]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/crypto.c
ext4 crypto: allocate the right amount of memory for the on-disk symlink
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / crypto.c
CommitLineData
b30ab0e0
MH
1/*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
21#include <crypto/hash.h>
22#include <crypto/sha.h>
23#include <keys/user-type.h>
24#include <keys/encrypted-type.h>
25#include <linux/crypto.h>
26#include <linux/ecryptfs.h>
27#include <linux/gfp.h>
28#include <linux/kernel.h>
29#include <linux/key.h>
30#include <linux/list.h>
31#include <linux/mempool.h>
32#include <linux/module.h>
33#include <linux/mutex.h>
34#include <linux/random.h>
35#include <linux/scatterlist.h>
36#include <linux/spinlock_types.h>
37
38#include "ext4_extents.h"
39#include "xattr.h"
40
41/* Encryption added and removed here! (L: */
42
43static unsigned int num_prealloc_crypto_pages = 32;
44static unsigned int num_prealloc_crypto_ctxs = 128;
45
46module_param(num_prealloc_crypto_pages, uint, 0444);
47MODULE_PARM_DESC(num_prealloc_crypto_pages,
48 "Number of crypto pages to preallocate");
49module_param(num_prealloc_crypto_ctxs, uint, 0444);
50MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
51 "Number of crypto contexts to preallocate");
52
53static mempool_t *ext4_bounce_page_pool;
54
55static LIST_HEAD(ext4_free_crypto_ctxs);
56static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
57
8ee03714
TT
58static struct kmem_cache *ext4_crypto_ctx_cachep;
59struct kmem_cache *ext4_crypt_info_cachep;
60
b30ab0e0
MH
61/**
62 * ext4_release_crypto_ctx() - Releases an encryption context
63 * @ctx: The encryption context to release.
64 *
65 * If the encryption context was allocated from the pre-allocated pool, returns
66 * it to that pool. Else, frees it.
67 *
68 * If there's a bounce page in the context, this frees that.
69 */
70void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
71{
72 unsigned long flags;
73
614def70 74 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) {
b30ab0e0 75 if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
614def70 76 __free_page(ctx->w.bounce_page);
b30ab0e0 77 else
614def70 78 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
b30ab0e0 79 }
614def70
TT
80 ctx->w.bounce_page = NULL;
81 ctx->w.control_page = NULL;
b30ab0e0 82 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
8ee03714 83 kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
b30ab0e0
MH
84 } else {
85 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
86 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
87 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
88 }
89}
90
b30ab0e0
MH
91/**
92 * ext4_get_crypto_ctx() - Gets an encryption context
93 * @inode: The inode for which we are doing the crypto
94 *
95 * Allocates and initializes an encryption context.
96 *
97 * Return: An allocated and initialized encryption context on success; error
98 * value or NULL otherwise.
99 */
100struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
101{
102 struct ext4_crypto_ctx *ctx = NULL;
103 int res = 0;
104 unsigned long flags;
b7236e21 105 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
b30ab0e0 106
b7236e21 107 BUG_ON(ci == NULL);
b30ab0e0
MH
108
109 /*
110 * We first try getting the ctx from a free list because in
111 * the common case the ctx will have an allocated and
112 * initialized crypto tfm, so it's probably a worthwhile
113 * optimization. For the bounce page, we first try getting it
114 * from the kernel allocator because that's just about as fast
115 * as getting it from a list and because a cache of free pages
116 * should generally be a "last resort" option for a filesystem
117 * to be able to do its job.
118 */
119 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
120 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
121 struct ext4_crypto_ctx, free_list);
122 if (ctx)
123 list_del(&ctx->free_list);
124 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
125 if (!ctx) {
8ee03714
TT
126 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
127 if (!ctx) {
128 res = -ENOMEM;
b30ab0e0
MH
129 goto out;
130 }
131 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
132 } else {
133 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
134 }
614def70 135 ctx->flags &= ~EXT4_WRITE_PATH_FL;
b30ab0e0 136
b30ab0e0
MH
137out:
138 if (res) {
139 if (!IS_ERR_OR_NULL(ctx))
140 ext4_release_crypto_ctx(ctx);
141 ctx = ERR_PTR(res);
142 }
143 return ctx;
144}
145
146struct workqueue_struct *ext4_read_workqueue;
147static DEFINE_MUTEX(crypto_init);
148
149/**
150 * ext4_exit_crypto() - Shutdown the ext4 encryption system
151 */
152void ext4_exit_crypto(void)
153{
154 struct ext4_crypto_ctx *pos, *n;
155
c936e1ec 156 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
8ee03714 157 kmem_cache_free(ext4_crypto_ctx_cachep, pos);
b30ab0e0
MH
158 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
159 if (ext4_bounce_page_pool)
160 mempool_destroy(ext4_bounce_page_pool);
161 ext4_bounce_page_pool = NULL;
162 if (ext4_read_workqueue)
163 destroy_workqueue(ext4_read_workqueue);
164 ext4_read_workqueue = NULL;
8ee03714
TT
165 if (ext4_crypto_ctx_cachep)
166 kmem_cache_destroy(ext4_crypto_ctx_cachep);
167 ext4_crypto_ctx_cachep = NULL;
168 if (ext4_crypt_info_cachep)
169 kmem_cache_destroy(ext4_crypt_info_cachep);
170 ext4_crypt_info_cachep = NULL;
b30ab0e0
MH
171}
172
173/**
174 * ext4_init_crypto() - Set up for ext4 encryption.
175 *
176 * We only call this when we start accessing encrypted files, since it
177 * results in memory getting allocated that wouldn't otherwise be used.
178 *
179 * Return: Zero on success, non-zero otherwise.
180 */
181int ext4_init_crypto(void)
182{
8ee03714 183 int i, res = -ENOMEM;
b30ab0e0
MH
184
185 mutex_lock(&crypto_init);
186 if (ext4_read_workqueue)
187 goto already_initialized;
188 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
8ee03714
TT
189 if (!ext4_read_workqueue)
190 goto fail;
191
192 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
193 SLAB_RECLAIM_ACCOUNT);
194 if (!ext4_crypto_ctx_cachep)
195 goto fail;
196
197 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
198 SLAB_RECLAIM_ACCOUNT);
199 if (!ext4_crypt_info_cachep)
b30ab0e0 200 goto fail;
b30ab0e0
MH
201
202 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
203 struct ext4_crypto_ctx *ctx;
204
8ee03714
TT
205 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
206 if (!ctx) {
207 res = -ENOMEM;
b30ab0e0
MH
208 goto fail;
209 }
210 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
211 }
212
213 ext4_bounce_page_pool =
214 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
215 if (!ext4_bounce_page_pool) {
216 res = -ENOMEM;
217 goto fail;
218 }
219already_initialized:
220 mutex_unlock(&crypto_init);
221 return 0;
222fail:
223 ext4_exit_crypto();
224 mutex_unlock(&crypto_init);
225 return res;
226}
227
228void ext4_restore_control_page(struct page *data_page)
229{
230 struct ext4_crypto_ctx *ctx =
231 (struct ext4_crypto_ctx *)page_private(data_page);
232
233 set_page_private(data_page, (unsigned long)NULL);
234 ClearPagePrivate(data_page);
235 unlock_page(data_page);
236 ext4_release_crypto_ctx(ctx);
237}
238
239/**
240 * ext4_crypt_complete() - The completion callback for page encryption
241 * @req: The asynchronous encryption request context
242 * @res: The result of the encryption operation
243 */
244static void ext4_crypt_complete(struct crypto_async_request *req, int res)
245{
246 struct ext4_completion_result *ecr = req->data;
247
248 if (res == -EINPROGRESS)
249 return;
250 ecr->res = res;
251 complete(&ecr->completion);
252}
253
254typedef enum {
255 EXT4_DECRYPT = 0,
256 EXT4_ENCRYPT,
257} ext4_direction_t;
258
259static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
260 struct inode *inode,
261 ext4_direction_t rw,
262 pgoff_t index,
263 struct page *src_page,
264 struct page *dest_page)
265
266{
267 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
268 struct ablkcipher_request *req = NULL;
269 DECLARE_EXT4_COMPLETION_RESULT(ecr);
270 struct scatterlist dst, src;
c936e1ec
TT
271 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
272 struct crypto_ablkcipher *tfm = ci->ci_ctfm;
b30ab0e0
MH
273 int res = 0;
274
c936e1ec 275 req = ablkcipher_request_alloc(tfm, GFP_NOFS);
b30ab0e0
MH
276 if (!req) {
277 printk_ratelimited(KERN_ERR
278 "%s: crypto_request_alloc() failed\n",
279 __func__);
280 return -ENOMEM;
281 }
282 ablkcipher_request_set_callback(
283 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
284 ext4_crypt_complete, &ecr);
285
286 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
287 memcpy(xts_tweak, &index, sizeof(index));
288 memset(&xts_tweak[sizeof(index)], 0,
289 EXT4_XTS_TWEAK_SIZE - sizeof(index));
290
291 sg_init_table(&dst, 1);
292 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
293 sg_init_table(&src, 1);
294 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
295 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
296 xts_tweak);
297 if (rw == EXT4_DECRYPT)
298 res = crypto_ablkcipher_decrypt(req);
299 else
300 res = crypto_ablkcipher_encrypt(req);
301 if (res == -EINPROGRESS || res == -EBUSY) {
302 BUG_ON(req->base.data != &ecr);
303 wait_for_completion(&ecr.completion);
304 res = ecr.res;
305 }
306 ablkcipher_request_free(req);
307 if (res) {
308 printk_ratelimited(
309 KERN_ERR
310 "%s: crypto_ablkcipher_encrypt() returned %d\n",
311 __func__, res);
312 return res;
313 }
314 return 0;
315}
316
95ea68b4
TT
317static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx)
318{
319 struct page *ciphertext_page = alloc_page(GFP_NOFS);
320
321 if (!ciphertext_page) {
322 /* This is a potential bottleneck, but at least we'll have
323 * forward progress. */
324 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
325 GFP_NOFS);
326 if (ciphertext_page == NULL)
327 return ERR_PTR(-ENOMEM);
328 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
329 } else {
330 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
331 }
332 ctx->flags |= EXT4_WRITE_PATH_FL;
333 ctx->w.bounce_page = ciphertext_page;
334 return ciphertext_page;
335}
336
b30ab0e0
MH
337/**
338 * ext4_encrypt() - Encrypts a page
339 * @inode: The inode for which the encryption should take place
340 * @plaintext_page: The page to encrypt. Must be locked.
341 *
342 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
343 * encryption context.
344 *
345 * Called on the page write path. The caller must call
346 * ext4_restore_control_page() on the returned ciphertext page to
347 * release the bounce buffer and the encryption context.
348 *
349 * Return: An allocated page with the encrypted content on success. Else, an
350 * error value or NULL.
351 */
352struct page *ext4_encrypt(struct inode *inode,
353 struct page *plaintext_page)
354{
355 struct ext4_crypto_ctx *ctx;
356 struct page *ciphertext_page = NULL;
357 int err;
358
359 BUG_ON(!PageLocked(plaintext_page));
360
361 ctx = ext4_get_crypto_ctx(inode);
362 if (IS_ERR(ctx))
363 return (struct page *) ctx;
364
365 /* The encryption operation will require a bounce page. */
95ea68b4
TT
366 ciphertext_page = alloc_bounce_page(ctx);
367 if (IS_ERR(ciphertext_page))
368 goto errout;
614def70 369 ctx->w.control_page = plaintext_page;
b30ab0e0
MH
370 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
371 plaintext_page, ciphertext_page);
372 if (err) {
95ea68b4
TT
373 ciphertext_page = ERR_PTR(err);
374 errout:
b30ab0e0 375 ext4_release_crypto_ctx(ctx);
95ea68b4 376 return ciphertext_page;
b30ab0e0
MH
377 }
378 SetPagePrivate(ciphertext_page);
379 set_page_private(ciphertext_page, (unsigned long)ctx);
380 lock_page(ciphertext_page);
381 return ciphertext_page;
382}
383
384/**
385 * ext4_decrypt() - Decrypts a page in-place
386 * @ctx: The encryption context.
387 * @page: The page to decrypt. Must be locked.
388 *
389 * Decrypts page in-place using the ctx encryption context.
390 *
391 * Called from the read completion callback.
392 *
393 * Return: Zero on success, non-zero otherwise.
394 */
395int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
396{
397 BUG_ON(!PageLocked(page));
398
399 return ext4_page_crypto(ctx, page->mapping->host,
400 EXT4_DECRYPT, page->index, page, page);
401}
402
403/*
404 * Convenience function which takes care of allocating and
405 * deallocating the encryption context
406 */
407int ext4_decrypt_one(struct inode *inode, struct page *page)
408{
409 int ret;
410
411 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
412
413 if (!ctx)
414 return -ENOMEM;
415 ret = ext4_decrypt(ctx, page);
416 ext4_release_crypto_ctx(ctx);
417 return ret;
418}
419
420int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
421{
422 struct ext4_crypto_ctx *ctx;
423 struct page *ciphertext_page = NULL;
424 struct bio *bio;
425 ext4_lblk_t lblk = ex->ee_block;
426 ext4_fsblk_t pblk = ext4_ext_pblock(ex);
427 unsigned int len = ext4_ext_get_actual_len(ex);
428 int err = 0;
429
430 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
431
432 ctx = ext4_get_crypto_ctx(inode);
433 if (IS_ERR(ctx))
434 return PTR_ERR(ctx);
435
95ea68b4
TT
436 ciphertext_page = alloc_bounce_page(ctx);
437 if (IS_ERR(ciphertext_page)) {
438 err = PTR_ERR(ciphertext_page);
439 goto errout;
b30ab0e0 440 }
b30ab0e0
MH
441
442 while (len--) {
443 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
444 ZERO_PAGE(0), ciphertext_page);
445 if (err)
446 goto errout;
447
448 bio = bio_alloc(GFP_KERNEL, 1);
449 if (!bio) {
450 err = -ENOMEM;
451 goto errout;
452 }
453 bio->bi_bdev = inode->i_sb->s_bdev;
454 bio->bi_iter.bi_sector = pblk;
455 err = bio_add_page(bio, ciphertext_page,
456 inode->i_sb->s_blocksize, 0);
457 if (err) {
458 bio_put(bio);
459 goto errout;
460 }
461 err = submit_bio_wait(WRITE, bio);
95ea68b4 462 bio_put(bio);
b30ab0e0
MH
463 if (err)
464 goto errout;
465 }
466 err = 0;
467errout:
468 ext4_release_crypto_ctx(ctx);
469 return err;
470}
471
472bool ext4_valid_contents_enc_mode(uint32_t mode)
473{
474 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
475}
476
477/**
478 * ext4_validate_encryption_key_size() - Validate the encryption key size
479 * @mode: The key mode.
480 * @size: The key size to validate.
481 *
482 * Return: The validated key size for @mode. Zero if invalid.
483 */
484uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
485{
486 if (size == ext4_encryption_key_size(mode))
487 return size;
488 return 0;
489}