]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
net: hns3: Fix for information of phydev lost problem when down/up
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec
DK
22#include <linux/fs.h>
23#include <linux/time.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
c94c2acf 26#include <linux/dax.h>
ac27a0ec
DK
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
00a1a053 40#include <linux/bitops.h>
364443cb 41#include <linux/iomap.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 56 __u32 csum;
b47820ed
DJ
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
814525f4 60
b47820ed
DJ
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 66
b47820ed
DJ
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
b47820ed 76 }
05ac5aa1
DJ
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
79 }
80
814525f4
DW
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 91 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 112 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
678aaf48
JK
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
7ff9c073 125 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
678aaf48
JK
137}
138
d47992f8
LC
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
cb20d518
TT
141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
dec214d0
TE
143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
64769240 145
ac27a0ec
DK
146/*
147 * Test whether an inode is a fast symlink.
407cd7fb 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 149 */
f348c252 150int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 151{
fc82228a
AK
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
407cd7fb
TE
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
163}
164
ac27a0ec
DK
165/*
166 * Restart the transaction associated with *handle. This does a commit,
167 * so before we call here everything must be consistently dirtied against
168 * this transaction.
169 */
fa5d1113 170int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 171 int nblocks)
ac27a0ec 172{
487caeef
JK
173 int ret;
174
175 /*
e35fd660 176 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
177 * moment, get_block can be called only for blocks inside i_size since
178 * page cache has been already dropped and writes are blocked by
179 * i_mutex. So we can safely drop the i_data_sem here.
180 */
0390131b 181 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 182 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 183 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 184 ret = ext4_journal_restart(handle, nblocks);
487caeef 185 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 186 ext4_discard_preallocations(inode);
487caeef
JK
187
188 return ret;
ac27a0ec
DK
189}
190
191/*
192 * Called at the last iput() if i_nlink is zero.
193 */
0930fcc1 194void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
195{
196 handle_t *handle;
bc965ab3 197 int err;
e50e5129 198 int extra_credits = 3;
0421a189 199 struct ext4_xattr_inode_array *ea_inode_array = NULL;
ac27a0ec 200
7ff9c073 201 trace_ext4_evict_inode(inode);
2581fdc8 202
0930fcc1 203 if (inode->i_nlink) {
2d859db3
JK
204 /*
205 * When journalling data dirty buffers are tracked only in the
206 * journal. So although mm thinks everything is clean and
207 * ready for reaping the inode might still have some pages to
208 * write in the running transaction or waiting to be
209 * checkpointed. Thus calling jbd2_journal_invalidatepage()
210 * (via truncate_inode_pages()) to discard these buffers can
211 * cause data loss. Also even if we did not discard these
212 * buffers, we would have no way to find them after the inode
213 * is reaped and thus user could see stale data if he tries to
214 * read them before the transaction is checkpointed. So be
215 * careful and force everything to disk here... We use
216 * ei->i_datasync_tid to store the newest transaction
217 * containing inode's data.
218 *
219 * Note that directories do not have this problem because they
220 * don't use page cache.
221 */
6a7fd522
VN
222 if (inode->i_ino != EXT4_JOURNAL_INO &&
223 ext4_should_journal_data(inode) &&
3abb1a0f
JK
224 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
225 inode->i_data.nrpages) {
2d859db3
JK
226 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
227 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
228
d76a3a77 229 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
230 filemap_write_and_wait(&inode->i_data);
231 }
91b0abe3 232 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 233
0930fcc1
AV
234 goto no_delete;
235 }
236
e2bfb088
TT
237 if (is_bad_inode(inode))
238 goto no_delete;
239 dquot_initialize(inode);
907f4554 240
678aaf48
JK
241 if (ext4_should_order_data(inode))
242 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 243 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 244
8e8ad8a5
JK
245 /*
246 * Protect us against freezing - iput() caller didn't have to have any
247 * protection against it
248 */
249 sb_start_intwrite(inode->i_sb);
e50e5129 250
30a7eb97
TE
251 if (!IS_NOQUOTA(inode))
252 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
253
254 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255 ext4_blocks_for_truncate(inode)+extra_credits);
ac27a0ec 256 if (IS_ERR(handle)) {
bc965ab3 257 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
258 /*
259 * If we're going to skip the normal cleanup, we still need to
260 * make sure that the in-core orphan linked list is properly
261 * cleaned up.
262 */
617ba13b 263 ext4_orphan_del(NULL, inode);
8e8ad8a5 264 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
265 goto no_delete;
266 }
30a7eb97 267
ac27a0ec 268 if (IS_SYNC(inode))
0390131b 269 ext4_handle_sync(handle);
407cd7fb
TE
270
271 /*
272 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 * special handling of symlinks here because i_size is used to
274 * determine whether ext4_inode_info->i_data contains symlink data or
275 * block mappings. Setting i_size to 0 will remove its fast symlink
276 * status. Erase i_data so that it becomes a valid empty block map.
277 */
278 if (ext4_inode_is_fast_symlink(inode))
279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 280 inode->i_size = 0;
bc965ab3
TT
281 err = ext4_mark_inode_dirty(handle, inode);
282 if (err) {
12062ddd 283 ext4_warning(inode->i_sb,
bc965ab3
TT
284 "couldn't mark inode dirty (err %d)", err);
285 goto stop_handle;
286 }
2c98eb5e
TT
287 if (inode->i_blocks) {
288 err = ext4_truncate(inode);
289 if (err) {
290 ext4_error(inode->i_sb,
291 "couldn't truncate inode %lu (err %d)",
292 inode->i_ino, err);
293 goto stop_handle;
294 }
295 }
bc965ab3 296
30a7eb97
TE
297 /* Remove xattr references. */
298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 extra_credits);
300 if (err) {
301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302stop_handle:
303 ext4_journal_stop(handle);
304 ext4_orphan_del(NULL, inode);
305 sb_end_intwrite(inode->i_sb);
306 ext4_xattr_inode_array_free(ea_inode_array);
307 goto no_delete;
bc965ab3
TT
308 }
309
ac27a0ec 310 /*
617ba13b 311 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 312 * AKPM: I think this can be inside the above `if'.
617ba13b 313 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 314 * deletion of a non-existent orphan - this is because we don't
617ba13b 315 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
316 * (Well, we could do this if we need to, but heck - it works)
317 */
617ba13b
MC
318 ext4_orphan_del(handle, inode);
319 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
320
321 /*
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
326 * fails.
327 */
617ba13b 328 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 329 /* If that failed, just do the required in-core inode clear. */
0930fcc1 330 ext4_clear_inode(inode);
ac27a0ec 331 else
617ba13b
MC
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
8e8ad8a5 334 sb_end_intwrite(inode->i_sb);
0421a189 335 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
336 return;
337no_delete:
0930fcc1 338 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
339}
340
a9e7f447
DM
341#ifdef CONFIG_QUOTA
342qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 343{
a9e7f447 344 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 345}
a9e7f447 346#endif
9d0be502 347
0637c6f4
TT
348/*
349 * Called with i_data_sem down, which is important since we can call
350 * ext4_discard_preallocations() from here.
351 */
5f634d06
AK
352void ext4_da_update_reserve_space(struct inode *inode,
353 int used, int quota_claim)
12219aea
AK
354{
355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 356 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
357
358 spin_lock(&ei->i_block_reservation_lock);
d8990240 359 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 360 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 361 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 362 "with only %d reserved data blocks",
0637c6f4
TT
363 __func__, inode->i_ino, used,
364 ei->i_reserved_data_blocks);
365 WARN_ON(1);
366 used = ei->i_reserved_data_blocks;
367 }
12219aea 368
0637c6f4
TT
369 /* Update per-inode reservations */
370 ei->i_reserved_data_blocks -= used;
71d4f7d0 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 372
12219aea 373 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 374
72b8ab9d
ES
375 /* Update quota subsystem for data blocks */
376 if (quota_claim)
7b415bf6 377 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 378 else {
5f634d06
AK
379 /*
380 * We did fallocate with an offset that is already delayed
381 * allocated. So on delayed allocated writeback we should
72b8ab9d 382 * not re-claim the quota for fallocated blocks.
5f634d06 383 */
7b415bf6 384 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 385 }
d6014301
AK
386
387 /*
388 * If we have done all the pending block allocations and if
389 * there aren't any writers on the inode, we can discard the
390 * inode's preallocations.
391 */
0637c6f4
TT
392 if ((ei->i_reserved_data_blocks == 0) &&
393 (atomic_read(&inode->i_writecount) == 0))
d6014301 394 ext4_discard_preallocations(inode);
12219aea
AK
395}
396
e29136f8 397static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
398 unsigned int line,
399 struct ext4_map_blocks *map)
6fd058f7 400{
24676da4
TT
401 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
402 map->m_len)) {
c398eda0
TT
403 ext4_error_inode(inode, func, line, map->m_pblk,
404 "lblock %lu mapped to illegal pblock "
405 "(length %d)", (unsigned long) map->m_lblk,
406 map->m_len);
6a797d27 407 return -EFSCORRUPTED;
6fd058f7
TT
408 }
409 return 0;
410}
411
53085fac
JK
412int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
413 ext4_lblk_t len)
414{
415 int ret;
416
417 if (ext4_encrypted_inode(inode))
a7550b30 418 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
419
420 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
421 if (ret > 0)
422 ret = 0;
423
424 return ret;
425}
426
e29136f8 427#define check_block_validity(inode, map) \
c398eda0 428 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 429
921f266b
DM
430#ifdef ES_AGGRESSIVE_TEST
431static void ext4_map_blocks_es_recheck(handle_t *handle,
432 struct inode *inode,
433 struct ext4_map_blocks *es_map,
434 struct ext4_map_blocks *map,
435 int flags)
436{
437 int retval;
438
439 map->m_flags = 0;
440 /*
441 * There is a race window that the result is not the same.
442 * e.g. xfstests #223 when dioread_nolock enables. The reason
443 * is that we lookup a block mapping in extent status tree with
444 * out taking i_data_sem. So at the time the unwritten extent
445 * could be converted.
446 */
2dcba478 447 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
448 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
449 retval = ext4_ext_map_blocks(handle, inode, map, flags &
450 EXT4_GET_BLOCKS_KEEP_SIZE);
451 } else {
452 retval = ext4_ind_map_blocks(handle, inode, map, flags &
453 EXT4_GET_BLOCKS_KEEP_SIZE);
454 }
2dcba478 455 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
456
457 /*
458 * We don't check m_len because extent will be collpased in status
459 * tree. So the m_len might not equal.
460 */
461 if (es_map->m_lblk != map->m_lblk ||
462 es_map->m_flags != map->m_flags ||
463 es_map->m_pblk != map->m_pblk) {
bdafe42a 464 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
465 "es_cached ex [%d/%d/%llu/%x] != "
466 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
467 inode->i_ino, es_map->m_lblk, es_map->m_len,
468 es_map->m_pblk, es_map->m_flags, map->m_lblk,
469 map->m_len, map->m_pblk, map->m_flags,
470 retval, flags);
471 }
472}
473#endif /* ES_AGGRESSIVE_TEST */
474
f5ab0d1f 475/*
e35fd660 476 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 477 * and returns if the blocks are already mapped.
f5ab0d1f 478 *
f5ab0d1f
MC
479 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
480 * and store the allocated blocks in the result buffer head and mark it
481 * mapped.
482 *
e35fd660
TT
483 * If file type is extents based, it will call ext4_ext_map_blocks(),
484 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
485 * based files
486 *
facab4d9
JK
487 * On success, it returns the number of blocks being mapped or allocated. if
488 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
489 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
490 *
491 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
492 * that case, @map is returned as unmapped but we still do fill map->m_len to
493 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
494 *
495 * It returns the error in case of allocation failure.
496 */
e35fd660
TT
497int ext4_map_blocks(handle_t *handle, struct inode *inode,
498 struct ext4_map_blocks *map, int flags)
0e855ac8 499{
d100eef2 500 struct extent_status es;
0e855ac8 501 int retval;
b8a86845 502 int ret = 0;
921f266b
DM
503#ifdef ES_AGGRESSIVE_TEST
504 struct ext4_map_blocks orig_map;
505
506 memcpy(&orig_map, map, sizeof(*map));
507#endif
f5ab0d1f 508
e35fd660
TT
509 map->m_flags = 0;
510 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511 "logical block %lu\n", inode->i_ino, flags, map->m_len,
512 (unsigned long) map->m_lblk);
d100eef2 513
e861b5e9
TT
514 /*
515 * ext4_map_blocks returns an int, and m_len is an unsigned int
516 */
517 if (unlikely(map->m_len > INT_MAX))
518 map->m_len = INT_MAX;
519
4adb6ab3
KM
520 /* We can handle the block number less than EXT_MAX_BLOCKS */
521 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 522 return -EFSCORRUPTED;
4adb6ab3 523
d100eef2
ZL
524 /* Lookup extent status tree firstly */
525 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
526 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
527 map->m_pblk = ext4_es_pblock(&es) +
528 map->m_lblk - es.es_lblk;
529 map->m_flags |= ext4_es_is_written(&es) ?
530 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
531 retval = es.es_len - (map->m_lblk - es.es_lblk);
532 if (retval > map->m_len)
533 retval = map->m_len;
534 map->m_len = retval;
535 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
536 map->m_pblk = 0;
537 retval = es.es_len - (map->m_lblk - es.es_lblk);
538 if (retval > map->m_len)
539 retval = map->m_len;
540 map->m_len = retval;
d100eef2
ZL
541 retval = 0;
542 } else {
543 BUG_ON(1);
544 }
921f266b
DM
545#ifdef ES_AGGRESSIVE_TEST
546 ext4_map_blocks_es_recheck(handle, inode, map,
547 &orig_map, flags);
548#endif
d100eef2
ZL
549 goto found;
550 }
551
4df3d265 552 /*
b920c755
TT
553 * Try to see if we can get the block without requesting a new
554 * file system block.
4df3d265 555 */
2dcba478 556 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 557 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
558 retval = ext4_ext_map_blocks(handle, inode, map, flags &
559 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 560 } else {
a4e5d88b
DM
561 retval = ext4_ind_map_blocks(handle, inode, map, flags &
562 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 563 }
f7fec032 564 if (retval > 0) {
3be78c73 565 unsigned int status;
f7fec032 566
44fb851d
ZL
567 if (unlikely(retval != map->m_len)) {
568 ext4_warning(inode->i_sb,
569 "ES len assertion failed for inode "
570 "%lu: retval %d != map->m_len %d",
571 inode->i_ino, retval, map->m_len);
572 WARN_ON(1);
921f266b 573 }
921f266b 574
f7fec032
ZL
575 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
576 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
577 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 578 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
579 ext4_find_delalloc_range(inode, map->m_lblk,
580 map->m_lblk + map->m_len - 1))
581 status |= EXTENT_STATUS_DELAYED;
582 ret = ext4_es_insert_extent(inode, map->m_lblk,
583 map->m_len, map->m_pblk, status);
584 if (ret < 0)
585 retval = ret;
586 }
2dcba478 587 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 588
d100eef2 589found:
e35fd660 590 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 591 ret = check_block_validity(inode, map);
6fd058f7
TT
592 if (ret != 0)
593 return ret;
594 }
595
f5ab0d1f 596 /* If it is only a block(s) look up */
c2177057 597 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
598 return retval;
599
600 /*
601 * Returns if the blocks have already allocated
602 *
603 * Note that if blocks have been preallocated
df3ab170 604 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
605 * with buffer head unmapped.
606 */
e35fd660 607 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
608 /*
609 * If we need to convert extent to unwritten
610 * we continue and do the actual work in
611 * ext4_ext_map_blocks()
612 */
613 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
614 return retval;
4df3d265 615
2a8964d6 616 /*
a25a4e1a
ZL
617 * Here we clear m_flags because after allocating an new extent,
618 * it will be set again.
2a8964d6 619 */
a25a4e1a 620 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 621
4df3d265 622 /*
556615dc 623 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 624 * will possibly result in updating i_data, so we take
d91bd2c1 625 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 626 * with create == 1 flag.
4df3d265 627 */
c8b459f4 628 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 629
4df3d265
AK
630 /*
631 * We need to check for EXT4 here because migrate
632 * could have changed the inode type in between
633 */
12e9b892 634 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 635 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 636 } else {
e35fd660 637 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 638
e35fd660 639 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
640 /*
641 * We allocated new blocks which will result in
642 * i_data's format changing. Force the migrate
643 * to fail by clearing migrate flags
644 */
19f5fb7a 645 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 646 }
d2a17637 647
5f634d06
AK
648 /*
649 * Update reserved blocks/metadata blocks after successful
650 * block allocation which had been deferred till now. We don't
651 * support fallocate for non extent files. So we can update
652 * reserve space here.
653 */
654 if ((retval > 0) &&
1296cc85 655 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
656 ext4_da_update_reserve_space(inode, retval, 1);
657 }
2ac3b6e0 658
f7fec032 659 if (retval > 0) {
3be78c73 660 unsigned int status;
f7fec032 661
44fb851d
ZL
662 if (unlikely(retval != map->m_len)) {
663 ext4_warning(inode->i_sb,
664 "ES len assertion failed for inode "
665 "%lu: retval %d != map->m_len %d",
666 inode->i_ino, retval, map->m_len);
667 WARN_ON(1);
921f266b 668 }
921f266b 669
c86d8db3
JK
670 /*
671 * We have to zeroout blocks before inserting them into extent
672 * status tree. Otherwise someone could look them up there and
9b623df6
JK
673 * use them before they are really zeroed. We also have to
674 * unmap metadata before zeroing as otherwise writeback can
675 * overwrite zeros with stale data from block device.
c86d8db3
JK
676 */
677 if (flags & EXT4_GET_BLOCKS_ZERO &&
678 map->m_flags & EXT4_MAP_MAPPED &&
679 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
680 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
681 map->m_len);
c86d8db3
JK
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
684 if (ret) {
685 retval = ret;
686 goto out_sem;
687 }
688 }
689
adb23551
ZL
690 /*
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
693 */
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
696 if (ext4_es_is_written(&es))
c86d8db3 697 goto out_sem;
adb23551 698 }
f7fec032
ZL
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 702 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
703 ext4_find_delalloc_range(inode, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
c86d8db3 708 if (ret < 0) {
f7fec032 709 retval = ret;
c86d8db3
JK
710 goto out_sem;
711 }
5356f261
AK
712 }
713
c86d8db3 714out_sem:
4df3d265 715 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 717 ret = check_block_validity(inode, map);
6fd058f7
TT
718 if (ret != 0)
719 return ret;
06bd3c36
JK
720
721 /*
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
724 * ordered data list.
725 */
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 729 !ext4_is_quota_file(inode) &&
06bd3c36 730 ext4_should_order_data(inode)) {
ee0876bc
JK
731 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
732 ret = ext4_jbd2_inode_add_wait(handle, inode);
733 else
734 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
735 if (ret)
736 return ret;
737 }
6fd058f7 738 }
0e855ac8
AK
739 return retval;
740}
741
ed8ad838
JK
742/*
743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744 * we have to be careful as someone else may be manipulating b_state as well.
745 */
746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747{
748 unsigned long old_state;
749 unsigned long new_state;
750
751 flags &= EXT4_MAP_FLAGS;
752
753 /* Dummy buffer_head? Set non-atomically. */
754 if (!bh->b_page) {
755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 return;
757 }
758 /*
759 * Someone else may be modifying b_state. Be careful! This is ugly but
760 * once we get rid of using bh as a container for mapping information
761 * to pass to / from get_block functions, this can go away.
762 */
763 do {
764 old_state = READ_ONCE(bh->b_state);
765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 } while (unlikely(
767 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
768}
769
2ed88685
TT
770static int _ext4_get_block(struct inode *inode, sector_t iblock,
771 struct buffer_head *bh, int flags)
ac27a0ec 772{
2ed88685 773 struct ext4_map_blocks map;
efe70c29 774 int ret = 0;
ac27a0ec 775
46c7f254
TM
776 if (ext4_has_inline_data(inode))
777 return -ERANGE;
778
2ed88685
TT
779 map.m_lblk = iblock;
780 map.m_len = bh->b_size >> inode->i_blkbits;
781
efe70c29
JK
782 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
783 flags);
7fb5409d 784 if (ret > 0) {
2ed88685 785 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 786 ext4_update_bh_state(bh, map.m_flags);
2ed88685 787 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 788 ret = 0;
547edce3
RZ
789 } else if (ret == 0) {
790 /* hole case, need to fill in bh->b_size */
791 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
792 }
793 return ret;
794}
795
2ed88685
TT
796int ext4_get_block(struct inode *inode, sector_t iblock,
797 struct buffer_head *bh, int create)
798{
799 return _ext4_get_block(inode, iblock, bh,
800 create ? EXT4_GET_BLOCKS_CREATE : 0);
801}
802
705965bd
JK
803/*
804 * Get block function used when preparing for buffered write if we require
805 * creating an unwritten extent if blocks haven't been allocated. The extent
806 * will be converted to written after the IO is complete.
807 */
808int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
809 struct buffer_head *bh_result, int create)
810{
811 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
812 inode->i_ino, create);
813 return _ext4_get_block(inode, iblock, bh_result,
814 EXT4_GET_BLOCKS_IO_CREATE_EXT);
815}
816
efe70c29
JK
817/* Maximum number of blocks we map for direct IO at once. */
818#define DIO_MAX_BLOCKS 4096
819
e84dfbe2
JK
820/*
821 * Get blocks function for the cases that need to start a transaction -
822 * generally difference cases of direct IO and DAX IO. It also handles retries
823 * in case of ENOSPC.
824 */
825static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
826 struct buffer_head *bh_result, int flags)
efe70c29
JK
827{
828 int dio_credits;
e84dfbe2
JK
829 handle_t *handle;
830 int retries = 0;
831 int ret;
efe70c29
JK
832
833 /* Trim mapping request to maximum we can map at once for DIO */
834 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
835 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
836 dio_credits = ext4_chunk_trans_blocks(inode,
837 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
838retry:
839 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
840 if (IS_ERR(handle))
841 return PTR_ERR(handle);
842
843 ret = _ext4_get_block(inode, iblock, bh_result, flags);
844 ext4_journal_stop(handle);
845
846 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
847 goto retry;
848 return ret;
efe70c29
JK
849}
850
705965bd
JK
851/* Get block function for DIO reads and writes to inodes without extents */
852int ext4_dio_get_block(struct inode *inode, sector_t iblock,
853 struct buffer_head *bh, int create)
854{
efe70c29
JK
855 /* We don't expect handle for direct IO */
856 WARN_ON_ONCE(ext4_journal_current_handle());
857
e84dfbe2
JK
858 if (!create)
859 return _ext4_get_block(inode, iblock, bh, 0);
860 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
861}
862
863/*
109811c2 864 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
865 * blocks are not allocated yet. The extent will be converted to written
866 * after IO is complete.
867 */
109811c2
JK
868static int ext4_dio_get_block_unwritten_async(struct inode *inode,
869 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 870{
efe70c29
JK
871 int ret;
872
efe70c29
JK
873 /* We don't expect handle for direct IO */
874 WARN_ON_ONCE(ext4_journal_current_handle());
875
e84dfbe2
JK
876 ret = ext4_get_block_trans(inode, iblock, bh_result,
877 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 878
109811c2
JK
879 /*
880 * When doing DIO using unwritten extents, we need io_end to convert
881 * unwritten extents to written on IO completion. We allocate io_end
882 * once we spot unwritten extent and store it in b_private. Generic
883 * DIO code keeps b_private set and furthermore passes the value to
884 * our completion callback in 'private' argument.
885 */
886 if (!ret && buffer_unwritten(bh_result)) {
887 if (!bh_result->b_private) {
888 ext4_io_end_t *io_end;
889
890 io_end = ext4_init_io_end(inode, GFP_KERNEL);
891 if (!io_end)
892 return -ENOMEM;
893 bh_result->b_private = io_end;
894 ext4_set_io_unwritten_flag(inode, io_end);
895 }
efe70c29 896 set_buffer_defer_completion(bh_result);
efe70c29
JK
897 }
898
899 return ret;
705965bd
JK
900}
901
109811c2
JK
902/*
903 * Get block function for non-AIO DIO writes when we create unwritten extent if
904 * blocks are not allocated yet. The extent will be converted to written
1e21196c 905 * after IO is complete by ext4_direct_IO_write().
109811c2
JK
906 */
907static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
908 sector_t iblock, struct buffer_head *bh_result, int create)
909{
109811c2
JK
910 int ret;
911
912 /* We don't expect handle for direct IO */
913 WARN_ON_ONCE(ext4_journal_current_handle());
914
e84dfbe2
JK
915 ret = ext4_get_block_trans(inode, iblock, bh_result,
916 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
917
918 /*
919 * Mark inode as having pending DIO writes to unwritten extents.
1e21196c 920 * ext4_direct_IO_write() checks this flag and converts extents to
109811c2
JK
921 * written.
922 */
923 if (!ret && buffer_unwritten(bh_result))
924 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
925
926 return ret;
927}
928
705965bd
JK
929static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
930 struct buffer_head *bh_result, int create)
931{
932 int ret;
933
934 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
935 inode->i_ino, create);
efe70c29
JK
936 /* We don't expect handle for direct IO */
937 WARN_ON_ONCE(ext4_journal_current_handle());
938
705965bd
JK
939 ret = _ext4_get_block(inode, iblock, bh_result, 0);
940 /*
941 * Blocks should have been preallocated! ext4_file_write_iter() checks
942 * that.
943 */
efe70c29 944 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
945
946 return ret;
947}
948
949
ac27a0ec
DK
950/*
951 * `handle' can be NULL if create is zero
952 */
617ba13b 953struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 954 ext4_lblk_t block, int map_flags)
ac27a0ec 955{
2ed88685
TT
956 struct ext4_map_blocks map;
957 struct buffer_head *bh;
c5e298ae 958 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 959 int err;
ac27a0ec
DK
960
961 J_ASSERT(handle != NULL || create == 0);
962
2ed88685
TT
963 map.m_lblk = block;
964 map.m_len = 1;
c5e298ae 965 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 966
10560082
TT
967 if (err == 0)
968 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 969 if (err < 0)
10560082 970 return ERR_PTR(err);
2ed88685
TT
971
972 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
973 if (unlikely(!bh))
974 return ERR_PTR(-ENOMEM);
2ed88685
TT
975 if (map.m_flags & EXT4_MAP_NEW) {
976 J_ASSERT(create != 0);
977 J_ASSERT(handle != NULL);
ac27a0ec 978
2ed88685
TT
979 /*
980 * Now that we do not always journal data, we should
981 * keep in mind whether this should always journal the
982 * new buffer as metadata. For now, regular file
983 * writes use ext4_get_block instead, so it's not a
984 * problem.
985 */
986 lock_buffer(bh);
987 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
988 err = ext4_journal_get_create_access(handle, bh);
989 if (unlikely(err)) {
990 unlock_buffer(bh);
991 goto errout;
992 }
993 if (!buffer_uptodate(bh)) {
2ed88685
TT
994 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
995 set_buffer_uptodate(bh);
ac27a0ec 996 }
2ed88685
TT
997 unlock_buffer(bh);
998 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
999 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
1000 if (unlikely(err))
1001 goto errout;
1002 } else
2ed88685 1003 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 1004 return bh;
10560082
TT
1005errout:
1006 brelse(bh);
1007 return ERR_PTR(err);
ac27a0ec
DK
1008}
1009
617ba13b 1010struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1011 ext4_lblk_t block, int map_flags)
ac27a0ec 1012{
af5bc92d 1013 struct buffer_head *bh;
ac27a0ec 1014
c5e298ae 1015 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1016 if (IS_ERR(bh))
ac27a0ec 1017 return bh;
1c215028 1018 if (!bh || buffer_uptodate(bh))
ac27a0ec 1019 return bh;
dfec8a14 1020 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1021 wait_on_buffer(bh);
1022 if (buffer_uptodate(bh))
1023 return bh;
1024 put_bh(bh);
1c215028 1025 return ERR_PTR(-EIO);
ac27a0ec
DK
1026}
1027
9699d4f9
TE
1028/* Read a contiguous batch of blocks. */
1029int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1030 bool wait, struct buffer_head **bhs)
1031{
1032 int i, err;
1033
1034 for (i = 0; i < bh_count; i++) {
1035 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1036 if (IS_ERR(bhs[i])) {
1037 err = PTR_ERR(bhs[i]);
1038 bh_count = i;
1039 goto out_brelse;
1040 }
1041 }
1042
1043 for (i = 0; i < bh_count; i++)
1044 /* Note that NULL bhs[i] is valid because of holes. */
1045 if (bhs[i] && !buffer_uptodate(bhs[i]))
1046 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1047 &bhs[i]);
1048
1049 if (!wait)
1050 return 0;
1051
1052 for (i = 0; i < bh_count; i++)
1053 if (bhs[i])
1054 wait_on_buffer(bhs[i]);
1055
1056 for (i = 0; i < bh_count; i++) {
1057 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1058 err = -EIO;
1059 goto out_brelse;
1060 }
1061 }
1062 return 0;
1063
1064out_brelse:
1065 for (i = 0; i < bh_count; i++) {
1066 brelse(bhs[i]);
1067 bhs[i] = NULL;
1068 }
1069 return err;
1070}
1071
f19d5870
TM
1072int ext4_walk_page_buffers(handle_t *handle,
1073 struct buffer_head *head,
1074 unsigned from,
1075 unsigned to,
1076 int *partial,
1077 int (*fn)(handle_t *handle,
1078 struct buffer_head *bh))
ac27a0ec
DK
1079{
1080 struct buffer_head *bh;
1081 unsigned block_start, block_end;
1082 unsigned blocksize = head->b_size;
1083 int err, ret = 0;
1084 struct buffer_head *next;
1085
af5bc92d
TT
1086 for (bh = head, block_start = 0;
1087 ret == 0 && (bh != head || !block_start);
de9a55b8 1088 block_start = block_end, bh = next) {
ac27a0ec
DK
1089 next = bh->b_this_page;
1090 block_end = block_start + blocksize;
1091 if (block_end <= from || block_start >= to) {
1092 if (partial && !buffer_uptodate(bh))
1093 *partial = 1;
1094 continue;
1095 }
1096 err = (*fn)(handle, bh);
1097 if (!ret)
1098 ret = err;
1099 }
1100 return ret;
1101}
1102
1103/*
1104 * To preserve ordering, it is essential that the hole instantiation and
1105 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1106 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1107 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1108 * prepare_write() is the right place.
1109 *
36ade451
JK
1110 * Also, this function can nest inside ext4_writepage(). In that case, we
1111 * *know* that ext4_writepage() has generated enough buffer credits to do the
1112 * whole page. So we won't block on the journal in that case, which is good,
1113 * because the caller may be PF_MEMALLOC.
ac27a0ec 1114 *
617ba13b 1115 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1116 * quota file writes. If we were to commit the transaction while thus
1117 * reentered, there can be a deadlock - we would be holding a quota
1118 * lock, and the commit would never complete if another thread had a
1119 * transaction open and was blocking on the quota lock - a ranking
1120 * violation.
1121 *
dab291af 1122 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1123 * will _not_ run commit under these circumstances because handle->h_ref
1124 * is elevated. We'll still have enough credits for the tiny quotafile
1125 * write.
1126 */
f19d5870
TM
1127int do_journal_get_write_access(handle_t *handle,
1128 struct buffer_head *bh)
ac27a0ec 1129{
56d35a4c
JK
1130 int dirty = buffer_dirty(bh);
1131 int ret;
1132
ac27a0ec
DK
1133 if (!buffer_mapped(bh) || buffer_freed(bh))
1134 return 0;
56d35a4c 1135 /*
ebdec241 1136 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1137 * the dirty bit as jbd2_journal_get_write_access() could complain
1138 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1139 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1140 * the bit before releasing a page lock and thus writeback cannot
1141 * ever write the buffer.
1142 */
1143 if (dirty)
1144 clear_buffer_dirty(bh);
5d601255 1145 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1146 ret = ext4_journal_get_write_access(handle, bh);
1147 if (!ret && dirty)
1148 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1149 return ret;
ac27a0ec
DK
1150}
1151
2058f83a
MH
1152#ifdef CONFIG_EXT4_FS_ENCRYPTION
1153static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1154 get_block_t *get_block)
1155{
09cbfeaf 1156 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1157 unsigned to = from + len;
1158 struct inode *inode = page->mapping->host;
1159 unsigned block_start, block_end;
1160 sector_t block;
1161 int err = 0;
1162 unsigned blocksize = inode->i_sb->s_blocksize;
1163 unsigned bbits;
1164 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1165 bool decrypt = false;
1166
1167 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1168 BUG_ON(from > PAGE_SIZE);
1169 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1170 BUG_ON(from > to);
1171
1172 if (!page_has_buffers(page))
1173 create_empty_buffers(page, blocksize, 0);
1174 head = page_buffers(page);
1175 bbits = ilog2(blocksize);
09cbfeaf 1176 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1177
1178 for (bh = head, block_start = 0; bh != head || !block_start;
1179 block++, block_start = block_end, bh = bh->b_this_page) {
1180 block_end = block_start + blocksize;
1181 if (block_end <= from || block_start >= to) {
1182 if (PageUptodate(page)) {
1183 if (!buffer_uptodate(bh))
1184 set_buffer_uptodate(bh);
1185 }
1186 continue;
1187 }
1188 if (buffer_new(bh))
1189 clear_buffer_new(bh);
1190 if (!buffer_mapped(bh)) {
1191 WARN_ON(bh->b_size != blocksize);
1192 err = get_block(inode, block, bh, 1);
1193 if (err)
1194 break;
1195 if (buffer_new(bh)) {
e64855c6 1196 clean_bdev_bh_alias(bh);
2058f83a
MH
1197 if (PageUptodate(page)) {
1198 clear_buffer_new(bh);
1199 set_buffer_uptodate(bh);
1200 mark_buffer_dirty(bh);
1201 continue;
1202 }
1203 if (block_end > to || block_start < from)
1204 zero_user_segments(page, to, block_end,
1205 block_start, from);
1206 continue;
1207 }
1208 }
1209 if (PageUptodate(page)) {
1210 if (!buffer_uptodate(bh))
1211 set_buffer_uptodate(bh);
1212 continue;
1213 }
1214 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1215 !buffer_unwritten(bh) &&
1216 (block_start < from || block_end > to)) {
dfec8a14 1217 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1218 *wait_bh++ = bh;
1219 decrypt = ext4_encrypted_inode(inode) &&
1220 S_ISREG(inode->i_mode);
1221 }
1222 }
1223 /*
1224 * If we issued read requests, let them complete.
1225 */
1226 while (wait_bh > wait) {
1227 wait_on_buffer(*--wait_bh);
1228 if (!buffer_uptodate(*wait_bh))
1229 err = -EIO;
1230 }
1231 if (unlikely(err))
1232 page_zero_new_buffers(page, from, to);
1233 else if (decrypt)
7821d4dd 1234 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1235 PAGE_SIZE, 0, page->index);
2058f83a
MH
1236 return err;
1237}
1238#endif
1239
bfc1af65 1240static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1241 loff_t pos, unsigned len, unsigned flags,
1242 struct page **pagep, void **fsdata)
ac27a0ec 1243{
af5bc92d 1244 struct inode *inode = mapping->host;
1938a150 1245 int ret, needed_blocks;
ac27a0ec
DK
1246 handle_t *handle;
1247 int retries = 0;
af5bc92d 1248 struct page *page;
de9a55b8 1249 pgoff_t index;
af5bc92d 1250 unsigned from, to;
bfc1af65 1251
0db1ff22
TT
1252 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1253 return -EIO;
1254
9bffad1e 1255 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1256 /*
1257 * Reserve one block more for addition to orphan list in case
1258 * we allocate blocks but write fails for some reason
1259 */
1260 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1261 index = pos >> PAGE_SHIFT;
1262 from = pos & (PAGE_SIZE - 1);
af5bc92d 1263 to = from + len;
ac27a0ec 1264
f19d5870
TM
1265 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1266 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1267 flags, pagep);
1268 if (ret < 0)
47564bfb
TT
1269 return ret;
1270 if (ret == 1)
1271 return 0;
f19d5870
TM
1272 }
1273
47564bfb
TT
1274 /*
1275 * grab_cache_page_write_begin() can take a long time if the
1276 * system is thrashing due to memory pressure, or if the page
1277 * is being written back. So grab it first before we start
1278 * the transaction handle. This also allows us to allocate
1279 * the page (if needed) without using GFP_NOFS.
1280 */
1281retry_grab:
1282 page = grab_cache_page_write_begin(mapping, index, flags);
1283 if (!page)
1284 return -ENOMEM;
1285 unlock_page(page);
1286
1287retry_journal:
9924a92a 1288 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1289 if (IS_ERR(handle)) {
09cbfeaf 1290 put_page(page);
47564bfb 1291 return PTR_ERR(handle);
7479d2b9 1292 }
ac27a0ec 1293
47564bfb
TT
1294 lock_page(page);
1295 if (page->mapping != mapping) {
1296 /* The page got truncated from under us */
1297 unlock_page(page);
09cbfeaf 1298 put_page(page);
cf108bca 1299 ext4_journal_stop(handle);
47564bfb 1300 goto retry_grab;
cf108bca 1301 }
7afe5aa5
DM
1302 /* In case writeback began while the page was unlocked */
1303 wait_for_stable_page(page);
cf108bca 1304
2058f83a
MH
1305#ifdef CONFIG_EXT4_FS_ENCRYPTION
1306 if (ext4_should_dioread_nolock(inode))
1307 ret = ext4_block_write_begin(page, pos, len,
705965bd 1308 ext4_get_block_unwritten);
2058f83a
MH
1309 else
1310 ret = ext4_block_write_begin(page, pos, len,
1311 ext4_get_block);
1312#else
744692dc 1313 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1314 ret = __block_write_begin(page, pos, len,
1315 ext4_get_block_unwritten);
744692dc 1316 else
6e1db88d 1317 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1318#endif
bfc1af65 1319 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1320 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1321 from, to, NULL,
1322 do_journal_get_write_access);
ac27a0ec 1323 }
bfc1af65
NP
1324
1325 if (ret) {
af5bc92d 1326 unlock_page(page);
ae4d5372 1327 /*
6e1db88d 1328 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1329 * outside i_size. Trim these off again. Don't need
1330 * i_size_read because we hold i_mutex.
1938a150
AK
1331 *
1332 * Add inode to orphan list in case we crash before
1333 * truncate finishes
ae4d5372 1334 */
ffacfa7a 1335 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1336 ext4_orphan_add(handle, inode);
1337
1338 ext4_journal_stop(handle);
1339 if (pos + len > inode->i_size) {
b9a4207d 1340 ext4_truncate_failed_write(inode);
de9a55b8 1341 /*
ffacfa7a 1342 * If truncate failed early the inode might
1938a150
AK
1343 * still be on the orphan list; we need to
1344 * make sure the inode is removed from the
1345 * orphan list in that case.
1346 */
1347 if (inode->i_nlink)
1348 ext4_orphan_del(NULL, inode);
1349 }
bfc1af65 1350
47564bfb
TT
1351 if (ret == -ENOSPC &&
1352 ext4_should_retry_alloc(inode->i_sb, &retries))
1353 goto retry_journal;
09cbfeaf 1354 put_page(page);
47564bfb
TT
1355 return ret;
1356 }
1357 *pagep = page;
ac27a0ec
DK
1358 return ret;
1359}
1360
bfc1af65
NP
1361/* For write_end() in data=journal mode */
1362static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1363{
13fca323 1364 int ret;
ac27a0ec
DK
1365 if (!buffer_mapped(bh) || buffer_freed(bh))
1366 return 0;
1367 set_buffer_uptodate(bh);
13fca323
TT
1368 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1369 clear_buffer_meta(bh);
1370 clear_buffer_prio(bh);
1371 return ret;
ac27a0ec
DK
1372}
1373
eed4333f
ZL
1374/*
1375 * We need to pick up the new inode size which generic_commit_write gave us
1376 * `file' can be NULL - eg, when called from page_symlink().
1377 *
1378 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1379 * buffers are managed internally.
1380 */
1381static int ext4_write_end(struct file *file,
1382 struct address_space *mapping,
1383 loff_t pos, unsigned len, unsigned copied,
1384 struct page *page, void *fsdata)
f8514083 1385{
f8514083 1386 handle_t *handle = ext4_journal_current_handle();
eed4333f 1387 struct inode *inode = mapping->host;
0572639f 1388 loff_t old_size = inode->i_size;
eed4333f
ZL
1389 int ret = 0, ret2;
1390 int i_size_changed = 0;
1391
1392 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1393 if (ext4_has_inline_data(inode)) {
1394 ret = ext4_write_inline_data_end(inode, pos, len,
1395 copied, page);
eb5efbcb
TT
1396 if (ret < 0) {
1397 unlock_page(page);
1398 put_page(page);
42c832de 1399 goto errout;
eb5efbcb 1400 }
42c832de
TT
1401 copied = ret;
1402 } else
f19d5870
TM
1403 copied = block_write_end(file, mapping, pos,
1404 len, copied, page, fsdata);
f8514083 1405 /*
4631dbf6 1406 * it's important to update i_size while still holding page lock:
f8514083
AK
1407 * page writeout could otherwise come in and zero beyond i_size.
1408 */
4631dbf6 1409 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1410 unlock_page(page);
09cbfeaf 1411 put_page(page);
f8514083 1412
0572639f
XW
1413 if (old_size < pos)
1414 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1415 /*
1416 * Don't mark the inode dirty under page lock. First, it unnecessarily
1417 * makes the holding time of page lock longer. Second, it forces lock
1418 * ordering of page lock and transaction start for journaling
1419 * filesystems.
1420 */
1421 if (i_size_changed)
1422 ext4_mark_inode_dirty(handle, inode);
1423
ffacfa7a 1424 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1425 /* if we have allocated more blocks and copied
1426 * less. We will have blocks allocated outside
1427 * inode->i_size. So truncate them
1428 */
1429 ext4_orphan_add(handle, inode);
74d553aa 1430errout:
617ba13b 1431 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1432 if (!ret)
1433 ret = ret2;
bfc1af65 1434
f8514083 1435 if (pos + len > inode->i_size) {
b9a4207d 1436 ext4_truncate_failed_write(inode);
de9a55b8 1437 /*
ffacfa7a 1438 * If truncate failed early the inode might still be
f8514083
AK
1439 * on the orphan list; we need to make sure the inode
1440 * is removed from the orphan list in that case.
1441 */
1442 if (inode->i_nlink)
1443 ext4_orphan_del(NULL, inode);
1444 }
1445
bfc1af65 1446 return ret ? ret : copied;
ac27a0ec
DK
1447}
1448
b90197b6
TT
1449/*
1450 * This is a private version of page_zero_new_buffers() which doesn't
1451 * set the buffer to be dirty, since in data=journalled mode we need
1452 * to call ext4_handle_dirty_metadata() instead.
1453 */
3b136499
JK
1454static void ext4_journalled_zero_new_buffers(handle_t *handle,
1455 struct page *page,
1456 unsigned from, unsigned to)
b90197b6
TT
1457{
1458 unsigned int block_start = 0, block_end;
1459 struct buffer_head *head, *bh;
1460
1461 bh = head = page_buffers(page);
1462 do {
1463 block_end = block_start + bh->b_size;
1464 if (buffer_new(bh)) {
1465 if (block_end > from && block_start < to) {
1466 if (!PageUptodate(page)) {
1467 unsigned start, size;
1468
1469 start = max(from, block_start);
1470 size = min(to, block_end) - start;
1471
1472 zero_user(page, start, size);
3b136499 1473 write_end_fn(handle, bh);
b90197b6
TT
1474 }
1475 clear_buffer_new(bh);
1476 }
1477 }
1478 block_start = block_end;
1479 bh = bh->b_this_page;
1480 } while (bh != head);
1481}
1482
bfc1af65 1483static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1484 struct address_space *mapping,
1485 loff_t pos, unsigned len, unsigned copied,
1486 struct page *page, void *fsdata)
ac27a0ec 1487{
617ba13b 1488 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1489 struct inode *inode = mapping->host;
0572639f 1490 loff_t old_size = inode->i_size;
ac27a0ec
DK
1491 int ret = 0, ret2;
1492 int partial = 0;
bfc1af65 1493 unsigned from, to;
4631dbf6 1494 int size_changed = 0;
ac27a0ec 1495
9bffad1e 1496 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1497 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1498 to = from + len;
1499
441c8508
CW
1500 BUG_ON(!ext4_handle_valid(handle));
1501
eb5efbcb
TT
1502 if (ext4_has_inline_data(inode)) {
1503 ret = ext4_write_inline_data_end(inode, pos, len,
1504 copied, page);
1505 if (ret < 0) {
1506 unlock_page(page);
1507 put_page(page);
1508 goto errout;
1509 }
1510 copied = ret;
1511 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1512 copied = 0;
1513 ext4_journalled_zero_new_buffers(handle, page, from, to);
1514 } else {
1515 if (unlikely(copied < len))
1516 ext4_journalled_zero_new_buffers(handle, page,
1517 from + copied, to);
3fdcfb66 1518 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1519 from + copied, &partial,
1520 write_end_fn);
3fdcfb66
TM
1521 if (!partial)
1522 SetPageUptodate(page);
1523 }
4631dbf6 1524 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1525 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1526 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1527 unlock_page(page);
09cbfeaf 1528 put_page(page);
4631dbf6 1529
0572639f
XW
1530 if (old_size < pos)
1531 pagecache_isize_extended(inode, old_size, pos);
1532
4631dbf6 1533 if (size_changed) {
617ba13b 1534 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1535 if (!ret)
1536 ret = ret2;
1537 }
bfc1af65 1538
ffacfa7a 1539 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1540 /* if we have allocated more blocks and copied
1541 * less. We will have blocks allocated outside
1542 * inode->i_size. So truncate them
1543 */
1544 ext4_orphan_add(handle, inode);
1545
eb5efbcb 1546errout:
617ba13b 1547 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1548 if (!ret)
1549 ret = ret2;
f8514083 1550 if (pos + len > inode->i_size) {
b9a4207d 1551 ext4_truncate_failed_write(inode);
de9a55b8 1552 /*
ffacfa7a 1553 * If truncate failed early the inode might still be
f8514083
AK
1554 * on the orphan list; we need to make sure the inode
1555 * is removed from the orphan list in that case.
1556 */
1557 if (inode->i_nlink)
1558 ext4_orphan_del(NULL, inode);
1559 }
bfc1af65
NP
1560
1561 return ret ? ret : copied;
ac27a0ec 1562}
d2a17637 1563
9d0be502 1564/*
c27e43a1 1565 * Reserve space for a single cluster
9d0be502 1566 */
c27e43a1 1567static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1568{
60e58e0f 1569 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1570 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1571 int ret;
03179fe9
TT
1572
1573 /*
1574 * We will charge metadata quota at writeout time; this saves
1575 * us from metadata over-estimation, though we may go over by
1576 * a small amount in the end. Here we just reserve for data.
1577 */
1578 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1579 if (ret)
1580 return ret;
d2a17637 1581
0637c6f4 1582 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1583 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1584 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1585 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1586 return -ENOSPC;
1587 }
9d0be502 1588 ei->i_reserved_data_blocks++;
c27e43a1 1589 trace_ext4_da_reserve_space(inode);
0637c6f4 1590 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1591
d2a17637
MC
1592 return 0; /* success */
1593}
1594
12219aea 1595static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1596{
1597 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1598 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1599
cd213226
MC
1600 if (!to_free)
1601 return; /* Nothing to release, exit */
1602
d2a17637 1603 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1604
5a58ec87 1605 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1606 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1607 /*
0637c6f4
TT
1608 * if there aren't enough reserved blocks, then the
1609 * counter is messed up somewhere. Since this
1610 * function is called from invalidate page, it's
1611 * harmless to return without any action.
cd213226 1612 */
8de5c325 1613 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1614 "ino %lu, to_free %d with only %d reserved "
1084f252 1615 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1616 ei->i_reserved_data_blocks);
1617 WARN_ON(1);
1618 to_free = ei->i_reserved_data_blocks;
cd213226 1619 }
0637c6f4 1620 ei->i_reserved_data_blocks -= to_free;
cd213226 1621
72b8ab9d 1622 /* update fs dirty data blocks counter */
57042651 1623 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1624
d2a17637 1625 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1626
7b415bf6 1627 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1628}
1629
1630static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1631 unsigned int offset,
1632 unsigned int length)
d2a17637 1633{
9705acd6 1634 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1635 struct buffer_head *head, *bh;
1636 unsigned int curr_off = 0;
7b415bf6
AK
1637 struct inode *inode = page->mapping->host;
1638 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1639 unsigned int stop = offset + length;
7b415bf6 1640 int num_clusters;
51865fda 1641 ext4_fsblk_t lblk;
d2a17637 1642
09cbfeaf 1643 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1644
d2a17637
MC
1645 head = page_buffers(page);
1646 bh = head;
1647 do {
1648 unsigned int next_off = curr_off + bh->b_size;
1649
ca99fdd2
LC
1650 if (next_off > stop)
1651 break;
1652
d2a17637
MC
1653 if ((offset <= curr_off) && (buffer_delay(bh))) {
1654 to_release++;
9705acd6 1655 contiguous_blks++;
d2a17637 1656 clear_buffer_delay(bh);
9705acd6
LC
1657 } else if (contiguous_blks) {
1658 lblk = page->index <<
09cbfeaf 1659 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1660 lblk += (curr_off >> inode->i_blkbits) -
1661 contiguous_blks;
1662 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663 contiguous_blks = 0;
d2a17637
MC
1664 }
1665 curr_off = next_off;
1666 } while ((bh = bh->b_this_page) != head);
7b415bf6 1667
9705acd6 1668 if (contiguous_blks) {
09cbfeaf 1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1672 }
1673
7b415bf6
AK
1674 /* If we have released all the blocks belonging to a cluster, then we
1675 * need to release the reserved space for that cluster. */
1676 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1677 while (num_clusters > 0) {
09cbfeaf 1678 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1679 ((num_clusters - 1) << sbi->s_cluster_bits);
1680 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1681 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1682 ext4_da_release_space(inode, 1);
1683
1684 num_clusters--;
1685 }
d2a17637 1686}
ac27a0ec 1687
64769240
AT
1688/*
1689 * Delayed allocation stuff
1690 */
1691
4e7ea81d
JK
1692struct mpage_da_data {
1693 struct inode *inode;
1694 struct writeback_control *wbc;
6b523df4 1695
4e7ea81d
JK
1696 pgoff_t first_page; /* The first page to write */
1697 pgoff_t next_page; /* Current page to examine */
1698 pgoff_t last_page; /* Last page to examine */
791b7f08 1699 /*
4e7ea81d
JK
1700 * Extent to map - this can be after first_page because that can be
1701 * fully mapped. We somewhat abuse m_flags to store whether the extent
1702 * is delalloc or unwritten.
791b7f08 1703 */
4e7ea81d
JK
1704 struct ext4_map_blocks map;
1705 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1706 unsigned int do_map:1;
4e7ea81d 1707};
64769240 1708
4e7ea81d
JK
1709static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1710 bool invalidate)
c4a0c46e
AK
1711{
1712 int nr_pages, i;
1713 pgoff_t index, end;
1714 struct pagevec pvec;
1715 struct inode *inode = mpd->inode;
1716 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1717
1718 /* This is necessary when next_page == 0. */
1719 if (mpd->first_page >= mpd->next_page)
1720 return;
c4a0c46e 1721
c7f5938a
CW
1722 index = mpd->first_page;
1723 end = mpd->next_page - 1;
4e7ea81d
JK
1724 if (invalidate) {
1725 ext4_lblk_t start, last;
09cbfeaf
KS
1726 start = index << (PAGE_SHIFT - inode->i_blkbits);
1727 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1728 ext4_es_remove_extent(inode, start, last - start + 1);
1729 }
51865fda 1730
86679820 1731 pagevec_init(&pvec);
c4a0c46e 1732 while (index <= end) {
397162ff 1733 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1734 if (nr_pages == 0)
1735 break;
1736 for (i = 0; i < nr_pages; i++) {
1737 struct page *page = pvec.pages[i];
2b85a617 1738
c4a0c46e
AK
1739 BUG_ON(!PageLocked(page));
1740 BUG_ON(PageWriteback(page));
4e7ea81d 1741 if (invalidate) {
4e800c03 1742 if (page_mapped(page))
1743 clear_page_dirty_for_io(page);
09cbfeaf 1744 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1745 ClearPageUptodate(page);
1746 }
c4a0c46e
AK
1747 unlock_page(page);
1748 }
9b1d0998 1749 pagevec_release(&pvec);
c4a0c46e 1750 }
c4a0c46e
AK
1751}
1752
df22291f
AK
1753static void ext4_print_free_blocks(struct inode *inode)
1754{
1755 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1756 struct super_block *sb = inode->i_sb;
f78ee70d 1757 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1758
1759 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1760 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1761 ext4_count_free_clusters(sb)));
92b97816
TT
1762 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1763 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1764 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1765 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1766 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1767 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1768 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1769 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1770 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1771 ei->i_reserved_data_blocks);
df22291f
AK
1772 return;
1773}
1774
c364b22c 1775static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1776{
c364b22c 1777 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1778}
1779
5356f261
AK
1780/*
1781 * This function is grabs code from the very beginning of
1782 * ext4_map_blocks, but assumes that the caller is from delayed write
1783 * time. This function looks up the requested blocks and sets the
1784 * buffer delay bit under the protection of i_data_sem.
1785 */
1786static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1787 struct ext4_map_blocks *map,
1788 struct buffer_head *bh)
1789{
d100eef2 1790 struct extent_status es;
5356f261
AK
1791 int retval;
1792 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1793#ifdef ES_AGGRESSIVE_TEST
1794 struct ext4_map_blocks orig_map;
1795
1796 memcpy(&orig_map, map, sizeof(*map));
1797#endif
5356f261
AK
1798
1799 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1800 invalid_block = ~0;
1801
1802 map->m_flags = 0;
1803 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1804 "logical block %lu\n", inode->i_ino, map->m_len,
1805 (unsigned long) map->m_lblk);
d100eef2
ZL
1806
1807 /* Lookup extent status tree firstly */
1808 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1809 if (ext4_es_is_hole(&es)) {
1810 retval = 0;
c8b459f4 1811 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1812 goto add_delayed;
1813 }
1814
1815 /*
1816 * Delayed extent could be allocated by fallocate.
1817 * So we need to check it.
1818 */
1819 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1820 map_bh(bh, inode->i_sb, invalid_block);
1821 set_buffer_new(bh);
1822 set_buffer_delay(bh);
1823 return 0;
1824 }
1825
1826 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1827 retval = es.es_len - (iblock - es.es_lblk);
1828 if (retval > map->m_len)
1829 retval = map->m_len;
1830 map->m_len = retval;
1831 if (ext4_es_is_written(&es))
1832 map->m_flags |= EXT4_MAP_MAPPED;
1833 else if (ext4_es_is_unwritten(&es))
1834 map->m_flags |= EXT4_MAP_UNWRITTEN;
1835 else
1836 BUG_ON(1);
1837
921f266b
DM
1838#ifdef ES_AGGRESSIVE_TEST
1839 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1840#endif
d100eef2
ZL
1841 return retval;
1842 }
1843
5356f261
AK
1844 /*
1845 * Try to see if we can get the block without requesting a new
1846 * file system block.
1847 */
c8b459f4 1848 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1849 if (ext4_has_inline_data(inode))
9c3569b5 1850 retval = 0;
cbd7584e 1851 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1852 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1853 else
2f8e0a7c 1854 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1855
d100eef2 1856add_delayed:
5356f261 1857 if (retval == 0) {
f7fec032 1858 int ret;
5356f261
AK
1859 /*
1860 * XXX: __block_prepare_write() unmaps passed block,
1861 * is it OK?
1862 */
386ad67c
LC
1863 /*
1864 * If the block was allocated from previously allocated cluster,
1865 * then we don't need to reserve it again. However we still need
1866 * to reserve metadata for every block we're going to write.
1867 */
c27e43a1 1868 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1869 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1870 ret = ext4_da_reserve_space(inode);
f7fec032 1871 if (ret) {
5356f261 1872 /* not enough space to reserve */
f7fec032 1873 retval = ret;
5356f261 1874 goto out_unlock;
f7fec032 1875 }
5356f261
AK
1876 }
1877
f7fec032
ZL
1878 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879 ~0, EXTENT_STATUS_DELAYED);
1880 if (ret) {
1881 retval = ret;
51865fda 1882 goto out_unlock;
f7fec032 1883 }
51865fda 1884
5356f261
AK
1885 map_bh(bh, inode->i_sb, invalid_block);
1886 set_buffer_new(bh);
1887 set_buffer_delay(bh);
f7fec032
ZL
1888 } else if (retval > 0) {
1889 int ret;
3be78c73 1890 unsigned int status;
f7fec032 1891
44fb851d
ZL
1892 if (unlikely(retval != map->m_len)) {
1893 ext4_warning(inode->i_sb,
1894 "ES len assertion failed for inode "
1895 "%lu: retval %d != map->m_len %d",
1896 inode->i_ino, retval, map->m_len);
1897 WARN_ON(1);
921f266b 1898 }
921f266b 1899
f7fec032
ZL
1900 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1901 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1902 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1903 map->m_pblk, status);
1904 if (ret != 0)
1905 retval = ret;
5356f261
AK
1906 }
1907
1908out_unlock:
1909 up_read((&EXT4_I(inode)->i_data_sem));
1910
1911 return retval;
1912}
1913
64769240 1914/*
d91bd2c1 1915 * This is a special get_block_t callback which is used by
b920c755
TT
1916 * ext4_da_write_begin(). It will either return mapped block or
1917 * reserve space for a single block.
29fa89d0
AK
1918 *
1919 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1920 * We also have b_blocknr = -1 and b_bdev initialized properly
1921 *
1922 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1923 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1924 * initialized properly.
64769240 1925 */
9c3569b5
TM
1926int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1927 struct buffer_head *bh, int create)
64769240 1928{
2ed88685 1929 struct ext4_map_blocks map;
64769240
AT
1930 int ret = 0;
1931
1932 BUG_ON(create == 0);
2ed88685
TT
1933 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1934
1935 map.m_lblk = iblock;
1936 map.m_len = 1;
64769240
AT
1937
1938 /*
1939 * first, we need to know whether the block is allocated already
1940 * preallocated blocks are unmapped but should treated
1941 * the same as allocated blocks.
1942 */
5356f261
AK
1943 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1944 if (ret <= 0)
2ed88685 1945 return ret;
64769240 1946
2ed88685 1947 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1948 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1949
1950 if (buffer_unwritten(bh)) {
1951 /* A delayed write to unwritten bh should be marked
1952 * new and mapped. Mapped ensures that we don't do
1953 * get_block multiple times when we write to the same
1954 * offset and new ensures that we do proper zero out
1955 * for partial write.
1956 */
1957 set_buffer_new(bh);
c8205636 1958 set_buffer_mapped(bh);
2ed88685
TT
1959 }
1960 return 0;
64769240 1961}
61628a3f 1962
62e086be
AK
1963static int bget_one(handle_t *handle, struct buffer_head *bh)
1964{
1965 get_bh(bh);
1966 return 0;
1967}
1968
1969static int bput_one(handle_t *handle, struct buffer_head *bh)
1970{
1971 put_bh(bh);
1972 return 0;
1973}
1974
1975static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1976 unsigned int len)
1977{
1978 struct address_space *mapping = page->mapping;
1979 struct inode *inode = mapping->host;
3fdcfb66 1980 struct buffer_head *page_bufs = NULL;
62e086be 1981 handle_t *handle = NULL;
3fdcfb66
TM
1982 int ret = 0, err = 0;
1983 int inline_data = ext4_has_inline_data(inode);
1984 struct buffer_head *inode_bh = NULL;
62e086be 1985
cb20d518 1986 ClearPageChecked(page);
3fdcfb66
TM
1987
1988 if (inline_data) {
1989 BUG_ON(page->index != 0);
1990 BUG_ON(len > ext4_get_max_inline_size(inode));
1991 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1992 if (inode_bh == NULL)
1993 goto out;
1994 } else {
1995 page_bufs = page_buffers(page);
1996 if (!page_bufs) {
1997 BUG();
1998 goto out;
1999 }
2000 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2001 NULL, bget_one);
2002 }
bdf96838
TT
2003 /*
2004 * We need to release the page lock before we start the
2005 * journal, so grab a reference so the page won't disappear
2006 * out from under us.
2007 */
2008 get_page(page);
62e086be
AK
2009 unlock_page(page);
2010
9924a92a
TT
2011 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2012 ext4_writepage_trans_blocks(inode));
62e086be
AK
2013 if (IS_ERR(handle)) {
2014 ret = PTR_ERR(handle);
bdf96838
TT
2015 put_page(page);
2016 goto out_no_pagelock;
62e086be 2017 }
441c8508
CW
2018 BUG_ON(!ext4_handle_valid(handle));
2019
bdf96838
TT
2020 lock_page(page);
2021 put_page(page);
2022 if (page->mapping != mapping) {
2023 /* The page got truncated from under us */
2024 ext4_journal_stop(handle);
2025 ret = 0;
2026 goto out;
2027 }
2028
3fdcfb66 2029 if (inline_data) {
5d601255 2030 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 2031 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2032
3fdcfb66
TM
2033 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2034
2035 } else {
2036 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2037 do_journal_get_write_access);
2038
2039 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2040 write_end_fn);
2041 }
62e086be
AK
2042 if (ret == 0)
2043 ret = err;
2d859db3 2044 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2045 err = ext4_journal_stop(handle);
2046 if (!ret)
2047 ret = err;
2048
3fdcfb66 2049 if (!ext4_has_inline_data(inode))
8c9367fd 2050 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 2051 NULL, bput_one);
19f5fb7a 2052 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2053out:
bdf96838
TT
2054 unlock_page(page);
2055out_no_pagelock:
3fdcfb66 2056 brelse(inode_bh);
62e086be
AK
2057 return ret;
2058}
2059
61628a3f 2060/*
43ce1d23
AK
2061 * Note that we don't need to start a transaction unless we're journaling data
2062 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2063 * need to file the inode to the transaction's list in ordered mode because if
2064 * we are writing back data added by write(), the inode is already there and if
25985edc 2065 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2066 * transaction the data will hit the disk. In case we are journaling data, we
2067 * cannot start transaction directly because transaction start ranks above page
2068 * lock so we have to do some magic.
2069 *
b920c755 2070 * This function can get called via...
20970ba6 2071 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2072 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2073 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2074 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2075 *
2076 * We don't do any block allocation in this function. If we have page with
2077 * multiple blocks we need to write those buffer_heads that are mapped. This
2078 * is important for mmaped based write. So if we do with blocksize 1K
2079 * truncate(f, 1024);
2080 * a = mmap(f, 0, 4096);
2081 * a[0] = 'a';
2082 * truncate(f, 4096);
2083 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2084 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2085 * do_wp_page). So writepage should write the first block. If we modify
2086 * the mmap area beyond 1024 we will again get a page_fault and the
2087 * page_mkwrite callback will do the block allocation and mark the
2088 * buffer_heads mapped.
2089 *
2090 * We redirty the page if we have any buffer_heads that is either delay or
2091 * unwritten in the page.
2092 *
2093 * We can get recursively called as show below.
2094 *
2095 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2096 * ext4_writepage()
2097 *
2098 * But since we don't do any block allocation we should not deadlock.
2099 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2100 */
43ce1d23 2101static int ext4_writepage(struct page *page,
62e086be 2102 struct writeback_control *wbc)
64769240 2103{
f8bec370 2104 int ret = 0;
61628a3f 2105 loff_t size;
498e5f24 2106 unsigned int len;
744692dc 2107 struct buffer_head *page_bufs = NULL;
61628a3f 2108 struct inode *inode = page->mapping->host;
36ade451 2109 struct ext4_io_submit io_submit;
1c8349a1 2110 bool keep_towrite = false;
61628a3f 2111
0db1ff22
TT
2112 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2113 ext4_invalidatepage(page, 0, PAGE_SIZE);
2114 unlock_page(page);
2115 return -EIO;
2116 }
2117
a9c667f8 2118 trace_ext4_writepage(page);
f0e6c985 2119 size = i_size_read(inode);
09cbfeaf
KS
2120 if (page->index == size >> PAGE_SHIFT)
2121 len = size & ~PAGE_MASK;
f0e6c985 2122 else
09cbfeaf 2123 len = PAGE_SIZE;
64769240 2124
a42afc5f 2125 page_bufs = page_buffers(page);
a42afc5f 2126 /*
fe386132
JK
2127 * We cannot do block allocation or other extent handling in this
2128 * function. If there are buffers needing that, we have to redirty
2129 * the page. But we may reach here when we do a journal commit via
2130 * journal_submit_inode_data_buffers() and in that case we must write
2131 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2132 *
2133 * Also, if there is only one buffer per page (the fs block
2134 * size == the page size), if one buffer needs block
2135 * allocation or needs to modify the extent tree to clear the
2136 * unwritten flag, we know that the page can't be written at
2137 * all, so we might as well refuse the write immediately.
2138 * Unfortunately if the block size != page size, we can't as
2139 * easily detect this case using ext4_walk_page_buffers(), but
2140 * for the extremely common case, this is an optimization that
2141 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2142 */
f19d5870
TM
2143 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2144 ext4_bh_delay_or_unwritten)) {
f8bec370 2145 redirty_page_for_writepage(wbc, page);
cccd147a 2146 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2147 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2148 /*
2149 * For memory cleaning there's no point in writing only
2150 * some buffers. So just bail out. Warn if we came here
2151 * from direct reclaim.
2152 */
2153 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2154 == PF_MEMALLOC);
f0e6c985
AK
2155 unlock_page(page);
2156 return 0;
2157 }
1c8349a1 2158 keep_towrite = true;
a42afc5f 2159 }
64769240 2160
cb20d518 2161 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2162 /*
2163 * It's mmapped pagecache. Add buffers and journal it. There
2164 * doesn't seem much point in redirtying the page here.
2165 */
3f0ca309 2166 return __ext4_journalled_writepage(page, len);
43ce1d23 2167
97a851ed
JK
2168 ext4_io_submit_init(&io_submit, wbc);
2169 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2170 if (!io_submit.io_end) {
2171 redirty_page_for_writepage(wbc, page);
2172 unlock_page(page);
2173 return -ENOMEM;
2174 }
1c8349a1 2175 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2176 ext4_io_submit(&io_submit);
97a851ed
JK
2177 /* Drop io_end reference we got from init */
2178 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2179 return ret;
2180}
2181
5f1132b2
JK
2182static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2183{
2184 int len;
a056bdaa 2185 loff_t size;
5f1132b2
JK
2186 int err;
2187
2188 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2189 clear_page_dirty_for_io(page);
2190 /*
2191 * We have to be very careful here! Nothing protects writeback path
2192 * against i_size changes and the page can be writeably mapped into
2193 * page tables. So an application can be growing i_size and writing
2194 * data through mmap while writeback runs. clear_page_dirty_for_io()
2195 * write-protects our page in page tables and the page cannot get
2196 * written to again until we release page lock. So only after
2197 * clear_page_dirty_for_io() we are safe to sample i_size for
2198 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2199 * on the barrier provided by TestClearPageDirty in
2200 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2201 * after page tables are updated.
2202 */
2203 size = i_size_read(mpd->inode);
09cbfeaf
KS
2204 if (page->index == size >> PAGE_SHIFT)
2205 len = size & ~PAGE_MASK;
5f1132b2 2206 else
09cbfeaf 2207 len = PAGE_SIZE;
1c8349a1 2208 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2209 if (!err)
2210 mpd->wbc->nr_to_write--;
2211 mpd->first_page++;
2212
2213 return err;
2214}
2215
4e7ea81d
JK
2216#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2217
61628a3f 2218/*
fffb2739
JK
2219 * mballoc gives us at most this number of blocks...
2220 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2221 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2222 */
fffb2739 2223#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2224
4e7ea81d
JK
2225/*
2226 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2227 *
2228 * @mpd - extent of blocks
2229 * @lblk - logical number of the block in the file
09930042 2230 * @bh - buffer head we want to add to the extent
4e7ea81d 2231 *
09930042
JK
2232 * The function is used to collect contig. blocks in the same state. If the
2233 * buffer doesn't require mapping for writeback and we haven't started the
2234 * extent of buffers to map yet, the function returns 'true' immediately - the
2235 * caller can write the buffer right away. Otherwise the function returns true
2236 * if the block has been added to the extent, false if the block couldn't be
2237 * added.
4e7ea81d 2238 */
09930042
JK
2239static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2240 struct buffer_head *bh)
4e7ea81d
JK
2241{
2242 struct ext4_map_blocks *map = &mpd->map;
2243
09930042
JK
2244 /* Buffer that doesn't need mapping for writeback? */
2245 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2246 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2247 /* So far no extent to map => we write the buffer right away */
2248 if (map->m_len == 0)
2249 return true;
2250 return false;
2251 }
4e7ea81d
JK
2252
2253 /* First block in the extent? */
2254 if (map->m_len == 0) {
dddbd6ac
JK
2255 /* We cannot map unless handle is started... */
2256 if (!mpd->do_map)
2257 return false;
4e7ea81d
JK
2258 map->m_lblk = lblk;
2259 map->m_len = 1;
09930042
JK
2260 map->m_flags = bh->b_state & BH_FLAGS;
2261 return true;
4e7ea81d
JK
2262 }
2263
09930042
JK
2264 /* Don't go larger than mballoc is willing to allocate */
2265 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2266 return false;
2267
4e7ea81d
JK
2268 /* Can we merge the block to our big extent? */
2269 if (lblk == map->m_lblk + map->m_len &&
09930042 2270 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2271 map->m_len++;
09930042 2272 return true;
4e7ea81d 2273 }
09930042 2274 return false;
4e7ea81d
JK
2275}
2276
5f1132b2
JK
2277/*
2278 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2279 *
2280 * @mpd - extent of blocks for mapping
2281 * @head - the first buffer in the page
2282 * @bh - buffer we should start processing from
2283 * @lblk - logical number of the block in the file corresponding to @bh
2284 *
2285 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2286 * the page for IO if all buffers in this page were mapped and there's no
2287 * accumulated extent of buffers to map or add buffers in the page to the
2288 * extent of buffers to map. The function returns 1 if the caller can continue
2289 * by processing the next page, 0 if it should stop adding buffers to the
2290 * extent to map because we cannot extend it anymore. It can also return value
2291 * < 0 in case of error during IO submission.
2292 */
2293static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2294 struct buffer_head *head,
2295 struct buffer_head *bh,
2296 ext4_lblk_t lblk)
4e7ea81d
JK
2297{
2298 struct inode *inode = mpd->inode;
5f1132b2 2299 int err;
93407472 2300 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2301 >> inode->i_blkbits;
2302
2303 do {
2304 BUG_ON(buffer_locked(bh));
2305
09930042 2306 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2307 /* Found extent to map? */
2308 if (mpd->map.m_len)
5f1132b2 2309 return 0;
dddbd6ac
JK
2310 /* Buffer needs mapping and handle is not started? */
2311 if (!mpd->do_map)
2312 return 0;
09930042 2313 /* Everything mapped so far and we hit EOF */
5f1132b2 2314 break;
4e7ea81d 2315 }
4e7ea81d 2316 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2317 /* So far everything mapped? Submit the page for IO. */
2318 if (mpd->map.m_len == 0) {
2319 err = mpage_submit_page(mpd, head->b_page);
2320 if (err < 0)
2321 return err;
2322 }
2323 return lblk < blocks;
4e7ea81d
JK
2324}
2325
2326/*
2327 * mpage_map_buffers - update buffers corresponding to changed extent and
2328 * submit fully mapped pages for IO
2329 *
2330 * @mpd - description of extent to map, on return next extent to map
2331 *
2332 * Scan buffers corresponding to changed extent (we expect corresponding pages
2333 * to be already locked) and update buffer state according to new extent state.
2334 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2335 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2336 * and do extent conversion after IO is finished. If the last page is not fully
2337 * mapped, we update @map to the next extent in the last page that needs
2338 * mapping. Otherwise we submit the page for IO.
2339 */
2340static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2341{
2342 struct pagevec pvec;
2343 int nr_pages, i;
2344 struct inode *inode = mpd->inode;
2345 struct buffer_head *head, *bh;
09cbfeaf 2346 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2347 pgoff_t start, end;
2348 ext4_lblk_t lblk;
2349 sector_t pblock;
2350 int err;
2351
2352 start = mpd->map.m_lblk >> bpp_bits;
2353 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2354 lblk = start << bpp_bits;
2355 pblock = mpd->map.m_pblk;
2356
86679820 2357 pagevec_init(&pvec);
4e7ea81d 2358 while (start <= end) {
2b85a617 2359 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2360 &start, end);
4e7ea81d
JK
2361 if (nr_pages == 0)
2362 break;
2363 for (i = 0; i < nr_pages; i++) {
2364 struct page *page = pvec.pages[i];
2365
4e7ea81d
JK
2366 bh = head = page_buffers(page);
2367 do {
2368 if (lblk < mpd->map.m_lblk)
2369 continue;
2370 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2371 /*
2372 * Buffer after end of mapped extent.
2373 * Find next buffer in the page to map.
2374 */
2375 mpd->map.m_len = 0;
2376 mpd->map.m_flags = 0;
5f1132b2
JK
2377 /*
2378 * FIXME: If dioread_nolock supports
2379 * blocksize < pagesize, we need to make
2380 * sure we add size mapped so far to
2381 * io_end->size as the following call
2382 * can submit the page for IO.
2383 */
2384 err = mpage_process_page_bufs(mpd, head,
2385 bh, lblk);
4e7ea81d 2386 pagevec_release(&pvec);
5f1132b2
JK
2387 if (err > 0)
2388 err = 0;
2389 return err;
4e7ea81d
JK
2390 }
2391 if (buffer_delay(bh)) {
2392 clear_buffer_delay(bh);
2393 bh->b_blocknr = pblock++;
2394 }
4e7ea81d 2395 clear_buffer_unwritten(bh);
5f1132b2 2396 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2397
2398 /*
2399 * FIXME: This is going to break if dioread_nolock
2400 * supports blocksize < pagesize as we will try to
2401 * convert potentially unmapped parts of inode.
2402 */
09cbfeaf 2403 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2404 /* Page fully mapped - let IO run! */
2405 err = mpage_submit_page(mpd, page);
2406 if (err < 0) {
2407 pagevec_release(&pvec);
2408 return err;
2409 }
4e7ea81d
JK
2410 }
2411 pagevec_release(&pvec);
2412 }
2413 /* Extent fully mapped and matches with page boundary. We are done. */
2414 mpd->map.m_len = 0;
2415 mpd->map.m_flags = 0;
2416 return 0;
2417}
2418
2419static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2420{
2421 struct inode *inode = mpd->inode;
2422 struct ext4_map_blocks *map = &mpd->map;
2423 int get_blocks_flags;
090f32ee 2424 int err, dioread_nolock;
4e7ea81d
JK
2425
2426 trace_ext4_da_write_pages_extent(inode, map);
2427 /*
2428 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2429 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2430 * where we have written into one or more preallocated blocks). It is
2431 * possible that we're going to need more metadata blocks than
2432 * previously reserved. However we must not fail because we're in
2433 * writeback and there is nothing we can do about it so it might result
2434 * in data loss. So use reserved blocks to allocate metadata if
2435 * possible.
2436 *
754cfed6
TT
2437 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2438 * the blocks in question are delalloc blocks. This indicates
2439 * that the blocks and quotas has already been checked when
2440 * the data was copied into the page cache.
4e7ea81d
JK
2441 */
2442 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2443 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2444 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2445 dioread_nolock = ext4_should_dioread_nolock(inode);
2446 if (dioread_nolock)
4e7ea81d
JK
2447 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2448 if (map->m_flags & (1 << BH_Delay))
2449 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2450
2451 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2452 if (err < 0)
2453 return err;
090f32ee 2454 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2455 if (!mpd->io_submit.io_end->handle &&
2456 ext4_handle_valid(handle)) {
2457 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2458 handle->h_rsv_handle = NULL;
2459 }
3613d228 2460 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2461 }
4e7ea81d
JK
2462
2463 BUG_ON(map->m_len == 0);
2464 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2465 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2466 map->m_len);
4e7ea81d
JK
2467 }
2468 return 0;
2469}
2470
2471/*
2472 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2473 * mpd->len and submit pages underlying it for IO
2474 *
2475 * @handle - handle for journal operations
2476 * @mpd - extent to map
7534e854
JK
2477 * @give_up_on_write - we set this to true iff there is a fatal error and there
2478 * is no hope of writing the data. The caller should discard
2479 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2480 *
2481 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2482 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2483 * them to initialized or split the described range from larger unwritten
2484 * extent. Note that we need not map all the described range since allocation
2485 * can return less blocks or the range is covered by more unwritten extents. We
2486 * cannot map more because we are limited by reserved transaction credits. On
2487 * the other hand we always make sure that the last touched page is fully
2488 * mapped so that it can be written out (and thus forward progress is
2489 * guaranteed). After mapping we submit all mapped pages for IO.
2490 */
2491static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2492 struct mpage_da_data *mpd,
2493 bool *give_up_on_write)
4e7ea81d
JK
2494{
2495 struct inode *inode = mpd->inode;
2496 struct ext4_map_blocks *map = &mpd->map;
2497 int err;
2498 loff_t disksize;
6603120e 2499 int progress = 0;
4e7ea81d
JK
2500
2501 mpd->io_submit.io_end->offset =
2502 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2503 do {
4e7ea81d
JK
2504 err = mpage_map_one_extent(handle, mpd);
2505 if (err < 0) {
2506 struct super_block *sb = inode->i_sb;
2507
0db1ff22
TT
2508 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2509 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2510 goto invalidate_dirty_pages;
4e7ea81d 2511 /*
cb530541
TT
2512 * Let the uper layers retry transient errors.
2513 * In the case of ENOSPC, if ext4_count_free_blocks()
2514 * is non-zero, a commit should free up blocks.
4e7ea81d 2515 */
cb530541 2516 if ((err == -ENOMEM) ||
6603120e
DM
2517 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2518 if (progress)
2519 goto update_disksize;
cb530541 2520 return err;
6603120e 2521 }
cb530541
TT
2522 ext4_msg(sb, KERN_CRIT,
2523 "Delayed block allocation failed for "
2524 "inode %lu at logical offset %llu with"
2525 " max blocks %u with error %d",
2526 inode->i_ino,
2527 (unsigned long long)map->m_lblk,
2528 (unsigned)map->m_len, -err);
2529 ext4_msg(sb, KERN_CRIT,
2530 "This should not happen!! Data will "
2531 "be lost\n");
2532 if (err == -ENOSPC)
2533 ext4_print_free_blocks(inode);
2534 invalidate_dirty_pages:
2535 *give_up_on_write = true;
4e7ea81d
JK
2536 return err;
2537 }
6603120e 2538 progress = 1;
4e7ea81d
JK
2539 /*
2540 * Update buffer state, submit mapped pages, and get us new
2541 * extent to map
2542 */
2543 err = mpage_map_and_submit_buffers(mpd);
2544 if (err < 0)
6603120e 2545 goto update_disksize;
27d7c4ed 2546 } while (map->m_len);
4e7ea81d 2547
6603120e 2548update_disksize:
622cad13
TT
2549 /*
2550 * Update on-disk size after IO is submitted. Races with
2551 * truncate are avoided by checking i_size under i_data_sem.
2552 */
09cbfeaf 2553 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2554 if (disksize > EXT4_I(inode)->i_disksize) {
2555 int err2;
622cad13
TT
2556 loff_t i_size;
2557
2558 down_write(&EXT4_I(inode)->i_data_sem);
2559 i_size = i_size_read(inode);
2560 if (disksize > i_size)
2561 disksize = i_size;
2562 if (disksize > EXT4_I(inode)->i_disksize)
2563 EXT4_I(inode)->i_disksize = disksize;
622cad13 2564 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2565 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2566 if (err2)
2567 ext4_error(inode->i_sb,
2568 "Failed to mark inode %lu dirty",
2569 inode->i_ino);
2570 if (!err)
2571 err = err2;
2572 }
2573 return err;
2574}
2575
fffb2739
JK
2576/*
2577 * Calculate the total number of credits to reserve for one writepages
20970ba6 2578 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2579 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2580 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2581 * bpp - 1 blocks in bpp different extents.
2582 */
525f4ed8
MC
2583static int ext4_da_writepages_trans_blocks(struct inode *inode)
2584{
fffb2739 2585 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2586
fffb2739
JK
2587 return ext4_meta_trans_blocks(inode,
2588 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2589}
61628a3f 2590
8e48dcfb 2591/*
4e7ea81d
JK
2592 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2593 * and underlying extent to map
2594 *
2595 * @mpd - where to look for pages
2596 *
2597 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2598 * IO immediately. When we find a page which isn't mapped we start accumulating
2599 * extent of buffers underlying these pages that needs mapping (formed by
2600 * either delayed or unwritten buffers). We also lock the pages containing
2601 * these buffers. The extent found is returned in @mpd structure (starting at
2602 * mpd->lblk with length mpd->len blocks).
2603 *
2604 * Note that this function can attach bios to one io_end structure which are
2605 * neither logically nor physically contiguous. Although it may seem as an
2606 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2607 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2608 */
4e7ea81d 2609static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2610{
4e7ea81d
JK
2611 struct address_space *mapping = mpd->inode->i_mapping;
2612 struct pagevec pvec;
2613 unsigned int nr_pages;
aeac589a 2614 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2615 pgoff_t index = mpd->first_page;
2616 pgoff_t end = mpd->last_page;
2617 int tag;
2618 int i, err = 0;
2619 int blkbits = mpd->inode->i_blkbits;
2620 ext4_lblk_t lblk;
2621 struct buffer_head *head;
8e48dcfb 2622
4e7ea81d 2623 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2624 tag = PAGECACHE_TAG_TOWRITE;
2625 else
2626 tag = PAGECACHE_TAG_DIRTY;
2627
86679820 2628 pagevec_init(&pvec);
4e7ea81d
JK
2629 mpd->map.m_len = 0;
2630 mpd->next_page = index;
4f01b02c 2631 while (index <= end) {
dc7f3e86 2632 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2633 tag);
8e48dcfb 2634 if (nr_pages == 0)
4e7ea81d 2635 goto out;
8e48dcfb
TT
2636
2637 for (i = 0; i < nr_pages; i++) {
2638 struct page *page = pvec.pages[i];
2639
aeac589a
ML
2640 /*
2641 * Accumulated enough dirty pages? This doesn't apply
2642 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 * keep going because someone may be concurrently
2644 * dirtying pages, and we might have synced a lot of
2645 * newly appeared dirty pages, but have not synced all
2646 * of the old dirty pages.
2647 */
2648 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649 goto out;
2650
4e7ea81d
JK
2651 /* If we can't merge this page, we are done. */
2652 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653 goto out;
78aaced3 2654
8e48dcfb 2655 lock_page(page);
8e48dcfb 2656 /*
4e7ea81d
JK
2657 * If the page is no longer dirty, or its mapping no
2658 * longer corresponds to inode we are writing (which
2659 * means it has been truncated or invalidated), or the
2660 * page is already under writeback and we are not doing
2661 * a data integrity writeback, skip the page
8e48dcfb 2662 */
4f01b02c
TT
2663 if (!PageDirty(page) ||
2664 (PageWriteback(page) &&
4e7ea81d 2665 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2666 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2667 unlock_page(page);
2668 continue;
2669 }
2670
7cb1a535 2671 wait_on_page_writeback(page);
8e48dcfb 2672 BUG_ON(PageWriteback(page));
8e48dcfb 2673
4e7ea81d 2674 if (mpd->map.m_len == 0)
8eb9e5ce 2675 mpd->first_page = page->index;
8eb9e5ce 2676 mpd->next_page = page->index + 1;
f8bec370 2677 /* Add all dirty buffers to mpd */
4e7ea81d 2678 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2679 (PAGE_SHIFT - blkbits);
f8bec370 2680 head = page_buffers(page);
5f1132b2
JK
2681 err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 if (err <= 0)
4e7ea81d 2683 goto out;
5f1132b2 2684 err = 0;
aeac589a 2685 left--;
8e48dcfb
TT
2686 }
2687 pagevec_release(&pvec);
2688 cond_resched();
2689 }
4f01b02c 2690 return 0;
8eb9e5ce
TT
2691out:
2692 pagevec_release(&pvec);
4e7ea81d 2693 return err;
8e48dcfb
TT
2694}
2695
20970ba6
TT
2696static int __writepage(struct page *page, struct writeback_control *wbc,
2697 void *data)
2698{
2699 struct address_space *mapping = data;
2700 int ret = ext4_writepage(page, wbc);
2701 mapping_set_error(mapping, ret);
2702 return ret;
2703}
2704
2705static int ext4_writepages(struct address_space *mapping,
2706 struct writeback_control *wbc)
64769240 2707{
4e7ea81d
JK
2708 pgoff_t writeback_index = 0;
2709 long nr_to_write = wbc->nr_to_write;
22208ded 2710 int range_whole = 0;
4e7ea81d 2711 int cycled = 1;
61628a3f 2712 handle_t *handle = NULL;
df22291f 2713 struct mpage_da_data mpd;
5e745b04 2714 struct inode *inode = mapping->host;
6b523df4 2715 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2716 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2717 bool done;
1bce63d1 2718 struct blk_plug plug;
cb530541 2719 bool give_up_on_write = false;
61628a3f 2720
0db1ff22
TT
2721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722 return -EIO;
2723
c8585c6f 2724 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2725 trace_ext4_writepages(inode, wbc);
ba80b101 2726
c8585c6f
DJ
2727 if (dax_mapping(mapping)) {
2728 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729 wbc);
2730 goto out_writepages;
2731 }
7f6d5b52 2732
61628a3f
MC
2733 /*
2734 * No pages to write? This is mainly a kludge to avoid starting
2735 * a transaction for special inodes like journal inode on last iput()
2736 * because that could violate lock ordering on umount
2737 */
a1d6cc56 2738 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2739 goto out_writepages;
2a21e37e 2740
20970ba6
TT
2741 if (ext4_should_journal_data(inode)) {
2742 struct blk_plug plug;
20970ba6
TT
2743
2744 blk_start_plug(&plug);
2745 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746 blk_finish_plug(&plug);
bbf023c7 2747 goto out_writepages;
20970ba6
TT
2748 }
2749
2a21e37e
TT
2750 /*
2751 * If the filesystem has aborted, it is read-only, so return
2752 * right away instead of dumping stack traces later on that
2753 * will obscure the real source of the problem. We test
1751e8a6 2754 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2755 * the latter could be true if the filesystem is mounted
20970ba6 2756 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2757 * *never* be called, so if that ever happens, we would want
2758 * the stack trace.
2759 */
0db1ff22
TT
2760 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2762 ret = -EROFS;
2763 goto out_writepages;
2764 }
2a21e37e 2765
6b523df4
JK
2766 if (ext4_should_dioread_nolock(inode)) {
2767 /*
70261f56 2768 * We may need to convert up to one extent per block in
6b523df4
JK
2769 * the page and we may dirty the inode.
2770 */
09cbfeaf 2771 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2772 }
2773
4e7ea81d
JK
2774 /*
2775 * If we have inline data and arrive here, it means that
2776 * we will soon create the block for the 1st page, so
2777 * we'd better clear the inline data here.
2778 */
2779 if (ext4_has_inline_data(inode)) {
2780 /* Just inode will be modified... */
2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 if (IS_ERR(handle)) {
2783 ret = PTR_ERR(handle);
2784 goto out_writepages;
2785 }
2786 BUG_ON(ext4_test_inode_state(inode,
2787 EXT4_STATE_MAY_INLINE_DATA));
2788 ext4_destroy_inline_data(handle, inode);
2789 ext4_journal_stop(handle);
2790 }
2791
22208ded
AK
2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793 range_whole = 1;
61628a3f 2794
2acf2c26 2795 if (wbc->range_cyclic) {
4e7ea81d
JK
2796 writeback_index = mapping->writeback_index;
2797 if (writeback_index)
2acf2c26 2798 cycled = 0;
4e7ea81d
JK
2799 mpd.first_page = writeback_index;
2800 mpd.last_page = -1;
5b41d924 2801 } else {
09cbfeaf
KS
2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2804 }
a1d6cc56 2805
4e7ea81d
JK
2806 mpd.inode = inode;
2807 mpd.wbc = wbc;
2808 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2809retry:
6e6938b6 2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812 done = false;
1bce63d1 2813 blk_start_plug(&plug);
dddbd6ac
JK
2814
2815 /*
2816 * First writeback pages that don't need mapping - we can avoid
2817 * starting a transaction unnecessarily and also avoid being blocked
2818 * in the block layer on device congestion while having transaction
2819 * started.
2820 */
2821 mpd.do_map = 0;
2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 if (!mpd.io_submit.io_end) {
2824 ret = -ENOMEM;
2825 goto unplug;
2826 }
2827 ret = mpage_prepare_extent_to_map(&mpd);
2828 /* Submit prepared bio */
2829 ext4_io_submit(&mpd.io_submit);
2830 ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 mpd.io_submit.io_end = NULL;
2832 /* Unlock pages we didn't use */
2833 mpage_release_unused_pages(&mpd, false);
2834 if (ret < 0)
2835 goto unplug;
2836
4e7ea81d
JK
2837 while (!done && mpd.first_page <= mpd.last_page) {
2838 /* For each extent of pages we use new io_end */
2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 if (!mpd.io_submit.io_end) {
2841 ret = -ENOMEM;
2842 break;
2843 }
a1d6cc56
AK
2844
2845 /*
4e7ea81d
JK
2846 * We have two constraints: We find one extent to map and we
2847 * must always write out whole page (makes a difference when
2848 * blocksize < pagesize) so that we don't block on IO when we
2849 * try to write out the rest of the page. Journalled mode is
2850 * not supported by delalloc.
a1d6cc56
AK
2851 */
2852 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2853 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2854
4e7ea81d 2855 /* start a new transaction */
6b523df4
JK
2856 handle = ext4_journal_start_with_reserve(inode,
2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2858 if (IS_ERR(handle)) {
2859 ret = PTR_ERR(handle);
1693918e 2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2861 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2862 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2863 /* Release allocated io_end */
2864 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2865 mpd.io_submit.io_end = NULL;
4e7ea81d 2866 break;
61628a3f 2867 }
dddbd6ac 2868 mpd.do_map = 1;
f63e6005 2869
4e7ea81d
JK
2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 ret = mpage_prepare_extent_to_map(&mpd);
2872 if (!ret) {
2873 if (mpd.map.m_len)
cb530541
TT
2874 ret = mpage_map_and_submit_extent(handle, &mpd,
2875 &give_up_on_write);
4e7ea81d
JK
2876 else {
2877 /*
2878 * We scanned the whole range (or exhausted
2879 * nr_to_write), submitted what was mapped and
2880 * didn't find anything needing mapping. We are
2881 * done.
2882 */
2883 done = true;
2884 }
f63e6005 2885 }
646caa9c
JK
2886 /*
2887 * Caution: If the handle is synchronous,
2888 * ext4_journal_stop() can wait for transaction commit
2889 * to finish which may depend on writeback of pages to
2890 * complete or on page lock to be released. In that
2891 * case, we have to wait until after after we have
2892 * submitted all the IO, released page locks we hold,
2893 * and dropped io_end reference (for extent conversion
2894 * to be able to complete) before stopping the handle.
2895 */
2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 ext4_journal_stop(handle);
2898 handle = NULL;
dddbd6ac 2899 mpd.do_map = 0;
646caa9c 2900 }
4e7ea81d
JK
2901 /* Submit prepared bio */
2902 ext4_io_submit(&mpd.io_submit);
2903 /* Unlock pages we didn't use */
cb530541 2904 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2905 /*
2906 * Drop our io_end reference we got from init. We have
2907 * to be careful and use deferred io_end finishing if
2908 * we are still holding the transaction as we can
2909 * release the last reference to io_end which may end
2910 * up doing unwritten extent conversion.
2911 */
2912 if (handle) {
2913 ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 ext4_journal_stop(handle);
2915 } else
2916 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2917 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2918
2919 if (ret == -ENOSPC && sbi->s_journal) {
2920 /*
2921 * Commit the transaction which would
22208ded
AK
2922 * free blocks released in the transaction
2923 * and try again
2924 */
df22291f 2925 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2926 ret = 0;
4e7ea81d
JK
2927 continue;
2928 }
2929 /* Fatal error - ENOMEM, EIO... */
2930 if (ret)
61628a3f 2931 break;
a1d6cc56 2932 }
dddbd6ac 2933unplug:
1bce63d1 2934 blk_finish_plug(&plug);
9c12a831 2935 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2936 cycled = 1;
4e7ea81d
JK
2937 mpd.last_page = writeback_index - 1;
2938 mpd.first_page = 0;
2acf2c26
AK
2939 goto retry;
2940 }
22208ded
AK
2941
2942 /* Update index */
22208ded
AK
2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944 /*
4e7ea81d 2945 * Set the writeback_index so that range_cyclic
22208ded
AK
2946 * mode will write it back later
2947 */
4e7ea81d 2948 mapping->writeback_index = mpd.first_page;
a1d6cc56 2949
61628a3f 2950out_writepages:
20970ba6
TT
2951 trace_ext4_writepages_result(inode, wbc, ret,
2952 nr_to_write - wbc->nr_to_write);
c8585c6f 2953 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2954 return ret;
64769240
AT
2955}
2956
79f0be8d
AK
2957static int ext4_nonda_switch(struct super_block *sb)
2958{
5c1ff336 2959 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2960 struct ext4_sb_info *sbi = EXT4_SB(sb);
2961
2962 /*
2963 * switch to non delalloc mode if we are running low
2964 * on free block. The free block accounting via percpu
179f7ebf 2965 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2966 * accumulated on each CPU without updating global counters
2967 * Delalloc need an accurate free block accounting. So switch
2968 * to non delalloc when we are near to error range.
2969 */
5c1ff336
EW
2970 free_clusters =
2971 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972 dirty_clusters =
2973 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2974 /*
2975 * Start pushing delalloc when 1/2 of free blocks are dirty.
2976 */
5c1ff336 2977 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2978 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2979
5c1ff336
EW
2980 if (2 * free_clusters < 3 * dirty_clusters ||
2981 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2982 /*
c8afb446
ES
2983 * free block count is less than 150% of dirty blocks
2984 * or free blocks is less than watermark
79f0be8d
AK
2985 */
2986 return 1;
2987 }
2988 return 0;
2989}
2990
0ff8947f
ES
2991/* We always reserve for an inode update; the superblock could be there too */
2992static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993{
e2b911c5 2994 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2995 return 1;
2996
2997 if (pos + len <= 0x7fffffffULL)
2998 return 1;
2999
3000 /* We might need to update the superblock to set LARGE_FILE */
3001 return 2;
3002}
3003
64769240 3004static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3005 loff_t pos, unsigned len, unsigned flags,
3006 struct page **pagep, void **fsdata)
64769240 3007{
72b8ab9d 3008 int ret, retries = 0;
64769240
AT
3009 struct page *page;
3010 pgoff_t index;
64769240
AT
3011 struct inode *inode = mapping->host;
3012 handle_t *handle;
3013
0db1ff22
TT
3014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015 return -EIO;
3016
09cbfeaf 3017 index = pos >> PAGE_SHIFT;
79f0be8d 3018
4db0d88e
TT
3019 if (ext4_nonda_switch(inode->i_sb) ||
3020 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022 return ext4_write_begin(file, mapping, pos,
3023 len, flags, pagep, fsdata);
3024 }
3025 *fsdata = (void *)0;
9bffad1e 3026 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
3027
3028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029 ret = ext4_da_write_inline_data_begin(mapping, inode,
3030 pos, len, flags,
3031 pagep, fsdata);
3032 if (ret < 0)
47564bfb
TT
3033 return ret;
3034 if (ret == 1)
3035 return 0;
9c3569b5
TM
3036 }
3037
47564bfb
TT
3038 /*
3039 * grab_cache_page_write_begin() can take a long time if the
3040 * system is thrashing due to memory pressure, or if the page
3041 * is being written back. So grab it first before we start
3042 * the transaction handle. This also allows us to allocate
3043 * the page (if needed) without using GFP_NOFS.
3044 */
3045retry_grab:
3046 page = grab_cache_page_write_begin(mapping, index, flags);
3047 if (!page)
3048 return -ENOMEM;
3049 unlock_page(page);
3050
64769240
AT
3051 /*
3052 * With delayed allocation, we don't log the i_disksize update
3053 * if there is delayed block allocation. But we still need
3054 * to journalling the i_disksize update if writes to the end
3055 * of file which has an already mapped buffer.
3056 */
47564bfb 3057retry_journal:
0ff8947f
ES
3058 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059 ext4_da_write_credits(inode, pos, len));
64769240 3060 if (IS_ERR(handle)) {
09cbfeaf 3061 put_page(page);
47564bfb 3062 return PTR_ERR(handle);
64769240
AT
3063 }
3064
47564bfb
TT
3065 lock_page(page);
3066 if (page->mapping != mapping) {
3067 /* The page got truncated from under us */
3068 unlock_page(page);
09cbfeaf 3069 put_page(page);
d5a0d4f7 3070 ext4_journal_stop(handle);
47564bfb 3071 goto retry_grab;
d5a0d4f7 3072 }
47564bfb 3073 /* In case writeback began while the page was unlocked */
7afe5aa5 3074 wait_for_stable_page(page);
64769240 3075
2058f83a
MH
3076#ifdef CONFIG_EXT4_FS_ENCRYPTION
3077 ret = ext4_block_write_begin(page, pos, len,
3078 ext4_da_get_block_prep);
3079#else
6e1db88d 3080 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3081#endif
64769240
AT
3082 if (ret < 0) {
3083 unlock_page(page);
3084 ext4_journal_stop(handle);
ae4d5372
AK
3085 /*
3086 * block_write_begin may have instantiated a few blocks
3087 * outside i_size. Trim these off again. Don't need
3088 * i_size_read because we hold i_mutex.
3089 */
3090 if (pos + len > inode->i_size)
b9a4207d 3091 ext4_truncate_failed_write(inode);
47564bfb
TT
3092
3093 if (ret == -ENOSPC &&
3094 ext4_should_retry_alloc(inode->i_sb, &retries))
3095 goto retry_journal;
3096
09cbfeaf 3097 put_page(page);
47564bfb 3098 return ret;
64769240
AT
3099 }
3100
47564bfb 3101 *pagep = page;
64769240
AT
3102 return ret;
3103}
3104
632eaeab
MC
3105/*
3106 * Check if we should update i_disksize
3107 * when write to the end of file but not require block allocation
3108 */
3109static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3110 unsigned long offset)
632eaeab
MC
3111{
3112 struct buffer_head *bh;
3113 struct inode *inode = page->mapping->host;
3114 unsigned int idx;
3115 int i;
3116
3117 bh = page_buffers(page);
3118 idx = offset >> inode->i_blkbits;
3119
af5bc92d 3120 for (i = 0; i < idx; i++)
632eaeab
MC
3121 bh = bh->b_this_page;
3122
29fa89d0 3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3124 return 0;
3125 return 1;
3126}
3127
64769240 3128static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3129 struct address_space *mapping,
3130 loff_t pos, unsigned len, unsigned copied,
3131 struct page *page, void *fsdata)
64769240
AT
3132{
3133 struct inode *inode = mapping->host;
3134 int ret = 0, ret2;
3135 handle_t *handle = ext4_journal_current_handle();
3136 loff_t new_i_size;
632eaeab 3137 unsigned long start, end;
79f0be8d
AK
3138 int write_mode = (int)(unsigned long)fsdata;
3139
74d553aa
TT
3140 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 return ext4_write_end(file, mapping, pos,
3142 len, copied, page, fsdata);
632eaeab 3143
9bffad1e 3144 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3145 start = pos & (PAGE_SIZE - 1);
af5bc92d 3146 end = start + copied - 1;
64769240
AT
3147
3148 /*
3149 * generic_write_end() will run mark_inode_dirty() if i_size
3150 * changes. So let's piggyback the i_disksize mark_inode_dirty
3151 * into that.
3152 */
64769240 3153 new_i_size = pos + copied;
ea51d132 3154 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3155 if (ext4_has_inline_data(inode) ||
3156 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3157 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3158 /* We need to mark inode dirty even if
3159 * new_i_size is less that inode->i_size
3160 * bu greater than i_disksize.(hint delalloc)
3161 */
3162 ext4_mark_inode_dirty(handle, inode);
64769240 3163 }
632eaeab 3164 }
9c3569b5
TM
3165
3166 if (write_mode != CONVERT_INLINE_DATA &&
3167 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168 ext4_has_inline_data(inode))
3169 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170 page);
3171 else
3172 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3173 page, fsdata);
9c3569b5 3174
64769240
AT
3175 copied = ret2;
3176 if (ret2 < 0)
3177 ret = ret2;
3178 ret2 = ext4_journal_stop(handle);
3179 if (!ret)
3180 ret = ret2;
3181
3182 return ret ? ret : copied;
3183}
3184
d47992f8
LC
3185static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186 unsigned int length)
64769240 3187{
64769240
AT
3188 /*
3189 * Drop reserved blocks
3190 */
3191 BUG_ON(!PageLocked(page));
3192 if (!page_has_buffers(page))
3193 goto out;
3194
ca99fdd2 3195 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3196
3197out:
d47992f8 3198 ext4_invalidatepage(page, offset, length);
64769240
AT
3199
3200 return;
3201}
3202
ccd2506b
TT
3203/*
3204 * Force all delayed allocation blocks to be allocated for a given inode.
3205 */
3206int ext4_alloc_da_blocks(struct inode *inode)
3207{
fb40ba0d
TT
3208 trace_ext4_alloc_da_blocks(inode);
3209
71d4f7d0 3210 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3211 return 0;
3212
3213 /*
3214 * We do something simple for now. The filemap_flush() will
3215 * also start triggering a write of the data blocks, which is
3216 * not strictly speaking necessary (and for users of
3217 * laptop_mode, not even desirable). However, to do otherwise
3218 * would require replicating code paths in:
de9a55b8 3219 *
20970ba6 3220 * ext4_writepages() ->
ccd2506b
TT
3221 * write_cache_pages() ---> (via passed in callback function)
3222 * __mpage_da_writepage() -->
3223 * mpage_add_bh_to_extent()
3224 * mpage_da_map_blocks()
3225 *
3226 * The problem is that write_cache_pages(), located in
3227 * mm/page-writeback.c, marks pages clean in preparation for
3228 * doing I/O, which is not desirable if we're not planning on
3229 * doing I/O at all.
3230 *
3231 * We could call write_cache_pages(), and then redirty all of
380cf090 3232 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3233 * would be ugly in the extreme. So instead we would need to
3234 * replicate parts of the code in the above functions,
25985edc 3235 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3236 * write out the pages, but rather only collect contiguous
3237 * logical block extents, call the multi-block allocator, and
3238 * then update the buffer heads with the block allocations.
de9a55b8 3239 *
ccd2506b
TT
3240 * For now, though, we'll cheat by calling filemap_flush(),
3241 * which will map the blocks, and start the I/O, but not
3242 * actually wait for the I/O to complete.
3243 */
3244 return filemap_flush(inode->i_mapping);
3245}
64769240 3246
ac27a0ec
DK
3247/*
3248 * bmap() is special. It gets used by applications such as lilo and by
3249 * the swapper to find the on-disk block of a specific piece of data.
3250 *
3251 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3252 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3253 * filesystem and enables swap, then they may get a nasty shock when the
3254 * data getting swapped to that swapfile suddenly gets overwritten by
3255 * the original zero's written out previously to the journal and
3256 * awaiting writeback in the kernel's buffer cache.
3257 *
3258 * So, if we see any bmap calls here on a modified, data-journaled file,
3259 * take extra steps to flush any blocks which might be in the cache.
3260 */
617ba13b 3261static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3262{
3263 struct inode *inode = mapping->host;
3264 journal_t *journal;
3265 int err;
3266
46c7f254
TM
3267 /*
3268 * We can get here for an inline file via the FIBMAP ioctl
3269 */
3270 if (ext4_has_inline_data(inode))
3271 return 0;
3272
64769240
AT
3273 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274 test_opt(inode->i_sb, DELALLOC)) {
3275 /*
3276 * With delalloc we want to sync the file
3277 * so that we can make sure we allocate
3278 * blocks for file
3279 */
3280 filemap_write_and_wait(mapping);
3281 }
3282
19f5fb7a
TT
3283 if (EXT4_JOURNAL(inode) &&
3284 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3285 /*
3286 * This is a REALLY heavyweight approach, but the use of
3287 * bmap on dirty files is expected to be extremely rare:
3288 * only if we run lilo or swapon on a freshly made file
3289 * do we expect this to happen.
3290 *
3291 * (bmap requires CAP_SYS_RAWIO so this does not
3292 * represent an unprivileged user DOS attack --- we'd be
3293 * in trouble if mortal users could trigger this path at
3294 * will.)
3295 *
617ba13b 3296 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3297 * regular files. If somebody wants to bmap a directory
3298 * or symlink and gets confused because the buffer
3299 * hasn't yet been flushed to disk, they deserve
3300 * everything they get.
3301 */
3302
19f5fb7a 3303 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3304 journal = EXT4_JOURNAL(inode);
dab291af
MC
3305 jbd2_journal_lock_updates(journal);
3306 err = jbd2_journal_flush(journal);
3307 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3308
3309 if (err)
3310 return 0;
3311 }
3312
af5bc92d 3313 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3314}
3315
617ba13b 3316static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3317{
46c7f254
TM
3318 int ret = -EAGAIN;
3319 struct inode *inode = page->mapping->host;
3320
0562e0ba 3321 trace_ext4_readpage(page);
46c7f254
TM
3322
3323 if (ext4_has_inline_data(inode))
3324 ret = ext4_readpage_inline(inode, page);
3325
3326 if (ret == -EAGAIN)
f64e02fe 3327 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3328
3329 return ret;
ac27a0ec
DK
3330}
3331
3332static int
617ba13b 3333ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3334 struct list_head *pages, unsigned nr_pages)
3335{
46c7f254
TM
3336 struct inode *inode = mapping->host;
3337
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3340 return 0;
3341
f64e02fe 3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3343}
3344
d47992f8
LC
3345static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
ac27a0ec 3347{
ca99fdd2 3348 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3349
4520fb3c
JK
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
ca99fdd2 3353 block_invalidatepage(page, offset, length);
4520fb3c
JK
3354}
3355
53e87268 3356static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3357 unsigned int offset,
3358 unsigned int length)
4520fb3c
JK
3359{
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
ca99fdd2 3362 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3363
ac27a0ec
DK
3364 /*
3365 * If it's a full truncate we just forget about the pending dirtying
3366 */
09cbfeaf 3367 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3368 ClearPageChecked(page);
3369
ca99fdd2 3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3371}
3372
3373/* Wrapper for aops... */
3374static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3375 unsigned int offset,
3376 unsigned int length)
53e87268 3377{
ca99fdd2 3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3379}
3380
617ba13b 3381static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3382{
617ba13b 3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3384
0562e0ba
JZ
3385 trace_ext4_releasepage(page);
3386
e1c36595
JK
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
ac27a0ec 3389 return 0;
0390131b
FM
3390 if (journal)
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 else
3393 return try_to_free_buffers(page);
ac27a0ec
DK
3394}
3395
b8a6176c
JK
3396static bool ext4_inode_datasync_dirty(struct inode *inode)
3397{
3398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400 if (journal)
3401 return !jbd2_transaction_committed(journal,
3402 EXT4_I(inode)->i_datasync_tid);
3403 /* Any metadata buffers to write? */
3404 if (!list_empty(&inode->i_mapping->private_list))
3405 return true;
3406 return inode->i_state & I_DIRTY_DATASYNC;
3407}
3408
364443cb
JK
3409static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410 unsigned flags, struct iomap *iomap)
3411{
5e405595 3412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364443cb
JK
3413 unsigned int blkbits = inode->i_blkbits;
3414 unsigned long first_block = offset >> blkbits;
3415 unsigned long last_block = (offset + length - 1) >> blkbits;
3416 struct ext4_map_blocks map;
545052e9 3417 bool delalloc = false;
364443cb
JK
3418 int ret;
3419
7046ae35
AG
3420
3421 if (flags & IOMAP_REPORT) {
3422 if (ext4_has_inline_data(inode)) {
3423 ret = ext4_inline_data_iomap(inode, iomap);
3424 if (ret != -EAGAIN) {
3425 if (ret == 0 && offset >= iomap->length)
3426 ret = -ENOENT;
3427 return ret;
3428 }
3429 }
3430 } else {
3431 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432 return -ERANGE;
3433 }
364443cb
JK
3434
3435 map.m_lblk = first_block;
3436 map.m_len = last_block - first_block + 1;
3437
545052e9 3438 if (flags & IOMAP_REPORT) {
776722e8 3439 ret = ext4_map_blocks(NULL, inode, &map, 0);
545052e9
CH
3440 if (ret < 0)
3441 return ret;
3442
3443 if (ret == 0) {
3444 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3445 struct extent_status es;
3446
3447 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3448
3449 if (!es.es_len || es.es_lblk > end) {
3450 /* entire range is a hole */
3451 } else if (es.es_lblk > map.m_lblk) {
3452 /* range starts with a hole */
3453 map.m_len = es.es_lblk - map.m_lblk;
3454 } else {
3455 ext4_lblk_t offs = 0;
3456
3457 if (es.es_lblk < map.m_lblk)
3458 offs = map.m_lblk - es.es_lblk;
3459 map.m_lblk = es.es_lblk + offs;
3460 map.m_len = es.es_len - offs;
3461 delalloc = true;
3462 }
3463 }
3464 } else if (flags & IOMAP_WRITE) {
776722e8
JK
3465 int dio_credits;
3466 handle_t *handle;
3467 int retries = 0;
3468
3469 /* Trim mapping request to maximum we can map at once for DIO */
3470 if (map.m_len > DIO_MAX_BLOCKS)
3471 map.m_len = DIO_MAX_BLOCKS;
3472 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3473retry:
3474 /*
3475 * Either we allocate blocks and then we don't get unwritten
3476 * extent so we have reserved enough credits, or the blocks
3477 * are already allocated and unwritten and in that case
3478 * extent conversion fits in the credits as well.
3479 */
3480 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3481 dio_credits);
3482 if (IS_ERR(handle))
3483 return PTR_ERR(handle);
3484
3485 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3486 EXT4_GET_BLOCKS_CREATE_ZERO);
3487 if (ret < 0) {
3488 ext4_journal_stop(handle);
3489 if (ret == -ENOSPC &&
3490 ext4_should_retry_alloc(inode->i_sb, &retries))
3491 goto retry;
3492 return ret;
3493 }
776722e8
JK
3494
3495 /*
e2ae766c 3496 * If we added blocks beyond i_size, we need to make sure they
776722e8 3497 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3498 * ext4_iomap_end(). For faults we don't need to do that (and
3499 * even cannot because for orphan list operations inode_lock is
3500 * required) - if we happen to instantiate block beyond i_size,
3501 * it is because we race with truncate which has already added
3502 * the inode to the orphan list.
776722e8 3503 */
e2ae766c
JK
3504 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3505 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3506 int err;
3507
3508 err = ext4_orphan_add(handle, inode);
3509 if (err < 0) {
3510 ext4_journal_stop(handle);
3511 return err;
3512 }
3513 }
3514 ext4_journal_stop(handle);
545052e9
CH
3515 } else {
3516 ret = ext4_map_blocks(NULL, inode, &map, 0);
3517 if (ret < 0)
3518 return ret;
776722e8 3519 }
364443cb
JK
3520
3521 iomap->flags = 0;
aaa422c4 3522 if (ext4_inode_datasync_dirty(inode))
b8a6176c 3523 iomap->flags |= IOMAP_F_DIRTY;
5e405595
DW
3524 iomap->bdev = inode->i_sb->s_bdev;
3525 iomap->dax_dev = sbi->s_daxdev;
6d54235b 3526 iomap->offset = (u64)first_block << blkbits;
545052e9 3527 iomap->length = (u64)map.m_len << blkbits;
364443cb
JK
3528
3529 if (ret == 0) {
545052e9 3530 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
19fe5f64 3531 iomap->addr = IOMAP_NULL_ADDR;
364443cb
JK
3532 } else {
3533 if (map.m_flags & EXT4_MAP_MAPPED) {
3534 iomap->type = IOMAP_MAPPED;
3535 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3536 iomap->type = IOMAP_UNWRITTEN;
3537 } else {
3538 WARN_ON_ONCE(1);
3539 return -EIO;
3540 }
19fe5f64 3541 iomap->addr = (u64)map.m_pblk << blkbits;
364443cb
JK
3542 }
3543
3544 if (map.m_flags & EXT4_MAP_NEW)
3545 iomap->flags |= IOMAP_F_NEW;
545052e9 3546
364443cb
JK
3547 return 0;
3548}
3549
776722e8
JK
3550static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3551 ssize_t written, unsigned flags, struct iomap *iomap)
3552{
3553 int ret = 0;
3554 handle_t *handle;
3555 int blkbits = inode->i_blkbits;
3556 bool truncate = false;
3557
e2ae766c 3558 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3559 return 0;
3560
3561 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3562 if (IS_ERR(handle)) {
3563 ret = PTR_ERR(handle);
3564 goto orphan_del;
3565 }
3566 if (ext4_update_inode_size(inode, offset + written))
3567 ext4_mark_inode_dirty(handle, inode);
3568 /*
3569 * We may need to truncate allocated but not written blocks beyond EOF.
3570 */
3571 if (iomap->offset + iomap->length >
3572 ALIGN(inode->i_size, 1 << blkbits)) {
3573 ext4_lblk_t written_blk, end_blk;
3574
3575 written_blk = (offset + written) >> blkbits;
3576 end_blk = (offset + length) >> blkbits;
3577 if (written_blk < end_blk && ext4_can_truncate(inode))
3578 truncate = true;
3579 }
3580 /*
3581 * Remove inode from orphan list if we were extending a inode and
3582 * everything went fine.
3583 */
3584 if (!truncate && inode->i_nlink &&
3585 !list_empty(&EXT4_I(inode)->i_orphan))
3586 ext4_orphan_del(handle, inode);
3587 ext4_journal_stop(handle);
3588 if (truncate) {
3589 ext4_truncate_failed_write(inode);
3590orphan_del:
3591 /*
3592 * If truncate failed early the inode might still be on the
3593 * orphan list; we need to make sure the inode is removed from
3594 * the orphan list in that case.
3595 */
3596 if (inode->i_nlink)
3597 ext4_orphan_del(NULL, inode);
3598 }
3599 return ret;
3600}
3601
8ff6daa1 3602const struct iomap_ops ext4_iomap_ops = {
364443cb 3603 .iomap_begin = ext4_iomap_begin,
776722e8 3604 .iomap_end = ext4_iomap_end,
364443cb
JK
3605};
3606
187372a3 3607static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3608 ssize_t size, void *private)
4c0425ff 3609{
109811c2 3610 ext4_io_end_t *io_end = private;
4c0425ff 3611
97a851ed 3612 /* if not async direct IO just return */
7b7a8665 3613 if (!io_end)
187372a3 3614 return 0;
4b70df18 3615
88635ca2 3616 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3617 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3618 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3619
74c66bcb
JK
3620 /*
3621 * Error during AIO DIO. We cannot convert unwritten extents as the
3622 * data was not written. Just clear the unwritten flag and drop io_end.
3623 */
3624 if (size <= 0) {
3625 ext4_clear_io_unwritten_flag(io_end);
3626 size = 0;
3627 }
4c0425ff
MC
3628 io_end->offset = offset;
3629 io_end->size = size;
7b7a8665 3630 ext4_put_io_end(io_end);
187372a3
CH
3631
3632 return 0;
4c0425ff 3633}
c7064ef1 3634
4c0425ff 3635/*
914f82a3
JK
3636 * Handling of direct IO writes.
3637 *
3638 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3639 * preallocated extents, and those write extend the file, no need to
3640 * fall back to buffered IO.
3641 *
556615dc 3642 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3643 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3644 * still keep the range to write as unwritten.
4c0425ff 3645 *
69c499d1 3646 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3647 * For async direct IO, since the IO may still pending when return, we
25985edc 3648 * set up an end_io call back function, which will do the conversion
8d5d02e6 3649 * when async direct IO completed.
4c0425ff
MC
3650 *
3651 * If the O_DIRECT write will extend the file then add this inode to the
3652 * orphan list. So recovery will truncate it back to the original size
3653 * if the machine crashes during the write.
3654 *
3655 */
0e01df10 3656static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3657{
3658 struct file *file = iocb->ki_filp;
3659 struct inode *inode = file->f_mapping->host;
3660 ssize_t ret;
c8b8e32d 3661 loff_t offset = iocb->ki_pos;
a6cbcd4a 3662 size_t count = iov_iter_count(iter);
69c499d1
TT
3663 int overwrite = 0;
3664 get_block_t *get_block_func = NULL;
3665 int dio_flags = 0;
4c0425ff 3666 loff_t final_size = offset + count;
914f82a3
JK
3667 int orphan = 0;
3668 handle_t *handle;
729f52c6 3669
914f82a3
JK
3670 if (final_size > inode->i_size) {
3671 /* Credits for sb + inode write */
3672 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3673 if (IS_ERR(handle)) {
3674 ret = PTR_ERR(handle);
3675 goto out;
3676 }
3677 ret = ext4_orphan_add(handle, inode);
3678 if (ret) {
3679 ext4_journal_stop(handle);
3680 goto out;
3681 }
3682 orphan = 1;
df046ac8 3683 ext4_update_i_disksize(inode, inode->i_size);
914f82a3
JK
3684 ext4_journal_stop(handle);
3685 }
4bd809db 3686
69c499d1 3687 BUG_ON(iocb->private == NULL);
4bd809db 3688
e8340395
JK
3689 /*
3690 * Make all waiters for direct IO properly wait also for extent
3691 * conversion. This also disallows race between truncate() and
3692 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3693 */
914f82a3 3694 inode_dio_begin(inode);
e8340395 3695
69c499d1
TT
3696 /* If we do a overwrite dio, i_mutex locking can be released */
3697 overwrite = *((int *)iocb->private);
4bd809db 3698
2dcba478 3699 if (overwrite)
5955102c 3700 inode_unlock(inode);
8d5d02e6 3701
69c499d1 3702 /*
914f82a3 3703 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3704 *
109811c2
JK
3705 * Allocated blocks to fill the hole are marked as unwritten to prevent
3706 * parallel buffered read to expose the stale data before DIO complete
3707 * the data IO.
69c499d1 3708 *
109811c2
JK
3709 * As to previously fallocated extents, ext4 get_block will just simply
3710 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3711 *
109811c2
JK
3712 * For non AIO case, we will convert those unwritten extents to written
3713 * after return back from blockdev_direct_IO. That way we save us from
3714 * allocating io_end structure and also the overhead of offloading
3715 * the extent convertion to a workqueue.
69c499d1
TT
3716 *
3717 * For async DIO, the conversion needs to be deferred when the
3718 * IO is completed. The ext4 end_io callback function will be
3719 * called to take care of the conversion work. Here for async
3720 * case, we allocate an io_end structure to hook to the iocb.
3721 */
3722 iocb->private = NULL;
109811c2 3723 if (overwrite)
705965bd 3724 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3725 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3726 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3727 get_block_func = ext4_dio_get_block;
3728 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3729 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3730 get_block_func = ext4_dio_get_block_unwritten_sync;
3731 dio_flags = DIO_LOCKING;
69c499d1 3732 } else {
109811c2 3733 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3734 dio_flags = DIO_LOCKING;
3735 }
0bd2d5ec
JK
3736 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3737 get_block_func, ext4_end_io_dio, NULL,
3738 dio_flags);
69c499d1 3739
97a851ed 3740 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3741 EXT4_STATE_DIO_UNWRITTEN)) {
3742 int err;
3743 /*
3744 * for non AIO case, since the IO is already
3745 * completed, we could do the conversion right here
3746 */
6b523df4 3747 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3748 offset, ret);
3749 if (err < 0)
3750 ret = err;
3751 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3752 }
4bd809db 3753
914f82a3 3754 inode_dio_end(inode);
69c499d1 3755 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3756 if (overwrite)
5955102c 3757 inode_lock(inode);
8d5d02e6 3758
914f82a3
JK
3759 if (ret < 0 && final_size > inode->i_size)
3760 ext4_truncate_failed_write(inode);
3761
3762 /* Handle extending of i_size after direct IO write */
3763 if (orphan) {
3764 int err;
3765
3766 /* Credits for sb + inode write */
3767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3768 if (IS_ERR(handle)) {
85aa3e35
HS
3769 /*
3770 * We wrote the data but cannot extend
3771 * i_size. Bail out. In async io case, we do
3772 * not return error here because we have
3773 * already submmitted the corresponding
3774 * bio. Returning error here makes the caller
3775 * think that this IO is done and failed
3776 * resulting in race with bio's completion
3777 * handler.
3778 */
3779 if (!ret)
3780 ret = PTR_ERR(handle);
914f82a3
JK
3781 if (inode->i_nlink)
3782 ext4_orphan_del(NULL, inode);
3783
3784 goto out;
3785 }
3786 if (inode->i_nlink)
3787 ext4_orphan_del(handle, inode);
3788 if (ret > 0) {
3789 loff_t end = offset + ret;
3790 if (end > inode->i_size) {
df046ac8 3791 ext4_update_i_disksize(inode, end);
914f82a3
JK
3792 i_size_write(inode, end);
3793 /*
3794 * We're going to return a positive `ret'
3795 * here due to non-zero-length I/O, so there's
3796 * no way of reporting error returns from
3797 * ext4_mark_inode_dirty() to userspace. So
3798 * ignore it.
3799 */
3800 ext4_mark_inode_dirty(handle, inode);
3801 }
3802 }
3803 err = ext4_journal_stop(handle);
3804 if (ret == 0)
3805 ret = err;
3806 }
3807out:
3808 return ret;
3809}
3810
0e01df10 3811static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3812{
16c54688
JK
3813 struct address_space *mapping = iocb->ki_filp->f_mapping;
3814 struct inode *inode = mapping->host;
0bd2d5ec 3815 size_t count = iov_iter_count(iter);
914f82a3
JK
3816 ssize_t ret;
3817
16c54688
JK
3818 /*
3819 * Shared inode_lock is enough for us - it protects against concurrent
3820 * writes & truncates and since we take care of writing back page cache,
3821 * we are protected against page writeback as well.
3822 */
3823 inode_lock_shared(inode);
0bd2d5ec 3824 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3825 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3826 if (ret)
3827 goto out_unlock;
3828 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3829 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3830out_unlock:
3831 inode_unlock_shared(inode);
69c499d1 3832 return ret;
4c0425ff
MC
3833}
3834
c8b8e32d 3835static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3836{
3837 struct file *file = iocb->ki_filp;
3838 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3839 size_t count = iov_iter_count(iter);
c8b8e32d 3840 loff_t offset = iocb->ki_pos;
0562e0ba 3841 ssize_t ret;
4c0425ff 3842
2058f83a
MH
3843#ifdef CONFIG_EXT4_FS_ENCRYPTION
3844 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3845 return 0;
3846#endif
3847
84ebd795
TT
3848 /*
3849 * If we are doing data journalling we don't support O_DIRECT
3850 */
3851 if (ext4_should_journal_data(inode))
3852 return 0;
3853
46c7f254
TM
3854 /* Let buffer I/O handle the inline data case. */
3855 if (ext4_has_inline_data(inode))
3856 return 0;
3857
0bd2d5ec
JK
3858 /* DAX uses iomap path now */
3859 if (WARN_ON_ONCE(IS_DAX(inode)))
3860 return 0;
3861
6f673763 3862 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3863 if (iov_iter_rw(iter) == READ)
0e01df10 3864 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3865 else
0e01df10 3866 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3867 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3868 return ret;
4c0425ff
MC
3869}
3870
ac27a0ec 3871/*
617ba13b 3872 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3873 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3874 * much here because ->set_page_dirty is called under VFS locks. The page is
3875 * not necessarily locked.
3876 *
3877 * We cannot just dirty the page and leave attached buffers clean, because the
3878 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3879 * or jbddirty because all the journalling code will explode.
3880 *
3881 * So what we do is to mark the page "pending dirty" and next time writepage
3882 * is called, propagate that into the buffers appropriately.
3883 */
617ba13b 3884static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3885{
3886 SetPageChecked(page);
3887 return __set_page_dirty_nobuffers(page);
3888}
3889
6dcc693b
JK
3890static int ext4_set_page_dirty(struct page *page)
3891{
3892 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3893 WARN_ON_ONCE(!page_has_buffers(page));
3894 return __set_page_dirty_buffers(page);
3895}
3896
74d553aa 3897static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3898 .readpage = ext4_readpage,
3899 .readpages = ext4_readpages,
43ce1d23 3900 .writepage = ext4_writepage,
20970ba6 3901 .writepages = ext4_writepages,
8ab22b9a 3902 .write_begin = ext4_write_begin,
74d553aa 3903 .write_end = ext4_write_end,
6dcc693b 3904 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3905 .bmap = ext4_bmap,
3906 .invalidatepage = ext4_invalidatepage,
3907 .releasepage = ext4_releasepage,
3908 .direct_IO = ext4_direct_IO,
3909 .migratepage = buffer_migrate_page,
3910 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3911 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3912};
3913
617ba13b 3914static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3915 .readpage = ext4_readpage,
3916 .readpages = ext4_readpages,
43ce1d23 3917 .writepage = ext4_writepage,
20970ba6 3918 .writepages = ext4_writepages,
8ab22b9a
HH
3919 .write_begin = ext4_write_begin,
3920 .write_end = ext4_journalled_write_end,
3921 .set_page_dirty = ext4_journalled_set_page_dirty,
3922 .bmap = ext4_bmap,
4520fb3c 3923 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3924 .releasepage = ext4_releasepage,
84ebd795 3925 .direct_IO = ext4_direct_IO,
8ab22b9a 3926 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3927 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3928};
3929
64769240 3930static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3931 .readpage = ext4_readpage,
3932 .readpages = ext4_readpages,
43ce1d23 3933 .writepage = ext4_writepage,
20970ba6 3934 .writepages = ext4_writepages,
8ab22b9a
HH
3935 .write_begin = ext4_da_write_begin,
3936 .write_end = ext4_da_write_end,
6dcc693b 3937 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3938 .bmap = ext4_bmap,
3939 .invalidatepage = ext4_da_invalidatepage,
3940 .releasepage = ext4_releasepage,
3941 .direct_IO = ext4_direct_IO,
3942 .migratepage = buffer_migrate_page,
3943 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3944 .error_remove_page = generic_error_remove_page,
64769240
AT
3945};
3946
617ba13b 3947void ext4_set_aops(struct inode *inode)
ac27a0ec 3948{
3d2b1582
LC
3949 switch (ext4_inode_journal_mode(inode)) {
3950 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3951 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3952 break;
3953 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3954 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3955 return;
3d2b1582
LC
3956 default:
3957 BUG();
3958 }
74d553aa
TT
3959 if (test_opt(inode->i_sb, DELALLOC))
3960 inode->i_mapping->a_ops = &ext4_da_aops;
3961 else
3962 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3963}
3964
923ae0ff 3965static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3966 struct address_space *mapping, loff_t from, loff_t length)
3967{
09cbfeaf
KS
3968 ext4_fsblk_t index = from >> PAGE_SHIFT;
3969 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3970 unsigned blocksize, pos;
d863dc36
LC
3971 ext4_lblk_t iblock;
3972 struct inode *inode = mapping->host;
3973 struct buffer_head *bh;
3974 struct page *page;
3975 int err = 0;
3976
09cbfeaf 3977 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3978 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3979 if (!page)
3980 return -ENOMEM;
3981
3982 blocksize = inode->i_sb->s_blocksize;
d863dc36 3983
09cbfeaf 3984 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3985
3986 if (!page_has_buffers(page))
3987 create_empty_buffers(page, blocksize, 0);
3988
3989 /* Find the buffer that contains "offset" */
3990 bh = page_buffers(page);
3991 pos = blocksize;
3992 while (offset >= pos) {
3993 bh = bh->b_this_page;
3994 iblock++;
3995 pos += blocksize;
3996 }
d863dc36
LC
3997 if (buffer_freed(bh)) {
3998 BUFFER_TRACE(bh, "freed: skip");
3999 goto unlock;
4000 }
d863dc36
LC
4001 if (!buffer_mapped(bh)) {
4002 BUFFER_TRACE(bh, "unmapped");
4003 ext4_get_block(inode, iblock, bh, 0);
4004 /* unmapped? It's a hole - nothing to do */
4005 if (!buffer_mapped(bh)) {
4006 BUFFER_TRACE(bh, "still unmapped");
4007 goto unlock;
4008 }
4009 }
4010
4011 /* Ok, it's mapped. Make sure it's up-to-date */
4012 if (PageUptodate(page))
4013 set_buffer_uptodate(bh);
4014
4015 if (!buffer_uptodate(bh)) {
4016 err = -EIO;
dfec8a14 4017 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
4018 wait_on_buffer(bh);
4019 /* Uhhuh. Read error. Complain and punt. */
4020 if (!buffer_uptodate(bh))
4021 goto unlock;
c9c7429c
MH
4022 if (S_ISREG(inode->i_mode) &&
4023 ext4_encrypted_inode(inode)) {
4024 /* We expect the key to be set. */
a7550b30 4025 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 4026 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 4027 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 4028 page, PAGE_SIZE, 0, page->index));
c9c7429c 4029 }
d863dc36 4030 }
d863dc36
LC
4031 if (ext4_should_journal_data(inode)) {
4032 BUFFER_TRACE(bh, "get write access");
4033 err = ext4_journal_get_write_access(handle, bh);
4034 if (err)
4035 goto unlock;
4036 }
d863dc36 4037 zero_user(page, offset, length);
d863dc36
LC
4038 BUFFER_TRACE(bh, "zeroed end of block");
4039
d863dc36
LC
4040 if (ext4_should_journal_data(inode)) {
4041 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 4042 } else {
353eefd3 4043 err = 0;
d863dc36 4044 mark_buffer_dirty(bh);
3957ef53 4045 if (ext4_should_order_data(inode))
ee0876bc 4046 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 4047 }
d863dc36
LC
4048
4049unlock:
4050 unlock_page(page);
09cbfeaf 4051 put_page(page);
d863dc36
LC
4052 return err;
4053}
4054
923ae0ff
RZ
4055/*
4056 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4057 * starting from file offset 'from'. The range to be zero'd must
4058 * be contained with in one block. If the specified range exceeds
4059 * the end of the block it will be shortened to end of the block
4060 * that cooresponds to 'from'
4061 */
4062static int ext4_block_zero_page_range(handle_t *handle,
4063 struct address_space *mapping, loff_t from, loff_t length)
4064{
4065 struct inode *inode = mapping->host;
09cbfeaf 4066 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
4067 unsigned blocksize = inode->i_sb->s_blocksize;
4068 unsigned max = blocksize - (offset & (blocksize - 1));
4069
4070 /*
4071 * correct length if it does not fall between
4072 * 'from' and the end of the block
4073 */
4074 if (length > max || length < 0)
4075 length = max;
4076
47e69351
JK
4077 if (IS_DAX(inode)) {
4078 return iomap_zero_range(inode, from, length, NULL,
4079 &ext4_iomap_ops);
4080 }
923ae0ff
RZ
4081 return __ext4_block_zero_page_range(handle, mapping, from, length);
4082}
4083
94350ab5
MW
4084/*
4085 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4086 * up to the end of the block which corresponds to `from'.
4087 * This required during truncate. We need to physically zero the tail end
4088 * of that block so it doesn't yield old data if the file is later grown.
4089 */
c197855e 4090static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
4091 struct address_space *mapping, loff_t from)
4092{
09cbfeaf 4093 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
4094 unsigned length;
4095 unsigned blocksize;
4096 struct inode *inode = mapping->host;
4097
0d06863f
TT
4098 /* If we are processing an encrypted inode during orphan list handling */
4099 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4100 return 0;
4101
94350ab5
MW
4102 blocksize = inode->i_sb->s_blocksize;
4103 length = blocksize - (offset & (blocksize - 1));
4104
4105 return ext4_block_zero_page_range(handle, mapping, from, length);
4106}
4107
a87dd18c
LC
4108int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4109 loff_t lstart, loff_t length)
4110{
4111 struct super_block *sb = inode->i_sb;
4112 struct address_space *mapping = inode->i_mapping;
e1be3a92 4113 unsigned partial_start, partial_end;
a87dd18c
LC
4114 ext4_fsblk_t start, end;
4115 loff_t byte_end = (lstart + length - 1);
4116 int err = 0;
4117
e1be3a92
LC
4118 partial_start = lstart & (sb->s_blocksize - 1);
4119 partial_end = byte_end & (sb->s_blocksize - 1);
4120
a87dd18c
LC
4121 start = lstart >> sb->s_blocksize_bits;
4122 end = byte_end >> sb->s_blocksize_bits;
4123
4124 /* Handle partial zero within the single block */
e1be3a92
LC
4125 if (start == end &&
4126 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4127 err = ext4_block_zero_page_range(handle, mapping,
4128 lstart, length);
4129 return err;
4130 }
4131 /* Handle partial zero out on the start of the range */
e1be3a92 4132 if (partial_start) {
a87dd18c
LC
4133 err = ext4_block_zero_page_range(handle, mapping,
4134 lstart, sb->s_blocksize);
4135 if (err)
4136 return err;
4137 }
4138 /* Handle partial zero out on the end of the range */
e1be3a92 4139 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4140 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4141 byte_end - partial_end,
4142 partial_end + 1);
a87dd18c
LC
4143 return err;
4144}
4145
91ef4caf
DG
4146int ext4_can_truncate(struct inode *inode)
4147{
91ef4caf
DG
4148 if (S_ISREG(inode->i_mode))
4149 return 1;
4150 if (S_ISDIR(inode->i_mode))
4151 return 1;
4152 if (S_ISLNK(inode->i_mode))
4153 return !ext4_inode_is_fast_symlink(inode);
4154 return 0;
4155}
4156
01127848
JK
4157/*
4158 * We have to make sure i_disksize gets properly updated before we truncate
4159 * page cache due to hole punching or zero range. Otherwise i_disksize update
4160 * can get lost as it may have been postponed to submission of writeback but
4161 * that will never happen after we truncate page cache.
4162 */
4163int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4164 loff_t len)
4165{
4166 handle_t *handle;
4167 loff_t size = i_size_read(inode);
4168
5955102c 4169 WARN_ON(!inode_is_locked(inode));
01127848
JK
4170 if (offset > size || offset + len < size)
4171 return 0;
4172
4173 if (EXT4_I(inode)->i_disksize >= size)
4174 return 0;
4175
4176 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4177 if (IS_ERR(handle))
4178 return PTR_ERR(handle);
4179 ext4_update_i_disksize(inode, size);
4180 ext4_mark_inode_dirty(handle, inode);
4181 ext4_journal_stop(handle);
4182
4183 return 0;
4184}
4185
a4bb6b64 4186/*
cca32b7e 4187 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4188 * associated with the given offset and length
4189 *
4190 * @inode: File inode
4191 * @offset: The offset where the hole will begin
4192 * @len: The length of the hole
4193 *
4907cb7b 4194 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4195 */
4196
aeb2817a 4197int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4198{
26a4c0c6
TT
4199 struct super_block *sb = inode->i_sb;
4200 ext4_lblk_t first_block, stop_block;
4201 struct address_space *mapping = inode->i_mapping;
a87dd18c 4202 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4203 handle_t *handle;
4204 unsigned int credits;
4205 int ret = 0;
4206
a4bb6b64 4207 if (!S_ISREG(inode->i_mode))
73355192 4208 return -EOPNOTSUPP;
a4bb6b64 4209
b8a86845 4210 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4211
26a4c0c6
TT
4212 /*
4213 * Write out all dirty pages to avoid race conditions
4214 * Then release them.
4215 */
cca32b7e 4216 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4217 ret = filemap_write_and_wait_range(mapping, offset,
4218 offset + length - 1);
4219 if (ret)
4220 return ret;
4221 }
4222
5955102c 4223 inode_lock(inode);
9ef06cec 4224
26a4c0c6
TT
4225 /* No need to punch hole beyond i_size */
4226 if (offset >= inode->i_size)
4227 goto out_mutex;
4228
4229 /*
4230 * If the hole extends beyond i_size, set the hole
4231 * to end after the page that contains i_size
4232 */
4233 if (offset + length > inode->i_size) {
4234 length = inode->i_size +
09cbfeaf 4235 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4236 offset;
4237 }
4238
a361293f
JK
4239 if (offset & (sb->s_blocksize - 1) ||
4240 (offset + length) & (sb->s_blocksize - 1)) {
4241 /*
4242 * Attach jinode to inode for jbd2 if we do any zeroing of
4243 * partial block
4244 */
4245 ret = ext4_inode_attach_jinode(inode);
4246 if (ret < 0)
4247 goto out_mutex;
4248
4249 }
4250
ea3d7209
JK
4251 /* Wait all existing dio workers, newcomers will block on i_mutex */
4252 ext4_inode_block_unlocked_dio(inode);
4253 inode_dio_wait(inode);
4254
4255 /*
4256 * Prevent page faults from reinstantiating pages we have released from
4257 * page cache.
4258 */
4259 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4260 first_block_offset = round_up(offset, sb->s_blocksize);
4261 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4262
a87dd18c 4263 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4264 if (last_block_offset > first_block_offset) {
4265 ret = ext4_update_disksize_before_punch(inode, offset, length);
4266 if (ret)
4267 goto out_dio;
a87dd18c
LC
4268 truncate_pagecache_range(inode, first_block_offset,
4269 last_block_offset);
01127848 4270 }
26a4c0c6
TT
4271
4272 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4273 credits = ext4_writepage_trans_blocks(inode);
4274 else
4275 credits = ext4_blocks_for_truncate(inode);
4276 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4277 if (IS_ERR(handle)) {
4278 ret = PTR_ERR(handle);
4279 ext4_std_error(sb, ret);
4280 goto out_dio;
4281 }
4282
a87dd18c
LC
4283 ret = ext4_zero_partial_blocks(handle, inode, offset,
4284 length);
4285 if (ret)
4286 goto out_stop;
26a4c0c6
TT
4287
4288 first_block = (offset + sb->s_blocksize - 1) >>
4289 EXT4_BLOCK_SIZE_BITS(sb);
4290 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4291
4292 /* If there are no blocks to remove, return now */
4293 if (first_block >= stop_block)
4294 goto out_stop;
4295
4296 down_write(&EXT4_I(inode)->i_data_sem);
4297 ext4_discard_preallocations(inode);
4298
4299 ret = ext4_es_remove_extent(inode, first_block,
4300 stop_block - first_block);
4301 if (ret) {
4302 up_write(&EXT4_I(inode)->i_data_sem);
4303 goto out_stop;
4304 }
4305
4306 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4307 ret = ext4_ext_remove_space(inode, first_block,
4308 stop_block - 1);
4309 else
4f579ae7 4310 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4311 stop_block);
4312
819c4920 4313 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4314 if (IS_SYNC(inode))
4315 ext4_handle_sync(handle);
e251f9bc 4316
eeca7ea1 4317 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6 4318 ext4_mark_inode_dirty(handle, inode);
67a7d5f5
JK
4319 if (ret >= 0)
4320 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4321out_stop:
4322 ext4_journal_stop(handle);
4323out_dio:
ea3d7209 4324 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4325 ext4_inode_resume_unlocked_dio(inode);
4326out_mutex:
5955102c 4327 inode_unlock(inode);
26a4c0c6 4328 return ret;
a4bb6b64
AH
4329}
4330
a361293f
JK
4331int ext4_inode_attach_jinode(struct inode *inode)
4332{
4333 struct ext4_inode_info *ei = EXT4_I(inode);
4334 struct jbd2_inode *jinode;
4335
4336 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4337 return 0;
4338
4339 jinode = jbd2_alloc_inode(GFP_KERNEL);
4340 spin_lock(&inode->i_lock);
4341 if (!ei->jinode) {
4342 if (!jinode) {
4343 spin_unlock(&inode->i_lock);
4344 return -ENOMEM;
4345 }
4346 ei->jinode = jinode;
4347 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4348 jinode = NULL;
4349 }
4350 spin_unlock(&inode->i_lock);
4351 if (unlikely(jinode != NULL))
4352 jbd2_free_inode(jinode);
4353 return 0;
4354}
4355
ac27a0ec 4356/*
617ba13b 4357 * ext4_truncate()
ac27a0ec 4358 *
617ba13b
MC
4359 * We block out ext4_get_block() block instantiations across the entire
4360 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4361 * simultaneously on behalf of the same inode.
4362 *
42b2aa86 4363 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4364 * is one core, guiding principle: the file's tree must always be consistent on
4365 * disk. We must be able to restart the truncate after a crash.
4366 *
4367 * The file's tree may be transiently inconsistent in memory (although it
4368 * probably isn't), but whenever we close off and commit a journal transaction,
4369 * the contents of (the filesystem + the journal) must be consistent and
4370 * restartable. It's pretty simple, really: bottom up, right to left (although
4371 * left-to-right works OK too).
4372 *
4373 * Note that at recovery time, journal replay occurs *before* the restart of
4374 * truncate against the orphan inode list.
4375 *
4376 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4377 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4378 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4379 * ext4_truncate() to have another go. So there will be instantiated blocks
4380 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4381 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4382 * ext4_truncate() run will find them and release them.
ac27a0ec 4383 */
2c98eb5e 4384int ext4_truncate(struct inode *inode)
ac27a0ec 4385{
819c4920
TT
4386 struct ext4_inode_info *ei = EXT4_I(inode);
4387 unsigned int credits;
2c98eb5e 4388 int err = 0;
819c4920
TT
4389 handle_t *handle;
4390 struct address_space *mapping = inode->i_mapping;
819c4920 4391
19b5ef61
TT
4392 /*
4393 * There is a possibility that we're either freeing the inode
e04027e8 4394 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4395 * have i_mutex locked because it's not necessary.
4396 */
4397 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4398 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4399 trace_ext4_truncate_enter(inode);
4400
91ef4caf 4401 if (!ext4_can_truncate(inode))
2c98eb5e 4402 return 0;
ac27a0ec 4403
12e9b892 4404 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4405
5534fb5b 4406 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4407 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4408
aef1c851
TM
4409 if (ext4_has_inline_data(inode)) {
4410 int has_inline = 1;
4411
01daf945
TT
4412 err = ext4_inline_data_truncate(inode, &has_inline);
4413 if (err)
4414 return err;
aef1c851 4415 if (has_inline)
2c98eb5e 4416 return 0;
aef1c851
TM
4417 }
4418
a361293f
JK
4419 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4420 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4421 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4422 return 0;
a361293f
JK
4423 }
4424
819c4920
TT
4425 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4426 credits = ext4_writepage_trans_blocks(inode);
4427 else
4428 credits = ext4_blocks_for_truncate(inode);
4429
4430 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4431 if (IS_ERR(handle))
4432 return PTR_ERR(handle);
819c4920 4433
eb3544c6
LC
4434 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4435 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4436
4437 /*
4438 * We add the inode to the orphan list, so that if this
4439 * truncate spans multiple transactions, and we crash, we will
4440 * resume the truncate when the filesystem recovers. It also
4441 * marks the inode dirty, to catch the new size.
4442 *
4443 * Implication: the file must always be in a sane, consistent
4444 * truncatable state while each transaction commits.
4445 */
2c98eb5e
TT
4446 err = ext4_orphan_add(handle, inode);
4447 if (err)
819c4920
TT
4448 goto out_stop;
4449
4450 down_write(&EXT4_I(inode)->i_data_sem);
4451
4452 ext4_discard_preallocations(inode);
4453
ff9893dc 4454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4455 err = ext4_ext_truncate(handle, inode);
ff9893dc 4456 else
819c4920
TT
4457 ext4_ind_truncate(handle, inode);
4458
4459 up_write(&ei->i_data_sem);
d0abb36d
TT
4460 if (err)
4461 goto out_stop;
819c4920
TT
4462
4463 if (IS_SYNC(inode))
4464 ext4_handle_sync(handle);
4465
4466out_stop:
4467 /*
4468 * If this was a simple ftruncate() and the file will remain alive,
4469 * then we need to clear up the orphan record which we created above.
4470 * However, if this was a real unlink then we were called by
58d86a50 4471 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4472 * orphan info for us.
4473 */
4474 if (inode->i_nlink)
4475 ext4_orphan_del(handle, inode);
4476
eeca7ea1 4477 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4478 ext4_mark_inode_dirty(handle, inode);
4479 ext4_journal_stop(handle);
ac27a0ec 4480
0562e0ba 4481 trace_ext4_truncate_exit(inode);
2c98eb5e 4482 return err;
ac27a0ec
DK
4483}
4484
ac27a0ec 4485/*
617ba13b 4486 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4487 * underlying buffer_head on success. If 'in_mem' is true, we have all
4488 * data in memory that is needed to recreate the on-disk version of this
4489 * inode.
4490 */
617ba13b
MC
4491static int __ext4_get_inode_loc(struct inode *inode,
4492 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4493{
240799cd
TT
4494 struct ext4_group_desc *gdp;
4495 struct buffer_head *bh;
4496 struct super_block *sb = inode->i_sb;
4497 ext4_fsblk_t block;
4498 int inodes_per_block, inode_offset;
4499
3a06d778 4500 iloc->bh = NULL;
240799cd 4501 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4502 return -EFSCORRUPTED;
ac27a0ec 4503
240799cd
TT
4504 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4505 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4506 if (!gdp)
ac27a0ec
DK
4507 return -EIO;
4508
240799cd
TT
4509 /*
4510 * Figure out the offset within the block group inode table
4511 */
00d09882 4512 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4513 inode_offset = ((inode->i_ino - 1) %
4514 EXT4_INODES_PER_GROUP(sb));
4515 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4516 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4517
4518 bh = sb_getblk(sb, block);
aebf0243 4519 if (unlikely(!bh))
860d21e2 4520 return -ENOMEM;
ac27a0ec
DK
4521 if (!buffer_uptodate(bh)) {
4522 lock_buffer(bh);
9c83a923
HK
4523
4524 /*
4525 * If the buffer has the write error flag, we have failed
4526 * to write out another inode in the same block. In this
4527 * case, we don't have to read the block because we may
4528 * read the old inode data successfully.
4529 */
4530 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4531 set_buffer_uptodate(bh);
4532
ac27a0ec
DK
4533 if (buffer_uptodate(bh)) {
4534 /* someone brought it uptodate while we waited */
4535 unlock_buffer(bh);
4536 goto has_buffer;
4537 }
4538
4539 /*
4540 * If we have all information of the inode in memory and this
4541 * is the only valid inode in the block, we need not read the
4542 * block.
4543 */
4544 if (in_mem) {
4545 struct buffer_head *bitmap_bh;
240799cd 4546 int i, start;
ac27a0ec 4547
240799cd 4548 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4549
240799cd
TT
4550 /* Is the inode bitmap in cache? */
4551 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4552 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4553 goto make_io;
4554
4555 /*
4556 * If the inode bitmap isn't in cache then the
4557 * optimisation may end up performing two reads instead
4558 * of one, so skip it.
4559 */
4560 if (!buffer_uptodate(bitmap_bh)) {
4561 brelse(bitmap_bh);
4562 goto make_io;
4563 }
240799cd 4564 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4565 if (i == inode_offset)
4566 continue;
617ba13b 4567 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4568 break;
4569 }
4570 brelse(bitmap_bh);
240799cd 4571 if (i == start + inodes_per_block) {
ac27a0ec
DK
4572 /* all other inodes are free, so skip I/O */
4573 memset(bh->b_data, 0, bh->b_size);
4574 set_buffer_uptodate(bh);
4575 unlock_buffer(bh);
4576 goto has_buffer;
4577 }
4578 }
4579
4580make_io:
240799cd
TT
4581 /*
4582 * If we need to do any I/O, try to pre-readahead extra
4583 * blocks from the inode table.
4584 */
4585 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4586 ext4_fsblk_t b, end, table;
4587 unsigned num;
0d606e2c 4588 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4589
4590 table = ext4_inode_table(sb, gdp);
b713a5ec 4591 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4592 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4593 if (table > b)
4594 b = table;
0d606e2c 4595 end = b + ra_blks;
240799cd 4596 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4597 if (ext4_has_group_desc_csum(sb))
560671a0 4598 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4599 table += num / inodes_per_block;
4600 if (end > table)
4601 end = table;
4602 while (b <= end)
4603 sb_breadahead(sb, b++);
4604 }
4605
ac27a0ec
DK
4606 /*
4607 * There are other valid inodes in the buffer, this inode
4608 * has in-inode xattrs, or we don't have this inode in memory.
4609 * Read the block from disk.
4610 */
0562e0ba 4611 trace_ext4_load_inode(inode);
ac27a0ec
DK
4612 get_bh(bh);
4613 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4614 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4615 wait_on_buffer(bh);
4616 if (!buffer_uptodate(bh)) {
c398eda0
TT
4617 EXT4_ERROR_INODE_BLOCK(inode, block,
4618 "unable to read itable block");
ac27a0ec
DK
4619 brelse(bh);
4620 return -EIO;
4621 }
4622 }
4623has_buffer:
4624 iloc->bh = bh;
4625 return 0;
4626}
4627
617ba13b 4628int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4629{
4630 /* We have all inode data except xattrs in memory here. */
617ba13b 4631 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4632 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4633}
4634
6642586b
RZ
4635static bool ext4_should_use_dax(struct inode *inode)
4636{
4637 if (!test_opt(inode->i_sb, DAX))
4638 return false;
4639 if (!S_ISREG(inode->i_mode))
4640 return false;
4641 if (ext4_should_journal_data(inode))
4642 return false;
4643 if (ext4_has_inline_data(inode))
4644 return false;
4645 if (ext4_encrypted_inode(inode))
4646 return false;
4647 return true;
4648}
4649
617ba13b 4650void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4651{
617ba13b 4652 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4653 unsigned int new_fl = 0;
ac27a0ec 4654
617ba13b 4655 if (flags & EXT4_SYNC_FL)
00a1a053 4656 new_fl |= S_SYNC;
617ba13b 4657 if (flags & EXT4_APPEND_FL)
00a1a053 4658 new_fl |= S_APPEND;
617ba13b 4659 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4660 new_fl |= S_IMMUTABLE;
617ba13b 4661 if (flags & EXT4_NOATIME_FL)
00a1a053 4662 new_fl |= S_NOATIME;
617ba13b 4663 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4664 new_fl |= S_DIRSYNC;
6642586b 4665 if (ext4_should_use_dax(inode))
923ae0ff 4666 new_fl |= S_DAX;
2ee6a576
EB
4667 if (flags & EXT4_ENCRYPT_FL)
4668 new_fl |= S_ENCRYPTED;
5f16f322 4669 inode_set_flags(inode, new_fl,
2ee6a576
EB
4670 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4671 S_ENCRYPTED);
ac27a0ec
DK
4672}
4673
0fc1b451 4674static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4675 struct ext4_inode_info *ei)
0fc1b451
AK
4676{
4677 blkcnt_t i_blocks ;
8180a562
AK
4678 struct inode *inode = &(ei->vfs_inode);
4679 struct super_block *sb = inode->i_sb;
0fc1b451 4680
e2b911c5 4681 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4682 /* we are using combined 48 bit field */
4683 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4684 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4685 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4686 /* i_blocks represent file system block size */
4687 return i_blocks << (inode->i_blkbits - 9);
4688 } else {
4689 return i_blocks;
4690 }
0fc1b451
AK
4691 } else {
4692 return le32_to_cpu(raw_inode->i_blocks_lo);
4693 }
4694}
ff9ddf7e 4695
152a7b0a
TM
4696static inline void ext4_iget_extra_inode(struct inode *inode,
4697 struct ext4_inode *raw_inode,
4698 struct ext4_inode_info *ei)
4699{
4700 __le32 *magic = (void *)raw_inode +
4701 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4702 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4703 EXT4_INODE_SIZE(inode->i_sb) &&
4704 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4705 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4706 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4707 } else
4708 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4709}
4710
040cb378
LX
4711int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4712{
0b7b7779 4713 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4714 return -EOPNOTSUPP;
4715 *projid = EXT4_I(inode)->i_projid;
4716 return 0;
4717}
4718
1d1fe1ee 4719struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4720{
617ba13b
MC
4721 struct ext4_iloc iloc;
4722 struct ext4_inode *raw_inode;
1d1fe1ee 4723 struct ext4_inode_info *ei;
1d1fe1ee 4724 struct inode *inode;
b436b9be 4725 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4726 long ret;
7e6e1ef4 4727 loff_t size;
ac27a0ec 4728 int block;
08cefc7a
EB
4729 uid_t i_uid;
4730 gid_t i_gid;
040cb378 4731 projid_t i_projid;
ac27a0ec 4732
1d1fe1ee
DH
4733 inode = iget_locked(sb, ino);
4734 if (!inode)
4735 return ERR_PTR(-ENOMEM);
4736 if (!(inode->i_state & I_NEW))
4737 return inode;
4738
4739 ei = EXT4_I(inode);
7dc57615 4740 iloc.bh = NULL;
ac27a0ec 4741
1d1fe1ee
DH
4742 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4743 if (ret < 0)
ac27a0ec 4744 goto bad_inode;
617ba13b 4745 raw_inode = ext4_raw_inode(&iloc);
814525f4 4746
eba59be9
TT
4747 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4748 EXT4_ERROR_INODE(inode, "root inode unallocated");
4749 ret = -EFSCORRUPTED;
4750 goto bad_inode;
4751 }
4752
814525f4
DW
4753 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4755 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4756 EXT4_INODE_SIZE(inode->i_sb) ||
4757 (ei->i_extra_isize & 3)) {
4758 EXT4_ERROR_INODE(inode,
4759 "bad extra_isize %u (inode size %u)",
4760 ei->i_extra_isize,
4761 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4762 ret = -EFSCORRUPTED;
814525f4
DW
4763 goto bad_inode;
4764 }
4765 } else
4766 ei->i_extra_isize = 0;
4767
4768 /* Precompute checksum seed for inode metadata */
9aa5d32b 4769 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4770 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4771 __u32 csum;
4772 __le32 inum = cpu_to_le32(inode->i_ino);
4773 __le32 gen = raw_inode->i_generation;
4774 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4775 sizeof(inum));
4776 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4777 sizeof(gen));
4778 }
4779
4780 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4781 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4782 ret = -EFSBADCRC;
814525f4
DW
4783 goto bad_inode;
4784 }
4785
ac27a0ec 4786 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4787 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4788 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4789 if (ext4_has_feature_project(sb) &&
040cb378
LX
4790 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4791 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4792 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4793 else
4794 i_projid = EXT4_DEF_PROJID;
4795
af5bc92d 4796 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4797 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4798 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4799 }
08cefc7a
EB
4800 i_uid_write(inode, i_uid);
4801 i_gid_write(inode, i_gid);
78a8da10 4802 ei->i_projid = make_kprojid(sb->s_user_ns, i_projid);
bfe86848 4803 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4804
353eb83c 4805 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4806 ei->i_inline_off = 0;
ac27a0ec
DK
4807 ei->i_dir_start_lookup = 0;
4808 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4809 /* We now have enough fields to check if the inode was active or not.
4810 * This is needed because nfsd might try to access dead inodes
4811 * the test is that same one that e2fsck uses
4812 * NeilBrown 1999oct15
4813 */
4814 if (inode->i_nlink == 0) {
393d1d1d
DTB
4815 if ((inode->i_mode == 0 ||
4816 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4817 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4818 /* this inode is deleted */
1d1fe1ee 4819 ret = -ESTALE;
ac27a0ec
DK
4820 goto bad_inode;
4821 }
4822 /* The only unlinked inodes we let through here have
4823 * valid i_mode and are being read by the orphan
4824 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4825 * the process of deleting those.
4826 * OR it is the EXT4_BOOT_LOADER_INO which is
4827 * not initialized on a new filesystem. */
ac27a0ec 4828 }
ac27a0ec 4829 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4830 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4831 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4832 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4833 ei->i_file_acl |=
4834 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4835 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4
DW
4836 if ((size = i_size_read(inode)) < 0) {
4837 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4838 ret = -EFSCORRUPTED;
4839 goto bad_inode;
4840 }
ac27a0ec 4841 ei->i_disksize = inode->i_size;
a9e7f447
DM
4842#ifdef CONFIG_QUOTA
4843 ei->i_reserved_quota = 0;
4844#endif
ac27a0ec
DK
4845 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4846 ei->i_block_group = iloc.block_group;
a4912123 4847 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4848 /*
4849 * NOTE! The in-memory inode i_data array is in little-endian order
4850 * even on big-endian machines: we do NOT byteswap the block numbers!
4851 */
617ba13b 4852 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4853 ei->i_data[block] = raw_inode->i_block[block];
4854 INIT_LIST_HEAD(&ei->i_orphan);
4855
b436b9be
JK
4856 /*
4857 * Set transaction id's of transactions that have to be committed
4858 * to finish f[data]sync. We set them to currently running transaction
4859 * as we cannot be sure that the inode or some of its metadata isn't
4860 * part of the transaction - the inode could have been reclaimed and
4861 * now it is reread from disk.
4862 */
4863 if (journal) {
4864 transaction_t *transaction;
4865 tid_t tid;
4866
a931da6a 4867 read_lock(&journal->j_state_lock);
b436b9be
JK
4868 if (journal->j_running_transaction)
4869 transaction = journal->j_running_transaction;
4870 else
4871 transaction = journal->j_committing_transaction;
4872 if (transaction)
4873 tid = transaction->t_tid;
4874 else
4875 tid = journal->j_commit_sequence;
a931da6a 4876 read_unlock(&journal->j_state_lock);
b436b9be
JK
4877 ei->i_sync_tid = tid;
4878 ei->i_datasync_tid = tid;
4879 }
4880
0040d987 4881 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4882 if (ei->i_extra_isize == 0) {
4883 /* The extra space is currently unused. Use it. */
2dc8d9e1 4884 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4885 ei->i_extra_isize = sizeof(struct ext4_inode) -
4886 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4887 } else {
152a7b0a 4888 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4889 }
814525f4 4890 }
ac27a0ec 4891
ef7f3835
KS
4892 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4893 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4894 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4895 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4896
ed3654eb 4897 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4898 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4899 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4900 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4901 inode->i_version |=
4902 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4903 }
25ec56b5
JNC
4904 }
4905
c4b5a614 4906 ret = 0;
485c26ec 4907 if (ei->i_file_acl &&
1032988c 4908 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4909 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4910 ei->i_file_acl);
6a797d27 4911 ret = -EFSCORRUPTED;
485c26ec 4912 goto bad_inode;
f19d5870
TM
4913 } else if (!ext4_has_inline_data(inode)) {
4914 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4915 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4916 (S_ISLNK(inode->i_mode) &&
4917 !ext4_inode_is_fast_symlink(inode))))
4918 /* Validate extent which is part of inode */
4919 ret = ext4_ext_check_inode(inode);
4920 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4921 (S_ISLNK(inode->i_mode) &&
4922 !ext4_inode_is_fast_symlink(inode))) {
4923 /* Validate block references which are part of inode */
4924 ret = ext4_ind_check_inode(inode);
4925 }
fe2c8191 4926 }
567f3e9a 4927 if (ret)
de9a55b8 4928 goto bad_inode;
7a262f7c 4929
ac27a0ec 4930 if (S_ISREG(inode->i_mode)) {
617ba13b 4931 inode->i_op = &ext4_file_inode_operations;
be64f884 4932 inode->i_fop = &ext4_file_operations;
617ba13b 4933 ext4_set_aops(inode);
ac27a0ec 4934 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4935 inode->i_op = &ext4_dir_inode_operations;
4936 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4937 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4938 if (ext4_encrypted_inode(inode)) {
4939 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4940 ext4_set_aops(inode);
4941 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4942 inode->i_link = (char *)ei->i_data;
617ba13b 4943 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4944 nd_terminate_link(ei->i_data, inode->i_size,
4945 sizeof(ei->i_data) - 1);
4946 } else {
617ba13b
MC
4947 inode->i_op = &ext4_symlink_inode_operations;
4948 ext4_set_aops(inode);
ac27a0ec 4949 }
21fc61c7 4950 inode_nohighmem(inode);
563bdd61
TT
4951 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4952 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4953 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4954 if (raw_inode->i_block[0])
4955 init_special_inode(inode, inode->i_mode,
4956 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4957 else
4958 init_special_inode(inode, inode->i_mode,
4959 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4960 } else if (ino == EXT4_BOOT_LOADER_INO) {
4961 make_bad_inode(inode);
563bdd61 4962 } else {
6a797d27 4963 ret = -EFSCORRUPTED;
24676da4 4964 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4965 goto bad_inode;
ac27a0ec 4966 }
af5bc92d 4967 brelse(iloc.bh);
617ba13b 4968 ext4_set_inode_flags(inode);
dec214d0 4969
1d1fe1ee
DH
4970 unlock_new_inode(inode);
4971 return inode;
ac27a0ec
DK
4972
4973bad_inode:
567f3e9a 4974 brelse(iloc.bh);
1d1fe1ee
DH
4975 iget_failed(inode);
4976 return ERR_PTR(ret);
ac27a0ec
DK
4977}
4978
f4bb2981
TT
4979struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4980{
4981 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4982 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4983 return ext4_iget(sb, ino);
4984}
4985
0fc1b451
AK
4986static int ext4_inode_blocks_set(handle_t *handle,
4987 struct ext4_inode *raw_inode,
4988 struct ext4_inode_info *ei)
4989{
4990 struct inode *inode = &(ei->vfs_inode);
4991 u64 i_blocks = inode->i_blocks;
4992 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4993
4994 if (i_blocks <= ~0U) {
4995 /*
4907cb7b 4996 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4997 * as multiple of 512 bytes
4998 */
8180a562 4999 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5000 raw_inode->i_blocks_high = 0;
84a8dce2 5001 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5002 return 0;
5003 }
e2b911c5 5004 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
5005 return -EFBIG;
5006
5007 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5008 /*
5009 * i_blocks can be represented in a 48 bit variable
5010 * as multiple of 512 bytes
5011 */
8180a562 5012 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5013 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5014 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5015 } else {
84a8dce2 5016 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5017 /* i_block is stored in file system block size */
5018 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5019 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5020 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5021 }
f287a1a5 5022 return 0;
0fc1b451
AK
5023}
5024
a26f4992
TT
5025struct other_inode {
5026 unsigned long orig_ino;
5027 struct ext4_inode *raw_inode;
5028};
5029
5030static int other_inode_match(struct inode * inode, unsigned long ino,
5031 void *data)
5032{
5033 struct other_inode *oi = (struct other_inode *) data;
5034
5035 if ((inode->i_ino != ino) ||
5036 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5037 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5038 ((inode->i_state & I_DIRTY_TIME) == 0))
5039 return 0;
5040 spin_lock(&inode->i_lock);
5041 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5042 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5043 (inode->i_state & I_DIRTY_TIME)) {
5044 struct ext4_inode_info *ei = EXT4_I(inode);
5045
5046 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5047 spin_unlock(&inode->i_lock);
5048
5049 spin_lock(&ei->i_raw_lock);
5050 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5051 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5052 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5053 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5054 spin_unlock(&ei->i_raw_lock);
5055 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5056 return -1;
5057 }
5058 spin_unlock(&inode->i_lock);
5059 return -1;
5060}
5061
5062/*
5063 * Opportunistically update the other time fields for other inodes in
5064 * the same inode table block.
5065 */
5066static void ext4_update_other_inodes_time(struct super_block *sb,
5067 unsigned long orig_ino, char *buf)
5068{
5069 struct other_inode oi;
5070 unsigned long ino;
5071 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5072 int inode_size = EXT4_INODE_SIZE(sb);
5073
5074 oi.orig_ino = orig_ino;
0f0ff9a9
TT
5075 /*
5076 * Calculate the first inode in the inode table block. Inode
5077 * numbers are one-based. That is, the first inode in a block
5078 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5079 */
5080 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
5081 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5082 if (ino == orig_ino)
5083 continue;
5084 oi.raw_inode = (struct ext4_inode *) buf;
5085 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5086 }
5087}
5088
ac27a0ec
DK
5089/*
5090 * Post the struct inode info into an on-disk inode location in the
5091 * buffer-cache. This gobbles the caller's reference to the
5092 * buffer_head in the inode location struct.
5093 *
5094 * The caller must have write access to iloc->bh.
5095 */
617ba13b 5096static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5097 struct inode *inode,
830156c7 5098 struct ext4_iloc *iloc)
ac27a0ec 5099{
617ba13b
MC
5100 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5101 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5102 struct buffer_head *bh = iloc->bh;
202ee5df 5103 struct super_block *sb = inode->i_sb;
ac27a0ec 5104 int err = 0, rc, block;
202ee5df 5105 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5106 uid_t i_uid;
5107 gid_t i_gid;
040cb378 5108 projid_t i_projid;
ac27a0ec 5109
202ee5df
TT
5110 spin_lock(&ei->i_raw_lock);
5111
5112 /* For fields not tracked in the in-memory inode,
ac27a0ec 5113 * initialise them to zero for new inodes. */
19f5fb7a 5114 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5115 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
5116
5117 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5118 i_uid = i_uid_read(inode);
5119 i_gid = i_gid_read(inode);
78a8da10 5120 i_projid = from_kprojid(sb->s_user_ns, ei->i_projid);
af5bc92d 5121 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5122 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5123 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5124/*
5125 * Fix up interoperability with old kernels. Otherwise, old inodes get
5126 * re-used with the upper 16 bits of the uid/gid intact
5127 */
93e3b4e6
DJ
5128 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5129 raw_inode->i_uid_high = 0;
5130 raw_inode->i_gid_high = 0;
5131 } else {
ac27a0ec 5132 raw_inode->i_uid_high =
08cefc7a 5133 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5134 raw_inode->i_gid_high =
08cefc7a 5135 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5136 }
5137 } else {
08cefc7a
EB
5138 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5139 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5140 raw_inode->i_uid_high = 0;
5141 raw_inode->i_gid_high = 0;
5142 }
5143 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5144
5145 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5146 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5147 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5148 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5149
bce92d56
LX
5150 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5151 if (err) {
202ee5df 5152 spin_unlock(&ei->i_raw_lock);
0fc1b451 5153 goto out_brelse;
202ee5df 5154 }
ac27a0ec 5155 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5156 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5157 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5158 raw_inode->i_file_acl_high =
5159 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5160 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
e08ac99f 5161 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5162 ext4_isize_set(raw_inode, ei->i_disksize);
5163 need_datasync = 1;
5164 }
a48380f7 5165 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5166 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5167 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5168 cpu_to_le32(EXT4_GOOD_OLD_REV))
5169 set_large_file = 1;
ac27a0ec
DK
5170 }
5171 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5172 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5173 if (old_valid_dev(inode->i_rdev)) {
5174 raw_inode->i_block[0] =
5175 cpu_to_le32(old_encode_dev(inode->i_rdev));
5176 raw_inode->i_block[1] = 0;
5177 } else {
5178 raw_inode->i_block[0] = 0;
5179 raw_inode->i_block[1] =
5180 cpu_to_le32(new_encode_dev(inode->i_rdev));
5181 raw_inode->i_block[2] = 0;
5182 }
f19d5870 5183 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5184 for (block = 0; block < EXT4_N_BLOCKS; block++)
5185 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5186 }
ac27a0ec 5187
ed3654eb 5188 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5189 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5190 if (ei->i_extra_isize) {
5191 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5192 raw_inode->i_version_hi =
5193 cpu_to_le32(inode->i_version >> 32);
5194 raw_inode->i_extra_isize =
5195 cpu_to_le16(ei->i_extra_isize);
5196 }
25ec56b5 5197 }
040cb378 5198
78a8da10
SF
5199 if (i_projid != (projid_t)-1) {
5200 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5201 i_projid != EXT4_DEF_PROJID);
040cb378 5202
78a8da10
SF
5203 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5204 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5205 raw_inode->i_projid = cpu_to_le32(i_projid);
5206 }
040cb378 5207
814525f4 5208 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5209 spin_unlock(&ei->i_raw_lock);
1751e8a6 5210 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5211 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5212 bh->b_data);
202ee5df 5213
830156c7 5214 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5215 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5216 if (!err)
5217 err = rc;
19f5fb7a 5218 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5219 if (set_large_file) {
5d601255 5220 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5221 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5222 if (err)
5223 goto out_brelse;
5224 ext4_update_dynamic_rev(sb);
e2b911c5 5225 ext4_set_feature_large_file(sb);
202ee5df
TT
5226 ext4_handle_sync(handle);
5227 err = ext4_handle_dirty_super(handle, sb);
5228 }
b71fc079 5229 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5230out_brelse:
af5bc92d 5231 brelse(bh);
617ba13b 5232 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5233 return err;
5234}
5235
5236/*
617ba13b 5237 * ext4_write_inode()
ac27a0ec
DK
5238 *
5239 * We are called from a few places:
5240 *
87f7e416 5241 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5242 * Here, there will be no transaction running. We wait for any running
4907cb7b 5243 * transaction to commit.
ac27a0ec 5244 *
87f7e416
TT
5245 * - Within flush work (sys_sync(), kupdate and such).
5246 * We wait on commit, if told to.
ac27a0ec 5247 *
87f7e416
TT
5248 * - Within iput_final() -> write_inode_now()
5249 * We wait on commit, if told to.
ac27a0ec
DK
5250 *
5251 * In all cases it is actually safe for us to return without doing anything,
5252 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5253 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5254 * writeback.
ac27a0ec
DK
5255 *
5256 * Note that we are absolutely dependent upon all inode dirtiers doing the
5257 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5258 * which we are interested.
5259 *
5260 * It would be a bug for them to not do this. The code:
5261 *
5262 * mark_inode_dirty(inode)
5263 * stuff();
5264 * inode->i_size = expr;
5265 *
87f7e416
TT
5266 * is in error because write_inode() could occur while `stuff()' is running,
5267 * and the new i_size will be lost. Plus the inode will no longer be on the
5268 * superblock's dirty inode list.
ac27a0ec 5269 */
a9185b41 5270int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5271{
91ac6f43
FM
5272 int err;
5273
87f7e416 5274 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5275 return 0;
5276
91ac6f43
FM
5277 if (EXT4_SB(inode->i_sb)->s_journal) {
5278 if (ext4_journal_current_handle()) {
5279 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5280 dump_stack();
5281 return -EIO;
5282 }
ac27a0ec 5283
10542c22
JK
5284 /*
5285 * No need to force transaction in WB_SYNC_NONE mode. Also
5286 * ext4_sync_fs() will force the commit after everything is
5287 * written.
5288 */
5289 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5290 return 0;
5291
5292 err = ext4_force_commit(inode->i_sb);
5293 } else {
5294 struct ext4_iloc iloc;
ac27a0ec 5295
8b472d73 5296 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5297 if (err)
5298 return err;
10542c22
JK
5299 /*
5300 * sync(2) will flush the whole buffer cache. No need to do
5301 * it here separately for each inode.
5302 */
5303 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5304 sync_dirty_buffer(iloc.bh);
5305 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5306 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5307 "IO error syncing inode");
830156c7
FM
5308 err = -EIO;
5309 }
fd2dd9fb 5310 brelse(iloc.bh);
91ac6f43
FM
5311 }
5312 return err;
ac27a0ec
DK
5313}
5314
53e87268
JK
5315/*
5316 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5317 * buffers that are attached to a page stradding i_size and are undergoing
5318 * commit. In that case we have to wait for commit to finish and try again.
5319 */
5320static void ext4_wait_for_tail_page_commit(struct inode *inode)
5321{
5322 struct page *page;
5323 unsigned offset;
5324 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5325 tid_t commit_tid = 0;
5326 int ret;
5327
09cbfeaf 5328 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5329 /*
5330 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5331 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5332 * blocksize case
5333 */
93407472 5334 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5335 return;
5336 while (1) {
5337 page = find_lock_page(inode->i_mapping,
09cbfeaf 5338 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5339 if (!page)
5340 return;
ca99fdd2 5341 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5342 PAGE_SIZE - offset);
53e87268 5343 unlock_page(page);
09cbfeaf 5344 put_page(page);
53e87268
JK
5345 if (ret != -EBUSY)
5346 return;
5347 commit_tid = 0;
5348 read_lock(&journal->j_state_lock);
5349 if (journal->j_committing_transaction)
5350 commit_tid = journal->j_committing_transaction->t_tid;
5351 read_unlock(&journal->j_state_lock);
5352 if (commit_tid)
5353 jbd2_log_wait_commit(journal, commit_tid);
5354 }
5355}
5356
ac27a0ec 5357/*
617ba13b 5358 * ext4_setattr()
ac27a0ec
DK
5359 *
5360 * Called from notify_change.
5361 *
5362 * We want to trap VFS attempts to truncate the file as soon as
5363 * possible. In particular, we want to make sure that when the VFS
5364 * shrinks i_size, we put the inode on the orphan list and modify
5365 * i_disksize immediately, so that during the subsequent flushing of
5366 * dirty pages and freeing of disk blocks, we can guarantee that any
5367 * commit will leave the blocks being flushed in an unused state on
5368 * disk. (On recovery, the inode will get truncated and the blocks will
5369 * be freed, so we have a strong guarantee that no future commit will
5370 * leave these blocks visible to the user.)
5371 *
678aaf48
JK
5372 * Another thing we have to assure is that if we are in ordered mode
5373 * and inode is still attached to the committing transaction, we must
5374 * we start writeout of all the dirty pages which are being truncated.
5375 * This way we are sure that all the data written in the previous
5376 * transaction are already on disk (truncate waits for pages under
5377 * writeback).
5378 *
5379 * Called with inode->i_mutex down.
ac27a0ec 5380 */
617ba13b 5381int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5382{
2b0143b5 5383 struct inode *inode = d_inode(dentry);
ac27a0ec 5384 int error, rc = 0;
3d287de3 5385 int orphan = 0;
ac27a0ec
DK
5386 const unsigned int ia_valid = attr->ia_valid;
5387
0db1ff22
TT
5388 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5389 return -EIO;
5390
31051c85 5391 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5392 if (error)
5393 return error;
5394
3ce2b8dd
EB
5395 error = fscrypt_prepare_setattr(dentry, attr);
5396 if (error)
5397 return error;
5398
a7cdadee
JK
5399 if (is_quota_modification(inode, attr)) {
5400 error = dquot_initialize(inode);
5401 if (error)
5402 return error;
5403 }
08cefc7a
EB
5404 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5405 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5406 handle_t *handle;
5407
5408 /* (user+group)*(old+new) structure, inode write (sb,
5409 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5410 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5411 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5412 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5413 if (IS_ERR(handle)) {
5414 error = PTR_ERR(handle);
5415 goto err_out;
5416 }
7a9ca53a
TE
5417
5418 /* dquot_transfer() calls back ext4_get_inode_usage() which
5419 * counts xattr inode references.
5420 */
5421 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5422 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5423 up_read(&EXT4_I(inode)->xattr_sem);
5424
ac27a0ec 5425 if (error) {
617ba13b 5426 ext4_journal_stop(handle);
ac27a0ec
DK
5427 return error;
5428 }
5429 /* Update corresponding info in inode so that everything is in
5430 * one transaction */
5431 if (attr->ia_valid & ATTR_UID)
5432 inode->i_uid = attr->ia_uid;
5433 if (attr->ia_valid & ATTR_GID)
5434 inode->i_gid = attr->ia_gid;
617ba13b
MC
5435 error = ext4_mark_inode_dirty(handle, inode);
5436 ext4_journal_stop(handle);
ac27a0ec
DK
5437 }
5438
3da40c7b 5439 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5440 handle_t *handle;
3da40c7b
JB
5441 loff_t oldsize = inode->i_size;
5442 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5443
12e9b892 5444 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5446
0c095c7f
TT
5447 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5448 return -EFBIG;
e2b46574 5449 }
3da40c7b
JB
5450 if (!S_ISREG(inode->i_mode))
5451 return -EINVAL;
dff6efc3
CH
5452
5453 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5454 inode_inc_iversion(inode);
5455
3da40c7b 5456 if (ext4_should_order_data(inode) &&
5208386c 5457 (attr->ia_size < inode->i_size)) {
3da40c7b 5458 error = ext4_begin_ordered_truncate(inode,
678aaf48 5459 attr->ia_size);
3da40c7b
JB
5460 if (error)
5461 goto err_out;
5462 }
5463 if (attr->ia_size != inode->i_size) {
5208386c
JK
5464 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5465 if (IS_ERR(handle)) {
5466 error = PTR_ERR(handle);
5467 goto err_out;
5468 }
3da40c7b 5469 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5470 error = ext4_orphan_add(handle, inode);
5471 orphan = 1;
5472 }
911af577
EG
5473 /*
5474 * Update c/mtime on truncate up, ext4_truncate() will
5475 * update c/mtime in shrink case below
5476 */
5477 if (!shrink) {
eeca7ea1 5478 inode->i_mtime = current_time(inode);
911af577
EG
5479 inode->i_ctime = inode->i_mtime;
5480 }
90e775b7 5481 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5482 EXT4_I(inode)->i_disksize = attr->ia_size;
5483 rc = ext4_mark_inode_dirty(handle, inode);
5484 if (!error)
5485 error = rc;
90e775b7
JK
5486 /*
5487 * We have to update i_size under i_data_sem together
5488 * with i_disksize to avoid races with writeback code
5489 * running ext4_wb_update_i_disksize().
5490 */
5491 if (!error)
5492 i_size_write(inode, attr->ia_size);
5493 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5494 ext4_journal_stop(handle);
5495 if (error) {
3da40c7b
JB
5496 if (orphan)
5497 ext4_orphan_del(NULL, inode);
678aaf48
JK
5498 goto err_out;
5499 }
d6320cbf 5500 }
3da40c7b
JB
5501 if (!shrink)
5502 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5503
5208386c
JK
5504 /*
5505 * Blocks are going to be removed from the inode. Wait
5506 * for dio in flight. Temporarily disable
5507 * dioread_nolock to prevent livelock.
5508 */
5509 if (orphan) {
5510 if (!ext4_should_journal_data(inode)) {
5511 ext4_inode_block_unlocked_dio(inode);
5512 inode_dio_wait(inode);
5513 ext4_inode_resume_unlocked_dio(inode);
5514 } else
5515 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5516 }
ea3d7209 5517 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5518 /*
5519 * Truncate pagecache after we've waited for commit
5520 * in data=journal mode to make pages freeable.
5521 */
923ae0ff 5522 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5523 if (shrink) {
5524 rc = ext4_truncate(inode);
5525 if (rc)
5526 error = rc;
5527 }
ea3d7209 5528 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5529 }
ac27a0ec 5530
2c98eb5e 5531 if (!error) {
1025774c
CH
5532 setattr_copy(inode, attr);
5533 mark_inode_dirty(inode);
5534 }
5535
5536 /*
5537 * If the call to ext4_truncate failed to get a transaction handle at
5538 * all, we need to clean up the in-core orphan list manually.
5539 */
3d287de3 5540 if (orphan && inode->i_nlink)
617ba13b 5541 ext4_orphan_del(NULL, inode);
ac27a0ec 5542
2c98eb5e 5543 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5544 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5545
5546err_out:
617ba13b 5547 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5548 if (!error)
5549 error = rc;
5550 return error;
5551}
5552
a528d35e
DH
5553int ext4_getattr(const struct path *path, struct kstat *stat,
5554 u32 request_mask, unsigned int query_flags)
3e3398a0 5555{
99652ea5
DH
5556 struct inode *inode = d_inode(path->dentry);
5557 struct ext4_inode *raw_inode;
5558 struct ext4_inode_info *ei = EXT4_I(inode);
5559 unsigned int flags;
5560
5561 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5562 stat->result_mask |= STATX_BTIME;
5563 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5564 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5565 }
5566
5567 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5568 if (flags & EXT4_APPEND_FL)
5569 stat->attributes |= STATX_ATTR_APPEND;
5570 if (flags & EXT4_COMPR_FL)
5571 stat->attributes |= STATX_ATTR_COMPRESSED;
5572 if (flags & EXT4_ENCRYPT_FL)
5573 stat->attributes |= STATX_ATTR_ENCRYPTED;
5574 if (flags & EXT4_IMMUTABLE_FL)
5575 stat->attributes |= STATX_ATTR_IMMUTABLE;
5576 if (flags & EXT4_NODUMP_FL)
5577 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5578
3209f68b
DH
5579 stat->attributes_mask |= (STATX_ATTR_APPEND |
5580 STATX_ATTR_COMPRESSED |
5581 STATX_ATTR_ENCRYPTED |
5582 STATX_ATTR_IMMUTABLE |
5583 STATX_ATTR_NODUMP);
5584
3e3398a0 5585 generic_fillattr(inode, stat);
99652ea5
DH
5586 return 0;
5587}
5588
5589int ext4_file_getattr(const struct path *path, struct kstat *stat,
5590 u32 request_mask, unsigned int query_flags)
5591{
5592 struct inode *inode = d_inode(path->dentry);
5593 u64 delalloc_blocks;
5594
5595 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5596
9206c561
AD
5597 /*
5598 * If there is inline data in the inode, the inode will normally not
5599 * have data blocks allocated (it may have an external xattr block).
5600 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5601 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5602 */
5603 if (unlikely(ext4_has_inline_data(inode)))
5604 stat->blocks += (stat->size + 511) >> 9;
5605
3e3398a0
MC
5606 /*
5607 * We can't update i_blocks if the block allocation is delayed
5608 * otherwise in the case of system crash before the real block
5609 * allocation is done, we will have i_blocks inconsistent with
5610 * on-disk file blocks.
5611 * We always keep i_blocks updated together with real
5612 * allocation. But to not confuse with user, stat
5613 * will return the blocks that include the delayed allocation
5614 * blocks for this file.
5615 */
96607551 5616 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5617 EXT4_I(inode)->i_reserved_data_blocks);
5618 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5619 return 0;
5620}
ac27a0ec 5621
fffb2739
JK
5622static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5623 int pextents)
a02908f1 5624{
12e9b892 5625 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5626 return ext4_ind_trans_blocks(inode, lblocks);
5627 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5628}
ac51d837 5629
ac27a0ec 5630/*
a02908f1
MC
5631 * Account for index blocks, block groups bitmaps and block group
5632 * descriptor blocks if modify datablocks and index blocks
5633 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5634 *
a02908f1 5635 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5636 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5637 * they could still across block group boundary.
ac27a0ec 5638 *
a02908f1
MC
5639 * Also account for superblock, inode, quota and xattr blocks
5640 */
dec214d0 5641static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5642 int pextents)
a02908f1 5643{
8df9675f
TT
5644 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5645 int gdpblocks;
a02908f1
MC
5646 int idxblocks;
5647 int ret = 0;
5648
5649 /*
fffb2739
JK
5650 * How many index blocks need to touch to map @lblocks logical blocks
5651 * to @pextents physical extents?
a02908f1 5652 */
fffb2739 5653 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5654
5655 ret = idxblocks;
5656
5657 /*
5658 * Now let's see how many group bitmaps and group descriptors need
5659 * to account
5660 */
fffb2739 5661 groups = idxblocks + pextents;
a02908f1 5662 gdpblocks = groups;
8df9675f
TT
5663 if (groups > ngroups)
5664 groups = ngroups;
a02908f1
MC
5665 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5666 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5667
5668 /* bitmaps and block group descriptor blocks */
5669 ret += groups + gdpblocks;
5670
5671 /* Blocks for super block, inode, quota and xattr blocks */
5672 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5673
5674 return ret;
5675}
5676
5677/*
25985edc 5678 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5679 * the modification of a single pages into a single transaction,
5680 * which may include multiple chunks of block allocations.
ac27a0ec 5681 *
525f4ed8 5682 * This could be called via ext4_write_begin()
ac27a0ec 5683 *
525f4ed8 5684 * We need to consider the worse case, when
a02908f1 5685 * one new block per extent.
ac27a0ec 5686 */
a86c6181 5687int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5688{
617ba13b 5689 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5690 int ret;
5691
fffb2739 5692 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5693
a02908f1 5694 /* Account for data blocks for journalled mode */
617ba13b 5695 if (ext4_should_journal_data(inode))
a02908f1 5696 ret += bpp;
ac27a0ec
DK
5697 return ret;
5698}
f3bd1f3f
MC
5699
5700/*
5701 * Calculate the journal credits for a chunk of data modification.
5702 *
5703 * This is called from DIO, fallocate or whoever calling
79e83036 5704 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5705 *
5706 * journal buffers for data blocks are not included here, as DIO
5707 * and fallocate do no need to journal data buffers.
5708 */
5709int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5710{
5711 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5712}
5713
ac27a0ec 5714/*
617ba13b 5715 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5716 * Give this, we know that the caller already has write access to iloc->bh.
5717 */
617ba13b 5718int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5719 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5720{
5721 int err = 0;
5722
0db1ff22
TT
5723 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5724 return -EIO;
5725
c64db50e 5726 if (IS_I_VERSION(inode))
25ec56b5
JNC
5727 inode_inc_iversion(inode);
5728
ac27a0ec
DK
5729 /* the do_update_inode consumes one bh->b_count */
5730 get_bh(iloc->bh);
5731
dab291af 5732 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5733 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5734 put_bh(iloc->bh);
5735 return err;
5736}
5737
5738/*
5739 * On success, We end up with an outstanding reference count against
5740 * iloc->bh. This _must_ be cleaned up later.
5741 */
5742
5743int
617ba13b
MC
5744ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5745 struct ext4_iloc *iloc)
ac27a0ec 5746{
0390131b
FM
5747 int err;
5748
0db1ff22
TT
5749 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5750 return -EIO;
5751
0390131b
FM
5752 err = ext4_get_inode_loc(inode, iloc);
5753 if (!err) {
5754 BUFFER_TRACE(iloc->bh, "get_write_access");
5755 err = ext4_journal_get_write_access(handle, iloc->bh);
5756 if (err) {
5757 brelse(iloc->bh);
5758 iloc->bh = NULL;
ac27a0ec
DK
5759 }
5760 }
617ba13b 5761 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5762 return err;
5763}
5764
c03b45b8
MX
5765static int __ext4_expand_extra_isize(struct inode *inode,
5766 unsigned int new_extra_isize,
5767 struct ext4_iloc *iloc,
5768 handle_t *handle, int *no_expand)
5769{
5770 struct ext4_inode *raw_inode;
5771 struct ext4_xattr_ibody_header *header;
5772 int error;
5773
5774 raw_inode = ext4_raw_inode(iloc);
5775
5776 header = IHDR(inode, raw_inode);
5777
5778 /* No extended attributes present */
5779 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5780 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5781 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5782 EXT4_I(inode)->i_extra_isize, 0,
5783 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5784 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5785 return 0;
5786 }
5787
5788 /* try to expand with EAs present */
5789 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5790 raw_inode, handle);
5791 if (error) {
5792 /*
5793 * Inode size expansion failed; don't try again
5794 */
5795 *no_expand = 1;
5796 }
5797
5798 return error;
5799}
5800
6dd4ee7c
KS
5801/*
5802 * Expand an inode by new_extra_isize bytes.
5803 * Returns 0 on success or negative error number on failure.
5804 */
cf0a5e81
MX
5805static int ext4_try_to_expand_extra_isize(struct inode *inode,
5806 unsigned int new_extra_isize,
5807 struct ext4_iloc iloc,
5808 handle_t *handle)
6dd4ee7c 5809{
3b10fdc6
MX
5810 int no_expand;
5811 int error;
6dd4ee7c 5812
cf0a5e81
MX
5813 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5814 return -EOVERFLOW;
5815
5816 /*
5817 * In nojournal mode, we can immediately attempt to expand
5818 * the inode. When journaled, we first need to obtain extra
5819 * buffer credits since we may write into the EA block
5820 * with this same handle. If journal_extend fails, then it will
5821 * only result in a minor loss of functionality for that inode.
5822 * If this is felt to be critical, then e2fsck should be run to
5823 * force a large enough s_min_extra_isize.
5824 */
5825 if (ext4_handle_valid(handle) &&
5826 jbd2_journal_extend(handle,
5827 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5828 return -ENOSPC;
6dd4ee7c 5829
3b10fdc6 5830 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5831 return -EBUSY;
3b10fdc6 5832
c03b45b8
MX
5833 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5834 handle, &no_expand);
5835 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5836
c03b45b8
MX
5837 return error;
5838}
6dd4ee7c 5839
c03b45b8
MX
5840int ext4_expand_extra_isize(struct inode *inode,
5841 unsigned int new_extra_isize,
5842 struct ext4_iloc *iloc)
5843{
5844 handle_t *handle;
5845 int no_expand;
5846 int error, rc;
5847
5848 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5849 brelse(iloc->bh);
5850 return -EOVERFLOW;
6dd4ee7c
KS
5851 }
5852
c03b45b8
MX
5853 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5854 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5855 if (IS_ERR(handle)) {
5856 error = PTR_ERR(handle);
5857 brelse(iloc->bh);
5858 return error;
5859 }
5860
5861 ext4_write_lock_xattr(inode, &no_expand);
5862
5863 BUFFER_TRACE(iloc.bh, "get_write_access");
5864 error = ext4_journal_get_write_access(handle, iloc->bh);
3b10fdc6 5865 if (error) {
c03b45b8
MX
5866 brelse(iloc->bh);
5867 goto out_stop;
3b10fdc6 5868 }
cf0a5e81 5869
c03b45b8
MX
5870 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5871 handle, &no_expand);
5872
5873 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5874 if (!error)
5875 error = rc;
5876
5877 ext4_write_unlock_xattr(inode, &no_expand);
5878out_stop:
5879 ext4_journal_stop(handle);
3b10fdc6 5880 return error;
6dd4ee7c
KS
5881}
5882
ac27a0ec
DK
5883/*
5884 * What we do here is to mark the in-core inode as clean with respect to inode
5885 * dirtiness (it may still be data-dirty).
5886 * This means that the in-core inode may be reaped by prune_icache
5887 * without having to perform any I/O. This is a very good thing,
5888 * because *any* task may call prune_icache - even ones which
5889 * have a transaction open against a different journal.
5890 *
5891 * Is this cheating? Not really. Sure, we haven't written the
5892 * inode out, but prune_icache isn't a user-visible syncing function.
5893 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5894 * we start and wait on commits.
ac27a0ec 5895 */
617ba13b 5896int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5897{
617ba13b 5898 struct ext4_iloc iloc;
6dd4ee7c 5899 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5900 int err;
ac27a0ec
DK
5901
5902 might_sleep();
7ff9c073 5903 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5904 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5905 if (err)
5906 return err;
cf0a5e81
MX
5907
5908 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5909 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5910 iloc, handle);
5911
5e1021f2 5912 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5913}
5914
5915/*
617ba13b 5916 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5917 *
5918 * We're really interested in the case where a file is being extended.
5919 * i_size has been changed by generic_commit_write() and we thus need
5920 * to include the updated inode in the current transaction.
5921 *
5dd4056d 5922 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5923 * are allocated to the file.
5924 *
5925 * If the inode is marked synchronous, we don't honour that here - doing
5926 * so would cause a commit on atime updates, which we don't bother doing.
5927 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5928 *
5929 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5930 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5931 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5932 */
aa385729 5933void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5934{
ac27a0ec
DK
5935 handle_t *handle;
5936
0ae45f63
TT
5937 if (flags == I_DIRTY_TIME)
5938 return;
9924a92a 5939 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5940 if (IS_ERR(handle))
5941 goto out;
f3dc272f 5942
f3dc272f
CW
5943 ext4_mark_inode_dirty(handle, inode);
5944
617ba13b 5945 ext4_journal_stop(handle);
ac27a0ec
DK
5946out:
5947 return;
5948}
5949
5950#if 0
5951/*
5952 * Bind an inode's backing buffer_head into this transaction, to prevent
5953 * it from being flushed to disk early. Unlike
617ba13b 5954 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5955 * returns no iloc structure, so the caller needs to repeat the iloc
5956 * lookup to mark the inode dirty later.
5957 */
617ba13b 5958static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5959{
617ba13b 5960 struct ext4_iloc iloc;
ac27a0ec
DK
5961
5962 int err = 0;
5963 if (handle) {
617ba13b 5964 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5965 if (!err) {
5966 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5967 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5968 if (!err)
0390131b 5969 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5970 NULL,
0390131b 5971 iloc.bh);
ac27a0ec
DK
5972 brelse(iloc.bh);
5973 }
5974 }
617ba13b 5975 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5976 return err;
5977}
5978#endif
5979
617ba13b 5980int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5981{
5982 journal_t *journal;
5983 handle_t *handle;
5984 int err;
c8585c6f 5985 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5986
5987 /*
5988 * We have to be very careful here: changing a data block's
5989 * journaling status dynamically is dangerous. If we write a
5990 * data block to the journal, change the status and then delete
5991 * that block, we risk forgetting to revoke the old log record
5992 * from the journal and so a subsequent replay can corrupt data.
5993 * So, first we make sure that the journal is empty and that
5994 * nobody is changing anything.
5995 */
5996
617ba13b 5997 journal = EXT4_JOURNAL(inode);
0390131b
FM
5998 if (!journal)
5999 return 0;
d699594d 6000 if (is_journal_aborted(journal))
ac27a0ec
DK
6001 return -EROFS;
6002
17335dcc
DM
6003 /* Wait for all existing dio workers */
6004 ext4_inode_block_unlocked_dio(inode);
6005 inode_dio_wait(inode);
6006
4c546592
DJ
6007 /*
6008 * Before flushing the journal and switching inode's aops, we have
6009 * to flush all dirty data the inode has. There can be outstanding
6010 * delayed allocations, there can be unwritten extents created by
6011 * fallocate or buffered writes in dioread_nolock mode covered by
6012 * dirty data which can be converted only after flushing the dirty
6013 * data (and journalled aops don't know how to handle these cases).
6014 */
6015 if (val) {
6016 down_write(&EXT4_I(inode)->i_mmap_sem);
6017 err = filemap_write_and_wait(inode->i_mapping);
6018 if (err < 0) {
6019 up_write(&EXT4_I(inode)->i_mmap_sem);
6020 ext4_inode_resume_unlocked_dio(inode);
6021 return err;
6022 }
6023 }
6024
c8585c6f 6025 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 6026 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
6027
6028 /*
6029 * OK, there are no updates running now, and all cached data is
6030 * synced to disk. We are now in a completely consistent state
6031 * which doesn't have anything in the journal, and we know that
6032 * no filesystem updates are running, so it is safe to modify
6033 * the inode's in-core data-journaling state flag now.
6034 */
6035
6036 if (val)
12e9b892 6037 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6038 else {
4f879ca6
JK
6039 err = jbd2_journal_flush(journal);
6040 if (err < 0) {
6041 jbd2_journal_unlock_updates(journal);
c8585c6f 6042 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
6043 ext4_inode_resume_unlocked_dio(inode);
6044 return err;
6045 }
12e9b892 6046 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6047 }
617ba13b 6048 ext4_set_aops(inode);
ac27a0ec 6049
dab291af 6050 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
6051 percpu_up_write(&sbi->s_journal_flag_rwsem);
6052
4c546592
DJ
6053 if (val)
6054 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 6055 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
6056
6057 /* Finally we can mark the inode as dirty. */
6058
9924a92a 6059 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6060 if (IS_ERR(handle))
6061 return PTR_ERR(handle);
6062
617ba13b 6063 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6064 ext4_handle_sync(handle);
617ba13b
MC
6065 ext4_journal_stop(handle);
6066 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6067
6068 return err;
6069}
2e9ee850
AK
6070
6071static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6072{
6073 return !buffer_mapped(bh);
6074}
6075
11bac800 6076int ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6077{
11bac800 6078 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6079 struct page *page = vmf->page;
2e9ee850
AK
6080 loff_t size;
6081 unsigned long len;
9ea7df53 6082 int ret;
2e9ee850 6083 struct file *file = vma->vm_file;
496ad9aa 6084 struct inode *inode = file_inode(file);
2e9ee850 6085 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6086 handle_t *handle;
6087 get_block_t *get_block;
6088 int retries = 0;
2e9ee850 6089
8e8ad8a5 6090 sb_start_pagefault(inode->i_sb);
041bbb6d 6091 file_update_time(vma->vm_file);
ea3d7209
JK
6092
6093 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978
EB
6094
6095 ret = ext4_convert_inline_data(inode);
6096 if (ret)
6097 goto out_ret;
6098
9ea7df53
JK
6099 /* Delalloc case is easy... */
6100 if (test_opt(inode->i_sb, DELALLOC) &&
6101 !ext4_should_journal_data(inode) &&
6102 !ext4_nonda_switch(inode->i_sb)) {
6103 do {
5c500029 6104 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
6105 ext4_da_get_block_prep);
6106 } while (ret == -ENOSPC &&
6107 ext4_should_retry_alloc(inode->i_sb, &retries));
6108 goto out_ret;
2e9ee850 6109 }
0e499890
DW
6110
6111 lock_page(page);
9ea7df53
JK
6112 size = i_size_read(inode);
6113 /* Page got truncated from under us? */
6114 if (page->mapping != mapping || page_offset(page) > size) {
6115 unlock_page(page);
6116 ret = VM_FAULT_NOPAGE;
6117 goto out;
0e499890 6118 }
2e9ee850 6119
09cbfeaf
KS
6120 if (page->index == size >> PAGE_SHIFT)
6121 len = size & ~PAGE_MASK;
2e9ee850 6122 else
09cbfeaf 6123 len = PAGE_SIZE;
a827eaff 6124 /*
9ea7df53
JK
6125 * Return if we have all the buffers mapped. This avoids the need to do
6126 * journal_start/journal_stop which can block and take a long time
a827eaff 6127 */
2e9ee850 6128 if (page_has_buffers(page)) {
f19d5870
TM
6129 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6130 0, len, NULL,
6131 ext4_bh_unmapped)) {
9ea7df53 6132 /* Wait so that we don't change page under IO */
1d1d1a76 6133 wait_for_stable_page(page);
9ea7df53
JK
6134 ret = VM_FAULT_LOCKED;
6135 goto out;
a827eaff 6136 }
2e9ee850 6137 }
a827eaff 6138 unlock_page(page);
9ea7df53
JK
6139 /* OK, we need to fill the hole... */
6140 if (ext4_should_dioread_nolock(inode))
705965bd 6141 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6142 else
6143 get_block = ext4_get_block;
6144retry_alloc:
9924a92a
TT
6145 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6146 ext4_writepage_trans_blocks(inode));
9ea7df53 6147 if (IS_ERR(handle)) {
c2ec175c 6148 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6149 goto out;
6150 }
5c500029 6151 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 6152 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 6153 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 6154 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
6155 unlock_page(page);
6156 ret = VM_FAULT_SIGBUS;
fcbb5515 6157 ext4_journal_stop(handle);
9ea7df53
JK
6158 goto out;
6159 }
6160 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6161 }
6162 ext4_journal_stop(handle);
6163 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6164 goto retry_alloc;
6165out_ret:
6166 ret = block_page_mkwrite_return(ret);
6167out:
ea3d7209 6168 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6169 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
6170 return ret;
6171}
ea3d7209 6172
11bac800 6173int ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6174{
11bac800 6175 struct inode *inode = file_inode(vmf->vma->vm_file);
ea3d7209
JK
6176 int err;
6177
6178 down_read(&EXT4_I(inode)->i_mmap_sem);
11bac800 6179 err = filemap_fault(vmf);
ea3d7209
JK
6180 up_read(&EXT4_I(inode)->i_mmap_sem);
6181
6182 return err;
6183}