]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/eventpoll.c
ep_loop_check_proc(): saner calling conventions
[mirror_ubuntu-jammy-kernel.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
144efe3e 46 * 1) epmutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
1da177e4
LT
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
bf6a41db 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
22bacca4
DL
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
d8805e63
NE
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
d47de16c 82 * It is possible to drop the "ep->mtx" and to use the global
a218cc49 83 * mutex "epmutex" (together with "ep->lock") to have it working,
d47de16c 84 * but having "ep->mtx" will make the interface more scalable.
144efe3e 85 * Events that require holding "epmutex" are very rare, while for
d47de16c
DL
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
1da177e4
LT
88 */
89
1da177e4 90/* Epoll private bits inside the event mask */
df0108c5 91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 92
a9a08845 93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 94
a9a08845 95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
5071f97e
DL
98/* Maximum number of nesting allowed inside epoll sets */
99#define EP_MAX_NESTS 4
1da177e4 100
b611967d
DL
101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
d47de16c
DL
103#define EP_UNACTIVE_PTR ((void *) -1L)
104
7ef9964e
DL
105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
1da177e4
LT
107struct epoll_filefd {
108 struct file *file;
109 int fd;
39732ca5 110} __packed;
1da177e4 111
80285b75
AV
112/* Wait structure used by the poll hooks */
113struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
116
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
128};
129
d47de16c
DL
130/*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
135 */
136struct epitem {
ae10b2b4
JB
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
d47de16c
DL
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
c7ea7630
DL
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
d47de16c
DL
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
d47de16c 156 /* List containing poll wait queues */
80285b75 157 struct eppoll_entry *pwqlist;
d47de16c
DL
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
d47de16c
DL
162 /* List header used to link this item to the "struct file" items list */
163 struct list_head fllink;
164
4d7e30d9 165 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 166 struct wakeup_source __rcu *ws;
4d7e30d9 167
c7ea7630
DL
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
d47de16c
DL
170};
171
1da177e4
LT
172/*
173 * This structure is stored inside the "private_data" member of the file
bf6a41db 174 * structure and represents the main data structure for the eventpoll
1da177e4
LT
175 * interface.
176 */
177struct eventpoll {
1da177e4 178 /*
d47de16c
DL
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
1da177e4 183 */
d47de16c 184 struct mutex mtx;
1da177e4
LT
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
a218cc49
RP
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
67647d0f 198 /* RB tree root used to store monitored fd structs */
b2ac2ea6 199 struct rb_root_cached rbr;
d47de16c
DL
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
25985edc 203 * happened while transferring ready events to userspace w/out
a218cc49 204 * holding ->lock.
d47de16c
DL
205 */
206 struct epitem *ovflist;
7ef9964e 207
4d7e30d9
AH
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
7ef9964e
DL
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
28d82dc1
JB
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
18306c40 217 u64 gen;
bf3b9f63
SS
218
219#ifdef CONFIG_NET_RX_BUSY_POLL
220 /* used to track busy poll napi_id */
221 unsigned int napi_id;
222#endif
efcdd350
JB
223
224#ifdef CONFIG_DEBUG_LOCK_ALLOC
225 /* tracks wakeup nests for lockdep validation */
226 u8 nests;
227#endif
1da177e4
LT
228};
229
1da177e4
LT
230/* Wrapper struct used by poll queueing */
231struct ep_pqueue {
232 poll_table pt;
233 struct epitem *epi;
234};
235
5071f97e
DL
236/* Used by the ep_send_events() function as callback private data */
237struct ep_send_events_data {
238 int maxevents;
239 struct epoll_event __user *events;
d7ebbe46 240 int res;
5071f97e
DL
241};
242
7ef9964e
DL
243/*
244 * Configuration options available inside /proc/sys/fs/epoll/
245 */
7ef9964e 246/* Maximum number of epoll watched descriptors, per user */
52bd19f7 247static long max_user_watches __read_mostly;
7ef9964e 248
1da177e4 249/*
d47de16c 250 * This mutex is used to serialize ep_free() and eventpoll_release_file().
1da177e4 251 */
7ef9964e 252static DEFINE_MUTEX(epmutex);
1da177e4 253
18306c40
AV
254static u64 loop_check_gen = 0;
255
22bacca4 256/* Used to check for epoll file descriptor inclusion loops */
6a3890c4 257static struct eventpoll *inserting_into;
22bacca4 258
1da177e4 259/* Slab cache used to allocate "struct epitem" */
e18b890b 260static struct kmem_cache *epi_cache __read_mostly;
1da177e4
LT
261
262/* Slab cache used to allocate "struct eppoll_entry" */
e18b890b 263static struct kmem_cache *pwq_cache __read_mostly;
1da177e4 264
28d82dc1
JB
265/*
266 * List of files with newly added links, where we may need to limit the number
267 * of emanating paths. Protected by the epmutex.
268 */
269static LIST_HEAD(tfile_check_list);
270
7ef9964e
DL
271#ifdef CONFIG_SYSCTL
272
273#include <linux/sysctl.h>
274
eec4844f 275static long long_zero;
52bd19f7 276static long long_max = LONG_MAX;
7ef9964e 277
1f7e0616 278struct ctl_table epoll_table[] = {
7ef9964e
DL
279 {
280 .procname = "max_user_watches",
281 .data = &max_user_watches,
52bd19f7 282 .maxlen = sizeof(max_user_watches),
7ef9964e 283 .mode = 0644,
52bd19f7 284 .proc_handler = proc_doulongvec_minmax,
eec4844f 285 .extra1 = &long_zero,
52bd19f7 286 .extra2 = &long_max,
7ef9964e 287 },
ab09203e 288 { }
7ef9964e
DL
289};
290#endif /* CONFIG_SYSCTL */
291
28d82dc1
JB
292static const struct file_operations eventpoll_fops;
293
294static inline int is_file_epoll(struct file *f)
295{
296 return f->f_op == &eventpoll_fops;
297}
b030a4dd 298
67647d0f 299/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
300static inline void ep_set_ffd(struct epoll_filefd *ffd,
301 struct file *file, int fd)
302{
303 ffd->file = file;
304 ffd->fd = fd;
305}
306
67647d0f 307/* Compare RB tree keys */
b030a4dd
PE
308static inline int ep_cmp_ffd(struct epoll_filefd *p1,
309 struct epoll_filefd *p2)
310{
311 return (p1->file > p2->file ? +1:
312 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
313}
314
b030a4dd 315/* Tells us if the item is currently linked */
992991c0 316static inline int ep_is_linked(struct epitem *epi)
b030a4dd 317{
992991c0 318 return !list_empty(&epi->rdllink);
b030a4dd
PE
319}
320
ac6424b9 321static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
322{
323 return container_of(p, struct eppoll_entry, wait);
324}
325
b030a4dd 326/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 327static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
328{
329 return container_of(p, struct eppoll_entry, wait)->base;
330}
331
3fb0e584
DL
332/**
333 * ep_events_available - Checks if ready events might be available.
334 *
335 * @ep: Pointer to the eventpoll context.
336 *
337 * Returns: Returns a value different than zero if ready events are available,
338 * or zero otherwise.
339 */
340static inline int ep_events_available(struct eventpoll *ep)
341{
c5a282e9
DB
342 return !list_empty_careful(&ep->rdllist) ||
343 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
344}
345
bf3b9f63
SS
346#ifdef CONFIG_NET_RX_BUSY_POLL
347static bool ep_busy_loop_end(void *p, unsigned long start_time)
348{
349 struct eventpoll *ep = p;
350
351 return ep_events_available(ep) || busy_loop_timeout(start_time);
352}
bf3b9f63
SS
353
354/*
355 * Busy poll if globally on and supporting sockets found && no events,
356 * busy loop will return if need_resched or ep_events_available.
357 *
358 * we must do our busy polling with irqs enabled
359 */
360static void ep_busy_loop(struct eventpoll *ep, int nonblock)
361{
bf3b9f63
SS
362 unsigned int napi_id = READ_ONCE(ep->napi_id);
363
364 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
365 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
bf3b9f63
SS
366}
367
368static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
369{
bf3b9f63
SS
370 if (ep->napi_id)
371 ep->napi_id = 0;
bf3b9f63
SS
372}
373
374/*
375 * Set epoll busy poll NAPI ID from sk.
376 */
377static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
378{
bf3b9f63
SS
379 struct eventpoll *ep;
380 unsigned int napi_id;
381 struct socket *sock;
382 struct sock *sk;
383 int err;
384
385 if (!net_busy_loop_on())
386 return;
387
388 sock = sock_from_file(epi->ffd.file, &err);
389 if (!sock)
390 return;
391
392 sk = sock->sk;
393 if (!sk)
394 return;
395
396 napi_id = READ_ONCE(sk->sk_napi_id);
397 ep = epi->ep;
398
399 /* Non-NAPI IDs can be rejected
400 * or
401 * Nothing to do if we already have this ID
402 */
403 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
404 return;
405
406 /* record NAPI ID for use in next busy poll */
407 ep->napi_id = napi_id;
bf3b9f63
SS
408}
409
514056d5
DB
410#else
411
412static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
413{
414}
415
416static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
417{
418}
419
420static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
421{
422}
423
424#endif /* CONFIG_NET_RX_BUSY_POLL */
425
02edc6fc
SR
426/*
427 * As described in commit 0ccf831cb lockdep: annotate epoll
428 * the use of wait queues used by epoll is done in a very controlled
429 * manner. Wake ups can nest inside each other, but are never done
430 * with the same locking. For example:
431 *
432 * dfd = socket(...);
433 * efd1 = epoll_create();
434 * efd2 = epoll_create();
435 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
436 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
437 *
438 * When a packet arrives to the device underneath "dfd", the net code will
439 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
440 * callback wakeup entry on that queue, and the wake_up() performed by the
441 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
442 * (efd1) notices that it may have some event ready, so it needs to wake up
443 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
444 * that ends up in another wake_up(), after having checked about the
445 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
446 * avoid stack blasting.
447 *
448 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
449 * this special case of epoll.
450 */
2dfa4eea 451#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 452
efcdd350 453static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
5071f97e 454{
efcdd350 455 struct eventpoll *ep_src;
f6520c52 456 unsigned long flags;
efcdd350
JB
457 u8 nests = 0;
458
459 /*
460 * To set the subclass or nesting level for spin_lock_irqsave_nested()
461 * it might be natural to create a per-cpu nest count. However, since
462 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
463 * schedule() in the -rt kernel, the per-cpu variable are no longer
464 * protected. Thus, we are introducing a per eventpoll nest field.
465 * If we are not being call from ep_poll_callback(), epi is NULL and
466 * we are at the first level of nesting, 0. Otherwise, we are being
467 * called from ep_poll_callback() and if a previous wakeup source is
468 * not an epoll file itself, we are at depth 1 since the wakeup source
469 * is depth 0. If the wakeup source is a previous epoll file in the
470 * wakeup chain then we use its nests value and record ours as
471 * nests + 1. The previous epoll file nests value is stable since its
472 * already holding its own poll_wait.lock.
473 */
474 if (epi) {
475 if ((is_file_epoll(epi->ffd.file))) {
476 ep_src = epi->ffd.file->private_data;
477 nests = ep_src->nests;
478 } else {
479 nests = 1;
480 }
481 }
482 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
483 ep->nests = nests + 1;
484 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
485 ep->nests = 0;
486 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
487}
488
57a173bd
JB
489#else
490
efcdd350 491static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
57a173bd 492{
efcdd350 493 wake_up_poll(&ep->poll_wait, EPOLLIN);
57a173bd
JB
494}
495
496#endif
497
971316f0
ON
498static void ep_remove_wait_queue(struct eppoll_entry *pwq)
499{
500 wait_queue_head_t *whead;
501
502 rcu_read_lock();
138e4ad6
ON
503 /*
504 * If it is cleared by POLLFREE, it should be rcu-safe.
505 * If we read NULL we need a barrier paired with
506 * smp_store_release() in ep_poll_callback(), otherwise
507 * we rely on whead->lock.
508 */
509 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
510 if (whead)
511 remove_wait_queue(whead, &pwq->wait);
512 rcu_read_unlock();
513}
514
1da177e4 515/*
d1bc90dd
TB
516 * This function unregisters poll callbacks from the associated file
517 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
518 * ep_free).
1da177e4 519 */
7699acd1 520static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 521{
80285b75 522 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 523 struct eppoll_entry *pwq;
1da177e4 524
80285b75
AV
525 while ((pwq = *p) != NULL) {
526 *p = pwq->next;
971316f0 527 ep_remove_wait_queue(pwq);
d1bc90dd 528 kmem_cache_free(pwq_cache, pwq);
1da177e4 529 }
1da177e4
LT
530}
531
eea1d585
EW
532/* call only when ep->mtx is held */
533static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
534{
535 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
536}
537
538/* call only when ep->mtx is held */
539static inline void ep_pm_stay_awake(struct epitem *epi)
540{
541 struct wakeup_source *ws = ep_wakeup_source(epi);
542
543 if (ws)
544 __pm_stay_awake(ws);
545}
546
547static inline bool ep_has_wakeup_source(struct epitem *epi)
548{
549 return rcu_access_pointer(epi->ws) ? true : false;
550}
551
552/* call when ep->mtx cannot be held (ep_poll_callback) */
553static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
554{
555 struct wakeup_source *ws;
556
557 rcu_read_lock();
558 ws = rcu_dereference(epi->ws);
559 if (ws)
560 __pm_stay_awake(ws);
561 rcu_read_unlock();
562}
563
5071f97e
DL
564/**
565 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
566 * the scan code, to call f_op->poll(). Also allows for
567 * O(NumReady) performance.
568 *
569 * @ep: Pointer to the epoll private data structure.
570 * @sproc: Pointer to the scan callback.
571 * @priv: Private opaque data passed to the @sproc callback.
d8805e63 572 * @depth: The current depth of recursive f_op->poll calls.
67347fe4 573 * @ep_locked: caller already holds ep->mtx
5071f97e
DL
574 *
575 * Returns: The same integer error code returned by the @sproc callback.
576 */
d85e2aa2
AV
577static __poll_t ep_scan_ready_list(struct eventpoll *ep,
578 __poll_t (*sproc)(struct eventpoll *,
5071f97e 579 struct list_head *, void *),
67347fe4 580 void *priv, int depth, bool ep_locked)
5071f97e 581{
d85e2aa2 582 __poll_t res;
5071f97e 583 struct epitem *epi, *nepi;
296e236e 584 LIST_HEAD(txlist);
5071f97e 585
92e64178
DB
586 lockdep_assert_irqs_enabled();
587
5071f97e
DL
588 /*
589 * We need to lock this because we could be hit by
e057e15f 590 * eventpoll_release_file() and epoll_ctl().
5071f97e 591 */
67347fe4
JB
592
593 if (!ep_locked)
594 mutex_lock_nested(&ep->mtx, depth);
5071f97e
DL
595
596 /*
597 * Steal the ready list, and re-init the original one to the
598 * empty list. Also, set ep->ovflist to NULL so that events
599 * happening while looping w/out locks, are not lost. We cannot
600 * have the poll callback to queue directly on ep->rdllist,
601 * because we want the "sproc" callback to be able to do it
602 * in a lockless way.
603 */
a218cc49 604 write_lock_irq(&ep->lock);
296e236e 605 list_splice_init(&ep->rdllist, &txlist);
c5a282e9 606 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 607 write_unlock_irq(&ep->lock);
5071f97e
DL
608
609 /*
610 * Now call the callback function.
611 */
d85e2aa2 612 res = (*sproc)(ep, &txlist, priv);
5071f97e 613
a218cc49 614 write_lock_irq(&ep->lock);
5071f97e
DL
615 /*
616 * During the time we spent inside the "sproc" callback, some
617 * other events might have been queued by the poll callback.
618 * We re-insert them inside the main ready-list here.
619 */
c5a282e9 620 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
621 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
622 /*
623 * We need to check if the item is already in the list.
624 * During the "sproc" callback execution time, items are
625 * queued into ->ovflist but the "txlist" might already
626 * contain them, and the list_splice() below takes care of them.
627 */
992991c0 628 if (!ep_is_linked(epi)) {
c141175d
RP
629 /*
630 * ->ovflist is LIFO, so we have to reverse it in order
631 * to keep in FIFO.
632 */
633 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 634 ep_pm_stay_awake(epi);
4d7e30d9 635 }
5071f97e
DL
636 }
637 /*
638 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
639 * releasing the lock, events will be queued in the normal way inside
640 * ep->rdllist.
641 */
c5a282e9 642 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
643
644 /*
645 * Quickly re-inject items left on "txlist".
646 */
647 list_splice(&txlist, &ep->rdllist);
4d7e30d9 648 __pm_relax(ep->ws);
a218cc49 649 write_unlock_irq(&ep->lock);
5071f97e 650
67347fe4
JB
651 if (!ep_locked)
652 mutex_unlock(&ep->mtx);
5071f97e 653
d85e2aa2 654 return res;
5071f97e
DL
655}
656
ae10b2b4
JB
657static void epi_rcu_free(struct rcu_head *head)
658{
659 struct epitem *epi = container_of(head, struct epitem, rcu);
660 kmem_cache_free(epi_cache, epi);
661}
662
7699acd1
DL
663/*
664 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 665 * all the associated resources. Must be called with "mtx" held.
7699acd1
DL
666 */
667static int ep_remove(struct eventpoll *ep, struct epitem *epi)
668{
7699acd1 669 struct file *file = epi->ffd.file;
1da177e4 670
92e64178
DB
671 lockdep_assert_irqs_enabled();
672
1da177e4 673 /*
ee8ef0a4 674 * Removes poll wait queue hooks.
1da177e4 675 */
7699acd1 676 ep_unregister_pollwait(ep, epi);
1da177e4 677
7699acd1 678 /* Remove the current item from the list of epoll hooks */
68499914 679 spin_lock(&file->f_lock);
ae10b2b4 680 list_del_rcu(&epi->fllink);
68499914 681 spin_unlock(&file->f_lock);
1da177e4 682
b2ac2ea6 683 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 684
a218cc49 685 write_lock_irq(&ep->lock);
992991c0 686 if (ep_is_linked(epi))
c7ea7630 687 list_del_init(&epi->rdllink);
a218cc49 688 write_unlock_irq(&ep->lock);
1da177e4 689
eea1d585 690 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
691 /*
692 * At this point it is safe to free the eventpoll item. Use the union
693 * field epi->rcu, since we are trying to minimize the size of
694 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
695 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
696 * use of the rbn field.
697 */
698 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 699
52bd19f7 700 atomic_long_dec(&ep->user->epoll_watches);
7ef9964e 701
c7ea7630 702 return 0;
1da177e4
LT
703}
704
7699acd1 705static void ep_free(struct eventpoll *ep)
1da177e4 706{
7699acd1
DL
707 struct rb_node *rbp;
708 struct epitem *epi;
1da177e4 709
7699acd1
DL
710 /* We need to release all tasks waiting for these file */
711 if (waitqueue_active(&ep->poll_wait))
efcdd350 712 ep_poll_safewake(ep, NULL);
1da177e4 713
7699acd1
DL
714 /*
715 * We need to lock this because we could be hit by
716 * eventpoll_release_file() while we're freeing the "struct eventpoll".
d47de16c 717 * We do not need to hold "ep->mtx" here because the epoll file
7699acd1
DL
718 * is on the way to be removed and no one has references to it
719 * anymore. The only hit might come from eventpoll_release_file() but
25985edc 720 * holding "epmutex" is sufficient here.
7699acd1
DL
721 */
722 mutex_lock(&epmutex);
1da177e4
LT
723
724 /*
7699acd1 725 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 726 */
b2ac2ea6 727 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
728 epi = rb_entry(rbp, struct epitem, rbn);
729
730 ep_unregister_pollwait(ep, epi);
91cf5ab6 731 cond_resched();
7699acd1 732 }
1da177e4
LT
733
734 /*
7699acd1
DL
735 * Walks through the whole tree by freeing each "struct epitem". At this
736 * point we are sure no poll callbacks will be lingering around, and also by
d47de16c 737 * holding "epmutex" we can be sure that no file cleanup code will hit
a218cc49 738 * us during this operation. So we can avoid the lock on "ep->lock".
ddf676c3
EW
739 * We do not need to lock ep->mtx, either, we only do it to prevent
740 * a lockdep warning.
1da177e4 741 */
ddf676c3 742 mutex_lock(&ep->mtx);
b2ac2ea6 743 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
7699acd1
DL
744 epi = rb_entry(rbp, struct epitem, rbn);
745 ep_remove(ep, epi);
91cf5ab6 746 cond_resched();
7699acd1 747 }
ddf676c3 748 mutex_unlock(&ep->mtx);
1da177e4 749
7699acd1 750 mutex_unlock(&epmutex);
d47de16c 751 mutex_destroy(&ep->mtx);
7ef9964e 752 free_uid(ep->user);
4d7e30d9 753 wakeup_source_unregister(ep->ws);
f0ee9aab 754 kfree(ep);
7699acd1 755}
1da177e4 756
7699acd1
DL
757static int ep_eventpoll_release(struct inode *inode, struct file *file)
758{
759 struct eventpoll *ep = file->private_data;
1da177e4 760
f0ee9aab 761 if (ep)
7699acd1 762 ep_free(ep);
7699acd1 763
7699acd1 764 return 0;
1da177e4
LT
765}
766
d85e2aa2 767static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
37b5e521
JB
768 void *priv);
769static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
770 poll_table *pt);
771
772/*
773 * Differs from ep_eventpoll_poll() in that internal callers already have
774 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
775 * is correctly annotated.
776 */
d85e2aa2 777static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 778 int depth)
450d89ec 779{
37b5e521
JB
780 struct eventpoll *ep;
781 bool locked;
782
450d89ec 783 pt->_key = epi->event.events;
37b5e521 784 if (!is_file_epoll(epi->ffd.file))
9965ed17 785 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
450d89ec 786
37b5e521
JB
787 ep = epi->ffd.file->private_data;
788 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
789 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
450d89ec 790
37b5e521
JB
791 return ep_scan_ready_list(epi->ffd.file->private_data,
792 ep_read_events_proc, &depth, depth,
793 locked) & epi->event.events;
450d89ec
EW
794}
795
d85e2aa2 796static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 797 void *priv)
5071f97e
DL
798{
799 struct epitem *epi, *tmp;
626cf236 800 poll_table pt;
37b5e521 801 int depth = *(int *)priv;
5071f97e 802
626cf236 803 init_poll_funcptr(&pt, NULL);
37b5e521 804 depth++;
450d89ec 805
5071f97e 806 list_for_each_entry_safe(epi, tmp, head, rdllink) {
37b5e521 807 if (ep_item_poll(epi, &pt, depth)) {
a9a08845 808 return EPOLLIN | EPOLLRDNORM;
37b5e521 809 } else {
5071f97e
DL
810 /*
811 * Item has been dropped into the ready list by the poll
812 * callback, but it's not actually ready, as far as
813 * caller requested events goes. We can remove it here.
814 */
eea1d585 815 __pm_relax(ep_wakeup_source(epi));
5071f97e 816 list_del_init(&epi->rdllink);
296e236e 817 }
5071f97e
DL
818 }
819
820 return 0;
821}
822
a11e1d43 823static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e
BN
824{
825 struct eventpoll *ep = file->private_data;
826 int depth = 0;
7699acd1 827
a11e1d43
LT
828 /* Insert inside our poll wait queue */
829 poll_wait(file, &ep->poll_wait, wait);
830
5071f97e
DL
831 /*
832 * Proceed to find out if wanted events are really available inside
37b5e521 833 * the ready list.
5071f97e 834 */
37b5e521
JB
835 return ep_scan_ready_list(ep, ep_read_events_proc,
836 &depth, depth, false);
7699acd1
DL
837}
838
138d22b5 839#ifdef CONFIG_PROC_FS
a3816ab0 840static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
841{
842 struct eventpoll *ep = f->private_data;
843 struct rb_node *rbp;
138d22b5
CG
844
845 mutex_lock(&ep->mtx);
b2ac2ea6 846 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 847 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 848 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 849
77493f04
CG
850 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
851 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 852 epi->ffd.fd, epi->event.events,
77493f04
CG
853 (long long)epi->event.data,
854 (long long)epi->ffd.file->f_pos,
855 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 856 if (seq_has_overflowed(m))
138d22b5
CG
857 break;
858 }
859 mutex_unlock(&ep->mtx);
138d22b5
CG
860}
861#endif
862
7699acd1
DL
863/* File callbacks that implement the eventpoll file behaviour */
864static const struct file_operations eventpoll_fops = {
138d22b5
CG
865#ifdef CONFIG_PROC_FS
866 .show_fdinfo = ep_show_fdinfo,
867#endif
7699acd1 868 .release = ep_eventpoll_release,
a11e1d43 869 .poll = ep_eventpoll_poll,
6038f373 870 .llseek = noop_llseek,
7699acd1
DL
871};
872
b611967d 873/*
7699acd1
DL
874 * This is called from eventpoll_release() to unlink files from the eventpoll
875 * interface. We need to have this facility to cleanup correctly files that are
876 * closed without being removed from the eventpoll interface.
b611967d 877 */
7699acd1 878void eventpoll_release_file(struct file *file)
b611967d 879{
7699acd1 880 struct eventpoll *ep;
ebe06187 881 struct epitem *epi, *next;
b611967d
DL
882
883 /*
68499914 884 * We don't want to get "file->f_lock" because it is not
7699acd1 885 * necessary. It is not necessary because we're in the "struct file"
25985edc 886 * cleanup path, and this means that no one is using this file anymore.
5071f97e 887 * So, for example, epoll_ctl() cannot hit here since if we reach this
67647d0f 888 * point, the file counter already went to zero and fget() would fail.
d47de16c 889 * The only hit might come from ep_free() but by holding the mutex
7699acd1 890 * will correctly serialize the operation. We do need to acquire
d47de16c 891 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
7699acd1 892 * from anywhere but ep_free().
68499914
JC
893 *
894 * Besides, ep_remove() acquires the lock, so we can't hold it here.
b611967d 895 */
7699acd1 896 mutex_lock(&epmutex);
ebe06187 897 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
7699acd1 898 ep = epi->ep;
d8805e63 899 mutex_lock_nested(&ep->mtx, 0);
7699acd1 900 ep_remove(ep, epi);
d47de16c 901 mutex_unlock(&ep->mtx);
b611967d 902 }
7699acd1 903 mutex_unlock(&epmutex);
b611967d
DL
904}
905
53d2be79 906static int ep_alloc(struct eventpoll **pep)
1da177e4 907{
7ef9964e
DL
908 int error;
909 struct user_struct *user;
910 struct eventpoll *ep;
1da177e4 911
7ef9964e 912 user = get_current_user();
7ef9964e
DL
913 error = -ENOMEM;
914 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
915 if (unlikely(!ep))
916 goto free_uid;
1da177e4 917
d47de16c 918 mutex_init(&ep->mtx);
a218cc49 919 rwlock_init(&ep->lock);
1da177e4
LT
920 init_waitqueue_head(&ep->wq);
921 init_waitqueue_head(&ep->poll_wait);
922 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 923 ep->rbr = RB_ROOT_CACHED;
d47de16c 924 ep->ovflist = EP_UNACTIVE_PTR;
7ef9964e 925 ep->user = user;
1da177e4 926
53d2be79 927 *pep = ep;
1da177e4 928
1da177e4 929 return 0;
7ef9964e
DL
930
931free_uid:
932 free_uid(user);
933 return error;
1da177e4
LT
934}
935
1da177e4 936/*
c7ea7630
DL
937 * Search the file inside the eventpoll tree. The RB tree operations
938 * are protected by the "mtx" mutex, and ep_find() must be called with
939 * "mtx" held.
1da177e4
LT
940 */
941static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
942{
943 int kcmp;
1da177e4
LT
944 struct rb_node *rbp;
945 struct epitem *epi, *epir = NULL;
946 struct epoll_filefd ffd;
947
b030a4dd 948 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 949 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 950 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 951 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
952 if (kcmp > 0)
953 rbp = rbp->rb_right;
954 else if (kcmp < 0)
955 rbp = rbp->rb_left;
956 else {
1da177e4
LT
957 epir = epi;
958 break;
959 }
960 }
1da177e4 961
1da177e4
LT
962 return epir;
963}
964
92ef6da3 965#ifdef CONFIG_CHECKPOINT_RESTORE
0791e364
CG
966static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
967{
968 struct rb_node *rbp;
969 struct epitem *epi;
970
b2ac2ea6 971 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
972 epi = rb_entry(rbp, struct epitem, rbn);
973 if (epi->ffd.fd == tfd) {
974 if (toff == 0)
975 return epi;
976 else
977 toff--;
978 }
979 cond_resched();
980 }
981
982 return NULL;
983}
984
985struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
986 unsigned long toff)
987{
988 struct file *file_raw;
989 struct eventpoll *ep;
990 struct epitem *epi;
991
992 if (!is_file_epoll(file))
993 return ERR_PTR(-EINVAL);
994
995 ep = file->private_data;
996
997 mutex_lock(&ep->mtx);
998 epi = ep_find_tfd(ep, tfd, toff);
999 if (epi)
1000 file_raw = epi->ffd.file;
1001 else
1002 file_raw = ERR_PTR(-ENOENT);
1003 mutex_unlock(&ep->mtx);
1004
1005 return file_raw;
1006}
92ef6da3 1007#endif /* CONFIG_CHECKPOINT_RESTORE */
0791e364 1008
a218cc49
RP
1009/**
1010 * Adds a new entry to the tail of the list in a lockless way, i.e.
1011 * multiple CPUs are allowed to call this function concurrently.
1012 *
1013 * Beware: it is necessary to prevent any other modifications of the
1014 * existing list until all changes are completed, in other words
1015 * concurrent list_add_tail_lockless() calls should be protected
1016 * with a read lock, where write lock acts as a barrier which
1017 * makes sure all list_add_tail_lockless() calls are fully
1018 * completed.
1019 *
1020 * Also an element can be locklessly added to the list only in one
1021 * direction i.e. either to the tail either to the head, otherwise
1022 * concurrent access will corrupt the list.
1023 *
1024 * Returns %false if element has been already added to the list, %true
1025 * otherwise.
1026 */
1027static inline bool list_add_tail_lockless(struct list_head *new,
1028 struct list_head *head)
1029{
1030 struct list_head *prev;
1031
1032 /*
1033 * This is simple 'new->next = head' operation, but cmpxchg()
1034 * is used in order to detect that same element has been just
1035 * added to the list from another CPU: the winner observes
1036 * new->next == new.
1037 */
1038 if (cmpxchg(&new->next, new, head) != new)
1039 return false;
1040
1041 /*
1042 * Initially ->next of a new element must be updated with the head
1043 * (we are inserting to the tail) and only then pointers are atomically
1044 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1045 * updated before pointers are actually swapped and pointers are
1046 * swapped before prev->next is updated.
1047 */
1048
1049 prev = xchg(&head->prev, new);
1050
1051 /*
1052 * It is safe to modify prev->next and new->prev, because a new element
1053 * is added only to the tail and new->next is updated before XCHG.
1054 */
1055
1056 prev->next = new;
1057 new->prev = prev;
1058
1059 return true;
1060}
1061
1062/**
1063 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1064 * i.e. multiple CPUs are allowed to call this function concurrently.
1065 *
1066 * Returns %false if epi element has been already chained, %true otherwise.
1067 */
1068static inline bool chain_epi_lockless(struct epitem *epi)
1069{
1070 struct eventpoll *ep = epi->ep;
1071
0c54a6a4
KK
1072 /* Fast preliminary check */
1073 if (epi->next != EP_UNACTIVE_PTR)
1074 return false;
1075
a218cc49
RP
1076 /* Check that the same epi has not been just chained from another CPU */
1077 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1078 return false;
1079
1080 /* Atomically exchange tail */
1081 epi->next = xchg(&ep->ovflist, epi);
1082
1083 return true;
1084}
1085
1da177e4 1086/*
7699acd1 1087 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1088 * mechanism. It is called by the stored file descriptors when they
7699acd1 1089 * have events to report.
a218cc49
RP
1090 *
1091 * This callback takes a read lock in order not to content with concurrent
1092 * events from another file descriptors, thus all modifications to ->rdllist
1093 * or ->ovflist are lockless. Read lock is paired with the write lock from
1094 * ep_scan_ready_list(), which stops all list modifications and guarantees
1095 * that lists state is seen correctly.
1096 *
1097 * Another thing worth to mention is that ep_poll_callback() can be called
1098 * concurrently for the same @epi from different CPUs if poll table was inited
1099 * with several wait queues entries. Plural wakeup from different CPUs of a
1100 * single wait queue is serialized by wq.lock, but the case when multiple wait
1101 * queues are used should be detected accordingly. This is detected using
1102 * cmpxchg() operation.
1da177e4 1103 */
ac6424b9 1104static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1105{
7699acd1 1106 int pwake = 0;
7699acd1
DL
1107 struct epitem *epi = ep_item_from_wait(wait);
1108 struct eventpoll *ep = epi->ep;
3ad6f93e 1109 __poll_t pollflags = key_to_poll(key);
a218cc49 1110 unsigned long flags;
df0108c5 1111 int ewake = 0;
1da177e4 1112
a218cc49 1113 read_lock_irqsave(&ep->lock, flags);
1da177e4 1114
bf3b9f63
SS
1115 ep_set_busy_poll_napi_id(epi);
1116
7699acd1
DL
1117 /*
1118 * If the event mask does not contain any poll(2) event, we consider the
1119 * descriptor to be disabled. This condition is likely the effect of the
1120 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1121 * until the next EPOLL_CTL_MOD will be issued.
1122 */
1123 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1124 goto out_unlock;
1125
2dfa4eea
DL
1126 /*
1127 * Check the events coming with the callback. At this stage, not
1128 * every device reports the events in the "key" parameter of the
1129 * callback. We need to be able to handle both cases here, hence the
1130 * test for "key" != NULL before the event match test.
1131 */
3ad6f93e 1132 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1133 goto out_unlock;
1134
d47de16c 1135 /*
bf6a41db 1136 * If we are transferring events to userspace, we can hold no locks
d47de16c 1137 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1138 * semantics). All the events that happen during that period of time are
d47de16c
DL
1139 * chained in ep->ovflist and requeued later on.
1140 */
c5a282e9 1141 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1142 if (chain_epi_lockless(epi))
1143 ep_pm_stay_awake_rcu(epi);
1144 } else if (!ep_is_linked(epi)) {
1145 /* In the usual case, add event to ready list. */
1146 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1147 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1148 }
7699acd1 1149
7699acd1
DL
1150 /*
1151 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1152 * wait list.
1153 */
df0108c5 1154 if (waitqueue_active(&ep->wq)) {
b6a515c8 1155 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1156 !(pollflags & POLLFREE)) {
1157 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1158 case EPOLLIN:
1159 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1160 ewake = 1;
1161 break;
a9a08845
LT
1162 case EPOLLOUT:
1163 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1164 ewake = 1;
1165 break;
1166 case 0:
1167 ewake = 1;
1168 break;
1169 }
1170 }
a218cc49 1171 wake_up(&ep->wq);
df0108c5 1172 }
7699acd1
DL
1173 if (waitqueue_active(&ep->poll_wait))
1174 pwake++;
1175
d47de16c 1176out_unlock:
a218cc49 1177 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1178
7699acd1
DL
1179 /* We have to call this outside the lock */
1180 if (pwake)
efcdd350 1181 ep_poll_safewake(ep, epi);
7699acd1 1182
138e4ad6
ON
1183 if (!(epi->event.events & EPOLLEXCLUSIVE))
1184 ewake = 1;
1185
3ad6f93e 1186 if (pollflags & POLLFREE) {
138e4ad6
ON
1187 /*
1188 * If we race with ep_remove_wait_queue() it can miss
1189 * ->whead = NULL and do another remove_wait_queue() after
1190 * us, so we can't use __remove_wait_queue().
1191 */
1192 list_del_init(&wait->entry);
1193 /*
1194 * ->whead != NULL protects us from the race with ep_free()
1195 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1196 * held by the caller. Once we nullify it, nothing protects
1197 * ep/epi or even wait.
1198 */
1199 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1200 }
df0108c5 1201
138e4ad6 1202 return ewake;
7699acd1 1203}
1da177e4
LT
1204
1205/*
1206 * This is the callback that is used to add our wait queue to the
1207 * target file wakeup lists.
1208 */
1209static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1210 poll_table *pt)
1211{
364f374f
AV
1212 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1213 struct epitem *epi = epq->epi;
1da177e4
LT
1214 struct eppoll_entry *pwq;
1215
364f374f
AV
1216 if (unlikely(!epi)) // an earlier allocation has failed
1217 return;
1218
1219 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1220 if (unlikely(!pwq)) {
1221 epq->epi = NULL;
1222 return;
296e236e 1223 }
364f374f
AV
1224
1225 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1226 pwq->whead = whead;
1227 pwq->base = epi;
1228 if (epi->event.events & EPOLLEXCLUSIVE)
1229 add_wait_queue_exclusive(whead, &pwq->wait);
1230 else
1231 add_wait_queue(whead, &pwq->wait);
1232 pwq->next = epi->pwqlist;
1233 epi->pwqlist = pwq;
1da177e4
LT
1234}
1235
1da177e4
LT
1236static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1237{
1238 int kcmp;
b2ac2ea6 1239 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1240 struct epitem *epic;
b2ac2ea6 1241 bool leftmost = true;
1da177e4
LT
1242
1243 while (*p) {
1244 parent = *p;
1245 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1246 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1247 if (kcmp > 0) {
1da177e4 1248 p = &parent->rb_right;
b2ac2ea6
DB
1249 leftmost = false;
1250 } else
1da177e4
LT
1251 p = &parent->rb_left;
1252 }
1253 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1254 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1255}
1256
a80a6b85
AM
1257
1258
28d82dc1
JB
1259#define PATH_ARR_SIZE 5
1260/*
1261 * These are the number paths of length 1 to 5, that we are allowing to emanate
1262 * from a single file of interest. For example, we allow 1000 paths of length
1263 * 1, to emanate from each file of interest. This essentially represents the
1264 * potential wakeup paths, which need to be limited in order to avoid massive
1265 * uncontrolled wakeup storms. The common use case should be a single ep which
1266 * is connected to n file sources. In this case each file source has 1 path
1267 * of length 1. Thus, the numbers below should be more than sufficient. These
1268 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1269 * and delete can't add additional paths. Protected by the epmutex.
1270 */
1271static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1272static int path_count[PATH_ARR_SIZE];
1273
1274static int path_count_inc(int nests)
1275{
93dc6107
JB
1276 /* Allow an arbitrary number of depth 1 paths */
1277 if (nests == 0)
1278 return 0;
1279
28d82dc1
JB
1280 if (++path_count[nests] > path_limits[nests])
1281 return -1;
1282 return 0;
1283}
1284
1285static void path_count_init(void)
1286{
1287 int i;
1288
1289 for (i = 0; i < PATH_ARR_SIZE; i++)
1290 path_count[i] = 0;
1291}
1292
aebf15f0 1293static int reverse_path_check_proc(struct file *file, int depth)
28d82dc1
JB
1294{
1295 int error = 0;
28d82dc1
JB
1296 struct epitem *epi;
1297
0c320f77 1298 if (depth > EP_MAX_NESTS) /* too deep nesting */
99d84d43
AV
1299 return -1;
1300
ae10b2b4
JB
1301 /* CTL_DEL can remove links here, but that can't increase our count */
1302 rcu_read_lock();
1303 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
d16312a4
AV
1304 struct file *recepient = epi->ep->file;
1305 if (WARN_ON(!is_file_epoll(recepient)))
1306 continue;
1307 if (list_empty(&recepient->f_ep_links))
1308 error = path_count_inc(depth);
1309 else
1310 error = reverse_path_check_proc(recepient, depth + 1);
1311 if (error != 0)
1312 break;
28d82dc1 1313 }
ae10b2b4 1314 rcu_read_unlock();
28d82dc1
JB
1315 return error;
1316}
1317
1318/**
1319 * reverse_path_check - The tfile_check_list is list of file *, which have
1320 * links that are proposed to be newly added. We need to
1321 * make sure that those added links don't add too many
1322 * paths such that we will spend all our time waking up
1323 * eventpoll objects.
1324 *
1325 * Returns: Returns zero if the proposed links don't create too many paths,
1326 * -1 otherwise.
1327 */
1328static int reverse_path_check(void)
1329{
28d82dc1
JB
1330 int error = 0;
1331 struct file *current_file;
1332
1333 /* let's call this for all tfiles */
1334 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
28d82dc1 1335 path_count_init();
aebf15f0 1336 error = reverse_path_check_proc(current_file, 0);
28d82dc1
JB
1337 if (error)
1338 break;
1339 }
1340 return error;
1341}
1342
4d7e30d9
AH
1343static int ep_create_wakeup_source(struct epitem *epi)
1344{
3701cb59 1345 struct name_snapshot n;
eea1d585 1346 struct wakeup_source *ws;
4d7e30d9
AH
1347
1348 if (!epi->ep->ws) {
c8377adf 1349 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1350 if (!epi->ep->ws)
1351 return -ENOMEM;
1352 }
1353
3701cb59
AV
1354 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1355 ws = wakeup_source_register(NULL, n.name.name);
1356 release_dentry_name_snapshot(&n);
eea1d585
EW
1357
1358 if (!ws)
4d7e30d9 1359 return -ENOMEM;
eea1d585 1360 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1361
1362 return 0;
1363}
1364
eea1d585
EW
1365/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1366static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1367{
eea1d585
EW
1368 struct wakeup_source *ws = ep_wakeup_source(epi);
1369
d6d67e72 1370 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1371
1372 /*
1373 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1374 * used internally by wakeup_source_remove, too (called by
1375 * wakeup_source_unregister), so we cannot use call_rcu
1376 */
1377 synchronize_rcu();
1378 wakeup_source_unregister(ws);
4d7e30d9
AH
1379}
1380
c7ea7630
DL
1381/*
1382 * Must be called with "mtx" held.
1383 */
bec1a502 1384static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1385 struct file *tfile, int fd, int full_check)
1da177e4 1386{
d85e2aa2
AV
1387 int error, pwake = 0;
1388 __poll_t revents;
52bd19f7 1389 long user_watches;
1da177e4
LT
1390 struct epitem *epi;
1391 struct ep_pqueue epq;
1392
92e64178
DB
1393 lockdep_assert_irqs_enabled();
1394
52bd19f7
RH
1395 user_watches = atomic_long_read(&ep->user->epoll_watches);
1396 if (unlikely(user_watches >= max_user_watches))
7ef9964e 1397 return -ENOSPC;
e94b1766 1398 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
7ef9964e 1399 return -ENOMEM;
1da177e4
LT
1400
1401 /* Item initialization follow here ... */
1da177e4
LT
1402 INIT_LIST_HEAD(&epi->rdllink);
1403 INIT_LIST_HEAD(&epi->fllink);
80285b75 1404 epi->pwqlist = NULL;
1da177e4 1405 epi->ep = ep;
b030a4dd 1406 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1407 epi->event = *event;
d47de16c 1408 epi->next = EP_UNACTIVE_PTR;
4d7e30d9
AH
1409 if (epi->event.events & EPOLLWAKEUP) {
1410 error = ep_create_wakeup_source(epi);
1411 if (error)
1412 goto error_create_wakeup_source;
1413 } else {
eea1d585 1414 RCU_INIT_POINTER(epi->ws, NULL);
4d7e30d9 1415 }
1da177e4 1416
f8d4f44d
AV
1417 /* Add the current item to the list of active epoll hook for this file */
1418 spin_lock(&tfile->f_lock);
1419 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1420 spin_unlock(&tfile->f_lock);
1421
1422 /*
1423 * Add the current item to the RB tree. All RB tree operations are
1424 * protected by "mtx", and ep_insert() is called with "mtx" held.
1425 */
1426 ep_rbtree_insert(ep, epi);
1427
1428 /* now check if we've created too many backpaths */
1429 error = -EINVAL;
1430 if (full_check && reverse_path_check())
1431 goto error_remove_epi;
1432
1da177e4
LT
1433 /* Initialize the poll table using the queue callback */
1434 epq.epi = epi;
1435 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1436
1437 /*
1438 * Attach the item to the poll hooks and get current event bits.
1439 * We can safely use the file* here because its usage count has
c7ea7630
DL
1440 * been increased by the caller of this function. Note that after
1441 * this operation completes, the poll callback can start hitting
1442 * the new item.
1da177e4 1443 */
37b5e521 1444 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1445
1446 /*
1447 * We have to check if something went wrong during the poll wait queue
1448 * install process. Namely an allocation for a wait queue failed due
1449 * high memory pressure.
1450 */
7ef9964e 1451 error = -ENOMEM;
364f374f 1452 if (!epq.epi)
7699acd1 1453 goto error_unregister;
1da177e4 1454
c7ea7630 1455 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1456 write_lock_irq(&ep->lock);
c7ea7630 1457
bf3b9f63
SS
1458 /* record NAPI ID of new item if present */
1459 ep_set_busy_poll_napi_id(epi);
1460
1da177e4 1461 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1462 if (revents && !ep_is_linked(epi)) {
1da177e4 1463 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1464 ep_pm_stay_awake(epi);
1da177e4
LT
1465
1466 /* Notify waiting tasks that events are available */
1467 if (waitqueue_active(&ep->wq))
a218cc49 1468 wake_up(&ep->wq);
1da177e4
LT
1469 if (waitqueue_active(&ep->poll_wait))
1470 pwake++;
1471 }
1472
a218cc49 1473 write_unlock_irq(&ep->lock);
1da177e4 1474
52bd19f7 1475 atomic_long_inc(&ep->user->epoll_watches);
7ef9964e 1476
1da177e4
LT
1477 /* We have to call this outside the lock */
1478 if (pwake)
efcdd350 1479 ep_poll_safewake(ep, NULL);
1da177e4 1480
1da177e4
LT
1481 return 0;
1482
f8d4f44d
AV
1483error_unregister:
1484 ep_unregister_pollwait(ep, epi);
28d82dc1
JB
1485error_remove_epi:
1486 spin_lock(&tfile->f_lock);
ae10b2b4 1487 list_del_rcu(&epi->fllink);
28d82dc1
JB
1488 spin_unlock(&tfile->f_lock);
1489
b2ac2ea6 1490 rb_erase_cached(&epi->rbn, &ep->rbr);
28d82dc1 1491
1da177e4
LT
1492 /*
1493 * We need to do this because an event could have been arrived on some
67647d0f
DL
1494 * allocated wait queue. Note that we don't care about the ep->ovflist
1495 * list, since that is used/cleaned only inside a section bound by "mtx".
1496 * And ep_insert() is called with "mtx" held.
1da177e4 1497 */
a218cc49 1498 write_lock_irq(&ep->lock);
992991c0 1499 if (ep_is_linked(epi))
6192bd53 1500 list_del_init(&epi->rdllink);
a218cc49 1501 write_unlock_irq(&ep->lock);
1da177e4 1502
eea1d585 1503 wakeup_source_unregister(ep_wakeup_source(epi));
4d7e30d9
AH
1504
1505error_create_wakeup_source:
b030a4dd 1506 kmem_cache_free(epi_cache, epi);
7ef9964e 1507
1da177e4
LT
1508 return error;
1509}
1510
1da177e4
LT
1511/*
1512 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1513 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1514 */
bec1a502
AV
1515static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1516 const struct epoll_event *event)
1da177e4
LT
1517{
1518 int pwake = 0;
626cf236
HV
1519 poll_table pt;
1520
92e64178
DB
1521 lockdep_assert_irqs_enabled();
1522
626cf236 1523 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1524
1525 /*
e057e15f
TB
1526 * Set the new event interest mask before calling f_op->poll();
1527 * otherwise we might miss an event that happens between the
1528 * f_op->poll() call and the new event set registering.
1da177e4 1529 */
128dd175 1530 epi->event.events = event->events; /* need barrier below */
e057e15f 1531 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1532 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1533 if (!ep_has_wakeup_source(epi))
4d7e30d9 1534 ep_create_wakeup_source(epi);
eea1d585 1535 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1536 ep_destroy_wakeup_source(epi);
1537 }
1da177e4 1538
128dd175
EW
1539 /*
1540 * The following barrier has two effects:
1541 *
1542 * 1) Flush epi changes above to other CPUs. This ensures
1543 * we do not miss events from ep_poll_callback if an
1544 * event occurs immediately after we call f_op->poll().
a218cc49 1545 * We need this because we did not take ep->lock while
128dd175 1546 * changing epi above (but ep_poll_callback does take
a218cc49 1547 * ep->lock).
128dd175
EW
1548 *
1549 * 2) We also need to ensure we do not miss _past_ events
1550 * when calling f_op->poll(). This barrier also
1551 * pairs with the barrier in wq_has_sleeper (see
1552 * comments for wq_has_sleeper).
1553 *
1554 * This barrier will now guarantee ep_poll_callback or f_op->poll
1555 * (or both) will notice the readiness of an item.
1556 */
1557 smp_mb();
1558
1da177e4
LT
1559 /*
1560 * Get current event bits. We can safely use the file* here because
1561 * its usage count has been increased by the caller of this function.
c7ea7630 1562 * If the item is "hot" and it is not registered inside the ready
67647d0f 1563 * list, push it inside.
1da177e4 1564 */
69112736 1565 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1566 write_lock_irq(&ep->lock);
992991c0 1567 if (!ep_is_linked(epi)) {
c7ea7630 1568 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1569 ep_pm_stay_awake(epi);
c7ea7630
DL
1570
1571 /* Notify waiting tasks that events are available */
1572 if (waitqueue_active(&ep->wq))
a218cc49 1573 wake_up(&ep->wq);
c7ea7630
DL
1574 if (waitqueue_active(&ep->poll_wait))
1575 pwake++;
7699acd1 1576 }
a218cc49 1577 write_unlock_irq(&ep->lock);
7699acd1 1578 }
1da177e4 1579
7699acd1
DL
1580 /* We have to call this outside the lock */
1581 if (pwake)
efcdd350 1582 ep_poll_safewake(ep, NULL);
1da177e4 1583
7699acd1 1584 return 0;
1da177e4
LT
1585}
1586
d85e2aa2 1587static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
296e236e 1588 void *priv)
1da177e4 1589{
5071f97e 1590 struct ep_send_events_data *esed = priv;
d85e2aa2 1591 __poll_t revents;
4e0982a0
DB
1592 struct epitem *epi, *tmp;
1593 struct epoll_event __user *uevent = esed->events;
eea1d585 1594 struct wakeup_source *ws;
626cf236
HV
1595 poll_table pt;
1596
1597 init_poll_funcptr(&pt, NULL);
4e0982a0 1598 esed->res = 0;
1da177e4 1599
296e236e 1600 /*
5071f97e
DL
1601 * We can loop without lock because we are passed a task private list.
1602 * Items cannot vanish during the loop because ep_scan_ready_list() is
1603 * holding "mtx" during this call.
296e236e 1604 */
21877e1a
DB
1605 lockdep_assert_held(&ep->mtx);
1606
4e0982a0
DB
1607 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1608 if (esed->res >= esed->maxevents)
1609 break;
d47de16c 1610
4d7e30d9
AH
1611 /*
1612 * Activate ep->ws before deactivating epi->ws to prevent
1613 * triggering auto-suspend here (in case we reactive epi->ws
1614 * below).
1615 *
1616 * This could be rearranged to delay the deactivation of epi->ws
1617 * instead, but then epi->ws would temporarily be out of sync
1618 * with ep_is_linked().
1619 */
eea1d585
EW
1620 ws = ep_wakeup_source(epi);
1621 if (ws) {
1622 if (ws->active)
1623 __pm_stay_awake(ep->ws);
1624 __pm_relax(ws);
1625 }
1626
d47de16c 1627 list_del_init(&epi->rdllink);
1da177e4 1628
296e236e 1629 /*
5071f97e
DL
1630 * If the event mask intersect the caller-requested one,
1631 * deliver the event to userspace. Again, ep_scan_ready_list()
4e0982a0 1632 * is holding ep->mtx, so no operations coming from userspace
5071f97e 1633 * can change the item.
296e236e 1634 */
4e0982a0
DB
1635 revents = ep_item_poll(epi, &pt, 1);
1636 if (!revents)
1637 continue;
1638
1639 if (__put_user(revents, &uevent->events) ||
1640 __put_user(epi->event.data, &uevent->data)) {
1641 list_add(&epi->rdllink, head);
1642 ep_pm_stay_awake(epi);
1643 if (!esed->res)
1644 esed->res = -EFAULT;
1645 return 0;
1646 }
1647 esed->res++;
1648 uevent++;
1649 if (epi->event.events & EPOLLONESHOT)
1650 epi->event.events &= EP_PRIVATE_BITS;
1651 else if (!(epi->event.events & EPOLLET)) {
1652 /*
1653 * If this file has been added with Level
1654 * Trigger mode, we need to insert back inside
1655 * the ready list, so that the next call to
1656 * epoll_wait() will check again the events
1657 * availability. At this point, no one can insert
1658 * into ep->rdllist besides us. The epoll_ctl()
1659 * callers are locked out by
1660 * ep_scan_ready_list() holding "mtx" and the
1661 * poll callback will queue them in ep->ovflist.
1662 */
1663 list_add_tail(&epi->rdllink, &ep->rdllist);
1664 ep_pm_stay_awake(epi);
296e236e
DL
1665 }
1666 }
5071f97e 1667
d7ebbe46 1668 return 0;
5071f97e 1669}
d47de16c 1670
296e236e
DL
1671static int ep_send_events(struct eventpoll *ep,
1672 struct epoll_event __user *events, int maxevents)
5071f97e
DL
1673{
1674 struct ep_send_events_data esed;
1da177e4 1675
5071f97e
DL
1676 esed.maxevents = maxevents;
1677 esed.events = events;
6192bd53 1678
d7ebbe46
AV
1679 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1680 return esed.res;
1da177e4
LT
1681}
1682
766b9f92 1683static inline struct timespec64 ep_set_mstimeout(long ms)
0781b909 1684{
766b9f92 1685 struct timespec64 now, ts = {
0781b909
ED
1686 .tv_sec = ms / MSEC_PER_SEC,
1687 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1688 };
1689
766b9f92
DD
1690 ktime_get_ts64(&now);
1691 return timespec64_add_safe(now, ts);
0781b909
ED
1692}
1693
f4d93ad7
SB
1694/**
1695 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1696 * event buffer.
1697 *
1698 * @ep: Pointer to the eventpoll context.
1699 * @events: Pointer to the userspace buffer where the ready events should be
1700 * stored.
1701 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1702 * @timeout: Maximum timeout for the ready events fetch operation, in
1703 * milliseconds. If the @timeout is zero, the function will not block,
1704 * while if the @timeout is less than zero, the function will block
1705 * until at least one event has been retrieved (or an error
1706 * occurred).
1707 *
1708 * Returns: Returns the number of ready events which have been fetched, or an
1709 * error code, in case of error.
1710 */
1da177e4
LT
1711static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1712 int maxevents, long timeout)
1713{
f4d93ad7 1714 int res = 0, eavail, timed_out = 0;
da8b44d5 1715 u64 slack = 0;
ac6424b9 1716 wait_queue_entry_t wait;
95aac7b1
SB
1717 ktime_t expires, *to = NULL;
1718
679abf38
DB
1719 lockdep_assert_irqs_enabled();
1720
95aac7b1 1721 if (timeout > 0) {
766b9f92 1722 struct timespec64 end_time = ep_set_mstimeout(timeout);
0781b909 1723
95aac7b1
SB
1724 slack = select_estimate_accuracy(&end_time);
1725 to = &expires;
766b9f92 1726 *to = timespec64_to_ktime(end_time);
95aac7b1 1727 } else if (timeout == 0) {
f4d93ad7
SB
1728 /*
1729 * Avoid the unnecessary trip to the wait queue loop, if the
c5a282e9
DB
1730 * caller specified a non blocking operation. We still need
1731 * lock because we could race and not see an epi being added
1732 * to the ready list while in irq callback. Thus incorrectly
1733 * returning 0 back to userspace.
f4d93ad7 1734 */
95aac7b1 1735 timed_out = 1;
c5a282e9 1736
a218cc49 1737 write_lock_irq(&ep->lock);
c5a282e9 1738 eavail = ep_events_available(ep);
a218cc49 1739 write_unlock_irq(&ep->lock);
c5a282e9 1740
35cff1a6 1741 goto send_events;
95aac7b1 1742 }
1da177e4 1743
f4d93ad7 1744fetch_events:
bf3b9f63
SS
1745
1746 if (!ep_events_available(ep))
1747 ep_busy_loop(ep, timed_out);
1748
c5a282e9
DB
1749 eavail = ep_events_available(ep);
1750 if (eavail)
35cff1a6 1751 goto send_events;
1da177e4 1752
c5a282e9
DB
1753 /*
1754 * Busy poll timed out. Drop NAPI ID for now, we can add
1755 * it back in when we have moved a socket with a valid NAPI
1756 * ID onto the ready list.
1757 */
1758 ep_reset_busy_poll_napi_id(ep);
bf3b9f63 1759
412895f0
RP
1760 do {
1761 /*
1762 * Internally init_wait() uses autoremove_wake_function(),
1763 * thus wait entry is removed from the wait queue on each
1764 * wakeup. Why it is important? In case of several waiters
1765 * each new wakeup will hit the next waiter, giving it the
1766 * chance to harvest new event. Otherwise wakeup can be
1767 * lost. This is also good performance-wise, because on
1768 * normal wakeup path no need to call __remove_wait_queue()
1769 * explicitly, thus ep->lock is not taken, which halts the
1770 * event delivery.
1771 */
1772 init_wait(&wait);
1da177e4 1773
65759097 1774 write_lock_irq(&ep->lock);
bf3b9f63 1775 /*
65759097
RP
1776 * Barrierless variant, waitqueue_active() is called under
1777 * the same lock on wakeup ep_poll_callback() side, so it
1778 * is safe to avoid an explicit barrier.
bf3b9f63 1779 */
65759097
RP
1780 __set_current_state(TASK_INTERRUPTIBLE);
1781
1da177e4 1782 /*
65759097
RP
1783 * Do the final check under the lock. ep_scan_ready_list()
1784 * plays with two lists (->rdllist and ->ovflist) and there
1785 * is always a race when both lists are empty for short
1786 * period of time although events are pending, so lock is
1787 * important.
1da177e4 1788 */
65759097
RP
1789 eavail = ep_events_available(ep);
1790 if (!eavail) {
1791 if (signal_pending(current))
1792 res = -EINTR;
1793 else
1794 __add_wait_queue_exclusive(&ep->wq, &wait);
c5a282e9 1795 }
65759097 1796 write_unlock_irq(&ep->lock);
95aac7b1 1797
65759097 1798 if (eavail || res)
c5a282e9 1799 break;
1da177e4 1800
abc610e0 1801 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
c5a282e9 1802 timed_out = 1;
abc610e0
DB
1803 break;
1804 }
412895f0
RP
1805
1806 /* We were woken up, thus go and try to harvest some events */
1807 eavail = 1;
1808
1809 } while (0);
1da177e4 1810
c5a282e9 1811 __set_current_state(TASK_RUNNING);
1da177e4 1812
412895f0
RP
1813 if (!list_empty_careful(&wait.entry)) {
1814 write_lock_irq(&ep->lock);
1815 __remove_wait_queue(&ep->wq, &wait);
1816 write_unlock_irq(&ep->lock);
1817 }
1818
35cff1a6 1819send_events:
65759097
RP
1820 if (fatal_signal_pending(current)) {
1821 /*
1822 * Always short-circuit for fatal signals to allow
1823 * threads to make a timely exit without the chance of
1824 * finding more events available and fetching
1825 * repeatedly.
1826 */
1827 res = -EINTR;
1828 }
1da177e4
LT
1829 /*
1830 * Try to transfer events to user space. In case we get 0 events and
1831 * there's still timeout left over, we go trying again in search of
1832 * more luck.
1833 */
1834 if (!res && eavail &&
95aac7b1 1835 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
f4d93ad7 1836 goto fetch_events;
1da177e4
LT
1837
1838 return res;
1839}
1840
22bacca4 1841/**
773318ed 1842 * ep_loop_check_proc - verify that adding an epoll file inside another
22bacca4
DL
1843 * epoll structure, does not violate the constraints, in
1844 * terms of closed loops, or too deep chains (which can
1845 * result in excessive stack usage).
1846 *
1847 * @priv: Pointer to the epoll file to be currently checked.
bde03c4c 1848 * @depth: Current depth of the path being checked.
22bacca4
DL
1849 *
1850 * Returns: Returns zero if adding the epoll @file inside current epoll
1851 * structure @ep does not violate the constraints, or -1 otherwise.
1852 */
bde03c4c 1853static int ep_loop_check_proc(struct eventpoll *ep, int depth)
22bacca4
DL
1854{
1855 int error = 0;
22bacca4
DL
1856 struct rb_node *rbp;
1857 struct epitem *epi;
1858
773318ed 1859 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 1860 ep->gen = loop_check_gen;
b2ac2ea6 1861 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1862 epi = rb_entry(rbp, struct epitem, rbn);
1863 if (unlikely(is_file_epoll(epi->ffd.file))) {
bde03c4c 1864 struct eventpoll *ep_tovisit;
28d82dc1 1865 ep_tovisit = epi->ffd.file->private_data;
18306c40 1866 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1867 continue;
bde03c4c 1868 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
56c428ca 1869 error = -1;
bde03c4c
AV
1870 else
1871 error = ep_loop_check_proc(ep_tovisit, depth + 1);
22bacca4
DL
1872 if (error != 0)
1873 break;
28d82dc1
JB
1874 } else {
1875 /*
1876 * If we've reached a file that is not associated with
1877 * an ep, then we need to check if the newly added
1878 * links are going to add too many wakeup paths. We do
1879 * this by adding it to the tfile_check_list, if it's
1880 * not already there, and calling reverse_path_check()
1881 * during ep_insert().
1882 */
a9ed4a65 1883 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
77f4689d
AV
1884 if (get_file_rcu(epi->ffd.file))
1885 list_add(&epi->ffd.file->f_tfile_llink,
1886 &tfile_check_list);
a9ed4a65 1887 }
22bacca4
DL
1888 }
1889 }
1890 mutex_unlock(&ep->mtx);
1891
1892 return error;
1893}
1894
1895/**
bde03c4c
AV
1896 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1897 * into another epoll file (represented by @from) does not create
22bacca4
DL
1898 * closed loops or too deep chains.
1899 *
bde03c4c
AV
1900 * @from: Pointer to the epoll we are inserting into.
1901 * @to: Pointer to the epoll to be inserted.
22bacca4 1902 *
bde03c4c
AV
1903 * Returns: Returns zero if adding the epoll @to inside the epoll @from
1904 * does not violate the constraints, or -1 otherwise.
22bacca4 1905 */
bde03c4c 1906static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
22bacca4 1907{
6a3890c4 1908 inserting_into = ep;
bde03c4c 1909 return ep_loop_check_proc(to, 0);
28d82dc1
JB
1910}
1911
1912static void clear_tfile_check_list(void)
1913{
1914 struct file *file;
1915
1916 /* first clear the tfile_check_list */
1917 while (!list_empty(&tfile_check_list)) {
1918 file = list_first_entry(&tfile_check_list, struct file,
1919 f_tfile_llink);
1920 list_del_init(&file->f_tfile_llink);
a9ed4a65 1921 fput(file);
28d82dc1
JB
1922 }
1923 INIT_LIST_HEAD(&tfile_check_list);
22bacca4
DL
1924}
1925
7699acd1 1926/*
523723bb 1927 * Open an eventpoll file descriptor.
7699acd1 1928 */
791eb22e 1929static int do_epoll_create(int flags)
7699acd1 1930{
28d82dc1 1931 int error, fd;
bb57c3ed 1932 struct eventpoll *ep = NULL;
28d82dc1 1933 struct file *file;
7699acd1 1934
e38b36f3
UD
1935 /* Check the EPOLL_* constant for consistency. */
1936 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1937
296e236e
DL
1938 if (flags & ~EPOLL_CLOEXEC)
1939 return -EINVAL;
7699acd1 1940 /*
bb57c3ed 1941 * Create the internal data structure ("struct eventpoll").
7699acd1 1942 */
9fe5ad9c 1943 error = ep_alloc(&ep);
bb57c3ed
DL
1944 if (error < 0)
1945 return error;
7699acd1
DL
1946 /*
1947 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 1948 * a file structure and a free file descriptor.
7699acd1 1949 */
28d82dc1
JB
1950 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1951 if (fd < 0) {
1952 error = fd;
1953 goto out_free_ep;
1954 }
1955 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 1956 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
1957 if (IS_ERR(file)) {
1958 error = PTR_ERR(file);
1959 goto out_free_fd;
1960 }
28d82dc1 1961 ep->file = file;
98022748 1962 fd_install(fd, file);
28d82dc1
JB
1963 return fd;
1964
1965out_free_fd:
1966 put_unused_fd(fd);
1967out_free_ep:
1968 ep_free(ep);
bb57c3ed 1969 return error;
7699acd1
DL
1970}
1971
791eb22e
DB
1972SYSCALL_DEFINE1(epoll_create1, int, flags)
1973{
1974 return do_epoll_create(flags);
1975}
1976
5a8a82b1 1977SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 1978{
bfe3891a 1979 if (size <= 0)
9fe5ad9c
UD
1980 return -EINVAL;
1981
791eb22e 1982 return do_epoll_create(0);
a0998b50
UD
1983}
1984
39220e8d
JA
1985static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
1986 bool nonblock)
1987{
1988 if (!nonblock) {
1989 mutex_lock_nested(mutex, depth);
1990 return 0;
1991 }
1992 if (mutex_trylock(mutex))
1993 return 0;
1994 return -EAGAIN;
1995}
1996
1997int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
1998 bool nonblock)
7699acd1
DL
1999{
2000 int error;
67347fe4 2001 int full_check = 0;
7e3fb584 2002 struct fd f, tf;
7699acd1
DL
2003 struct eventpoll *ep;
2004 struct epitem *epi;
67347fe4 2005 struct eventpoll *tep = NULL;
7699acd1 2006
7699acd1 2007 error = -EBADF;
7e3fb584
AV
2008 f = fdget(epfd);
2009 if (!f.file)
7699acd1
DL
2010 goto error_return;
2011
2012 /* Get the "struct file *" for the target file */
7e3fb584
AV
2013 tf = fdget(fd);
2014 if (!tf.file)
7699acd1
DL
2015 goto error_fput;
2016
2017 /* The target file descriptor must support poll */
2018 error = -EPERM;
9965ed17 2019 if (!file_can_poll(tf.file))
7699acd1
DL
2020 goto error_tgt_fput;
2021
4d7e30d9 2022 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2023 if (ep_op_has_event(op))
58e41a44 2024 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2025
7699acd1
DL
2026 /*
2027 * We have to check that the file structure underneath the file descriptor
2028 * the user passed to us _is_ an eventpoll file. And also we do not permit
2029 * adding an epoll file descriptor inside itself.
2030 */
2031 error = -EINVAL;
7e3fb584 2032 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2033 goto error_tgt_fput;
2034
df0108c5
JB
2035 /*
2036 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2037 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2038 * Also, we do not currently supported nested exclusive wakeups.
2039 */
58e41a44 2040 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2041 if (op == EPOLL_CTL_MOD)
2042 goto error_tgt_fput;
2043 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2044 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2045 goto error_tgt_fput;
2046 }
df0108c5 2047
7699acd1
DL
2048 /*
2049 * At this point it is safe to assume that the "private_data" contains
2050 * our own data structure.
2051 */
7e3fb584 2052 ep = f.file->private_data;
7699acd1 2053
22bacca4
DL
2054 /*
2055 * When we insert an epoll file descriptor, inside another epoll file
2056 * descriptor, there is the change of creating closed loops, which are
28d82dc1
JB
2057 * better be handled here, than in more critical paths. While we are
2058 * checking for loops we also determine the list of files reachable
2059 * and hang them on the tfile_check_list, so we can check that we
2060 * haven't created too many possible wakeup paths.
22bacca4 2061 *
67347fe4
JB
2062 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2063 * the epoll file descriptor is attaching directly to a wakeup source,
2064 * unless the epoll file descriptor is nested. The purpose of taking the
2065 * 'epmutex' on add is to prevent complex toplogies such as loops and
2066 * deep wakeup paths from forming in parallel through multiple
2067 * EPOLL_CTL_ADD operations.
22bacca4 2068 */
39220e8d
JA
2069 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2070 if (error)
2071 goto error_tgt_fput;
28d82dc1 2072 if (op == EPOLL_CTL_ADD) {
67347fe4 2073 if (!list_empty(&f.file->f_ep_links) ||
fe0a916c 2074 ep->gen == loop_check_gen ||
67347fe4 2075 is_file_epoll(tf.file)) {
67347fe4 2076 mutex_unlock(&ep->mtx);
39220e8d
JA
2077 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2078 if (error)
2079 goto error_tgt_fput;
18306c40 2080 loop_check_gen++;
39220e8d 2081 full_check = 1;
67347fe4 2082 if (is_file_epoll(tf.file)) {
bde03c4c 2083 tep = tf.file->private_data;
67347fe4 2084 error = -ELOOP;
bde03c4c 2085 if (ep_loop_check(ep, tep) != 0)
67347fe4 2086 goto error_tgt_fput;
a9ed4a65
MZ
2087 } else {
2088 get_file(tf.file);
67347fe4
JB
2089 list_add(&tf.file->f_tfile_llink,
2090 &tfile_check_list);
a9ed4a65 2091 }
39220e8d 2092 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2093 if (error)
39220e8d 2094 goto error_tgt_fput;
67347fe4 2095 if (is_file_epoll(tf.file)) {
39220e8d
JA
2096 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2097 if (error) {
2098 mutex_unlock(&ep->mtx);
52c47969 2099 goto error_tgt_fput;
39220e8d 2100 }
13d51807 2101 }
67347fe4
JB
2102 }
2103 }
7699acd1 2104
67647d0f
DL
2105 /*
2106 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2107 * above, we can be sure to be able to use the item looked up by
2108 * ep_find() till we release the mutex.
2109 */
7e3fb584 2110 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2111
2112 error = -EINVAL;
2113 switch (op) {
2114 case EPOLL_CTL_ADD:
2115 if (!epi) {
58e41a44
JA
2116 epds->events |= EPOLLERR | EPOLLHUP;
2117 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2118 } else
2119 error = -EEXIST;
2120 break;
2121 case EPOLL_CTL_DEL:
2122 if (epi)
2123 error = ep_remove(ep, epi);
2124 else
2125 error = -ENOENT;
2126 break;
2127 case EPOLL_CTL_MOD:
2128 if (epi) {
b6a515c8 2129 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2130 epds->events |= EPOLLERR | EPOLLHUP;
2131 error = ep_modify(ep, epi, epds);
b6a515c8 2132 }
7699acd1
DL
2133 } else
2134 error = -ENOENT;
2135 break;
2136 }
67347fe4
JB
2137 if (tep != NULL)
2138 mutex_unlock(&tep->mtx);
d47de16c 2139 mutex_unlock(&ep->mtx);
7699acd1
DL
2140
2141error_tgt_fput:
52c47969
AV
2142 if (full_check) {
2143 clear_tfile_check_list();
18306c40 2144 loop_check_gen++;
22bacca4 2145 mutex_unlock(&epmutex);
52c47969 2146 }
22bacca4 2147
7e3fb584 2148 fdput(tf);
7699acd1 2149error_fput:
7e3fb584 2150 fdput(f);
7699acd1 2151error_return:
7699acd1
DL
2152
2153 return error;
2154}
2155
58e41a44
JA
2156/*
2157 * The following function implements the controller interface for
2158 * the eventpoll file that enables the insertion/removal/change of
2159 * file descriptors inside the interest set.
2160 */
2161SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2162 struct epoll_event __user *, event)
2163{
2164 struct epoll_event epds;
2165
2166 if (ep_op_has_event(op) &&
2167 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2168 return -EFAULT;
2169
39220e8d 2170 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2171}
2172
7699acd1
DL
2173/*
2174 * Implement the event wait interface for the eventpoll file. It is the kernel
2175 * part of the user space epoll_wait(2).
2176 */
791eb22e
DB
2177static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2178 int maxevents, int timeout)
7699acd1 2179{
2903ff01
AV
2180 int error;
2181 struct fd f;
7699acd1
DL
2182 struct eventpoll *ep;
2183
7699acd1
DL
2184 /* The maximum number of event must be greater than zero */
2185 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2186 return -EINVAL;
2187
2188 /* Verify that the area passed by the user is writeable */
96d4f267 2189 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2190 return -EFAULT;
7699acd1
DL
2191
2192 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2193 f = fdget(epfd);
2194 if (!f.file)
2195 return -EBADF;
7699acd1
DL
2196
2197 /*
2198 * We have to check that the file structure underneath the fd
2199 * the user passed to us _is_ an eventpoll file.
2200 */
2201 error = -EINVAL;
2903ff01 2202 if (!is_file_epoll(f.file))
7699acd1
DL
2203 goto error_fput;
2204
2205 /*
2206 * At this point it is safe to assume that the "private_data" contains
2207 * our own data structure.
2208 */
2903ff01 2209 ep = f.file->private_data;
7699acd1
DL
2210
2211 /* Time to fish for events ... */
2212 error = ep_poll(ep, events, maxevents, timeout);
2213
2214error_fput:
2903ff01 2215 fdput(f);
7699acd1
DL
2216 return error;
2217}
2218
791eb22e
DB
2219SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2220 int, maxevents, int, timeout)
2221{
2222 return do_epoll_wait(epfd, events, maxevents, timeout);
2223}
2224
7699acd1
DL
2225/*
2226 * Implement the event wait interface for the eventpoll file. It is the kernel
2227 * part of the user space epoll_pwait(2).
2228 */
5a8a82b1
HC
2229SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2230 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2231 size_t, sigsetsize)
7699acd1
DL
2232{
2233 int error;
7699acd1
DL
2234
2235 /*
2236 * If the caller wants a certain signal mask to be set during the wait,
2237 * we apply it here.
2238 */
b772434b 2239 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2240 if (error)
2241 return error;
7699acd1 2242
791eb22e 2243 error = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2244 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2245
2246 return error;
2247}
2248
35280bd4
AV
2249#ifdef CONFIG_COMPAT
2250COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2251 struct epoll_event __user *, events,
2252 int, maxevents, int, timeout,
2253 const compat_sigset_t __user *, sigmask,
2254 compat_size_t, sigsetsize)
2255{
2256 long err;
35280bd4
AV
2257
2258 /*
2259 * If the caller wants a certain signal mask to be set during the wait,
2260 * we apply it here.
2261 */
b772434b 2262 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2263 if (err)
2264 return err;
35280bd4 2265
791eb22e 2266 err = do_epoll_wait(epfd, events, maxevents, timeout);
b772434b 2267 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2268
2269 return err;
2270}
2271#endif
2272
1da177e4
LT
2273static int __init eventpoll_init(void)
2274{
7ef9964e
DL
2275 struct sysinfo si;
2276
2277 si_meminfo(&si);
9df04e1f
DL
2278 /*
2279 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2280 */
2281 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2282 EP_ITEM_COST;
52bd19f7 2283 BUG_ON(max_user_watches < 0);
1da177e4 2284
39732ca5
EW
2285 /*
2286 * We can have many thousands of epitems, so prevent this from
2287 * using an extra cache line on 64-bit (and smaller) CPUs
2288 */
2289 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2290
1da177e4
LT
2291 /* Allocates slab cache used to allocate "struct epitem" items */
2292 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2293 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2294
2295 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2296 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2297 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4 2298
1da177e4 2299 return 0;
1da177e4 2300}
cea69241 2301fs_initcall(eventpoll_init);