]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/crypto.c
ext4: clean up superblock encryption mode fields
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / crypto.c
CommitLineData
b30ab0e0
MH
1/*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
21#include <crypto/hash.h>
22#include <crypto/sha.h>
23#include <keys/user-type.h>
24#include <keys/encrypted-type.h>
25#include <linux/crypto.h>
26#include <linux/ecryptfs.h>
27#include <linux/gfp.h>
28#include <linux/kernel.h>
29#include <linux/key.h>
30#include <linux/list.h>
31#include <linux/mempool.h>
32#include <linux/module.h>
33#include <linux/mutex.h>
34#include <linux/random.h>
35#include <linux/scatterlist.h>
36#include <linux/spinlock_types.h>
37
38#include "ext4_extents.h"
39#include "xattr.h"
40
41/* Encryption added and removed here! (L: */
42
43static unsigned int num_prealloc_crypto_pages = 32;
44static unsigned int num_prealloc_crypto_ctxs = 128;
45
46module_param(num_prealloc_crypto_pages, uint, 0444);
47MODULE_PARM_DESC(num_prealloc_crypto_pages,
48 "Number of crypto pages to preallocate");
49module_param(num_prealloc_crypto_ctxs, uint, 0444);
50MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
51 "Number of crypto contexts to preallocate");
52
53static mempool_t *ext4_bounce_page_pool;
54
55static LIST_HEAD(ext4_free_crypto_ctxs);
56static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
57
58/**
59 * ext4_release_crypto_ctx() - Releases an encryption context
60 * @ctx: The encryption context to release.
61 *
62 * If the encryption context was allocated from the pre-allocated pool, returns
63 * it to that pool. Else, frees it.
64 *
65 * If there's a bounce page in the context, this frees that.
66 */
67void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
68{
69 unsigned long flags;
70
71 if (ctx->bounce_page) {
72 if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
73 __free_page(ctx->bounce_page);
74 else
75 mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
76 ctx->bounce_page = NULL;
77 }
78 ctx->control_page = NULL;
79 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
80 if (ctx->tfm)
81 crypto_free_tfm(ctx->tfm);
82 kfree(ctx);
83 } else {
84 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
85 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
86 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
87 }
88}
89
90/**
91 * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
92 * @mask: The allocation mask.
93 *
94 * Return: An allocated and initialized encryption context on success. An error
95 * value or NULL otherwise.
96 */
97static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask)
98{
99 struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
100 mask);
101
102 if (!ctx)
103 return ERR_PTR(-ENOMEM);
104 return ctx;
105}
106
107/**
108 * ext4_get_crypto_ctx() - Gets an encryption context
109 * @inode: The inode for which we are doing the crypto
110 *
111 * Allocates and initializes an encryption context.
112 *
113 * Return: An allocated and initialized encryption context on success; error
114 * value or NULL otherwise.
115 */
116struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
117{
118 struct ext4_crypto_ctx *ctx = NULL;
119 int res = 0;
120 unsigned long flags;
b7236e21 121 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
b30ab0e0 122
b7236e21 123 BUG_ON(ci == NULL);
b30ab0e0
MH
124 if (!ext4_read_workqueue)
125 ext4_init_crypto();
126
127 /*
128 * We first try getting the ctx from a free list because in
129 * the common case the ctx will have an allocated and
130 * initialized crypto tfm, so it's probably a worthwhile
131 * optimization. For the bounce page, we first try getting it
132 * from the kernel allocator because that's just about as fast
133 * as getting it from a list and because a cache of free pages
134 * should generally be a "last resort" option for a filesystem
135 * to be able to do its job.
136 */
137 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
138 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
139 struct ext4_crypto_ctx, free_list);
140 if (ctx)
141 list_del(&ctx->free_list);
142 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
143 if (!ctx) {
144 ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
145 if (IS_ERR(ctx)) {
146 res = PTR_ERR(ctx);
147 goto out;
148 }
149 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
150 } else {
151 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
152 }
153
154 /* Allocate a new Crypto API context if we don't already have
155 * one or if it isn't the right mode. */
e2881b1b
TT
156 BUG_ON(ci->ci_mode == EXT4_ENCRYPTION_MODE_INVALID);
157 if (ctx->tfm && (ctx->mode != ci->ci_mode)) {
b30ab0e0
MH
158 crypto_free_tfm(ctx->tfm);
159 ctx->tfm = NULL;
160 ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
161 }
162 if (!ctx->tfm) {
e2881b1b 163 switch (ci->ci_mode) {
b30ab0e0
MH
164 case EXT4_ENCRYPTION_MODE_AES_256_XTS:
165 ctx->tfm = crypto_ablkcipher_tfm(
166 crypto_alloc_ablkcipher("xts(aes)", 0, 0));
167 break;
168 case EXT4_ENCRYPTION_MODE_AES_256_GCM:
169 /* TODO(mhalcrow): AEAD w/ gcm(aes);
170 * crypto_aead_setauthsize() */
171 ctx->tfm = ERR_PTR(-ENOTSUPP);
172 break;
173 default:
174 BUG();
175 }
176 if (IS_ERR_OR_NULL(ctx->tfm)) {
177 res = PTR_ERR(ctx->tfm);
178 ctx->tfm = NULL;
179 goto out;
180 }
e2881b1b 181 ctx->mode = ci->ci_mode;
b30ab0e0 182 }
e2881b1b 183 BUG_ON(ci->ci_size != ext4_encryption_key_size(ci->ci_mode));
b30ab0e0
MH
184
185 /* There shouldn't be a bounce page attached to the crypto
186 * context at this point. */
187 BUG_ON(ctx->bounce_page);
188
189out:
190 if (res) {
191 if (!IS_ERR_OR_NULL(ctx))
192 ext4_release_crypto_ctx(ctx);
193 ctx = ERR_PTR(res);
194 }
195 return ctx;
196}
197
198struct workqueue_struct *ext4_read_workqueue;
199static DEFINE_MUTEX(crypto_init);
200
201/**
202 * ext4_exit_crypto() - Shutdown the ext4 encryption system
203 */
204void ext4_exit_crypto(void)
205{
206 struct ext4_crypto_ctx *pos, *n;
207
208 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
209 if (pos->bounce_page) {
210 if (pos->flags &
211 EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
212 __free_page(pos->bounce_page);
213 } else {
214 mempool_free(pos->bounce_page,
215 ext4_bounce_page_pool);
216 }
217 }
218 if (pos->tfm)
219 crypto_free_tfm(pos->tfm);
220 kfree(pos);
221 }
222 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
223 if (ext4_bounce_page_pool)
224 mempool_destroy(ext4_bounce_page_pool);
225 ext4_bounce_page_pool = NULL;
226 if (ext4_read_workqueue)
227 destroy_workqueue(ext4_read_workqueue);
228 ext4_read_workqueue = NULL;
229}
230
231/**
232 * ext4_init_crypto() - Set up for ext4 encryption.
233 *
234 * We only call this when we start accessing encrypted files, since it
235 * results in memory getting allocated that wouldn't otherwise be used.
236 *
237 * Return: Zero on success, non-zero otherwise.
238 */
239int ext4_init_crypto(void)
240{
241 int i, res;
242
243 mutex_lock(&crypto_init);
244 if (ext4_read_workqueue)
245 goto already_initialized;
246 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
247 if (!ext4_read_workqueue) {
248 res = -ENOMEM;
249 goto fail;
250 }
251
252 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
253 struct ext4_crypto_ctx *ctx;
254
255 ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
256 if (IS_ERR(ctx)) {
257 res = PTR_ERR(ctx);
258 goto fail;
259 }
260 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
261 }
262
263 ext4_bounce_page_pool =
264 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
265 if (!ext4_bounce_page_pool) {
266 res = -ENOMEM;
267 goto fail;
268 }
269already_initialized:
270 mutex_unlock(&crypto_init);
271 return 0;
272fail:
273 ext4_exit_crypto();
274 mutex_unlock(&crypto_init);
275 return res;
276}
277
278void ext4_restore_control_page(struct page *data_page)
279{
280 struct ext4_crypto_ctx *ctx =
281 (struct ext4_crypto_ctx *)page_private(data_page);
282
283 set_page_private(data_page, (unsigned long)NULL);
284 ClearPagePrivate(data_page);
285 unlock_page(data_page);
286 ext4_release_crypto_ctx(ctx);
287}
288
289/**
290 * ext4_crypt_complete() - The completion callback for page encryption
291 * @req: The asynchronous encryption request context
292 * @res: The result of the encryption operation
293 */
294static void ext4_crypt_complete(struct crypto_async_request *req, int res)
295{
296 struct ext4_completion_result *ecr = req->data;
297
298 if (res == -EINPROGRESS)
299 return;
300 ecr->res = res;
301 complete(&ecr->completion);
302}
303
304typedef enum {
305 EXT4_DECRYPT = 0,
306 EXT4_ENCRYPT,
307} ext4_direction_t;
308
309static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
310 struct inode *inode,
311 ext4_direction_t rw,
312 pgoff_t index,
313 struct page *src_page,
314 struct page *dest_page)
315
316{
317 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
318 struct ablkcipher_request *req = NULL;
319 DECLARE_EXT4_COMPLETION_RESULT(ecr);
320 struct scatterlist dst, src;
321 struct ext4_inode_info *ei = EXT4_I(inode);
322 struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
323 int res = 0;
324
325 BUG_ON(!ctx->tfm);
b7236e21 326 BUG_ON(ctx->mode != ei->i_crypt_info->ci_mode);
b30ab0e0
MH
327
328 if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
329 printk_ratelimited(KERN_ERR
330 "%s: unsupported crypto algorithm: %d\n",
331 __func__, ctx->mode);
332 return -ENOTSUPP;
333 }
334
335 crypto_ablkcipher_clear_flags(atfm, ~0);
336 crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
337
b7236e21
TT
338 res = crypto_ablkcipher_setkey(atfm, ei->i_crypt_info->ci_raw,
339 ei->i_crypt_info->ci_size);
b30ab0e0
MH
340 if (res) {
341 printk_ratelimited(KERN_ERR
342 "%s: crypto_ablkcipher_setkey() failed\n",
343 __func__);
344 return res;
345 }
346 req = ablkcipher_request_alloc(atfm, GFP_NOFS);
347 if (!req) {
348 printk_ratelimited(KERN_ERR
349 "%s: crypto_request_alloc() failed\n",
350 __func__);
351 return -ENOMEM;
352 }
353 ablkcipher_request_set_callback(
354 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
355 ext4_crypt_complete, &ecr);
356
357 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
358 memcpy(xts_tweak, &index, sizeof(index));
359 memset(&xts_tweak[sizeof(index)], 0,
360 EXT4_XTS_TWEAK_SIZE - sizeof(index));
361
362 sg_init_table(&dst, 1);
363 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
364 sg_init_table(&src, 1);
365 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
366 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
367 xts_tweak);
368 if (rw == EXT4_DECRYPT)
369 res = crypto_ablkcipher_decrypt(req);
370 else
371 res = crypto_ablkcipher_encrypt(req);
372 if (res == -EINPROGRESS || res == -EBUSY) {
373 BUG_ON(req->base.data != &ecr);
374 wait_for_completion(&ecr.completion);
375 res = ecr.res;
376 }
377 ablkcipher_request_free(req);
378 if (res) {
379 printk_ratelimited(
380 KERN_ERR
381 "%s: crypto_ablkcipher_encrypt() returned %d\n",
382 __func__, res);
383 return res;
384 }
385 return 0;
386}
387
388/**
389 * ext4_encrypt() - Encrypts a page
390 * @inode: The inode for which the encryption should take place
391 * @plaintext_page: The page to encrypt. Must be locked.
392 *
393 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
394 * encryption context.
395 *
396 * Called on the page write path. The caller must call
397 * ext4_restore_control_page() on the returned ciphertext page to
398 * release the bounce buffer and the encryption context.
399 *
400 * Return: An allocated page with the encrypted content on success. Else, an
401 * error value or NULL.
402 */
403struct page *ext4_encrypt(struct inode *inode,
404 struct page *plaintext_page)
405{
406 struct ext4_crypto_ctx *ctx;
407 struct page *ciphertext_page = NULL;
408 int err;
409
410 BUG_ON(!PageLocked(plaintext_page));
411
412 ctx = ext4_get_crypto_ctx(inode);
413 if (IS_ERR(ctx))
414 return (struct page *) ctx;
415
416 /* The encryption operation will require a bounce page. */
417 ciphertext_page = alloc_page(GFP_NOFS);
418 if (!ciphertext_page) {
419 /* This is a potential bottleneck, but at least we'll have
420 * forward progress. */
421 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
422 GFP_NOFS);
423 if (WARN_ON_ONCE(!ciphertext_page)) {
424 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
425 GFP_NOFS | __GFP_WAIT);
426 }
427 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
428 } else {
429 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
430 }
431 ctx->bounce_page = ciphertext_page;
432 ctx->control_page = plaintext_page;
433 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
434 plaintext_page, ciphertext_page);
435 if (err) {
436 ext4_release_crypto_ctx(ctx);
437 return ERR_PTR(err);
438 }
439 SetPagePrivate(ciphertext_page);
440 set_page_private(ciphertext_page, (unsigned long)ctx);
441 lock_page(ciphertext_page);
442 return ciphertext_page;
443}
444
445/**
446 * ext4_decrypt() - Decrypts a page in-place
447 * @ctx: The encryption context.
448 * @page: The page to decrypt. Must be locked.
449 *
450 * Decrypts page in-place using the ctx encryption context.
451 *
452 * Called from the read completion callback.
453 *
454 * Return: Zero on success, non-zero otherwise.
455 */
456int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
457{
458 BUG_ON(!PageLocked(page));
459
460 return ext4_page_crypto(ctx, page->mapping->host,
461 EXT4_DECRYPT, page->index, page, page);
462}
463
464/*
465 * Convenience function which takes care of allocating and
466 * deallocating the encryption context
467 */
468int ext4_decrypt_one(struct inode *inode, struct page *page)
469{
470 int ret;
471
472 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
473
474 if (!ctx)
475 return -ENOMEM;
476 ret = ext4_decrypt(ctx, page);
477 ext4_release_crypto_ctx(ctx);
478 return ret;
479}
480
481int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
482{
483 struct ext4_crypto_ctx *ctx;
484 struct page *ciphertext_page = NULL;
485 struct bio *bio;
486 ext4_lblk_t lblk = ex->ee_block;
487 ext4_fsblk_t pblk = ext4_ext_pblock(ex);
488 unsigned int len = ext4_ext_get_actual_len(ex);
489 int err = 0;
490
491 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
492
493 ctx = ext4_get_crypto_ctx(inode);
494 if (IS_ERR(ctx))
495 return PTR_ERR(ctx);
496
497 ciphertext_page = alloc_page(GFP_NOFS);
498 if (!ciphertext_page) {
499 /* This is a potential bottleneck, but at least we'll have
500 * forward progress. */
501 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
502 GFP_NOFS);
503 if (WARN_ON_ONCE(!ciphertext_page)) {
504 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
505 GFP_NOFS | __GFP_WAIT);
506 }
507 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
508 } else {
509 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
510 }
511 ctx->bounce_page = ciphertext_page;
512
513 while (len--) {
514 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
515 ZERO_PAGE(0), ciphertext_page);
516 if (err)
517 goto errout;
518
519 bio = bio_alloc(GFP_KERNEL, 1);
520 if (!bio) {
521 err = -ENOMEM;
522 goto errout;
523 }
524 bio->bi_bdev = inode->i_sb->s_bdev;
525 bio->bi_iter.bi_sector = pblk;
526 err = bio_add_page(bio, ciphertext_page,
527 inode->i_sb->s_blocksize, 0);
528 if (err) {
529 bio_put(bio);
530 goto errout;
531 }
532 err = submit_bio_wait(WRITE, bio);
533 if (err)
534 goto errout;
535 }
536 err = 0;
537errout:
538 ext4_release_crypto_ctx(ctx);
539 return err;
540}
541
542bool ext4_valid_contents_enc_mode(uint32_t mode)
543{
544 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
545}
546
547/**
548 * ext4_validate_encryption_key_size() - Validate the encryption key size
549 * @mode: The key mode.
550 * @size: The key size to validate.
551 *
552 * Return: The validated key size for @mode. Zero if invalid.
553 */
554uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
555{
556 if (size == ext4_encryption_key_size(mode))
557 return size;
558 return 0;
559}