]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/ext3/inode.c
jbd.h: hide kernel only code
[mirror_ubuntu-kernels.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
e9ad5620 16 * (sct@redhat.com), 1993, 1998
1da177e4
LT
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
e9ad5620 20 * (jj@sunsite.ms.mff.cuni.cz)
1da177e4
LT
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
1da177e4
LT
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
caa38fb0 38#include <linux/bio.h>
1da177e4
LT
39#include "xattr.h"
40#include "acl.h"
41
42static int ext3_writepage_trans_blocks(struct inode *inode);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
d6859bfc 47static int ext3_inode_is_fast_symlink(struct inode *inode)
1da177e4
LT
48{
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
d6859bfc 52 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
1da177e4
LT
53}
54
d6859bfc
AM
55/*
56 * The ext3 forget function must perform a revoke if we are freeing data
1da177e4 57 * which has been journaled. Metadata (eg. indirect blocks) must be
ae6ddcc5 58 * revoked in all cases.
1da177e4
LT
59 *
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
63 */
d6859bfc 64int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
1c2bf374 65 struct buffer_head *bh, ext3_fsblk_t blocknr)
1da177e4
LT
66{
67 int err;
68
69 might_sleep();
70
71 BUFFER_TRACE(bh, "enter");
72
73 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
74 "data mode %lx\n",
75 bh, is_metadata, inode->i_mode,
76 test_opt(inode->i_sb, DATA_FLAGS));
77
78 /* Never use the revoke function if we are doing full data
79 * journaling: there is no need to, and a V1 superblock won't
80 * support it. Otherwise, only skip the revoke on un-journaled
81 * data blocks. */
82
83 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
84 (!is_metadata && !ext3_should_journal_data(inode))) {
85 if (bh) {
86 BUFFER_TRACE(bh, "call journal_forget");
87 return ext3_journal_forget(handle, bh);
88 }
89 return 0;
90 }
91
92 /*
93 * data!=journal && (is_metadata || should_journal_data(inode))
94 */
95 BUFFER_TRACE(bh, "call ext3_journal_revoke");
96 err = ext3_journal_revoke(handle, blocknr, bh);
97 if (err)
98 ext3_abort(inode->i_sb, __FUNCTION__,
99 "error %d when attempting revoke", err);
100 BUFFER_TRACE(bh, "exit");
101 return err;
102}
103
104/*
d6859bfc 105 * Work out how many blocks we need to proceed with the next chunk of a
1da177e4
LT
106 * truncate transaction.
107 */
ae6ddcc5 108static unsigned long blocks_for_truncate(struct inode *inode)
1da177e4
LT
109{
110 unsigned long needed;
111
112 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
113
114 /* Give ourselves just enough room to cope with inodes in which
115 * i_blocks is corrupt: we've seen disk corruptions in the past
116 * which resulted in random data in an inode which looked enough
117 * like a regular file for ext3 to try to delete it. Things
118 * will go a bit crazy if that happens, but at least we should
119 * try not to panic the whole kernel. */
120 if (needed < 2)
121 needed = 2;
122
123 /* But we need to bound the transaction so we don't overflow the
124 * journal. */
ae6ddcc5 125 if (needed > EXT3_MAX_TRANS_DATA)
1da177e4
LT
126 needed = EXT3_MAX_TRANS_DATA;
127
1f54587b 128 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
129}
130
ae6ddcc5 131/*
1da177e4
LT
132 * Truncate transactions can be complex and absolutely huge. So we need to
133 * be able to restart the transaction at a conventient checkpoint to make
134 * sure we don't overflow the journal.
135 *
136 * start_transaction gets us a new handle for a truncate transaction,
137 * and extend_transaction tries to extend the existing one a bit. If
138 * extend fails, we need to propagate the failure up and restart the
ae6ddcc5 139 * transaction in the top-level truncate loop. --sct
1da177e4 140 */
ae6ddcc5 141static handle_t *start_transaction(struct inode *inode)
1da177e4
LT
142{
143 handle_t *result;
144
145 result = ext3_journal_start(inode, blocks_for_truncate(inode));
146 if (!IS_ERR(result))
147 return result;
148
149 ext3_std_error(inode->i_sb, PTR_ERR(result));
150 return result;
151}
152
153/*
154 * Try to extend this transaction for the purposes of truncation.
155 *
156 * Returns 0 if we managed to create more room. If we can't create more
157 * room, and the transaction must be restarted we return 1.
158 */
159static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
160{
161 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
162 return 0;
163 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
164 return 0;
165 return 1;
166}
167
168/*
169 * Restart the transaction associated with *handle. This does a commit,
170 * so before we call here everything must be consistently dirtied against
171 * this transaction.
172 */
173static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
174{
175 jbd_debug(2, "restarting handle %p\n", handle);
176 return ext3_journal_restart(handle, blocks_for_truncate(inode));
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
182void ext3_delete_inode (struct inode * inode)
183{
184 handle_t *handle;
185
fef26658
MF
186 truncate_inode_pages(&inode->i_data, 0);
187
1da177e4
LT
188 if (is_bad_inode(inode))
189 goto no_delete;
190
191 handle = start_transaction(inode);
192 if (IS_ERR(handle)) {
d6859bfc
AM
193 /*
194 * If we're going to skip the normal cleanup, we still need to
195 * make sure that the in-core orphan linked list is properly
196 * cleaned up.
197 */
1da177e4
LT
198 ext3_orphan_del(NULL, inode);
199 goto no_delete;
200 }
201
202 if (IS_SYNC(inode))
203 handle->h_sync = 1;
204 inode->i_size = 0;
205 if (inode->i_blocks)
206 ext3_truncate(inode);
207 /*
208 * Kill off the orphan record which ext3_truncate created.
209 * AKPM: I think this can be inside the above `if'.
210 * Note that ext3_orphan_del() has to be able to cope with the
211 * deletion of a non-existent orphan - this is because we don't
212 * know if ext3_truncate() actually created an orphan record.
213 * (Well, we could do this if we need to, but heck - it works)
214 */
215 ext3_orphan_del(handle, inode);
216 EXT3_I(inode)->i_dtime = get_seconds();
217
ae6ddcc5 218 /*
1da177e4
LT
219 * One subtle ordering requirement: if anything has gone wrong
220 * (transaction abort, IO errors, whatever), then we can still
221 * do these next steps (the fs will already have been marked as
222 * having errors), but we can't free the inode if the mark_dirty
ae6ddcc5 223 * fails.
1da177e4
LT
224 */
225 if (ext3_mark_inode_dirty(handle, inode))
226 /* If that failed, just do the required in-core inode clear. */
227 clear_inode(inode);
228 else
229 ext3_free_inode(handle, inode);
230 ext3_journal_stop(handle);
231 return;
232no_delete:
233 clear_inode(inode); /* We must guarantee clearing of inode... */
234}
235
1da177e4
LT
236typedef struct {
237 __le32 *p;
238 __le32 key;
239 struct buffer_head *bh;
240} Indirect;
241
242static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
243{
244 p->key = *(p->p = v);
245 p->bh = bh;
246}
247
d6859bfc 248static int verify_chain(Indirect *from, Indirect *to)
1da177e4
LT
249{
250 while (from <= to && from->key == *from->p)
251 from++;
252 return (from > to);
253}
254
255/**
256 * ext3_block_to_path - parse the block number into array of offsets
257 * @inode: inode in question (we are only interested in its superblock)
258 * @i_block: block number to be parsed
259 * @offsets: array to store the offsets in
260 * @boundary: set this non-zero if the referred-to block is likely to be
261 * followed (on disk) by an indirect block.
262 *
263 * To store the locations of file's data ext3 uses a data structure common
264 * for UNIX filesystems - tree of pointers anchored in the inode, with
265 * data blocks at leaves and indirect blocks in intermediate nodes.
266 * This function translates the block number into path in that tree -
267 * return value is the path length and @offsets[n] is the offset of
268 * pointer to (n+1)th node in the nth one. If @block is out of range
269 * (negative or too large) warning is printed and zero returned.
270 *
271 * Note: function doesn't find node addresses, so no IO is needed. All
272 * we need to know is the capacity of indirect blocks (taken from the
273 * inode->i_sb).
274 */
275
276/*
277 * Portability note: the last comparison (check that we fit into triple
278 * indirect block) is spelled differently, because otherwise on an
279 * architecture with 32-bit longs and 8Kb pages we might get into trouble
280 * if our filesystem had 8Kb blocks. We might use long long, but that would
281 * kill us on x86. Oh, well, at least the sign propagation does not matter -
282 * i_block would have to be negative in the very beginning, so we would not
283 * get there at all.
284 */
285
286static int ext3_block_to_path(struct inode *inode,
287 long i_block, int offsets[4], int *boundary)
288{
289 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
290 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
291 const long direct_blocks = EXT3_NDIR_BLOCKS,
292 indirect_blocks = ptrs,
293 double_blocks = (1 << (ptrs_bits * 2));
294 int n = 0;
295 int final = 0;
296
297 if (i_block < 0) {
298 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
299 } else if (i_block < direct_blocks) {
300 offsets[n++] = i_block;
301 final = direct_blocks;
302 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
303 offsets[n++] = EXT3_IND_BLOCK;
304 offsets[n++] = i_block;
305 final = ptrs;
306 } else if ((i_block -= indirect_blocks) < double_blocks) {
307 offsets[n++] = EXT3_DIND_BLOCK;
308 offsets[n++] = i_block >> ptrs_bits;
309 offsets[n++] = i_block & (ptrs - 1);
310 final = ptrs;
311 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
312 offsets[n++] = EXT3_TIND_BLOCK;
313 offsets[n++] = i_block >> (ptrs_bits * 2);
314 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
315 offsets[n++] = i_block & (ptrs - 1);
316 final = ptrs;
317 } else {
d6859bfc 318 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
1da177e4
LT
319 }
320 if (boundary)
89747d36 321 *boundary = final - 1 - (i_block & (ptrs - 1));
1da177e4
LT
322 return n;
323}
324
325/**
326 * ext3_get_branch - read the chain of indirect blocks leading to data
327 * @inode: inode in question
328 * @depth: depth of the chain (1 - direct pointer, etc.)
329 * @offsets: offsets of pointers in inode/indirect blocks
330 * @chain: place to store the result
331 * @err: here we store the error value
332 *
333 * Function fills the array of triples <key, p, bh> and returns %NULL
334 * if everything went OK or the pointer to the last filled triple
335 * (incomplete one) otherwise. Upon the return chain[i].key contains
336 * the number of (i+1)-th block in the chain (as it is stored in memory,
337 * i.e. little-endian 32-bit), chain[i].p contains the address of that
338 * number (it points into struct inode for i==0 and into the bh->b_data
339 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
340 * block for i>0 and NULL for i==0. In other words, it holds the block
341 * numbers of the chain, addresses they were taken from (and where we can
342 * verify that chain did not change) and buffer_heads hosting these
343 * numbers.
344 *
345 * Function stops when it stumbles upon zero pointer (absent block)
346 * (pointer to last triple returned, *@err == 0)
347 * or when it gets an IO error reading an indirect block
348 * (ditto, *@err == -EIO)
349 * or when it notices that chain had been changed while it was reading
350 * (ditto, *@err == -EAGAIN)
351 * or when it reads all @depth-1 indirect blocks successfully and finds
352 * the whole chain, all way to the data (returns %NULL, *err == 0).
353 */
354static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
355 Indirect chain[4], int *err)
356{
357 struct super_block *sb = inode->i_sb;
358 Indirect *p = chain;
359 struct buffer_head *bh;
360
361 *err = 0;
362 /* i_data is not going away, no lock needed */
363 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
364 if (!p->key)
365 goto no_block;
366 while (--depth) {
367 bh = sb_bread(sb, le32_to_cpu(p->key));
368 if (!bh)
369 goto failure;
370 /* Reader: pointers */
371 if (!verify_chain(chain, p))
372 goto changed;
373 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
374 /* Reader: end */
375 if (!p->key)
376 goto no_block;
377 }
378 return NULL;
379
380changed:
381 brelse(bh);
382 *err = -EAGAIN;
383 goto no_block;
384failure:
385 *err = -EIO;
386no_block:
387 return p;
388}
389
390/**
391 * ext3_find_near - find a place for allocation with sufficient locality
392 * @inode: owner
393 * @ind: descriptor of indirect block.
394 *
395 * This function returns the prefered place for block allocation.
396 * It is used when heuristic for sequential allocation fails.
397 * Rules are:
398 * + if there is a block to the left of our position - allocate near it.
399 * + if pointer will live in indirect block - allocate near that block.
400 * + if pointer will live in inode - allocate in the same
ae6ddcc5 401 * cylinder group.
1da177e4
LT
402 *
403 * In the latter case we colour the starting block by the callers PID to
404 * prevent it from clashing with concurrent allocations for a different inode
405 * in the same block group. The PID is used here so that functionally related
406 * files will be close-by on-disk.
407 *
408 * Caller must make sure that @ind is valid and will stay that way.
409 */
43d23f90 410static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
411{
412 struct ext3_inode_info *ei = EXT3_I(inode);
413 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
414 __le32 *p;
43d23f90
MC
415 ext3_fsblk_t bg_start;
416 ext3_grpblk_t colour;
1da177e4
LT
417
418 /* Try to find previous block */
d6859bfc 419 for (p = ind->p - 1; p >= start; p--) {
1da177e4
LT
420 if (*p)
421 return le32_to_cpu(*p);
d6859bfc 422 }
1da177e4
LT
423
424 /* No such thing, so let's try location of indirect block */
425 if (ind->bh)
426 return ind->bh->b_blocknr;
427
428 /*
d6859bfc
AM
429 * It is going to be referred to from the inode itself? OK, just put it
430 * into the same cylinder group then.
1da177e4 431 */
43d23f90 432 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
433 colour = (current->pid % 16) *
434 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
435 return bg_start + colour;
436}
437
438/**
439 * ext3_find_goal - find a prefered place for allocation.
440 * @inode: owner
441 * @block: block we want
1da177e4 442 * @partial: pointer to the last triple within a chain
1da177e4
LT
443 *
444 * Normally this function find the prefered place for block allocation,
fb01bfda 445 * returns it.
1da177e4
LT
446 */
447
43d23f90 448static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
fb01bfda 449 Indirect *partial)
1da177e4 450{
d6859bfc
AM
451 struct ext3_block_alloc_info *block_i;
452
453 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
454
455 /*
456 * try the heuristic for sequential allocation,
457 * failing that at least try to get decent locality.
458 */
459 if (block_i && (block == block_i->last_alloc_logical_block + 1)
460 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 461 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
462 }
463
fe55c452 464 return ext3_find_near(inode, partial);
1da177e4 465}
d6859bfc 466
b47b2478
MC
467/**
468 * ext3_blks_to_allocate: Look up the block map and count the number
469 * of direct blocks need to be allocated for the given branch.
470 *
e9ad5620 471 * @branch: chain of indirect blocks
b47b2478
MC
472 * @k: number of blocks need for indirect blocks
473 * @blks: number of data blocks to be mapped.
474 * @blocks_to_boundary: the offset in the indirect block
475 *
476 * return the total number of blocks to be allocate, including the
477 * direct and indirect blocks.
478 */
d6859bfc 479static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
b47b2478
MC
480 int blocks_to_boundary)
481{
482 unsigned long count = 0;
483
484 /*
485 * Simple case, [t,d]Indirect block(s) has not allocated yet
486 * then it's clear blocks on that path have not allocated
487 */
488 if (k > 0) {
d6859bfc 489 /* right now we don't handle cross boundary allocation */
b47b2478
MC
490 if (blks < blocks_to_boundary + 1)
491 count += blks;
492 else
493 count += blocks_to_boundary + 1;
494 return count;
495 }
496
497 count++;
498 while (count < blks && count <= blocks_to_boundary &&
499 le32_to_cpu(*(branch[0].p + count)) == 0) {
500 count++;
501 }
502 return count;
503}
504
505/**
506 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
507 * @indirect_blks: the number of blocks need to allocate for indirect
508 * blocks
509 *
510 * @new_blocks: on return it will store the new block numbers for
511 * the indirect blocks(if needed) and the first direct block,
512 * @blks: on return it will store the total number of allocated
513 * direct blocks
514 */
515static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
43d23f90
MC
516 ext3_fsblk_t goal, int indirect_blks, int blks,
517 ext3_fsblk_t new_blocks[4], int *err)
b47b2478
MC
518{
519 int target, i;
520 unsigned long count = 0;
521 int index = 0;
43d23f90 522 ext3_fsblk_t current_block = 0;
b47b2478
MC
523 int ret = 0;
524
525 /*
526 * Here we try to allocate the requested multiple blocks at once,
527 * on a best-effort basis.
528 * To build a branch, we should allocate blocks for
529 * the indirect blocks(if not allocated yet), and at least
530 * the first direct block of this branch. That's the
531 * minimum number of blocks need to allocate(required)
532 */
533 target = blks + indirect_blks;
534
535 while (1) {
536 count = target;
537 /* allocating blocks for indirect blocks and direct blocks */
d6859bfc 538 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
b47b2478
MC
539 if (*err)
540 goto failed_out;
541
542 target -= count;
543 /* allocate blocks for indirect blocks */
544 while (index < indirect_blks && count) {
545 new_blocks[index++] = current_block++;
546 count--;
547 }
548
549 if (count > 0)
550 break;
551 }
552
553 /* save the new block number for the first direct block */
554 new_blocks[index] = current_block;
555
556 /* total number of blocks allocated for direct blocks */
557 ret = count;
558 *err = 0;
559 return ret;
560failed_out:
561 for (i = 0; i <index; i++)
562 ext3_free_blocks(handle, inode, new_blocks[i], 1);
563 return ret;
564}
1da177e4
LT
565
566/**
567 * ext3_alloc_branch - allocate and set up a chain of blocks.
568 * @inode: owner
b47b2478
MC
569 * @indirect_blks: number of allocated indirect blocks
570 * @blks: number of allocated direct blocks
1da177e4
LT
571 * @offsets: offsets (in the blocks) to store the pointers to next.
572 * @branch: place to store the chain in.
573 *
b47b2478 574 * This function allocates blocks, zeroes out all but the last one,
1da177e4
LT
575 * links them into chain and (if we are synchronous) writes them to disk.
576 * In other words, it prepares a branch that can be spliced onto the
577 * inode. It stores the information about that chain in the branch[], in
578 * the same format as ext3_get_branch() would do. We are calling it after
579 * we had read the existing part of chain and partial points to the last
580 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 581 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
582 * place chain is disconnected - *branch->p is still zero (we did not
583 * set the last link), but branch->key contains the number that should
584 * be placed into *branch->p to fill that gap.
585 *
586 * If allocation fails we free all blocks we've allocated (and forget
587 * their buffer_heads) and return the error value the from failed
588 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
589 * as described above and return 0.
590 */
1da177e4 591static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
43d23f90 592 int indirect_blks, int *blks, ext3_fsblk_t goal,
b47b2478 593 int *offsets, Indirect *branch)
1da177e4
LT
594{
595 int blocksize = inode->i_sb->s_blocksize;
b47b2478 596 int i, n = 0;
1da177e4 597 int err = 0;
b47b2478
MC
598 struct buffer_head *bh;
599 int num;
43d23f90
MC
600 ext3_fsblk_t new_blocks[4];
601 ext3_fsblk_t current_block;
1da177e4 602
b47b2478
MC
603 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
604 *blks, new_blocks, &err);
605 if (err)
606 return err;
1da177e4 607
b47b2478
MC
608 branch[0].key = cpu_to_le32(new_blocks[0]);
609 /*
610 * metadata blocks and data blocks are allocated.
611 */
612 for (n = 1; n <= indirect_blks; n++) {
613 /*
614 * Get buffer_head for parent block, zero it out
615 * and set the pointer to new one, then send
616 * parent to disk.
617 */
618 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
619 branch[n].bh = bh;
620 lock_buffer(bh);
621 BUFFER_TRACE(bh, "call get_create_access");
622 err = ext3_journal_get_create_access(handle, bh);
623 if (err) {
1da177e4 624 unlock_buffer(bh);
b47b2478
MC
625 brelse(bh);
626 goto failed;
627 }
1da177e4 628
b47b2478
MC
629 memset(bh->b_data, 0, blocksize);
630 branch[n].p = (__le32 *) bh->b_data + offsets[n];
631 branch[n].key = cpu_to_le32(new_blocks[n]);
632 *branch[n].p = branch[n].key;
633 if ( n == indirect_blks) {
634 current_block = new_blocks[n];
635 /*
636 * End of chain, update the last new metablock of
637 * the chain to point to the new allocated
638 * data blocks numbers
639 */
640 for (i=1; i < num; i++)
641 *(branch[n].p + i) = cpu_to_le32(++current_block);
1da177e4 642 }
b47b2478
MC
643 BUFFER_TRACE(bh, "marking uptodate");
644 set_buffer_uptodate(bh);
645 unlock_buffer(bh);
1da177e4 646
b47b2478
MC
647 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
648 err = ext3_journal_dirty_metadata(handle, bh);
649 if (err)
650 goto failed;
651 }
652 *blks = num;
653 return err;
654failed:
1da177e4 655 /* Allocation failed, free what we already allocated */
b47b2478 656 for (i = 1; i <= n ; i++) {
1da177e4
LT
657 BUFFER_TRACE(branch[i].bh, "call journal_forget");
658 ext3_journal_forget(handle, branch[i].bh);
659 }
b47b2478
MC
660 for (i = 0; i <indirect_blks; i++)
661 ext3_free_blocks(handle, inode, new_blocks[i], 1);
662
663 ext3_free_blocks(handle, inode, new_blocks[i], num);
664
1da177e4
LT
665 return err;
666}
667
668/**
d6859bfc
AM
669 * ext3_splice_branch - splice the allocated branch onto inode.
670 * @inode: owner
671 * @block: (logical) number of block we are adding
672 * @chain: chain of indirect blocks (with a missing link - see
673 * ext3_alloc_branch)
674 * @where: location of missing link
675 * @num: number of indirect blocks we are adding
676 * @blks: number of direct blocks we are adding
677 *
678 * This function fills the missing link and does all housekeeping needed in
679 * inode (->i_blocks, etc.). In case of success we end up with the full
680 * chain to new block and return 0.
1da177e4 681 */
d6859bfc
AM
682static int ext3_splice_branch(handle_t *handle, struct inode *inode,
683 long block, Indirect *where, int num, int blks)
1da177e4
LT
684{
685 int i;
686 int err = 0;
d6859bfc 687 struct ext3_block_alloc_info *block_i;
43d23f90 688 ext3_fsblk_t current_block;
d6859bfc
AM
689
690 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
691 /*
692 * If we're splicing into a [td]indirect block (as opposed to the
693 * inode) then we need to get write access to the [td]indirect block
694 * before the splice.
695 */
696 if (where->bh) {
697 BUFFER_TRACE(where->bh, "get_write_access");
698 err = ext3_journal_get_write_access(handle, where->bh);
699 if (err)
700 goto err_out;
701 }
1da177e4
LT
702 /* That's it */
703
704 *where->p = where->key;
d6859bfc
AM
705
706 /*
707 * Update the host buffer_head or inode to point to more just allocated
708 * direct blocks blocks
709 */
b47b2478 710 if (num == 0 && blks > 1) {
5dea5176 711 current_block = le32_to_cpu(where->key) + 1;
b47b2478
MC
712 for (i = 1; i < blks; i++)
713 *(where->p + i ) = cpu_to_le32(current_block++);
714 }
1da177e4
LT
715
716 /*
717 * update the most recently allocated logical & physical block
718 * in i_block_alloc_info, to assist find the proper goal block for next
719 * allocation
720 */
721 if (block_i) {
b47b2478 722 block_i->last_alloc_logical_block = block + blks - 1;
d6859bfc 723 block_i->last_alloc_physical_block =
5dea5176 724 le32_to_cpu(where[num].key) + blks - 1;
1da177e4
LT
725 }
726
727 /* We are done with atomic stuff, now do the rest of housekeeping */
728
729 inode->i_ctime = CURRENT_TIME_SEC;
730 ext3_mark_inode_dirty(handle, inode);
731
732 /* had we spliced it onto indirect block? */
733 if (where->bh) {
734 /*
d6859bfc 735 * If we spliced it onto an indirect block, we haven't
1da177e4
LT
736 * altered the inode. Note however that if it is being spliced
737 * onto an indirect block at the very end of the file (the
738 * file is growing) then we *will* alter the inode to reflect
739 * the new i_size. But that is not done here - it is done in
740 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
741 */
742 jbd_debug(5, "splicing indirect only\n");
743 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
744 err = ext3_journal_dirty_metadata(handle, where->bh);
ae6ddcc5 745 if (err)
1da177e4
LT
746 goto err_out;
747 } else {
748 /*
749 * OK, we spliced it into the inode itself on a direct block.
750 * Inode was dirtied above.
751 */
752 jbd_debug(5, "splicing direct\n");
753 }
754 return err;
755
1da177e4 756err_out:
b47b2478 757 for (i = 1; i <= num; i++) {
1da177e4
LT
758 BUFFER_TRACE(where[i].bh, "call journal_forget");
759 ext3_journal_forget(handle, where[i].bh);
d6859bfc 760 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
1da177e4 761 }
b47b2478
MC
762 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
763
1da177e4
LT
764 return err;
765}
766
767/*
768 * Allocation strategy is simple: if we have to allocate something, we will
769 * have to go the whole way to leaf. So let's do it before attaching anything
770 * to tree, set linkage between the newborn blocks, write them if sync is
771 * required, recheck the path, free and repeat if check fails, otherwise
772 * set the last missing link (that will protect us from any truncate-generated
773 * removals - all blocks on the path are immune now) and possibly force the
774 * write on the parent block.
775 * That has a nice additional property: no special recovery from the failed
776 * allocations is needed - we simply release blocks and do not touch anything
777 * reachable from inode.
778 *
d6859bfc 779 * `handle' can be NULL if create == 0.
1da177e4
LT
780 *
781 * The BKL may not be held on entry here. Be sure to take it early.
89747d36
MC
782 * return > 0, # of blocks mapped or allocated.
783 * return = 0, if plain lookup failed.
784 * return < 0, error case.
1da177e4 785 */
d6859bfc
AM
786int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
787 sector_t iblock, unsigned long maxblocks,
788 struct buffer_head *bh_result,
89747d36 789 int create, int extend_disksize)
1da177e4
LT
790{
791 int err = -EIO;
792 int offsets[4];
793 Indirect chain[4];
794 Indirect *partial;
43d23f90 795 ext3_fsblk_t goal;
b47b2478 796 int indirect_blks;
89747d36
MC
797 int blocks_to_boundary = 0;
798 int depth;
1da177e4 799 struct ext3_inode_info *ei = EXT3_I(inode);
89747d36 800 int count = 0;
43d23f90 801 ext3_fsblk_t first_block = 0;
89747d36 802
1da177e4
LT
803
804 J_ASSERT(handle != NULL || create == 0);
d6859bfc 805 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4
LT
806
807 if (depth == 0)
808 goto out;
809
1da177e4
LT
810 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
811
812 /* Simplest case - block found, no allocation needed */
813 if (!partial) {
5dea5176 814 first_block = le32_to_cpu(chain[depth - 1].key);
1da177e4 815 clear_buffer_new(bh_result);
89747d36
MC
816 count++;
817 /*map more blocks*/
818 while (count < maxblocks && count <= blocks_to_boundary) {
43d23f90 819 ext3_fsblk_t blk;
5dea5176 820
89747d36
MC
821 if (!verify_chain(chain, partial)) {
822 /*
823 * Indirect block might be removed by
824 * truncate while we were reading it.
825 * Handling of that case: forget what we've
826 * got now. Flag the err as EAGAIN, so it
827 * will reread.
828 */
829 err = -EAGAIN;
830 count = 0;
831 break;
832 }
5dea5176
MC
833 blk = le32_to_cpu(*(chain[depth-1].p + count));
834
835 if (blk == first_block + count)
89747d36
MC
836 count++;
837 else
838 break;
839 }
840 if (err != -EAGAIN)
841 goto got_it;
1da177e4
LT
842 }
843
844 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
845 if (!create || err == -EIO)
846 goto cleanup;
847
97461518 848 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
849
850 /*
851 * If the indirect block is missing while we are reading
852 * the chain(ext3_get_branch() returns -EAGAIN err), or
853 * if the chain has been changed after we grab the semaphore,
854 * (either because another process truncated this branch, or
855 * another get_block allocated this branch) re-grab the chain to see if
856 * the request block has been allocated or not.
857 *
858 * Since we already block the truncate/other get_block
859 * at this point, we will have the current copy of the chain when we
860 * splice the branch into the tree.
861 */
862 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 863 while (partial > chain) {
1da177e4
LT
864 brelse(partial->bh);
865 partial--;
866 }
fe55c452
MC
867 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
868 if (!partial) {
89747d36 869 count++;
97461518 870 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
871 if (err)
872 goto cleanup;
873 clear_buffer_new(bh_result);
874 goto got_it;
875 }
1da177e4
LT
876 }
877
878 /*
fe55c452
MC
879 * Okay, we need to do block allocation. Lazily initialize the block
880 * allocation info here if necessary
881 */
882 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 883 ext3_init_block_alloc_info(inode);
1da177e4 884
fb01bfda 885 goal = ext3_find_goal(inode, iblock, partial);
1da177e4 886
b47b2478
MC
887 /* the number of blocks need to allocate for [d,t]indirect blocks */
888 indirect_blks = (chain + depth) - partial - 1;
1da177e4 889
b47b2478
MC
890 /*
891 * Next look up the indirect map to count the totoal number of
892 * direct blocks to allocate for this branch.
893 */
894 count = ext3_blks_to_allocate(partial, indirect_blks,
895 maxblocks, blocks_to_boundary);
1da177e4
LT
896 /*
897 * Block out ext3_truncate while we alter the tree
898 */
b47b2478 899 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
fe55c452 900 offsets + (partial - chain), partial);
1da177e4 901
fe55c452
MC
902 /*
903 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
904 * on the new chain if there is a failure, but that risks using
905 * up transaction credits, especially for bitmaps where the
906 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
907 * may need to return -EAGAIN upwards in the worst case. --sct
908 */
1da177e4 909 if (!err)
b47b2478
MC
910 err = ext3_splice_branch(handle, inode, iblock,
911 partial, indirect_blks, count);
fe55c452 912 /*
97461518 913 * i_disksize growing is protected by truncate_mutex. Don't forget to
fe55c452
MC
914 * protect it if you're about to implement concurrent
915 * ext3_get_block() -bzzz
916 */
1da177e4
LT
917 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
918 ei->i_disksize = inode->i_size;
97461518 919 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
920 if (err)
921 goto cleanup;
922
923 set_buffer_new(bh_result);
fe55c452
MC
924got_it:
925 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
20acaa18 926 if (count > blocks_to_boundary)
fe55c452 927 set_buffer_boundary(bh_result);
89747d36 928 err = count;
fe55c452
MC
929 /* Clean up and exit */
930 partial = chain + depth - 1; /* the whole chain */
931cleanup:
1da177e4 932 while (partial > chain) {
fe55c452 933 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
934 brelse(partial->bh);
935 partial--;
936 }
fe55c452
MC
937 BUFFER_TRACE(bh_result, "returned");
938out:
939 return err;
1da177e4
LT
940}
941
1da177e4
LT
942#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
943
f91a2ad2
BP
944static int ext3_get_block(struct inode *inode, sector_t iblock,
945 struct buffer_head *bh_result, int create)
1da177e4 946{
3e4fdaf8 947 handle_t *handle = ext3_journal_current_handle();
1da177e4 948 int ret = 0;
1d8fa7a2 949 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1da177e4 950
89747d36 951 if (!create)
1da177e4
LT
952 goto get_block; /* A read */
953
89747d36
MC
954 if (max_blocks == 1)
955 goto get_block; /* A single block get */
956
1da177e4
LT
957 if (handle->h_transaction->t_state == T_LOCKED) {
958 /*
959 * Huge direct-io writes can hold off commits for long
960 * periods of time. Let this commit run.
961 */
962 ext3_journal_stop(handle);
963 handle = ext3_journal_start(inode, DIO_CREDITS);
964 if (IS_ERR(handle))
965 ret = PTR_ERR(handle);
966 goto get_block;
967 }
968
969 if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
970 /*
971 * Getting low on buffer credits...
972 */
973 ret = ext3_journal_extend(handle, DIO_CREDITS);
974 if (ret > 0) {
975 /*
976 * Couldn't extend the transaction. Start a new one.
977 */
978 ret = ext3_journal_restart(handle, DIO_CREDITS);
979 }
980 }
981
982get_block:
89747d36
MC
983 if (ret == 0) {
984 ret = ext3_get_blocks_handle(handle, inode, iblock,
985 max_blocks, bh_result, create, 0);
986 if (ret > 0) {
987 bh_result->b_size = (ret << inode->i_blkbits);
988 ret = 0;
989 }
990 }
1da177e4
LT
991 return ret;
992}
993
1da177e4
LT
994/*
995 * `handle' can be NULL if create is zero
996 */
d6859bfc
AM
997struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
998 long block, int create, int *errp)
1da177e4
LT
999{
1000 struct buffer_head dummy;
1001 int fatal = 0, err;
1002
1003 J_ASSERT(handle != NULL || create == 0);
1004
1005 dummy.b_state = 0;
1006 dummy.b_blocknr = -1000;
1007 buffer_trace_init(&dummy.b_history);
89747d36
MC
1008 err = ext3_get_blocks_handle(handle, inode, block, 1,
1009 &dummy, create, 1);
3665d0e5
BP
1010 /*
1011 * ext3_get_blocks_handle() returns number of blocks
1012 * mapped. 0 in case of a HOLE.
1013 */
1014 if (err > 0) {
1015 if (err > 1)
1016 WARN_ON(1);
89747d36 1017 err = 0;
89747d36
MC
1018 }
1019 *errp = err;
1020 if (!err && buffer_mapped(&dummy)) {
1da177e4
LT
1021 struct buffer_head *bh;
1022 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
1023 if (!bh) {
1024 *errp = -EIO;
1025 goto err;
1026 }
1da177e4
LT
1027 if (buffer_new(&dummy)) {
1028 J_ASSERT(create != 0);
c80544dc 1029 J_ASSERT(handle != NULL);
1da177e4 1030
d6859bfc
AM
1031 /*
1032 * Now that we do not always journal data, we should
1033 * keep in mind whether this should always journal the
1034 * new buffer as metadata. For now, regular file
1035 * writes use ext3_get_block instead, so it's not a
1036 * problem.
1037 */
1da177e4
LT
1038 lock_buffer(bh);
1039 BUFFER_TRACE(bh, "call get_create_access");
1040 fatal = ext3_journal_get_create_access(handle, bh);
1041 if (!fatal && !buffer_uptodate(bh)) {
d6859bfc 1042 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1da177e4
LT
1043 set_buffer_uptodate(bh);
1044 }
1045 unlock_buffer(bh);
1046 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1047 err = ext3_journal_dirty_metadata(handle, bh);
1048 if (!fatal)
1049 fatal = err;
1050 } else {
1051 BUFFER_TRACE(bh, "not a new buffer");
1052 }
1053 if (fatal) {
1054 *errp = fatal;
1055 brelse(bh);
1056 bh = NULL;
1057 }
1058 return bh;
1059 }
2973dfdb 1060err:
1da177e4
LT
1061 return NULL;
1062}
1063
d6859bfc 1064struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1da177e4
LT
1065 int block, int create, int *err)
1066{
1067 struct buffer_head * bh;
1068
1069 bh = ext3_getblk(handle, inode, block, create, err);
1070 if (!bh)
1071 return bh;
1072 if (buffer_uptodate(bh))
1073 return bh;
caa38fb0 1074 ll_rw_block(READ_META, 1, &bh);
1da177e4
LT
1075 wait_on_buffer(bh);
1076 if (buffer_uptodate(bh))
1077 return bh;
1078 put_bh(bh);
1079 *err = -EIO;
1080 return NULL;
1081}
1082
1083static int walk_page_buffers( handle_t *handle,
1084 struct buffer_head *head,
1085 unsigned from,
1086 unsigned to,
1087 int *partial,
1088 int (*fn)( handle_t *handle,
1089 struct buffer_head *bh))
1090{
1091 struct buffer_head *bh;
1092 unsigned block_start, block_end;
1093 unsigned blocksize = head->b_size;
1094 int err, ret = 0;
1095 struct buffer_head *next;
1096
1097 for ( bh = head, block_start = 0;
1098 ret == 0 && (bh != head || !block_start);
e9ad5620 1099 block_start = block_end, bh = next)
1da177e4
LT
1100 {
1101 next = bh->b_this_page;
1102 block_end = block_start + blocksize;
1103 if (block_end <= from || block_start >= to) {
1104 if (partial && !buffer_uptodate(bh))
1105 *partial = 1;
1106 continue;
1107 }
1108 err = (*fn)(handle, bh);
1109 if (!ret)
1110 ret = err;
1111 }
1112 return ret;
1113}
1114
1115/*
1116 * To preserve ordering, it is essential that the hole instantiation and
1117 * the data write be encapsulated in a single transaction. We cannot
1118 * close off a transaction and start a new one between the ext3_get_block()
1119 * and the commit_write(). So doing the journal_start at the start of
1120 * prepare_write() is the right place.
1121 *
1122 * Also, this function can nest inside ext3_writepage() ->
1123 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1124 * has generated enough buffer credits to do the whole page. So we won't
1125 * block on the journal in that case, which is good, because the caller may
1126 * be PF_MEMALLOC.
1127 *
1128 * By accident, ext3 can be reentered when a transaction is open via
1129 * quota file writes. If we were to commit the transaction while thus
1130 * reentered, there can be a deadlock - we would be holding a quota
1131 * lock, and the commit would never complete if another thread had a
1132 * transaction open and was blocking on the quota lock - a ranking
1133 * violation.
1134 *
1135 * So what we do is to rely on the fact that journal_stop/journal_start
1136 * will _not_ run commit under these circumstances because handle->h_ref
1137 * is elevated. We'll still have enough credits for the tiny quotafile
ae6ddcc5 1138 * write.
1da177e4 1139 */
d6859bfc
AM
1140static int do_journal_get_write_access(handle_t *handle,
1141 struct buffer_head *bh)
1da177e4
LT
1142{
1143 if (!buffer_mapped(bh) || buffer_freed(bh))
1144 return 0;
1145 return ext3_journal_get_write_access(handle, bh);
1146}
1147
f4fc66a8
NP
1148static int ext3_write_begin(struct file *file, struct address_space *mapping,
1149 loff_t pos, unsigned len, unsigned flags,
1150 struct page **pagep, void **fsdata)
1da177e4 1151{
f4fc66a8 1152 struct inode *inode = mapping->host;
1aa9b4b9 1153 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1da177e4
LT
1154 handle_t *handle;
1155 int retries = 0;
f4fc66a8
NP
1156 struct page *page;
1157 pgoff_t index;
1158 unsigned from, to;
1159
1160 index = pos >> PAGE_CACHE_SHIFT;
1161 from = pos & (PAGE_CACHE_SIZE - 1);
1162 to = from + len;
1da177e4
LT
1163
1164retry:
f4fc66a8
NP
1165 page = __grab_cache_page(mapping, index);
1166 if (!page)
1167 return -ENOMEM;
1168 *pagep = page;
1169
1da177e4 1170 handle = ext3_journal_start(inode, needed_blocks);
1aa9b4b9 1171 if (IS_ERR(handle)) {
f4fc66a8
NP
1172 unlock_page(page);
1173 page_cache_release(page);
1aa9b4b9
AM
1174 ret = PTR_ERR(handle);
1175 goto out;
1176 }
f4fc66a8
NP
1177 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1178 ext3_get_block);
1da177e4 1179 if (ret)
f4fc66a8 1180 goto write_begin_failed;
1da177e4
LT
1181
1182 if (ext3_should_journal_data(inode)) {
1183 ret = walk_page_buffers(handle, page_buffers(page),
1184 from, to, NULL, do_journal_get_write_access);
1185 }
f4fc66a8
NP
1186write_begin_failed:
1187 if (ret) {
1aa9b4b9 1188 ext3_journal_stop(handle);
f4fc66a8
NP
1189 unlock_page(page);
1190 page_cache_release(page);
1191 }
1da177e4
LT
1192 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1193 goto retry;
1aa9b4b9 1194out:
1da177e4
LT
1195 return ret;
1196}
1197
f4fc66a8 1198
d6859bfc 1199int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1200{
1201 int err = journal_dirty_data(handle, bh);
1202 if (err)
1203 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
f4fc66a8 1204 bh, handle, err);
1da177e4
LT
1205 return err;
1206}
1207
f4fc66a8
NP
1208/* For write_end() in data=journal mode */
1209static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1210{
1211 if (!buffer_mapped(bh) || buffer_freed(bh))
1212 return 0;
1213 set_buffer_uptodate(bh);
1214 return ext3_journal_dirty_metadata(handle, bh);
1215}
1216
f4fc66a8
NP
1217/*
1218 * Generic write_end handler for ordered and writeback ext3 journal modes.
1219 * We can't use generic_write_end, because that unlocks the page and we need to
1220 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1221 * after block_write_end.
1222 */
1223static int ext3_generic_write_end(struct file *file,
1224 struct address_space *mapping,
1225 loff_t pos, unsigned len, unsigned copied,
1226 struct page *page, void *fsdata)
1227{
1228 struct inode *inode = file->f_mapping->host;
1229
1230 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1231
1232 if (pos+copied > inode->i_size) {
1233 i_size_write(inode, pos+copied);
1234 mark_inode_dirty(inode);
1235 }
1236
1237 return copied;
1238}
1239
1da177e4
LT
1240/*
1241 * We need to pick up the new inode size which generic_commit_write gave us
1242 * `file' can be NULL - eg, when called from page_symlink().
1243 *
1244 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1245 * buffers are managed internally.
1246 */
f4fc66a8
NP
1247static int ext3_ordered_write_end(struct file *file,
1248 struct address_space *mapping,
1249 loff_t pos, unsigned len, unsigned copied,
1250 struct page *page, void *fsdata)
1da177e4
LT
1251{
1252 handle_t *handle = ext3_journal_current_handle();
f4fc66a8
NP
1253 struct inode *inode = file->f_mapping->host;
1254 unsigned from, to;
1da177e4
LT
1255 int ret = 0, ret2;
1256
f4fc66a8
NP
1257 from = pos & (PAGE_CACHE_SIZE - 1);
1258 to = from + len;
1259
1da177e4
LT
1260 ret = walk_page_buffers(handle, page_buffers(page),
1261 from, to, NULL, ext3_journal_dirty_data);
1262
1263 if (ret == 0) {
1264 /*
f4fc66a8 1265 * generic_write_end() will run mark_inode_dirty() if i_size
1da177e4
LT
1266 * changes. So let's piggyback the i_disksize mark_inode_dirty
1267 * into that.
1268 */
1269 loff_t new_i_size;
1270
f4fc66a8 1271 new_i_size = pos + copied;
1da177e4
LT
1272 if (new_i_size > EXT3_I(inode)->i_disksize)
1273 EXT3_I(inode)->i_disksize = new_i_size;
f4fc66a8
NP
1274 copied = ext3_generic_write_end(file, mapping, pos, len, copied,
1275 page, fsdata);
1276 if (copied < 0)
1277 ret = copied;
1da177e4
LT
1278 }
1279 ret2 = ext3_journal_stop(handle);
1280 if (!ret)
1281 ret = ret2;
f4fc66a8
NP
1282 unlock_page(page);
1283 page_cache_release(page);
1284
1285 return ret ? ret : copied;
1da177e4
LT
1286}
1287
f4fc66a8
NP
1288static int ext3_writeback_write_end(struct file *file,
1289 struct address_space *mapping,
1290 loff_t pos, unsigned len, unsigned copied,
1291 struct page *page, void *fsdata)
1da177e4
LT
1292{
1293 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1294 struct inode *inode = file->f_mapping->host;
1da177e4
LT
1295 int ret = 0, ret2;
1296 loff_t new_i_size;
1297
f4fc66a8 1298 new_i_size = pos + copied;
1da177e4
LT
1299 if (new_i_size > EXT3_I(inode)->i_disksize)
1300 EXT3_I(inode)->i_disksize = new_i_size;
1301
f4fc66a8
NP
1302 copied = ext3_generic_write_end(file, mapping, pos, len, copied,
1303 page, fsdata);
1304 if (copied < 0)
1305 ret = copied;
1da177e4
LT
1306
1307 ret2 = ext3_journal_stop(handle);
1308 if (!ret)
1309 ret = ret2;
f4fc66a8
NP
1310 unlock_page(page);
1311 page_cache_release(page);
1312
1313 return ret ? ret : copied;
1da177e4
LT
1314}
1315
f4fc66a8
NP
1316static int ext3_journalled_write_end(struct file *file,
1317 struct address_space *mapping,
1318 loff_t pos, unsigned len, unsigned copied,
1319 struct page *page, void *fsdata)
1da177e4
LT
1320{
1321 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1322 struct inode *inode = mapping->host;
1da177e4
LT
1323 int ret = 0, ret2;
1324 int partial = 0;
f4fc66a8 1325 unsigned from, to;
1da177e4 1326
f4fc66a8
NP
1327 from = pos & (PAGE_CACHE_SIZE - 1);
1328 to = from + len;
1329
1330 if (copied < len) {
1331 if (!PageUptodate(page))
1332 copied = 0;
1333 page_zero_new_buffers(page, from+copied, to);
1334 }
1da177e4
LT
1335
1336 ret = walk_page_buffers(handle, page_buffers(page), from,
f4fc66a8 1337 to, &partial, write_end_fn);
1da177e4
LT
1338 if (!partial)
1339 SetPageUptodate(page);
f4fc66a8
NP
1340 if (pos+copied > inode->i_size)
1341 i_size_write(inode, pos+copied);
1da177e4
LT
1342 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1343 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1344 EXT3_I(inode)->i_disksize = inode->i_size;
1345 ret2 = ext3_mark_inode_dirty(handle, inode);
ae6ddcc5 1346 if (!ret)
1da177e4
LT
1347 ret = ret2;
1348 }
f4fc66a8 1349
1da177e4
LT
1350 ret2 = ext3_journal_stop(handle);
1351 if (!ret)
1352 ret = ret2;
f4fc66a8
NP
1353 unlock_page(page);
1354 page_cache_release(page);
1355
1356 return ret ? ret : copied;
1da177e4
LT
1357}
1358
ae6ddcc5 1359/*
1da177e4
LT
1360 * bmap() is special. It gets used by applications such as lilo and by
1361 * the swapper to find the on-disk block of a specific piece of data.
1362 *
1363 * Naturally, this is dangerous if the block concerned is still in the
1364 * journal. If somebody makes a swapfile on an ext3 data-journaling
1365 * filesystem and enables swap, then they may get a nasty shock when the
1366 * data getting swapped to that swapfile suddenly gets overwritten by
1367 * the original zero's written out previously to the journal and
ae6ddcc5 1368 * awaiting writeback in the kernel's buffer cache.
1da177e4
LT
1369 *
1370 * So, if we see any bmap calls here on a modified, data-journaled file,
ae6ddcc5 1371 * take extra steps to flush any blocks which might be in the cache.
1da177e4
LT
1372 */
1373static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1374{
1375 struct inode *inode = mapping->host;
1376 journal_t *journal;
1377 int err;
1378
1379 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
ae6ddcc5 1380 /*
1da177e4
LT
1381 * This is a REALLY heavyweight approach, but the use of
1382 * bmap on dirty files is expected to be extremely rare:
1383 * only if we run lilo or swapon on a freshly made file
ae6ddcc5 1384 * do we expect this to happen.
1da177e4
LT
1385 *
1386 * (bmap requires CAP_SYS_RAWIO so this does not
1387 * represent an unprivileged user DOS attack --- we'd be
1388 * in trouble if mortal users could trigger this path at
ae6ddcc5 1389 * will.)
1da177e4
LT
1390 *
1391 * NB. EXT3_STATE_JDATA is not set on files other than
1392 * regular files. If somebody wants to bmap a directory
1393 * or symlink and gets confused because the buffer
1394 * hasn't yet been flushed to disk, they deserve
1395 * everything they get.
1396 */
1397
1398 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1399 journal = EXT3_JOURNAL(inode);
1400 journal_lock_updates(journal);
1401 err = journal_flush(journal);
1402 journal_unlock_updates(journal);
1403
1404 if (err)
1405 return 0;
1406 }
1407
1408 return generic_block_bmap(mapping,block,ext3_get_block);
1409}
1410
1411static int bget_one(handle_t *handle, struct buffer_head *bh)
1412{
1413 get_bh(bh);
1414 return 0;
1415}
1416
1417static int bput_one(handle_t *handle, struct buffer_head *bh)
1418{
1419 put_bh(bh);
1420 return 0;
1421}
1422
1423static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1424{
1425 if (buffer_mapped(bh))
1426 return ext3_journal_dirty_data(handle, bh);
1427 return 0;
1428}
1429
1430/*
1431 * Note that we always start a transaction even if we're not journalling
1432 * data. This is to preserve ordering: any hole instantiation within
1433 * __block_write_full_page -> ext3_get_block() should be journalled
1434 * along with the data so we don't crash and then get metadata which
1435 * refers to old data.
1436 *
1437 * In all journalling modes block_write_full_page() will start the I/O.
1438 *
1439 * Problem:
1440 *
1441 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1442 * ext3_writepage()
1443 *
1444 * Similar for:
1445 *
1446 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1447 *
1448 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1449 * lock_journal and i_truncate_mutex.
1da177e4
LT
1450 *
1451 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1452 * allocations fail.
1453 *
1454 * 16May01: If we're reentered then journal_current_handle() will be
1455 * non-zero. We simply *return*.
1456 *
1457 * 1 July 2001: @@@ FIXME:
1458 * In journalled data mode, a data buffer may be metadata against the
1459 * current transaction. But the same file is part of a shared mapping
1460 * and someone does a writepage() on it.
1461 *
1462 * We will move the buffer onto the async_data list, but *after* it has
1463 * been dirtied. So there's a small window where we have dirty data on
1464 * BJ_Metadata.
1465 *
1466 * Note that this only applies to the last partial page in the file. The
1467 * bit which block_write_full_page() uses prepare/commit for. (That's
1468 * broken code anyway: it's wrong for msync()).
1469 *
1470 * It's a rare case: affects the final partial page, for journalled data
1471 * where the file is subject to bith write() and writepage() in the same
1472 * transction. To fix it we'll need a custom block_write_full_page().
1473 * We'll probably need that anyway for journalling writepage() output.
1474 *
1475 * We don't honour synchronous mounts for writepage(). That would be
1476 * disastrous. Any write() or metadata operation will sync the fs for
1477 * us.
1478 *
1479 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1480 * we don't need to open a transaction here.
1481 */
1482static int ext3_ordered_writepage(struct page *page,
d6859bfc 1483 struct writeback_control *wbc)
1da177e4
LT
1484{
1485 struct inode *inode = page->mapping->host;
1486 struct buffer_head *page_bufs;
1487 handle_t *handle = NULL;
1488 int ret = 0;
1489 int err;
1490
1491 J_ASSERT(PageLocked(page));
1492
1493 /*
1494 * We give up here if we're reentered, because it might be for a
1495 * different filesystem.
1496 */
1497 if (ext3_journal_current_handle())
1498 goto out_fail;
1499
1500 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1501
1502 if (IS_ERR(handle)) {
1503 ret = PTR_ERR(handle);
1504 goto out_fail;
1505 }
1506
1507 if (!page_has_buffers(page)) {
1508 create_empty_buffers(page, inode->i_sb->s_blocksize,
1509 (1 << BH_Dirty)|(1 << BH_Uptodate));
1510 }
1511 page_bufs = page_buffers(page);
1512 walk_page_buffers(handle, page_bufs, 0,
1513 PAGE_CACHE_SIZE, NULL, bget_one);
1514
1515 ret = block_write_full_page(page, ext3_get_block, wbc);
1516
1517 /*
1518 * The page can become unlocked at any point now, and
1519 * truncate can then come in and change things. So we
1520 * can't touch *page from now on. But *page_bufs is
1521 * safe due to elevated refcount.
1522 */
1523
1524 /*
ae6ddcc5 1525 * And attach them to the current transaction. But only if
1da177e4
LT
1526 * block_write_full_page() succeeded. Otherwise they are unmapped,
1527 * and generally junk.
1528 */
1529 if (ret == 0) {
1530 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1531 NULL, journal_dirty_data_fn);
1532 if (!ret)
1533 ret = err;
1534 }
1535 walk_page_buffers(handle, page_bufs, 0,
1536 PAGE_CACHE_SIZE, NULL, bput_one);
1537 err = ext3_journal_stop(handle);
1538 if (!ret)
1539 ret = err;
1540 return ret;
1541
1542out_fail:
1543 redirty_page_for_writepage(wbc, page);
1544 unlock_page(page);
1545 return ret;
1546}
1547
1da177e4
LT
1548static int ext3_writeback_writepage(struct page *page,
1549 struct writeback_control *wbc)
1550{
1551 struct inode *inode = page->mapping->host;
1552 handle_t *handle = NULL;
1553 int ret = 0;
1554 int err;
1555
1556 if (ext3_journal_current_handle())
1557 goto out_fail;
1558
1559 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1560 if (IS_ERR(handle)) {
1561 ret = PTR_ERR(handle);
1562 goto out_fail;
1563 }
1564
0e31f51d 1565 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1da177e4
LT
1566 ret = nobh_writepage(page, ext3_get_block, wbc);
1567 else
1568 ret = block_write_full_page(page, ext3_get_block, wbc);
1569
1570 err = ext3_journal_stop(handle);
1571 if (!ret)
1572 ret = err;
1573 return ret;
1574
1575out_fail:
1576 redirty_page_for_writepage(wbc, page);
1577 unlock_page(page);
1578 return ret;
1579}
1580
1581static int ext3_journalled_writepage(struct page *page,
1582 struct writeback_control *wbc)
1583{
1584 struct inode *inode = page->mapping->host;
1585 handle_t *handle = NULL;
1586 int ret = 0;
1587 int err;
1588
1589 if (ext3_journal_current_handle())
1590 goto no_write;
1591
1592 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1593 if (IS_ERR(handle)) {
1594 ret = PTR_ERR(handle);
1595 goto no_write;
1596 }
1597
1598 if (!page_has_buffers(page) || PageChecked(page)) {
1599 /*
1600 * It's mmapped pagecache. Add buffers and journal it. There
1601 * doesn't seem much point in redirtying the page here.
1602 */
1603 ClearPageChecked(page);
1604 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1605 ext3_get_block);
ab4eb43c
DL
1606 if (ret != 0) {
1607 ext3_journal_stop(handle);
1da177e4 1608 goto out_unlock;
ab4eb43c 1609 }
1da177e4
LT
1610 ret = walk_page_buffers(handle, page_buffers(page), 0,
1611 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1612
1613 err = walk_page_buffers(handle, page_buffers(page), 0,
f4fc66a8 1614 PAGE_CACHE_SIZE, NULL, write_end_fn);
1da177e4
LT
1615 if (ret == 0)
1616 ret = err;
1617 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1618 unlock_page(page);
1619 } else {
1620 /*
1621 * It may be a page full of checkpoint-mode buffers. We don't
1622 * really know unless we go poke around in the buffer_heads.
1623 * But block_write_full_page will do the right thing.
1624 */
1625 ret = block_write_full_page(page, ext3_get_block, wbc);
1626 }
1627 err = ext3_journal_stop(handle);
1628 if (!ret)
1629 ret = err;
1630out:
1631 return ret;
1632
1633no_write:
1634 redirty_page_for_writepage(wbc, page);
1635out_unlock:
1636 unlock_page(page);
1637 goto out;
1638}
1639
1640static int ext3_readpage(struct file *file, struct page *page)
1641{
1642 return mpage_readpage(page, ext3_get_block);
1643}
1644
1645static int
1646ext3_readpages(struct file *file, struct address_space *mapping,
1647 struct list_head *pages, unsigned nr_pages)
1648{
1649 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1650}
1651
2ff28e22 1652static void ext3_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1653{
1654 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1655
1656 /*
1657 * If it's a full truncate we just forget about the pending dirtying
1658 */
1659 if (offset == 0)
1660 ClearPageChecked(page);
1661
2ff28e22 1662 journal_invalidatepage(journal, page, offset);
1da177e4
LT
1663}
1664
27496a8c 1665static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1666{
1667 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1668
1669 WARN_ON(PageChecked(page));
1670 if (!page_has_buffers(page))
1671 return 0;
1672 return journal_try_to_free_buffers(journal, page, wait);
1673}
1674
1675/*
1676 * If the O_DIRECT write will extend the file then add this inode to the
1677 * orphan list. So recovery will truncate it back to the original size
1678 * if the machine crashes during the write.
1679 *
1680 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1681 * crashes then stale disk data _may_ be exposed inside the file.
1682 */
1683static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1684 const struct iovec *iov, loff_t offset,
1685 unsigned long nr_segs)
1686{
1687 struct file *file = iocb->ki_filp;
1688 struct inode *inode = file->f_mapping->host;
1689 struct ext3_inode_info *ei = EXT3_I(inode);
1690 handle_t *handle = NULL;
1691 ssize_t ret;
1692 int orphan = 0;
1693 size_t count = iov_length(iov, nr_segs);
1694
1695 if (rw == WRITE) {
1696 loff_t final_size = offset + count;
1697
1698 handle = ext3_journal_start(inode, DIO_CREDITS);
1699 if (IS_ERR(handle)) {
1700 ret = PTR_ERR(handle);
1701 goto out;
1702 }
1703 if (final_size > inode->i_size) {
1704 ret = ext3_orphan_add(handle, inode);
1705 if (ret)
1706 goto out_stop;
1707 orphan = 1;
1708 ei->i_disksize = inode->i_size;
1709 }
1710 }
1711
ae6ddcc5 1712 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1da177e4 1713 offset, nr_segs,
f91a2ad2 1714 ext3_get_block, NULL);
1da177e4
LT
1715
1716 /*
f91a2ad2 1717 * Reacquire the handle: ext3_get_block() can restart the transaction
1da177e4 1718 */
3e4fdaf8 1719 handle = ext3_journal_current_handle();
1da177e4
LT
1720
1721out_stop:
1722 if (handle) {
1723 int err;
1724
1725 if (orphan && inode->i_nlink)
1726 ext3_orphan_del(handle, inode);
1727 if (orphan && ret > 0) {
1728 loff_t end = offset + ret;
1729 if (end > inode->i_size) {
1730 ei->i_disksize = end;
1731 i_size_write(inode, end);
1732 /*
1733 * We're going to return a positive `ret'
1734 * here due to non-zero-length I/O, so there's
1735 * no way of reporting error returns from
1736 * ext3_mark_inode_dirty() to userspace. So
1737 * ignore it.
1738 */
1739 ext3_mark_inode_dirty(handle, inode);
1740 }
1741 }
1742 err = ext3_journal_stop(handle);
1743 if (ret == 0)
1744 ret = err;
1745 }
1746out:
1747 return ret;
1748}
1749
1750/*
1751 * Pages can be marked dirty completely asynchronously from ext3's journalling
1752 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1753 * much here because ->set_page_dirty is called under VFS locks. The page is
1754 * not necessarily locked.
1755 *
1756 * We cannot just dirty the page and leave attached buffers clean, because the
1757 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1758 * or jbddirty because all the journalling code will explode.
1759 *
1760 * So what we do is to mark the page "pending dirty" and next time writepage
1761 * is called, propagate that into the buffers appropriately.
1762 */
1763static int ext3_journalled_set_page_dirty(struct page *page)
1764{
1765 SetPageChecked(page);
1766 return __set_page_dirty_nobuffers(page);
1767}
1768
f5e54d6e 1769static const struct address_space_operations ext3_ordered_aops = {
1da177e4
LT
1770 .readpage = ext3_readpage,
1771 .readpages = ext3_readpages,
1772 .writepage = ext3_ordered_writepage,
1773 .sync_page = block_sync_page,
f4fc66a8
NP
1774 .write_begin = ext3_write_begin,
1775 .write_end = ext3_ordered_write_end,
1da177e4
LT
1776 .bmap = ext3_bmap,
1777 .invalidatepage = ext3_invalidatepage,
1778 .releasepage = ext3_releasepage,
1779 .direct_IO = ext3_direct_IO,
e965f963 1780 .migratepage = buffer_migrate_page,
1da177e4
LT
1781};
1782
f5e54d6e 1783static const struct address_space_operations ext3_writeback_aops = {
1da177e4
LT
1784 .readpage = ext3_readpage,
1785 .readpages = ext3_readpages,
1786 .writepage = ext3_writeback_writepage,
1da177e4 1787 .sync_page = block_sync_page,
f4fc66a8
NP
1788 .write_begin = ext3_write_begin,
1789 .write_end = ext3_writeback_write_end,
1da177e4
LT
1790 .bmap = ext3_bmap,
1791 .invalidatepage = ext3_invalidatepage,
1792 .releasepage = ext3_releasepage,
1793 .direct_IO = ext3_direct_IO,
e965f963 1794 .migratepage = buffer_migrate_page,
1da177e4
LT
1795};
1796
f5e54d6e 1797static const struct address_space_operations ext3_journalled_aops = {
1da177e4
LT
1798 .readpage = ext3_readpage,
1799 .readpages = ext3_readpages,
1800 .writepage = ext3_journalled_writepage,
1801 .sync_page = block_sync_page,
f4fc66a8
NP
1802 .write_begin = ext3_write_begin,
1803 .write_end = ext3_journalled_write_end,
1da177e4
LT
1804 .set_page_dirty = ext3_journalled_set_page_dirty,
1805 .bmap = ext3_bmap,
1806 .invalidatepage = ext3_invalidatepage,
1807 .releasepage = ext3_releasepage,
1808};
1809
1810void ext3_set_aops(struct inode *inode)
1811{
1812 if (ext3_should_order_data(inode))
1813 inode->i_mapping->a_ops = &ext3_ordered_aops;
1814 else if (ext3_should_writeback_data(inode))
1815 inode->i_mapping->a_ops = &ext3_writeback_aops;
1816 else
1817 inode->i_mapping->a_ops = &ext3_journalled_aops;
1818}
1819
1820/*
1821 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1822 * up to the end of the block which corresponds to `from'.
1823 * This required during truncate. We need to physically zero the tail end
1824 * of that block so it doesn't yield old data if the file is later grown.
1825 */
1826static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1827 struct address_space *mapping, loff_t from)
1828{
43d23f90 1829 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1da177e4
LT
1830 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1831 unsigned blocksize, iblock, length, pos;
1832 struct inode *inode = mapping->host;
1833 struct buffer_head *bh;
1834 int err = 0;
1da177e4
LT
1835
1836 blocksize = inode->i_sb->s_blocksize;
1837 length = blocksize - (offset & (blocksize - 1));
1838 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1839
1840 /*
1841 * For "nobh" option, we can only work if we don't need to
1842 * read-in the page - otherwise we create buffers to do the IO.
1843 */
cd6ef84e
BP
1844 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1845 ext3_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1846 zero_user(page, offset, length);
cd6ef84e
BP
1847 set_page_dirty(page);
1848 goto unlock;
1da177e4
LT
1849 }
1850
1851 if (!page_has_buffers(page))
1852 create_empty_buffers(page, blocksize, 0);
1853
1854 /* Find the buffer that contains "offset" */
1855 bh = page_buffers(page);
1856 pos = blocksize;
1857 while (offset >= pos) {
1858 bh = bh->b_this_page;
1859 iblock++;
1860 pos += blocksize;
1861 }
1862
1863 err = 0;
1864 if (buffer_freed(bh)) {
1865 BUFFER_TRACE(bh, "freed: skip");
1866 goto unlock;
1867 }
1868
1869 if (!buffer_mapped(bh)) {
1870 BUFFER_TRACE(bh, "unmapped");
1871 ext3_get_block(inode, iblock, bh, 0);
1872 /* unmapped? It's a hole - nothing to do */
1873 if (!buffer_mapped(bh)) {
1874 BUFFER_TRACE(bh, "still unmapped");
1875 goto unlock;
1876 }
1877 }
1878
1879 /* Ok, it's mapped. Make sure it's up-to-date */
1880 if (PageUptodate(page))
1881 set_buffer_uptodate(bh);
1882
1883 if (!buffer_uptodate(bh)) {
1884 err = -EIO;
1885 ll_rw_block(READ, 1, &bh);
1886 wait_on_buffer(bh);
1887 /* Uhhuh. Read error. Complain and punt. */
1888 if (!buffer_uptodate(bh))
1889 goto unlock;
1890 }
1891
1892 if (ext3_should_journal_data(inode)) {
1893 BUFFER_TRACE(bh, "get write access");
1894 err = ext3_journal_get_write_access(handle, bh);
1895 if (err)
1896 goto unlock;
1897 }
1898
eebd2aa3 1899 zero_user(page, offset, length);
1da177e4
LT
1900 BUFFER_TRACE(bh, "zeroed end of block");
1901
1902 err = 0;
1903 if (ext3_should_journal_data(inode)) {
1904 err = ext3_journal_dirty_metadata(handle, bh);
1905 } else {
1906 if (ext3_should_order_data(inode))
1907 err = ext3_journal_dirty_data(handle, bh);
1908 mark_buffer_dirty(bh);
1909 }
1910
1911unlock:
1912 unlock_page(page);
1913 page_cache_release(page);
1914 return err;
1915}
1916
1917/*
1918 * Probably it should be a library function... search for first non-zero word
1919 * or memcmp with zero_page, whatever is better for particular architecture.
1920 * Linus?
1921 */
1922static inline int all_zeroes(__le32 *p, __le32 *q)
1923{
1924 while (p < q)
1925 if (*p++)
1926 return 0;
1927 return 1;
1928}
1929
1930/**
1931 * ext3_find_shared - find the indirect blocks for partial truncation.
1932 * @inode: inode in question
1933 * @depth: depth of the affected branch
1934 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1935 * @chain: place to store the pointers to partial indirect blocks
1936 * @top: place to the (detached) top of branch
1937 *
1938 * This is a helper function used by ext3_truncate().
1939 *
1940 * When we do truncate() we may have to clean the ends of several
1941 * indirect blocks but leave the blocks themselves alive. Block is
1942 * partially truncated if some data below the new i_size is refered
1943 * from it (and it is on the path to the first completely truncated
1944 * data block, indeed). We have to free the top of that path along
1945 * with everything to the right of the path. Since no allocation
1946 * past the truncation point is possible until ext3_truncate()
1947 * finishes, we may safely do the latter, but top of branch may
1948 * require special attention - pageout below the truncation point
1949 * might try to populate it.
1950 *
1951 * We atomically detach the top of branch from the tree, store the
1952 * block number of its root in *@top, pointers to buffer_heads of
1953 * partially truncated blocks - in @chain[].bh and pointers to
1954 * their last elements that should not be removed - in
1955 * @chain[].p. Return value is the pointer to last filled element
1956 * of @chain.
1957 *
1958 * The work left to caller to do the actual freeing of subtrees:
1959 * a) free the subtree starting from *@top
1960 * b) free the subtrees whose roots are stored in
1961 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1962 * c) free the subtrees growing from the inode past the @chain[0].
1963 * (no partially truncated stuff there). */
1964
d6859bfc
AM
1965static Indirect *ext3_find_shared(struct inode *inode, int depth,
1966 int offsets[4], Indirect chain[4], __le32 *top)
1da177e4
LT
1967{
1968 Indirect *partial, *p;
1969 int k, err;
1970
1971 *top = 0;
1972 /* Make k index the deepest non-null offest + 1 */
1973 for (k = depth; k > 1 && !offsets[k-1]; k--)
1974 ;
1975 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1976 /* Writer: pointers */
1977 if (!partial)
1978 partial = chain + k-1;
1979 /*
1980 * If the branch acquired continuation since we've looked at it -
1981 * fine, it should all survive and (new) top doesn't belong to us.
1982 */
1983 if (!partial->key && *partial->p)
1984 /* Writer: end */
1985 goto no_top;
1986 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1987 ;
1988 /*
1989 * OK, we've found the last block that must survive. The rest of our
1990 * branch should be detached before unlocking. However, if that rest
1991 * of branch is all ours and does not grow immediately from the inode
1992 * it's easier to cheat and just decrement partial->p.
1993 */
1994 if (p == chain + k - 1 && p > chain) {
1995 p->p--;
1996 } else {
1997 *top = *p->p;
1998 /* Nope, don't do this in ext3. Must leave the tree intact */
1999#if 0
2000 *p->p = 0;
2001#endif
2002 }
2003 /* Writer: end */
2004
d6859bfc 2005 while(partial > p) {
1da177e4
LT
2006 brelse(partial->bh);
2007 partial--;
2008 }
2009no_top:
2010 return partial;
2011}
2012
2013/*
2014 * Zero a number of block pointers in either an inode or an indirect block.
2015 * If we restart the transaction we must again get write access to the
2016 * indirect block for further modification.
2017 *
2018 * We release `count' blocks on disk, but (last - first) may be greater
2019 * than `count' because there can be holes in there.
2020 */
d6859bfc 2021static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
43d23f90 2022 struct buffer_head *bh, ext3_fsblk_t block_to_free,
d6859bfc 2023 unsigned long count, __le32 *first, __le32 *last)
1da177e4
LT
2024{
2025 __le32 *p;
2026 if (try_to_extend_transaction(handle, inode)) {
2027 if (bh) {
2028 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2029 ext3_journal_dirty_metadata(handle, bh);
2030 }
2031 ext3_mark_inode_dirty(handle, inode);
2032 ext3_journal_test_restart(handle, inode);
2033 if (bh) {
2034 BUFFER_TRACE(bh, "retaking write access");
2035 ext3_journal_get_write_access(handle, bh);
2036 }
2037 }
2038
2039 /*
2040 * Any buffers which are on the journal will be in memory. We find
2041 * them on the hash table so journal_revoke() will run journal_forget()
2042 * on them. We've already detached each block from the file, so
2043 * bforget() in journal_forget() should be safe.
2044 *
2045 * AKPM: turn on bforget in journal_forget()!!!
2046 */
2047 for (p = first; p < last; p++) {
2048 u32 nr = le32_to_cpu(*p);
2049 if (nr) {
2050 struct buffer_head *bh;
2051
2052 *p = 0;
2053 bh = sb_find_get_block(inode->i_sb, nr);
2054 ext3_forget(handle, 0, inode, bh, nr);
2055 }
2056 }
2057
2058 ext3_free_blocks(handle, inode, block_to_free, count);
2059}
2060
2061/**
2062 * ext3_free_data - free a list of data blocks
2063 * @handle: handle for this transaction
2064 * @inode: inode we are dealing with
2065 * @this_bh: indirect buffer_head which contains *@first and *@last
2066 * @first: array of block numbers
2067 * @last: points immediately past the end of array
2068 *
2069 * We are freeing all blocks refered from that array (numbers are stored as
2070 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2071 *
2072 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2073 * blocks are contiguous then releasing them at one time will only affect one
2074 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2075 * actually use a lot of journal space.
2076 *
2077 * @this_bh will be %NULL if @first and @last point into the inode's direct
2078 * block pointers.
2079 */
2080static void ext3_free_data(handle_t *handle, struct inode *inode,
2081 struct buffer_head *this_bh,
2082 __le32 *first, __le32 *last)
2083{
43d23f90 2084 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
ae6ddcc5 2085 unsigned long count = 0; /* Number of blocks in the run */
1da177e4
LT
2086 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2087 corresponding to
2088 block_to_free */
43d23f90 2089 ext3_fsblk_t nr; /* Current block # */
1da177e4
LT
2090 __le32 *p; /* Pointer into inode/ind
2091 for current block */
2092 int err;
2093
2094 if (this_bh) { /* For indirect block */
2095 BUFFER_TRACE(this_bh, "get_write_access");
2096 err = ext3_journal_get_write_access(handle, this_bh);
2097 /* Important: if we can't update the indirect pointers
2098 * to the blocks, we can't free them. */
2099 if (err)
2100 return;
2101 }
2102
2103 for (p = first; p < last; p++) {
2104 nr = le32_to_cpu(*p);
2105 if (nr) {
2106 /* accumulate blocks to free if they're contiguous */
2107 if (count == 0) {
2108 block_to_free = nr;
2109 block_to_free_p = p;
2110 count = 1;
2111 } else if (nr == block_to_free + count) {
2112 count++;
2113 } else {
ae6ddcc5 2114 ext3_clear_blocks(handle, inode, this_bh,
1da177e4
LT
2115 block_to_free,
2116 count, block_to_free_p, p);
2117 block_to_free = nr;
2118 block_to_free_p = p;
2119 count = 1;
2120 }
2121 }
2122 }
2123
2124 if (count > 0)
2125 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2126 count, block_to_free_p, p);
2127
2128 if (this_bh) {
2129 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2130 ext3_journal_dirty_metadata(handle, this_bh);
2131 }
2132}
2133
2134/**
2135 * ext3_free_branches - free an array of branches
2136 * @handle: JBD handle for this transaction
2137 * @inode: inode we are dealing with
2138 * @parent_bh: the buffer_head which contains *@first and *@last
2139 * @first: array of block numbers
2140 * @last: pointer immediately past the end of array
2141 * @depth: depth of the branches to free
2142 *
2143 * We are freeing all blocks refered from these branches (numbers are
2144 * stored as little-endian 32-bit) and updating @inode->i_blocks
2145 * appropriately.
2146 */
2147static void ext3_free_branches(handle_t *handle, struct inode *inode,
2148 struct buffer_head *parent_bh,
2149 __le32 *first, __le32 *last, int depth)
2150{
43d23f90 2151 ext3_fsblk_t nr;
1da177e4
LT
2152 __le32 *p;
2153
2154 if (is_handle_aborted(handle))
2155 return;
2156
2157 if (depth--) {
2158 struct buffer_head *bh;
2159 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2160 p = last;
2161 while (--p >= first) {
2162 nr = le32_to_cpu(*p);
2163 if (!nr)
2164 continue; /* A hole */
2165
2166 /* Go read the buffer for the next level down */
2167 bh = sb_bread(inode->i_sb, nr);
2168
2169 /*
2170 * A read failure? Report error and clear slot
2171 * (should be rare).
2172 */
2173 if (!bh) {
2174 ext3_error(inode->i_sb, "ext3_free_branches",
eee194e7 2175 "Read failure, inode=%lu, block="E3FSBLK,
1da177e4
LT
2176 inode->i_ino, nr);
2177 continue;
2178 }
2179
2180 /* This zaps the entire block. Bottom up. */
2181 BUFFER_TRACE(bh, "free child branches");
2182 ext3_free_branches(handle, inode, bh,
2183 (__le32*)bh->b_data,
2184 (__le32*)bh->b_data + addr_per_block,
2185 depth);
2186
2187 /*
2188 * We've probably journalled the indirect block several
2189 * times during the truncate. But it's no longer
2190 * needed and we now drop it from the transaction via
2191 * journal_revoke().
2192 *
2193 * That's easy if it's exclusively part of this
2194 * transaction. But if it's part of the committing
2195 * transaction then journal_forget() will simply
2196 * brelse() it. That means that if the underlying
2197 * block is reallocated in ext3_get_block(),
2198 * unmap_underlying_metadata() will find this block
2199 * and will try to get rid of it. damn, damn.
2200 *
2201 * If this block has already been committed to the
2202 * journal, a revoke record will be written. And
2203 * revoke records must be emitted *before* clearing
2204 * this block's bit in the bitmaps.
2205 */
2206 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2207
2208 /*
2209 * Everything below this this pointer has been
2210 * released. Now let this top-of-subtree go.
2211 *
2212 * We want the freeing of this indirect block to be
2213 * atomic in the journal with the updating of the
2214 * bitmap block which owns it. So make some room in
2215 * the journal.
2216 *
2217 * We zero the parent pointer *after* freeing its
2218 * pointee in the bitmaps, so if extend_transaction()
2219 * for some reason fails to put the bitmap changes and
2220 * the release into the same transaction, recovery
2221 * will merely complain about releasing a free block,
2222 * rather than leaking blocks.
2223 */
2224 if (is_handle_aborted(handle))
2225 return;
2226 if (try_to_extend_transaction(handle, inode)) {
2227 ext3_mark_inode_dirty(handle, inode);
2228 ext3_journal_test_restart(handle, inode);
2229 }
2230
2231 ext3_free_blocks(handle, inode, nr, 1);
2232
2233 if (parent_bh) {
2234 /*
2235 * The block which we have just freed is
2236 * pointed to by an indirect block: journal it
2237 */
2238 BUFFER_TRACE(parent_bh, "get_write_access");
2239 if (!ext3_journal_get_write_access(handle,
2240 parent_bh)){
2241 *p = 0;
2242 BUFFER_TRACE(parent_bh,
2243 "call ext3_journal_dirty_metadata");
ae6ddcc5 2244 ext3_journal_dirty_metadata(handle,
1da177e4
LT
2245 parent_bh);
2246 }
2247 }
2248 }
2249 } else {
2250 /* We have reached the bottom of the tree. */
2251 BUFFER_TRACE(parent_bh, "free data blocks");
2252 ext3_free_data(handle, inode, parent_bh, first, last);
2253 }
2254}
2255
2256/*
2257 * ext3_truncate()
2258 *
2259 * We block out ext3_get_block() block instantiations across the entire
2260 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2261 * simultaneously on behalf of the same inode.
2262 *
2263 * As we work through the truncate and commmit bits of it to the journal there
2264 * is one core, guiding principle: the file's tree must always be consistent on
2265 * disk. We must be able to restart the truncate after a crash.
2266 *
2267 * The file's tree may be transiently inconsistent in memory (although it
2268 * probably isn't), but whenever we close off and commit a journal transaction,
2269 * the contents of (the filesystem + the journal) must be consistent and
2270 * restartable. It's pretty simple, really: bottom up, right to left (although
2271 * left-to-right works OK too).
2272 *
2273 * Note that at recovery time, journal replay occurs *before* the restart of
2274 * truncate against the orphan inode list.
2275 *
2276 * The committed inode has the new, desired i_size (which is the same as
2277 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2278 * that this inode's truncate did not complete and it will again call
2279 * ext3_truncate() to have another go. So there will be instantiated blocks
2280 * to the right of the truncation point in a crashed ext3 filesystem. But
2281 * that's fine - as long as they are linked from the inode, the post-crash
2282 * ext3_truncate() run will find them and release them.
2283 */
d6859bfc 2284void ext3_truncate(struct inode *inode)
1da177e4
LT
2285{
2286 handle_t *handle;
2287 struct ext3_inode_info *ei = EXT3_I(inode);
2288 __le32 *i_data = ei->i_data;
2289 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2290 struct address_space *mapping = inode->i_mapping;
2291 int offsets[4];
2292 Indirect chain[4];
2293 Indirect *partial;
2294 __le32 nr = 0;
2295 int n;
2296 long last_block;
2297 unsigned blocksize = inode->i_sb->s_blocksize;
2298 struct page *page;
2299
2300 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2301 S_ISLNK(inode->i_mode)))
2302 return;
2303 if (ext3_inode_is_fast_symlink(inode))
2304 return;
2305 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2306 return;
2307
2308 /*
2309 * We have to lock the EOF page here, because lock_page() nests
2310 * outside journal_start().
2311 */
2312 if ((inode->i_size & (blocksize - 1)) == 0) {
2313 /* Block boundary? Nothing to do */
2314 page = NULL;
2315 } else {
2316 page = grab_cache_page(mapping,
2317 inode->i_size >> PAGE_CACHE_SHIFT);
2318 if (!page)
2319 return;
2320 }
2321
2322 handle = start_transaction(inode);
2323 if (IS_ERR(handle)) {
2324 if (page) {
2325 clear_highpage(page);
2326 flush_dcache_page(page);
2327 unlock_page(page);
2328 page_cache_release(page);
2329 }
2330 return; /* AKPM: return what? */
2331 }
2332
2333 last_block = (inode->i_size + blocksize-1)
2334 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2335
2336 if (page)
2337 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2338
2339 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2340 if (n == 0)
2341 goto out_stop; /* error */
2342
2343 /*
2344 * OK. This truncate is going to happen. We add the inode to the
2345 * orphan list, so that if this truncate spans multiple transactions,
2346 * and we crash, we will resume the truncate when the filesystem
2347 * recovers. It also marks the inode dirty, to catch the new size.
2348 *
2349 * Implication: the file must always be in a sane, consistent
2350 * truncatable state while each transaction commits.
2351 */
2352 if (ext3_orphan_add(handle, inode))
2353 goto out_stop;
2354
2355 /*
2356 * The orphan list entry will now protect us from any crash which
2357 * occurs before the truncate completes, so it is now safe to propagate
2358 * the new, shorter inode size (held for now in i_size) into the
2359 * on-disk inode. We do this via i_disksize, which is the value which
2360 * ext3 *really* writes onto the disk inode.
2361 */
2362 ei->i_disksize = inode->i_size;
2363
2364 /*
2365 * From here we block out all ext3_get_block() callers who want to
2366 * modify the block allocation tree.
2367 */
97461518 2368 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2369
2370 if (n == 1) { /* direct blocks */
2371 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2372 i_data + EXT3_NDIR_BLOCKS);
2373 goto do_indirects;
2374 }
2375
2376 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2377 /* Kill the top of shared branch (not detached) */
2378 if (nr) {
2379 if (partial == chain) {
2380 /* Shared branch grows from the inode */
2381 ext3_free_branches(handle, inode, NULL,
2382 &nr, &nr+1, (chain+n-1) - partial);
2383 *partial->p = 0;
2384 /*
2385 * We mark the inode dirty prior to restart,
2386 * and prior to stop. No need for it here.
2387 */
2388 } else {
2389 /* Shared branch grows from an indirect block */
2390 BUFFER_TRACE(partial->bh, "get_write_access");
2391 ext3_free_branches(handle, inode, partial->bh,
2392 partial->p,
2393 partial->p+1, (chain+n-1) - partial);
2394 }
2395 }
2396 /* Clear the ends of indirect blocks on the shared branch */
2397 while (partial > chain) {
2398 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2399 (__le32*)partial->bh->b_data+addr_per_block,
2400 (chain+n-1) - partial);
2401 BUFFER_TRACE(partial->bh, "call brelse");
2402 brelse (partial->bh);
2403 partial--;
2404 }
2405do_indirects:
2406 /* Kill the remaining (whole) subtrees */
2407 switch (offsets[0]) {
d6859bfc
AM
2408 default:
2409 nr = i_data[EXT3_IND_BLOCK];
2410 if (nr) {
2411 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2412 i_data[EXT3_IND_BLOCK] = 0;
2413 }
2414 case EXT3_IND_BLOCK:
2415 nr = i_data[EXT3_DIND_BLOCK];
2416 if (nr) {
2417 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2418 i_data[EXT3_DIND_BLOCK] = 0;
2419 }
2420 case EXT3_DIND_BLOCK:
2421 nr = i_data[EXT3_TIND_BLOCK];
2422 if (nr) {
2423 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2424 i_data[EXT3_TIND_BLOCK] = 0;
2425 }
2426 case EXT3_TIND_BLOCK:
2427 ;
1da177e4
LT
2428 }
2429
2430 ext3_discard_reservation(inode);
2431
97461518 2432 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2433 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2434 ext3_mark_inode_dirty(handle, inode);
2435
d6859bfc
AM
2436 /*
2437 * In a multi-transaction truncate, we only make the final transaction
2438 * synchronous
2439 */
1da177e4
LT
2440 if (IS_SYNC(inode))
2441 handle->h_sync = 1;
2442out_stop:
2443 /*
2444 * If this was a simple ftruncate(), and the file will remain alive
2445 * then we need to clear up the orphan record which we created above.
2446 * However, if this was a real unlink then we were called by
2447 * ext3_delete_inode(), and we allow that function to clean up the
2448 * orphan info for us.
2449 */
2450 if (inode->i_nlink)
2451 ext3_orphan_del(handle, inode);
2452
2453 ext3_journal_stop(handle);
2454}
2455
43d23f90 2456static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
1da177e4
LT
2457 unsigned long ino, struct ext3_iloc *iloc)
2458{
2459 unsigned long desc, group_desc, block_group;
43d23f90
MC
2460 unsigned long offset;
2461 ext3_fsblk_t block;
1da177e4
LT
2462 struct buffer_head *bh;
2463 struct ext3_group_desc * gdp;
2464
2ccb48eb
NB
2465 if (!ext3_valid_inum(sb, ino)) {
2466 /*
2467 * This error is already checked for in namei.c unless we are
2468 * looking at an NFS filehandle, in which case no error
2469 * report is needed
2470 */
1da177e4
LT
2471 return 0;
2472 }
2ccb48eb 2473
1da177e4
LT
2474 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2475 if (block_group >= EXT3_SB(sb)->s_groups_count) {
d6859bfc 2476 ext3_error(sb,"ext3_get_inode_block","group >= groups count");
1da177e4
LT
2477 return 0;
2478 }
2479 smp_rmb();
2480 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2481 desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2482 bh = EXT3_SB(sb)->s_group_desc[group_desc];
2483 if (!bh) {
2484 ext3_error (sb, "ext3_get_inode_block",
2485 "Descriptor not loaded");
2486 return 0;
2487 }
2488
d6859bfc 2489 gdp = (struct ext3_group_desc *)bh->b_data;
1da177e4
LT
2490 /*
2491 * Figure out the offset within the block group inode table
2492 */
2493 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2494 EXT3_INODE_SIZE(sb);
2495 block = le32_to_cpu(gdp[desc].bg_inode_table) +
2496 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2497
2498 iloc->block_group = block_group;
2499 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2500 return block;
2501}
2502
2503/*
2504 * ext3_get_inode_loc returns with an extra refcount against the inode's
2505 * underlying buffer_head on success. If 'in_mem' is true, we have all
2506 * data in memory that is needed to recreate the on-disk version of this
2507 * inode.
2508 */
2509static int __ext3_get_inode_loc(struct inode *inode,
2510 struct ext3_iloc *iloc, int in_mem)
2511{
43d23f90 2512 ext3_fsblk_t block;
1da177e4
LT
2513 struct buffer_head *bh;
2514
2515 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2516 if (!block)
2517 return -EIO;
2518
2519 bh = sb_getblk(inode->i_sb, block);
2520 if (!bh) {
2521 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2522 "unable to read inode block - "
43d23f90
MC
2523 "inode=%lu, block="E3FSBLK,
2524 inode->i_ino, block);
1da177e4
LT
2525 return -EIO;
2526 }
2527 if (!buffer_uptodate(bh)) {
2528 lock_buffer(bh);
2529 if (buffer_uptodate(bh)) {
2530 /* someone brought it uptodate while we waited */
2531 unlock_buffer(bh);
2532 goto has_buffer;
2533 }
2534
2535 /*
2536 * If we have all information of the inode in memory and this
2537 * is the only valid inode in the block, we need not read the
2538 * block.
2539 */
2540 if (in_mem) {
2541 struct buffer_head *bitmap_bh;
2542 struct ext3_group_desc *desc;
2543 int inodes_per_buffer;
2544 int inode_offset, i;
2545 int block_group;
2546 int start;
2547
2548 block_group = (inode->i_ino - 1) /
2549 EXT3_INODES_PER_GROUP(inode->i_sb);
2550 inodes_per_buffer = bh->b_size /
2551 EXT3_INODE_SIZE(inode->i_sb);
2552 inode_offset = ((inode->i_ino - 1) %
2553 EXT3_INODES_PER_GROUP(inode->i_sb));
2554 start = inode_offset & ~(inodes_per_buffer - 1);
2555
2556 /* Is the inode bitmap in cache? */
2557 desc = ext3_get_group_desc(inode->i_sb,
2558 block_group, NULL);
2559 if (!desc)
2560 goto make_io;
2561
2562 bitmap_bh = sb_getblk(inode->i_sb,
2563 le32_to_cpu(desc->bg_inode_bitmap));
2564 if (!bitmap_bh)
2565 goto make_io;
2566
2567 /*
2568 * If the inode bitmap isn't in cache then the
2569 * optimisation may end up performing two reads instead
2570 * of one, so skip it.
2571 */
2572 if (!buffer_uptodate(bitmap_bh)) {
2573 brelse(bitmap_bh);
2574 goto make_io;
2575 }
2576 for (i = start; i < start + inodes_per_buffer; i++) {
2577 if (i == inode_offset)
2578 continue;
2579 if (ext3_test_bit(i, bitmap_bh->b_data))
2580 break;
2581 }
2582 brelse(bitmap_bh);
2583 if (i == start + inodes_per_buffer) {
2584 /* all other inodes are free, so skip I/O */
2585 memset(bh->b_data, 0, bh->b_size);
2586 set_buffer_uptodate(bh);
2587 unlock_buffer(bh);
2588 goto has_buffer;
2589 }
2590 }
2591
2592make_io:
2593 /*
2594 * There are other valid inodes in the buffer, this inode
2595 * has in-inode xattrs, or we don't have this inode in memory.
2596 * Read the block from disk.
2597 */
2598 get_bh(bh);
2599 bh->b_end_io = end_buffer_read_sync;
caa38fb0 2600 submit_bh(READ_META, bh);
1da177e4
LT
2601 wait_on_buffer(bh);
2602 if (!buffer_uptodate(bh)) {
2603 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2604 "unable to read inode block - "
43d23f90 2605 "inode=%lu, block="E3FSBLK,
1da177e4
LT
2606 inode->i_ino, block);
2607 brelse(bh);
2608 return -EIO;
2609 }
2610 }
2611has_buffer:
2612 iloc->bh = bh;
2613 return 0;
2614}
2615
2616int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2617{
2618 /* We have all inode data except xattrs in memory here. */
2619 return __ext3_get_inode_loc(inode, iloc,
2620 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2621}
2622
2623void ext3_set_inode_flags(struct inode *inode)
2624{
2625 unsigned int flags = EXT3_I(inode)->i_flags;
2626
2627 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2628 if (flags & EXT3_SYNC_FL)
2629 inode->i_flags |= S_SYNC;
2630 if (flags & EXT3_APPEND_FL)
2631 inode->i_flags |= S_APPEND;
2632 if (flags & EXT3_IMMUTABLE_FL)
2633 inode->i_flags |= S_IMMUTABLE;
2634 if (flags & EXT3_NOATIME_FL)
2635 inode->i_flags |= S_NOATIME;
2636 if (flags & EXT3_DIRSYNC_FL)
2637 inode->i_flags |= S_DIRSYNC;
2638}
2639
28be5abb
JK
2640/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2641void ext3_get_inode_flags(struct ext3_inode_info *ei)
2642{
2643 unsigned int flags = ei->vfs_inode.i_flags;
2644
2645 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2646 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2647 if (flags & S_SYNC)
2648 ei->i_flags |= EXT3_SYNC_FL;
2649 if (flags & S_APPEND)
2650 ei->i_flags |= EXT3_APPEND_FL;
2651 if (flags & S_IMMUTABLE)
2652 ei->i_flags |= EXT3_IMMUTABLE_FL;
2653 if (flags & S_NOATIME)
2654 ei->i_flags |= EXT3_NOATIME_FL;
2655 if (flags & S_DIRSYNC)
2656 ei->i_flags |= EXT3_DIRSYNC_FL;
2657}
2658
1da177e4
LT
2659void ext3_read_inode(struct inode * inode)
2660{
2661 struct ext3_iloc iloc;
2662 struct ext3_inode *raw_inode;
2663 struct ext3_inode_info *ei = EXT3_I(inode);
2664 struct buffer_head *bh;
2665 int block;
2666
2667#ifdef CONFIG_EXT3_FS_POSIX_ACL
2668 ei->i_acl = EXT3_ACL_NOT_CACHED;
2669 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2670#endif
2671 ei->i_block_alloc_info = NULL;
2672
2673 if (__ext3_get_inode_loc(inode, &iloc, 0))
2674 goto bad_inode;
2675 bh = iloc.bh;
2676 raw_inode = ext3_raw_inode(&iloc);
2677 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2678 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2679 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2680 if(!(test_opt (inode->i_sb, NO_UID32))) {
2681 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2682 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2683 }
2684 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2685 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
2686 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2687 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2688 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
2689 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2690
2691 ei->i_state = 0;
2692 ei->i_dir_start_lookup = 0;
2693 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2694 /* We now have enough fields to check if the inode was active or not.
2695 * This is needed because nfsd might try to access dead inodes
2696 * the test is that same one that e2fsck uses
2697 * NeilBrown 1999oct15
2698 */
2699 if (inode->i_nlink == 0) {
2700 if (inode->i_mode == 0 ||
2701 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2702 /* this inode is deleted */
2703 brelse (bh);
2704 goto bad_inode;
2705 }
2706 /* The only unlinked inodes we let through here have
2707 * valid i_mode and are being read by the orphan
2708 * recovery code: that's fine, we're about to complete
2709 * the process of deleting those. */
2710 }
1da177e4
LT
2711 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2712 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2713#ifdef EXT3_FRAGMENTS
2714 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2715 ei->i_frag_no = raw_inode->i_frag;
2716 ei->i_frag_size = raw_inode->i_fsize;
2717#endif
2718 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2719 if (!S_ISREG(inode->i_mode)) {
2720 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2721 } else {
2722 inode->i_size |=
2723 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2724 }
2725 ei->i_disksize = inode->i_size;
2726 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2727 ei->i_block_group = iloc.block_group;
2728 /*
2729 * NOTE! The in-memory inode i_data array is in little-endian order
2730 * even on big-endian machines: we do NOT byteswap the block numbers!
2731 */
2732 for (block = 0; block < EXT3_N_BLOCKS; block++)
2733 ei->i_data[block] = raw_inode->i_block[block];
2734 INIT_LIST_HEAD(&ei->i_orphan);
2735
2736 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2737 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2738 /*
2739 * When mke2fs creates big inodes it does not zero out
2740 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2741 * so ignore those first few inodes.
2742 */
2743 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2744 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e4a10a36
KK
2745 EXT3_INODE_SIZE(inode->i_sb)) {
2746 brelse (bh);
1da177e4 2747 goto bad_inode;
e4a10a36 2748 }
1da177e4
LT
2749 if (ei->i_extra_isize == 0) {
2750 /* The extra space is currently unused. Use it. */
2751 ei->i_extra_isize = sizeof(struct ext3_inode) -
2752 EXT3_GOOD_OLD_INODE_SIZE;
2753 } else {
2754 __le32 *magic = (void *)raw_inode +
2755 EXT3_GOOD_OLD_INODE_SIZE +
2756 ei->i_extra_isize;
2757 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2758 ei->i_state |= EXT3_STATE_XATTR;
2759 }
2760 } else
2761 ei->i_extra_isize = 0;
2762
2763 if (S_ISREG(inode->i_mode)) {
2764 inode->i_op = &ext3_file_inode_operations;
2765 inode->i_fop = &ext3_file_operations;
2766 ext3_set_aops(inode);
2767 } else if (S_ISDIR(inode->i_mode)) {
2768 inode->i_op = &ext3_dir_inode_operations;
2769 inode->i_fop = &ext3_dir_operations;
2770 } else if (S_ISLNK(inode->i_mode)) {
2771 if (ext3_inode_is_fast_symlink(inode))
2772 inode->i_op = &ext3_fast_symlink_inode_operations;
2773 else {
2774 inode->i_op = &ext3_symlink_inode_operations;
2775 ext3_set_aops(inode);
2776 }
2777 } else {
2778 inode->i_op = &ext3_special_inode_operations;
2779 if (raw_inode->i_block[0])
2780 init_special_inode(inode, inode->i_mode,
2781 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
ae6ddcc5 2782 else
1da177e4
LT
2783 init_special_inode(inode, inode->i_mode,
2784 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2785 }
2786 brelse (iloc.bh);
2787 ext3_set_inode_flags(inode);
2788 return;
2789
2790bad_inode:
2791 make_bad_inode(inode);
2792 return;
2793}
2794
2795/*
2796 * Post the struct inode info into an on-disk inode location in the
2797 * buffer-cache. This gobbles the caller's reference to the
2798 * buffer_head in the inode location struct.
2799 *
2800 * The caller must have write access to iloc->bh.
2801 */
ae6ddcc5
MC
2802static int ext3_do_update_inode(handle_t *handle,
2803 struct inode *inode,
1da177e4
LT
2804 struct ext3_iloc *iloc)
2805{
2806 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2807 struct ext3_inode_info *ei = EXT3_I(inode);
2808 struct buffer_head *bh = iloc->bh;
2809 int err = 0, rc, block;
2810
2811 /* For fields not not tracking in the in-memory inode,
2812 * initialise them to zero for new inodes. */
2813 if (ei->i_state & EXT3_STATE_NEW)
2814 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2815
28be5abb 2816 ext3_get_inode_flags(ei);
1da177e4
LT
2817 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2818 if(!(test_opt(inode->i_sb, NO_UID32))) {
2819 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2820 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2821/*
2822 * Fix up interoperability with old kernels. Otherwise, old inodes get
2823 * re-used with the upper 16 bits of the uid/gid intact
2824 */
2825 if(!ei->i_dtime) {
2826 raw_inode->i_uid_high =
2827 cpu_to_le16(high_16_bits(inode->i_uid));
2828 raw_inode->i_gid_high =
2829 cpu_to_le16(high_16_bits(inode->i_gid));
2830 } else {
2831 raw_inode->i_uid_high = 0;
2832 raw_inode->i_gid_high = 0;
2833 }
2834 } else {
2835 raw_inode->i_uid_low =
2836 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2837 raw_inode->i_gid_low =
2838 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2839 raw_inode->i_uid_high = 0;
2840 raw_inode->i_gid_high = 0;
2841 }
2842 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2843 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2844 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2845 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2846 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2847 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2848 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2849 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2850#ifdef EXT3_FRAGMENTS
2851 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2852 raw_inode->i_frag = ei->i_frag_no;
2853 raw_inode->i_fsize = ei->i_frag_size;
2854#endif
2855 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2856 if (!S_ISREG(inode->i_mode)) {
2857 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2858 } else {
2859 raw_inode->i_size_high =
2860 cpu_to_le32(ei->i_disksize >> 32);
2861 if (ei->i_disksize > 0x7fffffffULL) {
2862 struct super_block *sb = inode->i_sb;
2863 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2864 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2865 EXT3_SB(sb)->s_es->s_rev_level ==
2866 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2867 /* If this is the first large file
2868 * created, add a flag to the superblock.
2869 */
2870 err = ext3_journal_get_write_access(handle,
2871 EXT3_SB(sb)->s_sbh);
2872 if (err)
2873 goto out_brelse;
2874 ext3_update_dynamic_rev(sb);
2875 EXT3_SET_RO_COMPAT_FEATURE(sb,
2876 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2877 sb->s_dirt = 1;
2878 handle->h_sync = 1;
2879 err = ext3_journal_dirty_metadata(handle,
2880 EXT3_SB(sb)->s_sbh);
2881 }
2882 }
2883 }
2884 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2885 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2886 if (old_valid_dev(inode->i_rdev)) {
2887 raw_inode->i_block[0] =
2888 cpu_to_le32(old_encode_dev(inode->i_rdev));
2889 raw_inode->i_block[1] = 0;
2890 } else {
2891 raw_inode->i_block[0] = 0;
2892 raw_inode->i_block[1] =
2893 cpu_to_le32(new_encode_dev(inode->i_rdev));
2894 raw_inode->i_block[2] = 0;
2895 }
2896 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2897 raw_inode->i_block[block] = ei->i_data[block];
2898
ff87b37d 2899 if (ei->i_extra_isize)
1da177e4
LT
2900 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2901
2902 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2903 rc = ext3_journal_dirty_metadata(handle, bh);
2904 if (!err)
2905 err = rc;
2906 ei->i_state &= ~EXT3_STATE_NEW;
2907
2908out_brelse:
2909 brelse (bh);
2910 ext3_std_error(inode->i_sb, err);
2911 return err;
2912}
2913
2914/*
2915 * ext3_write_inode()
2916 *
2917 * We are called from a few places:
2918 *
2919 * - Within generic_file_write() for O_SYNC files.
2920 * Here, there will be no transaction running. We wait for any running
2921 * trasnaction to commit.
2922 *
2923 * - Within sys_sync(), kupdate and such.
2924 * We wait on commit, if tol to.
2925 *
2926 * - Within prune_icache() (PF_MEMALLOC == true)
2927 * Here we simply return. We can't afford to block kswapd on the
2928 * journal commit.
2929 *
2930 * In all cases it is actually safe for us to return without doing anything,
2931 * because the inode has been copied into a raw inode buffer in
2932 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2933 * knfsd.
2934 *
2935 * Note that we are absolutely dependent upon all inode dirtiers doing the
2936 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2937 * which we are interested.
2938 *
2939 * It would be a bug for them to not do this. The code:
2940 *
2941 * mark_inode_dirty(inode)
2942 * stuff();
2943 * inode->i_size = expr;
2944 *
2945 * is in error because a kswapd-driven write_inode() could occur while
2946 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2947 * will no longer be on the superblock's dirty inode list.
2948 */
2949int ext3_write_inode(struct inode *inode, int wait)
2950{
2951 if (current->flags & PF_MEMALLOC)
2952 return 0;
2953
2954 if (ext3_journal_current_handle()) {
9ad163ae 2955 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
1da177e4
LT
2956 dump_stack();
2957 return -EIO;
2958 }
2959
2960 if (!wait)
2961 return 0;
2962
2963 return ext3_force_commit(inode->i_sb);
2964}
2965
2966/*
2967 * ext3_setattr()
2968 *
2969 * Called from notify_change.
2970 *
2971 * We want to trap VFS attempts to truncate the file as soon as
2972 * possible. In particular, we want to make sure that when the VFS
2973 * shrinks i_size, we put the inode on the orphan list and modify
2974 * i_disksize immediately, so that during the subsequent flushing of
2975 * dirty pages and freeing of disk blocks, we can guarantee that any
2976 * commit will leave the blocks being flushed in an unused state on
2977 * disk. (On recovery, the inode will get truncated and the blocks will
2978 * be freed, so we have a strong guarantee that no future commit will
ae6ddcc5 2979 * leave these blocks visible to the user.)
1da177e4
LT
2980 *
2981 * Called with inode->sem down.
2982 */
2983int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2984{
2985 struct inode *inode = dentry->d_inode;
2986 int error, rc = 0;
2987 const unsigned int ia_valid = attr->ia_valid;
2988
2989 error = inode_change_ok(inode, attr);
2990 if (error)
2991 return error;
2992
2993 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2994 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2995 handle_t *handle;
2996
2997 /* (user+group)*(old+new) structure, inode write (sb,
2998 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
2999 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3000 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
3001 if (IS_ERR(handle)) {
3002 error = PTR_ERR(handle);
3003 goto err_out;
3004 }
3005 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3006 if (error) {
3007 ext3_journal_stop(handle);
3008 return error;
3009 }
3010 /* Update corresponding info in inode so that everything is in
3011 * one transaction */
3012 if (attr->ia_valid & ATTR_UID)
3013 inode->i_uid = attr->ia_uid;
3014 if (attr->ia_valid & ATTR_GID)
3015 inode->i_gid = attr->ia_gid;
3016 error = ext3_mark_inode_dirty(handle, inode);
3017 ext3_journal_stop(handle);
3018 }
3019
3020 if (S_ISREG(inode->i_mode) &&
3021 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3022 handle_t *handle;
3023
3024 handle = ext3_journal_start(inode, 3);
3025 if (IS_ERR(handle)) {
3026 error = PTR_ERR(handle);
3027 goto err_out;
3028 }
3029
3030 error = ext3_orphan_add(handle, inode);
3031 EXT3_I(inode)->i_disksize = attr->ia_size;
3032 rc = ext3_mark_inode_dirty(handle, inode);
3033 if (!error)
3034 error = rc;
3035 ext3_journal_stop(handle);
3036 }
3037
3038 rc = inode_setattr(inode, attr);
3039
3040 /* If inode_setattr's call to ext3_truncate failed to get a
3041 * transaction handle at all, we need to clean up the in-core
3042 * orphan list manually. */
3043 if (inode->i_nlink)
3044 ext3_orphan_del(NULL, inode);
3045
3046 if (!rc && (ia_valid & ATTR_MODE))
3047 rc = ext3_acl_chmod(inode);
3048
3049err_out:
3050 ext3_std_error(inode->i_sb, error);
3051 if (!error)
3052 error = rc;
3053 return error;
3054}
3055
3056
3057/*
d6859bfc 3058 * How many blocks doth make a writepage()?
1da177e4
LT
3059 *
3060 * With N blocks per page, it may be:
3061 * N data blocks
3062 * 2 indirect block
3063 * 2 dindirect
3064 * 1 tindirect
3065 * N+5 bitmap blocks (from the above)
3066 * N+5 group descriptor summary blocks
3067 * 1 inode block
3068 * 1 superblock.
3069 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3070 *
3071 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3072 *
3073 * With ordered or writeback data it's the same, less the N data blocks.
3074 *
3075 * If the inode's direct blocks can hold an integral number of pages then a
3076 * page cannot straddle two indirect blocks, and we can only touch one indirect
3077 * and dindirect block, and the "5" above becomes "3".
3078 *
3079 * This still overestimates under most circumstances. If we were to pass the
3080 * start and end offsets in here as well we could do block_to_path() on each
3081 * block and work out the exact number of indirects which are touched. Pah.
3082 */
3083
3084static int ext3_writepage_trans_blocks(struct inode *inode)
3085{
3086 int bpp = ext3_journal_blocks_per_page(inode);
3087 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3088 int ret;
3089
3090 if (ext3_should_journal_data(inode))
3091 ret = 3 * (bpp + indirects) + 2;
3092 else
3093 ret = 2 * (bpp + indirects) + 2;
3094
3095#ifdef CONFIG_QUOTA
3096 /* We know that structure was already allocated during DQUOT_INIT so
3097 * we will be updating only the data blocks + inodes */
1f54587b 3098 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
3099#endif
3100
3101 return ret;
3102}
3103
3104/*
3105 * The caller must have previously called ext3_reserve_inode_write().
3106 * Give this, we know that the caller already has write access to iloc->bh.
3107 */
3108int ext3_mark_iloc_dirty(handle_t *handle,
3109 struct inode *inode, struct ext3_iloc *iloc)
3110{
3111 int err = 0;
3112
3113 /* the do_update_inode consumes one bh->b_count */
3114 get_bh(iloc->bh);
3115
3116 /* ext3_do_update_inode() does journal_dirty_metadata */
3117 err = ext3_do_update_inode(handle, inode, iloc);
3118 put_bh(iloc->bh);
3119 return err;
3120}
3121
ae6ddcc5 3122/*
1da177e4 3123 * On success, We end up with an outstanding reference count against
ae6ddcc5 3124 * iloc->bh. This _must_ be cleaned up later.
1da177e4
LT
3125 */
3126
3127int
ae6ddcc5 3128ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
1da177e4
LT
3129 struct ext3_iloc *iloc)
3130{
3131 int err = 0;
3132 if (handle) {
3133 err = ext3_get_inode_loc(inode, iloc);
3134 if (!err) {
3135 BUFFER_TRACE(iloc->bh, "get_write_access");
3136 err = ext3_journal_get_write_access(handle, iloc->bh);
3137 if (err) {
3138 brelse(iloc->bh);
3139 iloc->bh = NULL;
3140 }
3141 }
3142 }
3143 ext3_std_error(inode->i_sb, err);
3144 return err;
3145}
3146
3147/*
d6859bfc
AM
3148 * What we do here is to mark the in-core inode as clean with respect to inode
3149 * dirtiness (it may still be data-dirty).
1da177e4
LT
3150 * This means that the in-core inode may be reaped by prune_icache
3151 * without having to perform any I/O. This is a very good thing,
3152 * because *any* task may call prune_icache - even ones which
3153 * have a transaction open against a different journal.
3154 *
3155 * Is this cheating? Not really. Sure, we haven't written the
3156 * inode out, but prune_icache isn't a user-visible syncing function.
3157 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3158 * we start and wait on commits.
3159 *
3160 * Is this efficient/effective? Well, we're being nice to the system
3161 * by cleaning up our inodes proactively so they can be reaped
3162 * without I/O. But we are potentially leaving up to five seconds'
3163 * worth of inodes floating about which prune_icache wants us to
3164 * write out. One way to fix that would be to get prune_icache()
3165 * to do a write_super() to free up some memory. It has the desired
3166 * effect.
3167 */
3168int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3169{
3170 struct ext3_iloc iloc;
3171 int err;
3172
3173 might_sleep();
3174 err = ext3_reserve_inode_write(handle, inode, &iloc);
3175 if (!err)
3176 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3177 return err;
3178}
3179
3180/*
d6859bfc 3181 * ext3_dirty_inode() is called from __mark_inode_dirty()
1da177e4
LT
3182 *
3183 * We're really interested in the case where a file is being extended.
3184 * i_size has been changed by generic_commit_write() and we thus need
3185 * to include the updated inode in the current transaction.
3186 *
3187 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3188 * are allocated to the file.
3189 *
3190 * If the inode is marked synchronous, we don't honour that here - doing
3191 * so would cause a commit on atime updates, which we don't bother doing.
3192 * We handle synchronous inodes at the highest possible level.
3193 */
3194void ext3_dirty_inode(struct inode *inode)
3195{
3196 handle_t *current_handle = ext3_journal_current_handle();
3197 handle_t *handle;
3198
3199 handle = ext3_journal_start(inode, 2);
3200 if (IS_ERR(handle))
3201 goto out;
3202 if (current_handle &&
3203 current_handle->h_transaction != handle->h_transaction) {
3204 /* This task has a transaction open against a different fs */
3205 printk(KERN_EMERG "%s: transactions do not match!\n",
3206 __FUNCTION__);
3207 } else {
3208 jbd_debug(5, "marking dirty. outer handle=%p\n",
3209 current_handle);
3210 ext3_mark_inode_dirty(handle, inode);
3211 }
3212 ext3_journal_stop(handle);
3213out:
3214 return;
3215}
3216
d6859bfc 3217#if 0
ae6ddcc5 3218/*
1da177e4
LT
3219 * Bind an inode's backing buffer_head into this transaction, to prevent
3220 * it from being flushed to disk early. Unlike
3221 * ext3_reserve_inode_write, this leaves behind no bh reference and
3222 * returns no iloc structure, so the caller needs to repeat the iloc
3223 * lookup to mark the inode dirty later.
3224 */
d6859bfc 3225static int ext3_pin_inode(handle_t *handle, struct inode *inode)
1da177e4
LT
3226{
3227 struct ext3_iloc iloc;
3228
3229 int err = 0;
3230 if (handle) {
3231 err = ext3_get_inode_loc(inode, &iloc);
3232 if (!err) {
3233 BUFFER_TRACE(iloc.bh, "get_write_access");
3234 err = journal_get_write_access(handle, iloc.bh);
3235 if (!err)
ae6ddcc5 3236 err = ext3_journal_dirty_metadata(handle,
1da177e4
LT
3237 iloc.bh);
3238 brelse(iloc.bh);
3239 }
3240 }
3241 ext3_std_error(inode->i_sb, err);
3242 return err;
3243}
3244#endif
3245
3246int ext3_change_inode_journal_flag(struct inode *inode, int val)
3247{
3248 journal_t *journal;
3249 handle_t *handle;
3250 int err;
3251
3252 /*
3253 * We have to be very careful here: changing a data block's
3254 * journaling status dynamically is dangerous. If we write a
3255 * data block to the journal, change the status and then delete
3256 * that block, we risk forgetting to revoke the old log record
3257 * from the journal and so a subsequent replay can corrupt data.
3258 * So, first we make sure that the journal is empty and that
3259 * nobody is changing anything.
3260 */
3261
3262 journal = EXT3_JOURNAL(inode);
e3a68e30 3263 if (is_journal_aborted(journal))
1da177e4
LT
3264 return -EROFS;
3265
3266 journal_lock_updates(journal);
3267 journal_flush(journal);
3268
3269 /*
3270 * OK, there are no updates running now, and all cached data is
3271 * synced to disk. We are now in a completely consistent state
3272 * which doesn't have anything in the journal, and we know that
3273 * no filesystem updates are running, so it is safe to modify
3274 * the inode's in-core data-journaling state flag now.
3275 */
3276
3277 if (val)
3278 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3279 else
3280 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3281 ext3_set_aops(inode);
3282
3283 journal_unlock_updates(journal);
3284
3285 /* Finally we can mark the inode as dirty. */
3286
3287 handle = ext3_journal_start(inode, 1);
3288 if (IS_ERR(handle))
3289 return PTR_ERR(handle);
3290
3291 err = ext3_mark_inode_dirty(handle, inode);
3292 handle->h_sync = 1;
3293 ext3_journal_stop(handle);
3294 ext3_std_error(inode->i_sb, err);
3295
3296 return err;
3297}