]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
ext4: fix fencepost in s_first_meta_bg validation
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
364443cb 40#include <linux/iomap.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 55 __u32 csum;
b47820ed
DJ
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
814525f4 59
b47820ed
DJ
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 65
b47820ed
DJ
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
b47820ed 75 }
05ac5aa1
DJ
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
78 }
79
814525f4
DW
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 90 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 111 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
678aaf48
JK
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
7ff9c073 124 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
678aaf48
JK
136}
137
d47992f8
LC
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
cb20d518
TT
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
f348c252 148int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
65eddb56
YY
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 152
bd9db175
ZL
153 if (ext4_has_inline_data(inode))
154 return 0;
155
ac27a0ec
DK
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157}
158
ac27a0ec
DK
159/*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
fa5d1113 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 165 int nblocks)
ac27a0ec 166{
487caeef
JK
167 int ret;
168
169 /*
e35fd660 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
0390131b 175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 176 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 177 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 178 ret = ext4_journal_restart(handle, nblocks);
487caeef 179 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 180 ext4_discard_preallocations(inode);
487caeef
JK
181
182 return ret;
ac27a0ec
DK
183}
184
185/*
186 * Called at the last iput() if i_nlink is zero.
187 */
0930fcc1 188void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
189{
190 handle_t *handle;
bc965ab3 191 int err;
ac27a0ec 192
7ff9c073 193 trace_ext4_evict_inode(inode);
2581fdc8 194
0930fcc1 195 if (inode->i_nlink) {
2d859db3
JK
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
6a7fd522
VN
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
2d859db3
JK
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
d76a3a77 220 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
221 filemap_write_and_wait(&inode->i_data);
222 }
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 224
0930fcc1
AV
225 goto no_delete;
226 }
227
e2bfb088
TT
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
907f4554 231
678aaf48
JK
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 234 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9924a92a
TT
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 243 if (IS_ERR(handle)) {
bc965ab3 244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
617ba13b 250 ext4_orphan_del(NULL, inode);
8e8ad8a5 251 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
0390131b 256 ext4_handle_sync(handle);
ac27a0ec 257 inode->i_size = 0;
bc965ab3
TT
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
12062ddd 260 ext4_warning(inode->i_sb,
bc965ab3
TT
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
2c98eb5e
TT
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
bc965ab3
TT
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
0390131b 280 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
12062ddd 285 ext4_warning(inode->i_sb,
bc965ab3
TT
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
45388219 289 ext4_orphan_del(NULL, inode);
8e8ad8a5 290 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
291 goto no_delete;
292 }
293 }
294
ac27a0ec 295 /*
617ba13b 296 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 297 * AKPM: I think this can be inside the above `if'.
617ba13b 298 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 299 * deletion of a non-existent orphan - this is because we don't
617ba13b 300 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
301 * (Well, we could do this if we need to, but heck - it works)
302 */
617ba13b
MC
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
617ba13b 313 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 314 /* If that failed, just do the required in-core inode clear. */
0930fcc1 315 ext4_clear_inode(inode);
ac27a0ec 316 else
617ba13b
MC
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
8e8ad8a5 319 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
320 return;
321no_delete:
0930fcc1 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
323}
324
a9e7f447
DM
325#ifdef CONFIG_QUOTA
326qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 327{
a9e7f447 328 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 329}
a9e7f447 330#endif
9d0be502 331
0637c6f4
TT
332/*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
5f634d06
AK
336void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
12219aea
AK
338{
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 340 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
341
342 spin_lock(&ei->i_block_reservation_lock);
d8990240 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 344 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 346 "with only %d reserved data blocks",
0637c6f4
TT
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
12219aea 352
0637c6f4
TT
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
71d4f7d0 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 356
12219aea 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 358
72b8ab9d
ES
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
7b415bf6 361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 362 else {
5f634d06
AK
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
72b8ab9d 366 * not re-claim the quota for fallocated blocks.
5f634d06 367 */
7b415bf6 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 369 }
d6014301
AK
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
0637c6f4
TT
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
d6014301 378 ext4_discard_preallocations(inode);
12219aea
AK
379}
380
e29136f8 381static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
382 unsigned int line,
383 struct ext4_map_blocks *map)
6fd058f7 384{
24676da4
TT
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
c398eda0
TT
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
6a797d27 391 return -EFSCORRUPTED;
6fd058f7
TT
392 }
393 return 0;
394}
395
53085fac
JK
396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398{
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
a7550b30 402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409}
410
e29136f8 411#define check_block_validity(inode, map) \
c398eda0 412 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 413
921f266b
DM
414#ifdef ES_AGGRESSIVE_TEST
415static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420{
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
2dcba478 431 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
2dcba478 439 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
bdafe42a 448 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456}
457#endif /* ES_AGGRESSIVE_TEST */
458
f5ab0d1f 459/*
e35fd660 460 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 461 * and returns if the blocks are already mapped.
f5ab0d1f 462 *
f5ab0d1f
MC
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
e35fd660
TT
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
469 * based files
470 *
facab4d9
JK
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
478 *
479 * It returns the error in case of allocation failure.
480 */
e35fd660
TT
481int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
0e855ac8 483{
d100eef2 484 struct extent_status es;
0e855ac8 485 int retval;
b8a86845 486 int ret = 0;
921f266b
DM
487#ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491#endif
f5ab0d1f 492
e35fd660
TT
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
d100eef2 497
e861b5e9
TT
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
4adb6ab3
KM
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 506 return -EFSCORRUPTED;
4adb6ab3 507
d100eef2
ZL
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
d100eef2
ZL
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
921f266b
DM
529#ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532#endif
d100eef2
ZL
533 goto found;
534 }
535
4df3d265 536 /*
b920c755
TT
537 * Try to see if we can get the block without requesting a new
538 * file system block.
4df3d265 539 */
2dcba478 540 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 544 } else {
a4e5d88b
DM
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 547 }
f7fec032 548 if (retval > 0) {
3be78c73 549 unsigned int status;
f7fec032 550
44fb851d
ZL
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
921f266b 557 }
921f266b 558
f7fec032
ZL
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 562 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
2dcba478 571 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 572
d100eef2 573found:
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 575 ret = check_block_validity(inode, map);
6fd058f7
TT
576 if (ret != 0)
577 return ret;
578 }
579
f5ab0d1f 580 /* If it is only a block(s) look up */
c2177057 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
df3ab170 588 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
589 * with buffer head unmapped.
590 */
e35fd660 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
4df3d265 599
2a8964d6 600 /*
a25a4e1a
ZL
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
2a8964d6 603 */
a25a4e1a 604 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 605
4df3d265 606 /*
556615dc 607 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 608 * will possibly result in updating i_data, so we take
d91bd2c1 609 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 610 * with create == 1 flag.
4df3d265 611 */
c8b459f4 612 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 613
4df3d265
AK
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
12e9b892 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 620 } else {
e35fd660 621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 622
e35fd660 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
19f5fb7a 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 630 }
d2a17637 631
5f634d06
AK
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
1296cc85 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
2ac3b6e0 642
f7fec032 643 if (retval > 0) {
3be78c73 644 unsigned int status;
f7fec032 645
44fb851d
ZL
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
921f266b 652 }
921f266b 653
c86d8db3
JK
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
9b623df6
JK
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
c86d8db3
JK
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
c86d8db3
JK
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
adb23551
ZL
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
c86d8db3 681 goto out_sem;
adb23551 682 }
f7fec032
ZL
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 686 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
c86d8db3 692 if (ret < 0) {
f7fec032 693 retval = ret;
c86d8db3
JK
694 goto out_sem;
695 }
5356f261
AK
696 }
697
c86d8db3 698out_sem:
4df3d265 699 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 701 ret = check_block_validity(inode, map);
6fd058f7
TT
702 if (ret != 0)
703 return ret;
06bd3c36
JK
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
ee0876bc
JK
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
719 if (ret)
720 return ret;
721 }
6fd058f7 722 }
0e855ac8
AK
723 return retval;
724}
725
ed8ad838
JK
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752}
753
2ed88685
TT
754static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
ac27a0ec 756{
2ed88685 757 struct ext4_map_blocks map;
efe70c29 758 int ret = 0;
ac27a0ec 759
46c7f254
TM
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
2ed88685
TT
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
efe70c29
JK
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
7fb5409d 768 if (ret > 0) {
2ed88685 769 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 770 ext4_update_bh_state(bh, map.m_flags);
2ed88685 771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 772 ret = 0;
547edce3
RZ
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
776 }
777 return ret;
778}
779
2ed88685
TT
780int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782{
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785}
786
705965bd
JK
787/*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794{
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799}
800
efe70c29
JK
801/* Maximum number of blocks we map for direct IO at once. */
802#define DIO_MAX_BLOCKS 4096
803
e84dfbe2
JK
804/*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
efe70c29
JK
811{
812 int dio_credits;
e84dfbe2
JK
813 handle_t *handle;
814 int retries = 0;
815 int ret;
efe70c29
JK
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
822retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
efe70c29
JK
833}
834
705965bd
JK
835/* Get block function for DIO reads and writes to inodes without extents */
836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838{
efe70c29
JK
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
e84dfbe2
JK
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
845}
846
847/*
109811c2 848 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
109811c2
JK
852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 854{
efe70c29
JK
855 int ret;
856
efe70c29
JK
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
e84dfbe2
JK
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 862
109811c2
JK
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
efe70c29 880 set_buffer_defer_completion(bh_result);
efe70c29
JK
881 }
882
883 return ret;
705965bd
JK
884}
885
109811c2
JK
886/*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893{
109811c2
JK
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
e84dfbe2
JK
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911}
912
705965bd
JK
913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915{
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
efe70c29
JK
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
705965bd
JK
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
efe70c29 928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
929
930 return ret;
931}
932
933
ac27a0ec
DK
934/*
935 * `handle' can be NULL if create is zero
936 */
617ba13b 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 938 ext4_lblk_t block, int map_flags)
ac27a0ec 939{
2ed88685
TT
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
c5e298ae 942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 943 int err;
ac27a0ec
DK
944
945 J_ASSERT(handle != NULL || create == 0);
946
2ed88685
TT
947 map.m_lblk = block;
948 map.m_len = 1;
c5e298ae 949 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 950
10560082
TT
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 953 if (err < 0)
10560082 954 return ERR_PTR(err);
2ed88685
TT
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
2ed88685
TT
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
ac27a0ec 962
2ed88685
TT
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
2ed88685
TT
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
ac27a0ec 980 }
2ed88685
TT
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
984 if (unlikely(err))
985 goto errout;
986 } else
2ed88685 987 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 988 return bh;
10560082
TT
989errout:
990 brelse(bh);
991 return ERR_PTR(err);
ac27a0ec
DK
992}
993
617ba13b 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 995 ext4_lblk_t block, int map_flags)
ac27a0ec 996{
af5bc92d 997 struct buffer_head *bh;
ac27a0ec 998
c5e298ae 999 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1000 if (IS_ERR(bh))
ac27a0ec 1001 return bh;
1c215028 1002 if (!bh || buffer_uptodate(bh))
ac27a0ec 1003 return bh;
dfec8a14 1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1c215028 1009 return ERR_PTR(-EIO);
ac27a0ec
DK
1010}
1011
f19d5870
TM
1012int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
ac27a0ec
DK
1019{
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
af5bc92d
TT
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
de9a55b8 1028 block_start = block_end, bh = next) {
ac27a0ec
DK
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1046 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1048 * prepare_write() is the right place.
1049 *
36ade451
JK
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
ac27a0ec 1054 *
617ba13b 1055 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
dab291af 1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
f19d5870
TM
1067int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
ac27a0ec 1069{
56d35a4c
JK
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
ac27a0ec
DK
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
56d35a4c 1075 /*
ebdec241 1076 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1079 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
5d601255 1085 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
ac27a0ec
DK
1090}
1091
2058f83a
MH
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095{
09cbfeaf 1096 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
09cbfeaf 1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
e64855c6 1136 clean_bdev_bh_alias(bh);
2058f83a
MH
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
dfec8a14 1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
7821d4dd 1174 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1175 PAGE_SIZE, 0, page->index);
2058f83a
MH
1176 return err;
1177}
1178#endif
1179
bfc1af65 1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
ac27a0ec 1183{
af5bc92d 1184 struct inode *inode = mapping->host;
1938a150 1185 int ret, needed_blocks;
ac27a0ec
DK
1186 handle_t *handle;
1187 int retries = 0;
af5bc92d 1188 struct page *page;
de9a55b8 1189 pgoff_t index;
af5bc92d 1190 unsigned from, to;
bfc1af65 1191
9bffad1e 1192 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1193 /*
1194 * Reserve one block more for addition to orphan list in case
1195 * we allocate blocks but write fails for some reason
1196 */
1197 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1198 index = pos >> PAGE_SHIFT;
1199 from = pos & (PAGE_SIZE - 1);
af5bc92d 1200 to = from + len;
ac27a0ec 1201
f19d5870
TM
1202 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204 flags, pagep);
1205 if (ret < 0)
47564bfb
TT
1206 return ret;
1207 if (ret == 1)
1208 return 0;
f19d5870
TM
1209 }
1210
47564bfb
TT
1211 /*
1212 * grab_cache_page_write_begin() can take a long time if the
1213 * system is thrashing due to memory pressure, or if the page
1214 * is being written back. So grab it first before we start
1215 * the transaction handle. This also allows us to allocate
1216 * the page (if needed) without using GFP_NOFS.
1217 */
1218retry_grab:
1219 page = grab_cache_page_write_begin(mapping, index, flags);
1220 if (!page)
1221 return -ENOMEM;
1222 unlock_page(page);
1223
1224retry_journal:
9924a92a 1225 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1226 if (IS_ERR(handle)) {
09cbfeaf 1227 put_page(page);
47564bfb 1228 return PTR_ERR(handle);
7479d2b9 1229 }
ac27a0ec 1230
47564bfb
TT
1231 lock_page(page);
1232 if (page->mapping != mapping) {
1233 /* The page got truncated from under us */
1234 unlock_page(page);
09cbfeaf 1235 put_page(page);
cf108bca 1236 ext4_journal_stop(handle);
47564bfb 1237 goto retry_grab;
cf108bca 1238 }
7afe5aa5
DM
1239 /* In case writeback began while the page was unlocked */
1240 wait_for_stable_page(page);
cf108bca 1241
2058f83a
MH
1242#ifdef CONFIG_EXT4_FS_ENCRYPTION
1243 if (ext4_should_dioread_nolock(inode))
1244 ret = ext4_block_write_begin(page, pos, len,
705965bd 1245 ext4_get_block_unwritten);
2058f83a
MH
1246 else
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block);
1249#else
744692dc 1250 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1251 ret = __block_write_begin(page, pos, len,
1252 ext4_get_block_unwritten);
744692dc 1253 else
6e1db88d 1254 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1255#endif
bfc1af65 1256 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1257 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258 from, to, NULL,
1259 do_journal_get_write_access);
ac27a0ec 1260 }
bfc1af65
NP
1261
1262 if (ret) {
af5bc92d 1263 unlock_page(page);
ae4d5372 1264 /*
6e1db88d 1265 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1266 * outside i_size. Trim these off again. Don't need
1267 * i_size_read because we hold i_mutex.
1938a150
AK
1268 *
1269 * Add inode to orphan list in case we crash before
1270 * truncate finishes
ae4d5372 1271 */
ffacfa7a 1272 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1273 ext4_orphan_add(handle, inode);
1274
1275 ext4_journal_stop(handle);
1276 if (pos + len > inode->i_size) {
b9a4207d 1277 ext4_truncate_failed_write(inode);
de9a55b8 1278 /*
ffacfa7a 1279 * If truncate failed early the inode might
1938a150
AK
1280 * still be on the orphan list; we need to
1281 * make sure the inode is removed from the
1282 * orphan list in that case.
1283 */
1284 if (inode->i_nlink)
1285 ext4_orphan_del(NULL, inode);
1286 }
bfc1af65 1287
47564bfb
TT
1288 if (ret == -ENOSPC &&
1289 ext4_should_retry_alloc(inode->i_sb, &retries))
1290 goto retry_journal;
09cbfeaf 1291 put_page(page);
47564bfb
TT
1292 return ret;
1293 }
1294 *pagep = page;
ac27a0ec
DK
1295 return ret;
1296}
1297
bfc1af65
NP
1298/* For write_end() in data=journal mode */
1299static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1300{
13fca323 1301 int ret;
ac27a0ec
DK
1302 if (!buffer_mapped(bh) || buffer_freed(bh))
1303 return 0;
1304 set_buffer_uptodate(bh);
13fca323
TT
1305 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306 clear_buffer_meta(bh);
1307 clear_buffer_prio(bh);
1308 return ret;
ac27a0ec
DK
1309}
1310
eed4333f
ZL
1311/*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1316 * buffers are managed internally.
1317 */
1318static int ext4_write_end(struct file *file,
1319 struct address_space *mapping,
1320 loff_t pos, unsigned len, unsigned copied,
1321 struct page *page, void *fsdata)
f8514083 1322{
f8514083 1323 handle_t *handle = ext4_journal_current_handle();
eed4333f 1324 struct inode *inode = mapping->host;
0572639f 1325 loff_t old_size = inode->i_size;
eed4333f
ZL
1326 int ret = 0, ret2;
1327 int i_size_changed = 0;
1328
1329 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1330 if (ext4_has_inline_data(inode)) {
1331 ret = ext4_write_inline_data_end(inode, pos, len,
1332 copied, page);
e22506b0
TT
1333 if (ret < 0) {
1334 unlock_page(page);
1335 put_page(page);
42c832de 1336 goto errout;
e22506b0 1337 }
42c832de
TT
1338 copied = ret;
1339 } else
f19d5870
TM
1340 copied = block_write_end(file, mapping, pos,
1341 len, copied, page, fsdata);
f8514083 1342 /*
4631dbf6 1343 * it's important to update i_size while still holding page lock:
f8514083
AK
1344 * page writeout could otherwise come in and zero beyond i_size.
1345 */
4631dbf6 1346 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1347 unlock_page(page);
09cbfeaf 1348 put_page(page);
f8514083 1349
0572639f
XW
1350 if (old_size < pos)
1351 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1352 /*
1353 * Don't mark the inode dirty under page lock. First, it unnecessarily
1354 * makes the holding time of page lock longer. Second, it forces lock
1355 * ordering of page lock and transaction start for journaling
1356 * filesystems.
1357 */
1358 if (i_size_changed)
1359 ext4_mark_inode_dirty(handle, inode);
1360
ffacfa7a 1361 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1362 /* if we have allocated more blocks and copied
1363 * less. We will have blocks allocated outside
1364 * inode->i_size. So truncate them
1365 */
1366 ext4_orphan_add(handle, inode);
74d553aa 1367errout:
617ba13b 1368 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1369 if (!ret)
1370 ret = ret2;
bfc1af65 1371
f8514083 1372 if (pos + len > inode->i_size) {
b9a4207d 1373 ext4_truncate_failed_write(inode);
de9a55b8 1374 /*
ffacfa7a 1375 * If truncate failed early the inode might still be
f8514083
AK
1376 * on the orphan list; we need to make sure the inode
1377 * is removed from the orphan list in that case.
1378 */
1379 if (inode->i_nlink)
1380 ext4_orphan_del(NULL, inode);
1381 }
1382
bfc1af65 1383 return ret ? ret : copied;
ac27a0ec
DK
1384}
1385
b90197b6
TT
1386/*
1387 * This is a private version of page_zero_new_buffers() which doesn't
1388 * set the buffer to be dirty, since in data=journalled mode we need
1389 * to call ext4_handle_dirty_metadata() instead.
1390 */
fb97071a
JK
1391static void ext4_journalled_zero_new_buffers(handle_t *handle,
1392 struct page *page,
1393 unsigned from, unsigned to)
b90197b6
TT
1394{
1395 unsigned int block_start = 0, block_end;
1396 struct buffer_head *head, *bh;
1397
1398 bh = head = page_buffers(page);
1399 do {
1400 block_end = block_start + bh->b_size;
1401 if (buffer_new(bh)) {
1402 if (block_end > from && block_start < to) {
1403 if (!PageUptodate(page)) {
1404 unsigned start, size;
1405
1406 start = max(from, block_start);
1407 size = min(to, block_end) - start;
1408
1409 zero_user(page, start, size);
fb97071a 1410 write_end_fn(handle, bh);
b90197b6
TT
1411 }
1412 clear_buffer_new(bh);
1413 }
1414 }
1415 block_start = block_end;
1416 bh = bh->b_this_page;
1417 } while (bh != head);
1418}
1419
bfc1af65 1420static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1421 struct address_space *mapping,
1422 loff_t pos, unsigned len, unsigned copied,
1423 struct page *page, void *fsdata)
ac27a0ec 1424{
617ba13b 1425 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1426 struct inode *inode = mapping->host;
0572639f 1427 loff_t old_size = inode->i_size;
ac27a0ec
DK
1428 int ret = 0, ret2;
1429 int partial = 0;
bfc1af65 1430 unsigned from, to;
4631dbf6 1431 int size_changed = 0;
ac27a0ec 1432
9bffad1e 1433 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1434 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1435 to = from + len;
1436
441c8508
CW
1437 BUG_ON(!ext4_handle_valid(handle));
1438
e22506b0
TT
1439 if (ext4_has_inline_data(inode)) {
1440 ret = ext4_write_inline_data_end(inode, pos, len,
1441 copied, page);
1442 if (ret < 0) {
1443 unlock_page(page);
1444 put_page(page);
1445 goto errout;
1446 }
1447 copied = ret;
1448 } else if (unlikely(copied < len) && !PageUptodate(page)) {
fb97071a
JK
1449 copied = 0;
1450 ext4_journalled_zero_new_buffers(handle, page, from, to);
1451 } else {
1452 if (unlikely(copied < len))
1453 ext4_journalled_zero_new_buffers(handle, page,
1454 from + copied, to);
3fdcfb66 1455 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
fb97071a
JK
1456 from + copied, &partial,
1457 write_end_fn);
3fdcfb66
TM
1458 if (!partial)
1459 SetPageUptodate(page);
1460 }
4631dbf6 1461 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1462 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1463 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1464 unlock_page(page);
09cbfeaf 1465 put_page(page);
4631dbf6 1466
0572639f
XW
1467 if (old_size < pos)
1468 pagecache_isize_extended(inode, old_size, pos);
1469
4631dbf6 1470 if (size_changed) {
617ba13b 1471 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1472 if (!ret)
1473 ret = ret2;
1474 }
bfc1af65 1475
ffacfa7a 1476 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1477 /* if we have allocated more blocks and copied
1478 * less. We will have blocks allocated outside
1479 * inode->i_size. So truncate them
1480 */
1481 ext4_orphan_add(handle, inode);
1482
e22506b0 1483errout:
617ba13b 1484 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1485 if (!ret)
1486 ret = ret2;
f8514083 1487 if (pos + len > inode->i_size) {
b9a4207d 1488 ext4_truncate_failed_write(inode);
de9a55b8 1489 /*
ffacfa7a 1490 * If truncate failed early the inode might still be
f8514083
AK
1491 * on the orphan list; we need to make sure the inode
1492 * is removed from the orphan list in that case.
1493 */
1494 if (inode->i_nlink)
1495 ext4_orphan_del(NULL, inode);
1496 }
bfc1af65
NP
1497
1498 return ret ? ret : copied;
ac27a0ec 1499}
d2a17637 1500
9d0be502 1501/*
c27e43a1 1502 * Reserve space for a single cluster
9d0be502 1503 */
c27e43a1 1504static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1505{
60e58e0f 1506 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1507 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1508 int ret;
03179fe9
TT
1509
1510 /*
1511 * We will charge metadata quota at writeout time; this saves
1512 * us from metadata over-estimation, though we may go over by
1513 * a small amount in the end. Here we just reserve for data.
1514 */
1515 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1516 if (ret)
1517 return ret;
d2a17637 1518
0637c6f4 1519 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1520 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1521 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1523 return -ENOSPC;
1524 }
9d0be502 1525 ei->i_reserved_data_blocks++;
c27e43a1 1526 trace_ext4_da_reserve_space(inode);
0637c6f4 1527 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1528
d2a17637
MC
1529 return 0; /* success */
1530}
1531
12219aea 1532static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1533{
1534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1535 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1536
cd213226
MC
1537 if (!to_free)
1538 return; /* Nothing to release, exit */
1539
d2a17637 1540 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1541
5a58ec87 1542 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1543 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1544 /*
0637c6f4
TT
1545 * if there aren't enough reserved blocks, then the
1546 * counter is messed up somewhere. Since this
1547 * function is called from invalidate page, it's
1548 * harmless to return without any action.
cd213226 1549 */
8de5c325 1550 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1551 "ino %lu, to_free %d with only %d reserved "
1084f252 1552 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1553 ei->i_reserved_data_blocks);
1554 WARN_ON(1);
1555 to_free = ei->i_reserved_data_blocks;
cd213226 1556 }
0637c6f4 1557 ei->i_reserved_data_blocks -= to_free;
cd213226 1558
72b8ab9d 1559 /* update fs dirty data blocks counter */
57042651 1560 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1561
d2a17637 1562 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1563
7b415bf6 1564 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1565}
1566
1567static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1568 unsigned int offset,
1569 unsigned int length)
d2a17637 1570{
9705acd6 1571 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1572 struct buffer_head *head, *bh;
1573 unsigned int curr_off = 0;
7b415bf6
AK
1574 struct inode *inode = page->mapping->host;
1575 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1576 unsigned int stop = offset + length;
7b415bf6 1577 int num_clusters;
51865fda 1578 ext4_fsblk_t lblk;
d2a17637 1579
09cbfeaf 1580 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1581
d2a17637
MC
1582 head = page_buffers(page);
1583 bh = head;
1584 do {
1585 unsigned int next_off = curr_off + bh->b_size;
1586
ca99fdd2
LC
1587 if (next_off > stop)
1588 break;
1589
d2a17637
MC
1590 if ((offset <= curr_off) && (buffer_delay(bh))) {
1591 to_release++;
9705acd6 1592 contiguous_blks++;
d2a17637 1593 clear_buffer_delay(bh);
9705acd6
LC
1594 } else if (contiguous_blks) {
1595 lblk = page->index <<
09cbfeaf 1596 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1597 lblk += (curr_off >> inode->i_blkbits) -
1598 contiguous_blks;
1599 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1600 contiguous_blks = 0;
d2a17637
MC
1601 }
1602 curr_off = next_off;
1603 } while ((bh = bh->b_this_page) != head);
7b415bf6 1604
9705acd6 1605 if (contiguous_blks) {
09cbfeaf 1606 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1607 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1608 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1609 }
1610
7b415bf6
AK
1611 /* If we have released all the blocks belonging to a cluster, then we
1612 * need to release the reserved space for that cluster. */
1613 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1614 while (num_clusters > 0) {
09cbfeaf 1615 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1616 ((num_clusters - 1) << sbi->s_cluster_bits);
1617 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1618 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1619 ext4_da_release_space(inode, 1);
1620
1621 num_clusters--;
1622 }
d2a17637 1623}
ac27a0ec 1624
64769240
AT
1625/*
1626 * Delayed allocation stuff
1627 */
1628
4e7ea81d
JK
1629struct mpage_da_data {
1630 struct inode *inode;
1631 struct writeback_control *wbc;
6b523df4 1632
4e7ea81d
JK
1633 pgoff_t first_page; /* The first page to write */
1634 pgoff_t next_page; /* Current page to examine */
1635 pgoff_t last_page; /* Last page to examine */
791b7f08 1636 /*
4e7ea81d
JK
1637 * Extent to map - this can be after first_page because that can be
1638 * fully mapped. We somewhat abuse m_flags to store whether the extent
1639 * is delalloc or unwritten.
791b7f08 1640 */
4e7ea81d
JK
1641 struct ext4_map_blocks map;
1642 struct ext4_io_submit io_submit; /* IO submission data */
1643};
64769240 1644
4e7ea81d
JK
1645static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1646 bool invalidate)
c4a0c46e
AK
1647{
1648 int nr_pages, i;
1649 pgoff_t index, end;
1650 struct pagevec pvec;
1651 struct inode *inode = mpd->inode;
1652 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1653
1654 /* This is necessary when next_page == 0. */
1655 if (mpd->first_page >= mpd->next_page)
1656 return;
c4a0c46e 1657
c7f5938a
CW
1658 index = mpd->first_page;
1659 end = mpd->next_page - 1;
4e7ea81d
JK
1660 if (invalidate) {
1661 ext4_lblk_t start, last;
09cbfeaf
KS
1662 start = index << (PAGE_SHIFT - inode->i_blkbits);
1663 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1664 ext4_es_remove_extent(inode, start, last - start + 1);
1665 }
51865fda 1666
66bea92c 1667 pagevec_init(&pvec, 0);
c4a0c46e
AK
1668 while (index <= end) {
1669 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1670 if (nr_pages == 0)
1671 break;
1672 for (i = 0; i < nr_pages; i++) {
1673 struct page *page = pvec.pages[i];
9b1d0998 1674 if (page->index > end)
c4a0c46e 1675 break;
c4a0c46e
AK
1676 BUG_ON(!PageLocked(page));
1677 BUG_ON(PageWriteback(page));
4e7ea81d 1678 if (invalidate) {
4e800c03 1679 if (page_mapped(page))
1680 clear_page_dirty_for_io(page);
09cbfeaf 1681 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1682 ClearPageUptodate(page);
1683 }
c4a0c46e
AK
1684 unlock_page(page);
1685 }
9b1d0998
JK
1686 index = pvec.pages[nr_pages - 1]->index + 1;
1687 pagevec_release(&pvec);
c4a0c46e 1688 }
c4a0c46e
AK
1689}
1690
df22291f
AK
1691static void ext4_print_free_blocks(struct inode *inode)
1692{
1693 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1694 struct super_block *sb = inode->i_sb;
f78ee70d 1695 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1696
1697 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1698 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1699 ext4_count_free_clusters(sb)));
92b97816
TT
1700 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1701 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1702 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1703 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1704 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1705 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1706 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1707 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1708 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1709 ei->i_reserved_data_blocks);
df22291f
AK
1710 return;
1711}
1712
c364b22c 1713static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1714{
c364b22c 1715 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1716}
1717
5356f261
AK
1718/*
1719 * This function is grabs code from the very beginning of
1720 * ext4_map_blocks, but assumes that the caller is from delayed write
1721 * time. This function looks up the requested blocks and sets the
1722 * buffer delay bit under the protection of i_data_sem.
1723 */
1724static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1725 struct ext4_map_blocks *map,
1726 struct buffer_head *bh)
1727{
d100eef2 1728 struct extent_status es;
5356f261
AK
1729 int retval;
1730 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1731#ifdef ES_AGGRESSIVE_TEST
1732 struct ext4_map_blocks orig_map;
1733
1734 memcpy(&orig_map, map, sizeof(*map));
1735#endif
5356f261
AK
1736
1737 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1738 invalid_block = ~0;
1739
1740 map->m_flags = 0;
1741 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1742 "logical block %lu\n", inode->i_ino, map->m_len,
1743 (unsigned long) map->m_lblk);
d100eef2
ZL
1744
1745 /* Lookup extent status tree firstly */
1746 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1747 if (ext4_es_is_hole(&es)) {
1748 retval = 0;
c8b459f4 1749 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1750 goto add_delayed;
1751 }
1752
1753 /*
1754 * Delayed extent could be allocated by fallocate.
1755 * So we need to check it.
1756 */
1757 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1758 map_bh(bh, inode->i_sb, invalid_block);
1759 set_buffer_new(bh);
1760 set_buffer_delay(bh);
1761 return 0;
1762 }
1763
1764 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1765 retval = es.es_len - (iblock - es.es_lblk);
1766 if (retval > map->m_len)
1767 retval = map->m_len;
1768 map->m_len = retval;
1769 if (ext4_es_is_written(&es))
1770 map->m_flags |= EXT4_MAP_MAPPED;
1771 else if (ext4_es_is_unwritten(&es))
1772 map->m_flags |= EXT4_MAP_UNWRITTEN;
1773 else
1774 BUG_ON(1);
1775
921f266b
DM
1776#ifdef ES_AGGRESSIVE_TEST
1777 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1778#endif
d100eef2
ZL
1779 return retval;
1780 }
1781
5356f261
AK
1782 /*
1783 * Try to see if we can get the block without requesting a new
1784 * file system block.
1785 */
c8b459f4 1786 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1787 if (ext4_has_inline_data(inode))
9c3569b5 1788 retval = 0;
cbd7584e 1789 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1790 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1791 else
2f8e0a7c 1792 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1793
d100eef2 1794add_delayed:
5356f261 1795 if (retval == 0) {
f7fec032 1796 int ret;
5356f261
AK
1797 /*
1798 * XXX: __block_prepare_write() unmaps passed block,
1799 * is it OK?
1800 */
386ad67c
LC
1801 /*
1802 * If the block was allocated from previously allocated cluster,
1803 * then we don't need to reserve it again. However we still need
1804 * to reserve metadata for every block we're going to write.
1805 */
c27e43a1 1806 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1807 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1808 ret = ext4_da_reserve_space(inode);
f7fec032 1809 if (ret) {
5356f261 1810 /* not enough space to reserve */
f7fec032 1811 retval = ret;
5356f261 1812 goto out_unlock;
f7fec032 1813 }
5356f261
AK
1814 }
1815
f7fec032
ZL
1816 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1817 ~0, EXTENT_STATUS_DELAYED);
1818 if (ret) {
1819 retval = ret;
51865fda 1820 goto out_unlock;
f7fec032 1821 }
51865fda 1822
5356f261
AK
1823 map_bh(bh, inode->i_sb, invalid_block);
1824 set_buffer_new(bh);
1825 set_buffer_delay(bh);
f7fec032
ZL
1826 } else if (retval > 0) {
1827 int ret;
3be78c73 1828 unsigned int status;
f7fec032 1829
44fb851d
ZL
1830 if (unlikely(retval != map->m_len)) {
1831 ext4_warning(inode->i_sb,
1832 "ES len assertion failed for inode "
1833 "%lu: retval %d != map->m_len %d",
1834 inode->i_ino, retval, map->m_len);
1835 WARN_ON(1);
921f266b 1836 }
921f266b 1837
f7fec032
ZL
1838 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1839 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1840 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1841 map->m_pblk, status);
1842 if (ret != 0)
1843 retval = ret;
5356f261
AK
1844 }
1845
1846out_unlock:
1847 up_read((&EXT4_I(inode)->i_data_sem));
1848
1849 return retval;
1850}
1851
64769240 1852/*
d91bd2c1 1853 * This is a special get_block_t callback which is used by
b920c755
TT
1854 * ext4_da_write_begin(). It will either return mapped block or
1855 * reserve space for a single block.
29fa89d0
AK
1856 *
1857 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1858 * We also have b_blocknr = -1 and b_bdev initialized properly
1859 *
1860 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1861 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1862 * initialized properly.
64769240 1863 */
9c3569b5
TM
1864int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1865 struct buffer_head *bh, int create)
64769240 1866{
2ed88685 1867 struct ext4_map_blocks map;
64769240
AT
1868 int ret = 0;
1869
1870 BUG_ON(create == 0);
2ed88685
TT
1871 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1872
1873 map.m_lblk = iblock;
1874 map.m_len = 1;
64769240
AT
1875
1876 /*
1877 * first, we need to know whether the block is allocated already
1878 * preallocated blocks are unmapped but should treated
1879 * the same as allocated blocks.
1880 */
5356f261
AK
1881 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1882 if (ret <= 0)
2ed88685 1883 return ret;
64769240 1884
2ed88685 1885 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1886 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1887
1888 if (buffer_unwritten(bh)) {
1889 /* A delayed write to unwritten bh should be marked
1890 * new and mapped. Mapped ensures that we don't do
1891 * get_block multiple times when we write to the same
1892 * offset and new ensures that we do proper zero out
1893 * for partial write.
1894 */
1895 set_buffer_new(bh);
c8205636 1896 set_buffer_mapped(bh);
2ed88685
TT
1897 }
1898 return 0;
64769240 1899}
61628a3f 1900
62e086be
AK
1901static int bget_one(handle_t *handle, struct buffer_head *bh)
1902{
1903 get_bh(bh);
1904 return 0;
1905}
1906
1907static int bput_one(handle_t *handle, struct buffer_head *bh)
1908{
1909 put_bh(bh);
1910 return 0;
1911}
1912
1913static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1914 unsigned int len)
1915{
1916 struct address_space *mapping = page->mapping;
1917 struct inode *inode = mapping->host;
3fdcfb66 1918 struct buffer_head *page_bufs = NULL;
62e086be 1919 handle_t *handle = NULL;
3fdcfb66
TM
1920 int ret = 0, err = 0;
1921 int inline_data = ext4_has_inline_data(inode);
1922 struct buffer_head *inode_bh = NULL;
62e086be 1923
cb20d518 1924 ClearPageChecked(page);
3fdcfb66
TM
1925
1926 if (inline_data) {
1927 BUG_ON(page->index != 0);
1928 BUG_ON(len > ext4_get_max_inline_size(inode));
1929 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1930 if (inode_bh == NULL)
1931 goto out;
1932 } else {
1933 page_bufs = page_buffers(page);
1934 if (!page_bufs) {
1935 BUG();
1936 goto out;
1937 }
1938 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1939 NULL, bget_one);
1940 }
bdf96838
TT
1941 /*
1942 * We need to release the page lock before we start the
1943 * journal, so grab a reference so the page won't disappear
1944 * out from under us.
1945 */
1946 get_page(page);
62e086be
AK
1947 unlock_page(page);
1948
9924a92a
TT
1949 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1950 ext4_writepage_trans_blocks(inode));
62e086be
AK
1951 if (IS_ERR(handle)) {
1952 ret = PTR_ERR(handle);
bdf96838
TT
1953 put_page(page);
1954 goto out_no_pagelock;
62e086be 1955 }
441c8508
CW
1956 BUG_ON(!ext4_handle_valid(handle));
1957
bdf96838
TT
1958 lock_page(page);
1959 put_page(page);
1960 if (page->mapping != mapping) {
1961 /* The page got truncated from under us */
1962 ext4_journal_stop(handle);
1963 ret = 0;
1964 goto out;
1965 }
1966
3fdcfb66 1967 if (inline_data) {
5d601255 1968 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1969 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1970
3fdcfb66
TM
1971 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1972
1973 } else {
1974 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1975 do_journal_get_write_access);
1976
1977 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978 write_end_fn);
1979 }
62e086be
AK
1980 if (ret == 0)
1981 ret = err;
2d859db3 1982 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1983 err = ext4_journal_stop(handle);
1984 if (!ret)
1985 ret = err;
1986
3fdcfb66 1987 if (!ext4_has_inline_data(inode))
8c9367fd 1988 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1989 NULL, bput_one);
19f5fb7a 1990 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1991out:
bdf96838
TT
1992 unlock_page(page);
1993out_no_pagelock:
3fdcfb66 1994 brelse(inode_bh);
62e086be
AK
1995 return ret;
1996}
1997
61628a3f 1998/*
43ce1d23
AK
1999 * Note that we don't need to start a transaction unless we're journaling data
2000 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2001 * need to file the inode to the transaction's list in ordered mode because if
2002 * we are writing back data added by write(), the inode is already there and if
25985edc 2003 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2004 * transaction the data will hit the disk. In case we are journaling data, we
2005 * cannot start transaction directly because transaction start ranks above page
2006 * lock so we have to do some magic.
2007 *
b920c755 2008 * This function can get called via...
20970ba6 2009 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2010 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2011 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2012 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2013 *
2014 * We don't do any block allocation in this function. If we have page with
2015 * multiple blocks we need to write those buffer_heads that are mapped. This
2016 * is important for mmaped based write. So if we do with blocksize 1K
2017 * truncate(f, 1024);
2018 * a = mmap(f, 0, 4096);
2019 * a[0] = 'a';
2020 * truncate(f, 4096);
2021 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2022 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2023 * do_wp_page). So writepage should write the first block. If we modify
2024 * the mmap area beyond 1024 we will again get a page_fault and the
2025 * page_mkwrite callback will do the block allocation and mark the
2026 * buffer_heads mapped.
2027 *
2028 * We redirty the page if we have any buffer_heads that is either delay or
2029 * unwritten in the page.
2030 *
2031 * We can get recursively called as show below.
2032 *
2033 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2034 * ext4_writepage()
2035 *
2036 * But since we don't do any block allocation we should not deadlock.
2037 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2038 */
43ce1d23 2039static int ext4_writepage(struct page *page,
62e086be 2040 struct writeback_control *wbc)
64769240 2041{
f8bec370 2042 int ret = 0;
61628a3f 2043 loff_t size;
498e5f24 2044 unsigned int len;
744692dc 2045 struct buffer_head *page_bufs = NULL;
61628a3f 2046 struct inode *inode = page->mapping->host;
36ade451 2047 struct ext4_io_submit io_submit;
1c8349a1 2048 bool keep_towrite = false;
61628a3f 2049
a9c667f8 2050 trace_ext4_writepage(page);
f0e6c985 2051 size = i_size_read(inode);
09cbfeaf
KS
2052 if (page->index == size >> PAGE_SHIFT)
2053 len = size & ~PAGE_MASK;
f0e6c985 2054 else
09cbfeaf 2055 len = PAGE_SIZE;
64769240 2056
a42afc5f 2057 page_bufs = page_buffers(page);
a42afc5f 2058 /*
fe386132
JK
2059 * We cannot do block allocation or other extent handling in this
2060 * function. If there are buffers needing that, we have to redirty
2061 * the page. But we may reach here when we do a journal commit via
2062 * journal_submit_inode_data_buffers() and in that case we must write
2063 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2064 *
2065 * Also, if there is only one buffer per page (the fs block
2066 * size == the page size), if one buffer needs block
2067 * allocation or needs to modify the extent tree to clear the
2068 * unwritten flag, we know that the page can't be written at
2069 * all, so we might as well refuse the write immediately.
2070 * Unfortunately if the block size != page size, we can't as
2071 * easily detect this case using ext4_walk_page_buffers(), but
2072 * for the extremely common case, this is an optimization that
2073 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2074 */
f19d5870
TM
2075 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2076 ext4_bh_delay_or_unwritten)) {
f8bec370 2077 redirty_page_for_writepage(wbc, page);
cccd147a 2078 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2079 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2080 /*
2081 * For memory cleaning there's no point in writing only
2082 * some buffers. So just bail out. Warn if we came here
2083 * from direct reclaim.
2084 */
2085 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2086 == PF_MEMALLOC);
f0e6c985
AK
2087 unlock_page(page);
2088 return 0;
2089 }
1c8349a1 2090 keep_towrite = true;
a42afc5f 2091 }
64769240 2092
cb20d518 2093 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2094 /*
2095 * It's mmapped pagecache. Add buffers and journal it. There
2096 * doesn't seem much point in redirtying the page here.
2097 */
3f0ca309 2098 return __ext4_journalled_writepage(page, len);
43ce1d23 2099
97a851ed
JK
2100 ext4_io_submit_init(&io_submit, wbc);
2101 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2102 if (!io_submit.io_end) {
2103 redirty_page_for_writepage(wbc, page);
2104 unlock_page(page);
2105 return -ENOMEM;
2106 }
1c8349a1 2107 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2108 ext4_io_submit(&io_submit);
97a851ed
JK
2109 /* Drop io_end reference we got from init */
2110 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2111 return ret;
2112}
2113
5f1132b2
JK
2114static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2115{
2116 int len;
2117 loff_t size = i_size_read(mpd->inode);
2118 int err;
2119
2120 BUG_ON(page->index != mpd->first_page);
09cbfeaf
KS
2121 if (page->index == size >> PAGE_SHIFT)
2122 len = size & ~PAGE_MASK;
5f1132b2 2123 else
09cbfeaf 2124 len = PAGE_SIZE;
5f1132b2 2125 clear_page_dirty_for_io(page);
1c8349a1 2126 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2127 if (!err)
2128 mpd->wbc->nr_to_write--;
2129 mpd->first_page++;
2130
2131 return err;
2132}
2133
4e7ea81d
JK
2134#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2135
61628a3f 2136/*
fffb2739
JK
2137 * mballoc gives us at most this number of blocks...
2138 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2139 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2140 */
fffb2739 2141#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2142
4e7ea81d
JK
2143/*
2144 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2145 *
2146 * @mpd - extent of blocks
2147 * @lblk - logical number of the block in the file
09930042 2148 * @bh - buffer head we want to add to the extent
4e7ea81d 2149 *
09930042
JK
2150 * The function is used to collect contig. blocks in the same state. If the
2151 * buffer doesn't require mapping for writeback and we haven't started the
2152 * extent of buffers to map yet, the function returns 'true' immediately - the
2153 * caller can write the buffer right away. Otherwise the function returns true
2154 * if the block has been added to the extent, false if the block couldn't be
2155 * added.
4e7ea81d 2156 */
09930042
JK
2157static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2158 struct buffer_head *bh)
4e7ea81d
JK
2159{
2160 struct ext4_map_blocks *map = &mpd->map;
2161
09930042
JK
2162 /* Buffer that doesn't need mapping for writeback? */
2163 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2164 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2165 /* So far no extent to map => we write the buffer right away */
2166 if (map->m_len == 0)
2167 return true;
2168 return false;
2169 }
4e7ea81d
JK
2170
2171 /* First block in the extent? */
2172 if (map->m_len == 0) {
2173 map->m_lblk = lblk;
2174 map->m_len = 1;
09930042
JK
2175 map->m_flags = bh->b_state & BH_FLAGS;
2176 return true;
4e7ea81d
JK
2177 }
2178
09930042
JK
2179 /* Don't go larger than mballoc is willing to allocate */
2180 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2181 return false;
2182
4e7ea81d
JK
2183 /* Can we merge the block to our big extent? */
2184 if (lblk == map->m_lblk + map->m_len &&
09930042 2185 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2186 map->m_len++;
09930042 2187 return true;
4e7ea81d 2188 }
09930042 2189 return false;
4e7ea81d
JK
2190}
2191
5f1132b2
JK
2192/*
2193 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2194 *
2195 * @mpd - extent of blocks for mapping
2196 * @head - the first buffer in the page
2197 * @bh - buffer we should start processing from
2198 * @lblk - logical number of the block in the file corresponding to @bh
2199 *
2200 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2201 * the page for IO if all buffers in this page were mapped and there's no
2202 * accumulated extent of buffers to map or add buffers in the page to the
2203 * extent of buffers to map. The function returns 1 if the caller can continue
2204 * by processing the next page, 0 if it should stop adding buffers to the
2205 * extent to map because we cannot extend it anymore. It can also return value
2206 * < 0 in case of error during IO submission.
2207 */
2208static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2209 struct buffer_head *head,
2210 struct buffer_head *bh,
2211 ext4_lblk_t lblk)
4e7ea81d
JK
2212{
2213 struct inode *inode = mpd->inode;
5f1132b2 2214 int err;
4e7ea81d
JK
2215 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2216 >> inode->i_blkbits;
2217
2218 do {
2219 BUG_ON(buffer_locked(bh));
2220
09930042 2221 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2222 /* Found extent to map? */
2223 if (mpd->map.m_len)
5f1132b2 2224 return 0;
09930042 2225 /* Everything mapped so far and we hit EOF */
5f1132b2 2226 break;
4e7ea81d 2227 }
4e7ea81d 2228 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2229 /* So far everything mapped? Submit the page for IO. */
2230 if (mpd->map.m_len == 0) {
2231 err = mpage_submit_page(mpd, head->b_page);
2232 if (err < 0)
2233 return err;
2234 }
2235 return lblk < blocks;
4e7ea81d
JK
2236}
2237
2238/*
2239 * mpage_map_buffers - update buffers corresponding to changed extent and
2240 * submit fully mapped pages for IO
2241 *
2242 * @mpd - description of extent to map, on return next extent to map
2243 *
2244 * Scan buffers corresponding to changed extent (we expect corresponding pages
2245 * to be already locked) and update buffer state according to new extent state.
2246 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2247 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2248 * and do extent conversion after IO is finished. If the last page is not fully
2249 * mapped, we update @map to the next extent in the last page that needs
2250 * mapping. Otherwise we submit the page for IO.
2251 */
2252static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2253{
2254 struct pagevec pvec;
2255 int nr_pages, i;
2256 struct inode *inode = mpd->inode;
2257 struct buffer_head *head, *bh;
09cbfeaf 2258 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2259 pgoff_t start, end;
2260 ext4_lblk_t lblk;
2261 sector_t pblock;
2262 int err;
2263
2264 start = mpd->map.m_lblk >> bpp_bits;
2265 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2266 lblk = start << bpp_bits;
2267 pblock = mpd->map.m_pblk;
2268
2269 pagevec_init(&pvec, 0);
2270 while (start <= end) {
2271 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2272 PAGEVEC_SIZE);
2273 if (nr_pages == 0)
2274 break;
2275 for (i = 0; i < nr_pages; i++) {
2276 struct page *page = pvec.pages[i];
2277
2278 if (page->index > end)
2279 break;
70261f56 2280 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2281 BUG_ON(page->index != start);
2282 bh = head = page_buffers(page);
2283 do {
2284 if (lblk < mpd->map.m_lblk)
2285 continue;
2286 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287 /*
2288 * Buffer after end of mapped extent.
2289 * Find next buffer in the page to map.
2290 */
2291 mpd->map.m_len = 0;
2292 mpd->map.m_flags = 0;
5f1132b2
JK
2293 /*
2294 * FIXME: If dioread_nolock supports
2295 * blocksize < pagesize, we need to make
2296 * sure we add size mapped so far to
2297 * io_end->size as the following call
2298 * can submit the page for IO.
2299 */
2300 err = mpage_process_page_bufs(mpd, head,
2301 bh, lblk);
4e7ea81d 2302 pagevec_release(&pvec);
5f1132b2
JK
2303 if (err > 0)
2304 err = 0;
2305 return err;
4e7ea81d
JK
2306 }
2307 if (buffer_delay(bh)) {
2308 clear_buffer_delay(bh);
2309 bh->b_blocknr = pblock++;
2310 }
4e7ea81d 2311 clear_buffer_unwritten(bh);
5f1132b2 2312 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2313
2314 /*
2315 * FIXME: This is going to break if dioread_nolock
2316 * supports blocksize < pagesize as we will try to
2317 * convert potentially unmapped parts of inode.
2318 */
09cbfeaf 2319 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2320 /* Page fully mapped - let IO run! */
2321 err = mpage_submit_page(mpd, page);
2322 if (err < 0) {
2323 pagevec_release(&pvec);
2324 return err;
2325 }
2326 start++;
2327 }
2328 pagevec_release(&pvec);
2329 }
2330 /* Extent fully mapped and matches with page boundary. We are done. */
2331 mpd->map.m_len = 0;
2332 mpd->map.m_flags = 0;
2333 return 0;
2334}
2335
2336static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2337{
2338 struct inode *inode = mpd->inode;
2339 struct ext4_map_blocks *map = &mpd->map;
2340 int get_blocks_flags;
090f32ee 2341 int err, dioread_nolock;
4e7ea81d
JK
2342
2343 trace_ext4_da_write_pages_extent(inode, map);
2344 /*
2345 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2346 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2347 * where we have written into one or more preallocated blocks). It is
2348 * possible that we're going to need more metadata blocks than
2349 * previously reserved. However we must not fail because we're in
2350 * writeback and there is nothing we can do about it so it might result
2351 * in data loss. So use reserved blocks to allocate metadata if
2352 * possible.
2353 *
754cfed6
TT
2354 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2355 * the blocks in question are delalloc blocks. This indicates
2356 * that the blocks and quotas has already been checked when
2357 * the data was copied into the page cache.
4e7ea81d
JK
2358 */
2359 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2360 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2361 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2362 dioread_nolock = ext4_should_dioread_nolock(inode);
2363 if (dioread_nolock)
4e7ea81d
JK
2364 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2365 if (map->m_flags & (1 << BH_Delay))
2366 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2367
2368 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2369 if (err < 0)
2370 return err;
090f32ee 2371 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2372 if (!mpd->io_submit.io_end->handle &&
2373 ext4_handle_valid(handle)) {
2374 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2375 handle->h_rsv_handle = NULL;
2376 }
3613d228 2377 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2378 }
4e7ea81d
JK
2379
2380 BUG_ON(map->m_len == 0);
2381 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2382 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2383 map->m_len);
4e7ea81d
JK
2384 }
2385 return 0;
2386}
2387
2388/*
2389 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2390 * mpd->len and submit pages underlying it for IO
2391 *
2392 * @handle - handle for journal operations
2393 * @mpd - extent to map
7534e854
JK
2394 * @give_up_on_write - we set this to true iff there is a fatal error and there
2395 * is no hope of writing the data. The caller should discard
2396 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2397 *
2398 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2399 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2400 * them to initialized or split the described range from larger unwritten
2401 * extent. Note that we need not map all the described range since allocation
2402 * can return less blocks or the range is covered by more unwritten extents. We
2403 * cannot map more because we are limited by reserved transaction credits. On
2404 * the other hand we always make sure that the last touched page is fully
2405 * mapped so that it can be written out (and thus forward progress is
2406 * guaranteed). After mapping we submit all mapped pages for IO.
2407 */
2408static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2409 struct mpage_da_data *mpd,
2410 bool *give_up_on_write)
4e7ea81d
JK
2411{
2412 struct inode *inode = mpd->inode;
2413 struct ext4_map_blocks *map = &mpd->map;
2414 int err;
2415 loff_t disksize;
6603120e 2416 int progress = 0;
4e7ea81d
JK
2417
2418 mpd->io_submit.io_end->offset =
2419 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2420 do {
4e7ea81d
JK
2421 err = mpage_map_one_extent(handle, mpd);
2422 if (err < 0) {
2423 struct super_block *sb = inode->i_sb;
2424
cb530541
TT
2425 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2426 goto invalidate_dirty_pages;
4e7ea81d 2427 /*
cb530541
TT
2428 * Let the uper layers retry transient errors.
2429 * In the case of ENOSPC, if ext4_count_free_blocks()
2430 * is non-zero, a commit should free up blocks.
4e7ea81d 2431 */
cb530541 2432 if ((err == -ENOMEM) ||
6603120e
DM
2433 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2434 if (progress)
2435 goto update_disksize;
cb530541 2436 return err;
6603120e 2437 }
cb530541
TT
2438 ext4_msg(sb, KERN_CRIT,
2439 "Delayed block allocation failed for "
2440 "inode %lu at logical offset %llu with"
2441 " max blocks %u with error %d",
2442 inode->i_ino,
2443 (unsigned long long)map->m_lblk,
2444 (unsigned)map->m_len, -err);
2445 ext4_msg(sb, KERN_CRIT,
2446 "This should not happen!! Data will "
2447 "be lost\n");
2448 if (err == -ENOSPC)
2449 ext4_print_free_blocks(inode);
2450 invalidate_dirty_pages:
2451 *give_up_on_write = true;
4e7ea81d
JK
2452 return err;
2453 }
6603120e 2454 progress = 1;
4e7ea81d
JK
2455 /*
2456 * Update buffer state, submit mapped pages, and get us new
2457 * extent to map
2458 */
2459 err = mpage_map_and_submit_buffers(mpd);
2460 if (err < 0)
6603120e 2461 goto update_disksize;
27d7c4ed 2462 } while (map->m_len);
4e7ea81d 2463
6603120e 2464update_disksize:
622cad13
TT
2465 /*
2466 * Update on-disk size after IO is submitted. Races with
2467 * truncate are avoided by checking i_size under i_data_sem.
2468 */
09cbfeaf 2469 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2470 if (disksize > EXT4_I(inode)->i_disksize) {
2471 int err2;
622cad13
TT
2472 loff_t i_size;
2473
2474 down_write(&EXT4_I(inode)->i_data_sem);
2475 i_size = i_size_read(inode);
2476 if (disksize > i_size)
2477 disksize = i_size;
2478 if (disksize > EXT4_I(inode)->i_disksize)
2479 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2480 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2481 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2482 if (err2)
2483 ext4_error(inode->i_sb,
2484 "Failed to mark inode %lu dirty",
2485 inode->i_ino);
2486 if (!err)
2487 err = err2;
2488 }
2489 return err;
2490}
2491
fffb2739
JK
2492/*
2493 * Calculate the total number of credits to reserve for one writepages
20970ba6 2494 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2495 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2496 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2497 * bpp - 1 blocks in bpp different extents.
2498 */
525f4ed8
MC
2499static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500{
fffb2739 2501 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2502
fffb2739
JK
2503 return ext4_meta_trans_blocks(inode,
2504 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2505}
61628a3f 2506
8e48dcfb 2507/*
4e7ea81d
JK
2508 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2509 * and underlying extent to map
2510 *
2511 * @mpd - where to look for pages
2512 *
2513 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2514 * IO immediately. When we find a page which isn't mapped we start accumulating
2515 * extent of buffers underlying these pages that needs mapping (formed by
2516 * either delayed or unwritten buffers). We also lock the pages containing
2517 * these buffers. The extent found is returned in @mpd structure (starting at
2518 * mpd->lblk with length mpd->len blocks).
2519 *
2520 * Note that this function can attach bios to one io_end structure which are
2521 * neither logically nor physically contiguous. Although it may seem as an
2522 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2523 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2524 */
4e7ea81d 2525static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2526{
4e7ea81d
JK
2527 struct address_space *mapping = mpd->inode->i_mapping;
2528 struct pagevec pvec;
2529 unsigned int nr_pages;
aeac589a 2530 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2531 pgoff_t index = mpd->first_page;
2532 pgoff_t end = mpd->last_page;
2533 int tag;
2534 int i, err = 0;
2535 int blkbits = mpd->inode->i_blkbits;
2536 ext4_lblk_t lblk;
2537 struct buffer_head *head;
8e48dcfb 2538
4e7ea81d 2539 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2540 tag = PAGECACHE_TAG_TOWRITE;
2541 else
2542 tag = PAGECACHE_TAG_DIRTY;
2543
4e7ea81d
JK
2544 pagevec_init(&pvec, 0);
2545 mpd->map.m_len = 0;
2546 mpd->next_page = index;
4f01b02c 2547 while (index <= end) {
5b41d924 2548 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2549 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2550 if (nr_pages == 0)
4e7ea81d 2551 goto out;
8e48dcfb
TT
2552
2553 for (i = 0; i < nr_pages; i++) {
2554 struct page *page = pvec.pages[i];
2555
2556 /*
2557 * At this point, the page may be truncated or
2558 * invalidated (changing page->mapping to NULL), or
2559 * even swizzled back from swapper_space to tmpfs file
2560 * mapping. However, page->index will not change
2561 * because we have a reference on the page.
2562 */
4f01b02c
TT
2563 if (page->index > end)
2564 goto out;
8e48dcfb 2565
aeac589a
ML
2566 /*
2567 * Accumulated enough dirty pages? This doesn't apply
2568 * to WB_SYNC_ALL mode. For integrity sync we have to
2569 * keep going because someone may be concurrently
2570 * dirtying pages, and we might have synced a lot of
2571 * newly appeared dirty pages, but have not synced all
2572 * of the old dirty pages.
2573 */
2574 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575 goto out;
2576
4e7ea81d
JK
2577 /* If we can't merge this page, we are done. */
2578 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579 goto out;
78aaced3 2580
8e48dcfb 2581 lock_page(page);
8e48dcfb 2582 /*
4e7ea81d
JK
2583 * If the page is no longer dirty, or its mapping no
2584 * longer corresponds to inode we are writing (which
2585 * means it has been truncated or invalidated), or the
2586 * page is already under writeback and we are not doing
2587 * a data integrity writeback, skip the page
8e48dcfb 2588 */
4f01b02c
TT
2589 if (!PageDirty(page) ||
2590 (PageWriteback(page) &&
4e7ea81d 2591 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2592 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2593 unlock_page(page);
2594 continue;
2595 }
2596
7cb1a535 2597 wait_on_page_writeback(page);
8e48dcfb 2598 BUG_ON(PageWriteback(page));
8e48dcfb 2599
4e7ea81d 2600 if (mpd->map.m_len == 0)
8eb9e5ce 2601 mpd->first_page = page->index;
8eb9e5ce 2602 mpd->next_page = page->index + 1;
f8bec370 2603 /* Add all dirty buffers to mpd */
4e7ea81d 2604 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2605 (PAGE_SHIFT - blkbits);
f8bec370 2606 head = page_buffers(page);
5f1132b2
JK
2607 err = mpage_process_page_bufs(mpd, head, head, lblk);
2608 if (err <= 0)
4e7ea81d 2609 goto out;
5f1132b2 2610 err = 0;
aeac589a 2611 left--;
8e48dcfb
TT
2612 }
2613 pagevec_release(&pvec);
2614 cond_resched();
2615 }
4f01b02c 2616 return 0;
8eb9e5ce
TT
2617out:
2618 pagevec_release(&pvec);
4e7ea81d 2619 return err;
8e48dcfb
TT
2620}
2621
20970ba6
TT
2622static int __writepage(struct page *page, struct writeback_control *wbc,
2623 void *data)
2624{
2625 struct address_space *mapping = data;
2626 int ret = ext4_writepage(page, wbc);
2627 mapping_set_error(mapping, ret);
2628 return ret;
2629}
2630
2631static int ext4_writepages(struct address_space *mapping,
2632 struct writeback_control *wbc)
64769240 2633{
4e7ea81d
JK
2634 pgoff_t writeback_index = 0;
2635 long nr_to_write = wbc->nr_to_write;
22208ded 2636 int range_whole = 0;
4e7ea81d 2637 int cycled = 1;
61628a3f 2638 handle_t *handle = NULL;
df22291f 2639 struct mpage_da_data mpd;
5e745b04 2640 struct inode *inode = mapping->host;
6b523df4 2641 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2642 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2643 bool done;
1bce63d1 2644 struct blk_plug plug;
cb530541 2645 bool give_up_on_write = false;
61628a3f 2646
c8585c6f 2647 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2648 trace_ext4_writepages(inode, wbc);
ba80b101 2649
c8585c6f
DJ
2650 if (dax_mapping(mapping)) {
2651 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2652 wbc);
2653 goto out_writepages;
2654 }
7f6d5b52 2655
61628a3f
MC
2656 /*
2657 * No pages to write? This is mainly a kludge to avoid starting
2658 * a transaction for special inodes like journal inode on last iput()
2659 * because that could violate lock ordering on umount
2660 */
a1d6cc56 2661 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2662 goto out_writepages;
2a21e37e 2663
20970ba6
TT
2664 if (ext4_should_journal_data(inode)) {
2665 struct blk_plug plug;
20970ba6
TT
2666
2667 blk_start_plug(&plug);
2668 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2669 blk_finish_plug(&plug);
bbf023c7 2670 goto out_writepages;
20970ba6
TT
2671 }
2672
2a21e37e
TT
2673 /*
2674 * If the filesystem has aborted, it is read-only, so return
2675 * right away instead of dumping stack traces later on that
2676 * will obscure the real source of the problem. We test
4ab2f15b 2677 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2678 * the latter could be true if the filesystem is mounted
20970ba6 2679 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2680 * *never* be called, so if that ever happens, we would want
2681 * the stack trace.
2682 */
bbf023c7
ML
2683 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2684 ret = -EROFS;
2685 goto out_writepages;
2686 }
2a21e37e 2687
6b523df4
JK
2688 if (ext4_should_dioread_nolock(inode)) {
2689 /*
70261f56 2690 * We may need to convert up to one extent per block in
6b523df4
JK
2691 * the page and we may dirty the inode.
2692 */
09cbfeaf 2693 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2694 }
2695
4e7ea81d
JK
2696 /*
2697 * If we have inline data and arrive here, it means that
2698 * we will soon create the block for the 1st page, so
2699 * we'd better clear the inline data here.
2700 */
2701 if (ext4_has_inline_data(inode)) {
2702 /* Just inode will be modified... */
2703 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704 if (IS_ERR(handle)) {
2705 ret = PTR_ERR(handle);
2706 goto out_writepages;
2707 }
2708 BUG_ON(ext4_test_inode_state(inode,
2709 EXT4_STATE_MAY_INLINE_DATA));
2710 ext4_destroy_inline_data(handle, inode);
2711 ext4_journal_stop(handle);
2712 }
2713
22208ded
AK
2714 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2715 range_whole = 1;
61628a3f 2716
2acf2c26 2717 if (wbc->range_cyclic) {
4e7ea81d
JK
2718 writeback_index = mapping->writeback_index;
2719 if (writeback_index)
2acf2c26 2720 cycled = 0;
4e7ea81d
JK
2721 mpd.first_page = writeback_index;
2722 mpd.last_page = -1;
5b41d924 2723 } else {
09cbfeaf
KS
2724 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2726 }
a1d6cc56 2727
4e7ea81d
JK
2728 mpd.inode = inode;
2729 mpd.wbc = wbc;
2730 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2731retry:
6e6938b6 2732 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2733 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734 done = false;
1bce63d1 2735 blk_start_plug(&plug);
4e7ea81d
JK
2736 while (!done && mpd.first_page <= mpd.last_page) {
2737 /* For each extent of pages we use new io_end */
2738 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2739 if (!mpd.io_submit.io_end) {
2740 ret = -ENOMEM;
2741 break;
2742 }
a1d6cc56
AK
2743
2744 /*
4e7ea81d
JK
2745 * We have two constraints: We find one extent to map and we
2746 * must always write out whole page (makes a difference when
2747 * blocksize < pagesize) so that we don't block on IO when we
2748 * try to write out the rest of the page. Journalled mode is
2749 * not supported by delalloc.
a1d6cc56
AK
2750 */
2751 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2752 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2753
4e7ea81d 2754 /* start a new transaction */
6b523df4
JK
2755 handle = ext4_journal_start_with_reserve(inode,
2756 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2757 if (IS_ERR(handle)) {
2758 ret = PTR_ERR(handle);
1693918e 2759 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2760 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2761 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2762 /* Release allocated io_end */
2763 ext4_put_io_end(mpd.io_submit.io_end);
2764 break;
61628a3f 2765 }
f63e6005 2766
4e7ea81d
JK
2767 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768 ret = mpage_prepare_extent_to_map(&mpd);
2769 if (!ret) {
2770 if (mpd.map.m_len)
cb530541
TT
2771 ret = mpage_map_and_submit_extent(handle, &mpd,
2772 &give_up_on_write);
4e7ea81d
JK
2773 else {
2774 /*
2775 * We scanned the whole range (or exhausted
2776 * nr_to_write), submitted what was mapped and
2777 * didn't find anything needing mapping. We are
2778 * done.
2779 */
2780 done = true;
2781 }
f63e6005 2782 }
646caa9c
JK
2783 /*
2784 * Caution: If the handle is synchronous,
2785 * ext4_journal_stop() can wait for transaction commit
2786 * to finish which may depend on writeback of pages to
2787 * complete or on page lock to be released. In that
2788 * case, we have to wait until after after we have
2789 * submitted all the IO, released page locks we hold,
2790 * and dropped io_end reference (for extent conversion
2791 * to be able to complete) before stopping the handle.
2792 */
2793 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794 ext4_journal_stop(handle);
2795 handle = NULL;
2796 }
4e7ea81d
JK
2797 /* Submit prepared bio */
2798 ext4_io_submit(&mpd.io_submit);
2799 /* Unlock pages we didn't use */
cb530541 2800 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2801 /*
2802 * Drop our io_end reference we got from init. We have
2803 * to be careful and use deferred io_end finishing if
2804 * we are still holding the transaction as we can
2805 * release the last reference to io_end which may end
2806 * up doing unwritten extent conversion.
2807 */
2808 if (handle) {
2809 ext4_put_io_end_defer(mpd.io_submit.io_end);
2810 ext4_journal_stop(handle);
2811 } else
2812 ext4_put_io_end(mpd.io_submit.io_end);
4e7ea81d
JK
2813
2814 if (ret == -ENOSPC && sbi->s_journal) {
2815 /*
2816 * Commit the transaction which would
22208ded
AK
2817 * free blocks released in the transaction
2818 * and try again
2819 */
df22291f 2820 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2821 ret = 0;
4e7ea81d
JK
2822 continue;
2823 }
2824 /* Fatal error - ENOMEM, EIO... */
2825 if (ret)
61628a3f 2826 break;
a1d6cc56 2827 }
1bce63d1 2828 blk_finish_plug(&plug);
9c12a831 2829 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2830 cycled = 1;
4e7ea81d
JK
2831 mpd.last_page = writeback_index - 1;
2832 mpd.first_page = 0;
2acf2c26
AK
2833 goto retry;
2834 }
22208ded
AK
2835
2836 /* Update index */
22208ded
AK
2837 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2838 /*
4e7ea81d 2839 * Set the writeback_index so that range_cyclic
22208ded
AK
2840 * mode will write it back later
2841 */
4e7ea81d 2842 mapping->writeback_index = mpd.first_page;
a1d6cc56 2843
61628a3f 2844out_writepages:
20970ba6
TT
2845 trace_ext4_writepages_result(inode, wbc, ret,
2846 nr_to_write - wbc->nr_to_write);
c8585c6f 2847 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2848 return ret;
64769240
AT
2849}
2850
79f0be8d
AK
2851static int ext4_nonda_switch(struct super_block *sb)
2852{
5c1ff336 2853 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2854 struct ext4_sb_info *sbi = EXT4_SB(sb);
2855
2856 /*
2857 * switch to non delalloc mode if we are running low
2858 * on free block. The free block accounting via percpu
179f7ebf 2859 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2860 * accumulated on each CPU without updating global counters
2861 * Delalloc need an accurate free block accounting. So switch
2862 * to non delalloc when we are near to error range.
2863 */
5c1ff336
EW
2864 free_clusters =
2865 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2866 dirty_clusters =
2867 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2868 /*
2869 * Start pushing delalloc when 1/2 of free blocks are dirty.
2870 */
5c1ff336 2871 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2872 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2873
5c1ff336
EW
2874 if (2 * free_clusters < 3 * dirty_clusters ||
2875 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2876 /*
c8afb446
ES
2877 * free block count is less than 150% of dirty blocks
2878 * or free blocks is less than watermark
79f0be8d
AK
2879 */
2880 return 1;
2881 }
2882 return 0;
2883}
2884
0ff8947f
ES
2885/* We always reserve for an inode update; the superblock could be there too */
2886static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2887{
e2b911c5 2888 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2889 return 1;
2890
2891 if (pos + len <= 0x7fffffffULL)
2892 return 1;
2893
2894 /* We might need to update the superblock to set LARGE_FILE */
2895 return 2;
2896}
2897
64769240 2898static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2899 loff_t pos, unsigned len, unsigned flags,
2900 struct page **pagep, void **fsdata)
64769240 2901{
72b8ab9d 2902 int ret, retries = 0;
64769240
AT
2903 struct page *page;
2904 pgoff_t index;
64769240
AT
2905 struct inode *inode = mapping->host;
2906 handle_t *handle;
2907
09cbfeaf 2908 index = pos >> PAGE_SHIFT;
79f0be8d 2909
4db0d88e
TT
2910 if (ext4_nonda_switch(inode->i_sb) ||
2911 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
2912 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2913 return ext4_write_begin(file, mapping, pos,
2914 len, flags, pagep, fsdata);
2915 }
2916 *fsdata = (void *)0;
9bffad1e 2917 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2918
2919 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2920 ret = ext4_da_write_inline_data_begin(mapping, inode,
2921 pos, len, flags,
2922 pagep, fsdata);
2923 if (ret < 0)
47564bfb
TT
2924 return ret;
2925 if (ret == 1)
2926 return 0;
9c3569b5
TM
2927 }
2928
47564bfb
TT
2929 /*
2930 * grab_cache_page_write_begin() can take a long time if the
2931 * system is thrashing due to memory pressure, or if the page
2932 * is being written back. So grab it first before we start
2933 * the transaction handle. This also allows us to allocate
2934 * the page (if needed) without using GFP_NOFS.
2935 */
2936retry_grab:
2937 page = grab_cache_page_write_begin(mapping, index, flags);
2938 if (!page)
2939 return -ENOMEM;
2940 unlock_page(page);
2941
64769240
AT
2942 /*
2943 * With delayed allocation, we don't log the i_disksize update
2944 * if there is delayed block allocation. But we still need
2945 * to journalling the i_disksize update if writes to the end
2946 * of file which has an already mapped buffer.
2947 */
47564bfb 2948retry_journal:
0ff8947f
ES
2949 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2950 ext4_da_write_credits(inode, pos, len));
64769240 2951 if (IS_ERR(handle)) {
09cbfeaf 2952 put_page(page);
47564bfb 2953 return PTR_ERR(handle);
64769240
AT
2954 }
2955
47564bfb
TT
2956 lock_page(page);
2957 if (page->mapping != mapping) {
2958 /* The page got truncated from under us */
2959 unlock_page(page);
09cbfeaf 2960 put_page(page);
d5a0d4f7 2961 ext4_journal_stop(handle);
47564bfb 2962 goto retry_grab;
d5a0d4f7 2963 }
47564bfb 2964 /* In case writeback began while the page was unlocked */
7afe5aa5 2965 wait_for_stable_page(page);
64769240 2966
2058f83a
MH
2967#ifdef CONFIG_EXT4_FS_ENCRYPTION
2968 ret = ext4_block_write_begin(page, pos, len,
2969 ext4_da_get_block_prep);
2970#else
6e1db88d 2971 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2972#endif
64769240
AT
2973 if (ret < 0) {
2974 unlock_page(page);
2975 ext4_journal_stop(handle);
ae4d5372
AK
2976 /*
2977 * block_write_begin may have instantiated a few blocks
2978 * outside i_size. Trim these off again. Don't need
2979 * i_size_read because we hold i_mutex.
2980 */
2981 if (pos + len > inode->i_size)
b9a4207d 2982 ext4_truncate_failed_write(inode);
47564bfb
TT
2983
2984 if (ret == -ENOSPC &&
2985 ext4_should_retry_alloc(inode->i_sb, &retries))
2986 goto retry_journal;
2987
09cbfeaf 2988 put_page(page);
47564bfb 2989 return ret;
64769240
AT
2990 }
2991
47564bfb 2992 *pagep = page;
64769240
AT
2993 return ret;
2994}
2995
632eaeab
MC
2996/*
2997 * Check if we should update i_disksize
2998 * when write to the end of file but not require block allocation
2999 */
3000static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3001 unsigned long offset)
632eaeab
MC
3002{
3003 struct buffer_head *bh;
3004 struct inode *inode = page->mapping->host;
3005 unsigned int idx;
3006 int i;
3007
3008 bh = page_buffers(page);
3009 idx = offset >> inode->i_blkbits;
3010
af5bc92d 3011 for (i = 0; i < idx; i++)
632eaeab
MC
3012 bh = bh->b_this_page;
3013
29fa89d0 3014 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3015 return 0;
3016 return 1;
3017}
3018
64769240 3019static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3020 struct address_space *mapping,
3021 loff_t pos, unsigned len, unsigned copied,
3022 struct page *page, void *fsdata)
64769240
AT
3023{
3024 struct inode *inode = mapping->host;
3025 int ret = 0, ret2;
3026 handle_t *handle = ext4_journal_current_handle();
3027 loff_t new_i_size;
632eaeab 3028 unsigned long start, end;
79f0be8d
AK
3029 int write_mode = (int)(unsigned long)fsdata;
3030
74d553aa
TT
3031 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3032 return ext4_write_end(file, mapping, pos,
3033 len, copied, page, fsdata);
632eaeab 3034
9bffad1e 3035 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3036 start = pos & (PAGE_SIZE - 1);
af5bc92d 3037 end = start + copied - 1;
64769240
AT
3038
3039 /*
3040 * generic_write_end() will run mark_inode_dirty() if i_size
3041 * changes. So let's piggyback the i_disksize mark_inode_dirty
3042 * into that.
3043 */
64769240 3044 new_i_size = pos + copied;
ea51d132 3045 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3046 if (ext4_has_inline_data(inode) ||
3047 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3048 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3049 /* We need to mark inode dirty even if
3050 * new_i_size is less that inode->i_size
3051 * bu greater than i_disksize.(hint delalloc)
3052 */
3053 ext4_mark_inode_dirty(handle, inode);
64769240 3054 }
632eaeab 3055 }
9c3569b5
TM
3056
3057 if (write_mode != CONVERT_INLINE_DATA &&
3058 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3059 ext4_has_inline_data(inode))
3060 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3061 page);
3062 else
3063 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3064 page, fsdata);
9c3569b5 3065
64769240
AT
3066 copied = ret2;
3067 if (ret2 < 0)
3068 ret = ret2;
3069 ret2 = ext4_journal_stop(handle);
3070 if (!ret)
3071 ret = ret2;
3072
3073 return ret ? ret : copied;
3074}
3075
d47992f8
LC
3076static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3077 unsigned int length)
64769240 3078{
64769240
AT
3079 /*
3080 * Drop reserved blocks
3081 */
3082 BUG_ON(!PageLocked(page));
3083 if (!page_has_buffers(page))
3084 goto out;
3085
ca99fdd2 3086 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3087
3088out:
d47992f8 3089 ext4_invalidatepage(page, offset, length);
64769240
AT
3090
3091 return;
3092}
3093
ccd2506b
TT
3094/*
3095 * Force all delayed allocation blocks to be allocated for a given inode.
3096 */
3097int ext4_alloc_da_blocks(struct inode *inode)
3098{
fb40ba0d
TT
3099 trace_ext4_alloc_da_blocks(inode);
3100
71d4f7d0 3101 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3102 return 0;
3103
3104 /*
3105 * We do something simple for now. The filemap_flush() will
3106 * also start triggering a write of the data blocks, which is
3107 * not strictly speaking necessary (and for users of
3108 * laptop_mode, not even desirable). However, to do otherwise
3109 * would require replicating code paths in:
de9a55b8 3110 *
20970ba6 3111 * ext4_writepages() ->
ccd2506b
TT
3112 * write_cache_pages() ---> (via passed in callback function)
3113 * __mpage_da_writepage() -->
3114 * mpage_add_bh_to_extent()
3115 * mpage_da_map_blocks()
3116 *
3117 * The problem is that write_cache_pages(), located in
3118 * mm/page-writeback.c, marks pages clean in preparation for
3119 * doing I/O, which is not desirable if we're not planning on
3120 * doing I/O at all.
3121 *
3122 * We could call write_cache_pages(), and then redirty all of
380cf090 3123 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3124 * would be ugly in the extreme. So instead we would need to
3125 * replicate parts of the code in the above functions,
25985edc 3126 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3127 * write out the pages, but rather only collect contiguous
3128 * logical block extents, call the multi-block allocator, and
3129 * then update the buffer heads with the block allocations.
de9a55b8 3130 *
ccd2506b
TT
3131 * For now, though, we'll cheat by calling filemap_flush(),
3132 * which will map the blocks, and start the I/O, but not
3133 * actually wait for the I/O to complete.
3134 */
3135 return filemap_flush(inode->i_mapping);
3136}
64769240 3137
ac27a0ec
DK
3138/*
3139 * bmap() is special. It gets used by applications such as lilo and by
3140 * the swapper to find the on-disk block of a specific piece of data.
3141 *
3142 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3143 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3144 * filesystem and enables swap, then they may get a nasty shock when the
3145 * data getting swapped to that swapfile suddenly gets overwritten by
3146 * the original zero's written out previously to the journal and
3147 * awaiting writeback in the kernel's buffer cache.
3148 *
3149 * So, if we see any bmap calls here on a modified, data-journaled file,
3150 * take extra steps to flush any blocks which might be in the cache.
3151 */
617ba13b 3152static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3153{
3154 struct inode *inode = mapping->host;
3155 journal_t *journal;
3156 int err;
3157
46c7f254
TM
3158 /*
3159 * We can get here for an inline file via the FIBMAP ioctl
3160 */
3161 if (ext4_has_inline_data(inode))
3162 return 0;
3163
64769240
AT
3164 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3165 test_opt(inode->i_sb, DELALLOC)) {
3166 /*
3167 * With delalloc we want to sync the file
3168 * so that we can make sure we allocate
3169 * blocks for file
3170 */
3171 filemap_write_and_wait(mapping);
3172 }
3173
19f5fb7a
TT
3174 if (EXT4_JOURNAL(inode) &&
3175 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3176 /*
3177 * This is a REALLY heavyweight approach, but the use of
3178 * bmap on dirty files is expected to be extremely rare:
3179 * only if we run lilo or swapon on a freshly made file
3180 * do we expect this to happen.
3181 *
3182 * (bmap requires CAP_SYS_RAWIO so this does not
3183 * represent an unprivileged user DOS attack --- we'd be
3184 * in trouble if mortal users could trigger this path at
3185 * will.)
3186 *
617ba13b 3187 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3188 * regular files. If somebody wants to bmap a directory
3189 * or symlink and gets confused because the buffer
3190 * hasn't yet been flushed to disk, they deserve
3191 * everything they get.
3192 */
3193
19f5fb7a 3194 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3195 journal = EXT4_JOURNAL(inode);
dab291af
MC
3196 jbd2_journal_lock_updates(journal);
3197 err = jbd2_journal_flush(journal);
3198 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3199
3200 if (err)
3201 return 0;
3202 }
3203
af5bc92d 3204 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3205}
3206
617ba13b 3207static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3208{
46c7f254
TM
3209 int ret = -EAGAIN;
3210 struct inode *inode = page->mapping->host;
3211
0562e0ba 3212 trace_ext4_readpage(page);
46c7f254
TM
3213
3214 if (ext4_has_inline_data(inode))
3215 ret = ext4_readpage_inline(inode, page);
3216
3217 if (ret == -EAGAIN)
f64e02fe 3218 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3219
3220 return ret;
ac27a0ec
DK
3221}
3222
3223static int
617ba13b 3224ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3225 struct list_head *pages, unsigned nr_pages)
3226{
46c7f254
TM
3227 struct inode *inode = mapping->host;
3228
3229 /* If the file has inline data, no need to do readpages. */
3230 if (ext4_has_inline_data(inode))
3231 return 0;
3232
f64e02fe 3233 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3234}
3235
d47992f8
LC
3236static void ext4_invalidatepage(struct page *page, unsigned int offset,
3237 unsigned int length)
ac27a0ec 3238{
ca99fdd2 3239 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3240
4520fb3c
JK
3241 /* No journalling happens on data buffers when this function is used */
3242 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3243
ca99fdd2 3244 block_invalidatepage(page, offset, length);
4520fb3c
JK
3245}
3246
53e87268 3247static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3248 unsigned int offset,
3249 unsigned int length)
4520fb3c
JK
3250{
3251 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252
ca99fdd2 3253 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3254
ac27a0ec
DK
3255 /*
3256 * If it's a full truncate we just forget about the pending dirtying
3257 */
09cbfeaf 3258 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3259 ClearPageChecked(page);
3260
ca99fdd2 3261 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3262}
3263
3264/* Wrapper for aops... */
3265static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3266 unsigned int offset,
3267 unsigned int length)
53e87268 3268{
ca99fdd2 3269 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3270}
3271
617ba13b 3272static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3273{
617ba13b 3274 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3275
0562e0ba
JZ
3276 trace_ext4_releasepage(page);
3277
e1c36595
JK
3278 /* Page has dirty journalled data -> cannot release */
3279 if (PageChecked(page))
ac27a0ec 3280 return 0;
0390131b
FM
3281 if (journal)
3282 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3283 else
3284 return try_to_free_buffers(page);
ac27a0ec
DK
3285}
3286
ba5843f5 3287#ifdef CONFIG_FS_DAX
364443cb
JK
3288static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3289 unsigned flags, struct iomap *iomap)
3290{
3291 unsigned int blkbits = inode->i_blkbits;
3292 unsigned long first_block = offset >> blkbits;
3293 unsigned long last_block = (offset + length - 1) >> blkbits;
3294 struct ext4_map_blocks map;
3295 int ret;
3296
364443cb
JK
3297 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3298 return -ERANGE;
3299
3300 map.m_lblk = first_block;
3301 map.m_len = last_block - first_block + 1;
3302
776722e8
JK
3303 if (!(flags & IOMAP_WRITE)) {
3304 ret = ext4_map_blocks(NULL, inode, &map, 0);
3305 } else {
3306 int dio_credits;
3307 handle_t *handle;
3308 int retries = 0;
3309
3310 /* Trim mapping request to maximum we can map at once for DIO */
3311 if (map.m_len > DIO_MAX_BLOCKS)
3312 map.m_len = DIO_MAX_BLOCKS;
3313 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3314retry:
3315 /*
3316 * Either we allocate blocks and then we don't get unwritten
3317 * extent so we have reserved enough credits, or the blocks
3318 * are already allocated and unwritten and in that case
3319 * extent conversion fits in the credits as well.
3320 */
3321 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3322 dio_credits);
3323 if (IS_ERR(handle))
3324 return PTR_ERR(handle);
3325
3326 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3327 EXT4_GET_BLOCKS_CREATE_ZERO);
3328 if (ret < 0) {
3329 ext4_journal_stop(handle);
3330 if (ret == -ENOSPC &&
3331 ext4_should_retry_alloc(inode->i_sb, &retries))
3332 goto retry;
3333 return ret;
3334 }
776722e8
JK
3335
3336 /*
e2ae766c 3337 * If we added blocks beyond i_size, we need to make sure they
776722e8 3338 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3339 * ext4_iomap_end(). For faults we don't need to do that (and
3340 * even cannot because for orphan list operations inode_lock is
3341 * required) - if we happen to instantiate block beyond i_size,
3342 * it is because we race with truncate which has already added
3343 * the inode to the orphan list.
776722e8 3344 */
e2ae766c
JK
3345 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3346 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3347 int err;
3348
3349 err = ext4_orphan_add(handle, inode);
3350 if (err < 0) {
3351 ext4_journal_stop(handle);
3352 return err;
3353 }
3354 }
3355 ext4_journal_stop(handle);
3356 }
364443cb
JK
3357
3358 iomap->flags = 0;
3359 iomap->bdev = inode->i_sb->s_bdev;
3360 iomap->offset = first_block << blkbits;
3361
3362 if (ret == 0) {
3363 iomap->type = IOMAP_HOLE;
3364 iomap->blkno = IOMAP_NULL_BLOCK;
3365 iomap->length = (u64)map.m_len << blkbits;
3366 } else {
3367 if (map.m_flags & EXT4_MAP_MAPPED) {
3368 iomap->type = IOMAP_MAPPED;
3369 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3370 iomap->type = IOMAP_UNWRITTEN;
3371 } else {
3372 WARN_ON_ONCE(1);
3373 return -EIO;
3374 }
3375 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3376 iomap->length = (u64)map.m_len << blkbits;
3377 }
3378
3379 if (map.m_flags & EXT4_MAP_NEW)
3380 iomap->flags |= IOMAP_F_NEW;
3381 return 0;
3382}
3383
776722e8
JK
3384static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3385 ssize_t written, unsigned flags, struct iomap *iomap)
3386{
3387 int ret = 0;
3388 handle_t *handle;
3389 int blkbits = inode->i_blkbits;
3390 bool truncate = false;
3391
e2ae766c 3392 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3393 return 0;
3394
3395 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3396 if (IS_ERR(handle)) {
3397 ret = PTR_ERR(handle);
3398 goto orphan_del;
3399 }
3400 if (ext4_update_inode_size(inode, offset + written))
3401 ext4_mark_inode_dirty(handle, inode);
3402 /*
3403 * We may need to truncate allocated but not written blocks beyond EOF.
3404 */
3405 if (iomap->offset + iomap->length >
3406 ALIGN(inode->i_size, 1 << blkbits)) {
3407 ext4_lblk_t written_blk, end_blk;
3408
3409 written_blk = (offset + written) >> blkbits;
3410 end_blk = (offset + length) >> blkbits;
3411 if (written_blk < end_blk && ext4_can_truncate(inode))
3412 truncate = true;
3413 }
3414 /*
3415 * Remove inode from orphan list if we were extending a inode and
3416 * everything went fine.
3417 */
3418 if (!truncate && inode->i_nlink &&
3419 !list_empty(&EXT4_I(inode)->i_orphan))
3420 ext4_orphan_del(handle, inode);
3421 ext4_journal_stop(handle);
3422 if (truncate) {
3423 ext4_truncate_failed_write(inode);
3424orphan_del:
3425 /*
3426 * If truncate failed early the inode might still be on the
3427 * orphan list; we need to make sure the inode is removed from
3428 * the orphan list in that case.
3429 */
3430 if (inode->i_nlink)
3431 ext4_orphan_del(NULL, inode);
3432 }
3433 return ret;
3434}
3435
364443cb
JK
3436struct iomap_ops ext4_iomap_ops = {
3437 .iomap_begin = ext4_iomap_begin,
776722e8 3438 .iomap_end = ext4_iomap_end,
364443cb
JK
3439};
3440
ba5843f5 3441#endif
ed923b57 3442
187372a3 3443static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3444 ssize_t size, void *private)
4c0425ff 3445{
109811c2 3446 ext4_io_end_t *io_end = private;
4c0425ff 3447
97a851ed 3448 /* if not async direct IO just return */
7b7a8665 3449 if (!io_end)
187372a3 3450 return 0;
4b70df18 3451
88635ca2 3452 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3453 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3454 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3455
74c66bcb
JK
3456 /*
3457 * Error during AIO DIO. We cannot convert unwritten extents as the
3458 * data was not written. Just clear the unwritten flag and drop io_end.
3459 */
3460 if (size <= 0) {
3461 ext4_clear_io_unwritten_flag(io_end);
3462 size = 0;
3463 }
4c0425ff
MC
3464 io_end->offset = offset;
3465 io_end->size = size;
7b7a8665 3466 ext4_put_io_end(io_end);
187372a3
CH
3467
3468 return 0;
4c0425ff 3469}
c7064ef1 3470
4c0425ff 3471/*
914f82a3
JK
3472 * Handling of direct IO writes.
3473 *
3474 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3475 * preallocated extents, and those write extend the file, no need to
3476 * fall back to buffered IO.
3477 *
556615dc 3478 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3479 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3480 * still keep the range to write as unwritten.
4c0425ff 3481 *
69c499d1 3482 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3483 * For async direct IO, since the IO may still pending when return, we
25985edc 3484 * set up an end_io call back function, which will do the conversion
8d5d02e6 3485 * when async direct IO completed.
4c0425ff
MC
3486 *
3487 * If the O_DIRECT write will extend the file then add this inode to the
3488 * orphan list. So recovery will truncate it back to the original size
3489 * if the machine crashes during the write.
3490 *
3491 */
0e01df10 3492static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3493{
3494 struct file *file = iocb->ki_filp;
3495 struct inode *inode = file->f_mapping->host;
914f82a3 3496 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3497 ssize_t ret;
c8b8e32d 3498 loff_t offset = iocb->ki_pos;
a6cbcd4a 3499 size_t count = iov_iter_count(iter);
69c499d1
TT
3500 int overwrite = 0;
3501 get_block_t *get_block_func = NULL;
3502 int dio_flags = 0;
4c0425ff 3503 loff_t final_size = offset + count;
914f82a3
JK
3504 int orphan = 0;
3505 handle_t *handle;
729f52c6 3506
914f82a3
JK
3507 if (final_size > inode->i_size) {
3508 /* Credits for sb + inode write */
3509 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3510 if (IS_ERR(handle)) {
3511 ret = PTR_ERR(handle);
3512 goto out;
3513 }
3514 ret = ext4_orphan_add(handle, inode);
3515 if (ret) {
3516 ext4_journal_stop(handle);
3517 goto out;
3518 }
3519 orphan = 1;
3520 ei->i_disksize = inode->i_size;
3521 ext4_journal_stop(handle);
3522 }
4bd809db 3523
69c499d1 3524 BUG_ON(iocb->private == NULL);
4bd809db 3525
e8340395
JK
3526 /*
3527 * Make all waiters for direct IO properly wait also for extent
3528 * conversion. This also disallows race between truncate() and
3529 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3530 */
914f82a3 3531 inode_dio_begin(inode);
e8340395 3532
69c499d1
TT
3533 /* If we do a overwrite dio, i_mutex locking can be released */
3534 overwrite = *((int *)iocb->private);
4bd809db 3535
2dcba478 3536 if (overwrite)
5955102c 3537 inode_unlock(inode);
8d5d02e6 3538
69c499d1 3539 /*
914f82a3 3540 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3541 *
109811c2
JK
3542 * Allocated blocks to fill the hole are marked as unwritten to prevent
3543 * parallel buffered read to expose the stale data before DIO complete
3544 * the data IO.
69c499d1 3545 *
109811c2
JK
3546 * As to previously fallocated extents, ext4 get_block will just simply
3547 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3548 *
109811c2
JK
3549 * For non AIO case, we will convert those unwritten extents to written
3550 * after return back from blockdev_direct_IO. That way we save us from
3551 * allocating io_end structure and also the overhead of offloading
3552 * the extent convertion to a workqueue.
69c499d1
TT
3553 *
3554 * For async DIO, the conversion needs to be deferred when the
3555 * IO is completed. The ext4 end_io callback function will be
3556 * called to take care of the conversion work. Here for async
3557 * case, we allocate an io_end structure to hook to the iocb.
3558 */
3559 iocb->private = NULL;
109811c2 3560 if (overwrite)
705965bd 3561 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3562 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
12735f88 3563 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
914f82a3
JK
3564 get_block_func = ext4_dio_get_block;
3565 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3566 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3567 get_block_func = ext4_dio_get_block_unwritten_sync;
3568 dio_flags = DIO_LOCKING;
69c499d1 3569 } else {
109811c2 3570 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3571 dio_flags = DIO_LOCKING;
3572 }
2058f83a
MH
3573#ifdef CONFIG_EXT4_FS_ENCRYPTION
3574 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3575#endif
0bd2d5ec
JK
3576 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3577 get_block_func, ext4_end_io_dio, NULL,
3578 dio_flags);
69c499d1 3579
97a851ed 3580 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3581 EXT4_STATE_DIO_UNWRITTEN)) {
3582 int err;
3583 /*
3584 * for non AIO case, since the IO is already
3585 * completed, we could do the conversion right here
3586 */
6b523df4 3587 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3588 offset, ret);
3589 if (err < 0)
3590 ret = err;
3591 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3592 }
4bd809db 3593
914f82a3 3594 inode_dio_end(inode);
69c499d1 3595 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3596 if (overwrite)
5955102c 3597 inode_lock(inode);
8d5d02e6 3598
914f82a3
JK
3599 if (ret < 0 && final_size > inode->i_size)
3600 ext4_truncate_failed_write(inode);
3601
3602 /* Handle extending of i_size after direct IO write */
3603 if (orphan) {
3604 int err;
3605
3606 /* Credits for sb + inode write */
3607 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3608 if (IS_ERR(handle)) {
3609 /* This is really bad luck. We've written the data
3610 * but cannot extend i_size. Bail out and pretend
3611 * the write failed... */
3612 ret = PTR_ERR(handle);
3613 if (inode->i_nlink)
3614 ext4_orphan_del(NULL, inode);
3615
3616 goto out;
3617 }
3618 if (inode->i_nlink)
3619 ext4_orphan_del(handle, inode);
3620 if (ret > 0) {
3621 loff_t end = offset + ret;
3622 if (end > inode->i_size) {
3623 ei->i_disksize = end;
3624 i_size_write(inode, end);
3625 /*
3626 * We're going to return a positive `ret'
3627 * here due to non-zero-length I/O, so there's
3628 * no way of reporting error returns from
3629 * ext4_mark_inode_dirty() to userspace. So
3630 * ignore it.
3631 */
3632 ext4_mark_inode_dirty(handle, inode);
3633 }
3634 }
3635 err = ext4_journal_stop(handle);
3636 if (ret == 0)
3637 ret = err;
3638 }
3639out:
3640 return ret;
3641}
3642
0e01df10 3643static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3644{
16c54688
JK
3645 struct address_space *mapping = iocb->ki_filp->f_mapping;
3646 struct inode *inode = mapping->host;
0bd2d5ec 3647 size_t count = iov_iter_count(iter);
914f82a3
JK
3648 ssize_t ret;
3649
16c54688
JK
3650 /*
3651 * Shared inode_lock is enough for us - it protects against concurrent
3652 * writes & truncates and since we take care of writing back page cache,
3653 * we are protected against page writeback as well.
3654 */
3655 inode_lock_shared(inode);
0bd2d5ec
JK
3656 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3657 iocb->ki_pos + count);
3658 if (ret)
3659 goto out_unlock;
3660 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3661 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3662out_unlock:
3663 inode_unlock_shared(inode);
69c499d1 3664 return ret;
4c0425ff
MC
3665}
3666
c8b8e32d 3667static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3668{
3669 struct file *file = iocb->ki_filp;
3670 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3671 size_t count = iov_iter_count(iter);
c8b8e32d 3672 loff_t offset = iocb->ki_pos;
0562e0ba 3673 ssize_t ret;
4c0425ff 3674
2058f83a
MH
3675#ifdef CONFIG_EXT4_FS_ENCRYPTION
3676 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3677 return 0;
3678#endif
3679
84ebd795
TT
3680 /*
3681 * If we are doing data journalling we don't support O_DIRECT
3682 */
3683 if (ext4_should_journal_data(inode))
3684 return 0;
3685
46c7f254
TM
3686 /* Let buffer I/O handle the inline data case. */
3687 if (ext4_has_inline_data(inode))
3688 return 0;
3689
0bd2d5ec
JK
3690 /* DAX uses iomap path now */
3691 if (WARN_ON_ONCE(IS_DAX(inode)))
3692 return 0;
3693
6f673763 3694 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3695 if (iov_iter_rw(iter) == READ)
0e01df10 3696 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3697 else
0e01df10 3698 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3699 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3700 return ret;
4c0425ff
MC
3701}
3702
ac27a0ec 3703/*
617ba13b 3704 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3705 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3706 * much here because ->set_page_dirty is called under VFS locks. The page is
3707 * not necessarily locked.
3708 *
3709 * We cannot just dirty the page and leave attached buffers clean, because the
3710 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3711 * or jbddirty because all the journalling code will explode.
3712 *
3713 * So what we do is to mark the page "pending dirty" and next time writepage
3714 * is called, propagate that into the buffers appropriately.
3715 */
617ba13b 3716static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3717{
3718 SetPageChecked(page);
3719 return __set_page_dirty_nobuffers(page);
3720}
3721
6dcc693b
JK
3722static int ext4_set_page_dirty(struct page *page)
3723{
3724 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3725 WARN_ON_ONCE(!page_has_buffers(page));
3726 return __set_page_dirty_buffers(page);
3727}
3728
74d553aa 3729static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3730 .readpage = ext4_readpage,
3731 .readpages = ext4_readpages,
43ce1d23 3732 .writepage = ext4_writepage,
20970ba6 3733 .writepages = ext4_writepages,
8ab22b9a 3734 .write_begin = ext4_write_begin,
74d553aa 3735 .write_end = ext4_write_end,
6dcc693b 3736 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3737 .bmap = ext4_bmap,
3738 .invalidatepage = ext4_invalidatepage,
3739 .releasepage = ext4_releasepage,
3740 .direct_IO = ext4_direct_IO,
3741 .migratepage = buffer_migrate_page,
3742 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3743 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3744};
3745
617ba13b 3746static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3747 .readpage = ext4_readpage,
3748 .readpages = ext4_readpages,
43ce1d23 3749 .writepage = ext4_writepage,
20970ba6 3750 .writepages = ext4_writepages,
8ab22b9a
HH
3751 .write_begin = ext4_write_begin,
3752 .write_end = ext4_journalled_write_end,
3753 .set_page_dirty = ext4_journalled_set_page_dirty,
3754 .bmap = ext4_bmap,
4520fb3c 3755 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3756 .releasepage = ext4_releasepage,
84ebd795 3757 .direct_IO = ext4_direct_IO,
8ab22b9a 3758 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3759 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3760};
3761
64769240 3762static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3763 .readpage = ext4_readpage,
3764 .readpages = ext4_readpages,
43ce1d23 3765 .writepage = ext4_writepage,
20970ba6 3766 .writepages = ext4_writepages,
8ab22b9a
HH
3767 .write_begin = ext4_da_write_begin,
3768 .write_end = ext4_da_write_end,
6dcc693b 3769 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3770 .bmap = ext4_bmap,
3771 .invalidatepage = ext4_da_invalidatepage,
3772 .releasepage = ext4_releasepage,
3773 .direct_IO = ext4_direct_IO,
3774 .migratepage = buffer_migrate_page,
3775 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3776 .error_remove_page = generic_error_remove_page,
64769240
AT
3777};
3778
617ba13b 3779void ext4_set_aops(struct inode *inode)
ac27a0ec 3780{
3d2b1582
LC
3781 switch (ext4_inode_journal_mode(inode)) {
3782 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3783 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3784 break;
3785 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3786 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3787 return;
3d2b1582
LC
3788 default:
3789 BUG();
3790 }
74d553aa
TT
3791 if (test_opt(inode->i_sb, DELALLOC))
3792 inode->i_mapping->a_ops = &ext4_da_aops;
3793 else
3794 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3795}
3796
923ae0ff 3797static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3798 struct address_space *mapping, loff_t from, loff_t length)
3799{
09cbfeaf
KS
3800 ext4_fsblk_t index = from >> PAGE_SHIFT;
3801 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3802 unsigned blocksize, pos;
d863dc36
LC
3803 ext4_lblk_t iblock;
3804 struct inode *inode = mapping->host;
3805 struct buffer_head *bh;
3806 struct page *page;
3807 int err = 0;
3808
09cbfeaf 3809 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3810 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3811 if (!page)
3812 return -ENOMEM;
3813
3814 blocksize = inode->i_sb->s_blocksize;
d863dc36 3815
09cbfeaf 3816 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3817
3818 if (!page_has_buffers(page))
3819 create_empty_buffers(page, blocksize, 0);
3820
3821 /* Find the buffer that contains "offset" */
3822 bh = page_buffers(page);
3823 pos = blocksize;
3824 while (offset >= pos) {
3825 bh = bh->b_this_page;
3826 iblock++;
3827 pos += blocksize;
3828 }
d863dc36
LC
3829 if (buffer_freed(bh)) {
3830 BUFFER_TRACE(bh, "freed: skip");
3831 goto unlock;
3832 }
d863dc36
LC
3833 if (!buffer_mapped(bh)) {
3834 BUFFER_TRACE(bh, "unmapped");
3835 ext4_get_block(inode, iblock, bh, 0);
3836 /* unmapped? It's a hole - nothing to do */
3837 if (!buffer_mapped(bh)) {
3838 BUFFER_TRACE(bh, "still unmapped");
3839 goto unlock;
3840 }
3841 }
3842
3843 /* Ok, it's mapped. Make sure it's up-to-date */
3844 if (PageUptodate(page))
3845 set_buffer_uptodate(bh);
3846
3847 if (!buffer_uptodate(bh)) {
3848 err = -EIO;
dfec8a14 3849 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3850 wait_on_buffer(bh);
3851 /* Uhhuh. Read error. Complain and punt. */
3852 if (!buffer_uptodate(bh))
3853 goto unlock;
c9c7429c
MH
3854 if (S_ISREG(inode->i_mode) &&
3855 ext4_encrypted_inode(inode)) {
3856 /* We expect the key to be set. */
a7550b30 3857 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3858 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 3859 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3860 page, PAGE_SIZE, 0, page->index));
c9c7429c 3861 }
d863dc36 3862 }
d863dc36
LC
3863 if (ext4_should_journal_data(inode)) {
3864 BUFFER_TRACE(bh, "get write access");
3865 err = ext4_journal_get_write_access(handle, bh);
3866 if (err)
3867 goto unlock;
3868 }
d863dc36 3869 zero_user(page, offset, length);
d863dc36
LC
3870 BUFFER_TRACE(bh, "zeroed end of block");
3871
d863dc36
LC
3872 if (ext4_should_journal_data(inode)) {
3873 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3874 } else {
353eefd3 3875 err = 0;
d863dc36 3876 mark_buffer_dirty(bh);
3957ef53 3877 if (ext4_should_order_data(inode))
ee0876bc 3878 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3879 }
d863dc36
LC
3880
3881unlock:
3882 unlock_page(page);
09cbfeaf 3883 put_page(page);
d863dc36
LC
3884 return err;
3885}
3886
923ae0ff
RZ
3887/*
3888 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3889 * starting from file offset 'from'. The range to be zero'd must
3890 * be contained with in one block. If the specified range exceeds
3891 * the end of the block it will be shortened to end of the block
3892 * that cooresponds to 'from'
3893 */
3894static int ext4_block_zero_page_range(handle_t *handle,
3895 struct address_space *mapping, loff_t from, loff_t length)
3896{
3897 struct inode *inode = mapping->host;
09cbfeaf 3898 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3899 unsigned blocksize = inode->i_sb->s_blocksize;
3900 unsigned max = blocksize - (offset & (blocksize - 1));
3901
3902 /*
3903 * correct length if it does not fall between
3904 * 'from' and the end of the block
3905 */
3906 if (length > max || length < 0)
3907 length = max;
3908
47e69351
JK
3909 if (IS_DAX(inode)) {
3910 return iomap_zero_range(inode, from, length, NULL,
3911 &ext4_iomap_ops);
3912 }
923ae0ff
RZ
3913 return __ext4_block_zero_page_range(handle, mapping, from, length);
3914}
3915
94350ab5
MW
3916/*
3917 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3918 * up to the end of the block which corresponds to `from'.
3919 * This required during truncate. We need to physically zero the tail end
3920 * of that block so it doesn't yield old data if the file is later grown.
3921 */
c197855e 3922static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3923 struct address_space *mapping, loff_t from)
3924{
09cbfeaf 3925 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3926 unsigned length;
3927 unsigned blocksize;
3928 struct inode *inode = mapping->host;
3929
3930 blocksize = inode->i_sb->s_blocksize;
3931 length = blocksize - (offset & (blocksize - 1));
3932
3933 return ext4_block_zero_page_range(handle, mapping, from, length);
3934}
3935
a87dd18c
LC
3936int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3937 loff_t lstart, loff_t length)
3938{
3939 struct super_block *sb = inode->i_sb;
3940 struct address_space *mapping = inode->i_mapping;
e1be3a92 3941 unsigned partial_start, partial_end;
a87dd18c
LC
3942 ext4_fsblk_t start, end;
3943 loff_t byte_end = (lstart + length - 1);
3944 int err = 0;
3945
e1be3a92
LC
3946 partial_start = lstart & (sb->s_blocksize - 1);
3947 partial_end = byte_end & (sb->s_blocksize - 1);
3948
a87dd18c
LC
3949 start = lstart >> sb->s_blocksize_bits;
3950 end = byte_end >> sb->s_blocksize_bits;
3951
3952 /* Handle partial zero within the single block */
e1be3a92
LC
3953 if (start == end &&
3954 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3955 err = ext4_block_zero_page_range(handle, mapping,
3956 lstart, length);
3957 return err;
3958 }
3959 /* Handle partial zero out on the start of the range */
e1be3a92 3960 if (partial_start) {
a87dd18c
LC
3961 err = ext4_block_zero_page_range(handle, mapping,
3962 lstart, sb->s_blocksize);
3963 if (err)
3964 return err;
3965 }
3966 /* Handle partial zero out on the end of the range */
e1be3a92 3967 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3968 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3969 byte_end - partial_end,
3970 partial_end + 1);
a87dd18c
LC
3971 return err;
3972}
3973
91ef4caf
DG
3974int ext4_can_truncate(struct inode *inode)
3975{
91ef4caf
DG
3976 if (S_ISREG(inode->i_mode))
3977 return 1;
3978 if (S_ISDIR(inode->i_mode))
3979 return 1;
3980 if (S_ISLNK(inode->i_mode))
3981 return !ext4_inode_is_fast_symlink(inode);
3982 return 0;
3983}
3984
01127848
JK
3985/*
3986 * We have to make sure i_disksize gets properly updated before we truncate
3987 * page cache due to hole punching or zero range. Otherwise i_disksize update
3988 * can get lost as it may have been postponed to submission of writeback but
3989 * that will never happen after we truncate page cache.
3990 */
3991int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3992 loff_t len)
3993{
3994 handle_t *handle;
3995 loff_t size = i_size_read(inode);
3996
5955102c 3997 WARN_ON(!inode_is_locked(inode));
01127848
JK
3998 if (offset > size || offset + len < size)
3999 return 0;
4000
4001 if (EXT4_I(inode)->i_disksize >= size)
4002 return 0;
4003
4004 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4005 if (IS_ERR(handle))
4006 return PTR_ERR(handle);
4007 ext4_update_i_disksize(inode, size);
4008 ext4_mark_inode_dirty(handle, inode);
4009 ext4_journal_stop(handle);
4010
4011 return 0;
4012}
4013
a4bb6b64 4014/*
cca32b7e 4015 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4016 * associated with the given offset and length
4017 *
4018 * @inode: File inode
4019 * @offset: The offset where the hole will begin
4020 * @len: The length of the hole
4021 *
4907cb7b 4022 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4023 */
4024
aeb2817a 4025int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4026{
26a4c0c6
TT
4027 struct super_block *sb = inode->i_sb;
4028 ext4_lblk_t first_block, stop_block;
4029 struct address_space *mapping = inode->i_mapping;
a87dd18c 4030 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4031 handle_t *handle;
4032 unsigned int credits;
4033 int ret = 0;
4034
a4bb6b64 4035 if (!S_ISREG(inode->i_mode))
73355192 4036 return -EOPNOTSUPP;
a4bb6b64 4037
b8a86845 4038 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4039
26a4c0c6
TT
4040 /*
4041 * Write out all dirty pages to avoid race conditions
4042 * Then release them.
4043 */
cca32b7e 4044 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4045 ret = filemap_write_and_wait_range(mapping, offset,
4046 offset + length - 1);
4047 if (ret)
4048 return ret;
4049 }
4050
5955102c 4051 inode_lock(inode);
9ef06cec 4052
26a4c0c6
TT
4053 /* No need to punch hole beyond i_size */
4054 if (offset >= inode->i_size)
4055 goto out_mutex;
4056
4057 /*
4058 * If the hole extends beyond i_size, set the hole
4059 * to end after the page that contains i_size
4060 */
4061 if (offset + length > inode->i_size) {
4062 length = inode->i_size +
09cbfeaf 4063 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4064 offset;
4065 }
4066
a361293f
JK
4067 if (offset & (sb->s_blocksize - 1) ||
4068 (offset + length) & (sb->s_blocksize - 1)) {
4069 /*
4070 * Attach jinode to inode for jbd2 if we do any zeroing of
4071 * partial block
4072 */
4073 ret = ext4_inode_attach_jinode(inode);
4074 if (ret < 0)
4075 goto out_mutex;
4076
4077 }
4078
ea3d7209
JK
4079 /* Wait all existing dio workers, newcomers will block on i_mutex */
4080 ext4_inode_block_unlocked_dio(inode);
4081 inode_dio_wait(inode);
4082
4083 /*
4084 * Prevent page faults from reinstantiating pages we have released from
4085 * page cache.
4086 */
4087 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4088 first_block_offset = round_up(offset, sb->s_blocksize);
4089 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4090
a87dd18c 4091 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4092 if (last_block_offset > first_block_offset) {
4093 ret = ext4_update_disksize_before_punch(inode, offset, length);
4094 if (ret)
4095 goto out_dio;
a87dd18c
LC
4096 truncate_pagecache_range(inode, first_block_offset,
4097 last_block_offset);
01127848 4098 }
26a4c0c6
TT
4099
4100 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4101 credits = ext4_writepage_trans_blocks(inode);
4102 else
4103 credits = ext4_blocks_for_truncate(inode);
4104 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4105 if (IS_ERR(handle)) {
4106 ret = PTR_ERR(handle);
4107 ext4_std_error(sb, ret);
4108 goto out_dio;
4109 }
4110
a87dd18c
LC
4111 ret = ext4_zero_partial_blocks(handle, inode, offset,
4112 length);
4113 if (ret)
4114 goto out_stop;
26a4c0c6
TT
4115
4116 first_block = (offset + sb->s_blocksize - 1) >>
4117 EXT4_BLOCK_SIZE_BITS(sb);
4118 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4119
4120 /* If there are no blocks to remove, return now */
4121 if (first_block >= stop_block)
4122 goto out_stop;
4123
4124 down_write(&EXT4_I(inode)->i_data_sem);
4125 ext4_discard_preallocations(inode);
4126
4127 ret = ext4_es_remove_extent(inode, first_block,
4128 stop_block - first_block);
4129 if (ret) {
4130 up_write(&EXT4_I(inode)->i_data_sem);
4131 goto out_stop;
4132 }
4133
4134 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4135 ret = ext4_ext_remove_space(inode, first_block,
4136 stop_block - 1);
4137 else
4f579ae7 4138 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4139 stop_block);
4140
819c4920 4141 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4142 if (IS_SYNC(inode))
4143 ext4_handle_sync(handle);
e251f9bc 4144
eeca7ea1 4145 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6
TT
4146 ext4_mark_inode_dirty(handle, inode);
4147out_stop:
4148 ext4_journal_stop(handle);
4149out_dio:
ea3d7209 4150 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4151 ext4_inode_resume_unlocked_dio(inode);
4152out_mutex:
5955102c 4153 inode_unlock(inode);
26a4c0c6 4154 return ret;
a4bb6b64
AH
4155}
4156
a361293f
JK
4157int ext4_inode_attach_jinode(struct inode *inode)
4158{
4159 struct ext4_inode_info *ei = EXT4_I(inode);
4160 struct jbd2_inode *jinode;
4161
4162 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4163 return 0;
4164
4165 jinode = jbd2_alloc_inode(GFP_KERNEL);
4166 spin_lock(&inode->i_lock);
4167 if (!ei->jinode) {
4168 if (!jinode) {
4169 spin_unlock(&inode->i_lock);
4170 return -ENOMEM;
4171 }
4172 ei->jinode = jinode;
4173 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4174 jinode = NULL;
4175 }
4176 spin_unlock(&inode->i_lock);
4177 if (unlikely(jinode != NULL))
4178 jbd2_free_inode(jinode);
4179 return 0;
4180}
4181
ac27a0ec 4182/*
617ba13b 4183 * ext4_truncate()
ac27a0ec 4184 *
617ba13b
MC
4185 * We block out ext4_get_block() block instantiations across the entire
4186 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4187 * simultaneously on behalf of the same inode.
4188 *
42b2aa86 4189 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4190 * is one core, guiding principle: the file's tree must always be consistent on
4191 * disk. We must be able to restart the truncate after a crash.
4192 *
4193 * The file's tree may be transiently inconsistent in memory (although it
4194 * probably isn't), but whenever we close off and commit a journal transaction,
4195 * the contents of (the filesystem + the journal) must be consistent and
4196 * restartable. It's pretty simple, really: bottom up, right to left (although
4197 * left-to-right works OK too).
4198 *
4199 * Note that at recovery time, journal replay occurs *before* the restart of
4200 * truncate against the orphan inode list.
4201 *
4202 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4203 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4204 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4205 * ext4_truncate() to have another go. So there will be instantiated blocks
4206 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4207 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4208 * ext4_truncate() run will find them and release them.
ac27a0ec 4209 */
2c98eb5e 4210int ext4_truncate(struct inode *inode)
ac27a0ec 4211{
819c4920
TT
4212 struct ext4_inode_info *ei = EXT4_I(inode);
4213 unsigned int credits;
2c98eb5e 4214 int err = 0;
819c4920
TT
4215 handle_t *handle;
4216 struct address_space *mapping = inode->i_mapping;
819c4920 4217
19b5ef61
TT
4218 /*
4219 * There is a possibility that we're either freeing the inode
e04027e8 4220 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4221 * have i_mutex locked because it's not necessary.
4222 */
4223 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4224 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4225 trace_ext4_truncate_enter(inode);
4226
91ef4caf 4227 if (!ext4_can_truncate(inode))
2c98eb5e 4228 return 0;
ac27a0ec 4229
12e9b892 4230 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4231
5534fb5b 4232 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4233 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4234
aef1c851
TM
4235 if (ext4_has_inline_data(inode)) {
4236 int has_inline = 1;
4237
4238 ext4_inline_data_truncate(inode, &has_inline);
4239 if (has_inline)
2c98eb5e 4240 return 0;
aef1c851
TM
4241 }
4242
a361293f
JK
4243 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4244 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4245 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4246 return 0;
a361293f
JK
4247 }
4248
819c4920
TT
4249 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4250 credits = ext4_writepage_trans_blocks(inode);
4251 else
4252 credits = ext4_blocks_for_truncate(inode);
4253
4254 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4255 if (IS_ERR(handle))
4256 return PTR_ERR(handle);
819c4920 4257
eb3544c6
LC
4258 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4259 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4260
4261 /*
4262 * We add the inode to the orphan list, so that if this
4263 * truncate spans multiple transactions, and we crash, we will
4264 * resume the truncate when the filesystem recovers. It also
4265 * marks the inode dirty, to catch the new size.
4266 *
4267 * Implication: the file must always be in a sane, consistent
4268 * truncatable state while each transaction commits.
4269 */
2c98eb5e
TT
4270 err = ext4_orphan_add(handle, inode);
4271 if (err)
819c4920
TT
4272 goto out_stop;
4273
4274 down_write(&EXT4_I(inode)->i_data_sem);
4275
4276 ext4_discard_preallocations(inode);
4277
ff9893dc 4278 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4279 err = ext4_ext_truncate(handle, inode);
ff9893dc 4280 else
819c4920
TT
4281 ext4_ind_truncate(handle, inode);
4282
4283 up_write(&ei->i_data_sem);
d0abb36d
TT
4284 if (err)
4285 goto out_stop;
819c4920
TT
4286
4287 if (IS_SYNC(inode))
4288 ext4_handle_sync(handle);
4289
4290out_stop:
4291 /*
4292 * If this was a simple ftruncate() and the file will remain alive,
4293 * then we need to clear up the orphan record which we created above.
4294 * However, if this was a real unlink then we were called by
58d86a50 4295 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4296 * orphan info for us.
4297 */
4298 if (inode->i_nlink)
4299 ext4_orphan_del(handle, inode);
4300
eeca7ea1 4301 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4302 ext4_mark_inode_dirty(handle, inode);
4303 ext4_journal_stop(handle);
ac27a0ec 4304
0562e0ba 4305 trace_ext4_truncate_exit(inode);
2c98eb5e 4306 return err;
ac27a0ec
DK
4307}
4308
ac27a0ec 4309/*
617ba13b 4310 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4311 * underlying buffer_head on success. If 'in_mem' is true, we have all
4312 * data in memory that is needed to recreate the on-disk version of this
4313 * inode.
4314 */
617ba13b
MC
4315static int __ext4_get_inode_loc(struct inode *inode,
4316 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4317{
240799cd
TT
4318 struct ext4_group_desc *gdp;
4319 struct buffer_head *bh;
4320 struct super_block *sb = inode->i_sb;
4321 ext4_fsblk_t block;
4322 int inodes_per_block, inode_offset;
4323
3a06d778 4324 iloc->bh = NULL;
240799cd 4325 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4326 return -EFSCORRUPTED;
ac27a0ec 4327
240799cd
TT
4328 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4329 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4330 if (!gdp)
ac27a0ec
DK
4331 return -EIO;
4332
240799cd
TT
4333 /*
4334 * Figure out the offset within the block group inode table
4335 */
00d09882 4336 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4337 inode_offset = ((inode->i_ino - 1) %
4338 EXT4_INODES_PER_GROUP(sb));
4339 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4340 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4341
4342 bh = sb_getblk(sb, block);
aebf0243 4343 if (unlikely(!bh))
860d21e2 4344 return -ENOMEM;
ac27a0ec
DK
4345 if (!buffer_uptodate(bh)) {
4346 lock_buffer(bh);
9c83a923
HK
4347
4348 /*
4349 * If the buffer has the write error flag, we have failed
4350 * to write out another inode in the same block. In this
4351 * case, we don't have to read the block because we may
4352 * read the old inode data successfully.
4353 */
4354 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4355 set_buffer_uptodate(bh);
4356
ac27a0ec
DK
4357 if (buffer_uptodate(bh)) {
4358 /* someone brought it uptodate while we waited */
4359 unlock_buffer(bh);
4360 goto has_buffer;
4361 }
4362
4363 /*
4364 * If we have all information of the inode in memory and this
4365 * is the only valid inode in the block, we need not read the
4366 * block.
4367 */
4368 if (in_mem) {
4369 struct buffer_head *bitmap_bh;
240799cd 4370 int i, start;
ac27a0ec 4371
240799cd 4372 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4373
240799cd
TT
4374 /* Is the inode bitmap in cache? */
4375 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4376 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4377 goto make_io;
4378
4379 /*
4380 * If the inode bitmap isn't in cache then the
4381 * optimisation may end up performing two reads instead
4382 * of one, so skip it.
4383 */
4384 if (!buffer_uptodate(bitmap_bh)) {
4385 brelse(bitmap_bh);
4386 goto make_io;
4387 }
240799cd 4388 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4389 if (i == inode_offset)
4390 continue;
617ba13b 4391 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4392 break;
4393 }
4394 brelse(bitmap_bh);
240799cd 4395 if (i == start + inodes_per_block) {
ac27a0ec
DK
4396 /* all other inodes are free, so skip I/O */
4397 memset(bh->b_data, 0, bh->b_size);
4398 set_buffer_uptodate(bh);
4399 unlock_buffer(bh);
4400 goto has_buffer;
4401 }
4402 }
4403
4404make_io:
240799cd
TT
4405 /*
4406 * If we need to do any I/O, try to pre-readahead extra
4407 * blocks from the inode table.
4408 */
4409 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4410 ext4_fsblk_t b, end, table;
4411 unsigned num;
0d606e2c 4412 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4413
4414 table = ext4_inode_table(sb, gdp);
b713a5ec 4415 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4416 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4417 if (table > b)
4418 b = table;
0d606e2c 4419 end = b + ra_blks;
240799cd 4420 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4421 if (ext4_has_group_desc_csum(sb))
560671a0 4422 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4423 table += num / inodes_per_block;
4424 if (end > table)
4425 end = table;
4426 while (b <= end)
4427 sb_breadahead(sb, b++);
4428 }
4429
ac27a0ec
DK
4430 /*
4431 * There are other valid inodes in the buffer, this inode
4432 * has in-inode xattrs, or we don't have this inode in memory.
4433 * Read the block from disk.
4434 */
0562e0ba 4435 trace_ext4_load_inode(inode);
ac27a0ec
DK
4436 get_bh(bh);
4437 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4438 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4439 wait_on_buffer(bh);
4440 if (!buffer_uptodate(bh)) {
c398eda0
TT
4441 EXT4_ERROR_INODE_BLOCK(inode, block,
4442 "unable to read itable block");
ac27a0ec
DK
4443 brelse(bh);
4444 return -EIO;
4445 }
4446 }
4447has_buffer:
4448 iloc->bh = bh;
4449 return 0;
4450}
4451
617ba13b 4452int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4453{
4454 /* We have all inode data except xattrs in memory here. */
617ba13b 4455 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4456 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4457}
4458
617ba13b 4459void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4460{
617ba13b 4461 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4462 unsigned int new_fl = 0;
ac27a0ec 4463
617ba13b 4464 if (flags & EXT4_SYNC_FL)
00a1a053 4465 new_fl |= S_SYNC;
617ba13b 4466 if (flags & EXT4_APPEND_FL)
00a1a053 4467 new_fl |= S_APPEND;
617ba13b 4468 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4469 new_fl |= S_IMMUTABLE;
617ba13b 4470 if (flags & EXT4_NOATIME_FL)
00a1a053 4471 new_fl |= S_NOATIME;
617ba13b 4472 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4473 new_fl |= S_DIRSYNC;
a3caa24b
JK
4474 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4475 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4476 !ext4_encrypted_inode(inode))
923ae0ff 4477 new_fl |= S_DAX;
5f16f322 4478 inode_set_flags(inode, new_fl,
923ae0ff 4479 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4480}
4481
ff9ddf7e
JK
4482/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4483void ext4_get_inode_flags(struct ext4_inode_info *ei)
4484{
84a8dce2
DM
4485 unsigned int vfs_fl;
4486 unsigned long old_fl, new_fl;
4487
4488 do {
4489 vfs_fl = ei->vfs_inode.i_flags;
4490 old_fl = ei->i_flags;
4491 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4492 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4493 EXT4_DIRSYNC_FL);
4494 if (vfs_fl & S_SYNC)
4495 new_fl |= EXT4_SYNC_FL;
4496 if (vfs_fl & S_APPEND)
4497 new_fl |= EXT4_APPEND_FL;
4498 if (vfs_fl & S_IMMUTABLE)
4499 new_fl |= EXT4_IMMUTABLE_FL;
4500 if (vfs_fl & S_NOATIME)
4501 new_fl |= EXT4_NOATIME_FL;
4502 if (vfs_fl & S_DIRSYNC)
4503 new_fl |= EXT4_DIRSYNC_FL;
4504 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4505}
de9a55b8 4506
0fc1b451 4507static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4508 struct ext4_inode_info *ei)
0fc1b451
AK
4509{
4510 blkcnt_t i_blocks ;
8180a562
AK
4511 struct inode *inode = &(ei->vfs_inode);
4512 struct super_block *sb = inode->i_sb;
0fc1b451 4513
e2b911c5 4514 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4515 /* we are using combined 48 bit field */
4516 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4517 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4518 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4519 /* i_blocks represent file system block size */
4520 return i_blocks << (inode->i_blkbits - 9);
4521 } else {
4522 return i_blocks;
4523 }
0fc1b451
AK
4524 } else {
4525 return le32_to_cpu(raw_inode->i_blocks_lo);
4526 }
4527}
ff9ddf7e 4528
152a7b0a
TM
4529static inline void ext4_iget_extra_inode(struct inode *inode,
4530 struct ext4_inode *raw_inode,
4531 struct ext4_inode_info *ei)
4532{
4533 __le32 *magic = (void *)raw_inode +
4534 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4535 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4536 EXT4_INODE_SIZE(inode->i_sb) &&
4537 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4538 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4539 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4540 } else
4541 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4542}
4543
040cb378
LX
4544int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4545{
0b7b7779 4546 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4547 return -EOPNOTSUPP;
4548 *projid = EXT4_I(inode)->i_projid;
4549 return 0;
4550}
4551
1d1fe1ee 4552struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4553{
617ba13b
MC
4554 struct ext4_iloc iloc;
4555 struct ext4_inode *raw_inode;
1d1fe1ee 4556 struct ext4_inode_info *ei;
1d1fe1ee 4557 struct inode *inode;
b436b9be 4558 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4559 long ret;
7e6e1ef4 4560 loff_t size;
ac27a0ec 4561 int block;
08cefc7a
EB
4562 uid_t i_uid;
4563 gid_t i_gid;
040cb378 4564 projid_t i_projid;
ac27a0ec 4565
1d1fe1ee
DH
4566 inode = iget_locked(sb, ino);
4567 if (!inode)
4568 return ERR_PTR(-ENOMEM);
4569 if (!(inode->i_state & I_NEW))
4570 return inode;
4571
4572 ei = EXT4_I(inode);
7dc57615 4573 iloc.bh = NULL;
ac27a0ec 4574
1d1fe1ee
DH
4575 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4576 if (ret < 0)
ac27a0ec 4577 goto bad_inode;
617ba13b 4578 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4579
4580 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4581 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4582 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4583 EXT4_INODE_SIZE(inode->i_sb) ||
4584 (ei->i_extra_isize & 3)) {
4585 EXT4_ERROR_INODE(inode,
4586 "bad extra_isize %u (inode size %u)",
4587 ei->i_extra_isize,
4588 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4589 ret = -EFSCORRUPTED;
814525f4
DW
4590 goto bad_inode;
4591 }
4592 } else
4593 ei->i_extra_isize = 0;
4594
4595 /* Precompute checksum seed for inode metadata */
9aa5d32b 4596 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4597 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4598 __u32 csum;
4599 __le32 inum = cpu_to_le32(inode->i_ino);
4600 __le32 gen = raw_inode->i_generation;
4601 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4602 sizeof(inum));
4603 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4604 sizeof(gen));
4605 }
4606
4607 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4608 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4609 ret = -EFSBADCRC;
814525f4
DW
4610 goto bad_inode;
4611 }
4612
ac27a0ec 4613 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4614 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4615 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4616 if (ext4_has_feature_project(sb) &&
040cb378
LX
4617 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4618 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4619 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4620 else
4621 i_projid = EXT4_DEF_PROJID;
4622
af5bc92d 4623 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4624 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4625 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4626 }
08cefc7a
EB
4627 i_uid_write(inode, i_uid);
4628 i_gid_write(inode, i_gid);
acc94812 4629 ei->i_projid = make_kprojid(sb->s_user_ns, i_projid);
bfe86848 4630 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4631
353eb83c 4632 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4633 ei->i_inline_off = 0;
ac27a0ec
DK
4634 ei->i_dir_start_lookup = 0;
4635 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4636 /* We now have enough fields to check if the inode was active or not.
4637 * This is needed because nfsd might try to access dead inodes
4638 * the test is that same one that e2fsck uses
4639 * NeilBrown 1999oct15
4640 */
4641 if (inode->i_nlink == 0) {
393d1d1d
DTB
4642 if ((inode->i_mode == 0 ||
4643 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4644 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4645 /* this inode is deleted */
1d1fe1ee 4646 ret = -ESTALE;
ac27a0ec
DK
4647 goto bad_inode;
4648 }
4649 /* The only unlinked inodes we let through here have
4650 * valid i_mode and are being read by the orphan
4651 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4652 * the process of deleting those.
4653 * OR it is the EXT4_BOOT_LOADER_INO which is
4654 * not initialized on a new filesystem. */
ac27a0ec 4655 }
ac27a0ec 4656 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4657 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4658 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4659 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4660 ei->i_file_acl |=
4661 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4662 inode->i_size = ext4_isize(raw_inode);
7e6e1ef4
DW
4663 if ((size = i_size_read(inode)) < 0) {
4664 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4665 ret = -EFSCORRUPTED;
4666 goto bad_inode;
4667 }
ac27a0ec 4668 ei->i_disksize = inode->i_size;
a9e7f447
DM
4669#ifdef CONFIG_QUOTA
4670 ei->i_reserved_quota = 0;
4671#endif
ac27a0ec
DK
4672 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4673 ei->i_block_group = iloc.block_group;
a4912123 4674 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4675 /*
4676 * NOTE! The in-memory inode i_data array is in little-endian order
4677 * even on big-endian machines: we do NOT byteswap the block numbers!
4678 */
617ba13b 4679 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4680 ei->i_data[block] = raw_inode->i_block[block];
4681 INIT_LIST_HEAD(&ei->i_orphan);
4682
b436b9be
JK
4683 /*
4684 * Set transaction id's of transactions that have to be committed
4685 * to finish f[data]sync. We set them to currently running transaction
4686 * as we cannot be sure that the inode or some of its metadata isn't
4687 * part of the transaction - the inode could have been reclaimed and
4688 * now it is reread from disk.
4689 */
4690 if (journal) {
4691 transaction_t *transaction;
4692 tid_t tid;
4693
a931da6a 4694 read_lock(&journal->j_state_lock);
b436b9be
JK
4695 if (journal->j_running_transaction)
4696 transaction = journal->j_running_transaction;
4697 else
4698 transaction = journal->j_committing_transaction;
4699 if (transaction)
4700 tid = transaction->t_tid;
4701 else
4702 tid = journal->j_commit_sequence;
a931da6a 4703 read_unlock(&journal->j_state_lock);
b436b9be
JK
4704 ei->i_sync_tid = tid;
4705 ei->i_datasync_tid = tid;
4706 }
4707
0040d987 4708 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4709 if (ei->i_extra_isize == 0) {
4710 /* The extra space is currently unused. Use it. */
2dc8d9e1 4711 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4712 ei->i_extra_isize = sizeof(struct ext4_inode) -
4713 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4714 } else {
152a7b0a 4715 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4716 }
814525f4 4717 }
ac27a0ec 4718
ef7f3835
KS
4719 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4720 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4721 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4722 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4723
ed3654eb 4724 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4725 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4726 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4727 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4728 inode->i_version |=
4729 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4730 }
25ec56b5
JNC
4731 }
4732
c4b5a614 4733 ret = 0;
485c26ec 4734 if (ei->i_file_acl &&
1032988c 4735 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4736 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4737 ei->i_file_acl);
6a797d27 4738 ret = -EFSCORRUPTED;
485c26ec 4739 goto bad_inode;
f19d5870
TM
4740 } else if (!ext4_has_inline_data(inode)) {
4741 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4742 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4743 (S_ISLNK(inode->i_mode) &&
4744 !ext4_inode_is_fast_symlink(inode))))
4745 /* Validate extent which is part of inode */
4746 ret = ext4_ext_check_inode(inode);
4747 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4748 (S_ISLNK(inode->i_mode) &&
4749 !ext4_inode_is_fast_symlink(inode))) {
4750 /* Validate block references which are part of inode */
4751 ret = ext4_ind_check_inode(inode);
4752 }
fe2c8191 4753 }
567f3e9a 4754 if (ret)
de9a55b8 4755 goto bad_inode;
7a262f7c 4756
ac27a0ec 4757 if (S_ISREG(inode->i_mode)) {
617ba13b 4758 inode->i_op = &ext4_file_inode_operations;
be64f884 4759 inode->i_fop = &ext4_file_operations;
617ba13b 4760 ext4_set_aops(inode);
ac27a0ec 4761 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4762 inode->i_op = &ext4_dir_inode_operations;
4763 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4764 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4765 if (ext4_encrypted_inode(inode)) {
4766 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4767 ext4_set_aops(inode);
4768 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4769 inode->i_link = (char *)ei->i_data;
617ba13b 4770 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4771 nd_terminate_link(ei->i_data, inode->i_size,
4772 sizeof(ei->i_data) - 1);
4773 } else {
617ba13b
MC
4774 inode->i_op = &ext4_symlink_inode_operations;
4775 ext4_set_aops(inode);
ac27a0ec 4776 }
21fc61c7 4777 inode_nohighmem(inode);
563bdd61
TT
4778 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4779 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4780 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4781 if (raw_inode->i_block[0])
4782 init_special_inode(inode, inode->i_mode,
4783 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4784 else
4785 init_special_inode(inode, inode->i_mode,
4786 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4787 } else if (ino == EXT4_BOOT_LOADER_INO) {
4788 make_bad_inode(inode);
563bdd61 4789 } else {
6a797d27 4790 ret = -EFSCORRUPTED;
24676da4 4791 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4792 goto bad_inode;
ac27a0ec 4793 }
af5bc92d 4794 brelse(iloc.bh);
617ba13b 4795 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4796 unlock_new_inode(inode);
4797 return inode;
ac27a0ec
DK
4798
4799bad_inode:
567f3e9a 4800 brelse(iloc.bh);
1d1fe1ee
DH
4801 iget_failed(inode);
4802 return ERR_PTR(ret);
ac27a0ec
DK
4803}
4804
f4bb2981
TT
4805struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4806{
4807 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4808 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4809 return ext4_iget(sb, ino);
4810}
4811
0fc1b451
AK
4812static int ext4_inode_blocks_set(handle_t *handle,
4813 struct ext4_inode *raw_inode,
4814 struct ext4_inode_info *ei)
4815{
4816 struct inode *inode = &(ei->vfs_inode);
4817 u64 i_blocks = inode->i_blocks;
4818 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4819
4820 if (i_blocks <= ~0U) {
4821 /*
4907cb7b 4822 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4823 * as multiple of 512 bytes
4824 */
8180a562 4825 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4826 raw_inode->i_blocks_high = 0;
84a8dce2 4827 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4828 return 0;
4829 }
e2b911c5 4830 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4831 return -EFBIG;
4832
4833 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4834 /*
4835 * i_blocks can be represented in a 48 bit variable
4836 * as multiple of 512 bytes
4837 */
8180a562 4838 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4839 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4840 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4841 } else {
84a8dce2 4842 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4843 /* i_block is stored in file system block size */
4844 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4845 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4846 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4847 }
f287a1a5 4848 return 0;
0fc1b451
AK
4849}
4850
a26f4992
TT
4851struct other_inode {
4852 unsigned long orig_ino;
4853 struct ext4_inode *raw_inode;
4854};
4855
4856static int other_inode_match(struct inode * inode, unsigned long ino,
4857 void *data)
4858{
4859 struct other_inode *oi = (struct other_inode *) data;
4860
4861 if ((inode->i_ino != ino) ||
4862 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4863 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4864 ((inode->i_state & I_DIRTY_TIME) == 0))
4865 return 0;
4866 spin_lock(&inode->i_lock);
4867 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4868 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4869 (inode->i_state & I_DIRTY_TIME)) {
4870 struct ext4_inode_info *ei = EXT4_I(inode);
4871
4872 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4873 spin_unlock(&inode->i_lock);
4874
4875 spin_lock(&ei->i_raw_lock);
4876 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4877 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4878 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4879 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4880 spin_unlock(&ei->i_raw_lock);
4881 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4882 return -1;
4883 }
4884 spin_unlock(&inode->i_lock);
4885 return -1;
4886}
4887
4888/*
4889 * Opportunistically update the other time fields for other inodes in
4890 * the same inode table block.
4891 */
4892static void ext4_update_other_inodes_time(struct super_block *sb,
4893 unsigned long orig_ino, char *buf)
4894{
4895 struct other_inode oi;
4896 unsigned long ino;
4897 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4898 int inode_size = EXT4_INODE_SIZE(sb);
4899
4900 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4901 /*
4902 * Calculate the first inode in the inode table block. Inode
4903 * numbers are one-based. That is, the first inode in a block
4904 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4905 */
4906 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4907 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4908 if (ino == orig_ino)
4909 continue;
4910 oi.raw_inode = (struct ext4_inode *) buf;
4911 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4912 }
4913}
4914
ac27a0ec
DK
4915/*
4916 * Post the struct inode info into an on-disk inode location in the
4917 * buffer-cache. This gobbles the caller's reference to the
4918 * buffer_head in the inode location struct.
4919 *
4920 * The caller must have write access to iloc->bh.
4921 */
617ba13b 4922static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4923 struct inode *inode,
830156c7 4924 struct ext4_iloc *iloc)
ac27a0ec 4925{
617ba13b
MC
4926 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4927 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4928 struct buffer_head *bh = iloc->bh;
202ee5df 4929 struct super_block *sb = inode->i_sb;
ac27a0ec 4930 int err = 0, rc, block;
202ee5df 4931 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4932 uid_t i_uid;
4933 gid_t i_gid;
040cb378 4934 projid_t i_projid;
ac27a0ec 4935
202ee5df
TT
4936 spin_lock(&ei->i_raw_lock);
4937
4938 /* For fields not tracked in the in-memory inode,
ac27a0ec 4939 * initialise them to zero for new inodes. */
19f5fb7a 4940 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4941 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4942
ff9ddf7e 4943 ext4_get_inode_flags(ei);
ac27a0ec 4944 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4945 i_uid = i_uid_read(inode);
4946 i_gid = i_gid_read(inode);
acc94812 4947 i_projid = from_kprojid(sb->s_user_ns, ei->i_projid);
af5bc92d 4948 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4949 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4950 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4951/*
4952 * Fix up interoperability with old kernels. Otherwise, old inodes get
4953 * re-used with the upper 16 bits of the uid/gid intact
4954 */
93e3b4e6
DJ
4955 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4956 raw_inode->i_uid_high = 0;
4957 raw_inode->i_gid_high = 0;
4958 } else {
ac27a0ec 4959 raw_inode->i_uid_high =
08cefc7a 4960 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4961 raw_inode->i_gid_high =
08cefc7a 4962 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4963 }
4964 } else {
08cefc7a
EB
4965 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4966 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4967 raw_inode->i_uid_high = 0;
4968 raw_inode->i_gid_high = 0;
4969 }
4970 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4971
4972 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4973 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4974 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4975 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4976
bce92d56
LX
4977 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4978 if (err) {
202ee5df 4979 spin_unlock(&ei->i_raw_lock);
0fc1b451 4980 goto out_brelse;
202ee5df 4981 }
ac27a0ec 4982 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4983 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4984 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4985 raw_inode->i_file_acl_high =
4986 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4987 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4988 if (ei->i_disksize != ext4_isize(raw_inode)) {
4989 ext4_isize_set(raw_inode, ei->i_disksize);
4990 need_datasync = 1;
4991 }
a48380f7 4992 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4993 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4994 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4995 cpu_to_le32(EXT4_GOOD_OLD_REV))
4996 set_large_file = 1;
ac27a0ec
DK
4997 }
4998 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4999 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5000 if (old_valid_dev(inode->i_rdev)) {
5001 raw_inode->i_block[0] =
5002 cpu_to_le32(old_encode_dev(inode->i_rdev));
5003 raw_inode->i_block[1] = 0;
5004 } else {
5005 raw_inode->i_block[0] = 0;
5006 raw_inode->i_block[1] =
5007 cpu_to_le32(new_encode_dev(inode->i_rdev));
5008 raw_inode->i_block[2] = 0;
5009 }
f19d5870 5010 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5011 for (block = 0; block < EXT4_N_BLOCKS; block++)
5012 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5013 }
ac27a0ec 5014
ed3654eb 5015 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5016 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5017 if (ei->i_extra_isize) {
5018 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5019 raw_inode->i_version_hi =
5020 cpu_to_le32(inode->i_version >> 32);
5021 raw_inode->i_extra_isize =
5022 cpu_to_le16(ei->i_extra_isize);
5023 }
25ec56b5 5024 }
040cb378 5025
acc94812
SF
5026 if (i_projid != (projid_t)-1) {
5027 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5028 i_projid != EXT4_DEF_PROJID);
040cb378 5029
acc94812
SF
5030 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5031 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5032 raw_inode->i_projid = cpu_to_le32(i_projid);
5033 }
040cb378 5034
814525f4 5035 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5036 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
5037 if (inode->i_sb->s_flags & MS_LAZYTIME)
5038 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5039 bh->b_data);
202ee5df 5040
830156c7 5041 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5042 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5043 if (!err)
5044 err = rc;
19f5fb7a 5045 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5046 if (set_large_file) {
5d601255 5047 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5048 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5049 if (err)
5050 goto out_brelse;
5051 ext4_update_dynamic_rev(sb);
e2b911c5 5052 ext4_set_feature_large_file(sb);
202ee5df
TT
5053 ext4_handle_sync(handle);
5054 err = ext4_handle_dirty_super(handle, sb);
5055 }
b71fc079 5056 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5057out_brelse:
af5bc92d 5058 brelse(bh);
617ba13b 5059 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5060 return err;
5061}
5062
5063/*
617ba13b 5064 * ext4_write_inode()
ac27a0ec
DK
5065 *
5066 * We are called from a few places:
5067 *
87f7e416 5068 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5069 * Here, there will be no transaction running. We wait for any running
4907cb7b 5070 * transaction to commit.
ac27a0ec 5071 *
87f7e416
TT
5072 * - Within flush work (sys_sync(), kupdate and such).
5073 * We wait on commit, if told to.
ac27a0ec 5074 *
87f7e416
TT
5075 * - Within iput_final() -> write_inode_now()
5076 * We wait on commit, if told to.
ac27a0ec
DK
5077 *
5078 * In all cases it is actually safe for us to return without doing anything,
5079 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5080 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5081 * writeback.
ac27a0ec
DK
5082 *
5083 * Note that we are absolutely dependent upon all inode dirtiers doing the
5084 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5085 * which we are interested.
5086 *
5087 * It would be a bug for them to not do this. The code:
5088 *
5089 * mark_inode_dirty(inode)
5090 * stuff();
5091 * inode->i_size = expr;
5092 *
87f7e416
TT
5093 * is in error because write_inode() could occur while `stuff()' is running,
5094 * and the new i_size will be lost. Plus the inode will no longer be on the
5095 * superblock's dirty inode list.
ac27a0ec 5096 */
a9185b41 5097int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5098{
91ac6f43
FM
5099 int err;
5100
87f7e416 5101 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5102 return 0;
5103
91ac6f43
FM
5104 if (EXT4_SB(inode->i_sb)->s_journal) {
5105 if (ext4_journal_current_handle()) {
5106 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5107 dump_stack();
5108 return -EIO;
5109 }
ac27a0ec 5110
10542c22
JK
5111 /*
5112 * No need to force transaction in WB_SYNC_NONE mode. Also
5113 * ext4_sync_fs() will force the commit after everything is
5114 * written.
5115 */
5116 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5117 return 0;
5118
5119 err = ext4_force_commit(inode->i_sb);
5120 } else {
5121 struct ext4_iloc iloc;
ac27a0ec 5122
8b472d73 5123 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5124 if (err)
5125 return err;
10542c22
JK
5126 /*
5127 * sync(2) will flush the whole buffer cache. No need to do
5128 * it here separately for each inode.
5129 */
5130 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5131 sync_dirty_buffer(iloc.bh);
5132 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5133 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5134 "IO error syncing inode");
830156c7
FM
5135 err = -EIO;
5136 }
fd2dd9fb 5137 brelse(iloc.bh);
91ac6f43
FM
5138 }
5139 return err;
ac27a0ec
DK
5140}
5141
53e87268
JK
5142/*
5143 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5144 * buffers that are attached to a page stradding i_size and are undergoing
5145 * commit. In that case we have to wait for commit to finish and try again.
5146 */
5147static void ext4_wait_for_tail_page_commit(struct inode *inode)
5148{
5149 struct page *page;
5150 unsigned offset;
5151 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5152 tid_t commit_tid = 0;
5153 int ret;
5154
09cbfeaf 5155 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5156 /*
5157 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5158 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5159 * blocksize case
5160 */
09cbfeaf 5161 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
53e87268
JK
5162 return;
5163 while (1) {
5164 page = find_lock_page(inode->i_mapping,
09cbfeaf 5165 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5166 if (!page)
5167 return;
ca99fdd2 5168 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5169 PAGE_SIZE - offset);
53e87268 5170 unlock_page(page);
09cbfeaf 5171 put_page(page);
53e87268
JK
5172 if (ret != -EBUSY)
5173 return;
5174 commit_tid = 0;
5175 read_lock(&journal->j_state_lock);
5176 if (journal->j_committing_transaction)
5177 commit_tid = journal->j_committing_transaction->t_tid;
5178 read_unlock(&journal->j_state_lock);
5179 if (commit_tid)
5180 jbd2_log_wait_commit(journal, commit_tid);
5181 }
5182}
5183
ac27a0ec 5184/*
617ba13b 5185 * ext4_setattr()
ac27a0ec
DK
5186 *
5187 * Called from notify_change.
5188 *
5189 * We want to trap VFS attempts to truncate the file as soon as
5190 * possible. In particular, we want to make sure that when the VFS
5191 * shrinks i_size, we put the inode on the orphan list and modify
5192 * i_disksize immediately, so that during the subsequent flushing of
5193 * dirty pages and freeing of disk blocks, we can guarantee that any
5194 * commit will leave the blocks being flushed in an unused state on
5195 * disk. (On recovery, the inode will get truncated and the blocks will
5196 * be freed, so we have a strong guarantee that no future commit will
5197 * leave these blocks visible to the user.)
5198 *
678aaf48
JK
5199 * Another thing we have to assure is that if we are in ordered mode
5200 * and inode is still attached to the committing transaction, we must
5201 * we start writeout of all the dirty pages which are being truncated.
5202 * This way we are sure that all the data written in the previous
5203 * transaction are already on disk (truncate waits for pages under
5204 * writeback).
5205 *
5206 * Called with inode->i_mutex down.
ac27a0ec 5207 */
617ba13b 5208int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5209{
2b0143b5 5210 struct inode *inode = d_inode(dentry);
ac27a0ec 5211 int error, rc = 0;
3d287de3 5212 int orphan = 0;
ac27a0ec
DK
5213 const unsigned int ia_valid = attr->ia_valid;
5214
31051c85 5215 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5216 if (error)
5217 return error;
5218
a7cdadee
JK
5219 if (is_quota_modification(inode, attr)) {
5220 error = dquot_initialize(inode);
5221 if (error)
5222 return error;
5223 }
08cefc7a
EB
5224 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5225 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5226 handle_t *handle;
5227
5228 /* (user+group)*(old+new) structure, inode write (sb,
5229 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5230 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5231 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5232 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5233 if (IS_ERR(handle)) {
5234 error = PTR_ERR(handle);
5235 goto err_out;
5236 }
b43fa828 5237 error = dquot_transfer(inode, attr);
ac27a0ec 5238 if (error) {
617ba13b 5239 ext4_journal_stop(handle);
ac27a0ec
DK
5240 return error;
5241 }
5242 /* Update corresponding info in inode so that everything is in
5243 * one transaction */
5244 if (attr->ia_valid & ATTR_UID)
5245 inode->i_uid = attr->ia_uid;
5246 if (attr->ia_valid & ATTR_GID)
5247 inode->i_gid = attr->ia_gid;
617ba13b
MC
5248 error = ext4_mark_inode_dirty(handle, inode);
5249 ext4_journal_stop(handle);
ac27a0ec
DK
5250 }
5251
3da40c7b 5252 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5253 handle_t *handle;
3da40c7b
JB
5254 loff_t oldsize = inode->i_size;
5255 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5256
12e9b892 5257 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5258 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5259
0c095c7f
TT
5260 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5261 return -EFBIG;
e2b46574 5262 }
3da40c7b
JB
5263 if (!S_ISREG(inode->i_mode))
5264 return -EINVAL;
dff6efc3
CH
5265
5266 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5267 inode_inc_iversion(inode);
5268
3da40c7b 5269 if (ext4_should_order_data(inode) &&
5208386c 5270 (attr->ia_size < inode->i_size)) {
3da40c7b 5271 error = ext4_begin_ordered_truncate(inode,
678aaf48 5272 attr->ia_size);
3da40c7b
JB
5273 if (error)
5274 goto err_out;
5275 }
5276 if (attr->ia_size != inode->i_size) {
5208386c
JK
5277 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5278 if (IS_ERR(handle)) {
5279 error = PTR_ERR(handle);
5280 goto err_out;
5281 }
3da40c7b 5282 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5283 error = ext4_orphan_add(handle, inode);
5284 orphan = 1;
5285 }
911af577
EG
5286 /*
5287 * Update c/mtime on truncate up, ext4_truncate() will
5288 * update c/mtime in shrink case below
5289 */
5290 if (!shrink) {
eeca7ea1 5291 inode->i_mtime = current_time(inode);
911af577
EG
5292 inode->i_ctime = inode->i_mtime;
5293 }
90e775b7 5294 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5295 EXT4_I(inode)->i_disksize = attr->ia_size;
5296 rc = ext4_mark_inode_dirty(handle, inode);
5297 if (!error)
5298 error = rc;
90e775b7
JK
5299 /*
5300 * We have to update i_size under i_data_sem together
5301 * with i_disksize to avoid races with writeback code
5302 * running ext4_wb_update_i_disksize().
5303 */
5304 if (!error)
5305 i_size_write(inode, attr->ia_size);
5306 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5307 ext4_journal_stop(handle);
5308 if (error) {
3da40c7b
JB
5309 if (orphan)
5310 ext4_orphan_del(NULL, inode);
678aaf48
JK
5311 goto err_out;
5312 }
d6320cbf 5313 }
3da40c7b
JB
5314 if (!shrink)
5315 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5316
5208386c
JK
5317 /*
5318 * Blocks are going to be removed from the inode. Wait
5319 * for dio in flight. Temporarily disable
5320 * dioread_nolock to prevent livelock.
5321 */
5322 if (orphan) {
5323 if (!ext4_should_journal_data(inode)) {
5324 ext4_inode_block_unlocked_dio(inode);
5325 inode_dio_wait(inode);
5326 ext4_inode_resume_unlocked_dio(inode);
5327 } else
5328 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5329 }
ea3d7209 5330 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5331 /*
5332 * Truncate pagecache after we've waited for commit
5333 * in data=journal mode to make pages freeable.
5334 */
923ae0ff 5335 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5336 if (shrink) {
5337 rc = ext4_truncate(inode);
5338 if (rc)
5339 error = rc;
5340 }
ea3d7209 5341 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5342 }
ac27a0ec 5343
2c98eb5e 5344 if (!error) {
1025774c
CH
5345 setattr_copy(inode, attr);
5346 mark_inode_dirty(inode);
5347 }
5348
5349 /*
5350 * If the call to ext4_truncate failed to get a transaction handle at
5351 * all, we need to clean up the in-core orphan list manually.
5352 */
3d287de3 5353 if (orphan && inode->i_nlink)
617ba13b 5354 ext4_orphan_del(NULL, inode);
ac27a0ec 5355
2c98eb5e 5356 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5357 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5358
5359err_out:
617ba13b 5360 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5361 if (!error)
5362 error = rc;
5363 return error;
5364}
5365
3e3398a0
MC
5366int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5367 struct kstat *stat)
5368{
5369 struct inode *inode;
8af8eecc 5370 unsigned long long delalloc_blocks;
3e3398a0 5371
2b0143b5 5372 inode = d_inode(dentry);
3e3398a0
MC
5373 generic_fillattr(inode, stat);
5374
9206c561
AD
5375 /*
5376 * If there is inline data in the inode, the inode will normally not
5377 * have data blocks allocated (it may have an external xattr block).
5378 * Report at least one sector for such files, so tools like tar, rsync,
5379 * others doen't incorrectly think the file is completely sparse.
5380 */
5381 if (unlikely(ext4_has_inline_data(inode)))
5382 stat->blocks += (stat->size + 511) >> 9;
5383
3e3398a0
MC
5384 /*
5385 * We can't update i_blocks if the block allocation is delayed
5386 * otherwise in the case of system crash before the real block
5387 * allocation is done, we will have i_blocks inconsistent with
5388 * on-disk file blocks.
5389 * We always keep i_blocks updated together with real
5390 * allocation. But to not confuse with user, stat
5391 * will return the blocks that include the delayed allocation
5392 * blocks for this file.
5393 */
96607551 5394 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5395 EXT4_I(inode)->i_reserved_data_blocks);
5396 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5397 return 0;
5398}
ac27a0ec 5399
fffb2739
JK
5400static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5401 int pextents)
a02908f1 5402{
12e9b892 5403 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5404 return ext4_ind_trans_blocks(inode, lblocks);
5405 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5406}
ac51d837 5407
ac27a0ec 5408/*
a02908f1
MC
5409 * Account for index blocks, block groups bitmaps and block group
5410 * descriptor blocks if modify datablocks and index blocks
5411 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5412 *
a02908f1 5413 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5414 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5415 * they could still across block group boundary.
ac27a0ec 5416 *
a02908f1
MC
5417 * Also account for superblock, inode, quota and xattr blocks
5418 */
fffb2739
JK
5419static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5420 int pextents)
a02908f1 5421{
8df9675f
TT
5422 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5423 int gdpblocks;
a02908f1
MC
5424 int idxblocks;
5425 int ret = 0;
5426
5427 /*
fffb2739
JK
5428 * How many index blocks need to touch to map @lblocks logical blocks
5429 * to @pextents physical extents?
a02908f1 5430 */
fffb2739 5431 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5432
5433 ret = idxblocks;
5434
5435 /*
5436 * Now let's see how many group bitmaps and group descriptors need
5437 * to account
5438 */
fffb2739 5439 groups = idxblocks + pextents;
a02908f1 5440 gdpblocks = groups;
8df9675f
TT
5441 if (groups > ngroups)
5442 groups = ngroups;
a02908f1
MC
5443 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5444 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5445
5446 /* bitmaps and block group descriptor blocks */
5447 ret += groups + gdpblocks;
5448
5449 /* Blocks for super block, inode, quota and xattr blocks */
5450 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5451
5452 return ret;
5453}
5454
5455/*
25985edc 5456 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5457 * the modification of a single pages into a single transaction,
5458 * which may include multiple chunks of block allocations.
ac27a0ec 5459 *
525f4ed8 5460 * This could be called via ext4_write_begin()
ac27a0ec 5461 *
525f4ed8 5462 * We need to consider the worse case, when
a02908f1 5463 * one new block per extent.
ac27a0ec 5464 */
a86c6181 5465int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5466{
617ba13b 5467 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5468 int ret;
5469
fffb2739 5470 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5471
a02908f1 5472 /* Account for data blocks for journalled mode */
617ba13b 5473 if (ext4_should_journal_data(inode))
a02908f1 5474 ret += bpp;
ac27a0ec
DK
5475 return ret;
5476}
f3bd1f3f
MC
5477
5478/*
5479 * Calculate the journal credits for a chunk of data modification.
5480 *
5481 * This is called from DIO, fallocate or whoever calling
79e83036 5482 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5483 *
5484 * journal buffers for data blocks are not included here, as DIO
5485 * and fallocate do no need to journal data buffers.
5486 */
5487int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5488{
5489 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5490}
5491
ac27a0ec 5492/*
617ba13b 5493 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5494 * Give this, we know that the caller already has write access to iloc->bh.
5495 */
617ba13b 5496int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5497 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5498{
5499 int err = 0;
5500
c64db50e 5501 if (IS_I_VERSION(inode))
25ec56b5
JNC
5502 inode_inc_iversion(inode);
5503
ac27a0ec
DK
5504 /* the do_update_inode consumes one bh->b_count */
5505 get_bh(iloc->bh);
5506
dab291af 5507 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5508 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5509 put_bh(iloc->bh);
5510 return err;
5511}
5512
5513/*
5514 * On success, We end up with an outstanding reference count against
5515 * iloc->bh. This _must_ be cleaned up later.
5516 */
5517
5518int
617ba13b
MC
5519ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5520 struct ext4_iloc *iloc)
ac27a0ec 5521{
0390131b
FM
5522 int err;
5523
5524 err = ext4_get_inode_loc(inode, iloc);
5525 if (!err) {
5526 BUFFER_TRACE(iloc->bh, "get_write_access");
5527 err = ext4_journal_get_write_access(handle, iloc->bh);
5528 if (err) {
5529 brelse(iloc->bh);
5530 iloc->bh = NULL;
ac27a0ec
DK
5531 }
5532 }
617ba13b 5533 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5534 return err;
5535}
5536
6dd4ee7c
KS
5537/*
5538 * Expand an inode by new_extra_isize bytes.
5539 * Returns 0 on success or negative error number on failure.
5540 */
1d03ec98
AK
5541static int ext4_expand_extra_isize(struct inode *inode,
5542 unsigned int new_extra_isize,
5543 struct ext4_iloc iloc,
5544 handle_t *handle)
6dd4ee7c
KS
5545{
5546 struct ext4_inode *raw_inode;
5547 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5548
5549 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5550 return 0;
5551
5552 raw_inode = ext4_raw_inode(&iloc);
5553
5554 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5555
5556 /* No extended attributes present */
19f5fb7a
TT
5557 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5558 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5559 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5560 new_extra_isize);
5561 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5562 return 0;
5563 }
5564
5565 /* try to expand with EAs present */
5566 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5567 raw_inode, handle);
5568}
5569
ac27a0ec
DK
5570/*
5571 * What we do here is to mark the in-core inode as clean with respect to inode
5572 * dirtiness (it may still be data-dirty).
5573 * This means that the in-core inode may be reaped by prune_icache
5574 * without having to perform any I/O. This is a very good thing,
5575 * because *any* task may call prune_icache - even ones which
5576 * have a transaction open against a different journal.
5577 *
5578 * Is this cheating? Not really. Sure, we haven't written the
5579 * inode out, but prune_icache isn't a user-visible syncing function.
5580 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5581 * we start and wait on commits.
ac27a0ec 5582 */
617ba13b 5583int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5584{
617ba13b 5585 struct ext4_iloc iloc;
6dd4ee7c
KS
5586 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5587 static unsigned int mnt_count;
5588 int err, ret;
ac27a0ec
DK
5589
5590 might_sleep();
7ff9c073 5591 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5592 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5593 if (err)
5594 return err;
88e03877 5595 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5596 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c 5597 /*
88e03877
EW
5598 * In nojournal mode, we can immediately attempt to expand
5599 * the inode. When journaled, we first need to obtain extra
5600 * buffer credits since we may write into the EA block
6dd4ee7c
KS
5601 * with this same handle. If journal_extend fails, then it will
5602 * only result in a minor loss of functionality for that inode.
5603 * If this is felt to be critical, then e2fsck should be run to
5604 * force a large enough s_min_extra_isize.
5605 */
88e03877
EW
5606 if (!ext4_handle_valid(handle) ||
5607 jbd2_journal_extend(handle,
5608 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
6dd4ee7c
KS
5609 ret = ext4_expand_extra_isize(inode,
5610 sbi->s_want_extra_isize,
5611 iloc, handle);
5612 if (ret) {
c1bddad9
AK
5613 if (mnt_count !=
5614 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5615 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5616 "Unable to expand inode %lu. Delete"
5617 " some EAs or run e2fsck.",
5618 inode->i_ino);
c1bddad9
AK
5619 mnt_count =
5620 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5621 }
5622 }
5623 }
5624 }
5e1021f2 5625 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5626}
5627
5628/*
617ba13b 5629 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5630 *
5631 * We're really interested in the case where a file is being extended.
5632 * i_size has been changed by generic_commit_write() and we thus need
5633 * to include the updated inode in the current transaction.
5634 *
5dd4056d 5635 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5636 * are allocated to the file.
5637 *
5638 * If the inode is marked synchronous, we don't honour that here - doing
5639 * so would cause a commit on atime updates, which we don't bother doing.
5640 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5641 *
5642 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5643 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5644 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5645 */
aa385729 5646void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5647{
ac27a0ec
DK
5648 handle_t *handle;
5649
0ae45f63
TT
5650 if (flags == I_DIRTY_TIME)
5651 return;
9924a92a 5652 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5653 if (IS_ERR(handle))
5654 goto out;
f3dc272f 5655
f3dc272f
CW
5656 ext4_mark_inode_dirty(handle, inode);
5657
617ba13b 5658 ext4_journal_stop(handle);
ac27a0ec
DK
5659out:
5660 return;
5661}
5662
5663#if 0
5664/*
5665 * Bind an inode's backing buffer_head into this transaction, to prevent
5666 * it from being flushed to disk early. Unlike
617ba13b 5667 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5668 * returns no iloc structure, so the caller needs to repeat the iloc
5669 * lookup to mark the inode dirty later.
5670 */
617ba13b 5671static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5672{
617ba13b 5673 struct ext4_iloc iloc;
ac27a0ec
DK
5674
5675 int err = 0;
5676 if (handle) {
617ba13b 5677 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5678 if (!err) {
5679 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5680 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5681 if (!err)
0390131b 5682 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5683 NULL,
0390131b 5684 iloc.bh);
ac27a0ec
DK
5685 brelse(iloc.bh);
5686 }
5687 }
617ba13b 5688 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5689 return err;
5690}
5691#endif
5692
617ba13b 5693int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5694{
5695 journal_t *journal;
5696 handle_t *handle;
5697 int err;
c8585c6f 5698 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5699
5700 /*
5701 * We have to be very careful here: changing a data block's
5702 * journaling status dynamically is dangerous. If we write a
5703 * data block to the journal, change the status and then delete
5704 * that block, we risk forgetting to revoke the old log record
5705 * from the journal and so a subsequent replay can corrupt data.
5706 * So, first we make sure that the journal is empty and that
5707 * nobody is changing anything.
5708 */
5709
617ba13b 5710 journal = EXT4_JOURNAL(inode);
0390131b
FM
5711 if (!journal)
5712 return 0;
d699594d 5713 if (is_journal_aborted(journal))
ac27a0ec
DK
5714 return -EROFS;
5715
17335dcc
DM
5716 /* Wait for all existing dio workers */
5717 ext4_inode_block_unlocked_dio(inode);
5718 inode_dio_wait(inode);
5719
4c546592
DJ
5720 /*
5721 * Before flushing the journal and switching inode's aops, we have
5722 * to flush all dirty data the inode has. There can be outstanding
5723 * delayed allocations, there can be unwritten extents created by
5724 * fallocate or buffered writes in dioread_nolock mode covered by
5725 * dirty data which can be converted only after flushing the dirty
5726 * data (and journalled aops don't know how to handle these cases).
5727 */
5728 if (val) {
5729 down_write(&EXT4_I(inode)->i_mmap_sem);
5730 err = filemap_write_and_wait(inode->i_mapping);
5731 if (err < 0) {
5732 up_write(&EXT4_I(inode)->i_mmap_sem);
5733 ext4_inode_resume_unlocked_dio(inode);
5734 return err;
5735 }
5736 }
5737
c8585c6f 5738 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5739 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5740
5741 /*
5742 * OK, there are no updates running now, and all cached data is
5743 * synced to disk. We are now in a completely consistent state
5744 * which doesn't have anything in the journal, and we know that
5745 * no filesystem updates are running, so it is safe to modify
5746 * the inode's in-core data-journaling state flag now.
5747 */
5748
5749 if (val)
12e9b892 5750 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5751 else {
4f879ca6
JK
5752 err = jbd2_journal_flush(journal);
5753 if (err < 0) {
5754 jbd2_journal_unlock_updates(journal);
c8585c6f 5755 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5756 ext4_inode_resume_unlocked_dio(inode);
5757 return err;
5758 }
12e9b892 5759 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5760 }
617ba13b 5761 ext4_set_aops(inode);
a3caa24b
JK
5762 /*
5763 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5764 * E.g. S_DAX may get cleared / set.
5765 */
5766 ext4_set_inode_flags(inode);
ac27a0ec 5767
dab291af 5768 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5769 percpu_up_write(&sbi->s_journal_flag_rwsem);
5770
4c546592
DJ
5771 if (val)
5772 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5773 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5774
5775 /* Finally we can mark the inode as dirty. */
5776
9924a92a 5777 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5778 if (IS_ERR(handle))
5779 return PTR_ERR(handle);
5780
617ba13b 5781 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5782 ext4_handle_sync(handle);
617ba13b
MC
5783 ext4_journal_stop(handle);
5784 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5785
5786 return err;
5787}
2e9ee850
AK
5788
5789static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5790{
5791 return !buffer_mapped(bh);
5792}
5793
c2ec175c 5794int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5795{
c2ec175c 5796 struct page *page = vmf->page;
2e9ee850
AK
5797 loff_t size;
5798 unsigned long len;
9ea7df53 5799 int ret;
2e9ee850 5800 struct file *file = vma->vm_file;
496ad9aa 5801 struct inode *inode = file_inode(file);
2e9ee850 5802 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5803 handle_t *handle;
5804 get_block_t *get_block;
5805 int retries = 0;
2e9ee850 5806
8e8ad8a5 5807 sb_start_pagefault(inode->i_sb);
041bbb6d 5808 file_update_time(vma->vm_file);
ea3d7209
JK
5809
5810 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5811 /* Delalloc case is easy... */
5812 if (test_opt(inode->i_sb, DELALLOC) &&
5813 !ext4_should_journal_data(inode) &&
5814 !ext4_nonda_switch(inode->i_sb)) {
5815 do {
5c500029 5816 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5817 ext4_da_get_block_prep);
5818 } while (ret == -ENOSPC &&
5819 ext4_should_retry_alloc(inode->i_sb, &retries));
5820 goto out_ret;
2e9ee850 5821 }
0e499890
DW
5822
5823 lock_page(page);
9ea7df53
JK
5824 size = i_size_read(inode);
5825 /* Page got truncated from under us? */
5826 if (page->mapping != mapping || page_offset(page) > size) {
5827 unlock_page(page);
5828 ret = VM_FAULT_NOPAGE;
5829 goto out;
0e499890 5830 }
2e9ee850 5831
09cbfeaf
KS
5832 if (page->index == size >> PAGE_SHIFT)
5833 len = size & ~PAGE_MASK;
2e9ee850 5834 else
09cbfeaf 5835 len = PAGE_SIZE;
a827eaff 5836 /*
9ea7df53
JK
5837 * Return if we have all the buffers mapped. This avoids the need to do
5838 * journal_start/journal_stop which can block and take a long time
a827eaff 5839 */
2e9ee850 5840 if (page_has_buffers(page)) {
f19d5870
TM
5841 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5842 0, len, NULL,
5843 ext4_bh_unmapped)) {
9ea7df53 5844 /* Wait so that we don't change page under IO */
1d1d1a76 5845 wait_for_stable_page(page);
9ea7df53
JK
5846 ret = VM_FAULT_LOCKED;
5847 goto out;
a827eaff 5848 }
2e9ee850 5849 }
a827eaff 5850 unlock_page(page);
9ea7df53
JK
5851 /* OK, we need to fill the hole... */
5852 if (ext4_should_dioread_nolock(inode))
705965bd 5853 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5854 else
5855 get_block = ext4_get_block;
5856retry_alloc:
9924a92a
TT
5857 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5858 ext4_writepage_trans_blocks(inode));
9ea7df53 5859 if (IS_ERR(handle)) {
c2ec175c 5860 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5861 goto out;
5862 }
5c500029 5863 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5864 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5865 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5866 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5867 unlock_page(page);
5868 ret = VM_FAULT_SIGBUS;
fcbb5515 5869 ext4_journal_stop(handle);
9ea7df53
JK
5870 goto out;
5871 }
5872 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5873 }
5874 ext4_journal_stop(handle);
5875 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5876 goto retry_alloc;
5877out_ret:
5878 ret = block_page_mkwrite_return(ret);
5879out:
ea3d7209 5880 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5881 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5882 return ret;
5883}
ea3d7209
JK
5884
5885int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5886{
5887 struct inode *inode = file_inode(vma->vm_file);
5888 int err;
5889
5890 down_read(&EXT4_I(inode)->i_mmap_sem);
5891 err = filemap_fault(vma, vmf);
5892 up_read(&EXT4_I(inode)->i_mmap_sem);
5893
5894 return err;
5895}
2d90c160
JK
5896
5897/*
5898 * Find the first extent at or after @lblk in an inode that is not a hole.
5899 * Search for @map_len blocks at most. The extent is returned in @result.
5900 *
5901 * The function returns 1 if we found an extent. The function returns 0 in
5902 * case there is no extent at or after @lblk and in that case also sets
5903 * @result->es_len to 0. In case of error, the error code is returned.
5904 */
5905int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5906 unsigned int map_len, struct extent_status *result)
5907{
5908 struct ext4_map_blocks map;
5909 struct extent_status es = {};
5910 int ret;
5911
5912 map.m_lblk = lblk;
5913 map.m_len = map_len;
5914
5915 /*
5916 * For non-extent based files this loop may iterate several times since
5917 * we do not determine full hole size.
5918 */
5919 while (map.m_len > 0) {
5920 ret = ext4_map_blocks(NULL, inode, &map, 0);
5921 if (ret < 0)
5922 return ret;
5923 /* There's extent covering m_lblk? Just return it. */
5924 if (ret > 0) {
5925 int status;
5926
5927 ext4_es_store_pblock(result, map.m_pblk);
5928 result->es_lblk = map.m_lblk;
5929 result->es_len = map.m_len;
5930 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5931 status = EXTENT_STATUS_UNWRITTEN;
5932 else
5933 status = EXTENT_STATUS_WRITTEN;
5934 ext4_es_store_status(result, status);
5935 return 1;
5936 }
5937 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5938 map.m_lblk + map.m_len - 1,
5939 &es);
5940 /* Is delalloc data before next block in extent tree? */
5941 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5942 ext4_lblk_t offset = 0;
5943
5944 if (es.es_lblk < lblk)
5945 offset = lblk - es.es_lblk;
5946 result->es_lblk = es.es_lblk + offset;
5947 ext4_es_store_pblock(result,
5948 ext4_es_pblock(&es) + offset);
5949 result->es_len = es.es_len - offset;
5950 ext4_es_store_status(result, ext4_es_status(&es));
5951
5952 return 1;
5953 }
5954 /* There's a hole at m_lblk, advance us after it */
5955 map.m_lblk += map.m_len;
5956 map_len -= map.m_len;
5957 map.m_len = map_len;
5958 cond_resched();
5959 }
5960 result->es_len = 0;
5961 return 0;
5962}