]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/ext3/inode.c
[PATCH] Altix: correct ioc4 port order
[mirror_ubuntu-kernels.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
30#include <linux/smp_lock.h>
31#include <linux/highuid.h>
32#include <linux/pagemap.h>
33#include <linux/quotaops.h>
34#include <linux/string.h>
35#include <linux/buffer_head.h>
36#include <linux/writeback.h>
37#include <linux/mpage.h>
38#include <linux/uio.h>
39#include "xattr.h"
40#include "acl.h"
41
42static int ext3_writepage_trans_blocks(struct inode *inode);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
d6859bfc 47static int ext3_inode_is_fast_symlink(struct inode *inode)
1da177e4
LT
48{
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
d6859bfc 52 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
1da177e4
LT
53}
54
d6859bfc
AM
55/*
56 * The ext3 forget function must perform a revoke if we are freeing data
1da177e4
LT
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
59 *
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
63 */
d6859bfc
AM
64int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
65 struct buffer_head *bh, int blocknr)
1da177e4
LT
66{
67 int err;
68
69 might_sleep();
70
71 BUFFER_TRACE(bh, "enter");
72
73 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
74 "data mode %lx\n",
75 bh, is_metadata, inode->i_mode,
76 test_opt(inode->i_sb, DATA_FLAGS));
77
78 /* Never use the revoke function if we are doing full data
79 * journaling: there is no need to, and a V1 superblock won't
80 * support it. Otherwise, only skip the revoke on un-journaled
81 * data blocks. */
82
83 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
84 (!is_metadata && !ext3_should_journal_data(inode))) {
85 if (bh) {
86 BUFFER_TRACE(bh, "call journal_forget");
87 return ext3_journal_forget(handle, bh);
88 }
89 return 0;
90 }
91
92 /*
93 * data!=journal && (is_metadata || should_journal_data(inode))
94 */
95 BUFFER_TRACE(bh, "call ext3_journal_revoke");
96 err = ext3_journal_revoke(handle, blocknr, bh);
97 if (err)
98 ext3_abort(inode->i_sb, __FUNCTION__,
99 "error %d when attempting revoke", err);
100 BUFFER_TRACE(bh, "exit");
101 return err;
102}
103
104/*
d6859bfc 105 * Work out how many blocks we need to proceed with the next chunk of a
1da177e4
LT
106 * truncate transaction.
107 */
1da177e4
LT
108static unsigned long blocks_for_truncate(struct inode *inode)
109{
110 unsigned long needed;
111
112 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
113
114 /* Give ourselves just enough room to cope with inodes in which
115 * i_blocks is corrupt: we've seen disk corruptions in the past
116 * which resulted in random data in an inode which looked enough
117 * like a regular file for ext3 to try to delete it. Things
118 * will go a bit crazy if that happens, but at least we should
119 * try not to panic the whole kernel. */
120 if (needed < 2)
121 needed = 2;
122
123 /* But we need to bound the transaction so we don't overflow the
124 * journal. */
125 if (needed > EXT3_MAX_TRANS_DATA)
126 needed = EXT3_MAX_TRANS_DATA;
127
1f54587b 128 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
129}
130
131/*
132 * Truncate transactions can be complex and absolutely huge. So we need to
133 * be able to restart the transaction at a conventient checkpoint to make
134 * sure we don't overflow the journal.
135 *
136 * start_transaction gets us a new handle for a truncate transaction,
137 * and extend_transaction tries to extend the existing one a bit. If
138 * extend fails, we need to propagate the failure up and restart the
139 * transaction in the top-level truncate loop. --sct
140 */
1da177e4
LT
141static handle_t *start_transaction(struct inode *inode)
142{
143 handle_t *result;
144
145 result = ext3_journal_start(inode, blocks_for_truncate(inode));
146 if (!IS_ERR(result))
147 return result;
148
149 ext3_std_error(inode->i_sb, PTR_ERR(result));
150 return result;
151}
152
153/*
154 * Try to extend this transaction for the purposes of truncation.
155 *
156 * Returns 0 if we managed to create more room. If we can't create more
157 * room, and the transaction must be restarted we return 1.
158 */
159static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
160{
161 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
162 return 0;
163 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
164 return 0;
165 return 1;
166}
167
168/*
169 * Restart the transaction associated with *handle. This does a commit,
170 * so before we call here everything must be consistently dirtied against
171 * this transaction.
172 */
173static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
174{
175 jbd_debug(2, "restarting handle %p\n", handle);
176 return ext3_journal_restart(handle, blocks_for_truncate(inode));
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
182void ext3_delete_inode (struct inode * inode)
183{
184 handle_t *handle;
185
fef26658
MF
186 truncate_inode_pages(&inode->i_data, 0);
187
1da177e4
LT
188 if (is_bad_inode(inode))
189 goto no_delete;
190
191 handle = start_transaction(inode);
192 if (IS_ERR(handle)) {
d6859bfc
AM
193 /*
194 * If we're going to skip the normal cleanup, we still need to
195 * make sure that the in-core orphan linked list is properly
196 * cleaned up.
197 */
1da177e4
LT
198 ext3_orphan_del(NULL, inode);
199 goto no_delete;
200 }
201
202 if (IS_SYNC(inode))
203 handle->h_sync = 1;
204 inode->i_size = 0;
205 if (inode->i_blocks)
206 ext3_truncate(inode);
207 /*
208 * Kill off the orphan record which ext3_truncate created.
209 * AKPM: I think this can be inside the above `if'.
210 * Note that ext3_orphan_del() has to be able to cope with the
211 * deletion of a non-existent orphan - this is because we don't
212 * know if ext3_truncate() actually created an orphan record.
213 * (Well, we could do this if we need to, but heck - it works)
214 */
215 ext3_orphan_del(handle, inode);
216 EXT3_I(inode)->i_dtime = get_seconds();
217
218 /*
219 * One subtle ordering requirement: if anything has gone wrong
220 * (transaction abort, IO errors, whatever), then we can still
221 * do these next steps (the fs will already have been marked as
222 * having errors), but we can't free the inode if the mark_dirty
223 * fails.
224 */
225 if (ext3_mark_inode_dirty(handle, inode))
226 /* If that failed, just do the required in-core inode clear. */
227 clear_inode(inode);
228 else
229 ext3_free_inode(handle, inode);
230 ext3_journal_stop(handle);
231 return;
232no_delete:
233 clear_inode(inode); /* We must guarantee clearing of inode... */
234}
235
1da177e4
LT
236typedef struct {
237 __le32 *p;
238 __le32 key;
239 struct buffer_head *bh;
240} Indirect;
241
242static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
243{
244 p->key = *(p->p = v);
245 p->bh = bh;
246}
247
d6859bfc 248static int verify_chain(Indirect *from, Indirect *to)
1da177e4
LT
249{
250 while (from <= to && from->key == *from->p)
251 from++;
252 return (from > to);
253}
254
255/**
256 * ext3_block_to_path - parse the block number into array of offsets
257 * @inode: inode in question (we are only interested in its superblock)
258 * @i_block: block number to be parsed
259 * @offsets: array to store the offsets in
260 * @boundary: set this non-zero if the referred-to block is likely to be
261 * followed (on disk) by an indirect block.
262 *
263 * To store the locations of file's data ext3 uses a data structure common
264 * for UNIX filesystems - tree of pointers anchored in the inode, with
265 * data blocks at leaves and indirect blocks in intermediate nodes.
266 * This function translates the block number into path in that tree -
267 * return value is the path length and @offsets[n] is the offset of
268 * pointer to (n+1)th node in the nth one. If @block is out of range
269 * (negative or too large) warning is printed and zero returned.
270 *
271 * Note: function doesn't find node addresses, so no IO is needed. All
272 * we need to know is the capacity of indirect blocks (taken from the
273 * inode->i_sb).
274 */
275
276/*
277 * Portability note: the last comparison (check that we fit into triple
278 * indirect block) is spelled differently, because otherwise on an
279 * architecture with 32-bit longs and 8Kb pages we might get into trouble
280 * if our filesystem had 8Kb blocks. We might use long long, but that would
281 * kill us on x86. Oh, well, at least the sign propagation does not matter -
282 * i_block would have to be negative in the very beginning, so we would not
283 * get there at all.
284 */
285
286static int ext3_block_to_path(struct inode *inode,
287 long i_block, int offsets[4], int *boundary)
288{
289 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
290 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
291 const long direct_blocks = EXT3_NDIR_BLOCKS,
292 indirect_blocks = ptrs,
293 double_blocks = (1 << (ptrs_bits * 2));
294 int n = 0;
295 int final = 0;
296
297 if (i_block < 0) {
298 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
299 } else if (i_block < direct_blocks) {
300 offsets[n++] = i_block;
301 final = direct_blocks;
302 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
303 offsets[n++] = EXT3_IND_BLOCK;
304 offsets[n++] = i_block;
305 final = ptrs;
306 } else if ((i_block -= indirect_blocks) < double_blocks) {
307 offsets[n++] = EXT3_DIND_BLOCK;
308 offsets[n++] = i_block >> ptrs_bits;
309 offsets[n++] = i_block & (ptrs - 1);
310 final = ptrs;
311 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
312 offsets[n++] = EXT3_TIND_BLOCK;
313 offsets[n++] = i_block >> (ptrs_bits * 2);
314 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
315 offsets[n++] = i_block & (ptrs - 1);
316 final = ptrs;
317 } else {
d6859bfc 318 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
1da177e4
LT
319 }
320 if (boundary)
89747d36 321 *boundary = final - 1 - (i_block & (ptrs - 1));
1da177e4
LT
322 return n;
323}
324
325/**
326 * ext3_get_branch - read the chain of indirect blocks leading to data
327 * @inode: inode in question
328 * @depth: depth of the chain (1 - direct pointer, etc.)
329 * @offsets: offsets of pointers in inode/indirect blocks
330 * @chain: place to store the result
331 * @err: here we store the error value
332 *
333 * Function fills the array of triples <key, p, bh> and returns %NULL
334 * if everything went OK or the pointer to the last filled triple
335 * (incomplete one) otherwise. Upon the return chain[i].key contains
336 * the number of (i+1)-th block in the chain (as it is stored in memory,
337 * i.e. little-endian 32-bit), chain[i].p contains the address of that
338 * number (it points into struct inode for i==0 and into the bh->b_data
339 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
340 * block for i>0 and NULL for i==0. In other words, it holds the block
341 * numbers of the chain, addresses they were taken from (and where we can
342 * verify that chain did not change) and buffer_heads hosting these
343 * numbers.
344 *
345 * Function stops when it stumbles upon zero pointer (absent block)
346 * (pointer to last triple returned, *@err == 0)
347 * or when it gets an IO error reading an indirect block
348 * (ditto, *@err == -EIO)
349 * or when it notices that chain had been changed while it was reading
350 * (ditto, *@err == -EAGAIN)
351 * or when it reads all @depth-1 indirect blocks successfully and finds
352 * the whole chain, all way to the data (returns %NULL, *err == 0).
353 */
354static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
355 Indirect chain[4], int *err)
356{
357 struct super_block *sb = inode->i_sb;
358 Indirect *p = chain;
359 struct buffer_head *bh;
360
361 *err = 0;
362 /* i_data is not going away, no lock needed */
363 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
364 if (!p->key)
365 goto no_block;
366 while (--depth) {
367 bh = sb_bread(sb, le32_to_cpu(p->key));
368 if (!bh)
369 goto failure;
370 /* Reader: pointers */
371 if (!verify_chain(chain, p))
372 goto changed;
373 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
374 /* Reader: end */
375 if (!p->key)
376 goto no_block;
377 }
378 return NULL;
379
380changed:
381 brelse(bh);
382 *err = -EAGAIN;
383 goto no_block;
384failure:
385 *err = -EIO;
386no_block:
387 return p;
388}
389
390/**
391 * ext3_find_near - find a place for allocation with sufficient locality
392 * @inode: owner
393 * @ind: descriptor of indirect block.
394 *
395 * This function returns the prefered place for block allocation.
396 * It is used when heuristic for sequential allocation fails.
397 * Rules are:
398 * + if there is a block to the left of our position - allocate near it.
399 * + if pointer will live in indirect block - allocate near that block.
400 * + if pointer will live in inode - allocate in the same
401 * cylinder group.
402 *
403 * In the latter case we colour the starting block by the callers PID to
404 * prevent it from clashing with concurrent allocations for a different inode
405 * in the same block group. The PID is used here so that functionally related
406 * files will be close-by on-disk.
407 *
408 * Caller must make sure that @ind is valid and will stay that way.
409 */
1da177e4
LT
410static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
411{
412 struct ext3_inode_info *ei = EXT3_I(inode);
413 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
414 __le32 *p;
415 unsigned long bg_start;
416 unsigned long colour;
417
418 /* Try to find previous block */
d6859bfc 419 for (p = ind->p - 1; p >= start; p--) {
1da177e4
LT
420 if (*p)
421 return le32_to_cpu(*p);
d6859bfc 422 }
1da177e4
LT
423
424 /* No such thing, so let's try location of indirect block */
425 if (ind->bh)
426 return ind->bh->b_blocknr;
427
428 /*
d6859bfc
AM
429 * It is going to be referred to from the inode itself? OK, just put it
430 * into the same cylinder group then.
1da177e4
LT
431 */
432 bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
433 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
434 colour = (current->pid % 16) *
435 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
436 return bg_start + colour;
437}
438
439/**
440 * ext3_find_goal - find a prefered place for allocation.
441 * @inode: owner
442 * @block: block we want
443 * @chain: chain of indirect blocks
444 * @partial: pointer to the last triple within a chain
445 * @goal: place to store the result.
446 *
447 * Normally this function find the prefered place for block allocation,
fe55c452 448 * stores it in *@goal and returns zero.
1da177e4
LT
449 */
450
fe55c452
MC
451static unsigned long ext3_find_goal(struct inode *inode, long block,
452 Indirect chain[4], Indirect *partial)
1da177e4 453{
d6859bfc
AM
454 struct ext3_block_alloc_info *block_i;
455
456 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
457
458 /*
459 * try the heuristic for sequential allocation,
460 * failing that at least try to get decent locality.
461 */
462 if (block_i && (block == block_i->last_alloc_logical_block + 1)
463 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 464 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
465 }
466
fe55c452 467 return ext3_find_near(inode, partial);
1da177e4 468}
d6859bfc 469
b47b2478
MC
470/**
471 * ext3_blks_to_allocate: Look up the block map and count the number
472 * of direct blocks need to be allocated for the given branch.
473 *
474 * @branch: chain of indirect blocks
475 * @k: number of blocks need for indirect blocks
476 * @blks: number of data blocks to be mapped.
477 * @blocks_to_boundary: the offset in the indirect block
478 *
479 * return the total number of blocks to be allocate, including the
480 * direct and indirect blocks.
481 */
d6859bfc 482static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
b47b2478
MC
483 int blocks_to_boundary)
484{
485 unsigned long count = 0;
486
487 /*
488 * Simple case, [t,d]Indirect block(s) has not allocated yet
489 * then it's clear blocks on that path have not allocated
490 */
491 if (k > 0) {
d6859bfc 492 /* right now we don't handle cross boundary allocation */
b47b2478
MC
493 if (blks < blocks_to_boundary + 1)
494 count += blks;
495 else
496 count += blocks_to_boundary + 1;
497 return count;
498 }
499
500 count++;
501 while (count < blks && count <= blocks_to_boundary &&
502 le32_to_cpu(*(branch[0].p + count)) == 0) {
503 count++;
504 }
505 return count;
506}
507
508/**
509 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
510 * @indirect_blks: the number of blocks need to allocate for indirect
511 * blocks
512 *
513 * @new_blocks: on return it will store the new block numbers for
514 * the indirect blocks(if needed) and the first direct block,
515 * @blks: on return it will store the total number of allocated
516 * direct blocks
517 */
518static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
519 unsigned long goal, int indirect_blks, int blks,
520 unsigned long long new_blocks[4], int *err)
521{
522 int target, i;
523 unsigned long count = 0;
524 int index = 0;
525 unsigned long current_block = 0;
526 int ret = 0;
527
528 /*
529 * Here we try to allocate the requested multiple blocks at once,
530 * on a best-effort basis.
531 * To build a branch, we should allocate blocks for
532 * the indirect blocks(if not allocated yet), and at least
533 * the first direct block of this branch. That's the
534 * minimum number of blocks need to allocate(required)
535 */
536 target = blks + indirect_blks;
537
538 while (1) {
539 count = target;
540 /* allocating blocks for indirect blocks and direct blocks */
d6859bfc 541 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
b47b2478
MC
542 if (*err)
543 goto failed_out;
544
545 target -= count;
546 /* allocate blocks for indirect blocks */
547 while (index < indirect_blks && count) {
548 new_blocks[index++] = current_block++;
549 count--;
550 }
551
552 if (count > 0)
553 break;
554 }
555
556 /* save the new block number for the first direct block */
557 new_blocks[index] = current_block;
558
559 /* total number of blocks allocated for direct blocks */
560 ret = count;
561 *err = 0;
562 return ret;
563failed_out:
564 for (i = 0; i <index; i++)
565 ext3_free_blocks(handle, inode, new_blocks[i], 1);
566 return ret;
567}
1da177e4
LT
568
569/**
570 * ext3_alloc_branch - allocate and set up a chain of blocks.
571 * @inode: owner
b47b2478
MC
572 * @indirect_blks: number of allocated indirect blocks
573 * @blks: number of allocated direct blocks
1da177e4
LT
574 * @offsets: offsets (in the blocks) to store the pointers to next.
575 * @branch: place to store the chain in.
576 *
b47b2478 577 * This function allocates blocks, zeroes out all but the last one,
1da177e4
LT
578 * links them into chain and (if we are synchronous) writes them to disk.
579 * In other words, it prepares a branch that can be spliced onto the
580 * inode. It stores the information about that chain in the branch[], in
581 * the same format as ext3_get_branch() would do. We are calling it after
582 * we had read the existing part of chain and partial points to the last
583 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 584 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
585 * place chain is disconnected - *branch->p is still zero (we did not
586 * set the last link), but branch->key contains the number that should
587 * be placed into *branch->p to fill that gap.
588 *
589 * If allocation fails we free all blocks we've allocated (and forget
590 * their buffer_heads) and return the error value the from failed
591 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
592 * as described above and return 0.
593 */
1da177e4 594static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
b47b2478
MC
595 int indirect_blks, int *blks, unsigned long goal,
596 int *offsets, Indirect *branch)
1da177e4
LT
597{
598 int blocksize = inode->i_sb->s_blocksize;
b47b2478 599 int i, n = 0;
1da177e4 600 int err = 0;
b47b2478
MC
601 struct buffer_head *bh;
602 int num;
603 unsigned long long new_blocks[4];
604 unsigned long long current_block;
1da177e4 605
b47b2478
MC
606 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
607 *blks, new_blocks, &err);
608 if (err)
609 return err;
1da177e4 610
b47b2478
MC
611 branch[0].key = cpu_to_le32(new_blocks[0]);
612 /*
613 * metadata blocks and data blocks are allocated.
614 */
615 for (n = 1; n <= indirect_blks; n++) {
616 /*
617 * Get buffer_head for parent block, zero it out
618 * and set the pointer to new one, then send
619 * parent to disk.
620 */
621 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
622 branch[n].bh = bh;
623 lock_buffer(bh);
624 BUFFER_TRACE(bh, "call get_create_access");
625 err = ext3_journal_get_create_access(handle, bh);
626 if (err) {
1da177e4 627 unlock_buffer(bh);
b47b2478
MC
628 brelse(bh);
629 goto failed;
630 }
1da177e4 631
b47b2478
MC
632 memset(bh->b_data, 0, blocksize);
633 branch[n].p = (__le32 *) bh->b_data + offsets[n];
634 branch[n].key = cpu_to_le32(new_blocks[n]);
635 *branch[n].p = branch[n].key;
636 if ( n == indirect_blks) {
637 current_block = new_blocks[n];
638 /*
639 * End of chain, update the last new metablock of
640 * the chain to point to the new allocated
641 * data blocks numbers
642 */
643 for (i=1; i < num; i++)
644 *(branch[n].p + i) = cpu_to_le32(++current_block);
1da177e4 645 }
b47b2478
MC
646 BUFFER_TRACE(bh, "marking uptodate");
647 set_buffer_uptodate(bh);
648 unlock_buffer(bh);
1da177e4 649
b47b2478
MC
650 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
651 err = ext3_journal_dirty_metadata(handle, bh);
652 if (err)
653 goto failed;
654 }
655 *blks = num;
656 return err;
657failed:
1da177e4 658 /* Allocation failed, free what we already allocated */
b47b2478 659 for (i = 1; i <= n ; i++) {
1da177e4
LT
660 BUFFER_TRACE(branch[i].bh, "call journal_forget");
661 ext3_journal_forget(handle, branch[i].bh);
662 }
b47b2478
MC
663 for (i = 0; i <indirect_blks; i++)
664 ext3_free_blocks(handle, inode, new_blocks[i], 1);
665
666 ext3_free_blocks(handle, inode, new_blocks[i], num);
667
1da177e4
LT
668 return err;
669}
670
671/**
d6859bfc
AM
672 * ext3_splice_branch - splice the allocated branch onto inode.
673 * @inode: owner
674 * @block: (logical) number of block we are adding
675 * @chain: chain of indirect blocks (with a missing link - see
676 * ext3_alloc_branch)
677 * @where: location of missing link
678 * @num: number of indirect blocks we are adding
679 * @blks: number of direct blocks we are adding
680 *
681 * This function fills the missing link and does all housekeeping needed in
682 * inode (->i_blocks, etc.). In case of success we end up with the full
683 * chain to new block and return 0.
1da177e4 684 */
d6859bfc
AM
685static int ext3_splice_branch(handle_t *handle, struct inode *inode,
686 long block, Indirect *where, int num, int blks)
1da177e4
LT
687{
688 int i;
689 int err = 0;
d6859bfc 690 struct ext3_block_alloc_info *block_i;
b47b2478 691 unsigned long current_block;
d6859bfc
AM
692
693 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
694 /*
695 * If we're splicing into a [td]indirect block (as opposed to the
696 * inode) then we need to get write access to the [td]indirect block
697 * before the splice.
698 */
699 if (where->bh) {
700 BUFFER_TRACE(where->bh, "get_write_access");
701 err = ext3_journal_get_write_access(handle, where->bh);
702 if (err)
703 goto err_out;
704 }
1da177e4
LT
705 /* That's it */
706
707 *where->p = where->key;
d6859bfc
AM
708
709 /*
710 * Update the host buffer_head or inode to point to more just allocated
711 * direct blocks blocks
712 */
b47b2478
MC
713 if (num == 0 && blks > 1) {
714 current_block = le32_to_cpu(where->key + 1);
715 for (i = 1; i < blks; i++)
716 *(where->p + i ) = cpu_to_le32(current_block++);
717 }
1da177e4
LT
718
719 /*
720 * update the most recently allocated logical & physical block
721 * in i_block_alloc_info, to assist find the proper goal block for next
722 * allocation
723 */
724 if (block_i) {
b47b2478 725 block_i->last_alloc_logical_block = block + blks - 1;
d6859bfc
AM
726 block_i->last_alloc_physical_block =
727 le32_to_cpu(where[num].key + blks - 1);
1da177e4
LT
728 }
729
730 /* We are done with atomic stuff, now do the rest of housekeeping */
731
732 inode->i_ctime = CURRENT_TIME_SEC;
733 ext3_mark_inode_dirty(handle, inode);
734
735 /* had we spliced it onto indirect block? */
736 if (where->bh) {
737 /*
d6859bfc 738 * If we spliced it onto an indirect block, we haven't
1da177e4
LT
739 * altered the inode. Note however that if it is being spliced
740 * onto an indirect block at the very end of the file (the
741 * file is growing) then we *will* alter the inode to reflect
742 * the new i_size. But that is not done here - it is done in
743 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
744 */
745 jbd_debug(5, "splicing indirect only\n");
746 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
747 err = ext3_journal_dirty_metadata(handle, where->bh);
748 if (err)
749 goto err_out;
750 } else {
751 /*
752 * OK, we spliced it into the inode itself on a direct block.
753 * Inode was dirtied above.
754 */
755 jbd_debug(5, "splicing direct\n");
756 }
757 return err;
758
1da177e4 759err_out:
b47b2478 760 for (i = 1; i <= num; i++) {
1da177e4
LT
761 BUFFER_TRACE(where[i].bh, "call journal_forget");
762 ext3_journal_forget(handle, where[i].bh);
d6859bfc 763 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
1da177e4 764 }
b47b2478
MC
765 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
766
1da177e4
LT
767 return err;
768}
769
770/*
771 * Allocation strategy is simple: if we have to allocate something, we will
772 * have to go the whole way to leaf. So let's do it before attaching anything
773 * to tree, set linkage between the newborn blocks, write them if sync is
774 * required, recheck the path, free and repeat if check fails, otherwise
775 * set the last missing link (that will protect us from any truncate-generated
776 * removals - all blocks on the path are immune now) and possibly force the
777 * write on the parent block.
778 * That has a nice additional property: no special recovery from the failed
779 * allocations is needed - we simply release blocks and do not touch anything
780 * reachable from inode.
781 *
d6859bfc 782 * `handle' can be NULL if create == 0.
1da177e4
LT
783 *
784 * The BKL may not be held on entry here. Be sure to take it early.
89747d36
MC
785 * return > 0, # of blocks mapped or allocated.
786 * return = 0, if plain lookup failed.
787 * return < 0, error case.
1da177e4 788 */
d6859bfc
AM
789int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
790 sector_t iblock, unsigned long maxblocks,
791 struct buffer_head *bh_result,
89747d36 792 int create, int extend_disksize)
1da177e4
LT
793{
794 int err = -EIO;
795 int offsets[4];
796 Indirect chain[4];
797 Indirect *partial;
798 unsigned long goal;
b47b2478 799 int indirect_blks;
89747d36
MC
800 int blocks_to_boundary = 0;
801 int depth;
1da177e4 802 struct ext3_inode_info *ei = EXT3_I(inode);
89747d36
MC
803 int count = 0;
804 unsigned long first_block = 0;
805
1da177e4
LT
806
807 J_ASSERT(handle != NULL || create == 0);
d6859bfc 808 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4
LT
809
810 if (depth == 0)
811 goto out;
812
1da177e4
LT
813 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
814
815 /* Simplest case - block found, no allocation needed */
816 if (!partial) {
89747d36 817 first_block = chain[depth - 1].key;
1da177e4 818 clear_buffer_new(bh_result);
89747d36
MC
819 count++;
820 /*map more blocks*/
821 while (count < maxblocks && count <= blocks_to_boundary) {
822 if (!verify_chain(chain, partial)) {
823 /*
824 * Indirect block might be removed by
825 * truncate while we were reading it.
826 * Handling of that case: forget what we've
827 * got now. Flag the err as EAGAIN, so it
828 * will reread.
829 */
830 err = -EAGAIN;
831 count = 0;
832 break;
833 }
834 if (le32_to_cpu(*(chain[depth-1].p+count) ==
835 (first_block + count)))
836 count++;
837 else
838 break;
839 }
840 if (err != -EAGAIN)
841 goto got_it;
1da177e4
LT
842 }
843
844 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
845 if (!create || err == -EIO)
846 goto cleanup;
847
97461518 848 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
849
850 /*
851 * If the indirect block is missing while we are reading
852 * the chain(ext3_get_branch() returns -EAGAIN err), or
853 * if the chain has been changed after we grab the semaphore,
854 * (either because another process truncated this branch, or
855 * another get_block allocated this branch) re-grab the chain to see if
856 * the request block has been allocated or not.
857 *
858 * Since we already block the truncate/other get_block
859 * at this point, we will have the current copy of the chain when we
860 * splice the branch into the tree.
861 */
862 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 863 while (partial > chain) {
1da177e4
LT
864 brelse(partial->bh);
865 partial--;
866 }
fe55c452
MC
867 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
868 if (!partial) {
89747d36 869 count++;
97461518 870 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
871 if (err)
872 goto cleanup;
873 clear_buffer_new(bh_result);
874 goto got_it;
875 }
1da177e4
LT
876 }
877
878 /*
fe55c452
MC
879 * Okay, we need to do block allocation. Lazily initialize the block
880 * allocation info here if necessary
881 */
882 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 883 ext3_init_block_alloc_info(inode);
1da177e4 884
fe55c452 885 goal = ext3_find_goal(inode, iblock, chain, partial);
1da177e4 886
b47b2478
MC
887 /* the number of blocks need to allocate for [d,t]indirect blocks */
888 indirect_blks = (chain + depth) - partial - 1;
1da177e4 889
b47b2478
MC
890 /*
891 * Next look up the indirect map to count the totoal number of
892 * direct blocks to allocate for this branch.
893 */
894 count = ext3_blks_to_allocate(partial, indirect_blks,
895 maxblocks, blocks_to_boundary);
1da177e4
LT
896 /*
897 * Block out ext3_truncate while we alter the tree
898 */
b47b2478 899 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
fe55c452 900 offsets + (partial - chain), partial);
1da177e4 901
fe55c452
MC
902 /*
903 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
904 * on the new chain if there is a failure, but that risks using
905 * up transaction credits, especially for bitmaps where the
906 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
907 * may need to return -EAGAIN upwards in the worst case. --sct
908 */
1da177e4 909 if (!err)
b47b2478
MC
910 err = ext3_splice_branch(handle, inode, iblock,
911 partial, indirect_blks, count);
fe55c452 912 /*
97461518 913 * i_disksize growing is protected by truncate_mutex. Don't forget to
fe55c452
MC
914 * protect it if you're about to implement concurrent
915 * ext3_get_block() -bzzz
916 */
1da177e4
LT
917 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
918 ei->i_disksize = inode->i_size;
97461518 919 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
920 if (err)
921 goto cleanup;
922
923 set_buffer_new(bh_result);
fe55c452
MC
924got_it:
925 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
89747d36 926 if (blocks_to_boundary == 0)
fe55c452 927 set_buffer_boundary(bh_result);
89747d36 928 err = count;
fe55c452
MC
929 /* Clean up and exit */
930 partial = chain + depth - 1; /* the whole chain */
931cleanup:
1da177e4 932 while (partial > chain) {
fe55c452 933 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
934 brelse(partial->bh);
935 partial--;
936 }
fe55c452
MC
937 BUFFER_TRACE(bh_result, "returned");
938out:
939 return err;
1da177e4
LT
940}
941
1da177e4
LT
942#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
943
f91a2ad2
BP
944static int ext3_get_block(struct inode *inode, sector_t iblock,
945 struct buffer_head *bh_result, int create)
1da177e4
LT
946{
947 handle_t *handle = journal_current_handle();
948 int ret = 0;
1d8fa7a2 949 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1da177e4 950
89747d36 951 if (!create)
1da177e4
LT
952 goto get_block; /* A read */
953
89747d36
MC
954 if (max_blocks == 1)
955 goto get_block; /* A single block get */
956
1da177e4
LT
957 if (handle->h_transaction->t_state == T_LOCKED) {
958 /*
959 * Huge direct-io writes can hold off commits for long
960 * periods of time. Let this commit run.
961 */
962 ext3_journal_stop(handle);
963 handle = ext3_journal_start(inode, DIO_CREDITS);
964 if (IS_ERR(handle))
965 ret = PTR_ERR(handle);
966 goto get_block;
967 }
968
969 if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
970 /*
971 * Getting low on buffer credits...
972 */
973 ret = ext3_journal_extend(handle, DIO_CREDITS);
974 if (ret > 0) {
975 /*
976 * Couldn't extend the transaction. Start a new one.
977 */
978 ret = ext3_journal_restart(handle, DIO_CREDITS);
979 }
980 }
981
982get_block:
89747d36
MC
983 if (ret == 0) {
984 ret = ext3_get_blocks_handle(handle, inode, iblock,
985 max_blocks, bh_result, create, 0);
986 if (ret > 0) {
987 bh_result->b_size = (ret << inode->i_blkbits);
988 ret = 0;
989 }
990 }
1da177e4
LT
991 return ret;
992}
993
1da177e4
LT
994/*
995 * `handle' can be NULL if create is zero
996 */
d6859bfc
AM
997struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
998 long block, int create, int *errp)
1da177e4
LT
999{
1000 struct buffer_head dummy;
1001 int fatal = 0, err;
1002
1003 J_ASSERT(handle != NULL || create == 0);
1004
1005 dummy.b_state = 0;
1006 dummy.b_blocknr = -1000;
1007 buffer_trace_init(&dummy.b_history);
89747d36
MC
1008 err = ext3_get_blocks_handle(handle, inode, block, 1,
1009 &dummy, create, 1);
1010 if (err == 1) {
1011 err = 0;
1012 } else if (err >= 0) {
1013 WARN_ON(1);
1014 err = -EIO;
1015 }
1016 *errp = err;
1017 if (!err && buffer_mapped(&dummy)) {
1da177e4
LT
1018 struct buffer_head *bh;
1019 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
1020 if (!bh) {
1021 *errp = -EIO;
1022 goto err;
1023 }
1da177e4
LT
1024 if (buffer_new(&dummy)) {
1025 J_ASSERT(create != 0);
1026 J_ASSERT(handle != 0);
1027
d6859bfc
AM
1028 /*
1029 * Now that we do not always journal data, we should
1030 * keep in mind whether this should always journal the
1031 * new buffer as metadata. For now, regular file
1032 * writes use ext3_get_block instead, so it's not a
1033 * problem.
1034 */
1da177e4
LT
1035 lock_buffer(bh);
1036 BUFFER_TRACE(bh, "call get_create_access");
1037 fatal = ext3_journal_get_create_access(handle, bh);
1038 if (!fatal && !buffer_uptodate(bh)) {
d6859bfc 1039 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1da177e4
LT
1040 set_buffer_uptodate(bh);
1041 }
1042 unlock_buffer(bh);
1043 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1044 err = ext3_journal_dirty_metadata(handle, bh);
1045 if (!fatal)
1046 fatal = err;
1047 } else {
1048 BUFFER_TRACE(bh, "not a new buffer");
1049 }
1050 if (fatal) {
1051 *errp = fatal;
1052 brelse(bh);
1053 bh = NULL;
1054 }
1055 return bh;
1056 }
2973dfdb 1057err:
1da177e4
LT
1058 return NULL;
1059}
1060
d6859bfc 1061struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1da177e4
LT
1062 int block, int create, int *err)
1063{
1064 struct buffer_head * bh;
1065
1066 bh = ext3_getblk(handle, inode, block, create, err);
1067 if (!bh)
1068 return bh;
1069 if (buffer_uptodate(bh))
1070 return bh;
1071 ll_rw_block(READ, 1, &bh);
1072 wait_on_buffer(bh);
1073 if (buffer_uptodate(bh))
1074 return bh;
1075 put_bh(bh);
1076 *err = -EIO;
1077 return NULL;
1078}
1079
1080static int walk_page_buffers( handle_t *handle,
1081 struct buffer_head *head,
1082 unsigned from,
1083 unsigned to,
1084 int *partial,
1085 int (*fn)( handle_t *handle,
1086 struct buffer_head *bh))
1087{
1088 struct buffer_head *bh;
1089 unsigned block_start, block_end;
1090 unsigned blocksize = head->b_size;
1091 int err, ret = 0;
1092 struct buffer_head *next;
1093
1094 for ( bh = head, block_start = 0;
1095 ret == 0 && (bh != head || !block_start);
1096 block_start = block_end, bh = next)
1097 {
1098 next = bh->b_this_page;
1099 block_end = block_start + blocksize;
1100 if (block_end <= from || block_start >= to) {
1101 if (partial && !buffer_uptodate(bh))
1102 *partial = 1;
1103 continue;
1104 }
1105 err = (*fn)(handle, bh);
1106 if (!ret)
1107 ret = err;
1108 }
1109 return ret;
1110}
1111
1112/*
1113 * To preserve ordering, it is essential that the hole instantiation and
1114 * the data write be encapsulated in a single transaction. We cannot
1115 * close off a transaction and start a new one between the ext3_get_block()
1116 * and the commit_write(). So doing the journal_start at the start of
1117 * prepare_write() is the right place.
1118 *
1119 * Also, this function can nest inside ext3_writepage() ->
1120 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1121 * has generated enough buffer credits to do the whole page. So we won't
1122 * block on the journal in that case, which is good, because the caller may
1123 * be PF_MEMALLOC.
1124 *
1125 * By accident, ext3 can be reentered when a transaction is open via
1126 * quota file writes. If we were to commit the transaction while thus
1127 * reentered, there can be a deadlock - we would be holding a quota
1128 * lock, and the commit would never complete if another thread had a
1129 * transaction open and was blocking on the quota lock - a ranking
1130 * violation.
1131 *
1132 * So what we do is to rely on the fact that journal_stop/journal_start
1133 * will _not_ run commit under these circumstances because handle->h_ref
1134 * is elevated. We'll still have enough credits for the tiny quotafile
1135 * write.
1136 */
d6859bfc
AM
1137static int do_journal_get_write_access(handle_t *handle,
1138 struct buffer_head *bh)
1da177e4
LT
1139{
1140 if (!buffer_mapped(bh) || buffer_freed(bh))
1141 return 0;
1142 return ext3_journal_get_write_access(handle, bh);
1143}
1144
1145static int ext3_prepare_write(struct file *file, struct page *page,
1146 unsigned from, unsigned to)
1147{
1148 struct inode *inode = page->mapping->host;
1149 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1150 handle_t *handle;
1151 int retries = 0;
1152
1153retry:
1154 handle = ext3_journal_start(inode, needed_blocks);
1155 if (IS_ERR(handle)) {
1156 ret = PTR_ERR(handle);
1157 goto out;
1158 }
1159 if (test_opt(inode->i_sb, NOBH))
1160 ret = nobh_prepare_write(page, from, to, ext3_get_block);
1161 else
1162 ret = block_prepare_write(page, from, to, ext3_get_block);
1163 if (ret)
1164 goto prepare_write_failed;
1165
1166 if (ext3_should_journal_data(inode)) {
1167 ret = walk_page_buffers(handle, page_buffers(page),
1168 from, to, NULL, do_journal_get_write_access);
1169 }
1170prepare_write_failed:
1171 if (ret)
1172 ext3_journal_stop(handle);
1173 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1174 goto retry;
1175out:
1176 return ret;
1177}
1178
d6859bfc 1179int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1180{
1181 int err = journal_dirty_data(handle, bh);
1182 if (err)
1183 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1184 bh, handle,err);
1185 return err;
1186}
1187
1188/* For commit_write() in data=journal mode */
1189static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1190{
1191 if (!buffer_mapped(bh) || buffer_freed(bh))
1192 return 0;
1193 set_buffer_uptodate(bh);
1194 return ext3_journal_dirty_metadata(handle, bh);
1195}
1196
1197/*
1198 * We need to pick up the new inode size which generic_commit_write gave us
1199 * `file' can be NULL - eg, when called from page_symlink().
1200 *
1201 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1202 * buffers are managed internally.
1203 */
1da177e4
LT
1204static int ext3_ordered_commit_write(struct file *file, struct page *page,
1205 unsigned from, unsigned to)
1206{
1207 handle_t *handle = ext3_journal_current_handle();
1208 struct inode *inode = page->mapping->host;
1209 int ret = 0, ret2;
1210
1211 ret = walk_page_buffers(handle, page_buffers(page),
1212 from, to, NULL, ext3_journal_dirty_data);
1213
1214 if (ret == 0) {
1215 /*
1216 * generic_commit_write() will run mark_inode_dirty() if i_size
1217 * changes. So let's piggyback the i_disksize mark_inode_dirty
1218 * into that.
1219 */
1220 loff_t new_i_size;
1221
1222 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1223 if (new_i_size > EXT3_I(inode)->i_disksize)
1224 EXT3_I(inode)->i_disksize = new_i_size;
1225 ret = generic_commit_write(file, page, from, to);
1226 }
1227 ret2 = ext3_journal_stop(handle);
1228 if (!ret)
1229 ret = ret2;
1230 return ret;
1231}
1232
1233static int ext3_writeback_commit_write(struct file *file, struct page *page,
1234 unsigned from, unsigned to)
1235{
1236 handle_t *handle = ext3_journal_current_handle();
1237 struct inode *inode = page->mapping->host;
1238 int ret = 0, ret2;
1239 loff_t new_i_size;
1240
1241 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1242 if (new_i_size > EXT3_I(inode)->i_disksize)
1243 EXT3_I(inode)->i_disksize = new_i_size;
1244
1245 if (test_opt(inode->i_sb, NOBH))
1246 ret = nobh_commit_write(file, page, from, to);
1247 else
1248 ret = generic_commit_write(file, page, from, to);
1249
1250 ret2 = ext3_journal_stop(handle);
1251 if (!ret)
1252 ret = ret2;
1253 return ret;
1254}
1255
1256static int ext3_journalled_commit_write(struct file *file,
1257 struct page *page, unsigned from, unsigned to)
1258{
1259 handle_t *handle = ext3_journal_current_handle();
1260 struct inode *inode = page->mapping->host;
1261 int ret = 0, ret2;
1262 int partial = 0;
1263 loff_t pos;
1264
1265 /*
1266 * Here we duplicate the generic_commit_write() functionality
1267 */
1268 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1269
1270 ret = walk_page_buffers(handle, page_buffers(page), from,
1271 to, &partial, commit_write_fn);
1272 if (!partial)
1273 SetPageUptodate(page);
1274 if (pos > inode->i_size)
1275 i_size_write(inode, pos);
1276 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1277 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1278 EXT3_I(inode)->i_disksize = inode->i_size;
1279 ret2 = ext3_mark_inode_dirty(handle, inode);
1280 if (!ret)
1281 ret = ret2;
1282 }
1283 ret2 = ext3_journal_stop(handle);
1284 if (!ret)
1285 ret = ret2;
1286 return ret;
1287}
1288
1289/*
1290 * bmap() is special. It gets used by applications such as lilo and by
1291 * the swapper to find the on-disk block of a specific piece of data.
1292 *
1293 * Naturally, this is dangerous if the block concerned is still in the
1294 * journal. If somebody makes a swapfile on an ext3 data-journaling
1295 * filesystem and enables swap, then they may get a nasty shock when the
1296 * data getting swapped to that swapfile suddenly gets overwritten by
1297 * the original zero's written out previously to the journal and
1298 * awaiting writeback in the kernel's buffer cache.
1299 *
1300 * So, if we see any bmap calls here on a modified, data-journaled file,
1301 * take extra steps to flush any blocks which might be in the cache.
1302 */
1303static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1304{
1305 struct inode *inode = mapping->host;
1306 journal_t *journal;
1307 int err;
1308
1309 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1310 /*
1311 * This is a REALLY heavyweight approach, but the use of
1312 * bmap on dirty files is expected to be extremely rare:
1313 * only if we run lilo or swapon on a freshly made file
1314 * do we expect this to happen.
1315 *
1316 * (bmap requires CAP_SYS_RAWIO so this does not
1317 * represent an unprivileged user DOS attack --- we'd be
1318 * in trouble if mortal users could trigger this path at
1319 * will.)
1320 *
1321 * NB. EXT3_STATE_JDATA is not set on files other than
1322 * regular files. If somebody wants to bmap a directory
1323 * or symlink and gets confused because the buffer
1324 * hasn't yet been flushed to disk, they deserve
1325 * everything they get.
1326 */
1327
1328 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1329 journal = EXT3_JOURNAL(inode);
1330 journal_lock_updates(journal);
1331 err = journal_flush(journal);
1332 journal_unlock_updates(journal);
1333
1334 if (err)
1335 return 0;
1336 }
1337
1338 return generic_block_bmap(mapping,block,ext3_get_block);
1339}
1340
1341static int bget_one(handle_t *handle, struct buffer_head *bh)
1342{
1343 get_bh(bh);
1344 return 0;
1345}
1346
1347static int bput_one(handle_t *handle, struct buffer_head *bh)
1348{
1349 put_bh(bh);
1350 return 0;
1351}
1352
1353static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1354{
1355 if (buffer_mapped(bh))
1356 return ext3_journal_dirty_data(handle, bh);
1357 return 0;
1358}
1359
1360/*
1361 * Note that we always start a transaction even if we're not journalling
1362 * data. This is to preserve ordering: any hole instantiation within
1363 * __block_write_full_page -> ext3_get_block() should be journalled
1364 * along with the data so we don't crash and then get metadata which
1365 * refers to old data.
1366 *
1367 * In all journalling modes block_write_full_page() will start the I/O.
1368 *
1369 * Problem:
1370 *
1371 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1372 * ext3_writepage()
1373 *
1374 * Similar for:
1375 *
1376 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1377 *
1378 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1379 * lock_journal and i_truncate_mutex.
1da177e4
LT
1380 *
1381 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1382 * allocations fail.
1383 *
1384 * 16May01: If we're reentered then journal_current_handle() will be
1385 * non-zero. We simply *return*.
1386 *
1387 * 1 July 2001: @@@ FIXME:
1388 * In journalled data mode, a data buffer may be metadata against the
1389 * current transaction. But the same file is part of a shared mapping
1390 * and someone does a writepage() on it.
1391 *
1392 * We will move the buffer onto the async_data list, but *after* it has
1393 * been dirtied. So there's a small window where we have dirty data on
1394 * BJ_Metadata.
1395 *
1396 * Note that this only applies to the last partial page in the file. The
1397 * bit which block_write_full_page() uses prepare/commit for. (That's
1398 * broken code anyway: it's wrong for msync()).
1399 *
1400 * It's a rare case: affects the final partial page, for journalled data
1401 * where the file is subject to bith write() and writepage() in the same
1402 * transction. To fix it we'll need a custom block_write_full_page().
1403 * We'll probably need that anyway for journalling writepage() output.
1404 *
1405 * We don't honour synchronous mounts for writepage(). That would be
1406 * disastrous. Any write() or metadata operation will sync the fs for
1407 * us.
1408 *
1409 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1410 * we don't need to open a transaction here.
1411 */
1412static int ext3_ordered_writepage(struct page *page,
d6859bfc 1413 struct writeback_control *wbc)
1da177e4
LT
1414{
1415 struct inode *inode = page->mapping->host;
1416 struct buffer_head *page_bufs;
1417 handle_t *handle = NULL;
1418 int ret = 0;
1419 int err;
1420
1421 J_ASSERT(PageLocked(page));
1422
1423 /*
1424 * We give up here if we're reentered, because it might be for a
1425 * different filesystem.
1426 */
1427 if (ext3_journal_current_handle())
1428 goto out_fail;
1429
1430 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1431
1432 if (IS_ERR(handle)) {
1433 ret = PTR_ERR(handle);
1434 goto out_fail;
1435 }
1436
1437 if (!page_has_buffers(page)) {
1438 create_empty_buffers(page, inode->i_sb->s_blocksize,
1439 (1 << BH_Dirty)|(1 << BH_Uptodate));
1440 }
1441 page_bufs = page_buffers(page);
1442 walk_page_buffers(handle, page_bufs, 0,
1443 PAGE_CACHE_SIZE, NULL, bget_one);
1444
1445 ret = block_write_full_page(page, ext3_get_block, wbc);
1446
1447 /*
1448 * The page can become unlocked at any point now, and
1449 * truncate can then come in and change things. So we
1450 * can't touch *page from now on. But *page_bufs is
1451 * safe due to elevated refcount.
1452 */
1453
1454 /*
1455 * And attach them to the current transaction. But only if
1456 * block_write_full_page() succeeded. Otherwise they are unmapped,
1457 * and generally junk.
1458 */
1459 if (ret == 0) {
1460 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1461 NULL, journal_dirty_data_fn);
1462 if (!ret)
1463 ret = err;
1464 }
1465 walk_page_buffers(handle, page_bufs, 0,
1466 PAGE_CACHE_SIZE, NULL, bput_one);
1467 err = ext3_journal_stop(handle);
1468 if (!ret)
1469 ret = err;
1470 return ret;
1471
1472out_fail:
1473 redirty_page_for_writepage(wbc, page);
1474 unlock_page(page);
1475 return ret;
1476}
1477
1da177e4
LT
1478static int ext3_writeback_writepage(struct page *page,
1479 struct writeback_control *wbc)
1480{
1481 struct inode *inode = page->mapping->host;
1482 handle_t *handle = NULL;
1483 int ret = 0;
1484 int err;
1485
1486 if (ext3_journal_current_handle())
1487 goto out_fail;
1488
1489 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1490 if (IS_ERR(handle)) {
1491 ret = PTR_ERR(handle);
1492 goto out_fail;
1493 }
1494
1495 if (test_opt(inode->i_sb, NOBH))
1496 ret = nobh_writepage(page, ext3_get_block, wbc);
1497 else
1498 ret = block_write_full_page(page, ext3_get_block, wbc);
1499
1500 err = ext3_journal_stop(handle);
1501 if (!ret)
1502 ret = err;
1503 return ret;
1504
1505out_fail:
1506 redirty_page_for_writepage(wbc, page);
1507 unlock_page(page);
1508 return ret;
1509}
1510
1511static int ext3_journalled_writepage(struct page *page,
1512 struct writeback_control *wbc)
1513{
1514 struct inode *inode = page->mapping->host;
1515 handle_t *handle = NULL;
1516 int ret = 0;
1517 int err;
1518
1519 if (ext3_journal_current_handle())
1520 goto no_write;
1521
1522 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1523 if (IS_ERR(handle)) {
1524 ret = PTR_ERR(handle);
1525 goto no_write;
1526 }
1527
1528 if (!page_has_buffers(page) || PageChecked(page)) {
1529 /*
1530 * It's mmapped pagecache. Add buffers and journal it. There
1531 * doesn't seem much point in redirtying the page here.
1532 */
1533 ClearPageChecked(page);
1534 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1535 ext3_get_block);
ab4eb43c
DL
1536 if (ret != 0) {
1537 ext3_journal_stop(handle);
1da177e4 1538 goto out_unlock;
ab4eb43c 1539 }
1da177e4
LT
1540 ret = walk_page_buffers(handle, page_buffers(page), 0,
1541 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1542
1543 err = walk_page_buffers(handle, page_buffers(page), 0,
1544 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1545 if (ret == 0)
1546 ret = err;
1547 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1548 unlock_page(page);
1549 } else {
1550 /*
1551 * It may be a page full of checkpoint-mode buffers. We don't
1552 * really know unless we go poke around in the buffer_heads.
1553 * But block_write_full_page will do the right thing.
1554 */
1555 ret = block_write_full_page(page, ext3_get_block, wbc);
1556 }
1557 err = ext3_journal_stop(handle);
1558 if (!ret)
1559 ret = err;
1560out:
1561 return ret;
1562
1563no_write:
1564 redirty_page_for_writepage(wbc, page);
1565out_unlock:
1566 unlock_page(page);
1567 goto out;
1568}
1569
1570static int ext3_readpage(struct file *file, struct page *page)
1571{
1572 return mpage_readpage(page, ext3_get_block);
1573}
1574
1575static int
1576ext3_readpages(struct file *file, struct address_space *mapping,
1577 struct list_head *pages, unsigned nr_pages)
1578{
1579 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1580}
1581
2ff28e22 1582static void ext3_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1583{
1584 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1585
1586 /*
1587 * If it's a full truncate we just forget about the pending dirtying
1588 */
1589 if (offset == 0)
1590 ClearPageChecked(page);
1591
2ff28e22 1592 journal_invalidatepage(journal, page, offset);
1da177e4
LT
1593}
1594
27496a8c 1595static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1596{
1597 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1598
1599 WARN_ON(PageChecked(page));
1600 if (!page_has_buffers(page))
1601 return 0;
1602 return journal_try_to_free_buffers(journal, page, wait);
1603}
1604
1605/*
1606 * If the O_DIRECT write will extend the file then add this inode to the
1607 * orphan list. So recovery will truncate it back to the original size
1608 * if the machine crashes during the write.
1609 *
1610 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1611 * crashes then stale disk data _may_ be exposed inside the file.
1612 */
1613static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1614 const struct iovec *iov, loff_t offset,
1615 unsigned long nr_segs)
1616{
1617 struct file *file = iocb->ki_filp;
1618 struct inode *inode = file->f_mapping->host;
1619 struct ext3_inode_info *ei = EXT3_I(inode);
1620 handle_t *handle = NULL;
1621 ssize_t ret;
1622 int orphan = 0;
1623 size_t count = iov_length(iov, nr_segs);
1624
1625 if (rw == WRITE) {
1626 loff_t final_size = offset + count;
1627
1628 handle = ext3_journal_start(inode, DIO_CREDITS);
1629 if (IS_ERR(handle)) {
1630 ret = PTR_ERR(handle);
1631 goto out;
1632 }
1633 if (final_size > inode->i_size) {
1634 ret = ext3_orphan_add(handle, inode);
1635 if (ret)
1636 goto out_stop;
1637 orphan = 1;
1638 ei->i_disksize = inode->i_size;
1639 }
1640 }
1641
1642 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1643 offset, nr_segs,
f91a2ad2 1644 ext3_get_block, NULL);
1da177e4
LT
1645
1646 /*
f91a2ad2 1647 * Reacquire the handle: ext3_get_block() can restart the transaction
1da177e4
LT
1648 */
1649 handle = journal_current_handle();
1650
1651out_stop:
1652 if (handle) {
1653 int err;
1654
1655 if (orphan && inode->i_nlink)
1656 ext3_orphan_del(handle, inode);
1657 if (orphan && ret > 0) {
1658 loff_t end = offset + ret;
1659 if (end > inode->i_size) {
1660 ei->i_disksize = end;
1661 i_size_write(inode, end);
1662 /*
1663 * We're going to return a positive `ret'
1664 * here due to non-zero-length I/O, so there's
1665 * no way of reporting error returns from
1666 * ext3_mark_inode_dirty() to userspace. So
1667 * ignore it.
1668 */
1669 ext3_mark_inode_dirty(handle, inode);
1670 }
1671 }
1672 err = ext3_journal_stop(handle);
1673 if (ret == 0)
1674 ret = err;
1675 }
1676out:
1677 return ret;
1678}
1679
1680/*
1681 * Pages can be marked dirty completely asynchronously from ext3's journalling
1682 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1683 * much here because ->set_page_dirty is called under VFS locks. The page is
1684 * not necessarily locked.
1685 *
1686 * We cannot just dirty the page and leave attached buffers clean, because the
1687 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1688 * or jbddirty because all the journalling code will explode.
1689 *
1690 * So what we do is to mark the page "pending dirty" and next time writepage
1691 * is called, propagate that into the buffers appropriately.
1692 */
1693static int ext3_journalled_set_page_dirty(struct page *page)
1694{
1695 SetPageChecked(page);
1696 return __set_page_dirty_nobuffers(page);
1697}
1698
1699static struct address_space_operations ext3_ordered_aops = {
1700 .readpage = ext3_readpage,
1701 .readpages = ext3_readpages,
1702 .writepage = ext3_ordered_writepage,
1703 .sync_page = block_sync_page,
1704 .prepare_write = ext3_prepare_write,
1705 .commit_write = ext3_ordered_commit_write,
1706 .bmap = ext3_bmap,
1707 .invalidatepage = ext3_invalidatepage,
1708 .releasepage = ext3_releasepage,
1709 .direct_IO = ext3_direct_IO,
e965f963 1710 .migratepage = buffer_migrate_page,
1da177e4
LT
1711};
1712
1713static struct address_space_operations ext3_writeback_aops = {
1714 .readpage = ext3_readpage,
1715 .readpages = ext3_readpages,
1716 .writepage = ext3_writeback_writepage,
1da177e4
LT
1717 .sync_page = block_sync_page,
1718 .prepare_write = ext3_prepare_write,
1719 .commit_write = ext3_writeback_commit_write,
1720 .bmap = ext3_bmap,
1721 .invalidatepage = ext3_invalidatepage,
1722 .releasepage = ext3_releasepage,
1723 .direct_IO = ext3_direct_IO,
e965f963 1724 .migratepage = buffer_migrate_page,
1da177e4
LT
1725};
1726
1727static struct address_space_operations ext3_journalled_aops = {
1728 .readpage = ext3_readpage,
1729 .readpages = ext3_readpages,
1730 .writepage = ext3_journalled_writepage,
1731 .sync_page = block_sync_page,
1732 .prepare_write = ext3_prepare_write,
1733 .commit_write = ext3_journalled_commit_write,
1734 .set_page_dirty = ext3_journalled_set_page_dirty,
1735 .bmap = ext3_bmap,
1736 .invalidatepage = ext3_invalidatepage,
1737 .releasepage = ext3_releasepage,
1738};
1739
1740void ext3_set_aops(struct inode *inode)
1741{
1742 if (ext3_should_order_data(inode))
1743 inode->i_mapping->a_ops = &ext3_ordered_aops;
1744 else if (ext3_should_writeback_data(inode))
1745 inode->i_mapping->a_ops = &ext3_writeback_aops;
1746 else
1747 inode->i_mapping->a_ops = &ext3_journalled_aops;
1748}
1749
1750/*
1751 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1752 * up to the end of the block which corresponds to `from'.
1753 * This required during truncate. We need to physically zero the tail end
1754 * of that block so it doesn't yield old data if the file is later grown.
1755 */
1756static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1757 struct address_space *mapping, loff_t from)
1758{
1759 unsigned long index = from >> PAGE_CACHE_SHIFT;
1760 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1761 unsigned blocksize, iblock, length, pos;
1762 struct inode *inode = mapping->host;
1763 struct buffer_head *bh;
1764 int err = 0;
1765 void *kaddr;
1766
1767 blocksize = inode->i_sb->s_blocksize;
1768 length = blocksize - (offset & (blocksize - 1));
1769 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1770
1771 /*
1772 * For "nobh" option, we can only work if we don't need to
1773 * read-in the page - otherwise we create buffers to do the IO.
1774 */
cd6ef84e
BP
1775 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1776 ext3_should_writeback_data(inode) && PageUptodate(page)) {
1777 kaddr = kmap_atomic(page, KM_USER0);
1778 memset(kaddr + offset, 0, length);
1779 flush_dcache_page(page);
1780 kunmap_atomic(kaddr, KM_USER0);
1781 set_page_dirty(page);
1782 goto unlock;
1da177e4
LT
1783 }
1784
1785 if (!page_has_buffers(page))
1786 create_empty_buffers(page, blocksize, 0);
1787
1788 /* Find the buffer that contains "offset" */
1789 bh = page_buffers(page);
1790 pos = blocksize;
1791 while (offset >= pos) {
1792 bh = bh->b_this_page;
1793 iblock++;
1794 pos += blocksize;
1795 }
1796
1797 err = 0;
1798 if (buffer_freed(bh)) {
1799 BUFFER_TRACE(bh, "freed: skip");
1800 goto unlock;
1801 }
1802
1803 if (!buffer_mapped(bh)) {
1804 BUFFER_TRACE(bh, "unmapped");
1805 ext3_get_block(inode, iblock, bh, 0);
1806 /* unmapped? It's a hole - nothing to do */
1807 if (!buffer_mapped(bh)) {
1808 BUFFER_TRACE(bh, "still unmapped");
1809 goto unlock;
1810 }
1811 }
1812
1813 /* Ok, it's mapped. Make sure it's up-to-date */
1814 if (PageUptodate(page))
1815 set_buffer_uptodate(bh);
1816
1817 if (!buffer_uptodate(bh)) {
1818 err = -EIO;
1819 ll_rw_block(READ, 1, &bh);
1820 wait_on_buffer(bh);
1821 /* Uhhuh. Read error. Complain and punt. */
1822 if (!buffer_uptodate(bh))
1823 goto unlock;
1824 }
1825
1826 if (ext3_should_journal_data(inode)) {
1827 BUFFER_TRACE(bh, "get write access");
1828 err = ext3_journal_get_write_access(handle, bh);
1829 if (err)
1830 goto unlock;
1831 }
1832
1833 kaddr = kmap_atomic(page, KM_USER0);
1834 memset(kaddr + offset, 0, length);
1835 flush_dcache_page(page);
1836 kunmap_atomic(kaddr, KM_USER0);
1837
1838 BUFFER_TRACE(bh, "zeroed end of block");
1839
1840 err = 0;
1841 if (ext3_should_journal_data(inode)) {
1842 err = ext3_journal_dirty_metadata(handle, bh);
1843 } else {
1844 if (ext3_should_order_data(inode))
1845 err = ext3_journal_dirty_data(handle, bh);
1846 mark_buffer_dirty(bh);
1847 }
1848
1849unlock:
1850 unlock_page(page);
1851 page_cache_release(page);
1852 return err;
1853}
1854
1855/*
1856 * Probably it should be a library function... search for first non-zero word
1857 * or memcmp with zero_page, whatever is better for particular architecture.
1858 * Linus?
1859 */
1860static inline int all_zeroes(__le32 *p, __le32 *q)
1861{
1862 while (p < q)
1863 if (*p++)
1864 return 0;
1865 return 1;
1866}
1867
1868/**
1869 * ext3_find_shared - find the indirect blocks for partial truncation.
1870 * @inode: inode in question
1871 * @depth: depth of the affected branch
1872 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1873 * @chain: place to store the pointers to partial indirect blocks
1874 * @top: place to the (detached) top of branch
1875 *
1876 * This is a helper function used by ext3_truncate().
1877 *
1878 * When we do truncate() we may have to clean the ends of several
1879 * indirect blocks but leave the blocks themselves alive. Block is
1880 * partially truncated if some data below the new i_size is refered
1881 * from it (and it is on the path to the first completely truncated
1882 * data block, indeed). We have to free the top of that path along
1883 * with everything to the right of the path. Since no allocation
1884 * past the truncation point is possible until ext3_truncate()
1885 * finishes, we may safely do the latter, but top of branch may
1886 * require special attention - pageout below the truncation point
1887 * might try to populate it.
1888 *
1889 * We atomically detach the top of branch from the tree, store the
1890 * block number of its root in *@top, pointers to buffer_heads of
1891 * partially truncated blocks - in @chain[].bh and pointers to
1892 * their last elements that should not be removed - in
1893 * @chain[].p. Return value is the pointer to last filled element
1894 * of @chain.
1895 *
1896 * The work left to caller to do the actual freeing of subtrees:
1897 * a) free the subtree starting from *@top
1898 * b) free the subtrees whose roots are stored in
1899 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1900 * c) free the subtrees growing from the inode past the @chain[0].
1901 * (no partially truncated stuff there). */
1902
d6859bfc
AM
1903static Indirect *ext3_find_shared(struct inode *inode, int depth,
1904 int offsets[4], Indirect chain[4], __le32 *top)
1da177e4
LT
1905{
1906 Indirect *partial, *p;
1907 int k, err;
1908
1909 *top = 0;
1910 /* Make k index the deepest non-null offest + 1 */
1911 for (k = depth; k > 1 && !offsets[k-1]; k--)
1912 ;
1913 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1914 /* Writer: pointers */
1915 if (!partial)
1916 partial = chain + k-1;
1917 /*
1918 * If the branch acquired continuation since we've looked at it -
1919 * fine, it should all survive and (new) top doesn't belong to us.
1920 */
1921 if (!partial->key && *partial->p)
1922 /* Writer: end */
1923 goto no_top;
1924 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1925 ;
1926 /*
1927 * OK, we've found the last block that must survive. The rest of our
1928 * branch should be detached before unlocking. However, if that rest
1929 * of branch is all ours and does not grow immediately from the inode
1930 * it's easier to cheat and just decrement partial->p.
1931 */
1932 if (p == chain + k - 1 && p > chain) {
1933 p->p--;
1934 } else {
1935 *top = *p->p;
1936 /* Nope, don't do this in ext3. Must leave the tree intact */
1937#if 0
1938 *p->p = 0;
1939#endif
1940 }
1941 /* Writer: end */
1942
d6859bfc 1943 while(partial > p) {
1da177e4
LT
1944 brelse(partial->bh);
1945 partial--;
1946 }
1947no_top:
1948 return partial;
1949}
1950
1951/*
1952 * Zero a number of block pointers in either an inode or an indirect block.
1953 * If we restart the transaction we must again get write access to the
1954 * indirect block for further modification.
1955 *
1956 * We release `count' blocks on disk, but (last - first) may be greater
1957 * than `count' because there can be holes in there.
1958 */
d6859bfc
AM
1959static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
1960 struct buffer_head *bh, unsigned long block_to_free,
1961 unsigned long count, __le32 *first, __le32 *last)
1da177e4
LT
1962{
1963 __le32 *p;
1964 if (try_to_extend_transaction(handle, inode)) {
1965 if (bh) {
1966 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1967 ext3_journal_dirty_metadata(handle, bh);
1968 }
1969 ext3_mark_inode_dirty(handle, inode);
1970 ext3_journal_test_restart(handle, inode);
1971 if (bh) {
1972 BUFFER_TRACE(bh, "retaking write access");
1973 ext3_journal_get_write_access(handle, bh);
1974 }
1975 }
1976
1977 /*
1978 * Any buffers which are on the journal will be in memory. We find
1979 * them on the hash table so journal_revoke() will run journal_forget()
1980 * on them. We've already detached each block from the file, so
1981 * bforget() in journal_forget() should be safe.
1982 *
1983 * AKPM: turn on bforget in journal_forget()!!!
1984 */
1985 for (p = first; p < last; p++) {
1986 u32 nr = le32_to_cpu(*p);
1987 if (nr) {
1988 struct buffer_head *bh;
1989
1990 *p = 0;
1991 bh = sb_find_get_block(inode->i_sb, nr);
1992 ext3_forget(handle, 0, inode, bh, nr);
1993 }
1994 }
1995
1996 ext3_free_blocks(handle, inode, block_to_free, count);
1997}
1998
1999/**
2000 * ext3_free_data - free a list of data blocks
2001 * @handle: handle for this transaction
2002 * @inode: inode we are dealing with
2003 * @this_bh: indirect buffer_head which contains *@first and *@last
2004 * @first: array of block numbers
2005 * @last: points immediately past the end of array
2006 *
2007 * We are freeing all blocks refered from that array (numbers are stored as
2008 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2009 *
2010 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2011 * blocks are contiguous then releasing them at one time will only affect one
2012 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2013 * actually use a lot of journal space.
2014 *
2015 * @this_bh will be %NULL if @first and @last point into the inode's direct
2016 * block pointers.
2017 */
2018static void ext3_free_data(handle_t *handle, struct inode *inode,
2019 struct buffer_head *this_bh,
2020 __le32 *first, __le32 *last)
2021{
2022 unsigned long block_to_free = 0; /* Starting block # of a run */
2023 unsigned long count = 0; /* Number of blocks in the run */
2024 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2025 corresponding to
2026 block_to_free */
2027 unsigned long nr; /* Current block # */
2028 __le32 *p; /* Pointer into inode/ind
2029 for current block */
2030 int err;
2031
2032 if (this_bh) { /* For indirect block */
2033 BUFFER_TRACE(this_bh, "get_write_access");
2034 err = ext3_journal_get_write_access(handle, this_bh);
2035 /* Important: if we can't update the indirect pointers
2036 * to the blocks, we can't free them. */
2037 if (err)
2038 return;
2039 }
2040
2041 for (p = first; p < last; p++) {
2042 nr = le32_to_cpu(*p);
2043 if (nr) {
2044 /* accumulate blocks to free if they're contiguous */
2045 if (count == 0) {
2046 block_to_free = nr;
2047 block_to_free_p = p;
2048 count = 1;
2049 } else if (nr == block_to_free + count) {
2050 count++;
2051 } else {
2052 ext3_clear_blocks(handle, inode, this_bh,
2053 block_to_free,
2054 count, block_to_free_p, p);
2055 block_to_free = nr;
2056 block_to_free_p = p;
2057 count = 1;
2058 }
2059 }
2060 }
2061
2062 if (count > 0)
2063 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2064 count, block_to_free_p, p);
2065
2066 if (this_bh) {
2067 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2068 ext3_journal_dirty_metadata(handle, this_bh);
2069 }
2070}
2071
2072/**
2073 * ext3_free_branches - free an array of branches
2074 * @handle: JBD handle for this transaction
2075 * @inode: inode we are dealing with
2076 * @parent_bh: the buffer_head which contains *@first and *@last
2077 * @first: array of block numbers
2078 * @last: pointer immediately past the end of array
2079 * @depth: depth of the branches to free
2080 *
2081 * We are freeing all blocks refered from these branches (numbers are
2082 * stored as little-endian 32-bit) and updating @inode->i_blocks
2083 * appropriately.
2084 */
2085static void ext3_free_branches(handle_t *handle, struct inode *inode,
2086 struct buffer_head *parent_bh,
2087 __le32 *first, __le32 *last, int depth)
2088{
2089 unsigned long nr;
2090 __le32 *p;
2091
2092 if (is_handle_aborted(handle))
2093 return;
2094
2095 if (depth--) {
2096 struct buffer_head *bh;
2097 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2098 p = last;
2099 while (--p >= first) {
2100 nr = le32_to_cpu(*p);
2101 if (!nr)
2102 continue; /* A hole */
2103
2104 /* Go read the buffer for the next level down */
2105 bh = sb_bread(inode->i_sb, nr);
2106
2107 /*
2108 * A read failure? Report error and clear slot
2109 * (should be rare).
2110 */
2111 if (!bh) {
2112 ext3_error(inode->i_sb, "ext3_free_branches",
2113 "Read failure, inode=%ld, block=%ld",
2114 inode->i_ino, nr);
2115 continue;
2116 }
2117
2118 /* This zaps the entire block. Bottom up. */
2119 BUFFER_TRACE(bh, "free child branches");
2120 ext3_free_branches(handle, inode, bh,
2121 (__le32*)bh->b_data,
2122 (__le32*)bh->b_data + addr_per_block,
2123 depth);
2124
2125 /*
2126 * We've probably journalled the indirect block several
2127 * times during the truncate. But it's no longer
2128 * needed and we now drop it from the transaction via
2129 * journal_revoke().
2130 *
2131 * That's easy if it's exclusively part of this
2132 * transaction. But if it's part of the committing
2133 * transaction then journal_forget() will simply
2134 * brelse() it. That means that if the underlying
2135 * block is reallocated in ext3_get_block(),
2136 * unmap_underlying_metadata() will find this block
2137 * and will try to get rid of it. damn, damn.
2138 *
2139 * If this block has already been committed to the
2140 * journal, a revoke record will be written. And
2141 * revoke records must be emitted *before* clearing
2142 * this block's bit in the bitmaps.
2143 */
2144 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2145
2146 /*
2147 * Everything below this this pointer has been
2148 * released. Now let this top-of-subtree go.
2149 *
2150 * We want the freeing of this indirect block to be
2151 * atomic in the journal with the updating of the
2152 * bitmap block which owns it. So make some room in
2153 * the journal.
2154 *
2155 * We zero the parent pointer *after* freeing its
2156 * pointee in the bitmaps, so if extend_transaction()
2157 * for some reason fails to put the bitmap changes and
2158 * the release into the same transaction, recovery
2159 * will merely complain about releasing a free block,
2160 * rather than leaking blocks.
2161 */
2162 if (is_handle_aborted(handle))
2163 return;
2164 if (try_to_extend_transaction(handle, inode)) {
2165 ext3_mark_inode_dirty(handle, inode);
2166 ext3_journal_test_restart(handle, inode);
2167 }
2168
2169 ext3_free_blocks(handle, inode, nr, 1);
2170
2171 if (parent_bh) {
2172 /*
2173 * The block which we have just freed is
2174 * pointed to by an indirect block: journal it
2175 */
2176 BUFFER_TRACE(parent_bh, "get_write_access");
2177 if (!ext3_journal_get_write_access(handle,
2178 parent_bh)){
2179 *p = 0;
2180 BUFFER_TRACE(parent_bh,
2181 "call ext3_journal_dirty_metadata");
2182 ext3_journal_dirty_metadata(handle,
2183 parent_bh);
2184 }
2185 }
2186 }
2187 } else {
2188 /* We have reached the bottom of the tree. */
2189 BUFFER_TRACE(parent_bh, "free data blocks");
2190 ext3_free_data(handle, inode, parent_bh, first, last);
2191 }
2192}
2193
2194/*
2195 * ext3_truncate()
2196 *
2197 * We block out ext3_get_block() block instantiations across the entire
2198 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2199 * simultaneously on behalf of the same inode.
2200 *
2201 * As we work through the truncate and commmit bits of it to the journal there
2202 * is one core, guiding principle: the file's tree must always be consistent on
2203 * disk. We must be able to restart the truncate after a crash.
2204 *
2205 * The file's tree may be transiently inconsistent in memory (although it
2206 * probably isn't), but whenever we close off and commit a journal transaction,
2207 * the contents of (the filesystem + the journal) must be consistent and
2208 * restartable. It's pretty simple, really: bottom up, right to left (although
2209 * left-to-right works OK too).
2210 *
2211 * Note that at recovery time, journal replay occurs *before* the restart of
2212 * truncate against the orphan inode list.
2213 *
2214 * The committed inode has the new, desired i_size (which is the same as
2215 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2216 * that this inode's truncate did not complete and it will again call
2217 * ext3_truncate() to have another go. So there will be instantiated blocks
2218 * to the right of the truncation point in a crashed ext3 filesystem. But
2219 * that's fine - as long as they are linked from the inode, the post-crash
2220 * ext3_truncate() run will find them and release them.
2221 */
d6859bfc 2222void ext3_truncate(struct inode *inode)
1da177e4
LT
2223{
2224 handle_t *handle;
2225 struct ext3_inode_info *ei = EXT3_I(inode);
2226 __le32 *i_data = ei->i_data;
2227 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2228 struct address_space *mapping = inode->i_mapping;
2229 int offsets[4];
2230 Indirect chain[4];
2231 Indirect *partial;
2232 __le32 nr = 0;
2233 int n;
2234 long last_block;
2235 unsigned blocksize = inode->i_sb->s_blocksize;
2236 struct page *page;
2237
2238 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2239 S_ISLNK(inode->i_mode)))
2240 return;
2241 if (ext3_inode_is_fast_symlink(inode))
2242 return;
2243 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2244 return;
2245
2246 /*
2247 * We have to lock the EOF page here, because lock_page() nests
2248 * outside journal_start().
2249 */
2250 if ((inode->i_size & (blocksize - 1)) == 0) {
2251 /* Block boundary? Nothing to do */
2252 page = NULL;
2253 } else {
2254 page = grab_cache_page(mapping,
2255 inode->i_size >> PAGE_CACHE_SHIFT);
2256 if (!page)
2257 return;
2258 }
2259
2260 handle = start_transaction(inode);
2261 if (IS_ERR(handle)) {
2262 if (page) {
2263 clear_highpage(page);
2264 flush_dcache_page(page);
2265 unlock_page(page);
2266 page_cache_release(page);
2267 }
2268 return; /* AKPM: return what? */
2269 }
2270
2271 last_block = (inode->i_size + blocksize-1)
2272 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2273
2274 if (page)
2275 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2276
2277 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2278 if (n == 0)
2279 goto out_stop; /* error */
2280
2281 /*
2282 * OK. This truncate is going to happen. We add the inode to the
2283 * orphan list, so that if this truncate spans multiple transactions,
2284 * and we crash, we will resume the truncate when the filesystem
2285 * recovers. It also marks the inode dirty, to catch the new size.
2286 *
2287 * Implication: the file must always be in a sane, consistent
2288 * truncatable state while each transaction commits.
2289 */
2290 if (ext3_orphan_add(handle, inode))
2291 goto out_stop;
2292
2293 /*
2294 * The orphan list entry will now protect us from any crash which
2295 * occurs before the truncate completes, so it is now safe to propagate
2296 * the new, shorter inode size (held for now in i_size) into the
2297 * on-disk inode. We do this via i_disksize, which is the value which
2298 * ext3 *really* writes onto the disk inode.
2299 */
2300 ei->i_disksize = inode->i_size;
2301
2302 /*
2303 * From here we block out all ext3_get_block() callers who want to
2304 * modify the block allocation tree.
2305 */
97461518 2306 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2307
2308 if (n == 1) { /* direct blocks */
2309 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2310 i_data + EXT3_NDIR_BLOCKS);
2311 goto do_indirects;
2312 }
2313
2314 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2315 /* Kill the top of shared branch (not detached) */
2316 if (nr) {
2317 if (partial == chain) {
2318 /* Shared branch grows from the inode */
2319 ext3_free_branches(handle, inode, NULL,
2320 &nr, &nr+1, (chain+n-1) - partial);
2321 *partial->p = 0;
2322 /*
2323 * We mark the inode dirty prior to restart,
2324 * and prior to stop. No need for it here.
2325 */
2326 } else {
2327 /* Shared branch grows from an indirect block */
2328 BUFFER_TRACE(partial->bh, "get_write_access");
2329 ext3_free_branches(handle, inode, partial->bh,
2330 partial->p,
2331 partial->p+1, (chain+n-1) - partial);
2332 }
2333 }
2334 /* Clear the ends of indirect blocks on the shared branch */
2335 while (partial > chain) {
2336 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2337 (__le32*)partial->bh->b_data+addr_per_block,
2338 (chain+n-1) - partial);
2339 BUFFER_TRACE(partial->bh, "call brelse");
2340 brelse (partial->bh);
2341 partial--;
2342 }
2343do_indirects:
2344 /* Kill the remaining (whole) subtrees */
2345 switch (offsets[0]) {
d6859bfc
AM
2346 default:
2347 nr = i_data[EXT3_IND_BLOCK];
2348 if (nr) {
2349 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2350 i_data[EXT3_IND_BLOCK] = 0;
2351 }
2352 case EXT3_IND_BLOCK:
2353 nr = i_data[EXT3_DIND_BLOCK];
2354 if (nr) {
2355 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2356 i_data[EXT3_DIND_BLOCK] = 0;
2357 }
2358 case EXT3_DIND_BLOCK:
2359 nr = i_data[EXT3_TIND_BLOCK];
2360 if (nr) {
2361 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2362 i_data[EXT3_TIND_BLOCK] = 0;
2363 }
2364 case EXT3_TIND_BLOCK:
2365 ;
1da177e4
LT
2366 }
2367
2368 ext3_discard_reservation(inode);
2369
97461518 2370 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2371 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2372 ext3_mark_inode_dirty(handle, inode);
2373
d6859bfc
AM
2374 /*
2375 * In a multi-transaction truncate, we only make the final transaction
2376 * synchronous
2377 */
1da177e4
LT
2378 if (IS_SYNC(inode))
2379 handle->h_sync = 1;
2380out_stop:
2381 /*
2382 * If this was a simple ftruncate(), and the file will remain alive
2383 * then we need to clear up the orphan record which we created above.
2384 * However, if this was a real unlink then we were called by
2385 * ext3_delete_inode(), and we allow that function to clean up the
2386 * orphan info for us.
2387 */
2388 if (inode->i_nlink)
2389 ext3_orphan_del(handle, inode);
2390
2391 ext3_journal_stop(handle);
2392}
2393
2394static unsigned long ext3_get_inode_block(struct super_block *sb,
2395 unsigned long ino, struct ext3_iloc *iloc)
2396{
2397 unsigned long desc, group_desc, block_group;
2398 unsigned long offset, block;
2399 struct buffer_head *bh;
2400 struct ext3_group_desc * gdp;
2401
2402
d6859bfc
AM
2403 if ((ino != EXT3_ROOT_INO && ino != EXT3_JOURNAL_INO &&
2404 ino != EXT3_RESIZE_INO && ino < EXT3_FIRST_INO(sb)) ||
2405 ino > le32_to_cpu(EXT3_SB(sb)->s_es->s_inodes_count)) {
2406 ext3_error(sb, "ext3_get_inode_block",
1da177e4
LT
2407 "bad inode number: %lu", ino);
2408 return 0;
2409 }
2410 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2411 if (block_group >= EXT3_SB(sb)->s_groups_count) {
d6859bfc 2412 ext3_error(sb,"ext3_get_inode_block","group >= groups count");
1da177e4
LT
2413 return 0;
2414 }
2415 smp_rmb();
2416 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2417 desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2418 bh = EXT3_SB(sb)->s_group_desc[group_desc];
2419 if (!bh) {
2420 ext3_error (sb, "ext3_get_inode_block",
2421 "Descriptor not loaded");
2422 return 0;
2423 }
2424
d6859bfc 2425 gdp = (struct ext3_group_desc *)bh->b_data;
1da177e4
LT
2426 /*
2427 * Figure out the offset within the block group inode table
2428 */
2429 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2430 EXT3_INODE_SIZE(sb);
2431 block = le32_to_cpu(gdp[desc].bg_inode_table) +
2432 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2433
2434 iloc->block_group = block_group;
2435 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2436 return block;
2437}
2438
2439/*
2440 * ext3_get_inode_loc returns with an extra refcount against the inode's
2441 * underlying buffer_head on success. If 'in_mem' is true, we have all
2442 * data in memory that is needed to recreate the on-disk version of this
2443 * inode.
2444 */
2445static int __ext3_get_inode_loc(struct inode *inode,
2446 struct ext3_iloc *iloc, int in_mem)
2447{
2448 unsigned long block;
2449 struct buffer_head *bh;
2450
2451 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2452 if (!block)
2453 return -EIO;
2454
2455 bh = sb_getblk(inode->i_sb, block);
2456 if (!bh) {
2457 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2458 "unable to read inode block - "
2459 "inode=%lu, block=%lu", inode->i_ino, block);
2460 return -EIO;
2461 }
2462 if (!buffer_uptodate(bh)) {
2463 lock_buffer(bh);
2464 if (buffer_uptodate(bh)) {
2465 /* someone brought it uptodate while we waited */
2466 unlock_buffer(bh);
2467 goto has_buffer;
2468 }
2469
2470 /*
2471 * If we have all information of the inode in memory and this
2472 * is the only valid inode in the block, we need not read the
2473 * block.
2474 */
2475 if (in_mem) {
2476 struct buffer_head *bitmap_bh;
2477 struct ext3_group_desc *desc;
2478 int inodes_per_buffer;
2479 int inode_offset, i;
2480 int block_group;
2481 int start;
2482
2483 block_group = (inode->i_ino - 1) /
2484 EXT3_INODES_PER_GROUP(inode->i_sb);
2485 inodes_per_buffer = bh->b_size /
2486 EXT3_INODE_SIZE(inode->i_sb);
2487 inode_offset = ((inode->i_ino - 1) %
2488 EXT3_INODES_PER_GROUP(inode->i_sb));
2489 start = inode_offset & ~(inodes_per_buffer - 1);
2490
2491 /* Is the inode bitmap in cache? */
2492 desc = ext3_get_group_desc(inode->i_sb,
2493 block_group, NULL);
2494 if (!desc)
2495 goto make_io;
2496
2497 bitmap_bh = sb_getblk(inode->i_sb,
2498 le32_to_cpu(desc->bg_inode_bitmap));
2499 if (!bitmap_bh)
2500 goto make_io;
2501
2502 /*
2503 * If the inode bitmap isn't in cache then the
2504 * optimisation may end up performing two reads instead
2505 * of one, so skip it.
2506 */
2507 if (!buffer_uptodate(bitmap_bh)) {
2508 brelse(bitmap_bh);
2509 goto make_io;
2510 }
2511 for (i = start; i < start + inodes_per_buffer; i++) {
2512 if (i == inode_offset)
2513 continue;
2514 if (ext3_test_bit(i, bitmap_bh->b_data))
2515 break;
2516 }
2517 brelse(bitmap_bh);
2518 if (i == start + inodes_per_buffer) {
2519 /* all other inodes are free, so skip I/O */
2520 memset(bh->b_data, 0, bh->b_size);
2521 set_buffer_uptodate(bh);
2522 unlock_buffer(bh);
2523 goto has_buffer;
2524 }
2525 }
2526
2527make_io:
2528 /*
2529 * There are other valid inodes in the buffer, this inode
2530 * has in-inode xattrs, or we don't have this inode in memory.
2531 * Read the block from disk.
2532 */
2533 get_bh(bh);
2534 bh->b_end_io = end_buffer_read_sync;
2535 submit_bh(READ, bh);
2536 wait_on_buffer(bh);
2537 if (!buffer_uptodate(bh)) {
2538 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2539 "unable to read inode block - "
2540 "inode=%lu, block=%lu",
2541 inode->i_ino, block);
2542 brelse(bh);
2543 return -EIO;
2544 }
2545 }
2546has_buffer:
2547 iloc->bh = bh;
2548 return 0;
2549}
2550
2551int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2552{
2553 /* We have all inode data except xattrs in memory here. */
2554 return __ext3_get_inode_loc(inode, iloc,
2555 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2556}
2557
2558void ext3_set_inode_flags(struct inode *inode)
2559{
2560 unsigned int flags = EXT3_I(inode)->i_flags;
2561
2562 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2563 if (flags & EXT3_SYNC_FL)
2564 inode->i_flags |= S_SYNC;
2565 if (flags & EXT3_APPEND_FL)
2566 inode->i_flags |= S_APPEND;
2567 if (flags & EXT3_IMMUTABLE_FL)
2568 inode->i_flags |= S_IMMUTABLE;
2569 if (flags & EXT3_NOATIME_FL)
2570 inode->i_flags |= S_NOATIME;
2571 if (flags & EXT3_DIRSYNC_FL)
2572 inode->i_flags |= S_DIRSYNC;
2573}
2574
2575void ext3_read_inode(struct inode * inode)
2576{
2577 struct ext3_iloc iloc;
2578 struct ext3_inode *raw_inode;
2579 struct ext3_inode_info *ei = EXT3_I(inode);
2580 struct buffer_head *bh;
2581 int block;
2582
2583#ifdef CONFIG_EXT3_FS_POSIX_ACL
2584 ei->i_acl = EXT3_ACL_NOT_CACHED;
2585 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2586#endif
2587 ei->i_block_alloc_info = NULL;
2588
2589 if (__ext3_get_inode_loc(inode, &iloc, 0))
2590 goto bad_inode;
2591 bh = iloc.bh;
2592 raw_inode = ext3_raw_inode(&iloc);
2593 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2594 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2595 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2596 if(!(test_opt (inode->i_sb, NO_UID32))) {
2597 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2598 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2599 }
2600 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2601 inode->i_size = le32_to_cpu(raw_inode->i_size);
2602 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2603 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2604 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2605 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2606
2607 ei->i_state = 0;
2608 ei->i_dir_start_lookup = 0;
2609 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2610 /* We now have enough fields to check if the inode was active or not.
2611 * This is needed because nfsd might try to access dead inodes
2612 * the test is that same one that e2fsck uses
2613 * NeilBrown 1999oct15
2614 */
2615 if (inode->i_nlink == 0) {
2616 if (inode->i_mode == 0 ||
2617 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2618 /* this inode is deleted */
2619 brelse (bh);
2620 goto bad_inode;
2621 }
2622 /* The only unlinked inodes we let through here have
2623 * valid i_mode and are being read by the orphan
2624 * recovery code: that's fine, we're about to complete
2625 * the process of deleting those. */
2626 }
2627 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size
2628 * (for stat), not the fs block
2629 * size */
2630 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2631 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2632#ifdef EXT3_FRAGMENTS
2633 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2634 ei->i_frag_no = raw_inode->i_frag;
2635 ei->i_frag_size = raw_inode->i_fsize;
2636#endif
2637 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2638 if (!S_ISREG(inode->i_mode)) {
2639 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2640 } else {
2641 inode->i_size |=
2642 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2643 }
2644 ei->i_disksize = inode->i_size;
2645 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2646 ei->i_block_group = iloc.block_group;
2647 /*
2648 * NOTE! The in-memory inode i_data array is in little-endian order
2649 * even on big-endian machines: we do NOT byteswap the block numbers!
2650 */
2651 for (block = 0; block < EXT3_N_BLOCKS; block++)
2652 ei->i_data[block] = raw_inode->i_block[block];
2653 INIT_LIST_HEAD(&ei->i_orphan);
2654
2655 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2656 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2657 /*
2658 * When mke2fs creates big inodes it does not zero out
2659 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2660 * so ignore those first few inodes.
2661 */
2662 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2663 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2664 EXT3_INODE_SIZE(inode->i_sb))
2665 goto bad_inode;
2666 if (ei->i_extra_isize == 0) {
2667 /* The extra space is currently unused. Use it. */
2668 ei->i_extra_isize = sizeof(struct ext3_inode) -
2669 EXT3_GOOD_OLD_INODE_SIZE;
2670 } else {
2671 __le32 *magic = (void *)raw_inode +
2672 EXT3_GOOD_OLD_INODE_SIZE +
2673 ei->i_extra_isize;
2674 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2675 ei->i_state |= EXT3_STATE_XATTR;
2676 }
2677 } else
2678 ei->i_extra_isize = 0;
2679
2680 if (S_ISREG(inode->i_mode)) {
2681 inode->i_op = &ext3_file_inode_operations;
2682 inode->i_fop = &ext3_file_operations;
2683 ext3_set_aops(inode);
2684 } else if (S_ISDIR(inode->i_mode)) {
2685 inode->i_op = &ext3_dir_inode_operations;
2686 inode->i_fop = &ext3_dir_operations;
2687 } else if (S_ISLNK(inode->i_mode)) {
2688 if (ext3_inode_is_fast_symlink(inode))
2689 inode->i_op = &ext3_fast_symlink_inode_operations;
2690 else {
2691 inode->i_op = &ext3_symlink_inode_operations;
2692 ext3_set_aops(inode);
2693 }
2694 } else {
2695 inode->i_op = &ext3_special_inode_operations;
2696 if (raw_inode->i_block[0])
2697 init_special_inode(inode, inode->i_mode,
2698 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2699 else
2700 init_special_inode(inode, inode->i_mode,
2701 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2702 }
2703 brelse (iloc.bh);
2704 ext3_set_inode_flags(inode);
2705 return;
2706
2707bad_inode:
2708 make_bad_inode(inode);
2709 return;
2710}
2711
2712/*
2713 * Post the struct inode info into an on-disk inode location in the
2714 * buffer-cache. This gobbles the caller's reference to the
2715 * buffer_head in the inode location struct.
2716 *
2717 * The caller must have write access to iloc->bh.
2718 */
2719static int ext3_do_update_inode(handle_t *handle,
2720 struct inode *inode,
2721 struct ext3_iloc *iloc)
2722{
2723 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2724 struct ext3_inode_info *ei = EXT3_I(inode);
2725 struct buffer_head *bh = iloc->bh;
2726 int err = 0, rc, block;
2727
2728 /* For fields not not tracking in the in-memory inode,
2729 * initialise them to zero for new inodes. */
2730 if (ei->i_state & EXT3_STATE_NEW)
2731 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2732
2733 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2734 if(!(test_opt(inode->i_sb, NO_UID32))) {
2735 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2736 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2737/*
2738 * Fix up interoperability with old kernels. Otherwise, old inodes get
2739 * re-used with the upper 16 bits of the uid/gid intact
2740 */
2741 if(!ei->i_dtime) {
2742 raw_inode->i_uid_high =
2743 cpu_to_le16(high_16_bits(inode->i_uid));
2744 raw_inode->i_gid_high =
2745 cpu_to_le16(high_16_bits(inode->i_gid));
2746 } else {
2747 raw_inode->i_uid_high = 0;
2748 raw_inode->i_gid_high = 0;
2749 }
2750 } else {
2751 raw_inode->i_uid_low =
2752 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2753 raw_inode->i_gid_low =
2754 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2755 raw_inode->i_uid_high = 0;
2756 raw_inode->i_gid_high = 0;
2757 }
2758 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2759 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2760 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2761 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2762 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2763 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2764 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2765 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2766#ifdef EXT3_FRAGMENTS
2767 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2768 raw_inode->i_frag = ei->i_frag_no;
2769 raw_inode->i_fsize = ei->i_frag_size;
2770#endif
2771 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2772 if (!S_ISREG(inode->i_mode)) {
2773 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2774 } else {
2775 raw_inode->i_size_high =
2776 cpu_to_le32(ei->i_disksize >> 32);
2777 if (ei->i_disksize > 0x7fffffffULL) {
2778 struct super_block *sb = inode->i_sb;
2779 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2780 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2781 EXT3_SB(sb)->s_es->s_rev_level ==
2782 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2783 /* If this is the first large file
2784 * created, add a flag to the superblock.
2785 */
2786 err = ext3_journal_get_write_access(handle,
2787 EXT3_SB(sb)->s_sbh);
2788 if (err)
2789 goto out_brelse;
2790 ext3_update_dynamic_rev(sb);
2791 EXT3_SET_RO_COMPAT_FEATURE(sb,
2792 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2793 sb->s_dirt = 1;
2794 handle->h_sync = 1;
2795 err = ext3_journal_dirty_metadata(handle,
2796 EXT3_SB(sb)->s_sbh);
2797 }
2798 }
2799 }
2800 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2801 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2802 if (old_valid_dev(inode->i_rdev)) {
2803 raw_inode->i_block[0] =
2804 cpu_to_le32(old_encode_dev(inode->i_rdev));
2805 raw_inode->i_block[1] = 0;
2806 } else {
2807 raw_inode->i_block[0] = 0;
2808 raw_inode->i_block[1] =
2809 cpu_to_le32(new_encode_dev(inode->i_rdev));
2810 raw_inode->i_block[2] = 0;
2811 }
2812 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2813 raw_inode->i_block[block] = ei->i_data[block];
2814
ff87b37d 2815 if (ei->i_extra_isize)
1da177e4
LT
2816 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2817
2818 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2819 rc = ext3_journal_dirty_metadata(handle, bh);
2820 if (!err)
2821 err = rc;
2822 ei->i_state &= ~EXT3_STATE_NEW;
2823
2824out_brelse:
2825 brelse (bh);
2826 ext3_std_error(inode->i_sb, err);
2827 return err;
2828}
2829
2830/*
2831 * ext3_write_inode()
2832 *
2833 * We are called from a few places:
2834 *
2835 * - Within generic_file_write() for O_SYNC files.
2836 * Here, there will be no transaction running. We wait for any running
2837 * trasnaction to commit.
2838 *
2839 * - Within sys_sync(), kupdate and such.
2840 * We wait on commit, if tol to.
2841 *
2842 * - Within prune_icache() (PF_MEMALLOC == true)
2843 * Here we simply return. We can't afford to block kswapd on the
2844 * journal commit.
2845 *
2846 * In all cases it is actually safe for us to return without doing anything,
2847 * because the inode has been copied into a raw inode buffer in
2848 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2849 * knfsd.
2850 *
2851 * Note that we are absolutely dependent upon all inode dirtiers doing the
2852 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2853 * which we are interested.
2854 *
2855 * It would be a bug for them to not do this. The code:
2856 *
2857 * mark_inode_dirty(inode)
2858 * stuff();
2859 * inode->i_size = expr;
2860 *
2861 * is in error because a kswapd-driven write_inode() could occur while
2862 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2863 * will no longer be on the superblock's dirty inode list.
2864 */
2865int ext3_write_inode(struct inode *inode, int wait)
2866{
2867 if (current->flags & PF_MEMALLOC)
2868 return 0;
2869
2870 if (ext3_journal_current_handle()) {
2871 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2872 dump_stack();
2873 return -EIO;
2874 }
2875
2876 if (!wait)
2877 return 0;
2878
2879 return ext3_force_commit(inode->i_sb);
2880}
2881
2882/*
2883 * ext3_setattr()
2884 *
2885 * Called from notify_change.
2886 *
2887 * We want to trap VFS attempts to truncate the file as soon as
2888 * possible. In particular, we want to make sure that when the VFS
2889 * shrinks i_size, we put the inode on the orphan list and modify
2890 * i_disksize immediately, so that during the subsequent flushing of
2891 * dirty pages and freeing of disk blocks, we can guarantee that any
2892 * commit will leave the blocks being flushed in an unused state on
2893 * disk. (On recovery, the inode will get truncated and the blocks will
2894 * be freed, so we have a strong guarantee that no future commit will
2895 * leave these blocks visible to the user.)
2896 *
2897 * Called with inode->sem down.
2898 */
2899int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2900{
2901 struct inode *inode = dentry->d_inode;
2902 int error, rc = 0;
2903 const unsigned int ia_valid = attr->ia_valid;
2904
2905 error = inode_change_ok(inode, attr);
2906 if (error)
2907 return error;
2908
2909 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2910 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2911 handle_t *handle;
2912
2913 /* (user+group)*(old+new) structure, inode write (sb,
2914 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
2915 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
2916 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
2917 if (IS_ERR(handle)) {
2918 error = PTR_ERR(handle);
2919 goto err_out;
2920 }
2921 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2922 if (error) {
2923 ext3_journal_stop(handle);
2924 return error;
2925 }
2926 /* Update corresponding info in inode so that everything is in
2927 * one transaction */
2928 if (attr->ia_valid & ATTR_UID)
2929 inode->i_uid = attr->ia_uid;
2930 if (attr->ia_valid & ATTR_GID)
2931 inode->i_gid = attr->ia_gid;
2932 error = ext3_mark_inode_dirty(handle, inode);
2933 ext3_journal_stop(handle);
2934 }
2935
2936 if (S_ISREG(inode->i_mode) &&
2937 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2938 handle_t *handle;
2939
2940 handle = ext3_journal_start(inode, 3);
2941 if (IS_ERR(handle)) {
2942 error = PTR_ERR(handle);
2943 goto err_out;
2944 }
2945
2946 error = ext3_orphan_add(handle, inode);
2947 EXT3_I(inode)->i_disksize = attr->ia_size;
2948 rc = ext3_mark_inode_dirty(handle, inode);
2949 if (!error)
2950 error = rc;
2951 ext3_journal_stop(handle);
2952 }
2953
2954 rc = inode_setattr(inode, attr);
2955
2956 /* If inode_setattr's call to ext3_truncate failed to get a
2957 * transaction handle at all, we need to clean up the in-core
2958 * orphan list manually. */
2959 if (inode->i_nlink)
2960 ext3_orphan_del(NULL, inode);
2961
2962 if (!rc && (ia_valid & ATTR_MODE))
2963 rc = ext3_acl_chmod(inode);
2964
2965err_out:
2966 ext3_std_error(inode->i_sb, error);
2967 if (!error)
2968 error = rc;
2969 return error;
2970}
2971
2972
2973/*
d6859bfc 2974 * How many blocks doth make a writepage()?
1da177e4
LT
2975 *
2976 * With N blocks per page, it may be:
2977 * N data blocks
2978 * 2 indirect block
2979 * 2 dindirect
2980 * 1 tindirect
2981 * N+5 bitmap blocks (from the above)
2982 * N+5 group descriptor summary blocks
2983 * 1 inode block
2984 * 1 superblock.
2985 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2986 *
2987 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2988 *
2989 * With ordered or writeback data it's the same, less the N data blocks.
2990 *
2991 * If the inode's direct blocks can hold an integral number of pages then a
2992 * page cannot straddle two indirect blocks, and we can only touch one indirect
2993 * and dindirect block, and the "5" above becomes "3".
2994 *
2995 * This still overestimates under most circumstances. If we were to pass the
2996 * start and end offsets in here as well we could do block_to_path() on each
2997 * block and work out the exact number of indirects which are touched. Pah.
2998 */
2999
3000static int ext3_writepage_trans_blocks(struct inode *inode)
3001{
3002 int bpp = ext3_journal_blocks_per_page(inode);
3003 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3004 int ret;
3005
3006 if (ext3_should_journal_data(inode))
3007 ret = 3 * (bpp + indirects) + 2;
3008 else
3009 ret = 2 * (bpp + indirects) + 2;
3010
3011#ifdef CONFIG_QUOTA
3012 /* We know that structure was already allocated during DQUOT_INIT so
3013 * we will be updating only the data blocks + inodes */
1f54587b 3014 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
3015#endif
3016
3017 return ret;
3018}
3019
3020/*
3021 * The caller must have previously called ext3_reserve_inode_write().
3022 * Give this, we know that the caller already has write access to iloc->bh.
3023 */
3024int ext3_mark_iloc_dirty(handle_t *handle,
3025 struct inode *inode, struct ext3_iloc *iloc)
3026{
3027 int err = 0;
3028
3029 /* the do_update_inode consumes one bh->b_count */
3030 get_bh(iloc->bh);
3031
3032 /* ext3_do_update_inode() does journal_dirty_metadata */
3033 err = ext3_do_update_inode(handle, inode, iloc);
3034 put_bh(iloc->bh);
3035 return err;
3036}
3037
3038/*
3039 * On success, We end up with an outstanding reference count against
3040 * iloc->bh. This _must_ be cleaned up later.
3041 */
3042
3043int
3044ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3045 struct ext3_iloc *iloc)
3046{
3047 int err = 0;
3048 if (handle) {
3049 err = ext3_get_inode_loc(inode, iloc);
3050 if (!err) {
3051 BUFFER_TRACE(iloc->bh, "get_write_access");
3052 err = ext3_journal_get_write_access(handle, iloc->bh);
3053 if (err) {
3054 brelse(iloc->bh);
3055 iloc->bh = NULL;
3056 }
3057 }
3058 }
3059 ext3_std_error(inode->i_sb, err);
3060 return err;
3061}
3062
3063/*
d6859bfc
AM
3064 * What we do here is to mark the in-core inode as clean with respect to inode
3065 * dirtiness (it may still be data-dirty).
1da177e4
LT
3066 * This means that the in-core inode may be reaped by prune_icache
3067 * without having to perform any I/O. This is a very good thing,
3068 * because *any* task may call prune_icache - even ones which
3069 * have a transaction open against a different journal.
3070 *
3071 * Is this cheating? Not really. Sure, we haven't written the
3072 * inode out, but prune_icache isn't a user-visible syncing function.
3073 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3074 * we start and wait on commits.
3075 *
3076 * Is this efficient/effective? Well, we're being nice to the system
3077 * by cleaning up our inodes proactively so they can be reaped
3078 * without I/O. But we are potentially leaving up to five seconds'
3079 * worth of inodes floating about which prune_icache wants us to
3080 * write out. One way to fix that would be to get prune_icache()
3081 * to do a write_super() to free up some memory. It has the desired
3082 * effect.
3083 */
3084int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3085{
3086 struct ext3_iloc iloc;
3087 int err;
3088
3089 might_sleep();
3090 err = ext3_reserve_inode_write(handle, inode, &iloc);
3091 if (!err)
3092 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3093 return err;
3094}
3095
3096/*
d6859bfc 3097 * ext3_dirty_inode() is called from __mark_inode_dirty()
1da177e4
LT
3098 *
3099 * We're really interested in the case where a file is being extended.
3100 * i_size has been changed by generic_commit_write() and we thus need
3101 * to include the updated inode in the current transaction.
3102 *
3103 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3104 * are allocated to the file.
3105 *
3106 * If the inode is marked synchronous, we don't honour that here - doing
3107 * so would cause a commit on atime updates, which we don't bother doing.
3108 * We handle synchronous inodes at the highest possible level.
3109 */
3110void ext3_dirty_inode(struct inode *inode)
3111{
3112 handle_t *current_handle = ext3_journal_current_handle();
3113 handle_t *handle;
3114
3115 handle = ext3_journal_start(inode, 2);
3116 if (IS_ERR(handle))
3117 goto out;
3118 if (current_handle &&
3119 current_handle->h_transaction != handle->h_transaction) {
3120 /* This task has a transaction open against a different fs */
3121 printk(KERN_EMERG "%s: transactions do not match!\n",
3122 __FUNCTION__);
3123 } else {
3124 jbd_debug(5, "marking dirty. outer handle=%p\n",
3125 current_handle);
3126 ext3_mark_inode_dirty(handle, inode);
3127 }
3128 ext3_journal_stop(handle);
3129out:
3130 return;
3131}
3132
d6859bfc 3133#if 0
1da177e4
LT
3134/*
3135 * Bind an inode's backing buffer_head into this transaction, to prevent
3136 * it from being flushed to disk early. Unlike
3137 * ext3_reserve_inode_write, this leaves behind no bh reference and
3138 * returns no iloc structure, so the caller needs to repeat the iloc
3139 * lookup to mark the inode dirty later.
3140 */
d6859bfc 3141static int ext3_pin_inode(handle_t *handle, struct inode *inode)
1da177e4
LT
3142{
3143 struct ext3_iloc iloc;
3144
3145 int err = 0;
3146 if (handle) {
3147 err = ext3_get_inode_loc(inode, &iloc);
3148 if (!err) {
3149 BUFFER_TRACE(iloc.bh, "get_write_access");
3150 err = journal_get_write_access(handle, iloc.bh);
3151 if (!err)
3152 err = ext3_journal_dirty_metadata(handle,
3153 iloc.bh);
3154 brelse(iloc.bh);
3155 }
3156 }
3157 ext3_std_error(inode->i_sb, err);
3158 return err;
3159}
3160#endif
3161
3162int ext3_change_inode_journal_flag(struct inode *inode, int val)
3163{
3164 journal_t *journal;
3165 handle_t *handle;
3166 int err;
3167
3168 /*
3169 * We have to be very careful here: changing a data block's
3170 * journaling status dynamically is dangerous. If we write a
3171 * data block to the journal, change the status and then delete
3172 * that block, we risk forgetting to revoke the old log record
3173 * from the journal and so a subsequent replay can corrupt data.
3174 * So, first we make sure that the journal is empty and that
3175 * nobody is changing anything.
3176 */
3177
3178 journal = EXT3_JOURNAL(inode);
3179 if (is_journal_aborted(journal) || IS_RDONLY(inode))
3180 return -EROFS;
3181
3182 journal_lock_updates(journal);
3183 journal_flush(journal);
3184
3185 /*
3186 * OK, there are no updates running now, and all cached data is
3187 * synced to disk. We are now in a completely consistent state
3188 * which doesn't have anything in the journal, and we know that
3189 * no filesystem updates are running, so it is safe to modify
3190 * the inode's in-core data-journaling state flag now.
3191 */
3192
3193 if (val)
3194 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3195 else
3196 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3197 ext3_set_aops(inode);
3198
3199 journal_unlock_updates(journal);
3200
3201 /* Finally we can mark the inode as dirty. */
3202
3203 handle = ext3_journal_start(inode, 1);
3204 if (IS_ERR(handle))
3205 return PTR_ERR(handle);
3206
3207 err = ext3_mark_inode_dirty(handle, inode);
3208 handle->h_sync = 1;
3209 ext3_journal_stop(handle);
3210 ext3_std_error(inode->i_sb, err);
3211
3212 return err;
3213}