3 1112#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1113
a218cc49
RP
1114/**
1115 * Adds a new entry to the tail of the list in a lockless way, i.e.
1116 * multiple CPUs are allowed to call this function concurrently.
1117 *
1118 * Beware: it is necessary to prevent any other modifications of the
1119 * existing list until all changes are completed, in other words
1120 * concurrent list_add_tail_lockless() calls should be protected
1121 * with a read lock, where write lock acts as a barrier which
1122 * makes sure all list_add_tail_lockless() calls are fully
1123 * completed.
1124 *
1125 * Also an element can be locklessly added to the list only in one
1126 * direction i.e. either to the tail either to the head, otherwise
1127 * concurrent access will corrupt the list.
1128 *
1129 * Returns %false if element has been already added to the list, %true
1130 * otherwise.
1131 */
1132static inline bool list_add_tail_lockless(struct list_head *new,
1133 struct list_head *head)
1134{
1135 struct list_head *prev;
1136
1137 /*
1138 * This is simple 'new->next = head' operation, but cmpxchg()
1139 * is used in order to detect that same element has been just
1140 * added to the list from another CPU: the winner observes
1141 * new->next == new.
1142 */
1143 if (cmpxchg(&new->next, new, head) != new)
1144 return false;
1145
1146 /*
1147 * Initially ->next of a new element must be updated with the head
1148 * (we are inserting to the tail) and only then pointers are atomically
1149 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1150 * updated before pointers are actually swapped and pointers are
1151 * swapped before prev->next is updated.
1152 */
1153
1154 prev = xchg(&head->prev, new);
1155
1156 /*
1157 * It is safe to modify prev->next and new->prev, because a new element
1158 * is added only to the tail and new->next is updated before XCHG.
1159 */
1160
1161 prev->next = new;
1162 new->prev = prev;
1163
1164 return true;
1165}
1166
1167/**
1168 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1169 * i.e. multiple CPUs are allowed to call this function concurrently.
1170 *
1171 * Returns %false if epi element has been already chained, %true otherwise.
1172 */
1173static inline bool chain_epi_lockless(struct epitem *epi)
1174{
1175 struct eventpoll *ep = epi->ep;
1176
bc789a86
KK
1177 /* Fast preliminary check */
1178 if (epi->next != EP_UNACTIVE_PTR)
1179 return false;
1180
a218cc49
RP
1181 /* Check that the same epi has not been just chained from another CPU */
1182 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1183 return false;
1184
1185 /* Atomically exchange tail */
1186 epi->next = xchg(&ep->ovflist, epi);
1187
1188 return true;
1189}
1190
1da177e4 1191/*
7699acd1 1192 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1193 * mechanism. It is called by the stored file descriptors when they
7699acd1 1194 * have events to report.
a218cc49
RP
1195 *
1196 * This callback takes a read lock in order not to content with concurrent
1197 * events from another file descriptors, thus all modifications to ->rdllist
1198 * or ->ovflist are lockless. Read lock is paired with the write lock from
1199 * ep_scan_ready_list(), which stops all list modifications and guarantees
1200 * that lists state is seen correctly.
1201 *
1202 * Another thing worth to mention is that ep_poll_callback() can be called
1203 * concurrently for the same @epi from different CPUs if poll table was inited
1204 * with several wait queues entries. Plural wakeup from different CPUs of a
1205 * single wait queue is serialized by wq.lock, but the case when multiple wait
1206 * queues are used should be detected accordingly. This is detected using
1207 * cmpxchg() operation.
1da177e4 1208 */
ac6424b9 1209static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1210{
7699acd1 1211 int pwake = 0;
7699acd1
DL
1212 struct epitem *epi = ep_item_from_wait(wait);
1213 struct eventpoll *ep = epi->ep;
3ad6f93e 1214 __poll_t pollflags = key_to_poll(key);
a218cc49 1215 unsigned long flags;
df0108c5 1216 int ewake = 0;
1da177e4 1217
a218cc49 1218 read_lock_irqsave(&ep->lock, flags);
1da177e4 1219
bf3b9f63
SS
1220 ep_set_busy_poll_napi_id(epi);
1221
7699acd1
DL
1222 /*
1223 * If the event mask does not contain any poll(2) event, we consider the
1224 * descriptor to be disabled. This condition is likely the effect of the
1225 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1226 * until the next EPOLL_CTL_MOD will be issued.
1227 */
1228 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1229 goto out_unlock;
1230
2dfa4eea
DL
1231 /*
1232 * Check the events coming with the callback. At this stage, not
1233 * every device reports the events in the "key" parameter of the
1234 * callback. We need to be able to handle both cases here, hence the
1235 * test for "key" != NULL before the event match test.
1236 */
3ad6f93e 1237 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1238 goto out_unlock;
1239
d47de16c 1240 /*
bf6a41db 1241 * If we are transferring events to userspace, we can hold no locks
d47de16c 1242 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1243 * semantics). All the events that happen during that period of time are
d47de16c
DL
1244 * chained in ep->ovflist and requeued later on.
1245 */
c5a282e9 1246 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
bc789a86
KK
1247 if (chain_epi_lockless(epi))
1248 ep_pm_stay_awake_rcu(epi);
1249 } else if (!ep_is_linked(epi)) {
1250 /* In the usual case, add event to ready list. */
1251 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1252 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1253 }
7699acd1 1254
7699acd1
DL
1255 /*
1256 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1257 * wait list.
1258 */
df0108c5 1259 if (waitqueue_active(&ep->wq)) {
b6a515c8 1260 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1261 !(pollflags & POLLFREE)) {
1262 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1263 case EPOLLIN:
1264 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1265 ewake = 1;
1266 break;
a9a08845
LT
1267 case EPOLLOUT:
1268 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1269 ewake = 1;
1270 break;
1271 case 0:
1272 ewake = 1;
1273 break;
1274 }
1275 }
a218cc49 1276 wake_up(&ep->wq);
df0108c5 1277 }
7699acd1
DL
1278 if (waitqueue_active(&ep->poll_wait))
1279 pwake++;
1280
d47de16c 1281out_unlock:
a218cc49 1282 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1283
7699acd1
DL
1284 /* We have to call this outside the lock */
1285 if (pwake)
5071f97e 1286 ep_poll_safewake(&ep->poll_wait);
7699acd1 1287
138e4ad6
ON
1288 if (!(epi->event.events & EPOLLEXCLUSIVE))
1289 ewake = 1;
1290
3ad6f93e 1291 if (pollflags & POLLFREE) {
138e4ad6
ON
1292 /*
1293 * If we race with ep_remove_wait_queue() it can miss
1294 * ->whead = NULL and do another remove_wait_queue() after
1295 * us, so we can't use __remove_wait_queue().
1296 */
1297 list_del_init(&wait->entry);
1298 /*
1299 * ->whead != NULL protects us from the race with ep_free()
1300 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1301 * held by the caller. Once we nullify it, nothing protects
1302 * ep/epi or even wait.
1303 */
1304 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1305 }
df0108c5 1306
138e4ad6 1307 return ewake;
7699acd1 1308}
1da177e4
LT
1309
1310/*
1311 * This is the callback that is used to add our wait queue to the
1312 * target file wakeup lists.
1313 */
1314static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1315 poll_table *pt)
1316{
b030a4dd 1317 struct epitem *epi = ep_item_from_epqueue(pt);
1da177e4
LT
1318 struct eppoll_entry *pwq;
1319
e94b1766 1320 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1da177e4
LT
1321 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1322 pwq->whead = whead;
1323 pwq->base = epi;
df0108c5
JB
1324 if (epi->event.events & EPOLLEXCLUSIVE)
1325 add_wait_queue_exclusive(whead, &pwq->wait);
1326 else
1327 add_wait_queue(whead, &pwq->wait);
1da177e4
LT
1328 list_add_tail(&pwq->llink, &epi->pwqlist);
1329 epi->nwait++;
296e236e 1330 } else {
1da177e4
LT
1331 /* We have to signal that an error occurred */
1332 epi->nwait = -1;
296e236e 1333 }
1da177e4
LT
1334}
1335
1da177e4
LT
1336static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1337{
1338 int kcmp;
b2ac2ea6 1339 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1340 struct epitem *epic;
b2ac2ea6 1341 bool leftmost = true;
1da177e4
LT
1342
1343 while (*p) {
1344 parent = *p;
1345 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1346 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1347 if (kcmp > 0) {
1da177e4 1348 p = &parent->rb_right;
b2ac2ea6
DB
1349 leftmost = false;
1350 } else
1da177e4
LT
1351 p = &parent->rb_left;
1352 }
1353 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1354 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1355}
1356
a80a6b85
AM
1357
1358
28d82dc1
JB
1359#define PATH_ARR_SIZE 5
1360/*
1361 * These are the number paths of length 1 to 5, that we are allowing to emanate
1362 * from a single file of interest. For example, we allow 1000 paths of length
1363 * 1, to emanate from each file of interest. This essentially represents the
1364 * potential wakeup paths, which need to be limited in order to avoid massive
1365 * uncontrolled wakeup storms. The common use case should be a single ep which
1366 * is connected to n file sources. In this case each file source has 1 path
1367 * of length 1. Thus, the numbers below should be more than sufficient. These
1368 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1369 * and delete can't add additional paths. Protected by the epmutex.
1370 */
1371static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1372static int path_count[PATH_ARR_SIZE];
1373
1374static int path_count_inc(int nests)
1375{
93dc6107
JB
1376 /* Allow an arbitrary number of depth 1 paths */
1377 if (nests == 0)
1378 return 0;
1379
28d82dc1
JB
1380 if (++path_count[nests] > path_limits[nests])
1381 return -1;
1382 return 0;
1383}
1384
1385static void path_count_init(void)
1386{
1387 int i;
1388
1389 for (i = 0; i < PATH_ARR_SIZE; i++)
1390 path_count[i] = 0;
1391}
1392
1393static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1394{
1395 int error = 0;
1396 struct file *file = priv;
1397 struct file *child_file;
1398 struct epitem *epi;
1399
ae10b2b4
JB
1400 /* CTL_DEL can remove links here, but that can't increase our count */
1401 rcu_read_lock();
1402 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
28d82dc1
JB
1403 child_file = epi->ep->file;
1404 if (is_file_epoll(child_file)) {
1405 if (list_empty(&child_file->f_ep_links)) {
1406 if (path_count_inc(call_nests)) {
1407 error = -1;
1408 break;
1409 }
1410 } else {
1411 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1412 reverse_path_check_proc,
1413 child_file, child_file,
1414 current);
1415 }
1416 if (error != 0)
1417 break;
1418 } else {
1419 printk(KERN_ERR "reverse_path_check_proc: "
1420 "file is not an ep!\n");
1421 }
1422 }
ae10b2b4 1423 rcu_read_unlock();
28d82dc1
JB
1424 return error;
1425}
1426
1427/**
1428 * reverse_path_check - The tfile_check_list is list of file *, which have
1429 * links that are proposed to be newly added. We need to
1430 * make sure that those added links don't add too many
1431 * paths such that we will spend all our time waking up
1432 * eventpoll objects.
1433 *
1434 * Returns: Returns zero if the proposed links don't create too many paths,
1435 * -1 otherwise.
1436 */
1437static int reverse_path_check(void)
1438{
28d82dc1
JB
1439 int error = 0;
1440 struct file *current_file;
1441
1442 /* let's call this for all tfiles */
1443 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
28d82dc1 1444 path_count_init();
74bdc129 1445 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1446 reverse_path_check_proc, current_file,
1447 current_file, current);
1448 if (error)
1449 break;
1450 }
1451 return error;
1452}
1453
4d7e30d9
AH
1454static int ep_create_wakeup_source(struct epitem *epi)
1455{
cfe6d3cf 1456 struct name_snapshot n;
eea1d585 1457 struct wakeup_source *ws;
4d7e30d9
AH
1458
1459 if (!epi->ep->ws) {
c8377adf 1460 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1461 if (!epi->ep->ws)
1462 return -ENOMEM;
1463 }
1464
cfe6d3cf
AV
1465 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1466 ws = wakeup_source_register(NULL, n.name.name);
1467 release_dentry_name_snapshot(&n);
eea1d585
EW
1468
1469 if (!ws)
4d7e30d9 1470 return -ENOMEM;
eea1d585 1471 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1472
1473 return 0;
1474}
1475
eea1d585
EW
1476/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1477static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1478{
eea1d585
EW
1479 struct wakeup_source *ws = ep_wakeup_source(epi);
1480
d6d67e72 1481 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1482
1483 /*
1484 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1485 * used internally by wakeup_source_remove, too (called by
1486 * wakeup_source_unregister), so we cannot use call_rcu
1487 */
1488 synchronize_rcu();
1489 wakeup_source_unregister(ws);
4d7e30d9
AH
1490}
1491
c7ea7630
DL
1492/*
1493 * Must be called with "mtx" held.
1494 */
bec1a502 1495static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1496 struct file *tfile, int fd, int full_check)
1da177e4 1497{
d85e2aa2
AV
1498 int error, pwake = 0;
1499 __poll_t revents;
52bd19f7 1500 long user_watches;
1da177e4
LT
1501 struct epitem *epi;
1502 struct ep_pqueue epq;
1503
92e64178
DB
1504 lockdep_assert_irqs_enabled();
1505
52bd19f7
RH
1506 user_watches = atomic_long_read(&ep->user->epoll_watches);
1507 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1508 return -ENOSPC;
e94b1766 1509 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
7ef9964e 1510 return -ENOMEM;
1da177e4
LT
1511
1512 /* Item initialization follow here ... */
1da177e4
LT
1513 INIT_LIST_HEAD(&epi->rdllink);
1514 INIT_LIST_HEAD(&epi->fllink);
1da177e4
LT
1515 INIT_LIST_HEAD(&epi->pwqlist);
1516 epi->ep = ep;
b030a4dd 1517 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1518 epi->event = *event;
1da177e4 1519 epi->nwait = 0;
d47de16c 1520 epi->next = EP_UNACTIVE_PTR;
4d7e30d9
AH
1521 if (epi->event.events & EPOLLWAKEUP) {
1522 error = ep_create_wakeup_source(epi);
1523 if (error)
1524 goto error_create_wakeup_source;
1525 } else {
eea1d585 1526 RCU_INIT_POINTER(epi->ws, NULL);
4d7e30d9 1527 }
1da177e4 1528
eba46f9b
AV
1529 /* Add the current item to the list of active epoll hook for this file */
1530 spin_lock(&tfile->f_lock);
1531 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1532 spin_unlock(&tfile->f_lock);
1533
1534 /*
1535 * Add the current item to the RB tree. All RB tree operations are
1536 * protected by "mtx", and ep_insert() is called with "mtx" held.
1537 */
1538 ep_rbtree_insert(ep, epi);
1539
1540 /* now check if we've created too many backpaths */
1541 error = -EINVAL;
1542 if (full_check && reverse_path_check())
1543 goto error_remove_epi;
1544
1da177e4
LT
1545 /* Initialize the poll table using the queue callback */
1546 epq.epi = epi;
1547 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1548
1549 /*
1550 * Attach the item to the poll hooks and get current event bits.
1551 * We can safely use the file* here because its usage count has
c7ea7630
DL
1552 * been increased by the caller of this function. Note that after
1553 * this operation completes, the poll callback can start hitting
1554 * the new item.
1da177e4 1555 */
37b5e521 1556 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1557
1558 /*
1559 * We have to check if something went wrong during the poll wait queue
1560 * install process. Namely an allocation for a wait queue failed due
1561 * high memory pressure.
1562 */
7ef9964e 1563 error = -ENOMEM;
1da177e4 1564 if (epi->nwait < 0)
7699acd1 1565 goto error_unregister;
1da177e4 1566
c7ea7630 1567 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1568 write_lock_irq(&ep->lock);
c7ea7630 1569
bf3b9f63
SS
1570 /* record NAPI ID of new item if present */
1571 ep_set_busy_poll_napi_id(epi);
1572
1da177e4 1573 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1574 if (revents && !ep_is_linked(epi)) {
1da177e4 1575 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1576 ep_pm_stay_awake(epi);
1da177e4
LT
1577
1578 /* Notify waiting tasks that events are available */
1579 if (waitqueue_active(&ep->wq))
a218cc49 1580 wake_up(&ep->wq);
1da177e4
LT
1581 if (waitqueue_active(&ep->poll_wait))
1582 pwake++;
1583 }
1584
a218cc49 1585 write_unlock_irq(&ep->lock);
1da177e4 1586
52bd19f7 1587 atomic_long_inc(&ep->user->epoll_watches);
7ef9964e 1588
1da177e4
LT
1589 /* We have to call this outside the lock */
1590 if (pwake)
5071f97e 1591 ep_poll_safewake(&ep->poll_wait);
1da177e4 1592
1da177e4
LT
1593 return 0;
1594
eba46f9b
AV
1595error_unregister:
1596 ep_unregister_pollwait(ep, epi);
28d82dc1
JB
1597error_remove_epi:
1598 spin_lock(&tfile->f_lock);
ae10b2b4 1599 list_del_rcu(&epi->fllink);
28d82dc1
JB
1600 spin_unlock(&tfile->f_lock);
1601
b2ac2ea6 1602 rb_erase_cached(&epi->rbn, &ep->rbr);
28d82dc1 1603
1da177e4
LT
1604 /*
1605 * We need to do this because an event could have been arrived on some
67647d0f
DL
1606 * allocated wait queue. Note that we don't care about the ep->ovflist
1607 * list, since that is used/cleaned only inside a section bound by "mtx".
1608 * And ep_insert() is called with "mtx" held.
1da177e4 1609 */
a218cc49 1610 write_lock_irq(&ep->lock);
992991c0 1611 if (ep_is_linked(epi))
6192bd53 1612 list_del_init(&epi->rdllink);
a218cc49 1613 write_unlock_irq(&ep->lock);
1da177e4 1614
eea1d585 1615 wakeup_source_unregister(ep_wakeup_source(epi));
4d7e30d9
AH
1616
1617error_create_wakeup_source:
b030a4dd 1618 kmem_cache_free(epi_cache, epi);
7ef9964e 1619
1da177e4
LT
1620 return error;
1621}
1622
1da177e4
LT
1623/*
1624 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1625 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1626 */
bec1a502
AV
1627static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1628 const struct epoll_event *event)
1da177e4
LT
1629{
1630 int pwake = 0;
626cf236
HV
1631 poll_table pt;
1632
92e64178
DB
1633 lockdep_assert_irqs_enabled();
1634
626cf236 1635 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1636
1637 /*
e057e15f
TB
1638 * Set the new event interest mask before calling f_op->poll();
1639 * otherwise we might miss an event that happens between the
1640 * f_op->poll() call and the new event set registering.
1da177e4 1641 */
128dd175 1642 epi->event.events = event->events; /* need barrier below */
e057e15f 1643 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1644 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1645 if (!ep_has_wakeup_source(epi))
4d7e30d9 1646 ep_create_wakeup_source(epi);
eea1d585 1647 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1648 ep_destroy_wakeup_source(epi);
1649 }
1da177e4 1650
128dd175
EW
1651 /*
1652 * The following barrier has two effects:
1653 *
1654 * 1) Flush epi changes above to other CPUs. This ensures
1655 * we do not miss events from ep_poll_callback if an
1656 * event occurs immediately after we call f_op->poll().
a218cc49 1657 * We need this because we did not take ep->lock while
128dd175 1658 * changing epi above (but ep_poll_callback does take
a218cc49 1659 * ep->lock).
128dd175
EW
1660 *
1661 * 2) We also need to ensure we do not miss _past_ events
1662 * when calling f_op->poll(). This barrier also
1663 * pairs with the barrier in wq_has_sleeper (see
1664 * comments for wq_has_sleeper).
1665 *
1666 * This barrier will now guarantee ep_poll_callback or f_op->poll
1667 * (or both) will notice the readiness of an item.
1668 */
1669 smp_mb();
1670
1da177e4
LT
1671 /*
1672 * Get current event bits. We can safely use the file* here because
1673 * its usage count has been increased by the caller of this function.
c7ea7630 1674 * If the item is "hot" and it is not registered inside the ready
67647d0f 1675 * list, push it inside.
1da177e4 1676 */
69112736 1677 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1678 write_lock_irq(&ep->lock);
992991c0 1679 if (!ep_is_linked(epi)) {
c7ea7630 1680 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1681 ep_pm_stay_awake(epi);
c7ea7630
DL
1682
1683 /* Notify waiting tasks that events are available */
1684 if (waitqueue_active(&ep->wq))
a218cc49 1685 wake_up(&ep->wq);
c7ea7630
DL
1686 if (waitqueue_active(&ep->poll_wait))
1687 pwake++;
7699acd1 1688 }
a218cc49 1689 write_unlock_irq(&ep->lock);
7699acd1 1690 }
1da177e4 1691
7699acd1
DL
1692 /* We have to call this outside the lock */
1693 if (pwake)
5071f97e 1694 ep_poll_safewake(&ep->poll_wait);
1da177e4 1695
7699acd1 1696 return 0;
1da177e4
LT
1697}
1698
d85e2aa2 1699static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 1700 void *priv)
1da177e4 1701{
5071f97e 1702 struct ep_send_events_data *esed = priv;
d85e2aa2 1703 __poll_t revents;
4e0982a0
DB
1704 struct epitem *epi, *tmp;
1705 struct epoll_event __user *uevent = esed->events;
eea1d585 1706 struct wakeup_source *ws;
626cf236
HV
1707 poll_table pt;
1708
1709 init_poll_funcptr(&pt, NULL);
4e0982a0 1710 esed->res = 0;
1da177e4 1711
296e236e 1712 /*
5071f97e
DL
1713 * We can loop without lock because we are passed a task private list.
1714 * Items cannot vanish during the loop because ep_scan_ready_list() is
1715 * holding "mtx" during this call.
296e236e 1716 */
21877e1a
DB
1717 lockdep_assert_held(&ep->mtx);
1718
4e0982a0
DB
1719 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1720 if (esed->res >= esed->maxevents)
1721 break;
d47de16c 1722
4d7e30d9
AH
1723 /*
1724 * Activate ep->ws before deactivating epi->ws to prevent
1725 * triggering auto-suspend here (in case we reactive epi->ws
1726 * below).
1727 *
1728 * This could be rearranged to delay the deactivation of epi->ws
1729 * instead, but then epi->ws would temporarily be out of sync
1730 * with ep_is_linked().
1731 */
eea1d585
EW
1732 ws = ep_wakeup_source(epi);
1733 if (ws) {
1734 if (ws->active)
1735 __pm_stay_awake(ep->ws);
1736 __pm_relax(ws);
1737 }
1738
d47de16c 1739 list_del_init(&epi->rdllink);
1da177e4 1740
296e236e 1741 /*
5071f97e
DL
1742 * If the event mask intersect the caller-requested one,
1743 * deliver the event to userspace. Again, ep_scan_ready_list()
4e0982a0 1744 * is holding ep->mtx, so no operations coming from userspace
5071f97e 1745 * can change the item.
296e236e 1746 */
4e0982a0
DB
1747 revents = ep_item_poll(epi, &pt, 1);
1748 if (!revents)
1749 continue;
1750
1751 if (__put_user(revents, &uevent->events) ||
1752 __put_user(epi->event.data, &uevent->data)) {
1753 list_add(&epi->rdllink, head);
1754 ep_pm_stay_awake(epi);
1755 if (!esed->res)
1756 esed->res = -EFAULT;
1757 return 0;
1758 }
1759 esed->res++;
1760 uevent++;
1761 if (epi->event.events & EPOLLONESHOT)
1762 epi->event.events &= EP_PRIVATE_BITS;
1763 else if (!(epi->event.events & EPOLLET)) {
1764 /*
1765 * If this file has been added with Level
1766 * Trigger mode, we need to insert back inside
1767 * the ready list, so that the next call to
1768 * epoll_wait() will check again the events
1769 * availability. At this point, no one can insert
1770 * into ep->rdllist besides us. The epoll_ctl()
1771 * callers are locked out by
1772 * ep_scan_ready_list() holding "mtx" and the
1773 * poll callback will queue them in ep->ovflist.
1774 */
1775 list_add_tail(&epi->rdllink, &ep->rdllist);
1776 ep_pm_stay_awake(epi);
296e236e
DL
1777 }
1778 }
5071f97e 1779
d7ebbe46 1780 return 0;
5071f97e 1781}
d47de16c 1782
296e236e
DL
1783static int ep_send_events(struct eventpoll *ep,
1784 struct epoll_event __user *events, int maxevents)
5071f97e
DL
1785{
1786 struct ep_send_events_data esed;
1da177e4 1787
5071f97e
DL
1788 esed.maxevents = maxevents;
1789 esed.events = events;
6192bd53 1790
d7ebbe46
AV
1791 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1792 return esed.res;
1da177e4
LT
1793}
1794
766b9f92 1795static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1796{
766b9f92 1797 struct timespec64 now, ts = {
0781b909
ED
1798 .tv_sec = ms / MSEC_PER_SEC,
1799 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1800 };
1801
766b9f92
DD
1802 ktime_get_ts64(&now);
1803 return timespec64_add_safe(now, ts);
0781b909
ED
1804}
1805
f4d93ad7
SB
1806/**
1807 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1808 * event buffer.
1809 *
1810 * @ep: Pointer to the eventpoll context.
1811 * @events: Pointer to the userspace buffer where the ready events should be
1812 * stored.
1813 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1814 * @timeout: Maximum timeout for the ready events fetch operation, in
1815 * milliseconds. If the @timeout is zero, the function will not block,
1816 * while if the @timeout is less than zero, the function will block
1817 * until at least one event has been retrieved (or an error
1818 * occurred).
1819 *
1820 * Returns: Returns the number of ready events which have been fetched, or an
1821 * error code, in case of error.
1822 */
1da177e4
LT
1823static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1824 int maxevents, long timeout)
1825{
f4d93ad7 1826 int res = 0, eavail, timed_out = 0;
da8b44d5 1827 u64 slack = 0;
ac6424b9 1828 wait_queue_entry_t wait;
95aac7b1
SB
1829 ktime_t expires, *to = NULL;
1830
679abf38
DB
1831 lockdep_assert_irqs_enabled();
1832
95aac7b1 1833 if (timeout > 0) {
766b9f92 1834 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1835
95aac7b1
SB
1836 slack = select_estimate_accuracy(&end_time);
1837 to = &expires;
766b9f92 1838 *to = timespec64_to_ktime(end_time);
95aac7b1 1839 } else if (timeout == 0) {
f4d93ad7
SB
1840 /*
1841 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1842 * caller specified a non blocking operation. We still need
1843 * lock because we could race and not see an epi being added
1844 * to the ready list while in irq callback. Thus incorrectly
1845 * returning 0 back to userspace.
f4d93ad7 1846 */
95aac7b1 1847 timed_out = 1;
c5a282e9 1848
a218cc49 1849 write_lock_irq(&ep->lock);
c5a282e9 1850 eavail = ep_events_available(ep);
a218cc49 1851 write_unlock_irq(&ep->lock);
c5a282e9 1852
35cff1a6 1853 goto send_events;
95aac7b1 1854 }
1da177e4 1855
f4d93ad7 1856fetch_events:
bf3b9f63
SS
1857
1858 if (!ep_events_available(ep))
1859 ep_busy_loop(ep, timed_out);
1860
c5a282e9
DB
1861 eavail = ep_events_available(ep);
1862 if (eavail)
35cff1a6 1863 goto send_events;
1da177e4 1864
c5a282e9
DB
1865 /*
1866 * Busy poll timed out. Drop NAPI ID for now, we can add
1867 * it back in when we have moved a socket with a valid NAPI
1868 * ID onto the ready list.
1869 */
1870 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1871
50da50ad
RP
1872 do {
1873 /*
1874 * Internally init_wait() uses autoremove_wake_function(),
1875 * thus wait entry is removed from the wait queue on each
1876 * wakeup. Why it is important? In case of several waiters
1877 * each new wakeup will hit the next waiter, giving it the
1878 * chance to harvest new event. Otherwise wakeup can be
1879 * lost. This is also good performance-wise, because on
1880 * normal wakeup path no need to call __remove_wait_queue()
1881 * explicitly, thus ep->lock is not taken, which halts the
1882 * event delivery.
1883 */
1884 init_wait(&wait);
f8090469 1885 write_lock_irq(&ep->lock);
86c05179 1886 __add_wait_queue_exclusive(&ep->wq, &wait);
f8090469 1887 write_unlock_irq(&ep->lock);
1da177e4 1888
bf3b9f63 1889 /*
c5a282e9
DB
1890 * We don't want to sleep if the ep_poll_callback() sends us
1891 * a wakeup in between. That's why we set the task state
1892 * to TASK_INTERRUPTIBLE before doing the checks.
bf3b9f63 1893 */
c5a282e9 1894 set_current_state(TASK_INTERRUPTIBLE);
1da177e4 1895 /*
c5a282e9
DB
1896 * Always short-circuit for fatal signals to allow
1897 * threads to make a timely exit without the chance of
1898 * finding more events available and fetching
1899 * repeatedly.
1da177e4 1900 */
c5a282e9
DB
1901 if (fatal_signal_pending(current)) {
1902 res = -EINTR;
1903 break;
1904 }
95aac7b1 1905
abc610e0
DB
1906 eavail = ep_events_available(ep);
1907 if (eavail)
c5a282e9
DB
1908 break;
1909 if (signal_pending(current)) {
1910 res = -EINTR;
1911 break;
1da177e4 1912 }
1da177e4 1913
abc610e0 1914 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
c5a282e9 1915 timed_out = 1;
abc610e0
DB
1916 break;
1917 }
50da50ad
RP
1918
1919 /* We were woken up, thus go and try to harvest some events */
1920 eavail = 1;
1921
1922 } while (0);
1da177e4 1923
c5a282e9 1924 __set_current_state(TASK_RUNNING);
1da177e4 1925
50da50ad
RP
1926 if (!list_empty_careful(&wait.entry)) {
1927 write_lock_irq(&ep->lock);
1928 __remove_wait_queue(&ep->wq, &wait);
1929 write_unlock_irq(&ep->lock);
1930 }
1931
35cff1a6 1932send_events:
1da177e4
LT
1933 /*
1934 * Try to transfer events to user space. In case we get 0 events and
1935 * there's still timeout left over, we go trying again in search of
1936 * more luck.
1937 */
1938 if (!res && eavail &&
95aac7b1 1939 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1940 goto fetch_events;
1da177e4
LT
1941
1942 return res;
1943}
1944
22bacca4
DL
1945/**
1946 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1947 * API, to verify that adding an epoll file inside another
1948 * epoll structure, does not violate the constraints, in
1949 * terms of closed loops, or too deep chains (which can
1950 * result in excessive stack usage).
1951 *
1952 * @priv: Pointer to the epoll file to be currently checked.
1953 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1954 * data structure pointer.
1955 * @call_nests: Current dept of the @ep_call_nested() call stack.
1956 *
1957 * Returns: Returns zero if adding the epoll @file inside current epoll
1958 * structure @ep does not violate the constraints, or -1 otherwise.
1959 */
1960static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1961{
1962 int error = 0;
1963 struct file *file = priv;
1964 struct eventpoll *ep = file->private_data;
28d82dc1 1965 struct eventpoll *ep_tovisit;
22bacca4
DL
1966 struct rb_node *rbp;
1967 struct epitem *epi;
1968
d8805e63 1969 mutex_lock_nested(&ep->mtx, call_nests + 1);
140932e2 1970 ep->gen = loop_check_gen;
b2ac2ea6 1971 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1972 epi = rb_entry(rbp, struct epitem, rbn);
1973 if (unlikely(is_file_epoll(epi->ffd.file))) {
28d82dc1 1974 ep_tovisit = epi->ffd.file->private_data;
140932e2 1975 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1976 continue;
74bdc129 1977 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1978 ep_loop_check_proc, epi->ffd.file,
1979 ep_tovisit, current);
22bacca4
DL
1980 if (error != 0)
1981 break;
28d82dc1
JB
1982 } else {
1983 /*
1984 * If we've reached a file that is not associated with
1985 * an ep, then we need to check if the newly added
1986 * links are going to add too many wakeup paths. We do
1987 * this by adding it to the tfile_check_list, if it's
1988 * not already there, and calling reverse_path_check()
1989 * during ep_insert().
1990 */
24c0b8ea 1991 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
d6aa2f23
AV
1992 if (get_file_rcu(epi->ffd.file))
1993 list_add(&epi->ffd.file->f_tfile_llink,
1994 &tfile_check_list);
24c0b8ea 1995 }
22bacca4
DL
1996 }
1997 }
1998 mutex_unlock(&ep->mtx);
1999
2000 return error;
2001}
2002
2003/**
2004 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2005 * another epoll file (represented by @ep) does not create
2006 * closed loops or too deep chains.
2007 *
2008 * @ep: Pointer to the epoll private data structure.
2009 * @file: Pointer to the epoll file to be checked.
2010 *
2011 * Returns: Returns zero if adding the epoll @file inside current epoll
2012 * structure @ep does not violate the constraints, or -1 otherwise.
2013 */
2014static int ep_loop_check(struct eventpoll *ep, struct file *file)
2015{
140932e2 2016 return ep_call_nested(&poll_loop_ncalls,
22bacca4 2017 ep_loop_check_proc, file, ep, current);
28d82dc1
JB
2018}
2019
2020static void clear_tfile_check_list(void)
2021{
2022 struct file *file;
2023
2024 /* first clear the tfile_check_list */
2025 while (!list_empty(&tfile_check_list)) {
2026 file = list_first_entry(&tfile_check_list, struct file,
2027 f_tfile_llink);
2028 list_del_init(&file->f_tfile_llink);
24c0b8ea 2029 fput(file);
28d82dc1
JB
2030 }
2031 INIT_LIST_HEAD(&tfile_check_list);
22bacca4
DL
2032}
2033
7699acd1 2034/*
523723bb 2035 * Open an eventpoll file descriptor.
7699acd1 2036 */
791eb22e 2037static int do_epoll_create(int flags)
7699acd1 2038{
28d82dc1 2039 int error, fd;
bb57c3ed 2040 struct eventpoll *ep = NULL;
28d82dc1 2041 struct file *file;
7699acd1 2042
e38b36f3
UD
2043 /* Check the EPOLL_* constant for consistency. */
2044 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2045
296e236e
DL
2046 if (flags & ~EPOLL_CLOEXEC)
2047 return -EINVAL;
7699acd1 2048 /*
bb57c3ed 2049 * Create the internal data structure ("struct eventpoll").
7699acd1 2050 */
9fe5ad9c 2051 error = ep_alloc(&ep);
bb57c3ed
DL
2052 if (error < 0)
2053 return error;
7699acd1
DL
2054 /*
2055 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 2056 * a file structure and a free file descriptor.
7699acd1 2057 */
28d82dc1
JB
2058 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2059 if (fd < 0) {
2060 error = fd;
2061 goto out_free_ep;
2062 }
2063 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 2064 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
2065 if (IS_ERR(file)) {
2066 error = PTR_ERR(file);
2067 goto out_free_fd;
2068 }
28d82dc1 2069 ep->file = file;
98022748 2070 fd_install(fd, file);
28d82dc1
JB
2071 return fd;
2072
2073out_free_fd:
2074 put_unused_fd(fd);
2075out_free_ep:
2076 ep_free(ep);
bb57c3ed 2077 return error;
7699acd1
DL
2078}
2079
791eb22e
DB
2080SYSCALL_DEFINE1(epoll_create1, int, flags)
2081{
2082 return do_epoll_create(flags);
2083}
2084
5a8a82b1 2085SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2086{
bfe3891a 2087 if (size <= 0)
9fe5ad9c
UD
2088 return -EINVAL;
2089
791eb22e 2090 return do_epoll_create(0);
a0998b50
UD
2091}
2092
7699acd1
DL
2093/*
2094 * The following function implements the controller interface for
2095 * the eventpoll file that enables the insertion/removal/change of
67647d0f 2096 * file descriptors inside the interest set.
7699acd1 2097 */
5a8a82b1
HC
2098SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2099 struct epoll_event __user *, event)
7699acd1
DL
2100{
2101 int error;
67347fe4 2102 int full_check = 0;
7e3fb584 2103 struct fd f, tf;
7699acd1
DL
2104 struct eventpoll *ep;
2105 struct epitem *epi;
2106 struct epoll_event epds;
67347fe4 2107 struct eventpoll *tep = NULL;
7699acd1 2108
7699acd1
DL
2109 error = -EFAULT;
2110 if (ep_op_has_event(op) &&
2111 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2112 goto error_return;
2113
7699acd1 2114 error = -EBADF;
7e3fb584
AV
2115 f = fdget(epfd);
2116 if (!f.file)
7699acd1
DL
2117 goto error_return;
2118
2119 /* Get the "struct file *" for the target file */
7e3fb584
AV
2120 tf = fdget(fd);
2121 if (!tf.file)
7699acd1
DL
2122 goto error_fput;
2123
2124 /* The target file descriptor must support poll */
2125 error = -EPERM;
9965ed17 2126 if (!file_can_poll(tf.file))
7699acd1
DL
2127 goto error_tgt_fput;
2128
4d7e30d9 2129 /* Check if EPOLLWAKEUP is allowed */
c680e41b
NI
2130 if (ep_op_has_event(op))
2131 ep_take_care_of_epollwakeup(&epds);
4d7e30d9 2132
7699acd1
DL
2133 /*
2134 * We have to check that the file structure underneath the file descriptor
2135 * the user passed to us _is_ an eventpoll file. And also we do not permit
2136 * adding an epoll file descriptor inside itself.
2137 */
2138 error = -EINVAL;
7e3fb584 2139 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2140 goto error_tgt_fput;
2141
df0108c5
JB
2142 /*
2143 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2144 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2145 * Also, we do not currently supported nested exclusive wakeups.
2146 */
c857ab64 2147 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2148 if (op == EPOLL_CTL_MOD)
2149 goto error_tgt_fput;
2150 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2151 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2152 goto error_tgt_fput;
2153 }
df0108c5 2154
7699acd1
DL
2155 /*
2156 * At this point it is safe to assume that the "private_data" contains
2157 * our own data structure.
2158 */
7e3fb584 2159 ep = f.file->private_data;
7699acd1 2160
22bacca4
DL
2161 /*
2162 * When we insert an epoll file descriptor, inside another epoll file
2163 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2164 * better be handled here, than in more critical paths. While we are
2165 * checking for loops we also determine the list of files reachable
2166 * and hang them on the tfile_check_list, so we can check that we
2167 * haven't created too many possible wakeup paths.
22bacca4 2168 *
67347fe4
JB
2169 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2170 * the epoll file descriptor is attaching directly to a wakeup source,
2171 * unless the epoll file descriptor is nested. The purpose of taking the
2172 * 'epmutex' on add is to prevent complex toplogies such as loops and
2173 * deep wakeup paths from forming in parallel through multiple
2174 * EPOLL_CTL_ADD operations.
22bacca4 2175 */
67347fe4 2176 mutex_lock_nested(&ep->mtx, 0);
28d82dc1 2177 if (op == EPOLL_CTL_ADD) {
67347fe4 2178 if (!list_empty(&f.file->f_ep_links) ||
4afc22d6 2179 ep->gen == loop_check_gen ||
67347fe4
JB
2180 is_file_epoll(tf.file)) {
2181 full_check = 1;
2182 mutex_unlock(&ep->mtx);
2183 mutex_lock(&epmutex);
2184 if (is_file_epoll(tf.file)) {
2185 error = -ELOOP;
9dbadc3c 2186 if (ep_loop_check(ep, tf.file) != 0)
67347fe4 2187 goto error_tgt_fput;
24c0b8ea
MZ
2188 } else {
2189 get_file(tf.file);
67347fe4
JB
2190 list_add(&tf.file->f_tfile_llink,
2191 &tfile_check_list);
24c0b8ea 2192 }
67347fe4
JB
2193 mutex_lock_nested(&ep->mtx, 0);
2194 if (is_file_epoll(tf.file)) {
2195 tep = tf.file->private_data;
2196 mutex_lock_nested(&tep->mtx, 1);
13d51807 2197 }
67347fe4
JB
2198 }
2199 }
7699acd1 2200
67647d0f
DL
2201 /*
2202 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2203 * above, we can be sure to be able to use the item looked up by
2204 * ep_find() till we release the mutex.
2205 */
7e3fb584 2206 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2207
2208 error = -EINVAL;
2209 switch (op) {
2210 case EPOLL_CTL_ADD:
2211 if (!epi) {
a9a08845 2212 epds.events |= EPOLLERR | EPOLLHUP;
67347fe4 2213 error = ep_insert(ep, &epds, tf.file, fd, full_check);
7699acd1
DL
2214 } else
2215 error = -EEXIST;
2216 break;
2217 case EPOLL_CTL_DEL:
2218 if (epi)
2219 error = ep_remove(ep, epi);
2220 else
2221 error = -ENOENT;
2222 break;
2223 case EPOLL_CTL_MOD:
2224 if (epi) {
b6a515c8 2225 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
a9a08845 2226 epds.events |= EPOLLERR | EPOLLHUP;
b6a515c8
JB
2227 error = ep_modify(ep, epi, &epds);
2228 }
7699acd1
DL
2229 } else
2230 error = -ENOENT;
2231 break;
2232 }
67347fe4
JB
2233 if (tep != NULL)
2234 mutex_unlock(&tep->mtx);
d47de16c 2235 mutex_unlock(&ep->mtx);
7699acd1
DL
2236
2237error_tgt_fput:
9dbadc3c
AV
2238 if (full_check) {
2239 clear_tfile_check_list();
140932e2 2240 loop_check_gen++;
22bacca4 2241 mutex_unlock(&epmutex);
9dbadc3c 2242 }
22bacca4 2243
7e3fb584 2244 fdput(tf);
7699acd1 2245error_fput:
7e3fb584 2246 fdput(f);
7699acd1 2247error_return:
7699acd1
DL
2248
2249 return error;
2250}
2251
2252/*
2253 * Implement the event wait interface for the eventpoll file. It is the kernel
2254 * part of the user space epoll_wait(2).
2255 */
791eb22e
DB
2256static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2257 int maxevents, int timeout)
7699acd1 2258{
2903ff01
AV
2259 int error;
2260 struct fd f;
7699acd1
DL
2261 struct eventpoll *ep;
2262
7699acd1
DL
2263 /* The maximum number of event must be greater than zero */
2264 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2265 return -EINVAL;
2266
2267 /* Verify that the area passed by the user is writeable */
96d4f267 2268 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2269 return -EFAULT;
7699acd1
DL
2270
2271 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2272 f = fdget(epfd);
2273 if (!f.file)
2274 return -EBADF;
7699acd1
DL
2275
2276 /*
2277 * We have to check that the file structure underneath the fd
2278 * the user passed to us _is_ an eventpoll file.
2279 */
2280 error = -EINVAL;
2903ff01 2281 if (!is_file_epoll(f.file))
7699acd1
DL
2282 goto error_fput;
2283
2284 /*
2285 * At this point it is safe to assume that the "private_data" contains
2286 * our own data structure.
2287 */
2903ff01 2288 ep = f.file->private_data;
7699acd1
DL
2289
2290 /* Time to fish for events ... */
2291 error = ep_poll(ep, events, maxevents, timeout);
2292
2293error_fput:
2903ff01 2294 fdput(f);
7699acd1
DL
2295 return error;
2296}
2297
791eb22e
DB
2298SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2299 int, maxevents, int, timeout)
2300{
2301 return do_epoll_wait(epfd, events, maxevents, timeout);
2302}
2303
7699acd1
DL
2304/*
2305 * Implement the event wait interface for the eventpoll file. It is the kernel
2306 * part of the user space epoll_pwait(2).
2307 */
5a8a82b1
HC
2308SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2309 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2310 size_t, sigsetsize)
7699acd1
DL
2311{
2312 int error;
7699acd1
DL
2313
2314 /*
2315 * If the caller wants a certain signal mask to be set during the wait,
2316 * we apply it here.
2317 */
b772434b 2318 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2319 if (error)
2320 return error;
7699acd1 2321
791eb22e 2322 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2323 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2324
2325 return error;
2326}
2327
35280bd4
AV
2328#ifdef CONFIG_COMPAT
2329COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2330 struct epoll_event __user *, events,
2331 int, maxevents, int, timeout,
2332 const compat_sigset_t __user *, sigmask,
2333 compat_size_t, sigsetsize)
2334{
2335 long err;
35280bd4
AV
2336
2337 /*
2338 * If the caller wants a certain signal mask to be set during the wait,
2339 * we apply it here.
2340 */
b772434b 2341 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2342 if (err)
2343 return err;
35280bd4 2344
791eb22e 2345 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2346 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2347
2348 return err;
2349}
2350#endif
2351
1da177e4
LT
2352static int __init eventpoll_init(void)
2353{
7ef9964e
DL
2354 struct sysinfo si;
2355
2356 si_meminfo(&si);
9df04e1f
DL
2357 /*
2358 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2359 */
2360 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2361 EP_ITEM_COST;
52bd19f7 2362 BUG_ON(max_user_watches < 0);
1da177e4 2363
22bacca4
DL
2364 /*
2365 * Initialize the structure used to perform epoll file descriptor
2366 * inclusion loops checks.
2367 */
2368 ep_nested_calls_init(&poll_loop_ncalls);
2369
57a173bd 2370#ifdef CONFIG_DEBUG_LOCK_ALLOC
1da177e4 2371 /* Initialize the structure used to perform safe poll wait head wake ups */
5071f97e 2372 ep_nested_calls_init(&poll_safewake_ncalls);
57a173bd 2373#endif
1da177e4 2374
39732ca5
EW
2375 /*
2376 * We can have many thousands of epitems, so prevent this from
2377 * using an extra cache line on 64-bit (and smaller) CPUs
2378 */
2379 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2380
1da177e4
LT
2381 /* Allocates slab cache used to allocate "struct epitem" items */
2382 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2383 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2384
2385 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2386 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2387 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2388
1da177e4 2389 return 0;
1da177e4 2390}
cea69241 2391fs_initcall(eventpoll_init);