]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/ext4/inode.c
Merge tag 'ovl-update-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
[mirror_ubuntu-jammy-kernel.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec 22#include <linux/fs.h>
14f3db55 23#include <linux/mount.h>
ac27a0ec 24#include <linux/time.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
c94c2acf 27#include <linux/dax.h>
ac27a0ec
DK
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
64769240 32#include <linux/pagevec.h>
ac27a0ec 33#include <linux/mpage.h>
e83c1397 34#include <linux/namei.h>
ac27a0ec
DK
35#include <linux/uio.h>
36#include <linux/bio.h>
4c0425ff 37#include <linux/workqueue.h>
744692dc 38#include <linux/kernel.h>
6db26ffc 39#include <linux/printk.h>
5a0e3ad6 40#include <linux/slab.h>
00a1a053 41#include <linux/bitops.h>
364443cb 42#include <linux/iomap.h>
ae5e165d 43#include <linux/iversion.h>
9bffad1e 44
3dcf5451 45#include "ext4_jbd2.h"
ac27a0ec
DK
46#include "xattr.h"
47#include "acl.h"
9f125d64 48#include "truncate.h"
ac27a0ec 49
9bffad1e
TT
50#include <trace/events/ext4.h>
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 56 __u32 csum;
b47820ed
DJ
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
814525f4 60
b47820ed
DJ
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 66
b47820ed
DJ
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
b47820ed 76 }
05ac5aa1
DJ
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
79 }
80
814525f4
DW
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 91 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
8016e29f
HS
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
814525f4
DW
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 112 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
678aaf48
JK
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
7ff9c073 125 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
678aaf48
JK
137}
138
d47992f8
LC
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
cb20d518
TT
141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
dec214d0
TE
143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
64769240 145
ac27a0ec
DK
146/*
147 * Test whether an inode is a fast symlink.
407cd7fb 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 149 */
f348c252 150int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 151{
fc82228a
AK
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
407cd7fb
TE
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
163}
164
ac27a0ec
DK
165/*
166 * Called at the last iput() if i_nlink is zero.
167 */
0930fcc1 168void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
169{
170 handle_t *handle;
bc965ab3 171 int err;
65db869c
JK
172 /*
173 * Credits for final inode cleanup and freeing:
174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 */
177 int extra_credits = 6;
0421a189 178 struct ext4_xattr_inode_array *ea_inode_array = NULL;
46e294ef 179 bool freeze_protected = false;
ac27a0ec 180
7ff9c073 181 trace_ext4_evict_inode(inode);
2581fdc8 182
0930fcc1 183 if (inode->i_nlink) {
2d859db3
JK
184 /*
185 * When journalling data dirty buffers are tracked only in the
186 * journal. So although mm thinks everything is clean and
187 * ready for reaping the inode might still have some pages to
188 * write in the running transaction or waiting to be
189 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 * (via truncate_inode_pages()) to discard these buffers can
191 * cause data loss. Also even if we did not discard these
192 * buffers, we would have no way to find them after the inode
193 * is reaped and thus user could see stale data if he tries to
194 * read them before the transaction is checkpointed. So be
195 * careful and force everything to disk here... We use
196 * ei->i_datasync_tid to store the newest transaction
197 * containing inode's data.
198 *
199 * Note that directories do not have this problem because they
200 * don't use page cache.
201 */
6a7fd522
VN
202 if (inode->i_ino != EXT4_JOURNAL_INO &&
203 ext4_should_journal_data(inode) &&
3abb1a0f
JK
204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 inode->i_data.nrpages) {
2d859db3
JK
206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
d76a3a77 209 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
210 filemap_write_and_wait(&inode->i_data);
211 }
91b0abe3 212 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 213
0930fcc1
AV
214 goto no_delete;
215 }
216
e2bfb088
TT
217 if (is_bad_inode(inode))
218 goto no_delete;
219 dquot_initialize(inode);
907f4554 220
678aaf48
JK
221 if (ext4_should_order_data(inode))
222 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 224
ceff86fd
JK
225 /*
226 * For inodes with journalled data, transaction commit could have
227 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 * flag but we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list)) {
231 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 inode_io_list_del(inode);
233 }
234
8e8ad8a5
JK
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
46e294ef
JK
237 * protection against it. When we are in a running transaction though,
238 * we are already protected against freezing and we cannot grab further
239 * protection due to lock ordering constraints.
8e8ad8a5 240 */
46e294ef
JK
241 if (!ext4_journal_current_handle()) {
242 sb_start_intwrite(inode->i_sb);
243 freeze_protected = true;
244 }
e50e5129 245
30a7eb97
TE
246 if (!IS_NOQUOTA(inode))
247 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
65db869c
JK
249 /*
250 * Block bitmap, group descriptor, and inode are accounted in both
251 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 */
30a7eb97 253 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
65db869c 254 ext4_blocks_for_truncate(inode) + extra_credits - 3);
ac27a0ec 255 if (IS_ERR(handle)) {
bc965ab3 256 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
257 /*
258 * If we're going to skip the normal cleanup, we still need to
259 * make sure that the in-core orphan linked list is properly
260 * cleaned up.
261 */
617ba13b 262 ext4_orphan_del(NULL, inode);
46e294ef
JK
263 if (freeze_protected)
264 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
265 goto no_delete;
266 }
30a7eb97 267
ac27a0ec 268 if (IS_SYNC(inode))
0390131b 269 ext4_handle_sync(handle);
407cd7fb
TE
270
271 /*
272 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 * special handling of symlinks here because i_size is used to
274 * determine whether ext4_inode_info->i_data contains symlink data or
275 * block mappings. Setting i_size to 0 will remove its fast symlink
276 * status. Erase i_data so that it becomes a valid empty block map.
277 */
278 if (ext4_inode_is_fast_symlink(inode))
279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 280 inode->i_size = 0;
bc965ab3
TT
281 err = ext4_mark_inode_dirty(handle, inode);
282 if (err) {
12062ddd 283 ext4_warning(inode->i_sb,
bc965ab3
TT
284 "couldn't mark inode dirty (err %d)", err);
285 goto stop_handle;
286 }
2c98eb5e
TT
287 if (inode->i_blocks) {
288 err = ext4_truncate(inode);
289 if (err) {
54d3adbc
TT
290 ext4_error_err(inode->i_sb, -err,
291 "couldn't truncate inode %lu (err %d)",
292 inode->i_ino, err);
2c98eb5e
TT
293 goto stop_handle;
294 }
295 }
bc965ab3 296
30a7eb97
TE
297 /* Remove xattr references. */
298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 extra_credits);
300 if (err) {
301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302stop_handle:
303 ext4_journal_stop(handle);
304 ext4_orphan_del(NULL, inode);
46e294ef
JK
305 if (freeze_protected)
306 sb_end_intwrite(inode->i_sb);
30a7eb97
TE
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
bc965ab3
TT
309 }
310
ac27a0ec 311 /*
617ba13b 312 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 313 * AKPM: I think this can be inside the above `if'.
617ba13b 314 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 315 * deletion of a non-existent orphan - this is because we don't
617ba13b 316 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
317 * (Well, we could do this if we need to, but heck - it works)
318 */
617ba13b 319 ext4_orphan_del(handle, inode);
5ffff834 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
ac27a0ec
DK
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
617ba13b 329 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 330 /* If that failed, just do the required in-core inode clear. */
0930fcc1 331 ext4_clear_inode(inode);
ac27a0ec 332 else
617ba13b
MC
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
46e294ef
JK
335 if (freeze_protected)
336 sb_end_intwrite(inode->i_sb);
0421a189 337 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
338 return;
339no_delete:
b21ebf14
HS
340 if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
0930fcc1 342 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
343}
344
a9e7f447
DM
345#ifdef CONFIG_QUOTA
346qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 347{
a9e7f447 348 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 349}
a9e7f447 350#endif
9d0be502 351
0637c6f4
TT
352/*
353 * Called with i_data_sem down, which is important since we can call
354 * ext4_discard_preallocations() from here.
355 */
5f634d06
AK
356void ext4_da_update_reserve_space(struct inode *inode,
357 int used, int quota_claim)
12219aea
AK
358{
359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 360 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
361
362 spin_lock(&ei->i_block_reservation_lock);
d8990240 363 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 364 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 365 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 366 "with only %d reserved data blocks",
0637c6f4
TT
367 __func__, inode->i_ino, used,
368 ei->i_reserved_data_blocks);
369 WARN_ON(1);
370 used = ei->i_reserved_data_blocks;
371 }
12219aea 372
0637c6f4
TT
373 /* Update per-inode reservations */
374 ei->i_reserved_data_blocks -= used;
71d4f7d0 375 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 376
12219aea 377 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 378
72b8ab9d
ES
379 /* Update quota subsystem for data blocks */
380 if (quota_claim)
7b415bf6 381 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 382 else {
5f634d06
AK
383 /*
384 * We did fallocate with an offset that is already delayed
385 * allocated. So on delayed allocated writeback we should
72b8ab9d 386 * not re-claim the quota for fallocated blocks.
5f634d06 387 */
7b415bf6 388 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 389 }
d6014301
AK
390
391 /*
392 * If we have done all the pending block allocations and if
393 * there aren't any writers on the inode, we can discard the
394 * inode's preallocations.
395 */
0637c6f4 396 if ((ei->i_reserved_data_blocks == 0) &&
82dd124c 397 !inode_is_open_for_write(inode))
27bc446e 398 ext4_discard_preallocations(inode, 0);
12219aea
AK
399}
400
e29136f8 401static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
402 unsigned int line,
403 struct ext4_map_blocks *map)
6fd058f7 404{
345c0dbf
TT
405 if (ext4_has_feature_journal(inode->i_sb) &&
406 (inode->i_ino ==
407 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 return 0;
ce9f24cc 409 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
c398eda0 410 ext4_error_inode(inode, func, line, map->m_pblk,
bdbd6ce0 411 "lblock %lu mapped to illegal pblock %llu "
c398eda0 412 "(length %d)", (unsigned long) map->m_lblk,
bdbd6ce0 413 map->m_pblk, map->m_len);
6a797d27 414 return -EFSCORRUPTED;
6fd058f7
TT
415 }
416 return 0;
417}
418
53085fac
JK
419int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 ext4_lblk_t len)
421{
422 int ret;
423
33b4cc25 424 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
a7550b30 425 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
426
427 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 if (ret > 0)
429 ret = 0;
430
431 return ret;
432}
433
e29136f8 434#define check_block_validity(inode, map) \
c398eda0 435 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 436
921f266b
DM
437#ifdef ES_AGGRESSIVE_TEST
438static void ext4_map_blocks_es_recheck(handle_t *handle,
439 struct inode *inode,
440 struct ext4_map_blocks *es_map,
441 struct ext4_map_blocks *map,
442 int flags)
443{
444 int retval;
445
446 map->m_flags = 0;
447 /*
448 * There is a race window that the result is not the same.
449 * e.g. xfstests #223 when dioread_nolock enables. The reason
450 * is that we lookup a block mapping in extent status tree with
451 * out taking i_data_sem. So at the time the unwritten extent
452 * could be converted.
453 */
2dcba478 454 down_read(&EXT4_I(inode)->i_data_sem);
921f266b 455 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 456 retval = ext4_ext_map_blocks(handle, inode, map, 0);
921f266b 457 } else {
9e52484c 458 retval = ext4_ind_map_blocks(handle, inode, map, 0);
921f266b 459 }
2dcba478 460 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
bdafe42a 469 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
f5ab0d1f 480/*
e35fd660 481 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 482 * and returns if the blocks are already mapped.
f5ab0d1f 483 *
f5ab0d1f
MC
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
e35fd660
TT
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
490 * based files
491 *
facab4d9
JK
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
499 *
500 * It returns the error in case of allocation failure.
501 */
e35fd660
TT
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
0e855ac8 504{
d100eef2 505 struct extent_status es;
0e855ac8 506 int retval;
b8a86845 507 int ret = 0;
921f266b
DM
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
f5ab0d1f 513
e35fd660 514 map->m_flags = 0;
70aa1554
RH
515 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 flags, map->m_len, (unsigned long) map->m_lblk);
d100eef2 517
e861b5e9
TT
518 /*
519 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 */
521 if (unlikely(map->m_len > INT_MAX))
522 map->m_len = INT_MAX;
523
4adb6ab3
KM
524 /* We can handle the block number less than EXT_MAX_BLOCKS */
525 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 526 return -EFSCORRUPTED;
4adb6ab3 527
d100eef2 528 /* Lookup extent status tree firstly */
8016e29f
HS
529 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
d100eef2
ZL
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
d100eef2
ZL
546 retval = 0;
547 } else {
1e83bc81 548 BUG();
d100eef2 549 }
921f266b
DM
550#ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553#endif
d100eef2
ZL
554 goto found;
555 }
556
4df3d265 557 /*
b920c755
TT
558 * Try to see if we can get the block without requesting a new
559 * file system block.
4df3d265 560 */
2dcba478 561 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 563 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 564 } else {
9e52484c 565 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 566 }
f7fec032 567 if (retval > 0) {
3be78c73 568 unsigned int status;
f7fec032 569
44fb851d
ZL
570 if (unlikely(retval != map->m_len)) {
571 ext4_warning(inode->i_sb,
572 "ES len assertion failed for inode "
573 "%lu: retval %d != map->m_len %d",
574 inode->i_ino, retval, map->m_len);
575 WARN_ON(1);
921f266b 576 }
921f266b 577
f7fec032
ZL
578 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 581 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
582 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 map->m_lblk + map->m_len - 1))
f7fec032
ZL
584 status |= EXTENT_STATUS_DELAYED;
585 ret = ext4_es_insert_extent(inode, map->m_lblk,
586 map->m_len, map->m_pblk, status);
587 if (ret < 0)
588 retval = ret;
589 }
2dcba478 590 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 591
d100eef2 592found:
e35fd660 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 594 ret = check_block_validity(inode, map);
6fd058f7
TT
595 if (ret != 0)
596 return ret;
597 }
598
f5ab0d1f 599 /* If it is only a block(s) look up */
c2177057 600 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
601 return retval;
602
603 /*
604 * Returns if the blocks have already allocated
605 *
606 * Note that if blocks have been preallocated
df3ab170 607 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
608 * with buffer head unmapped.
609 */
e35fd660 610 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
611 /*
612 * If we need to convert extent to unwritten
613 * we continue and do the actual work in
614 * ext4_ext_map_blocks()
615 */
616 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 return retval;
4df3d265 618
2a8964d6 619 /*
a25a4e1a
ZL
620 * Here we clear m_flags because after allocating an new extent,
621 * it will be set again.
2a8964d6 622 */
a25a4e1a 623 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 624
4df3d265 625 /*
556615dc 626 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 627 * will possibly result in updating i_data, so we take
d91bd2c1 628 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 629 * with create == 1 flag.
4df3d265 630 */
c8b459f4 631 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 632
4df3d265
AK
633 /*
634 * We need to check for EXT4 here because migrate
635 * could have changed the inode type in between
636 */
12e9b892 637 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 638 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 639 } else {
e35fd660 640 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 641
e35fd660 642 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
643 /*
644 * We allocated new blocks which will result in
645 * i_data's format changing. Force the migrate
646 * to fail by clearing migrate flags
647 */
19f5fb7a 648 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 649 }
d2a17637 650
5f634d06
AK
651 /*
652 * Update reserved blocks/metadata blocks after successful
653 * block allocation which had been deferred till now. We don't
654 * support fallocate for non extent files. So we can update
655 * reserve space here.
656 */
657 if ((retval > 0) &&
1296cc85 658 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
659 ext4_da_update_reserve_space(inode, retval, 1);
660 }
2ac3b6e0 661
f7fec032 662 if (retval > 0) {
3be78c73 663 unsigned int status;
f7fec032 664
44fb851d
ZL
665 if (unlikely(retval != map->m_len)) {
666 ext4_warning(inode->i_sb,
667 "ES len assertion failed for inode "
668 "%lu: retval %d != map->m_len %d",
669 inode->i_ino, retval, map->m_len);
670 WARN_ON(1);
921f266b 671 }
921f266b 672
c86d8db3
JK
673 /*
674 * We have to zeroout blocks before inserting them into extent
675 * status tree. Otherwise someone could look them up there and
9b623df6
JK
676 * use them before they are really zeroed. We also have to
677 * unmap metadata before zeroing as otherwise writeback can
678 * overwrite zeros with stale data from block device.
c86d8db3
JK
679 */
680 if (flags & EXT4_GET_BLOCKS_ZERO &&
681 map->m_flags & EXT4_MAP_MAPPED &&
682 map->m_flags & EXT4_MAP_NEW) {
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
adb23551
ZL
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
bb5835ed 696 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
adb23551 697 if (ext4_es_is_written(&es))
c86d8db3 698 goto out_sem;
adb23551 699 }
f7fec032
ZL
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 703 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
f7fec032
ZL
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
c86d8db3 709 if (ret < 0) {
f7fec032 710 retval = ret;
c86d8db3
JK
711 goto out_sem;
712 }
5356f261
AK
713 }
714
c86d8db3 715out_sem:
4df3d265 716 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 718 ret = check_block_validity(inode, map);
6fd058f7
TT
719 if (ret != 0)
720 return ret;
06bd3c36
JK
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 730 !ext4_is_quota_file(inode) &&
06bd3c36 731 ext4_should_order_data(inode)) {
73131fbb
RZ
732 loff_t start_byte =
733 (loff_t)map->m_lblk << inode->i_blkbits;
734 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
ee0876bc 736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
73131fbb
RZ
737 ret = ext4_jbd2_inode_add_wait(handle, inode,
738 start_byte, length);
ee0876bc 739 else
73131fbb
RZ
740 ret = ext4_jbd2_inode_add_write(handle, inode,
741 start_byte, length);
06bd3c36
JK
742 if (ret)
743 return ret;
744 }
a80f7fcf 745 ext4_fc_track_range(handle, inode, map->m_lblk,
aa75f4d3 746 map->m_lblk + map->m_len - 1);
6fd058f7 747 }
ec8c60be
RH
748
749 if (retval < 0)
70aa1554 750 ext_debug(inode, "failed with err %d\n", retval);
0e855ac8
AK
751 return retval;
752}
753
ed8ad838
JK
754/*
755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756 * we have to be careful as someone else may be manipulating b_state as well.
757 */
758static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759{
760 unsigned long old_state;
761 unsigned long new_state;
762
763 flags &= EXT4_MAP_FLAGS;
764
765 /* Dummy buffer_head? Set non-atomically. */
766 if (!bh->b_page) {
767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 return;
769 }
770 /*
771 * Someone else may be modifying b_state. Be careful! This is ugly but
772 * once we get rid of using bh as a container for mapping information
773 * to pass to / from get_block functions, this can go away.
774 */
775 do {
776 old_state = READ_ONCE(bh->b_state);
777 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 } while (unlikely(
779 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780}
781
2ed88685
TT
782static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 struct buffer_head *bh, int flags)
ac27a0ec 784{
2ed88685 785 struct ext4_map_blocks map;
efe70c29 786 int ret = 0;
ac27a0ec 787
46c7f254
TM
788 if (ext4_has_inline_data(inode))
789 return -ERANGE;
790
2ed88685
TT
791 map.m_lblk = iblock;
792 map.m_len = bh->b_size >> inode->i_blkbits;
793
efe70c29
JK
794 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 flags);
7fb5409d 796 if (ret > 0) {
2ed88685 797 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 798 ext4_update_bh_state(bh, map.m_flags);
2ed88685 799 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 800 ret = 0;
547edce3
RZ
801 } else if (ret == 0) {
802 /* hole case, need to fill in bh->b_size */
803 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
804 }
805 return ret;
806}
807
2ed88685
TT
808int ext4_get_block(struct inode *inode, sector_t iblock,
809 struct buffer_head *bh, int create)
810{
811 return _ext4_get_block(inode, iblock, bh,
812 create ? EXT4_GET_BLOCKS_CREATE : 0);
813}
814
705965bd
JK
815/*
816 * Get block function used when preparing for buffered write if we require
817 * creating an unwritten extent if blocks haven't been allocated. The extent
818 * will be converted to written after the IO is complete.
819 */
820int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 struct buffer_head *bh_result, int create)
822{
823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 inode->i_ino, create);
825 return _ext4_get_block(inode, iblock, bh_result,
826 EXT4_GET_BLOCKS_IO_CREATE_EXT);
827}
828
efe70c29
JK
829/* Maximum number of blocks we map for direct IO at once. */
830#define DIO_MAX_BLOCKS 4096
831
ac27a0ec
DK
832/*
833 * `handle' can be NULL if create is zero
834 */
617ba13b 835struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 836 ext4_lblk_t block, int map_flags)
ac27a0ec 837{
2ed88685
TT
838 struct ext4_map_blocks map;
839 struct buffer_head *bh;
c5e298ae 840 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 841 int err;
ac27a0ec 842
837c23fb
CX
843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 || handle != NULL || create == 0);
ac27a0ec 845
2ed88685
TT
846 map.m_lblk = block;
847 map.m_len = 1;
c5e298ae 848 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 849
10560082
TT
850 if (err == 0)
851 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 852 if (err < 0)
10560082 853 return ERR_PTR(err);
2ed88685
TT
854
855 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
856 if (unlikely(!bh))
857 return ERR_PTR(-ENOMEM);
2ed88685 858 if (map.m_flags & EXT4_MAP_NEW) {
837c23fb
CX
859 ASSERT(create != 0);
860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 || (handle != NULL));
ac27a0ec 862
2ed88685
TT
863 /*
864 * Now that we do not always journal data, we should
865 * keep in mind whether this should always journal the
866 * new buffer as metadata. For now, regular file
867 * writes use ext4_get_block instead, so it's not a
868 * problem.
869 */
870 lock_buffer(bh);
871 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
872 err = ext4_journal_get_create_access(handle, bh);
873 if (unlikely(err)) {
874 unlock_buffer(bh);
875 goto errout;
876 }
877 if (!buffer_uptodate(bh)) {
2ed88685
TT
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
ac27a0ec 880 }
2ed88685
TT
881 unlock_buffer(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
884 if (unlikely(err))
885 goto errout;
886 } else
2ed88685 887 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 888 return bh;
10560082
TT
889errout:
890 brelse(bh);
891 return ERR_PTR(err);
ac27a0ec
DK
892}
893
617ba13b 894struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 895 ext4_lblk_t block, int map_flags)
ac27a0ec 896{
af5bc92d 897 struct buffer_head *bh;
2d069c08 898 int ret;
ac27a0ec 899
c5e298ae 900 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 901 if (IS_ERR(bh))
ac27a0ec 902 return bh;
7963e5ac 903 if (!bh || ext4_buffer_uptodate(bh))
ac27a0ec 904 return bh;
2d069c08 905
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 if (ret) {
908 put_bh(bh);
909 return ERR_PTR(ret);
910 }
911 return bh;
ac27a0ec
DK
912}
913
9699d4f9
TE
914/* Read a contiguous batch of blocks. */
915int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
917{
918 int i, err;
919
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
924 bh_count = i;
925 goto out_brelse;
926 }
927 }
928
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
2d069c08 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
9699d4f9
TE
933
934 if (!wait)
935 return 0;
936
937 for (i = 0; i < bh_count; i++)
938 if (bhs[i])
939 wait_on_buffer(bhs[i]);
940
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 err = -EIO;
944 goto out_brelse;
945 }
946 }
947 return 0;
948
949out_brelse:
950 for (i = 0; i < bh_count; i++) {
951 brelse(bhs[i]);
952 bhs[i] = NULL;
953 }
954 return err;
955}
956
f19d5870
TM
957int ext4_walk_page_buffers(handle_t *handle,
958 struct buffer_head *head,
959 unsigned from,
960 unsigned to,
961 int *partial,
962 int (*fn)(handle_t *handle,
963 struct buffer_head *bh))
ac27a0ec
DK
964{
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
968 int err, ret = 0;
969 struct buffer_head *next;
970
af5bc92d
TT
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
de9a55b8 973 block_start = block_end, bh = next) {
ac27a0ec
DK
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
978 *partial = 1;
979 continue;
980 }
981 err = (*fn)(handle, bh);
982 if (!ret)
983 ret = err;
984 }
985 return ret;
986}
987
988/*
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
617ba13b 991 * close off a transaction and start a new one between the ext4_get_block()
dab291af 992 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
993 * prepare_write() is the right place.
994 *
36ade451
JK
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
ac27a0ec 999 *
617ba13b 1000 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
dab291af 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
f19d5870
TM
1012int do_journal_get_write_access(handle_t *handle,
1013 struct buffer_head *bh)
ac27a0ec 1014{
56d35a4c
JK
1015 int dirty = buffer_dirty(bh);
1016 int ret;
1017
ac27a0ec
DK
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1019 return 0;
56d35a4c 1020 /*
ebdec241 1021 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1024 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1027 */
1028 if (dirty)
1029 clear_buffer_dirty(bh);
5d601255 1030 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1031 ret = ext4_journal_get_write_access(handle, bh);
1032 if (!ret && dirty)
1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 return ret;
ac27a0ec
DK
1035}
1036
643fa961 1037#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1038static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039 get_block_t *get_block)
1040{
09cbfeaf 1041 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1042 unsigned to = from + len;
1043 struct inode *inode = page->mapping->host;
1044 unsigned block_start, block_end;
1045 sector_t block;
1046 int err = 0;
1047 unsigned blocksize = inode->i_sb->s_blocksize;
1048 unsigned bbits;
0b578f35
CR
1049 struct buffer_head *bh, *head, *wait[2];
1050 int nr_wait = 0;
1051 int i;
2058f83a
MH
1052
1053 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1054 BUG_ON(from > PAGE_SIZE);
1055 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1056 BUG_ON(from > to);
1057
1058 if (!page_has_buffers(page))
1059 create_empty_buffers(page, blocksize, 0);
1060 head = page_buffers(page);
1061 bbits = ilog2(blocksize);
09cbfeaf 1062 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1063
1064 for (bh = head, block_start = 0; bh != head || !block_start;
1065 block++, block_start = block_end, bh = bh->b_this_page) {
1066 block_end = block_start + blocksize;
1067 if (block_end <= from || block_start >= to) {
1068 if (PageUptodate(page)) {
1069 if (!buffer_uptodate(bh))
1070 set_buffer_uptodate(bh);
1071 }
1072 continue;
1073 }
1074 if (buffer_new(bh))
1075 clear_buffer_new(bh);
1076 if (!buffer_mapped(bh)) {
1077 WARN_ON(bh->b_size != blocksize);
1078 err = get_block(inode, block, bh, 1);
1079 if (err)
1080 break;
1081 if (buffer_new(bh)) {
2058f83a
MH
1082 if (PageUptodate(page)) {
1083 clear_buffer_new(bh);
1084 set_buffer_uptodate(bh);
1085 mark_buffer_dirty(bh);
1086 continue;
1087 }
1088 if (block_end > to || block_start < from)
1089 zero_user_segments(page, to, block_end,
1090 block_start, from);
1091 continue;
1092 }
1093 }
1094 if (PageUptodate(page)) {
1095 if (!buffer_uptodate(bh))
1096 set_buffer_uptodate(bh);
1097 continue;
1098 }
1099 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100 !buffer_unwritten(bh) &&
1101 (block_start < from || block_end > to)) {
2d069c08 1102 ext4_read_bh_lock(bh, 0, false);
0b578f35 1103 wait[nr_wait++] = bh;
2058f83a
MH
1104 }
1105 }
1106 /*
1107 * If we issued read requests, let them complete.
1108 */
0b578f35
CR
1109 for (i = 0; i < nr_wait; i++) {
1110 wait_on_buffer(wait[i]);
1111 if (!buffer_uptodate(wait[i]))
2058f83a
MH
1112 err = -EIO;
1113 }
7e0785fc 1114 if (unlikely(err)) {
2058f83a 1115 page_zero_new_buffers(page, from, to);
4f74d15f 1116 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
0b578f35
CR
1117 for (i = 0; i < nr_wait; i++) {
1118 int err2;
1119
1120 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1121 bh_offset(wait[i]));
1122 if (err2) {
1123 clear_buffer_uptodate(wait[i]);
1124 err = err2;
1125 }
1126 }
7e0785fc
CR
1127 }
1128
2058f83a
MH
1129 return err;
1130}
1131#endif
1132
bfc1af65 1133static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1134 loff_t pos, unsigned len, unsigned flags,
1135 struct page **pagep, void **fsdata)
ac27a0ec 1136{
af5bc92d 1137 struct inode *inode = mapping->host;
1938a150 1138 int ret, needed_blocks;
ac27a0ec
DK
1139 handle_t *handle;
1140 int retries = 0;
af5bc92d 1141 struct page *page;
de9a55b8 1142 pgoff_t index;
af5bc92d 1143 unsigned from, to;
bfc1af65 1144
0db1ff22
TT
1145 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1146 return -EIO;
1147
9bffad1e 1148 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1149 /*
1150 * Reserve one block more for addition to orphan list in case
1151 * we allocate blocks but write fails for some reason
1152 */
1153 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1154 index = pos >> PAGE_SHIFT;
1155 from = pos & (PAGE_SIZE - 1);
af5bc92d 1156 to = from + len;
ac27a0ec 1157
f19d5870
TM
1158 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160 flags, pagep);
1161 if (ret < 0)
47564bfb
TT
1162 return ret;
1163 if (ret == 1)
1164 return 0;
f19d5870
TM
1165 }
1166
47564bfb
TT
1167 /*
1168 * grab_cache_page_write_begin() can take a long time if the
1169 * system is thrashing due to memory pressure, or if the page
1170 * is being written back. So grab it first before we start
1171 * the transaction handle. This also allows us to allocate
1172 * the page (if needed) without using GFP_NOFS.
1173 */
1174retry_grab:
1175 page = grab_cache_page_write_begin(mapping, index, flags);
1176 if (!page)
1177 return -ENOMEM;
1178 unlock_page(page);
1179
1180retry_journal:
9924a92a 1181 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1182 if (IS_ERR(handle)) {
09cbfeaf 1183 put_page(page);
47564bfb 1184 return PTR_ERR(handle);
7479d2b9 1185 }
ac27a0ec 1186
47564bfb
TT
1187 lock_page(page);
1188 if (page->mapping != mapping) {
1189 /* The page got truncated from under us */
1190 unlock_page(page);
09cbfeaf 1191 put_page(page);
cf108bca 1192 ext4_journal_stop(handle);
47564bfb 1193 goto retry_grab;
cf108bca 1194 }
7afe5aa5
DM
1195 /* In case writeback began while the page was unlocked */
1196 wait_for_stable_page(page);
cf108bca 1197
643fa961 1198#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1199 if (ext4_should_dioread_nolock(inode))
1200 ret = ext4_block_write_begin(page, pos, len,
705965bd 1201 ext4_get_block_unwritten);
2058f83a
MH
1202 else
1203 ret = ext4_block_write_begin(page, pos, len,
1204 ext4_get_block);
1205#else
744692dc 1206 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1207 ret = __block_write_begin(page, pos, len,
1208 ext4_get_block_unwritten);
744692dc 1209 else
6e1db88d 1210 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1211#endif
bfc1af65 1212 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1213 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1214 from, to, NULL,
1215 do_journal_get_write_access);
ac27a0ec 1216 }
bfc1af65
NP
1217
1218 if (ret) {
c93d8f88
EB
1219 bool extended = (pos + len > inode->i_size) &&
1220 !ext4_verity_in_progress(inode);
1221
af5bc92d 1222 unlock_page(page);
ae4d5372 1223 /*
6e1db88d 1224 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1225 * outside i_size. Trim these off again. Don't need
1226 * i_size_read because we hold i_mutex.
1938a150
AK
1227 *
1228 * Add inode to orphan list in case we crash before
1229 * truncate finishes
ae4d5372 1230 */
c93d8f88 1231 if (extended && ext4_can_truncate(inode))
1938a150
AK
1232 ext4_orphan_add(handle, inode);
1233
1234 ext4_journal_stop(handle);
c93d8f88 1235 if (extended) {
b9a4207d 1236 ext4_truncate_failed_write(inode);
de9a55b8 1237 /*
ffacfa7a 1238 * If truncate failed early the inode might
1938a150
AK
1239 * still be on the orphan list; we need to
1240 * make sure the inode is removed from the
1241 * orphan list in that case.
1242 */
1243 if (inode->i_nlink)
1244 ext4_orphan_del(NULL, inode);
1245 }
bfc1af65 1246
47564bfb
TT
1247 if (ret == -ENOSPC &&
1248 ext4_should_retry_alloc(inode->i_sb, &retries))
1249 goto retry_journal;
09cbfeaf 1250 put_page(page);
47564bfb
TT
1251 return ret;
1252 }
1253 *pagep = page;
ac27a0ec
DK
1254 return ret;
1255}
1256
bfc1af65
NP
1257/* For write_end() in data=journal mode */
1258static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1259{
13fca323 1260 int ret;
ac27a0ec
DK
1261 if (!buffer_mapped(bh) || buffer_freed(bh))
1262 return 0;
1263 set_buffer_uptodate(bh);
13fca323
TT
1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 clear_buffer_meta(bh);
1266 clear_buffer_prio(bh);
1267 return ret;
ac27a0ec
DK
1268}
1269
eed4333f
ZL
1270/*
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1273 *
1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1275 * buffers are managed internally.
1276 */
1277static int ext4_write_end(struct file *file,
1278 struct address_space *mapping,
1279 loff_t pos, unsigned len, unsigned copied,
1280 struct page *page, void *fsdata)
f8514083 1281{
f8514083 1282 handle_t *handle = ext4_journal_current_handle();
eed4333f 1283 struct inode *inode = mapping->host;
0572639f 1284 loff_t old_size = inode->i_size;
eed4333f
ZL
1285 int ret = 0, ret2;
1286 int i_size_changed = 0;
362eca70 1287 int inline_data = ext4_has_inline_data(inode);
c93d8f88 1288 bool verity = ext4_verity_in_progress(inode);
eed4333f
ZL
1289
1290 trace_ext4_write_end(inode, pos, len, copied);
362eca70 1291 if (inline_data) {
42c832de
TT
1292 ret = ext4_write_inline_data_end(inode, pos, len,
1293 copied, page);
eb5efbcb
TT
1294 if (ret < 0) {
1295 unlock_page(page);
1296 put_page(page);
42c832de 1297 goto errout;
eb5efbcb 1298 }
42c832de
TT
1299 copied = ret;
1300 } else
f19d5870
TM
1301 copied = block_write_end(file, mapping, pos,
1302 len, copied, page, fsdata);
f8514083 1303 /*
4631dbf6 1304 * it's important to update i_size while still holding page lock:
f8514083 1305 * page writeout could otherwise come in and zero beyond i_size.
c93d8f88
EB
1306 *
1307 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308 * blocks are being written past EOF, so skip the i_size update.
f8514083 1309 */
c93d8f88
EB
1310 if (!verity)
1311 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1312 unlock_page(page);
09cbfeaf 1313 put_page(page);
f8514083 1314
c93d8f88 1315 if (old_size < pos && !verity)
0572639f 1316 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1317 /*
1318 * Don't mark the inode dirty under page lock. First, it unnecessarily
1319 * makes the holding time of page lock longer. Second, it forces lock
1320 * ordering of page lock and transaction start for journaling
1321 * filesystems.
1322 */
362eca70 1323 if (i_size_changed || inline_data)
4209ae12 1324 ret = ext4_mark_inode_dirty(handle, inode);
f8514083 1325
c93d8f88 1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1327 /* if we have allocated more blocks and copied
1328 * less. We will have blocks allocated outside
1329 * inode->i_size. So truncate them
1330 */
1331 ext4_orphan_add(handle, inode);
74d553aa 1332errout:
617ba13b 1333 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1334 if (!ret)
1335 ret = ret2;
bfc1af65 1336
c93d8f88 1337 if (pos + len > inode->i_size && !verity) {
b9a4207d 1338 ext4_truncate_failed_write(inode);
de9a55b8 1339 /*
ffacfa7a 1340 * If truncate failed early the inode might still be
f8514083
AK
1341 * on the orphan list; we need to make sure the inode
1342 * is removed from the orphan list in that case.
1343 */
1344 if (inode->i_nlink)
1345 ext4_orphan_del(NULL, inode);
1346 }
1347
bfc1af65 1348 return ret ? ret : copied;
ac27a0ec
DK
1349}
1350
b90197b6
TT
1351/*
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1355 */
3b136499
JK
1356static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357 struct page *page,
1358 unsigned from, unsigned to)
b90197b6
TT
1359{
1360 unsigned int block_start = 0, block_end;
1361 struct buffer_head *head, *bh;
1362
1363 bh = head = page_buffers(page);
1364 do {
1365 block_end = block_start + bh->b_size;
1366 if (buffer_new(bh)) {
1367 if (block_end > from && block_start < to) {
1368 if (!PageUptodate(page)) {
1369 unsigned start, size;
1370
1371 start = max(from, block_start);
1372 size = min(to, block_end) - start;
1373
1374 zero_user(page, start, size);
3b136499 1375 write_end_fn(handle, bh);
b90197b6
TT
1376 }
1377 clear_buffer_new(bh);
1378 }
1379 }
1380 block_start = block_end;
1381 bh = bh->b_this_page;
1382 } while (bh != head);
1383}
1384
bfc1af65 1385static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1386 struct address_space *mapping,
1387 loff_t pos, unsigned len, unsigned copied,
1388 struct page *page, void *fsdata)
ac27a0ec 1389{
617ba13b 1390 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1391 struct inode *inode = mapping->host;
0572639f 1392 loff_t old_size = inode->i_size;
ac27a0ec
DK
1393 int ret = 0, ret2;
1394 int partial = 0;
bfc1af65 1395 unsigned from, to;
4631dbf6 1396 int size_changed = 0;
362eca70 1397 int inline_data = ext4_has_inline_data(inode);
c93d8f88 1398 bool verity = ext4_verity_in_progress(inode);
ac27a0ec 1399
9bffad1e 1400 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1401 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1402 to = from + len;
1403
441c8508
CW
1404 BUG_ON(!ext4_handle_valid(handle));
1405
362eca70 1406 if (inline_data) {
eb5efbcb
TT
1407 ret = ext4_write_inline_data_end(inode, pos, len,
1408 copied, page);
1409 if (ret < 0) {
1410 unlock_page(page);
1411 put_page(page);
1412 goto errout;
1413 }
1414 copied = ret;
1415 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1416 copied = 0;
1417 ext4_journalled_zero_new_buffers(handle, page, from, to);
1418 } else {
1419 if (unlikely(copied < len))
1420 ext4_journalled_zero_new_buffers(handle, page,
1421 from + copied, to);
3fdcfb66 1422 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1423 from + copied, &partial,
1424 write_end_fn);
3fdcfb66
TM
1425 if (!partial)
1426 SetPageUptodate(page);
1427 }
c93d8f88
EB
1428 if (!verity)
1429 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1430 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1432 unlock_page(page);
09cbfeaf 1433 put_page(page);
4631dbf6 1434
c93d8f88 1435 if (old_size < pos && !verity)
0572639f
XW
1436 pagecache_isize_extended(inode, old_size, pos);
1437
362eca70 1438 if (size_changed || inline_data) {
617ba13b 1439 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1440 if (!ret)
1441 ret = ret2;
1442 }
bfc1af65 1443
c93d8f88 1444 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1445 /* if we have allocated more blocks and copied
1446 * less. We will have blocks allocated outside
1447 * inode->i_size. So truncate them
1448 */
1449 ext4_orphan_add(handle, inode);
1450
eb5efbcb 1451errout:
617ba13b 1452 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1453 if (!ret)
1454 ret = ret2;
c93d8f88 1455 if (pos + len > inode->i_size && !verity) {
b9a4207d 1456 ext4_truncate_failed_write(inode);
de9a55b8 1457 /*
ffacfa7a 1458 * If truncate failed early the inode might still be
f8514083
AK
1459 * on the orphan list; we need to make sure the inode
1460 * is removed from the orphan list in that case.
1461 */
1462 if (inode->i_nlink)
1463 ext4_orphan_del(NULL, inode);
1464 }
bfc1af65
NP
1465
1466 return ret ? ret : copied;
ac27a0ec 1467}
d2a17637 1468
9d0be502 1469/*
c27e43a1 1470 * Reserve space for a single cluster
9d0be502 1471 */
c27e43a1 1472static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1473{
60e58e0f 1474 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1475 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1476 int ret;
03179fe9
TT
1477
1478 /*
1479 * We will charge metadata quota at writeout time; this saves
1480 * us from metadata over-estimation, though we may go over by
1481 * a small amount in the end. Here we just reserve for data.
1482 */
1483 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1484 if (ret)
1485 return ret;
d2a17637 1486
0637c6f4 1487 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1488 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1489 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1490 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1491 return -ENOSPC;
1492 }
9d0be502 1493 ei->i_reserved_data_blocks++;
c27e43a1 1494 trace_ext4_da_reserve_space(inode);
0637c6f4 1495 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1496
d2a17637
MC
1497 return 0; /* success */
1498}
1499
f456767d 1500void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1501{
1502 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1503 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1504
cd213226
MC
1505 if (!to_free)
1506 return; /* Nothing to release, exit */
1507
d2a17637 1508 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1509
5a58ec87 1510 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1511 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1512 /*
0637c6f4
TT
1513 * if there aren't enough reserved blocks, then the
1514 * counter is messed up somewhere. Since this
1515 * function is called from invalidate page, it's
1516 * harmless to return without any action.
cd213226 1517 */
8de5c325 1518 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1519 "ino %lu, to_free %d with only %d reserved "
1084f252 1520 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1521 ei->i_reserved_data_blocks);
1522 WARN_ON(1);
1523 to_free = ei->i_reserved_data_blocks;
cd213226 1524 }
0637c6f4 1525 ei->i_reserved_data_blocks -= to_free;
cd213226 1526
72b8ab9d 1527 /* update fs dirty data blocks counter */
57042651 1528 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1529
d2a17637 1530 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1531
7b415bf6 1532 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1533}
1534
64769240
AT
1535/*
1536 * Delayed allocation stuff
1537 */
1538
4e7ea81d
JK
1539struct mpage_da_data {
1540 struct inode *inode;
1541 struct writeback_control *wbc;
6b523df4 1542
4e7ea81d
JK
1543 pgoff_t first_page; /* The first page to write */
1544 pgoff_t next_page; /* Current page to examine */
1545 pgoff_t last_page; /* Last page to examine */
791b7f08 1546 /*
4e7ea81d
JK
1547 * Extent to map - this can be after first_page because that can be
1548 * fully mapped. We somewhat abuse m_flags to store whether the extent
1549 * is delalloc or unwritten.
791b7f08 1550 */
4e7ea81d
JK
1551 struct ext4_map_blocks map;
1552 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1553 unsigned int do_map:1;
6b8ed620 1554 unsigned int scanned_until_end:1;
4e7ea81d 1555};
64769240 1556
4e7ea81d
JK
1557static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1558 bool invalidate)
c4a0c46e
AK
1559{
1560 int nr_pages, i;
1561 pgoff_t index, end;
1562 struct pagevec pvec;
1563 struct inode *inode = mpd->inode;
1564 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1565
1566 /* This is necessary when next_page == 0. */
1567 if (mpd->first_page >= mpd->next_page)
1568 return;
c4a0c46e 1569
6b8ed620 1570 mpd->scanned_until_end = 0;
c7f5938a
CW
1571 index = mpd->first_page;
1572 end = mpd->next_page - 1;
4e7ea81d
JK
1573 if (invalidate) {
1574 ext4_lblk_t start, last;
09cbfeaf
KS
1575 start = index << (PAGE_SHIFT - inode->i_blkbits);
1576 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1577 ext4_es_remove_extent(inode, start, last - start + 1);
1578 }
51865fda 1579
86679820 1580 pagevec_init(&pvec);
c4a0c46e 1581 while (index <= end) {
397162ff 1582 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1583 if (nr_pages == 0)
1584 break;
1585 for (i = 0; i < nr_pages; i++) {
1586 struct page *page = pvec.pages[i];
2b85a617 1587
c4a0c46e
AK
1588 BUG_ON(!PageLocked(page));
1589 BUG_ON(PageWriteback(page));
4e7ea81d 1590 if (invalidate) {
4e800c03 1591 if (page_mapped(page))
1592 clear_page_dirty_for_io(page);
09cbfeaf 1593 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1594 ClearPageUptodate(page);
1595 }
c4a0c46e
AK
1596 unlock_page(page);
1597 }
9b1d0998 1598 pagevec_release(&pvec);
c4a0c46e 1599 }
c4a0c46e
AK
1600}
1601
df22291f
AK
1602static void ext4_print_free_blocks(struct inode *inode)
1603{
1604 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1605 struct super_block *sb = inode->i_sb;
f78ee70d 1606 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1607
1608 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1609 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1610 ext4_count_free_clusters(sb)));
92b97816
TT
1611 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1612 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1613 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1614 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1615 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1616 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1617 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1618 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1619 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1620 ei->i_reserved_data_blocks);
df22291f
AK
1621 return;
1622}
1623
c364b22c 1624static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1625{
c364b22c 1626 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1627}
1628
0b02f4c0
EW
1629/*
1630 * ext4_insert_delayed_block - adds a delayed block to the extents status
1631 * tree, incrementing the reserved cluster/block
1632 * count or making a pending reservation
1633 * where needed
1634 *
1635 * @inode - file containing the newly added block
1636 * @lblk - logical block to be added
1637 *
1638 * Returns 0 on success, negative error code on failure.
1639 */
1640static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641{
1642 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643 int ret;
1644 bool allocated = false;
1645
1646 /*
1647 * If the cluster containing lblk is shared with a delayed,
1648 * written, or unwritten extent in a bigalloc file system, it's
1649 * already been accounted for and does not need to be reserved.
1650 * A pending reservation must be made for the cluster if it's
1651 * shared with a written or unwritten extent and doesn't already
1652 * have one. Written and unwritten extents can be purged from the
1653 * extents status tree if the system is under memory pressure, so
1654 * it's necessary to examine the extent tree if a search of the
1655 * extents status tree doesn't get a match.
1656 */
1657 if (sbi->s_cluster_ratio == 1) {
1658 ret = ext4_da_reserve_space(inode);
1659 if (ret != 0) /* ENOSPC */
1660 goto errout;
1661 } else { /* bigalloc */
1662 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1663 if (!ext4_es_scan_clu(inode,
1664 &ext4_es_is_mapped, lblk)) {
1665 ret = ext4_clu_mapped(inode,
1666 EXT4_B2C(sbi, lblk));
1667 if (ret < 0)
1668 goto errout;
1669 if (ret == 0) {
1670 ret = ext4_da_reserve_space(inode);
1671 if (ret != 0) /* ENOSPC */
1672 goto errout;
1673 } else {
1674 allocated = true;
1675 }
1676 } else {
1677 allocated = true;
1678 }
1679 }
1680 }
1681
1682 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683
1684errout:
1685 return ret;
1686}
1687
5356f261
AK
1688/*
1689 * This function is grabs code from the very beginning of
1690 * ext4_map_blocks, but assumes that the caller is from delayed write
1691 * time. This function looks up the requested blocks and sets the
1692 * buffer delay bit under the protection of i_data_sem.
1693 */
1694static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1695 struct ext4_map_blocks *map,
1696 struct buffer_head *bh)
1697{
d100eef2 1698 struct extent_status es;
5356f261
AK
1699 int retval;
1700 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1701#ifdef ES_AGGRESSIVE_TEST
1702 struct ext4_map_blocks orig_map;
1703
1704 memcpy(&orig_map, map, sizeof(*map));
1705#endif
5356f261
AK
1706
1707 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1708 invalid_block = ~0;
1709
1710 map->m_flags = 0;
70aa1554 1711 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
5356f261 1712 (unsigned long) map->m_lblk);
d100eef2
ZL
1713
1714 /* Lookup extent status tree firstly */
bb5835ed 1715 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
d100eef2
ZL
1716 if (ext4_es_is_hole(&es)) {
1717 retval = 0;
c8b459f4 1718 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1719 goto add_delayed;
1720 }
1721
1722 /*
1723 * Delayed extent could be allocated by fallocate.
1724 * So we need to check it.
1725 */
1726 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1727 map_bh(bh, inode->i_sb, invalid_block);
1728 set_buffer_new(bh);
1729 set_buffer_delay(bh);
1730 return 0;
1731 }
1732
1733 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1734 retval = es.es_len - (iblock - es.es_lblk);
1735 if (retval > map->m_len)
1736 retval = map->m_len;
1737 map->m_len = retval;
1738 if (ext4_es_is_written(&es))
1739 map->m_flags |= EXT4_MAP_MAPPED;
1740 else if (ext4_es_is_unwritten(&es))
1741 map->m_flags |= EXT4_MAP_UNWRITTEN;
1742 else
1e83bc81 1743 BUG();
d100eef2 1744
921f266b
DM
1745#ifdef ES_AGGRESSIVE_TEST
1746 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1747#endif
d100eef2
ZL
1748 return retval;
1749 }
1750
5356f261
AK
1751 /*
1752 * Try to see if we can get the block without requesting a new
1753 * file system block.
1754 */
c8b459f4 1755 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1756 if (ext4_has_inline_data(inode))
9c3569b5 1757 retval = 0;
cbd7584e 1758 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1759 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1760 else
2f8e0a7c 1761 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1762
d100eef2 1763add_delayed:
5356f261 1764 if (retval == 0) {
f7fec032 1765 int ret;
ad431025 1766
5356f261
AK
1767 /*
1768 * XXX: __block_prepare_write() unmaps passed block,
1769 * is it OK?
1770 */
5356f261 1771
0b02f4c0
EW
1772 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1773 if (ret != 0) {
f7fec032 1774 retval = ret;
51865fda 1775 goto out_unlock;
f7fec032 1776 }
51865fda 1777
5356f261
AK
1778 map_bh(bh, inode->i_sb, invalid_block);
1779 set_buffer_new(bh);
1780 set_buffer_delay(bh);
f7fec032
ZL
1781 } else if (retval > 0) {
1782 int ret;
3be78c73 1783 unsigned int status;
f7fec032 1784
44fb851d
ZL
1785 if (unlikely(retval != map->m_len)) {
1786 ext4_warning(inode->i_sb,
1787 "ES len assertion failed for inode "
1788 "%lu: retval %d != map->m_len %d",
1789 inode->i_ino, retval, map->m_len);
1790 WARN_ON(1);
921f266b 1791 }
921f266b 1792
f7fec032
ZL
1793 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1794 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1795 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1796 map->m_pblk, status);
1797 if (ret != 0)
1798 retval = ret;
5356f261
AK
1799 }
1800
1801out_unlock:
1802 up_read((&EXT4_I(inode)->i_data_sem));
1803
1804 return retval;
1805}
1806
64769240 1807/*
d91bd2c1 1808 * This is a special get_block_t callback which is used by
b920c755
TT
1809 * ext4_da_write_begin(). It will either return mapped block or
1810 * reserve space for a single block.
29fa89d0
AK
1811 *
1812 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1813 * We also have b_blocknr = -1 and b_bdev initialized properly
1814 *
1815 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1816 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1817 * initialized properly.
64769240 1818 */
9c3569b5
TM
1819int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1820 struct buffer_head *bh, int create)
64769240 1821{
2ed88685 1822 struct ext4_map_blocks map;
64769240
AT
1823 int ret = 0;
1824
1825 BUG_ON(create == 0);
2ed88685
TT
1826 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1827
1828 map.m_lblk = iblock;
1829 map.m_len = 1;
64769240
AT
1830
1831 /*
1832 * first, we need to know whether the block is allocated already
1833 * preallocated blocks are unmapped but should treated
1834 * the same as allocated blocks.
1835 */
5356f261
AK
1836 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1837 if (ret <= 0)
2ed88685 1838 return ret;
64769240 1839
2ed88685 1840 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1841 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1842
1843 if (buffer_unwritten(bh)) {
1844 /* A delayed write to unwritten bh should be marked
1845 * new and mapped. Mapped ensures that we don't do
1846 * get_block multiple times when we write to the same
1847 * offset and new ensures that we do proper zero out
1848 * for partial write.
1849 */
1850 set_buffer_new(bh);
c8205636 1851 set_buffer_mapped(bh);
2ed88685
TT
1852 }
1853 return 0;
64769240 1854}
61628a3f 1855
62e086be
AK
1856static int bget_one(handle_t *handle, struct buffer_head *bh)
1857{
1858 get_bh(bh);
1859 return 0;
1860}
1861
1862static int bput_one(handle_t *handle, struct buffer_head *bh)
1863{
1864 put_bh(bh);
1865 return 0;
1866}
1867
1868static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1869 unsigned int len)
1870{
1871 struct address_space *mapping = page->mapping;
1872 struct inode *inode = mapping->host;
3fdcfb66 1873 struct buffer_head *page_bufs = NULL;
62e086be 1874 handle_t *handle = NULL;
3fdcfb66
TM
1875 int ret = 0, err = 0;
1876 int inline_data = ext4_has_inline_data(inode);
1877 struct buffer_head *inode_bh = NULL;
62e086be 1878
cb20d518 1879 ClearPageChecked(page);
3fdcfb66
TM
1880
1881 if (inline_data) {
1882 BUG_ON(page->index != 0);
1883 BUG_ON(len > ext4_get_max_inline_size(inode));
1884 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1885 if (inode_bh == NULL)
1886 goto out;
1887 } else {
1888 page_bufs = page_buffers(page);
1889 if (!page_bufs) {
1890 BUG();
1891 goto out;
1892 }
1893 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1894 NULL, bget_one);
1895 }
bdf96838
TT
1896 /*
1897 * We need to release the page lock before we start the
1898 * journal, so grab a reference so the page won't disappear
1899 * out from under us.
1900 */
1901 get_page(page);
62e086be
AK
1902 unlock_page(page);
1903
9924a92a
TT
1904 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1905 ext4_writepage_trans_blocks(inode));
62e086be
AK
1906 if (IS_ERR(handle)) {
1907 ret = PTR_ERR(handle);
bdf96838
TT
1908 put_page(page);
1909 goto out_no_pagelock;
62e086be 1910 }
441c8508
CW
1911 BUG_ON(!ext4_handle_valid(handle));
1912
bdf96838
TT
1913 lock_page(page);
1914 put_page(page);
1915 if (page->mapping != mapping) {
1916 /* The page got truncated from under us */
1917 ext4_journal_stop(handle);
1918 ret = 0;
1919 goto out;
1920 }
1921
3fdcfb66 1922 if (inline_data) {
362eca70 1923 ret = ext4_mark_inode_dirty(handle, inode);
3fdcfb66
TM
1924 } else {
1925 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1926 do_journal_get_write_access);
1927
1928 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1929 write_end_fn);
1930 }
afb585a9
MFO
1931 if (ret == 0)
1932 ret = err;
b5b18160 1933 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
62e086be
AK
1934 if (ret == 0)
1935 ret = err;
2d859db3 1936 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1937 err = ext4_journal_stop(handle);
1938 if (!ret)
1939 ret = err;
1940
19f5fb7a 1941 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1942out:
bdf96838
TT
1943 unlock_page(page);
1944out_no_pagelock:
c915fb80
ZZ
1945 if (!inline_data && page_bufs)
1946 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1947 NULL, bput_one);
3fdcfb66 1948 brelse(inode_bh);
62e086be
AK
1949 return ret;
1950}
1951
61628a3f 1952/*
43ce1d23
AK
1953 * Note that we don't need to start a transaction unless we're journaling data
1954 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1955 * need to file the inode to the transaction's list in ordered mode because if
1956 * we are writing back data added by write(), the inode is already there and if
25985edc 1957 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1958 * transaction the data will hit the disk. In case we are journaling data, we
1959 * cannot start transaction directly because transaction start ranks above page
1960 * lock so we have to do some magic.
1961 *
b920c755 1962 * This function can get called via...
20970ba6 1963 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1964 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1965 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1966 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1967 *
1968 * We don't do any block allocation in this function. If we have page with
1969 * multiple blocks we need to write those buffer_heads that are mapped. This
1970 * is important for mmaped based write. So if we do with blocksize 1K
1971 * truncate(f, 1024);
1972 * a = mmap(f, 0, 4096);
1973 * a[0] = 'a';
1974 * truncate(f, 4096);
1975 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1976 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1977 * do_wp_page). So writepage should write the first block. If we modify
1978 * the mmap area beyond 1024 we will again get a page_fault and the
1979 * page_mkwrite callback will do the block allocation and mark the
1980 * buffer_heads mapped.
1981 *
1982 * We redirty the page if we have any buffer_heads that is either delay or
1983 * unwritten in the page.
1984 *
1985 * We can get recursively called as show below.
1986 *
1987 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1988 * ext4_writepage()
1989 *
1990 * But since we don't do any block allocation we should not deadlock.
1991 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1992 */
43ce1d23 1993static int ext4_writepage(struct page *page,
62e086be 1994 struct writeback_control *wbc)
64769240 1995{
f8bec370 1996 int ret = 0;
61628a3f 1997 loff_t size;
498e5f24 1998 unsigned int len;
744692dc 1999 struct buffer_head *page_bufs = NULL;
61628a3f 2000 struct inode *inode = page->mapping->host;
36ade451 2001 struct ext4_io_submit io_submit;
1c8349a1 2002 bool keep_towrite = false;
61628a3f 2003
0db1ff22 2004 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
c2a559bc 2005 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
0db1ff22
TT
2006 unlock_page(page);
2007 return -EIO;
2008 }
2009
a9c667f8 2010 trace_ext4_writepage(page);
f0e6c985 2011 size = i_size_read(inode);
c93d8f88
EB
2012 if (page->index == size >> PAGE_SHIFT &&
2013 !ext4_verity_in_progress(inode))
09cbfeaf 2014 len = size & ~PAGE_MASK;
f0e6c985 2015 else
09cbfeaf 2016 len = PAGE_SIZE;
64769240 2017
a42afc5f 2018 page_bufs = page_buffers(page);
a42afc5f 2019 /*
fe386132
JK
2020 * We cannot do block allocation or other extent handling in this
2021 * function. If there are buffers needing that, we have to redirty
2022 * the page. But we may reach here when we do a journal commit via
2023 * journal_submit_inode_data_buffers() and in that case we must write
2024 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2025 *
2026 * Also, if there is only one buffer per page (the fs block
2027 * size == the page size), if one buffer needs block
2028 * allocation or needs to modify the extent tree to clear the
2029 * unwritten flag, we know that the page can't be written at
2030 * all, so we might as well refuse the write immediately.
2031 * Unfortunately if the block size != page size, we can't as
2032 * easily detect this case using ext4_walk_page_buffers(), but
2033 * for the extremely common case, this is an optimization that
2034 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2035 */
f19d5870
TM
2036 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2037 ext4_bh_delay_or_unwritten)) {
f8bec370 2038 redirty_page_for_writepage(wbc, page);
cccd147a 2039 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2040 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2041 /*
2042 * For memory cleaning there's no point in writing only
2043 * some buffers. So just bail out. Warn if we came here
2044 * from direct reclaim.
2045 */
2046 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2047 == PF_MEMALLOC);
f0e6c985
AK
2048 unlock_page(page);
2049 return 0;
2050 }
1c8349a1 2051 keep_towrite = true;
a42afc5f 2052 }
64769240 2053
cb20d518 2054 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2055 /*
2056 * It's mmapped pagecache. Add buffers and journal it. There
2057 * doesn't seem much point in redirtying the page here.
2058 */
3f0ca309 2059 return __ext4_journalled_writepage(page, len);
43ce1d23 2060
97a851ed
JK
2061 ext4_io_submit_init(&io_submit, wbc);
2062 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2063 if (!io_submit.io_end) {
2064 redirty_page_for_writepage(wbc, page);
2065 unlock_page(page);
2066 return -ENOMEM;
2067 }
be993933 2068 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
36ade451 2069 ext4_io_submit(&io_submit);
97a851ed
JK
2070 /* Drop io_end reference we got from init */
2071 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2072 return ret;
2073}
2074
5f1132b2
JK
2075static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2076{
2077 int len;
a056bdaa 2078 loff_t size;
5f1132b2
JK
2079 int err;
2080
2081 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2082 clear_page_dirty_for_io(page);
2083 /*
2084 * We have to be very careful here! Nothing protects writeback path
2085 * against i_size changes and the page can be writeably mapped into
2086 * page tables. So an application can be growing i_size and writing
2087 * data through mmap while writeback runs. clear_page_dirty_for_io()
2088 * write-protects our page in page tables and the page cannot get
2089 * written to again until we release page lock. So only after
2090 * clear_page_dirty_for_io() we are safe to sample i_size for
2091 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2092 * on the barrier provided by TestClearPageDirty in
2093 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2094 * after page tables are updated.
2095 */
2096 size = i_size_read(mpd->inode);
c93d8f88
EB
2097 if (page->index == size >> PAGE_SHIFT &&
2098 !ext4_verity_in_progress(mpd->inode))
09cbfeaf 2099 len = size & ~PAGE_MASK;
5f1132b2 2100 else
09cbfeaf 2101 len = PAGE_SIZE;
be993933 2102 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
5f1132b2
JK
2103 if (!err)
2104 mpd->wbc->nr_to_write--;
2105 mpd->first_page++;
2106
2107 return err;
2108}
2109
6db07461 2110#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
4e7ea81d 2111
61628a3f 2112/*
fffb2739
JK
2113 * mballoc gives us at most this number of blocks...
2114 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2115 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2116 */
fffb2739 2117#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2118
4e7ea81d
JK
2119/*
2120 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121 *
2122 * @mpd - extent of blocks
2123 * @lblk - logical number of the block in the file
09930042 2124 * @bh - buffer head we want to add to the extent
4e7ea81d 2125 *
09930042
JK
2126 * The function is used to collect contig. blocks in the same state. If the
2127 * buffer doesn't require mapping for writeback and we haven't started the
2128 * extent of buffers to map yet, the function returns 'true' immediately - the
2129 * caller can write the buffer right away. Otherwise the function returns true
2130 * if the block has been added to the extent, false if the block couldn't be
2131 * added.
4e7ea81d 2132 */
09930042
JK
2133static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2134 struct buffer_head *bh)
4e7ea81d
JK
2135{
2136 struct ext4_map_blocks *map = &mpd->map;
2137
09930042
JK
2138 /* Buffer that doesn't need mapping for writeback? */
2139 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2140 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2141 /* So far no extent to map => we write the buffer right away */
2142 if (map->m_len == 0)
2143 return true;
2144 return false;
2145 }
4e7ea81d
JK
2146
2147 /* First block in the extent? */
2148 if (map->m_len == 0) {
dddbd6ac
JK
2149 /* We cannot map unless handle is started... */
2150 if (!mpd->do_map)
2151 return false;
4e7ea81d
JK
2152 map->m_lblk = lblk;
2153 map->m_len = 1;
09930042
JK
2154 map->m_flags = bh->b_state & BH_FLAGS;
2155 return true;
4e7ea81d
JK
2156 }
2157
09930042
JK
2158 /* Don't go larger than mballoc is willing to allocate */
2159 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2160 return false;
2161
4e7ea81d
JK
2162 /* Can we merge the block to our big extent? */
2163 if (lblk == map->m_lblk + map->m_len &&
09930042 2164 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2165 map->m_len++;
09930042 2166 return true;
4e7ea81d 2167 }
09930042 2168 return false;
4e7ea81d
JK
2169}
2170
5f1132b2
JK
2171/*
2172 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173 *
2174 * @mpd - extent of blocks for mapping
2175 * @head - the first buffer in the page
2176 * @bh - buffer we should start processing from
2177 * @lblk - logical number of the block in the file corresponding to @bh
2178 *
2179 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2180 * the page for IO if all buffers in this page were mapped and there's no
2181 * accumulated extent of buffers to map or add buffers in the page to the
2182 * extent of buffers to map. The function returns 1 if the caller can continue
2183 * by processing the next page, 0 if it should stop adding buffers to the
2184 * extent to map because we cannot extend it anymore. It can also return value
2185 * < 0 in case of error during IO submission.
2186 */
2187static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2188 struct buffer_head *head,
2189 struct buffer_head *bh,
2190 ext4_lblk_t lblk)
4e7ea81d
JK
2191{
2192 struct inode *inode = mpd->inode;
5f1132b2 2193 int err;
93407472 2194 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2195 >> inode->i_blkbits;
2196
c93d8f88
EB
2197 if (ext4_verity_in_progress(inode))
2198 blocks = EXT_MAX_BLOCKS;
2199
4e7ea81d
JK
2200 do {
2201 BUG_ON(buffer_locked(bh));
2202
09930042 2203 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2204 /* Found extent to map? */
2205 if (mpd->map.m_len)
5f1132b2 2206 return 0;
dddbd6ac
JK
2207 /* Buffer needs mapping and handle is not started? */
2208 if (!mpd->do_map)
2209 return 0;
09930042 2210 /* Everything mapped so far and we hit EOF */
5f1132b2 2211 break;
4e7ea81d 2212 }
4e7ea81d 2213 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2214 /* So far everything mapped? Submit the page for IO. */
2215 if (mpd->map.m_len == 0) {
2216 err = mpage_submit_page(mpd, head->b_page);
2217 if (err < 0)
2218 return err;
2219 }
6b8ed620
JK
2220 if (lblk >= blocks) {
2221 mpd->scanned_until_end = 1;
2222 return 0;
2223 }
2224 return 1;
4e7ea81d
JK
2225}
2226
2943fdbc
RH
2227/*
2228 * mpage_process_page - update page buffers corresponding to changed extent and
2229 * may submit fully mapped page for IO
2230 *
2231 * @mpd - description of extent to map, on return next extent to map
2232 * @m_lblk - logical block mapping.
2233 * @m_pblk - corresponding physical mapping.
2234 * @map_bh - determines on return whether this page requires any further
2235 * mapping or not.
2236 * Scan given page buffers corresponding to changed extent and update buffer
2237 * state according to new extent state.
2238 * We map delalloc buffers to their physical location, clear unwritten bits.
2239 * If the given page is not fully mapped, we update @map to the next extent in
2240 * the given page that needs mapping & return @map_bh as true.
2241 */
2242static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2243 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2244 bool *map_bh)
2245{
2246 struct buffer_head *head, *bh;
2247 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248 ext4_lblk_t lblk = *m_lblk;
2249 ext4_fsblk_t pblock = *m_pblk;
2250 int err = 0;
c8cc8816
RH
2251 int blkbits = mpd->inode->i_blkbits;
2252 ssize_t io_end_size = 0;
2253 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2943fdbc
RH
2254
2255 bh = head = page_buffers(page);
2256 do {
2257 if (lblk < mpd->map.m_lblk)
2258 continue;
2259 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2260 /*
2261 * Buffer after end of mapped extent.
2262 * Find next buffer in the page to map.
2263 */
2264 mpd->map.m_len = 0;
2265 mpd->map.m_flags = 0;
c8cc8816
RH
2266 io_end_vec->size += io_end_size;
2267 io_end_size = 0;
2943fdbc 2268
2943fdbc
RH
2269 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2270 if (err > 0)
2271 err = 0;
c8cc8816
RH
2272 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2273 io_end_vec = ext4_alloc_io_end_vec(io_end);
4d06bfb9
RH
2274 if (IS_ERR(io_end_vec)) {
2275 err = PTR_ERR(io_end_vec);
2276 goto out;
2277 }
d1e18b88 2278 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
c8cc8816 2279 }
2943fdbc
RH
2280 *map_bh = true;
2281 goto out;
2282 }
2283 if (buffer_delay(bh)) {
2284 clear_buffer_delay(bh);
2285 bh->b_blocknr = pblock++;
2286 }
2287 clear_buffer_unwritten(bh);
c8cc8816 2288 io_end_size += (1 << blkbits);
2943fdbc 2289 } while (lblk++, (bh = bh->b_this_page) != head);
c8cc8816
RH
2290
2291 io_end_vec->size += io_end_size;
2292 io_end_size = 0;
2943fdbc
RH
2293 *map_bh = false;
2294out:
2295 *m_lblk = lblk;
2296 *m_pblk = pblock;
2297 return err;
2298}
2299
4e7ea81d
JK
2300/*
2301 * mpage_map_buffers - update buffers corresponding to changed extent and
2302 * submit fully mapped pages for IO
2303 *
2304 * @mpd - description of extent to map, on return next extent to map
2305 *
2306 * Scan buffers corresponding to changed extent (we expect corresponding pages
2307 * to be already locked) and update buffer state according to new extent state.
2308 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2309 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2310 * and do extent conversion after IO is finished. If the last page is not fully
2311 * mapped, we update @map to the next extent in the last page that needs
2312 * mapping. Otherwise we submit the page for IO.
2313 */
2314static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2315{
2316 struct pagevec pvec;
2317 int nr_pages, i;
2318 struct inode *inode = mpd->inode;
09cbfeaf 2319 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2320 pgoff_t start, end;
2321 ext4_lblk_t lblk;
2943fdbc 2322 ext4_fsblk_t pblock;
4e7ea81d 2323 int err;
2943fdbc 2324 bool map_bh = false;
4e7ea81d
JK
2325
2326 start = mpd->map.m_lblk >> bpp_bits;
2327 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2328 lblk = start << bpp_bits;
2329 pblock = mpd->map.m_pblk;
2330
86679820 2331 pagevec_init(&pvec);
4e7ea81d 2332 while (start <= end) {
2b85a617 2333 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2334 &start, end);
4e7ea81d
JK
2335 if (nr_pages == 0)
2336 break;
2337 for (i = 0; i < nr_pages; i++) {
2338 struct page *page = pvec.pages[i];
2339
2943fdbc
RH
2340 err = mpage_process_page(mpd, page, &lblk, &pblock,
2341 &map_bh);
4e7ea81d 2342 /*
2943fdbc
RH
2343 * If map_bh is true, means page may require further bh
2344 * mapping, or maybe the page was submitted for IO.
2345 * So we return to call further extent mapping.
4e7ea81d 2346 */
39c0ae16 2347 if (err < 0 || map_bh)
2943fdbc 2348 goto out;
4e7ea81d
JK
2349 /* Page fully mapped - let IO run! */
2350 err = mpage_submit_page(mpd, page);
2943fdbc
RH
2351 if (err < 0)
2352 goto out;
4e7ea81d
JK
2353 }
2354 pagevec_release(&pvec);
2355 }
2356 /* Extent fully mapped and matches with page boundary. We are done. */
2357 mpd->map.m_len = 0;
2358 mpd->map.m_flags = 0;
2359 return 0;
2943fdbc
RH
2360out:
2361 pagevec_release(&pvec);
2362 return err;
4e7ea81d
JK
2363}
2364
2365static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2366{
2367 struct inode *inode = mpd->inode;
2368 struct ext4_map_blocks *map = &mpd->map;
2369 int get_blocks_flags;
090f32ee 2370 int err, dioread_nolock;
4e7ea81d
JK
2371
2372 trace_ext4_da_write_pages_extent(inode, map);
2373 /*
2374 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2375 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2376 * where we have written into one or more preallocated blocks). It is
2377 * possible that we're going to need more metadata blocks than
2378 * previously reserved. However we must not fail because we're in
2379 * writeback and there is nothing we can do about it so it might result
2380 * in data loss. So use reserved blocks to allocate metadata if
2381 * possible.
2382 *
754cfed6
TT
2383 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2384 * the blocks in question are delalloc blocks. This indicates
2385 * that the blocks and quotas has already been checked when
2386 * the data was copied into the page cache.
4e7ea81d
JK
2387 */
2388 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2389 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2390 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2391 dioread_nolock = ext4_should_dioread_nolock(inode);
2392 if (dioread_nolock)
4e7ea81d 2393 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
6db07461 2394 if (map->m_flags & BIT(BH_Delay))
4e7ea81d
JK
2395 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2396
2397 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2398 if (err < 0)
2399 return err;
090f32ee 2400 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2401 if (!mpd->io_submit.io_end->handle &&
2402 ext4_handle_valid(handle)) {
2403 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2404 handle->h_rsv_handle = NULL;
2405 }
3613d228 2406 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2407 }
4e7ea81d
JK
2408
2409 BUG_ON(map->m_len == 0);
4e7ea81d
JK
2410 return 0;
2411}
2412
2413/*
2414 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2415 * mpd->len and submit pages underlying it for IO
2416 *
2417 * @handle - handle for journal operations
2418 * @mpd - extent to map
7534e854
JK
2419 * @give_up_on_write - we set this to true iff there is a fatal error and there
2420 * is no hope of writing the data. The caller should discard
2421 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2422 *
2423 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2424 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2425 * them to initialized or split the described range from larger unwritten
2426 * extent. Note that we need not map all the described range since allocation
2427 * can return less blocks or the range is covered by more unwritten extents. We
2428 * cannot map more because we are limited by reserved transaction credits. On
2429 * the other hand we always make sure that the last touched page is fully
2430 * mapped so that it can be written out (and thus forward progress is
2431 * guaranteed). After mapping we submit all mapped pages for IO.
2432 */
2433static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2434 struct mpage_da_data *mpd,
2435 bool *give_up_on_write)
4e7ea81d
JK
2436{
2437 struct inode *inode = mpd->inode;
2438 struct ext4_map_blocks *map = &mpd->map;
2439 int err;
2440 loff_t disksize;
6603120e 2441 int progress = 0;
c8cc8816 2442 ext4_io_end_t *io_end = mpd->io_submit.io_end;
4d06bfb9 2443 struct ext4_io_end_vec *io_end_vec;
4e7ea81d 2444
4d06bfb9
RH
2445 io_end_vec = ext4_alloc_io_end_vec(io_end);
2446 if (IS_ERR(io_end_vec))
2447 return PTR_ERR(io_end_vec);
c8cc8816 2448 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2449 do {
4e7ea81d
JK
2450 err = mpage_map_one_extent(handle, mpd);
2451 if (err < 0) {
2452 struct super_block *sb = inode->i_sb;
2453
0db1ff22 2454 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
9b5f6c9b 2455 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
cb530541 2456 goto invalidate_dirty_pages;
4e7ea81d 2457 /*
cb530541
TT
2458 * Let the uper layers retry transient errors.
2459 * In the case of ENOSPC, if ext4_count_free_blocks()
2460 * is non-zero, a commit should free up blocks.
4e7ea81d 2461 */
cb530541 2462 if ((err == -ENOMEM) ||
6603120e
DM
2463 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2464 if (progress)
2465 goto update_disksize;
cb530541 2466 return err;
6603120e 2467 }
cb530541
TT
2468 ext4_msg(sb, KERN_CRIT,
2469 "Delayed block allocation failed for "
2470 "inode %lu at logical offset %llu with"
2471 " max blocks %u with error %d",
2472 inode->i_ino,
2473 (unsigned long long)map->m_lblk,
2474 (unsigned)map->m_len, -err);
2475 ext4_msg(sb, KERN_CRIT,
2476 "This should not happen!! Data will "
2477 "be lost\n");
2478 if (err == -ENOSPC)
2479 ext4_print_free_blocks(inode);
2480 invalidate_dirty_pages:
2481 *give_up_on_write = true;
4e7ea81d
JK
2482 return err;
2483 }
6603120e 2484 progress = 1;
4e7ea81d
JK
2485 /*
2486 * Update buffer state, submit mapped pages, and get us new
2487 * extent to map
2488 */
2489 err = mpage_map_and_submit_buffers(mpd);
2490 if (err < 0)
6603120e 2491 goto update_disksize;
27d7c4ed 2492 } while (map->m_len);
4e7ea81d 2493
6603120e 2494update_disksize:
622cad13
TT
2495 /*
2496 * Update on-disk size after IO is submitted. Races with
2497 * truncate are avoided by checking i_size under i_data_sem.
2498 */
09cbfeaf 2499 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
35df4299 2500 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
4e7ea81d 2501 int err2;
622cad13
TT
2502 loff_t i_size;
2503
2504 down_write(&EXT4_I(inode)->i_data_sem);
2505 i_size = i_size_read(inode);
2506 if (disksize > i_size)
2507 disksize = i_size;
2508 if (disksize > EXT4_I(inode)->i_disksize)
2509 EXT4_I(inode)->i_disksize = disksize;
622cad13 2510 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2511 err2 = ext4_mark_inode_dirty(handle, inode);
878520ac 2512 if (err2) {
54d3adbc
TT
2513 ext4_error_err(inode->i_sb, -err2,
2514 "Failed to mark inode %lu dirty",
2515 inode->i_ino);
878520ac 2516 }
4e7ea81d
JK
2517 if (!err)
2518 err = err2;
2519 }
2520 return err;
2521}
2522
fffb2739
JK
2523/*
2524 * Calculate the total number of credits to reserve for one writepages
20970ba6 2525 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2526 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2527 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528 * bpp - 1 blocks in bpp different extents.
2529 */
525f4ed8
MC
2530static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531{
fffb2739 2532 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2533
fffb2739
JK
2534 return ext4_meta_trans_blocks(inode,
2535 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2536}
61628a3f 2537
8e48dcfb 2538/*
4e7ea81d
JK
2539 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540 * and underlying extent to map
2541 *
2542 * @mpd - where to look for pages
2543 *
2544 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545 * IO immediately. When we find a page which isn't mapped we start accumulating
2546 * extent of buffers underlying these pages that needs mapping (formed by
2547 * either delayed or unwritten buffers). We also lock the pages containing
2548 * these buffers. The extent found is returned in @mpd structure (starting at
2549 * mpd->lblk with length mpd->len blocks).
2550 *
2551 * Note that this function can attach bios to one io_end structure which are
2552 * neither logically nor physically contiguous. Although it may seem as an
2553 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2555 */
4e7ea81d 2556static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2557{
4e7ea81d
JK
2558 struct address_space *mapping = mpd->inode->i_mapping;
2559 struct pagevec pvec;
2560 unsigned int nr_pages;
aeac589a 2561 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2562 pgoff_t index = mpd->first_page;
2563 pgoff_t end = mpd->last_page;
10bbd235 2564 xa_mark_t tag;
4e7ea81d
JK
2565 int i, err = 0;
2566 int blkbits = mpd->inode->i_blkbits;
2567 ext4_lblk_t lblk;
2568 struct buffer_head *head;
8e48dcfb 2569
4e7ea81d 2570 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2571 tag = PAGECACHE_TAG_TOWRITE;
2572 else
2573 tag = PAGECACHE_TAG_DIRTY;
2574
86679820 2575 pagevec_init(&pvec);
4e7ea81d
JK
2576 mpd->map.m_len = 0;
2577 mpd->next_page = index;
4f01b02c 2578 while (index <= end) {
dc7f3e86 2579 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2580 tag);
8e48dcfb 2581 if (nr_pages == 0)
6b8ed620 2582 break;
8e48dcfb
TT
2583
2584 for (i = 0; i < nr_pages; i++) {
2585 struct page *page = pvec.pages[i];
2586
aeac589a
ML
2587 /*
2588 * Accumulated enough dirty pages? This doesn't apply
2589 * to WB_SYNC_ALL mode. For integrity sync we have to
2590 * keep going because someone may be concurrently
2591 * dirtying pages, and we might have synced a lot of
2592 * newly appeared dirty pages, but have not synced all
2593 * of the old dirty pages.
2594 */
2595 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2596 goto out;
2597
4e7ea81d
JK
2598 /* If we can't merge this page, we are done. */
2599 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2600 goto out;
78aaced3 2601
8e48dcfb 2602 lock_page(page);
8e48dcfb 2603 /*
4e7ea81d
JK
2604 * If the page is no longer dirty, or its mapping no
2605 * longer corresponds to inode we are writing (which
2606 * means it has been truncated or invalidated), or the
2607 * page is already under writeback and we are not doing
2608 * a data integrity writeback, skip the page
8e48dcfb 2609 */
4f01b02c
TT
2610 if (!PageDirty(page) ||
2611 (PageWriteback(page) &&
4e7ea81d 2612 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2613 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2614 unlock_page(page);
2615 continue;
2616 }
2617
7cb1a535 2618 wait_on_page_writeback(page);
8e48dcfb 2619 BUG_ON(PageWriteback(page));
8e48dcfb 2620
4e7ea81d 2621 if (mpd->map.m_len == 0)
8eb9e5ce 2622 mpd->first_page = page->index;
8eb9e5ce 2623 mpd->next_page = page->index + 1;
f8bec370 2624 /* Add all dirty buffers to mpd */
4e7ea81d 2625 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2626 (PAGE_SHIFT - blkbits);
f8bec370 2627 head = page_buffers(page);
5f1132b2
JK
2628 err = mpage_process_page_bufs(mpd, head, head, lblk);
2629 if (err <= 0)
4e7ea81d 2630 goto out;
5f1132b2 2631 err = 0;
aeac589a 2632 left--;
8e48dcfb
TT
2633 }
2634 pagevec_release(&pvec);
2635 cond_resched();
2636 }
6b8ed620 2637 mpd->scanned_until_end = 1;
4f01b02c 2638 return 0;
8eb9e5ce
TT
2639out:
2640 pagevec_release(&pvec);
4e7ea81d 2641 return err;
8e48dcfb
TT
2642}
2643
20970ba6
TT
2644static int ext4_writepages(struct address_space *mapping,
2645 struct writeback_control *wbc)
64769240 2646{
4e7ea81d
JK
2647 pgoff_t writeback_index = 0;
2648 long nr_to_write = wbc->nr_to_write;
22208ded 2649 int range_whole = 0;
4e7ea81d 2650 int cycled = 1;
61628a3f 2651 handle_t *handle = NULL;
df22291f 2652 struct mpage_da_data mpd;
5e745b04 2653 struct inode *inode = mapping->host;
6b523df4 2654 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2655 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
1bce63d1 2656 struct blk_plug plug;
cb530541 2657 bool give_up_on_write = false;
61628a3f 2658
0db1ff22
TT
2659 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2660 return -EIO;
2661
bbd55937 2662 percpu_down_read(&sbi->s_writepages_rwsem);
20970ba6 2663 trace_ext4_writepages(inode, wbc);
ba80b101 2664
61628a3f
MC
2665 /*
2666 * No pages to write? This is mainly a kludge to avoid starting
2667 * a transaction for special inodes like journal inode on last iput()
2668 * because that could violate lock ordering on umount
2669 */
a1d6cc56 2670 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2671 goto out_writepages;
2a21e37e 2672
20970ba6 2673 if (ext4_should_journal_data(inode)) {
043d20d1 2674 ret = generic_writepages(mapping, wbc);
bbf023c7 2675 goto out_writepages;
20970ba6
TT
2676 }
2677
2a21e37e
TT
2678 /*
2679 * If the filesystem has aborted, it is read-only, so return
2680 * right away instead of dumping stack traces later on that
2681 * will obscure the real source of the problem. We test
1751e8a6 2682 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2683 * the latter could be true if the filesystem is mounted
20970ba6 2684 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2685 * *never* be called, so if that ever happens, we would want
2686 * the stack trace.
2687 */
0db1ff22 2688 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
9b5f6c9b 2689 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
bbf023c7
ML
2690 ret = -EROFS;
2691 goto out_writepages;
2692 }
2a21e37e 2693
4e7ea81d
JK
2694 /*
2695 * If we have inline data and arrive here, it means that
2696 * we will soon create the block for the 1st page, so
2697 * we'd better clear the inline data here.
2698 */
2699 if (ext4_has_inline_data(inode)) {
2700 /* Just inode will be modified... */
2701 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2702 if (IS_ERR(handle)) {
2703 ret = PTR_ERR(handle);
2704 goto out_writepages;
2705 }
2706 BUG_ON(ext4_test_inode_state(inode,
2707 EXT4_STATE_MAY_INLINE_DATA));
2708 ext4_destroy_inline_data(handle, inode);
2709 ext4_journal_stop(handle);
2710 }
2711
4e343231 2712 if (ext4_should_dioread_nolock(inode)) {
2713 /*
2714 * We may need to convert up to one extent per block in
2715 * the page and we may dirty the inode.
2716 */
2717 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2718 PAGE_SIZE >> inode->i_blkbits);
2719 }
2720
22208ded
AK
2721 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2722 range_whole = 1;
61628a3f 2723
2acf2c26 2724 if (wbc->range_cyclic) {
4e7ea81d
JK
2725 writeback_index = mapping->writeback_index;
2726 if (writeback_index)
2acf2c26 2727 cycled = 0;
4e7ea81d
JK
2728 mpd.first_page = writeback_index;
2729 mpd.last_page = -1;
5b41d924 2730 } else {
09cbfeaf
KS
2731 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2732 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2733 }
a1d6cc56 2734
4e7ea81d
JK
2735 mpd.inode = inode;
2736 mpd.wbc = wbc;
2737 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2738retry:
6e6938b6 2739 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d 2740 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
1bce63d1 2741 blk_start_plug(&plug);
dddbd6ac
JK
2742
2743 /*
2744 * First writeback pages that don't need mapping - we can avoid
2745 * starting a transaction unnecessarily and also avoid being blocked
2746 * in the block layer on device congestion while having transaction
2747 * started.
2748 */
2749 mpd.do_map = 0;
6b8ed620 2750 mpd.scanned_until_end = 0;
dddbd6ac
JK
2751 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2752 if (!mpd.io_submit.io_end) {
2753 ret = -ENOMEM;
2754 goto unplug;
2755 }
2756 ret = mpage_prepare_extent_to_map(&mpd);
a297b2fc
XW
2757 /* Unlock pages we didn't use */
2758 mpage_release_unused_pages(&mpd, false);
dddbd6ac
JK
2759 /* Submit prepared bio */
2760 ext4_io_submit(&mpd.io_submit);
2761 ext4_put_io_end_defer(mpd.io_submit.io_end);
2762 mpd.io_submit.io_end = NULL;
dddbd6ac
JK
2763 if (ret < 0)
2764 goto unplug;
2765
6b8ed620 2766 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
4e7ea81d
JK
2767 /* For each extent of pages we use new io_end */
2768 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2769 if (!mpd.io_submit.io_end) {
2770 ret = -ENOMEM;
2771 break;
2772 }
a1d6cc56
AK
2773
2774 /*
4e7ea81d
JK
2775 * We have two constraints: We find one extent to map and we
2776 * must always write out whole page (makes a difference when
2777 * blocksize < pagesize) so that we don't block on IO when we
2778 * try to write out the rest of the page. Journalled mode is
2779 * not supported by delalloc.
a1d6cc56
AK
2780 */
2781 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2782 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2783
4e7ea81d 2784 /* start a new transaction */
6b523df4
JK
2785 handle = ext4_journal_start_with_reserve(inode,
2786 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2787 if (IS_ERR(handle)) {
2788 ret = PTR_ERR(handle);
1693918e 2789 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2790 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2791 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2792 /* Release allocated io_end */
2793 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2794 mpd.io_submit.io_end = NULL;
4e7ea81d 2795 break;
61628a3f 2796 }
dddbd6ac 2797 mpd.do_map = 1;
f63e6005 2798
4e7ea81d
JK
2799 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2800 ret = mpage_prepare_extent_to_map(&mpd);
6b8ed620
JK
2801 if (!ret && mpd.map.m_len)
2802 ret = mpage_map_and_submit_extent(handle, &mpd,
cb530541 2803 &give_up_on_write);
646caa9c
JK
2804 /*
2805 * Caution: If the handle is synchronous,
2806 * ext4_journal_stop() can wait for transaction commit
2807 * to finish which may depend on writeback of pages to
2808 * complete or on page lock to be released. In that
b483bb77 2809 * case, we have to wait until after we have
646caa9c
JK
2810 * submitted all the IO, released page locks we hold,
2811 * and dropped io_end reference (for extent conversion
2812 * to be able to complete) before stopping the handle.
2813 */
2814 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2815 ext4_journal_stop(handle);
2816 handle = NULL;
dddbd6ac 2817 mpd.do_map = 0;
646caa9c 2818 }
4e7ea81d 2819 /* Unlock pages we didn't use */
cb530541 2820 mpage_release_unused_pages(&mpd, give_up_on_write);
a297b2fc
XW
2821 /* Submit prepared bio */
2822 ext4_io_submit(&mpd.io_submit);
2823
646caa9c
JK
2824 /*
2825 * Drop our io_end reference we got from init. We have
2826 * to be careful and use deferred io_end finishing if
2827 * we are still holding the transaction as we can
2828 * release the last reference to io_end which may end
2829 * up doing unwritten extent conversion.
2830 */
2831 if (handle) {
2832 ext4_put_io_end_defer(mpd.io_submit.io_end);
2833 ext4_journal_stop(handle);
2834 } else
2835 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2836 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2837
2838 if (ret == -ENOSPC && sbi->s_journal) {
2839 /*
2840 * Commit the transaction which would
22208ded
AK
2841 * free blocks released in the transaction
2842 * and try again
2843 */
df22291f 2844 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2845 ret = 0;
4e7ea81d
JK
2846 continue;
2847 }
2848 /* Fatal error - ENOMEM, EIO... */
2849 if (ret)
61628a3f 2850 break;
a1d6cc56 2851 }
dddbd6ac 2852unplug:
1bce63d1 2853 blk_finish_plug(&plug);
9c12a831 2854 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2855 cycled = 1;
4e7ea81d
JK
2856 mpd.last_page = writeback_index - 1;
2857 mpd.first_page = 0;
2acf2c26
AK
2858 goto retry;
2859 }
22208ded
AK
2860
2861 /* Update index */
22208ded
AK
2862 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2863 /*
4e7ea81d 2864 * Set the writeback_index so that range_cyclic
22208ded
AK
2865 * mode will write it back later
2866 */
4e7ea81d 2867 mapping->writeback_index = mpd.first_page;
a1d6cc56 2868
61628a3f 2869out_writepages:
20970ba6
TT
2870 trace_ext4_writepages_result(inode, wbc, ret,
2871 nr_to_write - wbc->nr_to_write);
bbd55937 2872 percpu_up_read(&sbi->s_writepages_rwsem);
61628a3f 2873 return ret;
64769240
AT
2874}
2875
5f0663bb
DW
2876static int ext4_dax_writepages(struct address_space *mapping,
2877 struct writeback_control *wbc)
2878{
2879 int ret;
2880 long nr_to_write = wbc->nr_to_write;
2881 struct inode *inode = mapping->host;
2882 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2883
2884 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2885 return -EIO;
2886
bbd55937 2887 percpu_down_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2888 trace_ext4_writepages(inode, wbc);
2889
3f666c56 2890 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
5f0663bb
DW
2891 trace_ext4_writepages_result(inode, wbc, ret,
2892 nr_to_write - wbc->nr_to_write);
bbd55937 2893 percpu_up_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2894 return ret;
2895}
2896
79f0be8d
AK
2897static int ext4_nonda_switch(struct super_block *sb)
2898{
5c1ff336 2899 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2900 struct ext4_sb_info *sbi = EXT4_SB(sb);
2901
2902 /*
2903 * switch to non delalloc mode if we are running low
2904 * on free block. The free block accounting via percpu
179f7ebf 2905 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2906 * accumulated on each CPU without updating global counters
2907 * Delalloc need an accurate free block accounting. So switch
2908 * to non delalloc when we are near to error range.
2909 */
5c1ff336
EW
2910 free_clusters =
2911 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2912 dirty_clusters =
2913 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2914 /*
2915 * Start pushing delalloc when 1/2 of free blocks are dirty.
2916 */
5c1ff336 2917 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2918 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2919
5c1ff336
EW
2920 if (2 * free_clusters < 3 * dirty_clusters ||
2921 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2922 /*
c8afb446
ES
2923 * free block count is less than 150% of dirty blocks
2924 * or free blocks is less than watermark
79f0be8d
AK
2925 */
2926 return 1;
2927 }
2928 return 0;
2929}
2930
0ff8947f
ES
2931/* We always reserve for an inode update; the superblock could be there too */
2932static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2933{
e2b911c5 2934 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2935 return 1;
2936
2937 if (pos + len <= 0x7fffffffULL)
2938 return 1;
2939
2940 /* We might need to update the superblock to set LARGE_FILE */
2941 return 2;
2942}
2943
64769240 2944static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2945 loff_t pos, unsigned len, unsigned flags,
2946 struct page **pagep, void **fsdata)
64769240 2947{
72b8ab9d 2948 int ret, retries = 0;
64769240
AT
2949 struct page *page;
2950 pgoff_t index;
64769240
AT
2951 struct inode *inode = mapping->host;
2952 handle_t *handle;
2953
0db1ff22
TT
2954 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2955 return -EIO;
2956
09cbfeaf 2957 index = pos >> PAGE_SHIFT;
79f0be8d 2958
c93d8f88
EB
2959 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2960 ext4_verity_in_progress(inode)) {
79f0be8d
AK
2961 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2962 return ext4_write_begin(file, mapping, pos,
2963 len, flags, pagep, fsdata);
2964 }
2965 *fsdata = (void *)0;
9bffad1e 2966 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2967
2968 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2969 ret = ext4_da_write_inline_data_begin(mapping, inode,
2970 pos, len, flags,
2971 pagep, fsdata);
2972 if (ret < 0)
47564bfb
TT
2973 return ret;
2974 if (ret == 1)
2975 return 0;
9c3569b5
TM
2976 }
2977
47564bfb
TT
2978 /*
2979 * grab_cache_page_write_begin() can take a long time if the
2980 * system is thrashing due to memory pressure, or if the page
2981 * is being written back. So grab it first before we start
2982 * the transaction handle. This also allows us to allocate
2983 * the page (if needed) without using GFP_NOFS.
2984 */
2985retry_grab:
2986 page = grab_cache_page_write_begin(mapping, index, flags);
2987 if (!page)
2988 return -ENOMEM;
2989 unlock_page(page);
2990
64769240
AT
2991 /*
2992 * With delayed allocation, we don't log the i_disksize update
2993 * if there is delayed block allocation. But we still need
2994 * to journalling the i_disksize update if writes to the end
2995 * of file which has an already mapped buffer.
2996 */
47564bfb 2997retry_journal:
0ff8947f
ES
2998 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2999 ext4_da_write_credits(inode, pos, len));
64769240 3000 if (IS_ERR(handle)) {
09cbfeaf 3001 put_page(page);
47564bfb 3002 return PTR_ERR(handle);
64769240
AT
3003 }
3004
47564bfb
TT
3005 lock_page(page);
3006 if (page->mapping != mapping) {
3007 /* The page got truncated from under us */
3008 unlock_page(page);
09cbfeaf 3009 put_page(page);
d5a0d4f7 3010 ext4_journal_stop(handle);
47564bfb 3011 goto retry_grab;
d5a0d4f7 3012 }
47564bfb 3013 /* In case writeback began while the page was unlocked */
7afe5aa5 3014 wait_for_stable_page(page);
64769240 3015
643fa961 3016#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
3017 ret = ext4_block_write_begin(page, pos, len,
3018 ext4_da_get_block_prep);
3019#else
6e1db88d 3020 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3021#endif
64769240
AT
3022 if (ret < 0) {
3023 unlock_page(page);
3024 ext4_journal_stop(handle);
ae4d5372
AK
3025 /*
3026 * block_write_begin may have instantiated a few blocks
3027 * outside i_size. Trim these off again. Don't need
3028 * i_size_read because we hold i_mutex.
3029 */
3030 if (pos + len > inode->i_size)
b9a4207d 3031 ext4_truncate_failed_write(inode);
47564bfb
TT
3032
3033 if (ret == -ENOSPC &&
3034 ext4_should_retry_alloc(inode->i_sb, &retries))
3035 goto retry_journal;
3036
09cbfeaf 3037 put_page(page);
47564bfb 3038 return ret;
64769240
AT
3039 }
3040
47564bfb 3041 *pagep = page;
64769240
AT
3042 return ret;
3043}
3044
632eaeab
MC
3045/*
3046 * Check if we should update i_disksize
3047 * when write to the end of file but not require block allocation
3048 */
3049static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3050 unsigned long offset)
632eaeab
MC
3051{
3052 struct buffer_head *bh;
3053 struct inode *inode = page->mapping->host;
3054 unsigned int idx;
3055 int i;
3056
3057 bh = page_buffers(page);
3058 idx = offset >> inode->i_blkbits;
3059
af5bc92d 3060 for (i = 0; i < idx; i++)
632eaeab
MC
3061 bh = bh->b_this_page;
3062
29fa89d0 3063 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3064 return 0;
3065 return 1;
3066}
3067
64769240 3068static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3069 struct address_space *mapping,
3070 loff_t pos, unsigned len, unsigned copied,
3071 struct page *page, void *fsdata)
64769240
AT
3072{
3073 struct inode *inode = mapping->host;
3074 int ret = 0, ret2;
3075 handle_t *handle = ext4_journal_current_handle();
3076 loff_t new_i_size;
632eaeab 3077 unsigned long start, end;
79f0be8d
AK
3078 int write_mode = (int)(unsigned long)fsdata;
3079
74d553aa
TT
3080 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3081 return ext4_write_end(file, mapping, pos,
3082 len, copied, page, fsdata);
632eaeab 3083
9bffad1e 3084 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3085 start = pos & (PAGE_SIZE - 1);
af5bc92d 3086 end = start + copied - 1;
64769240
AT
3087
3088 /*
3089 * generic_write_end() will run mark_inode_dirty() if i_size
3090 * changes. So let's piggyback the i_disksize mark_inode_dirty
3091 * into that.
3092 */
64769240 3093 new_i_size = pos + copied;
ea51d132 3094 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3095 if (ext4_has_inline_data(inode) ||
3096 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3097 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3098 /* We need to mark inode dirty even if
3099 * new_i_size is less that inode->i_size
3100 * bu greater than i_disksize.(hint delalloc)
3101 */
4209ae12 3102 ret = ext4_mark_inode_dirty(handle, inode);
64769240 3103 }
632eaeab 3104 }
9c3569b5
TM
3105
3106 if (write_mode != CONVERT_INLINE_DATA &&
3107 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3108 ext4_has_inline_data(inode))
3109 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3110 page);
3111 else
3112 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3113 page, fsdata);
9c3569b5 3114
64769240
AT
3115 copied = ret2;
3116 if (ret2 < 0)
3117 ret = ret2;
3118 ret2 = ext4_journal_stop(handle);
4209ae12 3119 if (unlikely(ret2 && !ret))
64769240
AT
3120 ret = ret2;
3121
3122 return ret ? ret : copied;
3123}
3124
ccd2506b
TT
3125/*
3126 * Force all delayed allocation blocks to be allocated for a given inode.
3127 */
3128int ext4_alloc_da_blocks(struct inode *inode)
3129{
fb40ba0d
TT
3130 trace_ext4_alloc_da_blocks(inode);
3131
71d4f7d0 3132 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3133 return 0;
3134
3135 /*
3136 * We do something simple for now. The filemap_flush() will
3137 * also start triggering a write of the data blocks, which is
3138 * not strictly speaking necessary (and for users of
3139 * laptop_mode, not even desirable). However, to do otherwise
3140 * would require replicating code paths in:
de9a55b8 3141 *
20970ba6 3142 * ext4_writepages() ->
ccd2506b
TT
3143 * write_cache_pages() ---> (via passed in callback function)
3144 * __mpage_da_writepage() -->
3145 * mpage_add_bh_to_extent()
3146 * mpage_da_map_blocks()
3147 *
3148 * The problem is that write_cache_pages(), located in
3149 * mm/page-writeback.c, marks pages clean in preparation for
3150 * doing I/O, which is not desirable if we're not planning on
3151 * doing I/O at all.
3152 *
3153 * We could call write_cache_pages(), and then redirty all of
380cf090 3154 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3155 * would be ugly in the extreme. So instead we would need to
3156 * replicate parts of the code in the above functions,
25985edc 3157 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3158 * write out the pages, but rather only collect contiguous
3159 * logical block extents, call the multi-block allocator, and
3160 * then update the buffer heads with the block allocations.
de9a55b8 3161 *
ccd2506b
TT
3162 * For now, though, we'll cheat by calling filemap_flush(),
3163 * which will map the blocks, and start the I/O, but not
3164 * actually wait for the I/O to complete.
3165 */
3166 return filemap_flush(inode->i_mapping);
3167}
64769240 3168
ac27a0ec
DK
3169/*
3170 * bmap() is special. It gets used by applications such as lilo and by
3171 * the swapper to find the on-disk block of a specific piece of data.
3172 *
3173 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3174 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3175 * filesystem and enables swap, then they may get a nasty shock when the
3176 * data getting swapped to that swapfile suddenly gets overwritten by
3177 * the original zero's written out previously to the journal and
3178 * awaiting writeback in the kernel's buffer cache.
3179 *
3180 * So, if we see any bmap calls here on a modified, data-journaled file,
3181 * take extra steps to flush any blocks which might be in the cache.
3182 */
617ba13b 3183static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3184{
3185 struct inode *inode = mapping->host;
3186 journal_t *journal;
3187 int err;
3188
46c7f254
TM
3189 /*
3190 * We can get here for an inline file via the FIBMAP ioctl
3191 */
3192 if (ext4_has_inline_data(inode))
3193 return 0;
3194
64769240
AT
3195 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3196 test_opt(inode->i_sb, DELALLOC)) {
3197 /*
3198 * With delalloc we want to sync the file
3199 * so that we can make sure we allocate
3200 * blocks for file
3201 */
3202 filemap_write_and_wait(mapping);
3203 }
3204
19f5fb7a
TT
3205 if (EXT4_JOURNAL(inode) &&
3206 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3207 /*
3208 * This is a REALLY heavyweight approach, but the use of
3209 * bmap on dirty files is expected to be extremely rare:
3210 * only if we run lilo or swapon on a freshly made file
3211 * do we expect this to happen.
3212 *
3213 * (bmap requires CAP_SYS_RAWIO so this does not
3214 * represent an unprivileged user DOS attack --- we'd be
3215 * in trouble if mortal users could trigger this path at
3216 * will.)
3217 *
617ba13b 3218 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3219 * regular files. If somebody wants to bmap a directory
3220 * or symlink and gets confused because the buffer
3221 * hasn't yet been flushed to disk, they deserve
3222 * everything they get.
3223 */
3224
19f5fb7a 3225 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3226 journal = EXT4_JOURNAL(inode);
dab291af
MC
3227 jbd2_journal_lock_updates(journal);
3228 err = jbd2_journal_flush(journal);
3229 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3230
3231 if (err)
3232 return 0;
3233 }
3234
ac58e4fb 3235 return iomap_bmap(mapping, block, &ext4_iomap_ops);
ac27a0ec
DK
3236}
3237
617ba13b 3238static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3239{
46c7f254
TM
3240 int ret = -EAGAIN;
3241 struct inode *inode = page->mapping->host;
3242
0562e0ba 3243 trace_ext4_readpage(page);
46c7f254
TM
3244
3245 if (ext4_has_inline_data(inode))
3246 ret = ext4_readpage_inline(inode, page);
3247
3248 if (ret == -EAGAIN)
a07f624b 3249 return ext4_mpage_readpages(inode, NULL, page);
46c7f254
TM
3250
3251 return ret;
ac27a0ec
DK
3252}
3253
6311f91f 3254static void ext4_readahead(struct readahead_control *rac)
ac27a0ec 3255{
6311f91f 3256 struct inode *inode = rac->mapping->host;
46c7f254 3257
6311f91f 3258 /* If the file has inline data, no need to do readahead. */
46c7f254 3259 if (ext4_has_inline_data(inode))
6311f91f 3260 return;
46c7f254 3261
a07f624b 3262 ext4_mpage_readpages(inode, rac, NULL);
ac27a0ec
DK
3263}
3264
d47992f8
LC
3265static void ext4_invalidatepage(struct page *page, unsigned int offset,
3266 unsigned int length)
ac27a0ec 3267{
ca99fdd2 3268 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3269
4520fb3c
JK
3270 /* No journalling happens on data buffers when this function is used */
3271 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3272
ca99fdd2 3273 block_invalidatepage(page, offset, length);
4520fb3c
JK
3274}
3275
53e87268 3276static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3277 unsigned int offset,
3278 unsigned int length)
4520fb3c
JK
3279{
3280 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3281
ca99fdd2 3282 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3283
ac27a0ec
DK
3284 /*
3285 * If it's a full truncate we just forget about the pending dirtying
3286 */
09cbfeaf 3287 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3288 ClearPageChecked(page);
3289
ca99fdd2 3290 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3291}
3292
3293/* Wrapper for aops... */
3294static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3295 unsigned int offset,
3296 unsigned int length)
53e87268 3297{
ca99fdd2 3298 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3299}
3300
617ba13b 3301static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3302{
617ba13b 3303 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3304
0562e0ba
JZ
3305 trace_ext4_releasepage(page);
3306
e1c36595
JK
3307 /* Page has dirty journalled data -> cannot release */
3308 if (PageChecked(page))
ac27a0ec 3309 return 0;
0390131b 3310 if (journal)
529a781e 3311 return jbd2_journal_try_to_free_buffers(journal, page);
0390131b
FM
3312 else
3313 return try_to_free_buffers(page);
ac27a0ec
DK
3314}
3315
b8a6176c
JK
3316static bool ext4_inode_datasync_dirty(struct inode *inode)
3317{
3318 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3319
aa75f4d3
HS
3320 if (journal) {
3321 if (jbd2_transaction_committed(journal,
d0520df7
AR
3322 EXT4_I(inode)->i_datasync_tid))
3323 return false;
3324 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
1ceecb53 3325 return !list_empty(&EXT4_I(inode)->i_fc_list);
d0520df7 3326 return true;
aa75f4d3
HS
3327 }
3328
b8a6176c
JK
3329 /* Any metadata buffers to write? */
3330 if (!list_empty(&inode->i_mapping->private_list))
3331 return true;
3332 return inode->i_state & I_DIRTY_DATASYNC;
3333}
3334
c8fdfe29
MB
3335static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3336 struct ext4_map_blocks *map, loff_t offset,
3337 loff_t length)
364443cb 3338{
c8fdfe29 3339 u8 blkbits = inode->i_blkbits;
364443cb 3340
c8fdfe29
MB
3341 /*
3342 * Writes that span EOF might trigger an I/O size update on completion,
3343 * so consider them to be dirty for the purpose of O_DSYNC, even if
3344 * there is no other metadata changes being made or are pending.
3345 */
364443cb 3346 iomap->flags = 0;
c8fdfe29
MB
3347 if (ext4_inode_datasync_dirty(inode) ||
3348 offset + length > i_size_read(inode))
b8a6176c 3349 iomap->flags |= IOMAP_F_DIRTY;
c8fdfe29
MB
3350
3351 if (map->m_flags & EXT4_MAP_NEW)
3352 iomap->flags |= IOMAP_F_NEW;
3353
5e405595 3354 iomap->bdev = inode->i_sb->s_bdev;
c8fdfe29
MB
3355 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3356 iomap->offset = (u64) map->m_lblk << blkbits;
3357 iomap->length = (u64) map->m_len << blkbits;
364443cb 3358
6386722a
RH
3359 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3360 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3361 iomap->flags |= IOMAP_F_MERGED;
3362
c8fdfe29
MB
3363 /*
3364 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3365 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3366 * set. In order for any allocated unwritten extents to be converted
3367 * into written extents correctly within the ->end_io() handler, we
3368 * need to ensure that the iomap->type is set appropriately. Hence, the
3369 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3370 * been set first.
3371 */
3372 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3373 iomap->type = IOMAP_UNWRITTEN;
3374 iomap->addr = (u64) map->m_pblk << blkbits;
3375 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3376 iomap->type = IOMAP_MAPPED;
3377 iomap->addr = (u64) map->m_pblk << blkbits;
364443cb 3378 } else {
c8fdfe29
MB
3379 iomap->type = IOMAP_HOLE;
3380 iomap->addr = IOMAP_NULL_ADDR;
364443cb 3381 }
364443cb
JK
3382}
3383
f063db5e
MB
3384static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3385 unsigned int flags)
776722e8 3386{
776722e8 3387 handle_t *handle;
378f32ba
MB
3388 u8 blkbits = inode->i_blkbits;
3389 int ret, dio_credits, m_flags = 0, retries = 0;
776722e8 3390
776722e8 3391 /*
f063db5e
MB
3392 * Trim the mapping request to the maximum value that we can map at
3393 * once for direct I/O.
776722e8 3394 */
f063db5e
MB
3395 if (map->m_len > DIO_MAX_BLOCKS)
3396 map->m_len = DIO_MAX_BLOCKS;
3397 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
776722e8 3398
f063db5e 3399retry:
776722e8 3400 /*
f063db5e
MB
3401 * Either we allocate blocks and then don't get an unwritten extent, so
3402 * in that case we have reserved enough credits. Or, the blocks are
3403 * already allocated and unwritten. In that case, the extent conversion
3404 * fits into the credits as well.
776722e8 3405 */
f063db5e
MB
3406 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3407 if (IS_ERR(handle))
3408 return PTR_ERR(handle);
4c0425ff 3409
378f32ba
MB
3410 /*
3411 * DAX and direct I/O are the only two operations that are currently
3412 * supported with IOMAP_WRITE.
3413 */
3414 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3415 if (IS_DAX(inode))
3416 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3417 /*
3418 * We use i_size instead of i_disksize here because delalloc writeback
3419 * can complete at any point during the I/O and subsequently push the
3420 * i_disksize out to i_size. This could be beyond where direct I/O is
3421 * happening and thus expose allocated blocks to direct I/O reads.
3422 */
3423 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3424 m_flags = EXT4_GET_BLOCKS_CREATE;
3425 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3426 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
4b70df18 3427
378f32ba 3428 ret = ext4_map_blocks(handle, inode, map, m_flags);
8d5d02e6 3429
74c66bcb 3430 /*
378f32ba
MB
3431 * We cannot fill holes in indirect tree based inodes as that could
3432 * expose stale data in the case of a crash. Use the magic error code
3433 * to fallback to buffered I/O.
74c66bcb 3434 */
378f32ba
MB
3435 if (!m_flags && !ret)
3436 ret = -ENOTBLK;
187372a3 3437
f063db5e
MB
3438 ext4_journal_stop(handle);
3439 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3440 goto retry;
3441
3442 return ret;
4c0425ff 3443}
c7064ef1 3444
f063db5e 3445
364443cb 3446static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
c039b997 3447 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3448{
364443cb 3449 int ret;
09edf4d3
MB
3450 struct ext4_map_blocks map;
3451 u8 blkbits = inode->i_blkbits;
729f52c6 3452
bcd8e91f
TT
3453 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3454 return -EINVAL;
4bd809db 3455
09edf4d3
MB
3456 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3457 return -ERANGE;
4bd809db 3458
e8340395 3459 /*
09edf4d3 3460 * Calculate the first and last logical blocks respectively.
e8340395 3461 */
09edf4d3
MB
3462 map.m_lblk = offset >> blkbits;
3463 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3464 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
e8340395 3465
9faac62d
RH
3466 if (flags & IOMAP_WRITE) {
3467 /*
3468 * We check here if the blocks are already allocated, then we
3469 * don't need to start a journal txn and we can directly return
3470 * the mapping information. This could boost performance
3471 * especially in multi-threaded overwrite requests.
3472 */
3473 if (offset + length <= i_size_read(inode)) {
3474 ret = ext4_map_blocks(NULL, inode, &map, 0);
3475 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3476 goto out;
3477 }
f063db5e 3478 ret = ext4_iomap_alloc(inode, &map, flags);
9faac62d 3479 } else {
545052e9 3480 ret = ext4_map_blocks(NULL, inode, &map, 0);
9faac62d 3481 }
4bd809db 3482
f063db5e
MB
3483 if (ret < 0)
3484 return ret;
9faac62d 3485out:
c8fdfe29 3486 ext4_set_iomap(inode, iomap, &map, offset, length);
4bd809db 3487
364443cb
JK
3488 return 0;
3489}
8d5d02e6 3490
8cd115bd
JK
3491static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3492 loff_t length, unsigned flags, struct iomap *iomap,
3493 struct iomap *srcmap)
3494{
3495 int ret;
3496
3497 /*
3498 * Even for writes we don't need to allocate blocks, so just pretend
3499 * we are reading to save overhead of starting a transaction.
3500 */
3501 flags &= ~IOMAP_WRITE;
3502 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3503 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3504 return ret;
3505}
3506
776722e8
JK
3507static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3508 ssize_t written, unsigned flags, struct iomap *iomap)
3509{
69c499d1 3510 /*
378f32ba
MB
3511 * Check to see whether an error occurred while writing out the data to
3512 * the allocated blocks. If so, return the magic error code so that we
3513 * fallback to buffered I/O and attempt to complete the remainder of
3514 * the I/O. Any blocks that may have been allocated in preparation for
3515 * the direct I/O will be reused during buffered I/O.
69c499d1 3516 */
378f32ba
MB
3517 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3518 return -ENOTBLK;
69c499d1 3519
569342dc 3520 return 0;
776722e8 3521}
4bd809db 3522
8ff6daa1 3523const struct iomap_ops ext4_iomap_ops = {
364443cb 3524 .iomap_begin = ext4_iomap_begin,
776722e8 3525 .iomap_end = ext4_iomap_end,
364443cb 3526};
8d5d02e6 3527
8cd115bd
JK
3528const struct iomap_ops ext4_iomap_overwrite_ops = {
3529 .iomap_begin = ext4_iomap_overwrite_begin,
3530 .iomap_end = ext4_iomap_end,
3531};
3532
09edf4d3
MB
3533static bool ext4_iomap_is_delalloc(struct inode *inode,
3534 struct ext4_map_blocks *map)
3535{
3536 struct extent_status es;
3537 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
914f82a3 3538
09edf4d3
MB
3539 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3540 map->m_lblk, end, &es);
914f82a3 3541
09edf4d3
MB
3542 if (!es.es_len || es.es_lblk > end)
3543 return false;
914f82a3 3544
09edf4d3
MB
3545 if (es.es_lblk > map->m_lblk) {
3546 map->m_len = es.es_lblk - map->m_lblk;
3547 return false;
914f82a3 3548 }
914f82a3 3549
09edf4d3
MB
3550 offset = map->m_lblk - es.es_lblk;
3551 map->m_len = es.es_len - offset;
914f82a3 3552
09edf4d3 3553 return true;
4c0425ff
MC
3554}
3555
09edf4d3
MB
3556static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3557 loff_t length, unsigned int flags,
3558 struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3559{
09edf4d3
MB
3560 int ret;
3561 bool delalloc = false;
3562 struct ext4_map_blocks map;
3563 u8 blkbits = inode->i_blkbits;
4c0425ff 3564
09edf4d3
MB
3565 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3566 return -EINVAL;
3567
3568 if (ext4_has_inline_data(inode)) {
3569 ret = ext4_inline_data_iomap(inode, iomap);
3570 if (ret != -EAGAIN) {
3571 if (ret == 0 && offset >= iomap->length)
3572 ret = -ENOENT;
3573 return ret;
3574 }
3575 }
2058f83a 3576
84ebd795 3577 /*
09edf4d3 3578 * Calculate the first and last logical block respectively.
84ebd795 3579 */
09edf4d3
MB
3580 map.m_lblk = offset >> blkbits;
3581 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3582 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
84ebd795 3583
b2c57642
RH
3584 /*
3585 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3586 * So handle it here itself instead of querying ext4_map_blocks().
3587 * Since ext4_map_blocks() will warn about it and will return
3588 * -EIO error.
3589 */
3590 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3592
3593 if (offset >= sbi->s_bitmap_maxbytes) {
3594 map.m_flags = 0;
3595 goto set_iomap;
3596 }
3597 }
3598
09edf4d3
MB
3599 ret = ext4_map_blocks(NULL, inode, &map, 0);
3600 if (ret < 0)
3601 return ret;
3602 if (ret == 0)
3603 delalloc = ext4_iomap_is_delalloc(inode, &map);
46c7f254 3604
b2c57642 3605set_iomap:
09edf4d3
MB
3606 ext4_set_iomap(inode, iomap, &map, offset, length);
3607 if (delalloc && iomap->type == IOMAP_HOLE)
3608 iomap->type = IOMAP_DELALLOC;
3609
3610 return 0;
4c0425ff
MC
3611}
3612
09edf4d3
MB
3613const struct iomap_ops ext4_iomap_report_ops = {
3614 .iomap_begin = ext4_iomap_begin_report,
3615};
3616
ac27a0ec 3617/*
617ba13b 3618 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3619 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3620 * much here because ->set_page_dirty is called under VFS locks. The page is
3621 * not necessarily locked.
3622 *
3623 * We cannot just dirty the page and leave attached buffers clean, because the
3624 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3625 * or jbddirty because all the journalling code will explode.
3626 *
3627 * So what we do is to mark the page "pending dirty" and next time writepage
3628 * is called, propagate that into the buffers appropriately.
3629 */
617ba13b 3630static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3631{
3632 SetPageChecked(page);
3633 return __set_page_dirty_nobuffers(page);
3634}
3635
6dcc693b
JK
3636static int ext4_set_page_dirty(struct page *page)
3637{
3638 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3639 WARN_ON_ONCE(!page_has_buffers(page));
3640 return __set_page_dirty_buffers(page);
3641}
3642
0e6895ba
RH
3643static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3644 struct file *file, sector_t *span)
3645{
3646 return iomap_swapfile_activate(sis, file, span,
3647 &ext4_iomap_report_ops);
3648}
3649
74d553aa 3650static const struct address_space_operations ext4_aops = {
8ab22b9a 3651 .readpage = ext4_readpage,
6311f91f 3652 .readahead = ext4_readahead,
43ce1d23 3653 .writepage = ext4_writepage,
20970ba6 3654 .writepages = ext4_writepages,
8ab22b9a 3655 .write_begin = ext4_write_begin,
74d553aa 3656 .write_end = ext4_write_end,
6dcc693b 3657 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3658 .bmap = ext4_bmap,
3659 .invalidatepage = ext4_invalidatepage,
3660 .releasepage = ext4_releasepage,
378f32ba 3661 .direct_IO = noop_direct_IO,
8ab22b9a
HH
3662 .migratepage = buffer_migrate_page,
3663 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3664 .error_remove_page = generic_error_remove_page,
0e6895ba 3665 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3666};
3667
617ba13b 3668static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a 3669 .readpage = ext4_readpage,
6311f91f 3670 .readahead = ext4_readahead,
43ce1d23 3671 .writepage = ext4_writepage,
20970ba6 3672 .writepages = ext4_writepages,
8ab22b9a
HH
3673 .write_begin = ext4_write_begin,
3674 .write_end = ext4_journalled_write_end,
3675 .set_page_dirty = ext4_journalled_set_page_dirty,
3676 .bmap = ext4_bmap,
4520fb3c 3677 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3678 .releasepage = ext4_releasepage,
378f32ba 3679 .direct_IO = noop_direct_IO,
8ab22b9a 3680 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3681 .error_remove_page = generic_error_remove_page,
0e6895ba 3682 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3683};
3684
64769240 3685static const struct address_space_operations ext4_da_aops = {
8ab22b9a 3686 .readpage = ext4_readpage,
6311f91f 3687 .readahead = ext4_readahead,
43ce1d23 3688 .writepage = ext4_writepage,
20970ba6 3689 .writepages = ext4_writepages,
8ab22b9a
HH
3690 .write_begin = ext4_da_write_begin,
3691 .write_end = ext4_da_write_end,
6dcc693b 3692 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a 3693 .bmap = ext4_bmap,
8fcc3a58 3694 .invalidatepage = ext4_invalidatepage,
8ab22b9a 3695 .releasepage = ext4_releasepage,
378f32ba 3696 .direct_IO = noop_direct_IO,
8ab22b9a
HH
3697 .migratepage = buffer_migrate_page,
3698 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3699 .error_remove_page = generic_error_remove_page,
0e6895ba 3700 .swap_activate = ext4_iomap_swap_activate,
64769240
AT
3701};
3702
5f0663bb
DW
3703static const struct address_space_operations ext4_dax_aops = {
3704 .writepages = ext4_dax_writepages,
3705 .direct_IO = noop_direct_IO,
3706 .set_page_dirty = noop_set_page_dirty,
94dbb631 3707 .bmap = ext4_bmap,
5f0663bb 3708 .invalidatepage = noop_invalidatepage,
0e6895ba 3709 .swap_activate = ext4_iomap_swap_activate,
5f0663bb
DW
3710};
3711
617ba13b 3712void ext4_set_aops(struct inode *inode)
ac27a0ec 3713{
3d2b1582
LC
3714 switch (ext4_inode_journal_mode(inode)) {
3715 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3716 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3717 break;
3718 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3719 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3720 return;
3d2b1582
LC
3721 default:
3722 BUG();
3723 }
5f0663bb
DW
3724 if (IS_DAX(inode))
3725 inode->i_mapping->a_ops = &ext4_dax_aops;
3726 else if (test_opt(inode->i_sb, DELALLOC))
74d553aa
TT
3727 inode->i_mapping->a_ops = &ext4_da_aops;
3728 else
3729 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3730}
3731
923ae0ff 3732static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3733 struct address_space *mapping, loff_t from, loff_t length)
3734{
09cbfeaf
KS
3735 ext4_fsblk_t index = from >> PAGE_SHIFT;
3736 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3737 unsigned blocksize, pos;
d863dc36
LC
3738 ext4_lblk_t iblock;
3739 struct inode *inode = mapping->host;
3740 struct buffer_head *bh;
3741 struct page *page;
3742 int err = 0;
3743
09cbfeaf 3744 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3745 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3746 if (!page)
3747 return -ENOMEM;
3748
3749 blocksize = inode->i_sb->s_blocksize;
d863dc36 3750
09cbfeaf 3751 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3752
3753 if (!page_has_buffers(page))
3754 create_empty_buffers(page, blocksize, 0);
3755
3756 /* Find the buffer that contains "offset" */
3757 bh = page_buffers(page);
3758 pos = blocksize;
3759 while (offset >= pos) {
3760 bh = bh->b_this_page;
3761 iblock++;
3762 pos += blocksize;
3763 }
d863dc36
LC
3764 if (buffer_freed(bh)) {
3765 BUFFER_TRACE(bh, "freed: skip");
3766 goto unlock;
3767 }
d863dc36
LC
3768 if (!buffer_mapped(bh)) {
3769 BUFFER_TRACE(bh, "unmapped");
3770 ext4_get_block(inode, iblock, bh, 0);
3771 /* unmapped? It's a hole - nothing to do */
3772 if (!buffer_mapped(bh)) {
3773 BUFFER_TRACE(bh, "still unmapped");
3774 goto unlock;
3775 }
3776 }
3777
3778 /* Ok, it's mapped. Make sure it's up-to-date */
3779 if (PageUptodate(page))
3780 set_buffer_uptodate(bh);
3781
3782 if (!buffer_uptodate(bh)) {
2d069c08 3783 err = ext4_read_bh_lock(bh, 0, true);
3784 if (err)
d863dc36 3785 goto unlock;
4f74d15f 3786 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
c9c7429c 3787 /* We expect the key to be set. */
a7550b30 3788 BUG_ON(!fscrypt_has_encryption_key(inode));
834f1565
EB
3789 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3790 bh_offset(bh));
3791 if (err) {
3792 clear_buffer_uptodate(bh);
3793 goto unlock;
3794 }
c9c7429c 3795 }
d863dc36 3796 }
d863dc36
LC
3797 if (ext4_should_journal_data(inode)) {
3798 BUFFER_TRACE(bh, "get write access");
3799 err = ext4_journal_get_write_access(handle, bh);
3800 if (err)
3801 goto unlock;
3802 }
d863dc36 3803 zero_user(page, offset, length);
d863dc36
LC
3804 BUFFER_TRACE(bh, "zeroed end of block");
3805
d863dc36
LC
3806 if (ext4_should_journal_data(inode)) {
3807 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3808 } else {
353eefd3 3809 err = 0;
d863dc36 3810 mark_buffer_dirty(bh);
3957ef53 3811 if (ext4_should_order_data(inode))
73131fbb
RZ
3812 err = ext4_jbd2_inode_add_write(handle, inode, from,
3813 length);
0713ed0c 3814 }
d863dc36
LC
3815
3816unlock:
3817 unlock_page(page);
09cbfeaf 3818 put_page(page);
d863dc36
LC
3819 return err;
3820}
3821
923ae0ff
RZ
3822/*
3823 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3824 * starting from file offset 'from'. The range to be zero'd must
3825 * be contained with in one block. If the specified range exceeds
3826 * the end of the block it will be shortened to end of the block
3827 * that cooresponds to 'from'
3828 */
3829static int ext4_block_zero_page_range(handle_t *handle,
3830 struct address_space *mapping, loff_t from, loff_t length)
3831{
3832 struct inode *inode = mapping->host;
09cbfeaf 3833 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3834 unsigned blocksize = inode->i_sb->s_blocksize;
3835 unsigned max = blocksize - (offset & (blocksize - 1));
3836
3837 /*
3838 * correct length if it does not fall between
3839 * 'from' and the end of the block
3840 */
3841 if (length > max || length < 0)
3842 length = max;
3843
47e69351
JK
3844 if (IS_DAX(inode)) {
3845 return iomap_zero_range(inode, from, length, NULL,
3846 &ext4_iomap_ops);
3847 }
923ae0ff
RZ
3848 return __ext4_block_zero_page_range(handle, mapping, from, length);
3849}
3850
94350ab5
MW
3851/*
3852 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3853 * up to the end of the block which corresponds to `from'.
3854 * This required during truncate. We need to physically zero the tail end
3855 * of that block so it doesn't yield old data if the file is later grown.
3856 */
c197855e 3857static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3858 struct address_space *mapping, loff_t from)
3859{
09cbfeaf 3860 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3861 unsigned length;
3862 unsigned blocksize;
3863 struct inode *inode = mapping->host;
3864
0d06863f 3865 /* If we are processing an encrypted inode during orphan list handling */
592ddec7 3866 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
0d06863f
TT
3867 return 0;
3868
94350ab5
MW
3869 blocksize = inode->i_sb->s_blocksize;
3870 length = blocksize - (offset & (blocksize - 1));
3871
3872 return ext4_block_zero_page_range(handle, mapping, from, length);
3873}
3874
a87dd18c
LC
3875int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3876 loff_t lstart, loff_t length)
3877{
3878 struct super_block *sb = inode->i_sb;
3879 struct address_space *mapping = inode->i_mapping;
e1be3a92 3880 unsigned partial_start, partial_end;
a87dd18c
LC
3881 ext4_fsblk_t start, end;
3882 loff_t byte_end = (lstart + length - 1);
3883 int err = 0;
3884
e1be3a92
LC
3885 partial_start = lstart & (sb->s_blocksize - 1);
3886 partial_end = byte_end & (sb->s_blocksize - 1);
3887
a87dd18c
LC
3888 start = lstart >> sb->s_blocksize_bits;
3889 end = byte_end >> sb->s_blocksize_bits;
3890
3891 /* Handle partial zero within the single block */
e1be3a92
LC
3892 if (start == end &&
3893 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3894 err = ext4_block_zero_page_range(handle, mapping,
3895 lstart, length);
3896 return err;
3897 }
3898 /* Handle partial zero out on the start of the range */
e1be3a92 3899 if (partial_start) {
a87dd18c
LC
3900 err = ext4_block_zero_page_range(handle, mapping,
3901 lstart, sb->s_blocksize);
3902 if (err)
3903 return err;
3904 }
3905 /* Handle partial zero out on the end of the range */
e1be3a92 3906 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3907 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3908 byte_end - partial_end,
3909 partial_end + 1);
a87dd18c
LC
3910 return err;
3911}
3912
91ef4caf
DG
3913int ext4_can_truncate(struct inode *inode)
3914{
91ef4caf
DG
3915 if (S_ISREG(inode->i_mode))
3916 return 1;
3917 if (S_ISDIR(inode->i_mode))
3918 return 1;
3919 if (S_ISLNK(inode->i_mode))
3920 return !ext4_inode_is_fast_symlink(inode);
3921 return 0;
3922}
3923
01127848
JK
3924/*
3925 * We have to make sure i_disksize gets properly updated before we truncate
3926 * page cache due to hole punching or zero range. Otherwise i_disksize update
3927 * can get lost as it may have been postponed to submission of writeback but
3928 * that will never happen after we truncate page cache.
3929 */
3930int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3931 loff_t len)
3932{
3933 handle_t *handle;
4209ae12
HS
3934 int ret;
3935
01127848
JK
3936 loff_t size = i_size_read(inode);
3937
5955102c 3938 WARN_ON(!inode_is_locked(inode));
01127848
JK
3939 if (offset > size || offset + len < size)
3940 return 0;
3941
3942 if (EXT4_I(inode)->i_disksize >= size)
3943 return 0;
3944
3945 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3946 if (IS_ERR(handle))
3947 return PTR_ERR(handle);
3948 ext4_update_i_disksize(inode, size);
4209ae12 3949 ret = ext4_mark_inode_dirty(handle, inode);
01127848
JK
3950 ext4_journal_stop(handle);
3951
4209ae12 3952 return ret;
01127848
JK
3953}
3954
b1f38217 3955static void ext4_wait_dax_page(struct ext4_inode_info *ei)
430657b6 3956{
430657b6
RZ
3957 up_write(&ei->i_mmap_sem);
3958 schedule();
3959 down_write(&ei->i_mmap_sem);
3960}
3961
3962int ext4_break_layouts(struct inode *inode)
3963{
3964 struct ext4_inode_info *ei = EXT4_I(inode);
3965 struct page *page;
430657b6
RZ
3966 int error;
3967
3968 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3969 return -EINVAL;
3970
3971 do {
430657b6
RZ
3972 page = dax_layout_busy_page(inode->i_mapping);
3973 if (!page)
3974 return 0;
3975
3976 error = ___wait_var_event(&page->_refcount,
3977 atomic_read(&page->_refcount) == 1,
3978 TASK_INTERRUPTIBLE, 0, 0,
b1f38217
RZ
3979 ext4_wait_dax_page(ei));
3980 } while (error == 0);
430657b6
RZ
3981
3982 return error;
3983}
3984
a4bb6b64 3985/*
cca32b7e 3986 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
3987 * associated with the given offset and length
3988 *
3989 * @inode: File inode
3990 * @offset: The offset where the hole will begin
3991 * @len: The length of the hole
3992 *
4907cb7b 3993 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3994 */
3995
aeb2817a 3996int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3997{
26a4c0c6
TT
3998 struct super_block *sb = inode->i_sb;
3999 ext4_lblk_t first_block, stop_block;
4000 struct address_space *mapping = inode->i_mapping;
a87dd18c 4001 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4002 handle_t *handle;
4003 unsigned int credits;
4209ae12 4004 int ret = 0, ret2 = 0;
26a4c0c6 4005
b8a86845 4006 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4007
c1e8220b
TT
4008 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4009 if (ext4_has_inline_data(inode)) {
4010 down_write(&EXT4_I(inode)->i_mmap_sem);
4011 ret = ext4_convert_inline_data(inode);
4012 up_write(&EXT4_I(inode)->i_mmap_sem);
4013 if (ret)
4014 return ret;
4015 }
4016
26a4c0c6
TT
4017 /*
4018 * Write out all dirty pages to avoid race conditions
4019 * Then release them.
4020 */
cca32b7e 4021 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4022 ret = filemap_write_and_wait_range(mapping, offset,
4023 offset + length - 1);
4024 if (ret)
4025 return ret;
4026 }
4027
5955102c 4028 inode_lock(inode);
9ef06cec 4029
26a4c0c6
TT
4030 /* No need to punch hole beyond i_size */
4031 if (offset >= inode->i_size)
4032 goto out_mutex;
4033
4034 /*
4035 * If the hole extends beyond i_size, set the hole
4036 * to end after the page that contains i_size
4037 */
4038 if (offset + length > inode->i_size) {
4039 length = inode->i_size +
09cbfeaf 4040 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4041 offset;
4042 }
4043
a361293f
JK
4044 if (offset & (sb->s_blocksize - 1) ||
4045 (offset + length) & (sb->s_blocksize - 1)) {
4046 /*
4047 * Attach jinode to inode for jbd2 if we do any zeroing of
4048 * partial block
4049 */
4050 ret = ext4_inode_attach_jinode(inode);
4051 if (ret < 0)
4052 goto out_mutex;
4053
4054 }
4055
ea3d7209 4056 /* Wait all existing dio workers, newcomers will block on i_mutex */
ea3d7209
JK
4057 inode_dio_wait(inode);
4058
4059 /*
4060 * Prevent page faults from reinstantiating pages we have released from
4061 * page cache.
4062 */
4063 down_write(&EXT4_I(inode)->i_mmap_sem);
430657b6
RZ
4064
4065 ret = ext4_break_layouts(inode);
4066 if (ret)
4067 goto out_dio;
4068
a87dd18c
LC
4069 first_block_offset = round_up(offset, sb->s_blocksize);
4070 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4071
a87dd18c 4072 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4073 if (last_block_offset > first_block_offset) {
4074 ret = ext4_update_disksize_before_punch(inode, offset, length);
4075 if (ret)
4076 goto out_dio;
a87dd18c
LC
4077 truncate_pagecache_range(inode, first_block_offset,
4078 last_block_offset);
01127848 4079 }
26a4c0c6
TT
4080
4081 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4082 credits = ext4_writepage_trans_blocks(inode);
4083 else
4084 credits = ext4_blocks_for_truncate(inode);
4085 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4086 if (IS_ERR(handle)) {
4087 ret = PTR_ERR(handle);
4088 ext4_std_error(sb, ret);
4089 goto out_dio;
4090 }
4091
a87dd18c
LC
4092 ret = ext4_zero_partial_blocks(handle, inode, offset,
4093 length);
4094 if (ret)
4095 goto out_stop;
26a4c0c6
TT
4096
4097 first_block = (offset + sb->s_blocksize - 1) >>
4098 EXT4_BLOCK_SIZE_BITS(sb);
4099 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4100
eee597ac
LC
4101 /* If there are blocks to remove, do it */
4102 if (stop_block > first_block) {
26a4c0c6 4103
eee597ac 4104 down_write(&EXT4_I(inode)->i_data_sem);
27bc446e 4105 ext4_discard_preallocations(inode, 0);
26a4c0c6 4106
eee597ac
LC
4107 ret = ext4_es_remove_extent(inode, first_block,
4108 stop_block - first_block);
4109 if (ret) {
4110 up_write(&EXT4_I(inode)->i_data_sem);
4111 goto out_stop;
4112 }
26a4c0c6 4113
eee597ac
LC
4114 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115 ret = ext4_ext_remove_space(inode, first_block,
4116 stop_block - 1);
4117 else
4118 ret = ext4_ind_remove_space(handle, inode, first_block,
4119 stop_block);
26a4c0c6 4120
eee597ac
LC
4121 up_write(&EXT4_I(inode)->i_data_sem);
4122 }
a80f7fcf 4123 ext4_fc_track_range(handle, inode, first_block, stop_block);
26a4c0c6
TT
4124 if (IS_SYNC(inode))
4125 ext4_handle_sync(handle);
e251f9bc 4126
eeca7ea1 4127 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4128 ret2 = ext4_mark_inode_dirty(handle, inode);
4129 if (unlikely(ret2))
4130 ret = ret2;
67a7d5f5
JK
4131 if (ret >= 0)
4132 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4133out_stop:
4134 ext4_journal_stop(handle);
4135out_dio:
ea3d7209 4136 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6 4137out_mutex:
5955102c 4138 inode_unlock(inode);
26a4c0c6 4139 return ret;
a4bb6b64
AH
4140}
4141
a361293f
JK
4142int ext4_inode_attach_jinode(struct inode *inode)
4143{
4144 struct ext4_inode_info *ei = EXT4_I(inode);
4145 struct jbd2_inode *jinode;
4146
4147 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4148 return 0;
4149
4150 jinode = jbd2_alloc_inode(GFP_KERNEL);
4151 spin_lock(&inode->i_lock);
4152 if (!ei->jinode) {
4153 if (!jinode) {
4154 spin_unlock(&inode->i_lock);
4155 return -ENOMEM;
4156 }
4157 ei->jinode = jinode;
4158 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4159 jinode = NULL;
4160 }
4161 spin_unlock(&inode->i_lock);
4162 if (unlikely(jinode != NULL))
4163 jbd2_free_inode(jinode);
4164 return 0;
4165}
4166
ac27a0ec 4167/*
617ba13b 4168 * ext4_truncate()
ac27a0ec 4169 *
617ba13b
MC
4170 * We block out ext4_get_block() block instantiations across the entire
4171 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4172 * simultaneously on behalf of the same inode.
4173 *
42b2aa86 4174 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4175 * is one core, guiding principle: the file's tree must always be consistent on
4176 * disk. We must be able to restart the truncate after a crash.
4177 *
4178 * The file's tree may be transiently inconsistent in memory (although it
4179 * probably isn't), but whenever we close off and commit a journal transaction,
4180 * the contents of (the filesystem + the journal) must be consistent and
4181 * restartable. It's pretty simple, really: bottom up, right to left (although
4182 * left-to-right works OK too).
4183 *
4184 * Note that at recovery time, journal replay occurs *before* the restart of
4185 * truncate against the orphan inode list.
4186 *
4187 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4188 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4189 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4190 * ext4_truncate() to have another go. So there will be instantiated blocks
4191 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4192 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4193 * ext4_truncate() run will find them and release them.
ac27a0ec 4194 */
2c98eb5e 4195int ext4_truncate(struct inode *inode)
ac27a0ec 4196{
819c4920
TT
4197 struct ext4_inode_info *ei = EXT4_I(inode);
4198 unsigned int credits;
4209ae12 4199 int err = 0, err2;
819c4920
TT
4200 handle_t *handle;
4201 struct address_space *mapping = inode->i_mapping;
819c4920 4202
19b5ef61
TT
4203 /*
4204 * There is a possibility that we're either freeing the inode
e04027e8 4205 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4206 * have i_mutex locked because it's not necessary.
4207 */
4208 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4209 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4210 trace_ext4_truncate_enter(inode);
4211
91ef4caf 4212 if (!ext4_can_truncate(inode))
9a5d265f 4213 goto out_trace;
ac27a0ec 4214
5534fb5b 4215 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4216 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4217
aef1c851
TM
4218 if (ext4_has_inline_data(inode)) {
4219 int has_inline = 1;
4220
01daf945 4221 err = ext4_inline_data_truncate(inode, &has_inline);
9a5d265f 4222 if (err || has_inline)
4223 goto out_trace;
aef1c851
TM
4224 }
4225
a361293f
JK
4226 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4227 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4228 if (ext4_inode_attach_jinode(inode) < 0)
9a5d265f 4229 goto out_trace;
a361293f
JK
4230 }
4231
819c4920
TT
4232 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4233 credits = ext4_writepage_trans_blocks(inode);
4234 else
4235 credits = ext4_blocks_for_truncate(inode);
4236
4237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
9a5d265f 4238 if (IS_ERR(handle)) {
4239 err = PTR_ERR(handle);
4240 goto out_trace;
4241 }
819c4920 4242
eb3544c6
LC
4243 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4244 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4245
4246 /*
4247 * We add the inode to the orphan list, so that if this
4248 * truncate spans multiple transactions, and we crash, we will
4249 * resume the truncate when the filesystem recovers. It also
4250 * marks the inode dirty, to catch the new size.
4251 *
4252 * Implication: the file must always be in a sane, consistent
4253 * truncatable state while each transaction commits.
4254 */
2c98eb5e
TT
4255 err = ext4_orphan_add(handle, inode);
4256 if (err)
819c4920
TT
4257 goto out_stop;
4258
4259 down_write(&EXT4_I(inode)->i_data_sem);
4260
27bc446e 4261 ext4_discard_preallocations(inode, 0);
819c4920 4262
ff9893dc 4263 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4264 err = ext4_ext_truncate(handle, inode);
ff9893dc 4265 else
819c4920
TT
4266 ext4_ind_truncate(handle, inode);
4267
4268 up_write(&ei->i_data_sem);
d0abb36d
TT
4269 if (err)
4270 goto out_stop;
819c4920
TT
4271
4272 if (IS_SYNC(inode))
4273 ext4_handle_sync(handle);
4274
4275out_stop:
4276 /*
4277 * If this was a simple ftruncate() and the file will remain alive,
4278 * then we need to clear up the orphan record which we created above.
4279 * However, if this was a real unlink then we were called by
58d86a50 4280 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4281 * orphan info for us.
4282 */
4283 if (inode->i_nlink)
4284 ext4_orphan_del(handle, inode);
4285
eeca7ea1 4286 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4287 err2 = ext4_mark_inode_dirty(handle, inode);
4288 if (unlikely(err2 && !err))
4289 err = err2;
819c4920 4290 ext4_journal_stop(handle);
ac27a0ec 4291
9a5d265f 4292out_trace:
0562e0ba 4293 trace_ext4_truncate_exit(inode);
2c98eb5e 4294 return err;
ac27a0ec
DK
4295}
4296
ac27a0ec 4297/*
617ba13b 4298 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4299 * underlying buffer_head on success. If 'in_mem' is true, we have all
4300 * data in memory that is needed to recreate the on-disk version of this
4301 * inode.
4302 */
8016e29f
HS
4303static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4304 struct ext4_iloc *iloc, int in_mem,
4305 ext4_fsblk_t *ret_block)
ac27a0ec 4306{
240799cd
TT
4307 struct ext4_group_desc *gdp;
4308 struct buffer_head *bh;
240799cd 4309 ext4_fsblk_t block;
02f03c42 4310 struct blk_plug plug;
240799cd
TT
4311 int inodes_per_block, inode_offset;
4312
3a06d778 4313 iloc->bh = NULL;
8016e29f
HS
4314 if (ino < EXT4_ROOT_INO ||
4315 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
6a797d27 4316 return -EFSCORRUPTED;
ac27a0ec 4317
8016e29f 4318 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
240799cd
TT
4319 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4320 if (!gdp)
ac27a0ec
DK
4321 return -EIO;
4322
240799cd
TT
4323 /*
4324 * Figure out the offset within the block group inode table
4325 */
00d09882 4326 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
8016e29f 4327 inode_offset = ((ino - 1) %
240799cd
TT
4328 EXT4_INODES_PER_GROUP(sb));
4329 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4330 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4331
4332 bh = sb_getblk(sb, block);
aebf0243 4333 if (unlikely(!bh))
860d21e2 4334 return -ENOMEM;
46f870d6
TT
4335 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4336 goto simulate_eio;
ac27a0ec
DK
4337 if (!buffer_uptodate(bh)) {
4338 lock_buffer(bh);
9c83a923 4339
60c776e5 4340 if (ext4_buffer_uptodate(bh)) {
ac27a0ec
DK
4341 /* someone brought it uptodate while we waited */
4342 unlock_buffer(bh);
4343 goto has_buffer;
4344 }
4345
4346 /*
4347 * If we have all information of the inode in memory and this
4348 * is the only valid inode in the block, we need not read the
4349 * block.
4350 */
4351 if (in_mem) {
4352 struct buffer_head *bitmap_bh;
240799cd 4353 int i, start;
ac27a0ec 4354
240799cd 4355 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4356
240799cd
TT
4357 /* Is the inode bitmap in cache? */
4358 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4359 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4360 goto make_io;
4361
4362 /*
4363 * If the inode bitmap isn't in cache then the
4364 * optimisation may end up performing two reads instead
4365 * of one, so skip it.
4366 */
4367 if (!buffer_uptodate(bitmap_bh)) {
4368 brelse(bitmap_bh);
4369 goto make_io;
4370 }
240799cd 4371 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4372 if (i == inode_offset)
4373 continue;
617ba13b 4374 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4375 break;
4376 }
4377 brelse(bitmap_bh);
240799cd 4378 if (i == start + inodes_per_block) {
ac27a0ec
DK
4379 /* all other inodes are free, so skip I/O */
4380 memset(bh->b_data, 0, bh->b_size);
4381 set_buffer_uptodate(bh);
4382 unlock_buffer(bh);
4383 goto has_buffer;
4384 }
4385 }
4386
4387make_io:
240799cd
TT
4388 /*
4389 * If we need to do any I/O, try to pre-readahead extra
4390 * blocks from the inode table.
4391 */
02f03c42 4392 blk_start_plug(&plug);
240799cd
TT
4393 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4394 ext4_fsblk_t b, end, table;
4395 unsigned num;
0d606e2c 4396 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4397
4398 table = ext4_inode_table(sb, gdp);
b713a5ec 4399 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4400 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4401 if (table > b)
4402 b = table;
0d606e2c 4403 end = b + ra_blks;
240799cd 4404 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4405 if (ext4_has_group_desc_csum(sb))
560671a0 4406 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4407 table += num / inodes_per_block;
4408 if (end > table)
4409 end = table;
4410 while (b <= end)
5df1d412 4411 ext4_sb_breadahead_unmovable(sb, b++);
240799cd
TT
4412 }
4413
ac27a0ec
DK
4414 /*
4415 * There are other valid inodes in the buffer, this inode
4416 * has in-inode xattrs, or we don't have this inode in memory.
4417 * Read the block from disk.
4418 */
8016e29f 4419 trace_ext4_load_inode(sb, ino);
2d069c08 4420 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
02f03c42 4421 blk_finish_plug(&plug);
ac27a0ec
DK
4422 wait_on_buffer(bh);
4423 if (!buffer_uptodate(bh)) {
46f870d6 4424 simulate_eio:
8016e29f
HS
4425 if (ret_block)
4426 *ret_block = block;
ac27a0ec
DK
4427 brelse(bh);
4428 return -EIO;
4429 }
4430 }
4431has_buffer:
4432 iloc->bh = bh;
4433 return 0;
4434}
4435
8016e29f
HS
4436static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4437 struct ext4_iloc *iloc)
4438{
4439 ext4_fsblk_t err_blk;
4440 int ret;
4441
4442 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4443 &err_blk);
4444
4445 if (ret == -EIO)
4446 ext4_error_inode_block(inode, err_blk, EIO,
4447 "unable to read itable block");
4448
4449 return ret;
4450}
4451
617ba13b 4452int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec 4453{
8016e29f
HS
4454 ext4_fsblk_t err_blk;
4455 int ret;
4456
ac27a0ec 4457 /* We have all inode data except xattrs in memory here. */
8016e29f
HS
4458 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4459 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4460
4461 if (ret == -EIO)
4462 ext4_error_inode_block(inode, err_blk, EIO,
4463 "unable to read itable block");
4464
4465 return ret;
4466}
4467
4468
4469int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4470 struct ext4_iloc *iloc)
4471{
4472 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
ac27a0ec
DK
4473}
4474
a8ab6d38 4475static bool ext4_should_enable_dax(struct inode *inode)
6642586b 4476{
a8ab6d38
IW
4477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4478
9cb20f94 4479 if (test_opt2(inode->i_sb, DAX_NEVER))
6642586b
RZ
4480 return false;
4481 if (!S_ISREG(inode->i_mode))
4482 return false;
4483 if (ext4_should_journal_data(inode))
4484 return false;
4485 if (ext4_has_inline_data(inode))
4486 return false;
592ddec7 4487 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
6642586b 4488 return false;
c93d8f88
EB
4489 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4490 return false;
a8ab6d38
IW
4491 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4492 return false;
4493 if (test_opt(inode->i_sb, DAX_ALWAYS))
4494 return true;
4495
b383a73f 4496 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
6642586b
RZ
4497}
4498
043546e4 4499void ext4_set_inode_flags(struct inode *inode, bool init)
ac27a0ec 4500{
617ba13b 4501 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4502 unsigned int new_fl = 0;
ac27a0ec 4503
043546e4
IW
4504 WARN_ON_ONCE(IS_DAX(inode) && init);
4505
617ba13b 4506 if (flags & EXT4_SYNC_FL)
00a1a053 4507 new_fl |= S_SYNC;
617ba13b 4508 if (flags & EXT4_APPEND_FL)
00a1a053 4509 new_fl |= S_APPEND;
617ba13b 4510 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4511 new_fl |= S_IMMUTABLE;
617ba13b 4512 if (flags & EXT4_NOATIME_FL)
00a1a053 4513 new_fl |= S_NOATIME;
617ba13b 4514 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4515 new_fl |= S_DIRSYNC;
043546e4
IW
4516
4517 /* Because of the way inode_set_flags() works we must preserve S_DAX
4518 * here if already set. */
4519 new_fl |= (inode->i_flags & S_DAX);
4520 if (init && ext4_should_enable_dax(inode))
923ae0ff 4521 new_fl |= S_DAX;
043546e4 4522
2ee6a576
EB
4523 if (flags & EXT4_ENCRYPT_FL)
4524 new_fl |= S_ENCRYPTED;
b886ee3e
GKB
4525 if (flags & EXT4_CASEFOLD_FL)
4526 new_fl |= S_CASEFOLD;
c93d8f88
EB
4527 if (flags & EXT4_VERITY_FL)
4528 new_fl |= S_VERITY;
5f16f322 4529 inode_set_flags(inode, new_fl,
2ee6a576 4530 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
c93d8f88 4531 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
ac27a0ec
DK
4532}
4533
0fc1b451 4534static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4535 struct ext4_inode_info *ei)
0fc1b451
AK
4536{
4537 blkcnt_t i_blocks ;
8180a562
AK
4538 struct inode *inode = &(ei->vfs_inode);
4539 struct super_block *sb = inode->i_sb;
0fc1b451 4540
e2b911c5 4541 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4542 /* we are using combined 48 bit field */
4543 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4544 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4545 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4546 /* i_blocks represent file system block size */
4547 return i_blocks << (inode->i_blkbits - 9);
4548 } else {
4549 return i_blocks;
4550 }
0fc1b451
AK
4551 } else {
4552 return le32_to_cpu(raw_inode->i_blocks_lo);
4553 }
4554}
ff9ddf7e 4555
eb9b5f01 4556static inline int ext4_iget_extra_inode(struct inode *inode,
152a7b0a
TM
4557 struct ext4_inode *raw_inode,
4558 struct ext4_inode_info *ei)
4559{
4560 __le32 *magic = (void *)raw_inode +
4561 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
eb9b5f01 4562
290ab230
EB
4563 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4564 EXT4_INODE_SIZE(inode->i_sb) &&
4565 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4566 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
eb9b5f01 4567 return ext4_find_inline_data_nolock(inode);
f19d5870
TM
4568 } else
4569 EXT4_I(inode)->i_inline_off = 0;
eb9b5f01 4570 return 0;
152a7b0a
TM
4571}
4572
040cb378
LX
4573int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4574{
0b7b7779 4575 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4576 return -EOPNOTSUPP;
4577 *projid = EXT4_I(inode)->i_projid;
4578 return 0;
4579}
4580
e254d1af
EG
4581/*
4582 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4583 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4584 * set.
4585 */
4586static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4587{
4588 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4589 inode_set_iversion_raw(inode, val);
4590 else
4591 inode_set_iversion_queried(inode, val);
4592}
4593static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4594{
4595 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4596 return inode_peek_iversion_raw(inode);
4597 else
4598 return inode_peek_iversion(inode);
4599}
4600
8a363970
TT
4601struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4602 ext4_iget_flags flags, const char *function,
4603 unsigned int line)
ac27a0ec 4604{
617ba13b
MC
4605 struct ext4_iloc iloc;
4606 struct ext4_inode *raw_inode;
1d1fe1ee 4607 struct ext4_inode_info *ei;
1d1fe1ee 4608 struct inode *inode;
b436b9be 4609 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4610 long ret;
7e6e1ef4 4611 loff_t size;
ac27a0ec 4612 int block;
08cefc7a
EB
4613 uid_t i_uid;
4614 gid_t i_gid;
040cb378 4615 projid_t i_projid;
ac27a0ec 4616
191ce178 4617 if ((!(flags & EXT4_IGET_SPECIAL) &&
8a363970
TT
4618 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4619 (ino < EXT4_ROOT_INO) ||
4620 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4621 if (flags & EXT4_IGET_HANDLE)
4622 return ERR_PTR(-ESTALE);
014c9caa 4623 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
8a363970
TT
4624 "inode #%lu: comm %s: iget: illegal inode #",
4625 ino, current->comm);
4626 return ERR_PTR(-EFSCORRUPTED);
4627 }
4628
1d1fe1ee
DH
4629 inode = iget_locked(sb, ino);
4630 if (!inode)
4631 return ERR_PTR(-ENOMEM);
4632 if (!(inode->i_state & I_NEW))
4633 return inode;
4634
4635 ei = EXT4_I(inode);
7dc57615 4636 iloc.bh = NULL;
ac27a0ec 4637
8016e29f 4638 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
1d1fe1ee 4639 if (ret < 0)
ac27a0ec 4640 goto bad_inode;
617ba13b 4641 raw_inode = ext4_raw_inode(&iloc);
814525f4 4642
8e4b5eae 4643 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
8a363970
TT
4644 ext4_error_inode(inode, function, line, 0,
4645 "iget: root inode unallocated");
8e4b5eae
TT
4646 ret = -EFSCORRUPTED;
4647 goto bad_inode;
4648 }
4649
8a363970
TT
4650 if ((flags & EXT4_IGET_HANDLE) &&
4651 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4652 ret = -ESTALE;
4653 goto bad_inode;
4654 }
4655
814525f4
DW
4656 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4657 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4658 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4659 EXT4_INODE_SIZE(inode->i_sb) ||
4660 (ei->i_extra_isize & 3)) {
8a363970
TT
4661 ext4_error_inode(inode, function, line, 0,
4662 "iget: bad extra_isize %u "
4663 "(inode size %u)",
2dc8d9e1
EB
4664 ei->i_extra_isize,
4665 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4666 ret = -EFSCORRUPTED;
814525f4
DW
4667 goto bad_inode;
4668 }
4669 } else
4670 ei->i_extra_isize = 0;
4671
4672 /* Precompute checksum seed for inode metadata */
9aa5d32b 4673 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4674 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4675 __u32 csum;
4676 __le32 inum = cpu_to_le32(inode->i_ino);
4677 __le32 gen = raw_inode->i_generation;
4678 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4679 sizeof(inum));
4680 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4681 sizeof(gen));
4682 }
4683
8016e29f
HS
4684 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4685 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4686 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4687 ext4_error_inode_err(inode, function, line, 0,
4688 EFSBADCRC, "iget: checksum invalid");
6a797d27 4689 ret = -EFSBADCRC;
814525f4
DW
4690 goto bad_inode;
4691 }
4692
ac27a0ec 4693 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4694 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4695 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4696 if (ext4_has_feature_project(sb) &&
040cb378
LX
4697 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4698 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4699 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4700 else
4701 i_projid = EXT4_DEF_PROJID;
4702
af5bc92d 4703 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4704 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4705 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4706 }
08cefc7a
EB
4707 i_uid_write(inode, i_uid);
4708 i_gid_write(inode, i_gid);
040cb378 4709 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4710 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4711
353eb83c 4712 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4713 ei->i_inline_off = 0;
ac27a0ec
DK
4714 ei->i_dir_start_lookup = 0;
4715 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4716 /* We now have enough fields to check if the inode was active or not.
4717 * This is needed because nfsd might try to access dead inodes
4718 * the test is that same one that e2fsck uses
4719 * NeilBrown 1999oct15
4720 */
4721 if (inode->i_nlink == 0) {
393d1d1d
DTB
4722 if ((inode->i_mode == 0 ||
4723 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4724 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4725 /* this inode is deleted */
1d1fe1ee 4726 ret = -ESTALE;
ac27a0ec
DK
4727 goto bad_inode;
4728 }
4729 /* The only unlinked inodes we let through here have
4730 * valid i_mode and are being read by the orphan
4731 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4732 * the process of deleting those.
4733 * OR it is the EXT4_BOOT_LOADER_INO which is
4734 * not initialized on a new filesystem. */
ac27a0ec 4735 }
ac27a0ec 4736 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
043546e4 4737 ext4_set_inode_flags(inode, true);
0fc1b451 4738 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4739 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4740 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4741 ei->i_file_acl |=
4742 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4743 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4 4744 if ((size = i_size_read(inode)) < 0) {
8a363970
TT
4745 ext4_error_inode(inode, function, line, 0,
4746 "iget: bad i_size value: %lld", size);
7e6e1ef4
DW
4747 ret = -EFSCORRUPTED;
4748 goto bad_inode;
4749 }
48a34311
JK
4750 /*
4751 * If dir_index is not enabled but there's dir with INDEX flag set,
4752 * we'd normally treat htree data as empty space. But with metadata
4753 * checksumming that corrupts checksums so forbid that.
4754 */
4755 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4756 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4757 ext4_error_inode(inode, function, line, 0,
4758 "iget: Dir with htree data on filesystem without dir_index feature.");
4759 ret = -EFSCORRUPTED;
4760 goto bad_inode;
4761 }
ac27a0ec 4762 ei->i_disksize = inode->i_size;
a9e7f447
DM
4763#ifdef CONFIG_QUOTA
4764 ei->i_reserved_quota = 0;
4765#endif
ac27a0ec
DK
4766 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4767 ei->i_block_group = iloc.block_group;
a4912123 4768 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4769 /*
4770 * NOTE! The in-memory inode i_data array is in little-endian order
4771 * even on big-endian machines: we do NOT byteswap the block numbers!
4772 */
617ba13b 4773 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4774 ei->i_data[block] = raw_inode->i_block[block];
4775 INIT_LIST_HEAD(&ei->i_orphan);
aa75f4d3 4776 ext4_fc_init_inode(&ei->vfs_inode);
ac27a0ec 4777
b436b9be
JK
4778 /*
4779 * Set transaction id's of transactions that have to be committed
4780 * to finish f[data]sync. We set them to currently running transaction
4781 * as we cannot be sure that the inode or some of its metadata isn't
4782 * part of the transaction - the inode could have been reclaimed and
4783 * now it is reread from disk.
4784 */
4785 if (journal) {
4786 transaction_t *transaction;
4787 tid_t tid;
4788
a931da6a 4789 read_lock(&journal->j_state_lock);
b436b9be
JK
4790 if (journal->j_running_transaction)
4791 transaction = journal->j_running_transaction;
4792 else
4793 transaction = journal->j_committing_transaction;
4794 if (transaction)
4795 tid = transaction->t_tid;
4796 else
4797 tid = journal->j_commit_sequence;
a931da6a 4798 read_unlock(&journal->j_state_lock);
b436b9be
JK
4799 ei->i_sync_tid = tid;
4800 ei->i_datasync_tid = tid;
4801 }
4802
0040d987 4803 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4804 if (ei->i_extra_isize == 0) {
4805 /* The extra space is currently unused. Use it. */
2dc8d9e1 4806 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4807 ei->i_extra_isize = sizeof(struct ext4_inode) -
4808 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4809 } else {
eb9b5f01
TT
4810 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4811 if (ret)
4812 goto bad_inode;
ac27a0ec 4813 }
814525f4 4814 }
ac27a0ec 4815
ef7f3835
KS
4816 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4817 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4818 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4819 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4820
ed3654eb 4821 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
ee73f9a5
JL
4822 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4823
c4f65706
TT
4824 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4825 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
ee73f9a5 4826 ivers |=
c4f65706
TT
4827 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4828 }
e254d1af 4829 ext4_inode_set_iversion_queried(inode, ivers);
25ec56b5
JNC
4830 }
4831
c4b5a614 4832 ret = 0;
485c26ec 4833 if (ei->i_file_acl &&
ce9f24cc 4834 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
8a363970
TT
4835 ext4_error_inode(inode, function, line, 0,
4836 "iget: bad extended attribute block %llu",
24676da4 4837 ei->i_file_acl);
6a797d27 4838 ret = -EFSCORRUPTED;
485c26ec 4839 goto bad_inode;
f19d5870 4840 } else if (!ext4_has_inline_data(inode)) {
bc716523 4841 /* validate the block references in the inode */
8016e29f
HS
4842 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4843 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4844 (S_ISLNK(inode->i_mode) &&
4845 !ext4_inode_is_fast_symlink(inode)))) {
bc716523 4846 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
f19d5870 4847 ret = ext4_ext_check_inode(inode);
bc716523
LS
4848 else
4849 ret = ext4_ind_check_inode(inode);
f19d5870 4850 }
fe2c8191 4851 }
567f3e9a 4852 if (ret)
de9a55b8 4853 goto bad_inode;
7a262f7c 4854
ac27a0ec 4855 if (S_ISREG(inode->i_mode)) {
617ba13b 4856 inode->i_op = &ext4_file_inode_operations;
be64f884 4857 inode->i_fop = &ext4_file_operations;
617ba13b 4858 ext4_set_aops(inode);
ac27a0ec 4859 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4860 inode->i_op = &ext4_dir_inode_operations;
4861 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4862 } else if (S_ISLNK(inode->i_mode)) {
6390d33b
LR
4863 /* VFS does not allow setting these so must be corruption */
4864 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
8a363970
TT
4865 ext4_error_inode(inode, function, line, 0,
4866 "iget: immutable or append flags "
4867 "not allowed on symlinks");
6390d33b
LR
4868 ret = -EFSCORRUPTED;
4869 goto bad_inode;
4870 }
592ddec7 4871 if (IS_ENCRYPTED(inode)) {
a7a67e8a
AV
4872 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4873 ext4_set_aops(inode);
4874 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4875 inode->i_link = (char *)ei->i_data;
617ba13b 4876 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4877 nd_terminate_link(ei->i_data, inode->i_size,
4878 sizeof(ei->i_data) - 1);
4879 } else {
617ba13b
MC
4880 inode->i_op = &ext4_symlink_inode_operations;
4881 ext4_set_aops(inode);
ac27a0ec 4882 }
21fc61c7 4883 inode_nohighmem(inode);
563bdd61
TT
4884 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4885 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4886 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4887 if (raw_inode->i_block[0])
4888 init_special_inode(inode, inode->i_mode,
4889 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4890 else
4891 init_special_inode(inode, inode->i_mode,
4892 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4893 } else if (ino == EXT4_BOOT_LOADER_INO) {
4894 make_bad_inode(inode);
563bdd61 4895 } else {
6a797d27 4896 ret = -EFSCORRUPTED;
8a363970
TT
4897 ext4_error_inode(inode, function, line, 0,
4898 "iget: bogus i_mode (%o)", inode->i_mode);
563bdd61 4899 goto bad_inode;
ac27a0ec 4900 }
6456ca65
TT
4901 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4902 ext4_error_inode(inode, function, line, 0,
4903 "casefold flag without casefold feature");
af5bc92d 4904 brelse(iloc.bh);
dec214d0 4905
1d1fe1ee
DH
4906 unlock_new_inode(inode);
4907 return inode;
ac27a0ec
DK
4908
4909bad_inode:
567f3e9a 4910 brelse(iloc.bh);
1d1fe1ee
DH
4911 iget_failed(inode);
4912 return ERR_PTR(ret);
ac27a0ec
DK
4913}
4914
0fc1b451
AK
4915static int ext4_inode_blocks_set(handle_t *handle,
4916 struct ext4_inode *raw_inode,
4917 struct ext4_inode_info *ei)
4918{
4919 struct inode *inode = &(ei->vfs_inode);
28936b62 4920 u64 i_blocks = READ_ONCE(inode->i_blocks);
0fc1b451 4921 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4922
4923 if (i_blocks <= ~0U) {
4924 /*
4907cb7b 4925 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4926 * as multiple of 512 bytes
4927 */
8180a562 4928 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4929 raw_inode->i_blocks_high = 0;
84a8dce2 4930 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4931 return 0;
4932 }
e2b911c5 4933 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4934 return -EFBIG;
4935
4936 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4937 /*
4938 * i_blocks can be represented in a 48 bit variable
4939 * as multiple of 512 bytes
4940 */
8180a562 4941 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4942 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4943 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4944 } else {
84a8dce2 4945 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4946 /* i_block is stored in file system block size */
4947 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4948 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4949 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4950 }
f287a1a5 4951 return 0;
0fc1b451
AK
4952}
4953
3f19b2ab
DH
4954static void __ext4_update_other_inode_time(struct super_block *sb,
4955 unsigned long orig_ino,
4956 unsigned long ino,
4957 struct ext4_inode *raw_inode)
a26f4992 4958{
3f19b2ab
DH
4959 struct inode *inode;
4960
4961 inode = find_inode_by_ino_rcu(sb, ino);
4962 if (!inode)
4963 return;
a26f4992 4964
ed296c6c 4965 if (!inode_is_dirtytime_only(inode))
3f19b2ab
DH
4966 return;
4967
a26f4992 4968 spin_lock(&inode->i_lock);
ed296c6c 4969 if (inode_is_dirtytime_only(inode)) {
a26f4992
TT
4970 struct ext4_inode_info *ei = EXT4_I(inode);
4971
5fcd5750 4972 inode->i_state &= ~I_DIRTY_TIME;
a26f4992
TT
4973 spin_unlock(&inode->i_lock);
4974
4975 spin_lock(&ei->i_raw_lock);
3f19b2ab
DH
4976 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979 ext4_inode_csum_set(inode, raw_inode, ei);
a26f4992 4980 spin_unlock(&ei->i_raw_lock);
3f19b2ab
DH
4981 trace_ext4_other_inode_update_time(inode, orig_ino);
4982 return;
a26f4992
TT
4983 }
4984 spin_unlock(&inode->i_lock);
a26f4992
TT
4985}
4986
4987/*
4988 * Opportunistically update the other time fields for other inodes in
4989 * the same inode table block.
4990 */
4991static void ext4_update_other_inodes_time(struct super_block *sb,
4992 unsigned long orig_ino, char *buf)
4993{
a26f4992
TT
4994 unsigned long ino;
4995 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4996 int inode_size = EXT4_INODE_SIZE(sb);
4997
0f0ff9a9
TT
4998 /*
4999 * Calculate the first inode in the inode table block. Inode
5000 * numbers are one-based. That is, the first inode in a block
5001 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5002 */
5003 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
3f19b2ab 5004 rcu_read_lock();
a26f4992
TT
5005 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5006 if (ino == orig_ino)
5007 continue;
3f19b2ab
DH
5008 __ext4_update_other_inode_time(sb, orig_ino, ino,
5009 (struct ext4_inode *)buf);
a26f4992 5010 }
3f19b2ab 5011 rcu_read_unlock();
a26f4992
TT
5012}
5013
ac27a0ec
DK
5014/*
5015 * Post the struct inode info into an on-disk inode location in the
5016 * buffer-cache. This gobbles the caller's reference to the
5017 * buffer_head in the inode location struct.
5018 *
5019 * The caller must have write access to iloc->bh.
5020 */
617ba13b 5021static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5022 struct inode *inode,
830156c7 5023 struct ext4_iloc *iloc)
ac27a0ec 5024{
617ba13b
MC
5025 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5026 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5027 struct buffer_head *bh = iloc->bh;
202ee5df 5028 struct super_block *sb = inode->i_sb;
7d8bd3c7 5029 int err = 0, block;
202ee5df 5030 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5031 uid_t i_uid;
5032 gid_t i_gid;
040cb378 5033 projid_t i_projid;
ac27a0ec 5034
202ee5df
TT
5035 spin_lock(&ei->i_raw_lock);
5036
5037 /* For fields not tracked in the in-memory inode,
ac27a0ec 5038 * initialise them to zero for new inodes. */
19f5fb7a 5039 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5040 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5041
13221811
LM
5042 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5043 if (err) {
5044 spin_unlock(&ei->i_raw_lock);
5045 goto out_brelse;
5046 }
5047
ac27a0ec 5048 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5049 i_uid = i_uid_read(inode);
5050 i_gid = i_gid_read(inode);
040cb378 5051 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5052 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5053 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5054 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5055/*
5056 * Fix up interoperability with old kernels. Otherwise, old inodes get
5057 * re-used with the upper 16 bits of the uid/gid intact
5058 */
93e3b4e6
DJ
5059 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5060 raw_inode->i_uid_high = 0;
5061 raw_inode->i_gid_high = 0;
5062 } else {
ac27a0ec 5063 raw_inode->i_uid_high =
08cefc7a 5064 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5065 raw_inode->i_gid_high =
08cefc7a 5066 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5067 }
5068 } else {
08cefc7a
EB
5069 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5070 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5071 raw_inode->i_uid_high = 0;
5072 raw_inode->i_gid_high = 0;
5073 }
5074 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5075
5076 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5077 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5078 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5079 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5080
ac27a0ec 5081 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5082 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5083 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5084 raw_inode->i_file_acl_high =
5085 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5086 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
dce8e237 5087 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5088 ext4_isize_set(raw_inode, ei->i_disksize);
5089 need_datasync = 1;
5090 }
a48380f7 5091 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5092 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5093 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5094 cpu_to_le32(EXT4_GOOD_OLD_REV))
5095 set_large_file = 1;
ac27a0ec
DK
5096 }
5097 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5098 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5099 if (old_valid_dev(inode->i_rdev)) {
5100 raw_inode->i_block[0] =
5101 cpu_to_le32(old_encode_dev(inode->i_rdev));
5102 raw_inode->i_block[1] = 0;
5103 } else {
5104 raw_inode->i_block[0] = 0;
5105 raw_inode->i_block[1] =
5106 cpu_to_le32(new_encode_dev(inode->i_rdev));
5107 raw_inode->i_block[2] = 0;
5108 }
f19d5870 5109 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5110 for (block = 0; block < EXT4_N_BLOCKS; block++)
5111 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5112 }
ac27a0ec 5113
ed3654eb 5114 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
e254d1af 5115 u64 ivers = ext4_inode_peek_iversion(inode);
ee73f9a5
JL
5116
5117 raw_inode->i_disk_version = cpu_to_le32(ivers);
c4f65706
TT
5118 if (ei->i_extra_isize) {
5119 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5120 raw_inode->i_version_hi =
ee73f9a5 5121 cpu_to_le32(ivers >> 32);
c4f65706
TT
5122 raw_inode->i_extra_isize =
5123 cpu_to_le16(ei->i_extra_isize);
5124 }
25ec56b5 5125 }
040cb378 5126
0b7b7779 5127 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5128 i_projid != EXT4_DEF_PROJID);
5129
5130 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5131 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5132 raw_inode->i_projid = cpu_to_le32(i_projid);
5133
814525f4 5134 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5135 spin_unlock(&ei->i_raw_lock);
1751e8a6 5136 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5137 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5138 bh->b_data);
202ee5df 5139
830156c7 5140 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
7d8bd3c7
SL
5141 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5142 if (err)
5143 goto out_brelse;
19f5fb7a 5144 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5145 if (set_large_file) {
5d601255 5146 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5147 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5148 if (err)
5149 goto out_brelse;
05c2c00f 5150 lock_buffer(EXT4_SB(sb)->s_sbh);
e2b911c5 5151 ext4_set_feature_large_file(sb);
05c2c00f
JK
5152 ext4_superblock_csum_set(sb);
5153 unlock_buffer(EXT4_SB(sb)->s_sbh);
202ee5df 5154 ext4_handle_sync(handle);
a3f5cf14
JK
5155 err = ext4_handle_dirty_metadata(handle, NULL,
5156 EXT4_SB(sb)->s_sbh);
202ee5df 5157 }
b71fc079 5158 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5159out_brelse:
af5bc92d 5160 brelse(bh);
617ba13b 5161 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5162 return err;
5163}
5164
5165/*
617ba13b 5166 * ext4_write_inode()
ac27a0ec
DK
5167 *
5168 * We are called from a few places:
5169 *
87f7e416 5170 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5171 * Here, there will be no transaction running. We wait for any running
4907cb7b 5172 * transaction to commit.
ac27a0ec 5173 *
87f7e416
TT
5174 * - Within flush work (sys_sync(), kupdate and such).
5175 * We wait on commit, if told to.
ac27a0ec 5176 *
87f7e416
TT
5177 * - Within iput_final() -> write_inode_now()
5178 * We wait on commit, if told to.
ac27a0ec
DK
5179 *
5180 * In all cases it is actually safe for us to return without doing anything,
5181 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5182 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5183 * writeback.
ac27a0ec
DK
5184 *
5185 * Note that we are absolutely dependent upon all inode dirtiers doing the
5186 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5187 * which we are interested.
5188 *
5189 * It would be a bug for them to not do this. The code:
5190 *
5191 * mark_inode_dirty(inode)
5192 * stuff();
5193 * inode->i_size = expr;
5194 *
87f7e416
TT
5195 * is in error because write_inode() could occur while `stuff()' is running,
5196 * and the new i_size will be lost. Plus the inode will no longer be on the
5197 * superblock's dirty inode list.
ac27a0ec 5198 */
a9185b41 5199int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5200{
91ac6f43
FM
5201 int err;
5202
18f2c4fc
TT
5203 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5204 sb_rdonly(inode->i_sb))
ac27a0ec
DK
5205 return 0;
5206
18f2c4fc
TT
5207 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5208 return -EIO;
5209
91ac6f43
FM
5210 if (EXT4_SB(inode->i_sb)->s_journal) {
5211 if (ext4_journal_current_handle()) {
5212 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5213 dump_stack();
5214 return -EIO;
5215 }
ac27a0ec 5216
10542c22
JK
5217 /*
5218 * No need to force transaction in WB_SYNC_NONE mode. Also
5219 * ext4_sync_fs() will force the commit after everything is
5220 * written.
5221 */
5222 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5223 return 0;
5224
aa75f4d3 5225 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
18f2c4fc 5226 EXT4_I(inode)->i_sync_tid);
91ac6f43
FM
5227 } else {
5228 struct ext4_iloc iloc;
ac27a0ec 5229
8016e29f 5230 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
91ac6f43
FM
5231 if (err)
5232 return err;
10542c22
JK
5233 /*
5234 * sync(2) will flush the whole buffer cache. No need to do
5235 * it here separately for each inode.
5236 */
5237 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5238 sync_dirty_buffer(iloc.bh);
5239 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
54d3adbc
TT
5240 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5241 "IO error syncing inode");
830156c7
FM
5242 err = -EIO;
5243 }
fd2dd9fb 5244 brelse(iloc.bh);
91ac6f43
FM
5245 }
5246 return err;
ac27a0ec
DK
5247}
5248
53e87268
JK
5249/*
5250 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5251 * buffers that are attached to a page stradding i_size and are undergoing
5252 * commit. In that case we have to wait for commit to finish and try again.
5253 */
5254static void ext4_wait_for_tail_page_commit(struct inode *inode)
5255{
5256 struct page *page;
5257 unsigned offset;
5258 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5259 tid_t commit_tid = 0;
5260 int ret;
5261
09cbfeaf 5262 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268 5263 /*
565333a1 5264 * If the page is fully truncated, we don't need to wait for any commit
5265 * (and we even should not as __ext4_journalled_invalidatepage() may
5266 * strip all buffers from the page but keep the page dirty which can then
5267 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5268 * buffers). Also we don't need to wait for any commit if all buffers in
5269 * the page remain valid. This is most beneficial for the common case of
5270 * blocksize == PAGESIZE.
53e87268 5271 */
565333a1 5272 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
53e87268
JK
5273 return;
5274 while (1) {
5275 page = find_lock_page(inode->i_mapping,
09cbfeaf 5276 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5277 if (!page)
5278 return;
ca99fdd2 5279 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5280 PAGE_SIZE - offset);
53e87268 5281 unlock_page(page);
09cbfeaf 5282 put_page(page);
53e87268
JK
5283 if (ret != -EBUSY)
5284 return;
5285 commit_tid = 0;
5286 read_lock(&journal->j_state_lock);
5287 if (journal->j_committing_transaction)
5288 commit_tid = journal->j_committing_transaction->t_tid;
5289 read_unlock(&journal->j_state_lock);
5290 if (commit_tid)
5291 jbd2_log_wait_commit(journal, commit_tid);
5292 }
5293}
5294
ac27a0ec 5295/*
617ba13b 5296 * ext4_setattr()
ac27a0ec
DK
5297 *
5298 * Called from notify_change.
5299 *
5300 * We want to trap VFS attempts to truncate the file as soon as
5301 * possible. In particular, we want to make sure that when the VFS
5302 * shrinks i_size, we put the inode on the orphan list and modify
5303 * i_disksize immediately, so that during the subsequent flushing of
5304 * dirty pages and freeing of disk blocks, we can guarantee that any
5305 * commit will leave the blocks being flushed in an unused state on
5306 * disk. (On recovery, the inode will get truncated and the blocks will
5307 * be freed, so we have a strong guarantee that no future commit will
5308 * leave these blocks visible to the user.)
5309 *
678aaf48
JK
5310 * Another thing we have to assure is that if we are in ordered mode
5311 * and inode is still attached to the committing transaction, we must
5312 * we start writeout of all the dirty pages which are being truncated.
5313 * This way we are sure that all the data written in the previous
5314 * transaction are already on disk (truncate waits for pages under
5315 * writeback).
5316 *
5317 * Called with inode->i_mutex down.
ac27a0ec 5318 */
549c7297
CB
5319int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5320 struct iattr *attr)
ac27a0ec 5321{
2b0143b5 5322 struct inode *inode = d_inode(dentry);
ac27a0ec 5323 int error, rc = 0;
3d287de3 5324 int orphan = 0;
ac27a0ec
DK
5325 const unsigned int ia_valid = attr->ia_valid;
5326
0db1ff22
TT
5327 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5328 return -EIO;
5329
02b016ca
TT
5330 if (unlikely(IS_IMMUTABLE(inode)))
5331 return -EPERM;
5332
5333 if (unlikely(IS_APPEND(inode) &&
5334 (ia_valid & (ATTR_MODE | ATTR_UID |
5335 ATTR_GID | ATTR_TIMES_SET))))
5336 return -EPERM;
5337
14f3db55 5338 error = setattr_prepare(mnt_userns, dentry, attr);
ac27a0ec
DK
5339 if (error)
5340 return error;
5341
3ce2b8dd
EB
5342 error = fscrypt_prepare_setattr(dentry, attr);
5343 if (error)
5344 return error;
5345
c93d8f88
EB
5346 error = fsverity_prepare_setattr(dentry, attr);
5347 if (error)
5348 return error;
5349
a7cdadee
JK
5350 if (is_quota_modification(inode, attr)) {
5351 error = dquot_initialize(inode);
5352 if (error)
5353 return error;
5354 }
aa75f4d3 5355 ext4_fc_start_update(inode);
08cefc7a
EB
5356 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5357 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5358 handle_t *handle;
5359
5360 /* (user+group)*(old+new) structure, inode write (sb,
5361 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5362 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5363 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5364 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5365 if (IS_ERR(handle)) {
5366 error = PTR_ERR(handle);
5367 goto err_out;
5368 }
7a9ca53a
TE
5369
5370 /* dquot_transfer() calls back ext4_get_inode_usage() which
5371 * counts xattr inode references.
5372 */
5373 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5374 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5375 up_read(&EXT4_I(inode)->xattr_sem);
5376
ac27a0ec 5377 if (error) {
617ba13b 5378 ext4_journal_stop(handle);
aa75f4d3 5379 ext4_fc_stop_update(inode);
ac27a0ec
DK
5380 return error;
5381 }
5382 /* Update corresponding info in inode so that everything is in
5383 * one transaction */
5384 if (attr->ia_valid & ATTR_UID)
5385 inode->i_uid = attr->ia_uid;
5386 if (attr->ia_valid & ATTR_GID)
5387 inode->i_gid = attr->ia_gid;
617ba13b
MC
5388 error = ext4_mark_inode_dirty(handle, inode);
5389 ext4_journal_stop(handle);
512c15ef
PB
5390 if (unlikely(error)) {
5391 ext4_fc_stop_update(inode);
4209ae12 5392 return error;
512c15ef 5393 }
ac27a0ec
DK
5394 }
5395
3da40c7b 5396 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5397 handle_t *handle;
3da40c7b 5398 loff_t oldsize = inode->i_size;
b9c1c267 5399 int shrink = (attr->ia_size < inode->i_size);
562c72aa 5400
12e9b892 5401 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5402 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5403
aa75f4d3
HS
5404 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5405 ext4_fc_stop_update(inode);
0c095c7f 5406 return -EFBIG;
aa75f4d3 5407 }
e2b46574 5408 }
aa75f4d3
HS
5409 if (!S_ISREG(inode->i_mode)) {
5410 ext4_fc_stop_update(inode);
3da40c7b 5411 return -EINVAL;
aa75f4d3 5412 }
dff6efc3
CH
5413
5414 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415 inode_inc_iversion(inode);
5416
b9c1c267
JK
5417 if (shrink) {
5418 if (ext4_should_order_data(inode)) {
5419 error = ext4_begin_ordered_truncate(inode,
678aaf48 5420 attr->ia_size);
b9c1c267
JK
5421 if (error)
5422 goto err_out;
5423 }
5424 /*
5425 * Blocks are going to be removed from the inode. Wait
5426 * for dio in flight.
5427 */
5428 inode_dio_wait(inode);
5429 }
5430
5431 down_write(&EXT4_I(inode)->i_mmap_sem);
5432
5433 rc = ext4_break_layouts(inode);
5434 if (rc) {
5435 up_write(&EXT4_I(inode)->i_mmap_sem);
aa75f4d3 5436 goto err_out;
3da40c7b 5437 }
b9c1c267 5438
3da40c7b 5439 if (attr->ia_size != inode->i_size) {
5208386c
JK
5440 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441 if (IS_ERR(handle)) {
5442 error = PTR_ERR(handle);
b9c1c267 5443 goto out_mmap_sem;
5208386c 5444 }
3da40c7b 5445 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5446 error = ext4_orphan_add(handle, inode);
5447 orphan = 1;
5448 }
911af577
EG
5449 /*
5450 * Update c/mtime on truncate up, ext4_truncate() will
5451 * update c/mtime in shrink case below
5452 */
5453 if (!shrink) {
eeca7ea1 5454 inode->i_mtime = current_time(inode);
911af577
EG
5455 inode->i_ctime = inode->i_mtime;
5456 }
aa75f4d3
HS
5457
5458 if (shrink)
a80f7fcf 5459 ext4_fc_track_range(handle, inode,
aa75f4d3
HS
5460 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5461 inode->i_sb->s_blocksize_bits,
5462 (oldsize > 0 ? oldsize - 1 : 0) >>
5463 inode->i_sb->s_blocksize_bits);
5464 else
5465 ext4_fc_track_range(
a80f7fcf 5466 handle, inode,
aa75f4d3
HS
5467 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5468 inode->i_sb->s_blocksize_bits,
5469 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5470 inode->i_sb->s_blocksize_bits);
5471
90e775b7 5472 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5473 EXT4_I(inode)->i_disksize = attr->ia_size;
5474 rc = ext4_mark_inode_dirty(handle, inode);
5475 if (!error)
5476 error = rc;
90e775b7
JK
5477 /*
5478 * We have to update i_size under i_data_sem together
5479 * with i_disksize to avoid races with writeback code
5480 * running ext4_wb_update_i_disksize().
5481 */
5482 if (!error)
5483 i_size_write(inode, attr->ia_size);
5484 up_write(&EXT4_I(inode)->i_data_sem);
5208386c 5485 ext4_journal_stop(handle);
b9c1c267
JK
5486 if (error)
5487 goto out_mmap_sem;
5488 if (!shrink) {
5489 pagecache_isize_extended(inode, oldsize,
5490 inode->i_size);
5491 } else if (ext4_should_journal_data(inode)) {
5492 ext4_wait_for_tail_page_commit(inode);
678aaf48 5493 }
d6320cbf 5494 }
430657b6 5495
5208386c
JK
5496 /*
5497 * Truncate pagecache after we've waited for commit
5498 * in data=journal mode to make pages freeable.
5499 */
923ae0ff 5500 truncate_pagecache(inode, inode->i_size);
b9c1c267
JK
5501 /*
5502 * Call ext4_truncate() even if i_size didn't change to
5503 * truncate possible preallocated blocks.
5504 */
5505 if (attr->ia_size <= oldsize) {
2c98eb5e
TT
5506 rc = ext4_truncate(inode);
5507 if (rc)
5508 error = rc;
5509 }
b9c1c267 5510out_mmap_sem:
ea3d7209 5511 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5512 }
ac27a0ec 5513
2c98eb5e 5514 if (!error) {
14f3db55 5515 setattr_copy(mnt_userns, inode, attr);
1025774c
CH
5516 mark_inode_dirty(inode);
5517 }
5518
5519 /*
5520 * If the call to ext4_truncate failed to get a transaction handle at
5521 * all, we need to clean up the in-core orphan list manually.
5522 */
3d287de3 5523 if (orphan && inode->i_nlink)
617ba13b 5524 ext4_orphan_del(NULL, inode);
ac27a0ec 5525
2c98eb5e 5526 if (!error && (ia_valid & ATTR_MODE))
14f3db55 5527 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
ac27a0ec
DK
5528
5529err_out:
aa75f4d3
HS
5530 if (error)
5531 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5532 if (!error)
5533 error = rc;
aa75f4d3 5534 ext4_fc_stop_update(inode);
ac27a0ec
DK
5535 return error;
5536}
5537
549c7297
CB
5538int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5539 struct kstat *stat, u32 request_mask, unsigned int query_flags)
3e3398a0 5540{
99652ea5
DH
5541 struct inode *inode = d_inode(path->dentry);
5542 struct ext4_inode *raw_inode;
5543 struct ext4_inode_info *ei = EXT4_I(inode);
5544 unsigned int flags;
5545
d4c5e960
TT
5546 if ((request_mask & STATX_BTIME) &&
5547 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
99652ea5
DH
5548 stat->result_mask |= STATX_BTIME;
5549 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5550 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5551 }
5552
5553 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5554 if (flags & EXT4_APPEND_FL)
5555 stat->attributes |= STATX_ATTR_APPEND;
5556 if (flags & EXT4_COMPR_FL)
5557 stat->attributes |= STATX_ATTR_COMPRESSED;
5558 if (flags & EXT4_ENCRYPT_FL)
5559 stat->attributes |= STATX_ATTR_ENCRYPTED;
5560 if (flags & EXT4_IMMUTABLE_FL)
5561 stat->attributes |= STATX_ATTR_IMMUTABLE;
5562 if (flags & EXT4_NODUMP_FL)
5563 stat->attributes |= STATX_ATTR_NODUMP;
1f607195
EB
5564 if (flags & EXT4_VERITY_FL)
5565 stat->attributes |= STATX_ATTR_VERITY;
3e3398a0 5566
3209f68b
DH
5567 stat->attributes_mask |= (STATX_ATTR_APPEND |
5568 STATX_ATTR_COMPRESSED |
5569 STATX_ATTR_ENCRYPTED |
5570 STATX_ATTR_IMMUTABLE |
1f607195
EB
5571 STATX_ATTR_NODUMP |
5572 STATX_ATTR_VERITY);
3209f68b 5573
14f3db55 5574 generic_fillattr(mnt_userns, inode, stat);
99652ea5
DH
5575 return 0;
5576}
5577
549c7297
CB
5578int ext4_file_getattr(struct user_namespace *mnt_userns,
5579 const struct path *path, struct kstat *stat,
99652ea5
DH
5580 u32 request_mask, unsigned int query_flags)
5581{
5582 struct inode *inode = d_inode(path->dentry);
5583 u64 delalloc_blocks;
5584
14f3db55 5585 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
3e3398a0 5586
9206c561
AD
5587 /*
5588 * If there is inline data in the inode, the inode will normally not
5589 * have data blocks allocated (it may have an external xattr block).
5590 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5591 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5592 */
5593 if (unlikely(ext4_has_inline_data(inode)))
5594 stat->blocks += (stat->size + 511) >> 9;
5595
3e3398a0
MC
5596 /*
5597 * We can't update i_blocks if the block allocation is delayed
5598 * otherwise in the case of system crash before the real block
5599 * allocation is done, we will have i_blocks inconsistent with
5600 * on-disk file blocks.
5601 * We always keep i_blocks updated together with real
5602 * allocation. But to not confuse with user, stat
5603 * will return the blocks that include the delayed allocation
5604 * blocks for this file.
5605 */
96607551 5606 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5607 EXT4_I(inode)->i_reserved_data_blocks);
5608 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5609 return 0;
5610}
ac27a0ec 5611
fffb2739
JK
5612static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5613 int pextents)
a02908f1 5614{
12e9b892 5615 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5616 return ext4_ind_trans_blocks(inode, lblocks);
5617 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5618}
ac51d837 5619
ac27a0ec 5620/*
a02908f1
MC
5621 * Account for index blocks, block groups bitmaps and block group
5622 * descriptor blocks if modify datablocks and index blocks
5623 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5624 *
a02908f1 5625 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5626 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5627 * they could still across block group boundary.
ac27a0ec 5628 *
a02908f1
MC
5629 * Also account for superblock, inode, quota and xattr blocks
5630 */
dec214d0 5631static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5632 int pextents)
a02908f1 5633{
8df9675f
TT
5634 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5635 int gdpblocks;
a02908f1
MC
5636 int idxblocks;
5637 int ret = 0;
5638
5639 /*
fffb2739
JK
5640 * How many index blocks need to touch to map @lblocks logical blocks
5641 * to @pextents physical extents?
a02908f1 5642 */
fffb2739 5643 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5644
5645 ret = idxblocks;
5646
5647 /*
5648 * Now let's see how many group bitmaps and group descriptors need
5649 * to account
5650 */
fffb2739 5651 groups = idxblocks + pextents;
a02908f1 5652 gdpblocks = groups;
8df9675f
TT
5653 if (groups > ngroups)
5654 groups = ngroups;
a02908f1
MC
5655 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5656 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5657
5658 /* bitmaps and block group descriptor blocks */
5659 ret += groups + gdpblocks;
5660
5661 /* Blocks for super block, inode, quota and xattr blocks */
5662 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5663
5664 return ret;
5665}
5666
5667/*
25985edc 5668 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5669 * the modification of a single pages into a single transaction,
5670 * which may include multiple chunks of block allocations.
ac27a0ec 5671 *
525f4ed8 5672 * This could be called via ext4_write_begin()
ac27a0ec 5673 *
525f4ed8 5674 * We need to consider the worse case, when
a02908f1 5675 * one new block per extent.
ac27a0ec 5676 */
a86c6181 5677int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5678{
617ba13b 5679 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5680 int ret;
5681
fffb2739 5682 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5683
a02908f1 5684 /* Account for data blocks for journalled mode */
617ba13b 5685 if (ext4_should_journal_data(inode))
a02908f1 5686 ret += bpp;
ac27a0ec
DK
5687 return ret;
5688}
f3bd1f3f
MC
5689
5690/*
5691 * Calculate the journal credits for a chunk of data modification.
5692 *
5693 * This is called from DIO, fallocate or whoever calling
79e83036 5694 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5695 *
5696 * journal buffers for data blocks are not included here, as DIO
5697 * and fallocate do no need to journal data buffers.
5698 */
5699int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5700{
5701 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5702}
5703
ac27a0ec 5704/*
617ba13b 5705 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5706 * Give this, we know that the caller already has write access to iloc->bh.
5707 */
617ba13b 5708int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5709 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5710{
5711 int err = 0;
5712
a6758309
VA
5713 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5714 put_bh(iloc->bh);
0db1ff22 5715 return -EIO;
a6758309 5716 }
a80f7fcf 5717 ext4_fc_track_inode(handle, inode);
aa75f4d3 5718
c64db50e 5719 if (IS_I_VERSION(inode))
25ec56b5
JNC
5720 inode_inc_iversion(inode);
5721
ac27a0ec
DK
5722 /* the do_update_inode consumes one bh->b_count */
5723 get_bh(iloc->bh);
5724
dab291af 5725 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5726 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5727 put_bh(iloc->bh);
5728 return err;
5729}
5730
5731/*
5732 * On success, We end up with an outstanding reference count against
5733 * iloc->bh. This _must_ be cleaned up later.
5734 */
5735
5736int
617ba13b
MC
5737ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5738 struct ext4_iloc *iloc)
ac27a0ec 5739{
0390131b
FM
5740 int err;
5741
0db1ff22
TT
5742 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5743 return -EIO;
5744
0390131b
FM
5745 err = ext4_get_inode_loc(inode, iloc);
5746 if (!err) {
5747 BUFFER_TRACE(iloc->bh, "get_write_access");
5748 err = ext4_journal_get_write_access(handle, iloc->bh);
5749 if (err) {
5750 brelse(iloc->bh);
5751 iloc->bh = NULL;
ac27a0ec
DK
5752 }
5753 }
617ba13b 5754 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5755 return err;
5756}
5757
c03b45b8
MX
5758static int __ext4_expand_extra_isize(struct inode *inode,
5759 unsigned int new_extra_isize,
5760 struct ext4_iloc *iloc,
5761 handle_t *handle, int *no_expand)
5762{
5763 struct ext4_inode *raw_inode;
5764 struct ext4_xattr_ibody_header *header;
4ea99936
TT
5765 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5766 struct ext4_inode_info *ei = EXT4_I(inode);
c03b45b8
MX
5767 int error;
5768
4ea99936
TT
5769 /* this was checked at iget time, but double check for good measure */
5770 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5771 (ei->i_extra_isize & 3)) {
5772 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5773 ei->i_extra_isize,
5774 EXT4_INODE_SIZE(inode->i_sb));
5775 return -EFSCORRUPTED;
5776 }
5777 if ((new_extra_isize < ei->i_extra_isize) ||
5778 (new_extra_isize < 4) ||
5779 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5780 return -EINVAL; /* Should never happen */
5781
c03b45b8
MX
5782 raw_inode = ext4_raw_inode(iloc);
5783
5784 header = IHDR(inode, raw_inode);
5785
5786 /* No extended attributes present */
5787 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790 EXT4_I(inode)->i_extra_isize, 0,
5791 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793 return 0;
5794 }
5795
5796 /* try to expand with EAs present */
5797 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798 raw_inode, handle);
5799 if (error) {
5800 /*
5801 * Inode size expansion failed; don't try again
5802 */
5803 *no_expand = 1;
5804 }
5805
5806 return error;
5807}
5808
6dd4ee7c
KS
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
cf0a5e81
MX
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814 unsigned int new_extra_isize,
5815 struct ext4_iloc iloc,
5816 handle_t *handle)
6dd4ee7c 5817{
3b10fdc6
MX
5818 int no_expand;
5819 int error;
6dd4ee7c 5820
cf0a5e81
MX
5821 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822 return -EOVERFLOW;
5823
5824 /*
5825 * In nojournal mode, we can immediately attempt to expand
5826 * the inode. When journaled, we first need to obtain extra
5827 * buffer credits since we may write into the EA block
5828 * with this same handle. If journal_extend fails, then it will
5829 * only result in a minor loss of functionality for that inode.
5830 * If this is felt to be critical, then e2fsck should be run to
5831 * force a large enough s_min_extra_isize.
5832 */
6cb367c2 5833 if (ext4_journal_extend(handle,
83448bdf 5834 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
cf0a5e81 5835 return -ENOSPC;
6dd4ee7c 5836
3b10fdc6 5837 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5838 return -EBUSY;
3b10fdc6 5839
c03b45b8
MX
5840 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5841 handle, &no_expand);
5842 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5843
c03b45b8
MX
5844 return error;
5845}
6dd4ee7c 5846
c03b45b8
MX
5847int ext4_expand_extra_isize(struct inode *inode,
5848 unsigned int new_extra_isize,
5849 struct ext4_iloc *iloc)
5850{
5851 handle_t *handle;
5852 int no_expand;
5853 int error, rc;
5854
5855 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5856 brelse(iloc->bh);
5857 return -EOVERFLOW;
6dd4ee7c
KS
5858 }
5859
c03b45b8
MX
5860 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5861 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5862 if (IS_ERR(handle)) {
5863 error = PTR_ERR(handle);
5864 brelse(iloc->bh);
5865 return error;
5866 }
5867
5868 ext4_write_lock_xattr(inode, &no_expand);
5869
ddccb6db 5870 BUFFER_TRACE(iloc->bh, "get_write_access");
c03b45b8 5871 error = ext4_journal_get_write_access(handle, iloc->bh);
3b10fdc6 5872 if (error) {
c03b45b8 5873 brelse(iloc->bh);
7f420d64 5874 goto out_unlock;
3b10fdc6 5875 }
cf0a5e81 5876
c03b45b8
MX
5877 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5878 handle, &no_expand);
5879
5880 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5881 if (!error)
5882 error = rc;
5883
7f420d64 5884out_unlock:
c03b45b8 5885 ext4_write_unlock_xattr(inode, &no_expand);
c03b45b8 5886 ext4_journal_stop(handle);
3b10fdc6 5887 return error;
6dd4ee7c
KS
5888}
5889
ac27a0ec
DK
5890/*
5891 * What we do here is to mark the in-core inode as clean with respect to inode
5892 * dirtiness (it may still be data-dirty).
5893 * This means that the in-core inode may be reaped by prune_icache
5894 * without having to perform any I/O. This is a very good thing,
5895 * because *any* task may call prune_icache - even ones which
5896 * have a transaction open against a different journal.
5897 *
5898 * Is this cheating? Not really. Sure, we haven't written the
5899 * inode out, but prune_icache isn't a user-visible syncing function.
5900 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5901 * we start and wait on commits.
ac27a0ec 5902 */
4209ae12
HS
5903int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5904 const char *func, unsigned int line)
ac27a0ec 5905{
617ba13b 5906 struct ext4_iloc iloc;
6dd4ee7c 5907 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5908 int err;
ac27a0ec
DK
5909
5910 might_sleep();
7ff9c073 5911 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5912 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2 5913 if (err)
4209ae12 5914 goto out;
cf0a5e81
MX
5915
5916 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918 iloc, handle);
5919
4209ae12
HS
5920 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5921out:
5922 if (unlikely(err))
5923 ext4_error_inode_err(inode, func, line, 0, err,
5924 "mark_inode_dirty error");
5925 return err;
ac27a0ec
DK
5926}
5927
5928/*
617ba13b 5929 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5930 *
5931 * We're really interested in the case where a file is being extended.
5932 * i_size has been changed by generic_commit_write() and we thus need
5933 * to include the updated inode in the current transaction.
5934 *
5dd4056d 5935 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5936 * are allocated to the file.
5937 *
5938 * If the inode is marked synchronous, we don't honour that here - doing
5939 * so would cause a commit on atime updates, which we don't bother doing.
5940 * We handle synchronous inodes at the highest possible level.
5941 */
aa385729 5942void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5943{
ac27a0ec
DK
5944 handle_t *handle;
5945
9924a92a 5946 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec 5947 if (IS_ERR(handle))
e2728c56 5948 return;
f3dc272f 5949 ext4_mark_inode_dirty(handle, inode);
617ba13b 5950 ext4_journal_stop(handle);
ac27a0ec
DK
5951}
5952
617ba13b 5953int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5954{
5955 journal_t *journal;
5956 handle_t *handle;
5957 int err;
c8585c6f 5958 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5959
5960 /*
5961 * We have to be very careful here: changing a data block's
5962 * journaling status dynamically is dangerous. If we write a
5963 * data block to the journal, change the status and then delete
5964 * that block, we risk forgetting to revoke the old log record
5965 * from the journal and so a subsequent replay can corrupt data.
5966 * So, first we make sure that the journal is empty and that
5967 * nobody is changing anything.
5968 */
5969
617ba13b 5970 journal = EXT4_JOURNAL(inode);
0390131b
FM
5971 if (!journal)
5972 return 0;
d699594d 5973 if (is_journal_aborted(journal))
ac27a0ec
DK
5974 return -EROFS;
5975
17335dcc 5976 /* Wait for all existing dio workers */
17335dcc
DM
5977 inode_dio_wait(inode);
5978
4c546592
DJ
5979 /*
5980 * Before flushing the journal and switching inode's aops, we have
5981 * to flush all dirty data the inode has. There can be outstanding
5982 * delayed allocations, there can be unwritten extents created by
5983 * fallocate or buffered writes in dioread_nolock mode covered by
5984 * dirty data which can be converted only after flushing the dirty
5985 * data (and journalled aops don't know how to handle these cases).
5986 */
5987 if (val) {
5988 down_write(&EXT4_I(inode)->i_mmap_sem);
5989 err = filemap_write_and_wait(inode->i_mapping);
5990 if (err < 0) {
5991 up_write(&EXT4_I(inode)->i_mmap_sem);
4c546592
DJ
5992 return err;
5993 }
5994 }
5995
bbd55937 5996 percpu_down_write(&sbi->s_writepages_rwsem);
dab291af 5997 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5998
5999 /*
6000 * OK, there are no updates running now, and all cached data is
6001 * synced to disk. We are now in a completely consistent state
6002 * which doesn't have anything in the journal, and we know that
6003 * no filesystem updates are running, so it is safe to modify
6004 * the inode's in-core data-journaling state flag now.
6005 */
6006
6007 if (val)
12e9b892 6008 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6009 else {
4f879ca6
JK
6010 err = jbd2_journal_flush(journal);
6011 if (err < 0) {
6012 jbd2_journal_unlock_updates(journal);
bbd55937 6013 percpu_up_write(&sbi->s_writepages_rwsem);
4f879ca6
JK
6014 return err;
6015 }
12e9b892 6016 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6017 }
617ba13b 6018 ext4_set_aops(inode);
ac27a0ec 6019
dab291af 6020 jbd2_journal_unlock_updates(journal);
bbd55937 6021 percpu_up_write(&sbi->s_writepages_rwsem);
c8585c6f 6022
4c546592
DJ
6023 if (val)
6024 up_write(&EXT4_I(inode)->i_mmap_sem);
ac27a0ec
DK
6025
6026 /* Finally we can mark the inode as dirty. */
6027
9924a92a 6028 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6029 if (IS_ERR(handle))
6030 return PTR_ERR(handle);
6031
aa75f4d3
HS
6032 ext4_fc_mark_ineligible(inode->i_sb,
6033 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
617ba13b 6034 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6035 ext4_handle_sync(handle);
617ba13b
MC
6036 ext4_journal_stop(handle);
6037 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6038
6039 return err;
6040}
2e9ee850
AK
6041
6042static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6043{
6044 return !buffer_mapped(bh);
6045}
6046
401b25aa 6047vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6048{
11bac800 6049 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6050 struct page *page = vmf->page;
2e9ee850
AK
6051 loff_t size;
6052 unsigned long len;
401b25aa
SJ
6053 int err;
6054 vm_fault_t ret;
2e9ee850 6055 struct file *file = vma->vm_file;
496ad9aa 6056 struct inode *inode = file_inode(file);
2e9ee850 6057 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6058 handle_t *handle;
6059 get_block_t *get_block;
6060 int retries = 0;
2e9ee850 6061
02b016ca
TT
6062 if (unlikely(IS_IMMUTABLE(inode)))
6063 return VM_FAULT_SIGBUS;
6064
8e8ad8a5 6065 sb_start_pagefault(inode->i_sb);
041bbb6d 6066 file_update_time(vma->vm_file);
ea3d7209
JK
6067
6068 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978 6069
401b25aa
SJ
6070 err = ext4_convert_inline_data(inode);
6071 if (err)
7b4cc978
EB
6072 goto out_ret;
6073
64a9f144
MFO
6074 /*
6075 * On data journalling we skip straight to the transaction handle:
6076 * there's no delalloc; page truncated will be checked later; the
6077 * early return w/ all buffers mapped (calculates size/len) can't
6078 * be used; and there's no dioread_nolock, so only ext4_get_block.
6079 */
6080 if (ext4_should_journal_data(inode))
6081 goto retry_alloc;
6082
9ea7df53
JK
6083 /* Delalloc case is easy... */
6084 if (test_opt(inode->i_sb, DELALLOC) &&
9ea7df53
JK
6085 !ext4_nonda_switch(inode->i_sb)) {
6086 do {
401b25aa 6087 err = block_page_mkwrite(vma, vmf,
9ea7df53 6088 ext4_da_get_block_prep);
401b25aa 6089 } while (err == -ENOSPC &&
9ea7df53
JK
6090 ext4_should_retry_alloc(inode->i_sb, &retries));
6091 goto out_ret;
2e9ee850 6092 }
0e499890
DW
6093
6094 lock_page(page);
9ea7df53
JK
6095 size = i_size_read(inode);
6096 /* Page got truncated from under us? */
6097 if (page->mapping != mapping || page_offset(page) > size) {
6098 unlock_page(page);
6099 ret = VM_FAULT_NOPAGE;
6100 goto out;
0e499890 6101 }
2e9ee850 6102
09cbfeaf
KS
6103 if (page->index == size >> PAGE_SHIFT)
6104 len = size & ~PAGE_MASK;
2e9ee850 6105 else
09cbfeaf 6106 len = PAGE_SIZE;
a827eaff 6107 /*
9ea7df53
JK
6108 * Return if we have all the buffers mapped. This avoids the need to do
6109 * journal_start/journal_stop which can block and take a long time
64a9f144
MFO
6110 *
6111 * This cannot be done for data journalling, as we have to add the
6112 * inode to the transaction's list to writeprotect pages on commit.
a827eaff 6113 */
2e9ee850 6114 if (page_has_buffers(page)) {
f19d5870
TM
6115 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6116 0, len, NULL,
6117 ext4_bh_unmapped)) {
9ea7df53 6118 /* Wait so that we don't change page under IO */
1d1d1a76 6119 wait_for_stable_page(page);
9ea7df53
JK
6120 ret = VM_FAULT_LOCKED;
6121 goto out;
a827eaff 6122 }
2e9ee850 6123 }
a827eaff 6124 unlock_page(page);
9ea7df53
JK
6125 /* OK, we need to fill the hole... */
6126 if (ext4_should_dioread_nolock(inode))
705965bd 6127 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6128 else
6129 get_block = ext4_get_block;
6130retry_alloc:
9924a92a
TT
6131 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6132 ext4_writepage_trans_blocks(inode));
9ea7df53 6133 if (IS_ERR(handle)) {
c2ec175c 6134 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6135 goto out;
6136 }
64a9f144
MFO
6137 /*
6138 * Data journalling can't use block_page_mkwrite() because it
6139 * will set_buffer_dirty() before do_journal_get_write_access()
6140 * thus might hit warning messages for dirty metadata buffers.
6141 */
6142 if (!ext4_should_journal_data(inode)) {
6143 err = block_page_mkwrite(vma, vmf, get_block);
6144 } else {
6145 lock_page(page);
6146 size = i_size_read(inode);
6147 /* Page got truncated from under us? */
6148 if (page->mapping != mapping || page_offset(page) > size) {
64a9f144 6149 ret = VM_FAULT_NOPAGE;
afb585a9 6150 goto out_error;
9ea7df53 6151 }
64a9f144
MFO
6152
6153 if (page->index == size >> PAGE_SHIFT)
6154 len = size & ~PAGE_MASK;
6155 else
6156 len = PAGE_SIZE;
6157
6158 err = __block_write_begin(page, 0, len, ext4_get_block);
6159 if (!err) {
afb585a9 6160 ret = VM_FAULT_SIGBUS;
64a9f144 6161 if (ext4_walk_page_buffers(handle, page_buffers(page),
afb585a9
MFO
6162 0, len, NULL, do_journal_get_write_access))
6163 goto out_error;
6164 if (ext4_walk_page_buffers(handle, page_buffers(page),
6165 0, len, NULL, write_end_fn))
6166 goto out_error;
b5b18160
JK
6167 if (ext4_jbd2_inode_add_write(handle, inode,
6168 page_offset(page), len))
afb585a9 6169 goto out_error;
64a9f144
MFO
6170 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6171 } else {
6172 unlock_page(page);
6173 }
9ea7df53
JK
6174 }
6175 ext4_journal_stop(handle);
401b25aa 6176 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
9ea7df53
JK
6177 goto retry_alloc;
6178out_ret:
401b25aa 6179 ret = block_page_mkwrite_return(err);
9ea7df53 6180out:
ea3d7209 6181 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6182 sb_end_pagefault(inode->i_sb);
2e9ee850 6183 return ret;
afb585a9
MFO
6184out_error:
6185 unlock_page(page);
6186 ext4_journal_stop(handle);
6187 goto out;
2e9ee850 6188}
ea3d7209 6189
401b25aa 6190vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6191{
11bac800 6192 struct inode *inode = file_inode(vmf->vma->vm_file);
401b25aa 6193 vm_fault_t ret;
ea3d7209
JK
6194
6195 down_read(&EXT4_I(inode)->i_mmap_sem);
401b25aa 6196 ret = filemap_fault(vmf);
ea3d7209
JK
6197 up_read(&EXT4_I(inode)->i_mmap_sem);
6198
401b25aa 6199 return ret;
ea3d7209 6200}