]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/eventpoll.c
epoll: switch epitem->pwqlist to single-linked list
[mirror_ubuntu-hirsute-kernel.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4
LT
111
112/*
5071f97e
DL
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
1da177e4 115 */
5071f97e 116struct nested_call_node {
1da177e4 117 struct list_head llink;
5071f97e 118 void *cookie;
3fe4a975 119 void *ctx;
1da177e4
LT
120};
121
122/*
5071f97e
DL
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
1da177e4 125 */
5071f97e
DL
126struct nested_calls {
127 struct list_head tasks_call_list;
1da177e4
LT
128 spinlock_t lock;
129};
130
80285b75
AV
131/* Wait structure used by the poll hooks */
132struct eppoll_entry {
133 /* List header used to link this structure to the "struct epitem" */
134 struct eppoll_entry *next;
135
136 /* The "base" pointer is set to the container "struct epitem" */
137 struct epitem *base;
138
139 /*
140 * Wait queue item that will be linked to the target file wait
141 * queue head.
142 */
143 wait_queue_entry_t wait;
144
145 /* The wait queue head that linked the "wait" wait queue item */
146 wait_queue_head_t *whead;
147};
148
d47de16c
DL
149/*
150 * Each file descriptor added to the eventpoll interface will
151 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
152 * Avoid increasing the size of this struct, there can be many thousands
153 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
154 */
155struct epitem {
ae10b2b4
JB
156 union {
157 /* RB tree node links this structure to the eventpoll RB tree */
158 struct rb_node rbn;
159 /* Used to free the struct epitem */
160 struct rcu_head rcu;
161 };
d47de16c
DL
162
163 /* List header used to link this structure to the eventpoll ready list */
164 struct list_head rdllink;
165
c7ea7630
DL
166 /*
167 * Works together "struct eventpoll"->ovflist in keeping the
168 * single linked chain of items.
169 */
170 struct epitem *next;
171
d47de16c
DL
172 /* The file descriptor information this item refers to */
173 struct epoll_filefd ffd;
174
175 /* Number of active wait queue attached to poll operations */
176 int nwait;
177
178 /* List containing poll wait queues */
80285b75 179 struct eppoll_entry *pwqlist;
d47de16c
DL
180
181 /* The "container" of this item */
182 struct eventpoll *ep;
183
d47de16c
DL
184 /* List header used to link this item to the "struct file" items list */
185 struct list_head fllink;
186
4d7e30d9 187 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 188 struct wakeup_source __rcu *ws;
4d7e30d9 189
c7ea7630
DL
190 /* The structure that describe the interested events and the source fd */
191 struct epoll_event event;
d47de16c
DL
192};
193
1da177e4
LT
194/*
195 * This structure is stored inside the "private_data" member of the file
bf6a41db 196 * structure and represents the main data structure for the eventpoll
1da177e4
LT
197 * interface.
198 */
199struct eventpoll {
1da177e4 200 /*
d47de16c
DL
201 * This mutex is used to ensure that files are not removed
202 * while epoll is using them. This is held during the event
203 * collection loop, the file cleanup path, the epoll file exit
204 * code and the ctl operations.
1da177e4 205 */
d47de16c 206 struct mutex mtx;
1da177e4
LT
207
208 /* Wait queue used by sys_epoll_wait() */
209 wait_queue_head_t wq;
210
211 /* Wait queue used by file->poll() */
212 wait_queue_head_t poll_wait;
213
214 /* List of ready file descriptors */
215 struct list_head rdllist;
216
a218cc49
RP
217 /* Lock which protects rdllist and ovflist */
218 rwlock_t lock;
219
67647d0f 220 /* RB tree root used to store monitored fd structs */
b2ac2ea6 221 struct rb_root_cached rbr;
d47de16c
DL
222
223 /*
224 * This is a single linked list that chains all the "struct epitem" that
25985edc 225 * happened while transferring ready events to userspace w/out
a218cc49 226 * holding ->lock.
d47de16c
DL
227 */
228 struct epitem *ovflist;
7ef9964e 229
4d7e30d9
AH
230 /* wakeup_source used when ep_scan_ready_list is running */
231 struct wakeup_source *ws;
232
7ef9964e
DL
233 /* The user that created the eventpoll descriptor */
234 struct user_struct *user;
28d82dc1
JB
235
236 struct file *file;
237
238 /* used to optimize loop detection check */
18306c40 239 u64 gen;
bf3b9f63
SS
240
241#ifdef CONFIG_NET_RX_BUSY_POLL
242 /* used to track busy poll napi_id */
243 unsigned int napi_id;
244#endif
efcdd350
JB
245
246#ifdef CONFIG_DEBUG_LOCK_ALLOC
247 /* tracks wakeup nests for lockdep validation */
248 u8 nests;
249#endif
1da177e4
LT
250};
251
1da177e4
LT
252/* Wrapper struct used by poll queueing */
253struct ep_pqueue {
254 poll_table pt;
255 struct epitem *epi;
256};
257
5071f97e
DL
258/* Used by the ep_send_events() function as callback private data */
259struct ep_send_events_data {
260 int maxevents;
261 struct epoll_event __user *events;
d7ebbe46 262 int res;
5071f97e
DL
263};
264
7ef9964e
DL
265/*
266 * Configuration options available inside /proc/sys/fs/epoll/
267 */
7ef9964e 268/* Maximum number of epoll watched descriptors, per user */
52bd19f7 269static long max_user_watches __read_mostly;
7ef9964e 270
1da177e4 271/*
d47de16c 272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 273 */
7ef9964e 274static DEFINE_MUTEX(epmutex);
1da177e4 275
18306c40
AV
276static u64 loop_check_gen = 0;
277
22bacca4
DL
278/* Used to check for epoll file descriptor inclusion loops */
279static struct nested_calls poll_loop_ncalls;
280
1da177e4 281/* Slab cache used to allocate "struct epitem" */
e18b890b 282static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
283
284/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 285static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 286
28d82dc1
JB
287/*
288 * List of files with newly added links, where we may need to limit the number
289 * of emanating paths. Protected by the epmutex.
290 */
291static LIST_HEAD(tfile_check_list);
292
7ef9964e
DL
293#ifdef CONFIG_SYSCTL
294
295#include <linux/sysctl.h>
296
eec4844f 297static long long_zero;
52bd19f7 298static long long_max = LONG_MAX;
7ef9964e 299
1f7e0616 300struct ctl_table epoll_table[] = {
7ef9964e
DL
301 {
302 .procname = "max_user_watches",
303 .data = &max_user_watches,
52bd19f7 304 .maxlen = sizeof(max_user_watches),
7ef9964e 305 .mode = 0644,
52bd19f7 306 .proc_handler = proc_doulongvec_minmax,
eec4844f 307 .extra1 = &long_zero,
52bd19f7 308 .extra2 = &long_max,
7ef9964e 309 },
ab09203e 310 { }
7ef9964e
DL
311};
312#endif /* CONFIG_SYSCTL */
313
28d82dc1
JB
314static const struct file_operations eventpoll_fops;
315
316static inline int is_file_epoll(struct file *f)
317{
318 return f->f_op == &eventpoll_fops;
319}
b030a4dd 320
67647d0f 321/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
322static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 struct file *file, int fd)
324{
325 ffd->file = file;
326 ffd->fd = fd;
327}
328
67647d0f 329/* Compare RB tree keys */
b030a4dd
PE
330static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 struct epoll_filefd *p2)
332{
333 return (p1->file > p2->file ? +1:
334 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335}
336
b030a4dd 337/* Tells us if the item is currently linked */
992991c0 338static inline int ep_is_linked(struct epitem *epi)
b030a4dd 339{
992991c0 340 return !list_empty(&epi->rdllink);
b030a4dd
PE
341}
342
ac6424b9 343static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
344{
345 return container_of(p, struct eppoll_entry, wait);
346}
347
b030a4dd 348/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 349static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
350{
351 return container_of(p, struct eppoll_entry, wait)->base;
352}
353
354/* Get the "struct epitem" from an epoll queue wrapper */
cdac75e6 355static inline struct epitem *ep_item_from_epqueue(poll_table *p)
b030a4dd
PE
356{
357 return container_of(p, struct ep_pqueue, pt)->epi;
358}
359
1da177e4 360/* Initialize the poll safe wake up structure */
5071f97e 361static void ep_nested_calls_init(struct nested_calls *ncalls)
1da177e4 362{
5071f97e
DL
363 INIT_LIST_HEAD(&ncalls->tasks_call_list);
364 spin_lock_init(&ncalls->lock);
1da177e4
LT
365}
366
3fb0e584
DL
367/**
368 * ep_events_available - Checks if ready events might be available.
369 *
370 * @ep: Pointer to the eventpoll context.
371 *
372 * Returns: Returns a value different than zero if ready events are available,
373 * or zero otherwise.
374 */
375static inline int ep_events_available(struct eventpoll *ep)
376{
c5a282e9
DB
377 return !list_empty_careful(&ep->rdllist) ||
378 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
379}
380
bf3b9f63
SS
381#ifdef CONFIG_NET_RX_BUSY_POLL
382static bool ep_busy_loop_end(void *p, unsigned long start_time)
383{
384 struct eventpoll *ep = p;
385
386 return ep_events_available(ep) || busy_loop_timeout(start_time);
387}
bf3b9f63
SS
388
389/*
390 * Busy poll if globally on and supporting sockets found && no events,
391 * busy loop will return if need_resched or ep_events_available.
392 *
393 * we must do our busy polling with irqs enabled
394 */
395static void ep_busy_loop(struct eventpoll *ep, int nonblock)
396{
bf3b9f63
SS
397 unsigned int napi_id = READ_ONCE(ep->napi_id);
398
399 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
400 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
bf3b9f63
SS
401}
402
403static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
404{
bf3b9f63
SS
405 if (ep->napi_id)
406 ep->napi_id = 0;
bf3b9f63
SS
407}
408
409/*
410 * Set epoll busy poll NAPI ID from sk.
411 */
412static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
413{
bf3b9f63
SS
414 struct eventpoll *ep;
415 unsigned int napi_id;
416 struct socket *sock;
417 struct sock *sk;
418 int err;
419
420 if (!net_busy_loop_on())
421 return;
422
423 sock = sock_from_file(epi->ffd.file, &err);
424 if (!sock)
425 return;
426
427 sk = sock->sk;
428 if (!sk)
429 return;
430
431 napi_id = READ_ONCE(sk->sk_napi_id);
432 ep = epi->ep;
433
434 /* Non-NAPI IDs can be rejected
435 * or
436 * Nothing to do if we already have this ID
437 */
438 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
439 return;
440
441 /* record NAPI ID for use in next busy poll */
442 ep->napi_id = napi_id;
bf3b9f63
SS
443}
444
514056d5
DB
445#else
446
447static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
448{
449}
450
451static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
452{
453}
454
455static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
456{
457}
458
459#endif /* CONFIG_NET_RX_BUSY_POLL */
460
5071f97e
DL
461/**
462 * ep_call_nested - Perform a bound (possibly) nested call, by checking
463 * that the recursion limit is not exceeded, and that
464 * the same nested call (by the meaning of same cookie) is
465 * no re-entered.
466 *
467 * @ncalls: Pointer to the nested_calls structure to be used for this call.
5071f97e
DL
468 * @nproc: Nested call core function pointer.
469 * @priv: Opaque data to be passed to the @nproc callback.
470 * @cookie: Cookie to be used to identify this nested call.
3fe4a975 471 * @ctx: This instance context.
5071f97e
DL
472 *
473 * Returns: Returns the code returned by the @nproc callback, or -1 if
474 * the maximum recursion limit has been exceeded.
1da177e4 475 */
74bdc129 476static int ep_call_nested(struct nested_calls *ncalls,
5071f97e 477 int (*nproc)(void *, void *, int), void *priv,
3fe4a975 478 void *cookie, void *ctx)
1da177e4 479{
5071f97e 480 int error, call_nests = 0;
1da177e4 481 unsigned long flags;
5071f97e
DL
482 struct list_head *lsthead = &ncalls->tasks_call_list;
483 struct nested_call_node *tncur;
484 struct nested_call_node tnode;
1da177e4 485
5071f97e 486 spin_lock_irqsave(&ncalls->lock, flags);
1da177e4 487
5071f97e
DL
488 /*
489 * Try to see if the current task is already inside this wakeup call.
490 * We use a list here, since the population inside this set is always
491 * very much limited.
492 */
b70c3940 493 list_for_each_entry(tncur, lsthead, llink) {
3fe4a975 494 if (tncur->ctx == ctx &&
74bdc129 495 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
1da177e4
LT
496 /*
497 * Ops ... loop detected or maximum nest level reached.
498 * We abort this wake by breaking the cycle itself.
499 */
abff55ce
TB
500 error = -1;
501 goto out_unlock;
1da177e4
LT
502 }
503 }
504
5071f97e 505 /* Add the current task and cookie to the list */
3fe4a975 506 tnode.ctx = ctx;
5071f97e 507 tnode.cookie = cookie;
1da177e4
LT
508 list_add(&tnode.llink, lsthead);
509
5071f97e 510 spin_unlock_irqrestore(&ncalls->lock, flags);
1da177e4 511
5071f97e
DL
512 /* Call the nested function */
513 error = (*nproc)(priv, cookie, call_nests);
1da177e4
LT
514
515 /* Remove the current task from the list */
5071f97e 516 spin_lock_irqsave(&ncalls->lock, flags);
1da177e4 517 list_del(&tnode.llink);
3fe4a975 518out_unlock:
5071f97e
DL
519 spin_unlock_irqrestore(&ncalls->lock, flags);
520
521 return error;
522}
523
02edc6fc
SR
524/*
525 * As described in commit 0ccf831cb lockdep: annotate epoll
526 * the use of wait queues used by epoll is done in a very controlled
527 * manner. Wake ups can nest inside each other, but are never done
528 * with the same locking. For example:
529 *
530 * dfd = socket(...);
531 * efd1 = epoll_create();
532 * efd2 = epoll_create();
533 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
534 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
535 *
536 * When a packet arrives to the device underneath "dfd", the net code will
537 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
538 * callback wakeup entry on that queue, and the wake_up() performed by the
539 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
540 * (efd1) notices that it may have some event ready, so it needs to wake up
541 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
542 * that ends up in another wake_up(), after having checked about the
543 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
544 * avoid stack blasting.
545 *
546 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
547 * this special case of epoll.
548 */
2dfa4eea 549#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 550
efcdd350 551static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 552{
efcdd350 553 struct eventpoll *ep_src;
f6520c52 554 unsigned long flags;
efcdd350
JB
555 u8 nests = 0;
556
557 /*
558 * To set the subclass or nesting level for spin_lock_irqsave_nested()
559 * it might be natural to create a per-cpu nest count. However, since
560 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
561 * schedule() in the -rt kernel, the per-cpu variable are no longer
562 * protected. Thus, we are introducing a per eventpoll nest field.
563 * If we are not being call from ep_poll_callback(), epi is NULL and
564 * we are at the first level of nesting, 0. Otherwise, we are being
565 * called from ep_poll_callback() and if a previous wakeup source is
566 * not an epoll file itself, we are at depth 1 since the wakeup source
567 * is depth 0. If the wakeup source is a previous epoll file in the
568 * wakeup chain then we use its nests value and record ours as
569 * nests + 1. The previous epoll file nests value is stable since its
570 * already holding its own poll_wait.lock.
571 */
572 if (epi) {
573 if ((is_file_epoll(epi->ffd.file))) {
574 ep_src = epi->ffd.file->private_data;
575 nests = ep_src->nests;
576 } else {
577 nests = 1;
578 }
579 }
580 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
581 ep->nests = nests + 1;
582 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
583 ep->nests = 0;
584 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
585}
586
57a173bd
JB
587#else
588
efcdd350 589static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 590{
efcdd350 591 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
592}
593
594#endif
595
971316f0
ON
596static void ep_remove_wait_queue(struct eppoll_entry *pwq)
597{
598 wait_queue_head_t *whead;
599
600 rcu_read_lock();
138e4ad6
ON
601 /*
602 * If it is cleared by POLLFREE, it should be rcu-safe.
603 * If we read NULL we need a barrier paired with
604 * smp_store_release() in ep_poll_callback(), otherwise
605 * we rely on whead->lock.
606 */
607 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
608 if (whead)
609 remove_wait_queue(whead, &pwq->wait);
610 rcu_read_unlock();
611}
612
1da177e4 613/*
d1bc90dd
TB
614 * This function unregisters poll callbacks from the associated file
615 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
616 * ep_free).
1da177e4 617 */
7699acd1 618static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 619{
80285b75 620 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 621 struct eppoll_entry *pwq;
1da177e4 622
80285b75
AV
623 while ((pwq = *p) != NULL) {
624 *p = pwq->next;
971316f0 625 ep_remove_wait_queue(pwq);
d1bc90dd 626 kmem_cache_free(pwq_cache, pwq);
1da177e4 627 }
1da177e4
LT
628}
629
eea1d585
EW
630/* call only when ep->mtx is held */
631static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
632{
633 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
634}
635
636/* call only when ep->mtx is held */
637static inline void ep_pm_stay_awake(struct epitem *epi)
638{
639 struct wakeup_source *ws = ep_wakeup_source(epi);
640
641 if (ws)
642 __pm_stay_awake(ws);
643}
644
645static inline bool ep_has_wakeup_source(struct epitem *epi)
646{
647 return rcu_access_pointer(epi->ws) ? true : false;
648}
649
650/* call when ep->mtx cannot be held (ep_poll_callback) */
651static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
652{
653 struct wakeup_source *ws;
654
655 rcu_read_lock();
656 ws = rcu_dereference(epi->ws);
657 if (ws)
658 __pm_stay_awake(ws);
659 rcu_read_unlock();
660}
661
5071f97e
DL
662/**
663 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
664 * the scan code, to call f_op->poll(). Also allows for
665 * O(NumReady) performance.
666 *
667 * @ep: Pointer to the epoll private data structure.
668 * @sproc: Pointer to the scan callback.
669 * @priv: Private opaque data passed to the @sproc callback.
d8805e63 670 * @depth: The current depth of recursive f_op->poll calls.
67347fe4 671 * @ep_locked: caller already holds ep->mtx
5071f97e
DL
672 *
673 * Returns: The same integer error code returned by the @sproc callback.
674 */
d85e2aa2
AV
675static __poll_t ep_scan_ready_list(struct eventpoll *ep,
676 __poll_t (*sproc)(struct eventpoll *,
5071f97e 677 struct list_head *, void *),
67347fe4 678 void *priv, int depth, bool ep_locked)
5071f97e 679{
d85e2aa2 680 __poll_t res;
5071f97e 681 struct epitem *epi, *nepi;
296e236e 682 LIST_HEAD(txlist);
5071f97e 683
92e64178
DB
684 lockdep_assert_irqs_enabled();
685
5071f97e
DL
686 /*
687 * We need to lock this because we could be hit by
e057e15f 688 * eventpoll_release_file() and epoll_ctl().
5071f97e 689 */
67347fe4
JB
690
691 if (!ep_locked)
692 mutex_lock_nested(&ep->mtx, depth);
5071f97e
DL
693
694 /*
695 * Steal the ready list, and re-init the original one to the
696 * empty list. Also, set ep->ovflist to NULL so that events
697 * happening while looping w/out locks, are not lost. We cannot
698 * have the poll callback to queue directly on ep->rdllist,
699 * because we want the "sproc" callback to be able to do it
700 * in a lockless way.
701 */
a218cc49 702 write_lock_irq(&ep->lock);
296e236e 703 list_splice_init(&ep->rdllist, &txlist);
c5a282e9 704 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 705 write_unlock_irq(&ep->lock);
5071f97e
DL
706
707 /*
708 * Now call the callback function.
709 */
d85e2aa2 710 res = (*sproc)(ep, &txlist, priv);
5071f97e 711
a218cc49 712 write_lock_irq(&ep->lock);
5071f97e
DL
713 /*
714 * During the time we spent inside the "sproc" callback, some
715 * other events might have been queued by the poll callback.
716 * We re-insert them inside the main ready-list here.
717 */
c5a282e9 718 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
719 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
720 /*
721 * We need to check if the item is already in the list.
722 * During the "sproc" callback execution time, items are
723 * queued into ->ovflist but the "txlist" might already
724 * contain them, and the list_splice() below takes care of them.
725 */
992991c0 726 if (!ep_is_linked(epi)) {
c141175d
RP
727 /*
728 * ->ovflist is LIFO, so we have to reverse it in order
729 * to keep in FIFO.
730 */
731 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 732 ep_pm_stay_awake(epi);
4d7e30d9 733 }
5071f97e
DL
734 }
735 /*
736 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
737 * releasing the lock, events will be queued in the normal way inside
738 * ep->rdllist.
739 */
c5a282e9 740 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
741
742 /*
743 * Quickly re-inject items left on "txlist".
744 */
745 list_splice(&txlist, &ep->rdllist);
4d7e30d9 746 __pm_relax(ep->ws);
a218cc49 747 write_unlock_irq(&ep->lock);
5071f97e 748
67347fe4
JB
749 if (!ep_locked)
750 mutex_unlock(&ep->mtx);
5071f97e 751
d85e2aa2 752 return res;
5071f97e
DL
753}
754
ae10b2b4
JB
755static void epi_rcu_free(struct rcu_head *head)
756{
757 struct epitem *epi = container_of(head, struct epitem, rcu);
758 kmem_cache_free(epi_cache, epi);
759}
760
7699acd1
DL
761/*
762 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 763 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
764 */
765static int ep_remove(struct eventpoll *ep, struct epitem *epi)
766{
7699acd1 767 struct file *file = epi->ffd.file;
1da177e4 768
92e64178
DB
769 lockdep_assert_irqs_enabled();
770
1da177e4 771 /*
ee8ef0a4 772 * Removes poll wait queue hooks.
1da177e4 773 */
7699acd1 774 ep_unregister_pollwait(ep, epi);
1da177e4 775
7699acd1 776 /* Remove the current item from the list of epoll hooks */
68499914 777 spin_lock(&file->f_lock);
ae10b2b4 778 list_del_rcu(&epi->fllink);
68499914 779 spin_unlock(&file->f_lock);
1da177e4 780
b2ac2ea6 781 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 782
a218cc49 783 write_lock_irq(&ep->lock);
992991c0 784 if (ep_is_linked(epi))
c7ea7630 785 list_del_init(&epi->rdllink);
a218cc49 786 write_unlock_irq(&ep->lock);
1da177e4 787
eea1d585 788 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
789 /*
790 * At this point it is safe to free the eventpoll item. Use the union
791 * field epi->rcu, since we are trying to minimize the size of
792 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
793 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
794 * use of the rbn field.
795 */
796 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 797
52bd19f7 798 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 799
c7ea7630 800 return 0;
1da177e4
LT
801}
802
7699acd1 803static void ep_free(struct eventpoll *ep)
1da177e4 804{
7699acd1
DL
805 struct rb_node *rbp;
806 struct epitem *epi;
1da177e4 807
7699acd1
DL
808 /* We need to release all tasks waiting for these file */
809 if (waitqueue_active(&ep->poll_wait))
efcdd350 810 ep_poll_safewake(ep, NULL);
1da177e4 811
7699acd1
DL
812 /*
813 * We need to lock this because we could be hit by
814 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 815 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
816 * is on the way to be removed and no one has references to it
817 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 818 * holding "epmutex" is sufficient here.
7699acd1
DL
819 */
820 mutex_lock(&epmutex);
1da177e4
LT
821
822 /*
7699acd1 823 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 824 */
b2ac2ea6 825 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
826 epi = rb_entry(rbp, struct epitem, rbn);
827
828 ep_unregister_pollwait(ep, epi);
91cf5ab6 829 cond_resched();
7699acd1 830 }
1da177e4
LT
831
832 /*
7699acd1
DL
833 * Walks through the whole tree by freeing each "struct epitem". At this
834 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 835 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 836 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
837 * We do not need to lock ep->mtx, either, we only do it to prevent
838 * a lockdep warning.
1da177e4 839 */
ddf676c3 840 mutex_lock(&ep->mtx);
b2ac2ea6 841 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
842 epi = rb_entry(rbp, struct epitem, rbn);
843 ep_remove(ep, epi);
91cf5ab6 844 cond_resched();
7699acd1 845 }
ddf676c3 846 mutex_unlock(&ep->mtx);
1da177e4 847
7699acd1 848 mutex_unlock(&epmutex);
d47de16c 849 mutex_destroy(&ep->mtx);
7ef9964e 850 free_uid(ep->user);
4d7e30d9 851 wakeup_source_unregister(ep->ws);
f0ee9aab 852 kfree(ep);
7699acd1 853}
1da177e4 854
7699acd1
DL
855static int ep_eventpoll_release(struct inode *inode, struct file *file)
856{
857 struct eventpoll *ep = file->private_data;
1da177e4 858
f0ee9aab 859 if (ep)
7699acd1 860 ep_free(ep);
7699acd1 861
7699acd1 862 return 0;
1da177e4
LT
863}
864
d85e2aa2 865static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
37b5e521
JB
866 void *priv);
867static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
868 poll_table *pt);
869
870/*
871 * Differs from ep_eventpoll_poll() in that internal callers already have
872 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
873 * is correctly annotated.
874 */
d85e2aa2 875static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 876 int depth)
450d89ec 877{
37b5e521
JB
878 struct eventpoll *ep;
879 bool locked;
880
450d89ec 881 pt->_key = epi->event.events;
37b5e521 882 if (!is_file_epoll(epi->ffd.file))
9965ed17 883 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
450d89ec 884
37b5e521
JB
885 ep = epi->ffd.file->private_data;
886 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
887 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
450d89ec 888
37b5e521
JB
889 return ep_scan_ready_list(epi->ffd.file->private_data,
890 ep_read_events_proc, &depth, depth,
891 locked) & epi->event.events;
450d89ec
EW
892}
893
d85e2aa2 894static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 895 void *priv)
5071f97e
DL
896{
897 struct epitem *epi, *tmp;
626cf236 898 poll_table pt;
37b5e521 899 int depth = *(int *)priv;
5071f97e 900
626cf236 901 init_poll_funcptr(&pt, NULL);
37b5e521 902 depth++;
450d89ec 903
5071f97e 904 list_for_each_entry_safe(epi, tmp, head, rdllink) {
37b5e521 905 if (ep_item_poll(epi, &pt, depth)) {
a9a08845 906 return EPOLLIN | EPOLLRDNORM;
37b5e521 907 } else {
5071f97e
DL
908 /*
909 * Item has been dropped into the ready list by the poll
910 * callback, but it's not actually ready, as far as
911 * caller requested events goes. We can remove it here.
912 */
eea1d585 913 __pm_relax(ep_wakeup_source(epi));
5071f97e 914 list_del_init(&epi->rdllink);
296e236e 915 }
5071f97e
DL
916 }
917
918 return 0;
919}
920
a11e1d43 921static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e
BN
922{
923 struct eventpoll *ep = file->private_data;
924 int depth = 0;
7699acd1 925
a11e1d43
LT
926 /* Insert inside our poll wait queue */
927 poll_wait(file, &ep->poll_wait, wait);
928
5071f97e
DL
929 /*
930 * Proceed to find out if wanted events are really available inside
37b5e521 931 * the ready list.
5071f97e 932 */
37b5e521
JB
933 return ep_scan_ready_list(ep, ep_read_events_proc,
934 &depth, depth, false);
7699acd1
DL
935}
936
138d22b5 937#ifdef CONFIG_PROC_FS
a3816ab0 938static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
939{
940 struct eventpoll *ep = f->private_data;
941 struct rb_node *rbp;
138d22b5
CG
942
943 mutex_lock(&ep->mtx);
b2ac2ea6 944 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 945 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 946 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 947
77493f04
CG
948 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
949 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 950 epi->ffd.fd, epi->event.events,
77493f04
CG
951 (long long)epi->event.data,
952 (long long)epi->ffd.file->f_pos,
953 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 954 if (seq_has_overflowed(m))
138d22b5
CG
955 break;
956 }
957 mutex_unlock(&ep->mtx);
138d22b5
CG
958}
959#endif
960
7699acd1
DL
961/* File callbacks that implement the eventpoll file behaviour */
962static const struct file_operations eventpoll_fops = {
138d22b5
CG
963#ifdef CONFIG_PROC_FS
964 .show_fdinfo = ep_show_fdinfo,
965#endif
7699acd1 966 .release = ep_eventpoll_release,
a11e1d43 967 .poll = ep_eventpoll_poll,
6038f373 968 .llseek = noop_llseek,
7699acd1
DL
969};
970
b611967d 971/*
7699acd1
DL
972 * This is called from eventpoll_release() to unlink files from the eventpoll
973 * interface. We need to have this facility to cleanup correctly files that are
974 * closed without being removed from the eventpoll interface.
b611967d 975 */
7699acd1 976void eventpoll_release_file(struct file *file)
b611967d 977{
7699acd1 978 struct eventpoll *ep;
ebe06187 979 struct epitem *epi, *next;
b611967d
DL
980
981 /*
68499914 982 * We don't want to get "file->f_lock" because it is not
7699acd1 983 * necessary. It is not necessary because we're in the "struct file"
25985edc 984 * cleanup path, and this means that no one is using this file anymore.
5071f97e 985 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 986 * point, the file counter already went to zero and fget() would fail.
d47de16c 987 * The only hit might come from ep_free() but by holding the mutex
7699acd1 988 * will correctly serialize the operation. We do need to acquire
d47de16c 989 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 990 * from anywhere but ep_free().
68499914
JC
991 *
992 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 993 */
7699acd1 994 mutex_lock(&epmutex);
ebe06187 995 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
7699acd1 996 ep = epi->ep;
d8805e63 997 mutex_lock_nested(&ep->mtx, 0);
7699acd1 998 ep_remove(ep, epi);
d47de16c 999 mutex_unlock(&ep->mtx);
b611967d 1000 }
7699acd1 1001 mutex_unlock(&epmutex);
b611967d
DL
1002}
1003
53d2be79 1004static int ep_alloc(struct eventpoll **pep)
1da177e4 1005{
7ef9964e
DL
1006 int error;
1007 struct user_struct *user;
1008 struct eventpoll *ep;
1da177e4 1009
7ef9964e 1010 user = get_current_user();
7ef9964e
DL
1011 error = -ENOMEM;
1012 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1013 if (unlikely(!ep))
1014 goto free_uid;
1da177e4 1015
d47de16c 1016 mutex_init(&ep->mtx);
a218cc49 1017 rwlock_init(&ep->lock);
1da177e4
LT
1018 init_waitqueue_head(&ep->wq);
1019 init_waitqueue_head(&ep->poll_wait);
1020 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 1021 ep->rbr = RB_ROOT_CACHED;
d47de16c 1022 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 1023 ep->user = user;
1da177e4 1024
53d2be79 1025 *pep = ep;
1da177e4 1026
1da177e4 1027 return 0;
7ef9964e
DL
1028
1029free_uid:
1030 free_uid(user);
1031 return error;
1da177e4
LT
1032}
1033
1da177e4 1034/*
c7ea7630
DL
1035 * Search the file inside the eventpoll tree. The RB tree operations
1036 * are protected by the "mtx" mutex, and ep_find() must be called with
1037 * "mtx" held.
1da177e4
LT
1038 */
1039static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1040{
1041 int kcmp;
1da177e4
LT
1042 struct rb_node *rbp;
1043 struct epitem *epi, *epir = NULL;
1044 struct epoll_filefd ffd;
1045
b030a4dd 1046 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 1047 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 1048 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 1049 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
1050 if (kcmp > 0)
1051 rbp = rbp->rb_right;
1052 else if (kcmp < 0)
1053 rbp = rbp->rb_left;
1054 else {
1da177e4
LT
1055 epir = epi;
1056 break;
1057 }
1058 }
1da177e4 1059
1da177e4
LT
1060 return epir;
1061}
1062
92ef6da3 1063#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
1064static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1065{
1066 struct rb_node *rbp;
1067 struct epitem *epi;
1068
b2ac2ea6 1069 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
1070 epi = rb_entry(rbp, struct epitem, rbn);
1071 if (epi->ffd.fd == tfd) {
1072 if (toff == 0)
1073 return epi;
1074 else
1075 toff--;
1076 }
1077 cond_resched();
1078 }
1079
1080 return NULL;
1081}
1082
1083struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1084 unsigned long toff)
1085{
1086 struct file *file_raw;
1087 struct eventpoll *ep;
1088 struct epitem *epi;
1089
1090 if (!is_file_epoll(file))
1091 return ERR_PTR(-EINVAL);
1092
1093 ep = file->private_data;
1094
1095 mutex_lock(&ep->mtx);
1096 epi = ep_find_tfd(ep, tfd, toff);
1097 if (epi)
1098 file_raw = epi->ffd.file;
1099 else
1100 file_raw = ERR_PTR(-ENOENT);
1101 mutex_unlock(&ep->mtx);
1102
1103 return file_raw;
1104}
92ef6da3 1105#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1106
a218cc49
RP
1107/**
1108 * Adds a new entry to the tail of the list in a lockless way, i.e.
1109 * multiple CPUs are allowed to call this function concurrently.
1110 *
1111 * Beware: it is necessary to prevent any other modifications of the
1112 * existing list until all changes are completed, in other words
1113 * concurrent list_add_tail_lockless() calls should be protected
1114 * with a read lock, where write lock acts as a barrier which
1115 * makes sure all list_add_tail_lockless() calls are fully
1116 * completed.
1117 *
1118 * Also an element can be locklessly added to the list only in one
1119 * direction i.e. either to the tail either to the head, otherwise
1120 * concurrent access will corrupt the list.
1121 *
1122 * Returns %false if element has been already added to the list, %true
1123 * otherwise.
1124 */
1125static inline bool list_add_tail_lockless(struct list_head *new,
1126 struct list_head *head)
1127{
1128 struct list_head *prev;
1129
1130 /*
1131 * This is simple 'new->next = head' operation, but cmpxchg()
1132 * is used in order to detect that same element has been just
1133 * added to the list from another CPU: the winner observes
1134 * new->next == new.
1135 */
1136 if (cmpxchg(&new->next, new, head) != new)
1137 return false;
1138
1139 /*
1140 * Initially ->next of a new element must be updated with the head
1141 * (we are inserting to the tail) and only then pointers are atomically
1142 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1143 * updated before pointers are actually swapped and pointers are
1144 * swapped before prev->next is updated.
1145 */
1146
1147 prev = xchg(&head->prev, new);
1148
1149 /*
1150 * It is safe to modify prev->next and new->prev, because a new element
1151 * is added only to the tail and new->next is updated before XCHG.
1152 */
1153
1154 prev->next = new;
1155 new->prev = prev;
1156
1157 return true;
1158}
1159
1160/**
1161 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1162 * i.e. multiple CPUs are allowed to call this function concurrently.
1163 *
1164 * Returns %false if epi element has been already chained, %true otherwise.
1165 */
1166static inline bool chain_epi_lockless(struct epitem *epi)
1167{
1168 struct eventpoll *ep = epi->ep;
1169
0c54a6a4
KK
1170 /* Fast preliminary check */
1171 if (epi->next != EP_UNACTIVE_PTR)
1172 return false;
1173
a218cc49
RP
1174 /* Check that the same epi has not been just chained from another CPU */
1175 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1176 return false;
1177
1178 /* Atomically exchange tail */
1179 epi->next = xchg(&ep->ovflist, epi);
1180
1181 return true;
1182}
1183
1da177e4 1184/*
7699acd1 1185 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1186 * mechanism. It is called by the stored file descriptors when they
7699acd1 1187 * have events to report.
a218cc49
RP
1188 *
1189 * This callback takes a read lock in order not to content with concurrent
1190 * events from another file descriptors, thus all modifications to ->rdllist
1191 * or ->ovflist are lockless. Read lock is paired with the write lock from
1192 * ep_scan_ready_list(), which stops all list modifications and guarantees
1193 * that lists state is seen correctly.
1194 *
1195 * Another thing worth to mention is that ep_poll_callback() can be called
1196 * concurrently for the same @epi from different CPUs if poll table was inited
1197 * with several wait queues entries. Plural wakeup from different CPUs of a
1198 * single wait queue is serialized by wq.lock, but the case when multiple wait
1199 * queues are used should be detected accordingly. This is detected using
1200 * cmpxchg() operation.
1da177e4 1201 */
ac6424b9 1202static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1203{
7699acd1 1204 int pwake = 0;
7699acd1
DL
1205 struct epitem *epi = ep_item_from_wait(wait);
1206 struct eventpoll *ep = epi->ep;
3ad6f93e 1207 __poll_t pollflags = key_to_poll(key);
a218cc49 1208 unsigned long flags;
df0108c5 1209 int ewake = 0;
1da177e4 1210
a218cc49 1211 read_lock_irqsave(&ep->lock, flags);
1da177e4 1212
bf3b9f63
SS
1213 ep_set_busy_poll_napi_id(epi);
1214
7699acd1
DL
1215 /*
1216 * If the event mask does not contain any poll(2) event, we consider the
1217 * descriptor to be disabled. This condition is likely the effect of the
1218 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1219 * until the next EPOLL_CTL_MOD will be issued.
1220 */
1221 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1222 goto out_unlock;
1223
2dfa4eea
DL
1224 /*
1225 * Check the events coming with the callback. At this stage, not
1226 * every device reports the events in the "key" parameter of the
1227 * callback. We need to be able to handle both cases here, hence the
1228 * test for "key" != NULL before the event match test.
1229 */
3ad6f93e 1230 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1231 goto out_unlock;
1232
d47de16c 1233 /*
bf6a41db 1234 * If we are transferring events to userspace, we can hold no locks
d47de16c 1235 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1236 * semantics). All the events that happen during that period of time are
d47de16c
DL
1237 * chained in ep->ovflist and requeued later on.
1238 */
c5a282e9 1239 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1240 if (chain_epi_lockless(epi))
1241 ep_pm_stay_awake_rcu(epi);
1242 } else if (!ep_is_linked(epi)) {
1243 /* In the usual case, add event to ready list. */
1244 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1245 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1246 }
7699acd1 1247
7699acd1
DL
1248 /*
1249 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1250 * wait list.
1251 */
df0108c5 1252 if (waitqueue_active(&ep->wq)) {
b6a515c8 1253 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1254 !(pollflags & POLLFREE)) {
1255 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1256 case EPOLLIN:
1257 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1258 ewake = 1;
1259 break;
a9a08845
LT
1260 case EPOLLOUT:
1261 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1262 ewake = 1;
1263 break;
1264 case 0:
1265 ewake = 1;
1266 break;
1267 }
1268 }
a218cc49 1269 wake_up(&ep->wq);
df0108c5 1270 }
7699acd1
DL
1271 if (waitqueue_active(&ep->poll_wait))
1272 pwake++;
1273
d47de16c 1274out_unlock:
a218cc49 1275 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1276
7699acd1
DL
1277 /* We have to call this outside the lock */
1278 if (pwake)
efcdd350 1279 ep_poll_safewake(ep, epi);
7699acd1 1280
138e4ad6
ON
1281 if (!(epi->event.events & EPOLLEXCLUSIVE))
1282 ewake = 1;
1283
3ad6f93e 1284 if (pollflags & POLLFREE) {
138e4ad6
ON
1285 /*
1286 * If we race with ep_remove_wait_queue() it can miss
1287 * ->whead = NULL and do another remove_wait_queue() after
1288 * us, so we can't use __remove_wait_queue().
1289 */
1290 list_del_init(&wait->entry);
1291 /*
1292 * ->whead != NULL protects us from the race with ep_free()
1293 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1294 * held by the caller. Once we nullify it, nothing protects
1295 * ep/epi or even wait.
1296 */
1297 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1298 }
df0108c5 1299
138e4ad6 1300 return ewake;
7699acd1 1301}
1da177e4
LT
1302
1303/*
1304 * This is the callback that is used to add our wait queue to the
1305 * target file wakeup lists.
1306 */
1307static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1308 poll_table *pt)
1309{
b030a4dd 1310 struct epitem *epi = ep_item_from_epqueue(pt);
1da177e4
LT
1311 struct eppoll_entry *pwq;
1312
e94b1766 1313 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1da177e4
LT
1314 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1315 pwq->whead = whead;
1316 pwq->base = epi;
df0108c5
JB
1317 if (epi->event.events & EPOLLEXCLUSIVE)
1318 add_wait_queue_exclusive(whead, &pwq->wait);
1319 else
1320 add_wait_queue(whead, &pwq->wait);
80285b75
AV
1321 pwq->next = epi->pwqlist;
1322 epi->pwqlist = pwq;
1da177e4 1323 epi->nwait++;
296e236e 1324 } else {
1da177e4
LT
1325 /* We have to signal that an error occurred */
1326 epi->nwait = -1;
296e236e 1327 }
1da177e4
LT
1328}
1329
1da177e4
LT
1330static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1331{
1332 int kcmp;
b2ac2ea6 1333 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1334 struct epitem *epic;
b2ac2ea6 1335 bool leftmost = true;
1da177e4
LT
1336
1337 while (*p) {
1338 parent = *p;
1339 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1340 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1341 if (kcmp > 0) {
1da177e4 1342 p = &parent->rb_right;
b2ac2ea6
DB
1343 leftmost = false;
1344 } else
1da177e4
LT
1345 p = &parent->rb_left;
1346 }
1347 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1348 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1349}
1350
a80a6b85
AM
1351
1352
28d82dc1
JB
1353#define PATH_ARR_SIZE 5
1354/*
1355 * These are the number paths of length 1 to 5, that we are allowing to emanate
1356 * from a single file of interest. For example, we allow 1000 paths of length
1357 * 1, to emanate from each file of interest. This essentially represents the
1358 * potential wakeup paths, which need to be limited in order to avoid massive
1359 * uncontrolled wakeup storms. The common use case should be a single ep which
1360 * is connected to n file sources. In this case each file source has 1 path
1361 * of length 1. Thus, the numbers below should be more than sufficient. These
1362 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1363 * and delete can't add additional paths. Protected by the epmutex.
1364 */
1365static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1366static int path_count[PATH_ARR_SIZE];
1367
1368static int path_count_inc(int nests)
1369{
93dc6107
JB
1370 /* Allow an arbitrary number of depth 1 paths */
1371 if (nests == 0)
1372 return 0;
1373
28d82dc1
JB
1374 if (++path_count[nests] > path_limits[nests])
1375 return -1;
1376 return 0;
1377}
1378
1379static void path_count_init(void)
1380{
1381 int i;
1382
1383 for (i = 0; i < PATH_ARR_SIZE; i++)
1384 path_count[i] = 0;
1385}
1386
1387static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1388{
1389 int error = 0;
1390 struct file *file = priv;
1391 struct file *child_file;
1392 struct epitem *epi;
1393
ae10b2b4
JB
1394 /* CTL_DEL can remove links here, but that can't increase our count */
1395 rcu_read_lock();
1396 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
28d82dc1
JB
1397 child_file = epi->ep->file;
1398 if (is_file_epoll(child_file)) {
1399 if (list_empty(&child_file->f_ep_links)) {
1400 if (path_count_inc(call_nests)) {
1401 error = -1;
1402 break;
1403 }
1404 } else {
1405 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1406 reverse_path_check_proc,
1407 child_file, child_file,
1408 current);
1409 }
1410 if (error != 0)
1411 break;
1412 } else {
1413 printk(KERN_ERR "reverse_path_check_proc: "
1414 "file is not an ep!\n");
1415 }
1416 }
ae10b2b4 1417 rcu_read_unlock();
28d82dc1
JB
1418 return error;
1419}
1420
1421/**
1422 * reverse_path_check - The tfile_check_list is list of file *, which have
1423 * links that are proposed to be newly added. We need to
1424 * make sure that those added links don't add too many
1425 * paths such that we will spend all our time waking up
1426 * eventpoll objects.
1427 *
1428 * Returns: Returns zero if the proposed links don't create too many paths,
1429 * -1 otherwise.
1430 */
1431static int reverse_path_check(void)
1432{
28d82dc1
JB
1433 int error = 0;
1434 struct file *current_file;
1435
1436 /* let's call this for all tfiles */
1437 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
28d82dc1 1438 path_count_init();
74bdc129 1439 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1440 reverse_path_check_proc, current_file,
1441 current_file, current);
1442 if (error)
1443 break;
1444 }
1445 return error;
1446}
1447
4d7e30d9
AH
1448static int ep_create_wakeup_source(struct epitem *epi)
1449{
3701cb59 1450 struct name_snapshot n;
eea1d585 1451 struct wakeup_source *ws;
4d7e30d9
AH
1452
1453 if (!epi->ep->ws) {
c8377adf 1454 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1455 if (!epi->ep->ws)
1456 return -ENOMEM;
1457 }
1458
3701cb59
AV
1459 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1460 ws = wakeup_source_register(NULL, n.name.name);
1461 release_dentry_name_snapshot(&n);
eea1d585
EW
1462
1463 if (!ws)
4d7e30d9 1464 return -ENOMEM;
eea1d585 1465 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1466
1467 return 0;
1468}
1469
eea1d585
EW
1470/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1471static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1472{
eea1d585
EW
1473 struct wakeup_source *ws = ep_wakeup_source(epi);
1474
d6d67e72 1475 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1476
1477 /*
1478 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1479 * used internally by wakeup_source_remove, too (called by
1480 * wakeup_source_unregister), so we cannot use call_rcu
1481 */
1482 synchronize_rcu();
1483 wakeup_source_unregister(ws);
4d7e30d9
AH
1484}
1485
c7ea7630
DL
1486/*
1487 * Must be called with "mtx" held.
1488 */
bec1a502 1489static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1490 struct file *tfile, int fd, int full_check)
1da177e4 1491{
d85e2aa2
AV
1492 int error, pwake = 0;
1493 __poll_t revents;
52bd19f7 1494 long user_watches;
1da177e4
LT
1495 struct epitem *epi;
1496 struct ep_pqueue epq;
1497
92e64178
DB
1498 lockdep_assert_irqs_enabled();
1499
52bd19f7
RH
1500 user_watches = atomic_long_read(&ep->user->epoll_watches);
1501 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1502 return -ENOSPC;
e94b1766 1503 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
7ef9964e 1504 return -ENOMEM;
1da177e4
LT
1505
1506 /* Item initialization follow here ... */
1da177e4
LT
1507 INIT_LIST_HEAD(&epi->rdllink);
1508 INIT_LIST_HEAD(&epi->fllink);
80285b75 1509 epi->pwqlist = NULL;
1da177e4 1510 epi->ep = ep;
b030a4dd 1511 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1512 epi->event = *event;
1da177e4 1513 epi->nwait = 0;
d47de16c 1514 epi->next = EP_UNACTIVE_PTR;
4d7e30d9
AH
1515 if (epi->event.events & EPOLLWAKEUP) {
1516 error = ep_create_wakeup_source(epi);
1517 if (error)
1518 goto error_create_wakeup_source;
1519 } else {
eea1d585 1520 RCU_INIT_POINTER(epi->ws, NULL);
4d7e30d9 1521 }
1da177e4 1522
f8d4f44d
AV
1523 /* Add the current item to the list of active epoll hook for this file */
1524 spin_lock(&tfile->f_lock);
1525 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1526 spin_unlock(&tfile->f_lock);
1527
1528 /*
1529 * Add the current item to the RB tree. All RB tree operations are
1530 * protected by "mtx", and ep_insert() is called with "mtx" held.
1531 */
1532 ep_rbtree_insert(ep, epi);
1533
1534 /* now check if we've created too many backpaths */
1535 error = -EINVAL;
1536 if (full_check && reverse_path_check())
1537 goto error_remove_epi;
1538
1da177e4
LT
1539 /* Initialize the poll table using the queue callback */
1540 epq.epi = epi;
1541 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1542
1543 /*
1544 * Attach the item to the poll hooks and get current event bits.
1545 * We can safely use the file* here because its usage count has
c7ea7630
DL
1546 * been increased by the caller of this function. Note that after
1547 * this operation completes, the poll callback can start hitting
1548 * the new item.
1da177e4 1549 */
37b5e521 1550 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1551
1552 /*
1553 * We have to check if something went wrong during the poll wait queue
1554 * install process. Namely an allocation for a wait queue failed due
1555 * high memory pressure.
1556 */
7ef9964e 1557 error = -ENOMEM;
1da177e4 1558 if (epi->nwait < 0)
7699acd1 1559 goto error_unregister;
1da177e4 1560
c7ea7630 1561 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1562 write_lock_irq(&ep->lock);
c7ea7630 1563
bf3b9f63
SS
1564 /* record NAPI ID of new item if present */
1565 ep_set_busy_poll_napi_id(epi);
1566
1da177e4 1567 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1568 if (revents && !ep_is_linked(epi)) {
1da177e4 1569 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1570 ep_pm_stay_awake(epi);
1da177e4
LT
1571
1572 /* Notify waiting tasks that events are available */
1573 if (waitqueue_active(&ep->wq))
a218cc49 1574 wake_up(&ep->wq);
1da177e4
LT
1575 if (waitqueue_active(&ep->poll_wait))
1576 pwake++;
1577 }
1578
a218cc49 1579 write_unlock_irq(&ep->lock);
1da177e4 1580
52bd19f7 1581 atomic_long_inc(&ep->user->epoll_watches);
7ef9964e 1582
1da177e4
LT
1583 /* We have to call this outside the lock */
1584 if (pwake)
efcdd350 1585 ep_poll_safewake(ep, NULL);
1da177e4 1586
1da177e4
LT
1587 return 0;
1588
f8d4f44d
AV
1589error_unregister:
1590 ep_unregister_pollwait(ep, epi);
28d82dc1
JB
1591error_remove_epi:
1592 spin_lock(&tfile->f_lock);
ae10b2b4 1593 list_del_rcu(&epi->fllink);
28d82dc1
JB
1594 spin_unlock(&tfile->f_lock);
1595
b2ac2ea6 1596 rb_erase_cached(&epi->rbn, &ep->rbr);
28d82dc1 1597
1da177e4
LT
1598 /*
1599 * We need to do this because an event could have been arrived on some
67647d0f
DL
1600 * allocated wait queue. Note that we don't care about the ep->ovflist
1601 * list, since that is used/cleaned only inside a section bound by "mtx".
1602 * And ep_insert() is called with "mtx" held.
1da177e4 1603 */
a218cc49 1604 write_lock_irq(&ep->lock);
992991c0 1605 if (ep_is_linked(epi))
6192bd53 1606 list_del_init(&epi->rdllink);
a218cc49 1607 write_unlock_irq(&ep->lock);
1da177e4 1608
eea1d585 1609 wakeup_source_unregister(ep_wakeup_source(epi));
4d7e30d9
AH
1610
1611error_create_wakeup_source:
b030a4dd 1612 kmem_cache_free(epi_cache, epi);
7ef9964e 1613
1da177e4
LT
1614 return error;
1615}
1616
1da177e4
LT
1617/*
1618 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1619 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1620 */
bec1a502
AV
1621static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1622 const struct epoll_event *event)
1da177e4
LT
1623{
1624 int pwake = 0;
626cf236
HV
1625 poll_table pt;
1626
92e64178
DB
1627 lockdep_assert_irqs_enabled();
1628
626cf236 1629 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1630
1631 /*
e057e15f
TB
1632 * Set the new event interest mask before calling f_op->poll();
1633 * otherwise we might miss an event that happens between the
1634 * f_op->poll() call and the new event set registering.
1da177e4 1635 */
128dd175 1636 epi->event.events = event->events; /* need barrier below */
e057e15f 1637 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1638 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1639 if (!ep_has_wakeup_source(epi))
4d7e30d9 1640 ep_create_wakeup_source(epi);
eea1d585 1641 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1642 ep_destroy_wakeup_source(epi);
1643 }
1da177e4 1644
128dd175
EW
1645 /*
1646 * The following barrier has two effects:
1647 *
1648 * 1) Flush epi changes above to other CPUs. This ensures
1649 * we do not miss events from ep_poll_callback if an
1650 * event occurs immediately after we call f_op->poll().
a218cc49 1651 * We need this because we did not take ep->lock while
128dd175 1652 * changing epi above (but ep_poll_callback does take
a218cc49 1653 * ep->lock).
128dd175
EW
1654 *
1655 * 2) We also need to ensure we do not miss _past_ events
1656 * when calling f_op->poll(). This barrier also
1657 * pairs with the barrier in wq_has_sleeper (see
1658 * comments for wq_has_sleeper).
1659 *
1660 * This barrier will now guarantee ep_poll_callback or f_op->poll
1661 * (or both) will notice the readiness of an item.
1662 */
1663 smp_mb();
1664
1da177e4
LT
1665 /*
1666 * Get current event bits. We can safely use the file* here because
1667 * its usage count has been increased by the caller of this function.
c7ea7630 1668 * If the item is "hot" and it is not registered inside the ready
67647d0f 1669 * list, push it inside.
1da177e4 1670 */
69112736 1671 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1672 write_lock_irq(&ep->lock);
992991c0 1673 if (!ep_is_linked(epi)) {
c7ea7630 1674 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1675 ep_pm_stay_awake(epi);
c7ea7630
DL
1676
1677 /* Notify waiting tasks that events are available */
1678 if (waitqueue_active(&ep->wq))
a218cc49 1679 wake_up(&ep->wq);
c7ea7630
DL
1680 if (waitqueue_active(&ep->poll_wait))
1681 pwake++;
7699acd1 1682 }
a218cc49 1683 write_unlock_irq(&ep->lock);
7699acd1 1684 }
1da177e4 1685
7699acd1
DL
1686 /* We have to call this outside the lock */
1687 if (pwake)
efcdd350 1688 ep_poll_safewake(ep, NULL);
1da177e4 1689
7699acd1 1690 return 0;
1da177e4
LT
1691}
1692
d85e2aa2 1693static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 1694 void *priv)
1da177e4 1695{
5071f97e 1696 struct ep_send_events_data *esed = priv;
d85e2aa2 1697 __poll_t revents;
4e0982a0
DB
1698 struct epitem *epi, *tmp;
1699 struct epoll_event __user *uevent = esed->events;
eea1d585 1700 struct wakeup_source *ws;
626cf236
HV
1701 poll_table pt;
1702
1703 init_poll_funcptr(&pt, NULL);
4e0982a0 1704 esed->res = 0;
1da177e4 1705
296e236e 1706 /*
5071f97e
DL
1707 * We can loop without lock because we are passed a task private list.
1708 * Items cannot vanish during the loop because ep_scan_ready_list() is
1709 * holding "mtx" during this call.
296e236e 1710 */
21877e1a
DB
1711 lockdep_assert_held(&ep->mtx);
1712
4e0982a0
DB
1713 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1714 if (esed->res >= esed->maxevents)
1715 break;
d47de16c 1716
4d7e30d9
AH
1717 /*
1718 * Activate ep->ws before deactivating epi->ws to prevent
1719 * triggering auto-suspend here (in case we reactive epi->ws
1720 * below).
1721 *
1722 * This could be rearranged to delay the deactivation of epi->ws
1723 * instead, but then epi->ws would temporarily be out of sync
1724 * with ep_is_linked().
1725 */
eea1d585
EW
1726 ws = ep_wakeup_source(epi);
1727 if (ws) {
1728 if (ws->active)
1729 __pm_stay_awake(ep->ws);
1730 __pm_relax(ws);
1731 }
1732
d47de16c 1733 list_del_init(&epi->rdllink);
1da177e4 1734
296e236e 1735 /*
5071f97e
DL
1736 * If the event mask intersect the caller-requested one,
1737 * deliver the event to userspace. Again, ep_scan_ready_list()
4e0982a0 1738 * is holding ep->mtx, so no operations coming from userspace
5071f97e 1739 * can change the item.
296e236e 1740 */
4e0982a0
DB
1741 revents = ep_item_poll(epi, &pt, 1);
1742 if (!revents)
1743 continue;
1744
1745 if (__put_user(revents, &uevent->events) ||
1746 __put_user(epi->event.data, &uevent->data)) {
1747 list_add(&epi->rdllink, head);
1748 ep_pm_stay_awake(epi);
1749 if (!esed->res)
1750 esed->res = -EFAULT;
1751 return 0;
1752 }
1753 esed->res++;
1754 uevent++;
1755 if (epi->event.events & EPOLLONESHOT)
1756 epi->event.events &= EP_PRIVATE_BITS;
1757 else if (!(epi->event.events & EPOLLET)) {
1758 /*
1759 * If this file has been added with Level
1760 * Trigger mode, we need to insert back inside
1761 * the ready list, so that the next call to
1762 * epoll_wait() will check again the events
1763 * availability. At this point, no one can insert
1764 * into ep->rdllist besides us. The epoll_ctl()
1765 * callers are locked out by
1766 * ep_scan_ready_list() holding "mtx" and the
1767 * poll callback will queue them in ep->ovflist.
1768 */
1769 list_add_tail(&epi->rdllink, &ep->rdllist);
1770 ep_pm_stay_awake(epi);
296e236e
DL
1771 }
1772 }
5071f97e 1773
d7ebbe46 1774 return 0;
5071f97e 1775}
d47de16c 1776
296e236e
DL
1777static int ep_send_events(struct eventpoll *ep,
1778 struct epoll_event __user *events, int maxevents)
5071f97e
DL
1779{
1780 struct ep_send_events_data esed;
1da177e4 1781
5071f97e
DL
1782 esed.maxevents = maxevents;
1783 esed.events = events;
6192bd53 1784
d7ebbe46
AV
1785 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1786 return esed.res;
1da177e4
LT
1787}
1788
766b9f92 1789static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1790{
766b9f92 1791 struct timespec64 now, ts = {
0781b909
ED
1792 .tv_sec = ms / MSEC_PER_SEC,
1793 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1794 };
1795
766b9f92
DD
1796 ktime_get_ts64(&now);
1797 return timespec64_add_safe(now, ts);
0781b909
ED
1798}
1799
f4d93ad7
SB
1800/**
1801 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1802 * event buffer.
1803 *
1804 * @ep: Pointer to the eventpoll context.
1805 * @events: Pointer to the userspace buffer where the ready events should be
1806 * stored.
1807 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1808 * @timeout: Maximum timeout for the ready events fetch operation, in
1809 * milliseconds. If the @timeout is zero, the function will not block,
1810 * while if the @timeout is less than zero, the function will block
1811 * until at least one event has been retrieved (or an error
1812 * occurred).
1813 *
1814 * Returns: Returns the number of ready events which have been fetched, or an
1815 * error code, in case of error.
1816 */
1da177e4
LT
1817static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1818 int maxevents, long timeout)
1819{
f4d93ad7 1820 int res = 0, eavail, timed_out = 0;
da8b44d5 1821 u64 slack = 0;
ac6424b9 1822 wait_queue_entry_t wait;
95aac7b1
SB
1823 ktime_t expires, *to = NULL;
1824
679abf38
DB
1825 lockdep_assert_irqs_enabled();
1826
95aac7b1 1827 if (timeout > 0) {
766b9f92 1828 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1829
95aac7b1
SB
1830 slack = select_estimate_accuracy(&end_time);
1831 to = &expires;
766b9f92 1832 *to = timespec64_to_ktime(end_time);
95aac7b1 1833 } else if (timeout == 0) {
f4d93ad7
SB
1834 /*
1835 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1836 * caller specified a non blocking operation. We still need
1837 * lock because we could race and not see an epi being added
1838 * to the ready list while in irq callback. Thus incorrectly
1839 * returning 0 back to userspace.
f4d93ad7 1840 */
95aac7b1 1841 timed_out = 1;
c5a282e9 1842
a218cc49 1843 write_lock_irq(&ep->lock);
c5a282e9 1844 eavail = ep_events_available(ep);
a218cc49 1845 write_unlock_irq(&ep->lock);
c5a282e9 1846
35cff1a6 1847 goto send_events;
95aac7b1 1848 }
1da177e4 1849
f4d93ad7 1850fetch_events:
bf3b9f63
SS
1851
1852 if (!ep_events_available(ep))
1853 ep_busy_loop(ep, timed_out);
1854
c5a282e9
DB
1855 eavail = ep_events_available(ep);
1856 if (eavail)
35cff1a6 1857 goto send_events;
1da177e4 1858
c5a282e9
DB
1859 /*
1860 * Busy poll timed out. Drop NAPI ID for now, we can add
1861 * it back in when we have moved a socket with a valid NAPI
1862 * ID onto the ready list.
1863 */
1864 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1865
412895f0
RP
1866 do {
1867 /*
1868 * Internally init_wait() uses autoremove_wake_function(),
1869 * thus wait entry is removed from the wait queue on each
1870 * wakeup. Why it is important? In case of several waiters
1871 * each new wakeup will hit the next waiter, giving it the
1872 * chance to harvest new event. Otherwise wakeup can be
1873 * lost. This is also good performance-wise, because on
1874 * normal wakeup path no need to call __remove_wait_queue()
1875 * explicitly, thus ep->lock is not taken, which halts the
1876 * event delivery.
1877 */
1878 init_wait(&wait);
1da177e4 1879
65759097 1880 write_lock_irq(&ep->lock);
bf3b9f63 1881 /*
65759097
RP
1882 * Barrierless variant, waitqueue_active() is called under
1883 * the same lock on wakeup ep_poll_callback() side, so it
1884 * is safe to avoid an explicit barrier.
bf3b9f63 1885 */
65759097
RP
1886 __set_current_state(TASK_INTERRUPTIBLE);
1887
1da177e4 1888 /*
65759097
RP
1889 * Do the final check under the lock. ep_scan_ready_list()
1890 * plays with two lists (->rdllist and ->ovflist) and there
1891 * is always a race when both lists are empty for short
1892 * period of time although events are pending, so lock is
1893 * important.
1da177e4 1894 */
65759097
RP
1895 eavail = ep_events_available(ep);
1896 if (!eavail) {
1897 if (signal_pending(current))
1898 res = -EINTR;
1899 else
1900 __add_wait_queue_exclusive(&ep->wq, &wait);
c5a282e9 1901 }
65759097 1902 write_unlock_irq(&ep->lock);
95aac7b1 1903
65759097 1904 if (eavail || res)
c5a282e9 1905 break;
1da177e4 1906
abc610e0 1907 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
c5a282e9 1908 timed_out = 1;
abc610e0
DB
1909 break;
1910 }
412895f0
RP
1911
1912 /* We were woken up, thus go and try to harvest some events */
1913 eavail = 1;
1914
1915 } while (0);
1da177e4 1916
c5a282e9 1917 __set_current_state(TASK_RUNNING);
1da177e4 1918
412895f0
RP
1919 if (!list_empty_careful(&wait.entry)) {
1920 write_lock_irq(&ep->lock);
1921 __remove_wait_queue(&ep->wq, &wait);
1922 write_unlock_irq(&ep->lock);
1923 }
1924
35cff1a6 1925send_events:
65759097
RP
1926 if (fatal_signal_pending(current)) {
1927 /*
1928 * Always short-circuit for fatal signals to allow
1929 * threads to make a timely exit without the chance of
1930 * finding more events available and fetching
1931 * repeatedly.
1932 */
1933 res = -EINTR;
1934 }
1da177e4
LT
1935 /*
1936 * Try to transfer events to user space. In case we get 0 events and
1937 * there's still timeout left over, we go trying again in search of
1938 * more luck.
1939 */
1940 if (!res && eavail &&
95aac7b1 1941 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1942 goto fetch_events;
1da177e4
LT
1943
1944 return res;
1945}
1946
22bacca4
DL
1947/**
1948 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1949 * API, to verify that adding an epoll file inside another
1950 * epoll structure, does not violate the constraints, in
1951 * terms of closed loops, or too deep chains (which can
1952 * result in excessive stack usage).
1953 *
1954 * @priv: Pointer to the epoll file to be currently checked.
1955 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1956 * data structure pointer.
1957 * @call_nests: Current dept of the @ep_call_nested() call stack.
1958 *
1959 * Returns: Returns zero if adding the epoll @file inside current epoll
1960 * structure @ep does not violate the constraints, or -1 otherwise.
1961 */
1962static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1963{
1964 int error = 0;
1965 struct file *file = priv;
1966 struct eventpoll *ep = file->private_data;
28d82dc1 1967 struct eventpoll *ep_tovisit;
22bacca4
DL
1968 struct rb_node *rbp;
1969 struct epitem *epi;
1970
d8805e63 1971 mutex_lock_nested(&ep->mtx, call_nests + 1);
18306c40 1972 ep->gen = loop_check_gen;
b2ac2ea6 1973 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1974 epi = rb_entry(rbp, struct epitem, rbn);
1975 if (unlikely(is_file_epoll(epi->ffd.file))) {
28d82dc1 1976 ep_tovisit = epi->ffd.file->private_data;
18306c40 1977 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1978 continue;
74bdc129 1979 error = ep_call_nested(&poll_loop_ncalls,
28d82dc1
JB
1980 ep_loop_check_proc, epi->ffd.file,
1981 ep_tovisit, current);
22bacca4
DL
1982 if (error != 0)
1983 break;
28d82dc1
JB
1984 } else {
1985 /*
1986 * If we've reached a file that is not associated with
1987 * an ep, then we need to check if the newly added
1988 * links are going to add too many wakeup paths. We do
1989 * this by adding it to the tfile_check_list, if it's
1990 * not already there, and calling reverse_path_check()
1991 * during ep_insert().
1992 */
a9ed4a65 1993 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
77f4689d
AV
1994 if (get_file_rcu(epi->ffd.file))
1995 list_add(&epi->ffd.file->f_tfile_llink,
1996 &tfile_check_list);
a9ed4a65 1997 }
22bacca4
DL
1998 }
1999 }
2000 mutex_unlock(&ep->mtx);
2001
2002 return error;
2003}
2004
2005/**
2006 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2007 * another epoll file (represented by @ep) does not create
2008 * closed loops or too deep chains.
2009 *
2010 * @ep: Pointer to the epoll private data structure.
2011 * @file: Pointer to the epoll file to be checked.
2012 *
2013 * Returns: Returns zero if adding the epoll @file inside current epoll
2014 * structure @ep does not violate the constraints, or -1 otherwise.
2015 */
2016static int ep_loop_check(struct eventpoll *ep, struct file *file)
2017{
18306c40 2018 return ep_call_nested(&poll_loop_ncalls,
22bacca4 2019 ep_loop_check_proc, file, ep, current);
28d82dc1
JB
2020}
2021
2022static void clear_tfile_check_list(void)
2023{
2024 struct file *file;
2025
2026 /* first clear the tfile_check_list */
2027 while (!list_empty(&tfile_check_list)) {
2028 file = list_first_entry(&tfile_check_list, struct file,
2029 f_tfile_llink);
2030 list_del_init(&file->f_tfile_llink);
a9ed4a65 2031 fput(file);
28d82dc1
JB
2032 }
2033 INIT_LIST_HEAD(&tfile_check_list);
22bacca4
DL
2034}
2035
7699acd1 2036/*
523723bb 2037 * Open an eventpoll file descriptor.
7699acd1 2038 */
791eb22e 2039static int do_epoll_create(int flags)
7699acd1 2040{
28d82dc1 2041 int error, fd;
bb57c3ed 2042 struct eventpoll *ep = NULL;
28d82dc1 2043 struct file *file;
7699acd1 2044
e38b36f3
UD
2045 /* Check the EPOLL_* constant for consistency. */
2046 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2047
296e236e
DL
2048 if (flags & ~EPOLL_CLOEXEC)
2049 return -EINVAL;
7699acd1 2050 /*
bb57c3ed 2051 * Create the internal data structure ("struct eventpoll").
7699acd1 2052 */
9fe5ad9c 2053 error = ep_alloc(&ep);
bb57c3ed
DL
2054 if (error < 0)
2055 return error;
7699acd1
DL
2056 /*
2057 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 2058 * a file structure and a free file descriptor.
7699acd1 2059 */
28d82dc1
JB
2060 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2061 if (fd < 0) {
2062 error = fd;
2063 goto out_free_ep;
2064 }
2065 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 2066 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
2067 if (IS_ERR(file)) {
2068 error = PTR_ERR(file);
2069 goto out_free_fd;
2070 }
28d82dc1 2071 ep->file = file;
98022748 2072 fd_install(fd, file);
28d82dc1
JB
2073 return fd;
2074
2075out_free_fd:
2076 put_unused_fd(fd);
2077out_free_ep:
2078 ep_free(ep);
bb57c3ed 2079 return error;
7699acd1
DL
2080}
2081
791eb22e
DB
2082SYSCALL_DEFINE1(epoll_create1, int, flags)
2083{
2084 return do_epoll_create(flags);
2085}
2086
5a8a82b1 2087SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2088{
bfe3891a 2089 if (size <= 0)
9fe5ad9c
UD
2090 return -EINVAL;
2091
791eb22e 2092 return do_epoll_create(0);
a0998b50
UD
2093}
2094
39220e8d
JA
2095static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2096 bool nonblock)
2097{
2098 if (!nonblock) {
2099 mutex_lock_nested(mutex, depth);
2100 return 0;
2101 }
2102 if (mutex_trylock(mutex))
2103 return 0;
2104 return -EAGAIN;
2105}
2106
2107int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2108 bool nonblock)
7699acd1
DL
2109{
2110 int error;
67347fe4 2111 int full_check = 0;
7e3fb584 2112 struct fd f, tf;
7699acd1
DL
2113 struct eventpoll *ep;
2114 struct epitem *epi;
67347fe4 2115 struct eventpoll *tep = NULL;
7699acd1 2116
7699acd1 2117 error = -EBADF;
7e3fb584
AV
2118 f = fdget(epfd);
2119 if (!f.file)
7699acd1
DL
2120 goto error_return;
2121
2122 /* Get the "struct file *" for the target file */
7e3fb584
AV
2123 tf = fdget(fd);
2124 if (!tf.file)
7699acd1
DL
2125 goto error_fput;
2126
2127 /* The target file descriptor must support poll */
2128 error = -EPERM;
9965ed17 2129 if (!file_can_poll(tf.file))
7699acd1
DL
2130 goto error_tgt_fput;
2131
4d7e30d9 2132 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2133 if (ep_op_has_event(op))
58e41a44 2134 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2135
7699acd1
DL
2136 /*
2137 * We have to check that the file structure underneath the file descriptor
2138 * the user passed to us _is_ an eventpoll file. And also we do not permit
2139 * adding an epoll file descriptor inside itself.
2140 */
2141 error = -EINVAL;
7e3fb584 2142 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2143 goto error_tgt_fput;
2144
df0108c5
JB
2145 /*
2146 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2147 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2148 * Also, we do not currently supported nested exclusive wakeups.
2149 */
58e41a44 2150 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2151 if (op == EPOLL_CTL_MOD)
2152 goto error_tgt_fput;
2153 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2154 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2155 goto error_tgt_fput;
2156 }
df0108c5 2157
7699acd1
DL
2158 /*
2159 * At this point it is safe to assume that the "private_data" contains
2160 * our own data structure.
2161 */
7e3fb584 2162 ep = f.file->private_data;
7699acd1 2163
22bacca4
DL
2164 /*
2165 * When we insert an epoll file descriptor, inside another epoll file
2166 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2167 * better be handled here, than in more critical paths. While we are
2168 * checking for loops we also determine the list of files reachable
2169 * and hang them on the tfile_check_list, so we can check that we
2170 * haven't created too many possible wakeup paths.
22bacca4 2171 *
67347fe4
JB
2172 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2173 * the epoll file descriptor is attaching directly to a wakeup source,
2174 * unless the epoll file descriptor is nested. The purpose of taking the
2175 * 'epmutex' on add is to prevent complex toplogies such as loops and
2176 * deep wakeup paths from forming in parallel through multiple
2177 * EPOLL_CTL_ADD operations.
22bacca4 2178 */
39220e8d
JA
2179 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2180 if (error)
2181 goto error_tgt_fput;
28d82dc1 2182 if (op == EPOLL_CTL_ADD) {
67347fe4 2183 if (!list_empty(&f.file->f_ep_links) ||
fe0a916c 2184 ep->gen == loop_check_gen ||
67347fe4 2185 is_file_epoll(tf.file)) {
67347fe4 2186 mutex_unlock(&ep->mtx);
39220e8d
JA
2187 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2188 if (error)
2189 goto error_tgt_fput;
18306c40 2190 loop_check_gen++;
39220e8d 2191 full_check = 1;
67347fe4
JB
2192 if (is_file_epoll(tf.file)) {
2193 error = -ELOOP;
52c47969 2194 if (ep_loop_check(ep, tf.file) != 0)
67347fe4 2195 goto error_tgt_fput;
a9ed4a65
MZ
2196 } else {
2197 get_file(tf.file);
67347fe4
JB
2198 list_add(&tf.file->f_tfile_llink,
2199 &tfile_check_list);
a9ed4a65 2200 }
39220e8d 2201 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2202 if (error)
39220e8d 2203 goto error_tgt_fput;
67347fe4
JB
2204 if (is_file_epoll(tf.file)) {
2205 tep = tf.file->private_data;
39220e8d
JA
2206 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2207 if (error) {
2208 mutex_unlock(&ep->mtx);
52c47969 2209 goto error_tgt_fput;
39220e8d 2210 }
13d51807 2211 }
67347fe4
JB
2212 }
2213 }
7699acd1 2214
67647d0f
DL
2215 /*
2216 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2217 * above, we can be sure to be able to use the item looked up by
2218 * ep_find() till we release the mutex.
2219 */
7e3fb584 2220 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2221
2222 error = -EINVAL;
2223 switch (op) {
2224 case EPOLL_CTL_ADD:
2225 if (!epi) {
58e41a44
JA
2226 epds->events |= EPOLLERR | EPOLLHUP;
2227 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2228 } else
2229 error = -EEXIST;
2230 break;
2231 case EPOLL_CTL_DEL:
2232 if (epi)
2233 error = ep_remove(ep, epi);
2234 else
2235 error = -ENOENT;
2236 break;
2237 case EPOLL_CTL_MOD:
2238 if (epi) {
b6a515c8 2239 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2240 epds->events |= EPOLLERR | EPOLLHUP;
2241 error = ep_modify(ep, epi, epds);
b6a515c8 2242 }
7699acd1
DL
2243 } else
2244 error = -ENOENT;
2245 break;
2246 }
67347fe4
JB
2247 if (tep != NULL)
2248 mutex_unlock(&tep->mtx);
d47de16c 2249 mutex_unlock(&ep->mtx);
7699acd1
DL
2250
2251error_tgt_fput:
52c47969
AV
2252 if (full_check) {
2253 clear_tfile_check_list();
18306c40 2254 loop_check_gen++;
22bacca4 2255 mutex_unlock(&epmutex);
52c47969 2256 }
22bacca4 2257
7e3fb584 2258 fdput(tf);
7699acd1 2259error_fput:
7e3fb584 2260 fdput(f);
7699acd1 2261error_return:
7699acd1
DL
2262
2263 return error;
2264}
2265
58e41a44
JA
2266/*
2267 * The following function implements the controller interface for
2268 * the eventpoll file that enables the insertion/removal/change of
2269 * file descriptors inside the interest set.
2270 */
2271SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2272 struct epoll_event __user *, event)
2273{
2274 struct epoll_event epds;
2275
2276 if (ep_op_has_event(op) &&
2277 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2278 return -EFAULT;
2279
39220e8d 2280 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2281}
2282
7699acd1
DL
2283/*
2284 * Implement the event wait interface for the eventpoll file. It is the kernel
2285 * part of the user space epoll_wait(2).
2286 */
791eb22e
DB
2287static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2288 int maxevents, int timeout)
7699acd1 2289{
2903ff01
AV
2290 int error;
2291 struct fd f;
7699acd1
DL
2292 struct eventpoll *ep;
2293
7699acd1
DL
2294 /* The maximum number of event must be greater than zero */
2295 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2296 return -EINVAL;
2297
2298 /* Verify that the area passed by the user is writeable */
96d4f267 2299 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2300 return -EFAULT;
7699acd1
DL
2301
2302 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2303 f = fdget(epfd);
2304 if (!f.file)
2305 return -EBADF;
7699acd1
DL
2306
2307 /*
2308 * We have to check that the file structure underneath the fd
2309 * the user passed to us _is_ an eventpoll file.
2310 */
2311 error = -EINVAL;
2903ff01 2312 if (!is_file_epoll(f.file))
7699acd1
DL
2313 goto error_fput;
2314
2315 /*
2316 * At this point it is safe to assume that the "private_data" contains
2317 * our own data structure.
2318 */
2903ff01 2319 ep = f.file->private_data;
7699acd1
DL
2320
2321 /* Time to fish for events ... */
2322 error = ep_poll(ep, events, maxevents, timeout);
2323
2324error_fput:
2903ff01 2325 fdput(f);
7699acd1
DL
2326 return error;
2327}
2328
791eb22e
DB
2329SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2330 int, maxevents, int, timeout)
2331{
2332 return do_epoll_wait(epfd, events, maxevents, timeout);
2333}
2334
7699acd1
DL
2335/*
2336 * Implement the event wait interface for the eventpoll file. It is the kernel
2337 * part of the user space epoll_pwait(2).
2338 */
5a8a82b1
HC
2339SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2340 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2341 size_t, sigsetsize)
7699acd1
DL
2342{
2343 int error;
7699acd1
DL
2344
2345 /*
2346 * If the caller wants a certain signal mask to be set during the wait,
2347 * we apply it here.
2348 */
b772434b 2349 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2350 if (error)
2351 return error;
7699acd1 2352
791eb22e 2353 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2354 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2355
2356 return error;
2357}
2358
35280bd4
AV
2359#ifdef CONFIG_COMPAT
2360COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2361 struct epoll_event __user *, events,
2362 int, maxevents, int, timeout,
2363 const compat_sigset_t __user *, sigmask,
2364 compat_size_t, sigsetsize)
2365{
2366 long err;
35280bd4
AV
2367
2368 /*
2369 * If the caller wants a certain signal mask to be set during the wait,
2370 * we apply it here.
2371 */
b772434b 2372 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2373 if (err)
2374 return err;
35280bd4 2375
791eb22e 2376 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2377 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2378
2379 return err;
2380}
2381#endif
2382
1da177e4
LT
2383static int __init eventpoll_init(void)
2384{
7ef9964e
DL
2385 struct sysinfo si;
2386
2387 si_meminfo(&si);
9df04e1f
DL
2388 /*
2389 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2390 */
2391 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2392 EP_ITEM_COST;
52bd19f7 2393 BUG_ON(max_user_watches < 0);
1da177e4 2394
22bacca4
DL
2395 /*
2396 * Initialize the structure used to perform epoll file descriptor
2397 * inclusion loops checks.
2398 */
2399 ep_nested_calls_init(&poll_loop_ncalls);
2400
39732ca5
EW
2401 /*
2402 * We can have many thousands of epitems, so prevent this from
2403 * using an extra cache line on 64-bit (and smaller) CPUs
2404 */
2405 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2406
1da177e4
LT
2407 /* Allocates slab cache used to allocate "struct epitem" items */
2408 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2409 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2410
2411 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2412 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2413 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2414
1da177e4 2415 return 0;
1da177e4 2416}
cea69241 2417fs_initcall(eventpoll_init);