]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
CIFS: Decrypt and process small encrypted packets
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
364443cb 40#include <linux/iomap.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 55 __u32 csum;
b47820ed
DJ
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
814525f4 59
b47820ed
DJ
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 65
b47820ed
DJ
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
b47820ed 75 }
05ac5aa1
DJ
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
78 }
79
814525f4
DW
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 90 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 111 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
678aaf48
JK
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
7ff9c073 124 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
678aaf48
JK
136}
137
d47992f8
LC
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
cb20d518
TT
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
f348c252 148int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
65eddb56
YY
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 152
bd9db175
ZL
153 if (ext4_has_inline_data(inode))
154 return 0;
155
ac27a0ec
DK
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157}
158
ac27a0ec
DK
159/*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
fa5d1113 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 165 int nblocks)
ac27a0ec 166{
487caeef
JK
167 int ret;
168
169 /*
e35fd660 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
0390131b 175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 176 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 177 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 178 ret = ext4_journal_restart(handle, nblocks);
487caeef 179 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 180 ext4_discard_preallocations(inode);
487caeef
JK
181
182 return ret;
ac27a0ec
DK
183}
184
185/*
186 * Called at the last iput() if i_nlink is zero.
187 */
0930fcc1 188void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
189{
190 handle_t *handle;
bc965ab3 191 int err;
ac27a0ec 192
7ff9c073 193 trace_ext4_evict_inode(inode);
2581fdc8 194
0930fcc1 195 if (inode->i_nlink) {
2d859db3
JK
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
6a7fd522
VN
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
2d859db3
JK
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
d76a3a77 220 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
221 filemap_write_and_wait(&inode->i_data);
222 }
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 224
0930fcc1
AV
225 goto no_delete;
226 }
227
e2bfb088
TT
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
907f4554 231
678aaf48
JK
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 234 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9924a92a
TT
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 243 if (IS_ERR(handle)) {
bc965ab3 244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
617ba13b 250 ext4_orphan_del(NULL, inode);
8e8ad8a5 251 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
0390131b 256 ext4_handle_sync(handle);
ac27a0ec 257 inode->i_size = 0;
bc965ab3
TT
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
12062ddd 260 ext4_warning(inode->i_sb,
bc965ab3
TT
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
2c98eb5e
TT
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
bc965ab3
TT
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
0390131b 280 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
12062ddd 285 ext4_warning(inode->i_sb,
bc965ab3
TT
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
45388219 289 ext4_orphan_del(NULL, inode);
8e8ad8a5 290 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
291 goto no_delete;
292 }
293 }
294
ac27a0ec 295 /*
617ba13b 296 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 297 * AKPM: I think this can be inside the above `if'.
617ba13b 298 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 299 * deletion of a non-existent orphan - this is because we don't
617ba13b 300 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
301 * (Well, we could do this if we need to, but heck - it works)
302 */
617ba13b
MC
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
617ba13b 313 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 314 /* If that failed, just do the required in-core inode clear. */
0930fcc1 315 ext4_clear_inode(inode);
ac27a0ec 316 else
617ba13b
MC
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
8e8ad8a5 319 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
320 return;
321no_delete:
0930fcc1 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
323}
324
a9e7f447
DM
325#ifdef CONFIG_QUOTA
326qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 327{
a9e7f447 328 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 329}
a9e7f447 330#endif
9d0be502 331
0637c6f4
TT
332/*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
5f634d06
AK
336void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
12219aea
AK
338{
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 340 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
341
342 spin_lock(&ei->i_block_reservation_lock);
d8990240 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 344 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 346 "with only %d reserved data blocks",
0637c6f4
TT
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
12219aea 352
0637c6f4
TT
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
71d4f7d0 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 356
12219aea 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 358
72b8ab9d
ES
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
7b415bf6 361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 362 else {
5f634d06
AK
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
72b8ab9d 366 * not re-claim the quota for fallocated blocks.
5f634d06 367 */
7b415bf6 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 369 }
d6014301
AK
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
0637c6f4
TT
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
d6014301 378 ext4_discard_preallocations(inode);
12219aea
AK
379}
380
e29136f8 381static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
382 unsigned int line,
383 struct ext4_map_blocks *map)
6fd058f7 384{
24676da4
TT
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
c398eda0
TT
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
6a797d27 391 return -EFSCORRUPTED;
6fd058f7
TT
392 }
393 return 0;
394}
395
53085fac
JK
396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398{
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
a7550b30 402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409}
410
e29136f8 411#define check_block_validity(inode, map) \
c398eda0 412 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 413
921f266b
DM
414#ifdef ES_AGGRESSIVE_TEST
415static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420{
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
2dcba478 431 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
2dcba478 439 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
bdafe42a 448 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456}
457#endif /* ES_AGGRESSIVE_TEST */
458
f5ab0d1f 459/*
e35fd660 460 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 461 * and returns if the blocks are already mapped.
f5ab0d1f 462 *
f5ab0d1f
MC
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
e35fd660
TT
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
469 * based files
470 *
facab4d9
JK
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
478 *
479 * It returns the error in case of allocation failure.
480 */
e35fd660
TT
481int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
0e855ac8 483{
d100eef2 484 struct extent_status es;
0e855ac8 485 int retval;
b8a86845 486 int ret = 0;
921f266b
DM
487#ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491#endif
f5ab0d1f 492
e35fd660
TT
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
d100eef2 497
e861b5e9
TT
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
4adb6ab3
KM
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 506 return -EFSCORRUPTED;
4adb6ab3 507
d100eef2
ZL
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
d100eef2
ZL
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
921f266b
DM
529#ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532#endif
d100eef2
ZL
533 goto found;
534 }
535
4df3d265 536 /*
b920c755
TT
537 * Try to see if we can get the block without requesting a new
538 * file system block.
4df3d265 539 */
2dcba478 540 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 544 } else {
a4e5d88b
DM
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 547 }
f7fec032 548 if (retval > 0) {
3be78c73 549 unsigned int status;
f7fec032 550
44fb851d
ZL
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
921f266b 557 }
921f266b 558
f7fec032
ZL
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 562 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
2dcba478 571 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 572
d100eef2 573found:
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 575 ret = check_block_validity(inode, map);
6fd058f7
TT
576 if (ret != 0)
577 return ret;
578 }
579
f5ab0d1f 580 /* If it is only a block(s) look up */
c2177057 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
df3ab170 588 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
589 * with buffer head unmapped.
590 */
e35fd660 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
4df3d265 599
2a8964d6 600 /*
a25a4e1a
ZL
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
2a8964d6 603 */
a25a4e1a 604 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 605
4df3d265 606 /*
556615dc 607 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 608 * will possibly result in updating i_data, so we take
d91bd2c1 609 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 610 * with create == 1 flag.
4df3d265 611 */
c8b459f4 612 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 613
4df3d265
AK
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
12e9b892 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 620 } else {
e35fd660 621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 622
e35fd660 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
19f5fb7a 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 630 }
d2a17637 631
5f634d06
AK
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
1296cc85 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
2ac3b6e0 642
f7fec032 643 if (retval > 0) {
3be78c73 644 unsigned int status;
f7fec032 645
44fb851d
ZL
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
921f266b 652 }
921f266b 653
c86d8db3
JK
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
9b623df6
JK
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
c86d8db3
JK
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
c86d8db3
JK
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
adb23551
ZL
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
c86d8db3 681 goto out_sem;
adb23551 682 }
f7fec032
ZL
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 686 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
c86d8db3 692 if (ret < 0) {
f7fec032 693 retval = ret;
c86d8db3
JK
694 goto out_sem;
695 }
5356f261
AK
696 }
697
c86d8db3 698out_sem:
4df3d265 699 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 701 ret = check_block_validity(inode, map);
6fd058f7
TT
702 if (ret != 0)
703 return ret;
06bd3c36
JK
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
ee0876bc
JK
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
719 if (ret)
720 return ret;
721 }
6fd058f7 722 }
0e855ac8
AK
723 return retval;
724}
725
ed8ad838
JK
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752}
753
2ed88685
TT
754static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
ac27a0ec 756{
2ed88685 757 struct ext4_map_blocks map;
efe70c29 758 int ret = 0;
ac27a0ec 759
46c7f254
TM
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
2ed88685
TT
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
efe70c29
JK
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
7fb5409d 768 if (ret > 0) {
2ed88685 769 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 770 ext4_update_bh_state(bh, map.m_flags);
2ed88685 771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 772 ret = 0;
547edce3
RZ
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
776 }
777 return ret;
778}
779
2ed88685
TT
780int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782{
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785}
786
705965bd
JK
787/*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794{
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799}
800
efe70c29
JK
801/* Maximum number of blocks we map for direct IO at once. */
802#define DIO_MAX_BLOCKS 4096
803
e84dfbe2
JK
804/*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
efe70c29
JK
811{
812 int dio_credits;
e84dfbe2
JK
813 handle_t *handle;
814 int retries = 0;
815 int ret;
efe70c29
JK
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
822retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
efe70c29
JK
833}
834
705965bd
JK
835/* Get block function for DIO reads and writes to inodes without extents */
836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838{
efe70c29
JK
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
e84dfbe2
JK
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
845}
846
847/*
109811c2 848 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
109811c2
JK
852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 854{
efe70c29
JK
855 int ret;
856
efe70c29
JK
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
e84dfbe2
JK
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 862
109811c2
JK
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
efe70c29 880 set_buffer_defer_completion(bh_result);
efe70c29
JK
881 }
882
883 return ret;
705965bd
JK
884}
885
109811c2
JK
886/*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893{
109811c2
JK
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
e84dfbe2
JK
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911}
912
705965bd
JK
913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915{
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
efe70c29
JK
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
705965bd
JK
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
efe70c29 928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
929
930 return ret;
931}
932
933
ac27a0ec
DK
934/*
935 * `handle' can be NULL if create is zero
936 */
617ba13b 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 938 ext4_lblk_t block, int map_flags)
ac27a0ec 939{
2ed88685
TT
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
c5e298ae 942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 943 int err;
ac27a0ec
DK
944
945 J_ASSERT(handle != NULL || create == 0);
946
2ed88685
TT
947 map.m_lblk = block;
948 map.m_len = 1;
c5e298ae 949 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 950
10560082
TT
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 953 if (err < 0)
10560082 954 return ERR_PTR(err);
2ed88685
TT
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
2ed88685
TT
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
ac27a0ec 962
2ed88685
TT
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
2ed88685
TT
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
ac27a0ec 980 }
2ed88685
TT
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
984 if (unlikely(err))
985 goto errout;
986 } else
2ed88685 987 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 988 return bh;
10560082
TT
989errout:
990 brelse(bh);
991 return ERR_PTR(err);
ac27a0ec
DK
992}
993
617ba13b 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 995 ext4_lblk_t block, int map_flags)
ac27a0ec 996{
af5bc92d 997 struct buffer_head *bh;
ac27a0ec 998
c5e298ae 999 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1000 if (IS_ERR(bh))
ac27a0ec 1001 return bh;
1c215028 1002 if (!bh || buffer_uptodate(bh))
ac27a0ec 1003 return bh;
dfec8a14 1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1c215028 1009 return ERR_PTR(-EIO);
ac27a0ec
DK
1010}
1011
f19d5870
TM
1012int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
ac27a0ec
DK
1019{
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
af5bc92d
TT
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
de9a55b8 1028 block_start = block_end, bh = next) {
ac27a0ec
DK
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1046 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1048 * prepare_write() is the right place.
1049 *
36ade451
JK
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
ac27a0ec 1054 *
617ba13b 1055 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
dab291af 1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
f19d5870
TM
1067int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
ac27a0ec 1069{
56d35a4c
JK
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
ac27a0ec
DK
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
56d35a4c 1075 /*
ebdec241 1076 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1079 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
5d601255 1085 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
ac27a0ec
DK
1090}
1091
2058f83a
MH
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095{
09cbfeaf 1096 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
09cbfeaf 1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
e64855c6 1136 clean_bdev_bh_alias(bh);
2058f83a
MH
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
dfec8a14 1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
7821d4dd 1174 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1175 PAGE_SIZE, 0, page->index);
2058f83a
MH
1176 return err;
1177}
1178#endif
1179
bfc1af65 1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
ac27a0ec 1183{
af5bc92d 1184 struct inode *inode = mapping->host;
1938a150 1185 int ret, needed_blocks;
ac27a0ec
DK
1186 handle_t *handle;
1187 int retries = 0;
af5bc92d 1188 struct page *page;
de9a55b8 1189 pgoff_t index;
af5bc92d 1190 unsigned from, to;
bfc1af65 1191
9bffad1e 1192 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1193 /*
1194 * Reserve one block more for addition to orphan list in case
1195 * we allocate blocks but write fails for some reason
1196 */
1197 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1198 index = pos >> PAGE_SHIFT;
1199 from = pos & (PAGE_SIZE - 1);
af5bc92d 1200 to = from + len;
ac27a0ec 1201
f19d5870
TM
1202 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204 flags, pagep);
1205 if (ret < 0)
47564bfb
TT
1206 return ret;
1207 if (ret == 1)
1208 return 0;
f19d5870
TM
1209 }
1210
47564bfb
TT
1211 /*
1212 * grab_cache_page_write_begin() can take a long time if the
1213 * system is thrashing due to memory pressure, or if the page
1214 * is being written back. So grab it first before we start
1215 * the transaction handle. This also allows us to allocate
1216 * the page (if needed) without using GFP_NOFS.
1217 */
1218retry_grab:
1219 page = grab_cache_page_write_begin(mapping, index, flags);
1220 if (!page)
1221 return -ENOMEM;
1222 unlock_page(page);
1223
1224retry_journal:
9924a92a 1225 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1226 if (IS_ERR(handle)) {
09cbfeaf 1227 put_page(page);
47564bfb 1228 return PTR_ERR(handle);
7479d2b9 1229 }
ac27a0ec 1230
47564bfb
TT
1231 lock_page(page);
1232 if (page->mapping != mapping) {
1233 /* The page got truncated from under us */
1234 unlock_page(page);
09cbfeaf 1235 put_page(page);
cf108bca 1236 ext4_journal_stop(handle);
47564bfb 1237 goto retry_grab;
cf108bca 1238 }
7afe5aa5
DM
1239 /* In case writeback began while the page was unlocked */
1240 wait_for_stable_page(page);
cf108bca 1241
2058f83a
MH
1242#ifdef CONFIG_EXT4_FS_ENCRYPTION
1243 if (ext4_should_dioread_nolock(inode))
1244 ret = ext4_block_write_begin(page, pos, len,
705965bd 1245 ext4_get_block_unwritten);
2058f83a
MH
1246 else
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block);
1249#else
744692dc 1250 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1251 ret = __block_write_begin(page, pos, len,
1252 ext4_get_block_unwritten);
744692dc 1253 else
6e1db88d 1254 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1255#endif
bfc1af65 1256 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1257 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258 from, to, NULL,
1259 do_journal_get_write_access);
ac27a0ec 1260 }
bfc1af65
NP
1261
1262 if (ret) {
af5bc92d 1263 unlock_page(page);
ae4d5372 1264 /*
6e1db88d 1265 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1266 * outside i_size. Trim these off again. Don't need
1267 * i_size_read because we hold i_mutex.
1938a150
AK
1268 *
1269 * Add inode to orphan list in case we crash before
1270 * truncate finishes
ae4d5372 1271 */
ffacfa7a 1272 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1273 ext4_orphan_add(handle, inode);
1274
1275 ext4_journal_stop(handle);
1276 if (pos + len > inode->i_size) {
b9a4207d 1277 ext4_truncate_failed_write(inode);
de9a55b8 1278 /*
ffacfa7a 1279 * If truncate failed early the inode might
1938a150
AK
1280 * still be on the orphan list; we need to
1281 * make sure the inode is removed from the
1282 * orphan list in that case.
1283 */
1284 if (inode->i_nlink)
1285 ext4_orphan_del(NULL, inode);
1286 }
bfc1af65 1287
47564bfb
TT
1288 if (ret == -ENOSPC &&
1289 ext4_should_retry_alloc(inode->i_sb, &retries))
1290 goto retry_journal;
09cbfeaf 1291 put_page(page);
47564bfb
TT
1292 return ret;
1293 }
1294 *pagep = page;
ac27a0ec
DK
1295 return ret;
1296}
1297
bfc1af65
NP
1298/* For write_end() in data=journal mode */
1299static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1300{
13fca323 1301 int ret;
ac27a0ec
DK
1302 if (!buffer_mapped(bh) || buffer_freed(bh))
1303 return 0;
1304 set_buffer_uptodate(bh);
13fca323
TT
1305 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306 clear_buffer_meta(bh);
1307 clear_buffer_prio(bh);
1308 return ret;
ac27a0ec
DK
1309}
1310
eed4333f
ZL
1311/*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1316 * buffers are managed internally.
1317 */
1318static int ext4_write_end(struct file *file,
1319 struct address_space *mapping,
1320 loff_t pos, unsigned len, unsigned copied,
1321 struct page *page, void *fsdata)
f8514083 1322{
f8514083 1323 handle_t *handle = ext4_journal_current_handle();
eed4333f 1324 struct inode *inode = mapping->host;
0572639f 1325 loff_t old_size = inode->i_size;
eed4333f
ZL
1326 int ret = 0, ret2;
1327 int i_size_changed = 0;
1328
1329 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1330 if (ext4_has_inline_data(inode)) {
1331 ret = ext4_write_inline_data_end(inode, pos, len,
1332 copied, page);
1333 if (ret < 0)
1334 goto errout;
1335 copied = ret;
1336 } else
f19d5870
TM
1337 copied = block_write_end(file, mapping, pos,
1338 len, copied, page, fsdata);
f8514083 1339 /*
4631dbf6 1340 * it's important to update i_size while still holding page lock:
f8514083
AK
1341 * page writeout could otherwise come in and zero beyond i_size.
1342 */
4631dbf6 1343 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1344 unlock_page(page);
09cbfeaf 1345 put_page(page);
f8514083 1346
0572639f
XW
1347 if (old_size < pos)
1348 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1349 /*
1350 * Don't mark the inode dirty under page lock. First, it unnecessarily
1351 * makes the holding time of page lock longer. Second, it forces lock
1352 * ordering of page lock and transaction start for journaling
1353 * filesystems.
1354 */
1355 if (i_size_changed)
1356 ext4_mark_inode_dirty(handle, inode);
1357
ffacfa7a 1358 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1359 /* if we have allocated more blocks and copied
1360 * less. We will have blocks allocated outside
1361 * inode->i_size. So truncate them
1362 */
1363 ext4_orphan_add(handle, inode);
74d553aa 1364errout:
617ba13b 1365 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1366 if (!ret)
1367 ret = ret2;
bfc1af65 1368
f8514083 1369 if (pos + len > inode->i_size) {
b9a4207d 1370 ext4_truncate_failed_write(inode);
de9a55b8 1371 /*
ffacfa7a 1372 * If truncate failed early the inode might still be
f8514083
AK
1373 * on the orphan list; we need to make sure the inode
1374 * is removed from the orphan list in that case.
1375 */
1376 if (inode->i_nlink)
1377 ext4_orphan_del(NULL, inode);
1378 }
1379
bfc1af65 1380 return ret ? ret : copied;
ac27a0ec
DK
1381}
1382
b90197b6
TT
1383/*
1384 * This is a private version of page_zero_new_buffers() which doesn't
1385 * set the buffer to be dirty, since in data=journalled mode we need
1386 * to call ext4_handle_dirty_metadata() instead.
1387 */
1388static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1389{
1390 unsigned int block_start = 0, block_end;
1391 struct buffer_head *head, *bh;
1392
1393 bh = head = page_buffers(page);
1394 do {
1395 block_end = block_start + bh->b_size;
1396 if (buffer_new(bh)) {
1397 if (block_end > from && block_start < to) {
1398 if (!PageUptodate(page)) {
1399 unsigned start, size;
1400
1401 start = max(from, block_start);
1402 size = min(to, block_end) - start;
1403
1404 zero_user(page, start, size);
1405 set_buffer_uptodate(bh);
1406 }
1407 clear_buffer_new(bh);
1408 }
1409 }
1410 block_start = block_end;
1411 bh = bh->b_this_page;
1412 } while (bh != head);
1413}
1414
bfc1af65 1415static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1416 struct address_space *mapping,
1417 loff_t pos, unsigned len, unsigned copied,
1418 struct page *page, void *fsdata)
ac27a0ec 1419{
617ba13b 1420 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1421 struct inode *inode = mapping->host;
0572639f 1422 loff_t old_size = inode->i_size;
ac27a0ec
DK
1423 int ret = 0, ret2;
1424 int partial = 0;
bfc1af65 1425 unsigned from, to;
4631dbf6 1426 int size_changed = 0;
ac27a0ec 1427
9bffad1e 1428 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1429 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1430 to = from + len;
1431
441c8508
CW
1432 BUG_ON(!ext4_handle_valid(handle));
1433
3fdcfb66
TM
1434 if (ext4_has_inline_data(inode))
1435 copied = ext4_write_inline_data_end(inode, pos, len,
1436 copied, page);
1437 else {
1438 if (copied < len) {
1439 if (!PageUptodate(page))
1440 copied = 0;
b90197b6 1441 zero_new_buffers(page, from+copied, to);
3fdcfb66 1442 }
ac27a0ec 1443
3fdcfb66
TM
1444 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1445 to, &partial, write_end_fn);
1446 if (!partial)
1447 SetPageUptodate(page);
1448 }
4631dbf6 1449 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1450 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1451 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1452 unlock_page(page);
09cbfeaf 1453 put_page(page);
4631dbf6 1454
0572639f
XW
1455 if (old_size < pos)
1456 pagecache_isize_extended(inode, old_size, pos);
1457
4631dbf6 1458 if (size_changed) {
617ba13b 1459 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1460 if (!ret)
1461 ret = ret2;
1462 }
bfc1af65 1463
ffacfa7a 1464 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1465 /* if we have allocated more blocks and copied
1466 * less. We will have blocks allocated outside
1467 * inode->i_size. So truncate them
1468 */
1469 ext4_orphan_add(handle, inode);
1470
617ba13b 1471 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1472 if (!ret)
1473 ret = ret2;
f8514083 1474 if (pos + len > inode->i_size) {
b9a4207d 1475 ext4_truncate_failed_write(inode);
de9a55b8 1476 /*
ffacfa7a 1477 * If truncate failed early the inode might still be
f8514083
AK
1478 * on the orphan list; we need to make sure the inode
1479 * is removed from the orphan list in that case.
1480 */
1481 if (inode->i_nlink)
1482 ext4_orphan_del(NULL, inode);
1483 }
bfc1af65
NP
1484
1485 return ret ? ret : copied;
ac27a0ec 1486}
d2a17637 1487
9d0be502 1488/*
c27e43a1 1489 * Reserve space for a single cluster
9d0be502 1490 */
c27e43a1 1491static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1492{
60e58e0f 1493 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1494 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1495 int ret;
03179fe9
TT
1496
1497 /*
1498 * We will charge metadata quota at writeout time; this saves
1499 * us from metadata over-estimation, though we may go over by
1500 * a small amount in the end. Here we just reserve for data.
1501 */
1502 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1503 if (ret)
1504 return ret;
d2a17637 1505
0637c6f4 1506 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1507 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1508 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1509 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1510 return -ENOSPC;
1511 }
9d0be502 1512 ei->i_reserved_data_blocks++;
c27e43a1 1513 trace_ext4_da_reserve_space(inode);
0637c6f4 1514 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1515
d2a17637
MC
1516 return 0; /* success */
1517}
1518
12219aea 1519static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1520{
1521 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1522 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1523
cd213226
MC
1524 if (!to_free)
1525 return; /* Nothing to release, exit */
1526
d2a17637 1527 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1528
5a58ec87 1529 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1530 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1531 /*
0637c6f4
TT
1532 * if there aren't enough reserved blocks, then the
1533 * counter is messed up somewhere. Since this
1534 * function is called from invalidate page, it's
1535 * harmless to return without any action.
cd213226 1536 */
8de5c325 1537 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1538 "ino %lu, to_free %d with only %d reserved "
1084f252 1539 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1540 ei->i_reserved_data_blocks);
1541 WARN_ON(1);
1542 to_free = ei->i_reserved_data_blocks;
cd213226 1543 }
0637c6f4 1544 ei->i_reserved_data_blocks -= to_free;
cd213226 1545
72b8ab9d 1546 /* update fs dirty data blocks counter */
57042651 1547 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1548
d2a17637 1549 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1550
7b415bf6 1551 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1552}
1553
1554static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1555 unsigned int offset,
1556 unsigned int length)
d2a17637 1557{
9705acd6 1558 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1559 struct buffer_head *head, *bh;
1560 unsigned int curr_off = 0;
7b415bf6
AK
1561 struct inode *inode = page->mapping->host;
1562 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1563 unsigned int stop = offset + length;
7b415bf6 1564 int num_clusters;
51865fda 1565 ext4_fsblk_t lblk;
d2a17637 1566
09cbfeaf 1567 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1568
d2a17637
MC
1569 head = page_buffers(page);
1570 bh = head;
1571 do {
1572 unsigned int next_off = curr_off + bh->b_size;
1573
ca99fdd2
LC
1574 if (next_off > stop)
1575 break;
1576
d2a17637
MC
1577 if ((offset <= curr_off) && (buffer_delay(bh))) {
1578 to_release++;
9705acd6 1579 contiguous_blks++;
d2a17637 1580 clear_buffer_delay(bh);
9705acd6
LC
1581 } else if (contiguous_blks) {
1582 lblk = page->index <<
09cbfeaf 1583 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1584 lblk += (curr_off >> inode->i_blkbits) -
1585 contiguous_blks;
1586 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1587 contiguous_blks = 0;
d2a17637
MC
1588 }
1589 curr_off = next_off;
1590 } while ((bh = bh->b_this_page) != head);
7b415bf6 1591
9705acd6 1592 if (contiguous_blks) {
09cbfeaf 1593 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1594 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1595 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1596 }
1597
7b415bf6
AK
1598 /* If we have released all the blocks belonging to a cluster, then we
1599 * need to release the reserved space for that cluster. */
1600 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1601 while (num_clusters > 0) {
09cbfeaf 1602 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1603 ((num_clusters - 1) << sbi->s_cluster_bits);
1604 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1605 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1606 ext4_da_release_space(inode, 1);
1607
1608 num_clusters--;
1609 }
d2a17637 1610}
ac27a0ec 1611
64769240
AT
1612/*
1613 * Delayed allocation stuff
1614 */
1615
4e7ea81d
JK
1616struct mpage_da_data {
1617 struct inode *inode;
1618 struct writeback_control *wbc;
6b523df4 1619
4e7ea81d
JK
1620 pgoff_t first_page; /* The first page to write */
1621 pgoff_t next_page; /* Current page to examine */
1622 pgoff_t last_page; /* Last page to examine */
791b7f08 1623 /*
4e7ea81d
JK
1624 * Extent to map - this can be after first_page because that can be
1625 * fully mapped. We somewhat abuse m_flags to store whether the extent
1626 * is delalloc or unwritten.
791b7f08 1627 */
4e7ea81d
JK
1628 struct ext4_map_blocks map;
1629 struct ext4_io_submit io_submit; /* IO submission data */
1630};
64769240 1631
4e7ea81d
JK
1632static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1633 bool invalidate)
c4a0c46e
AK
1634{
1635 int nr_pages, i;
1636 pgoff_t index, end;
1637 struct pagevec pvec;
1638 struct inode *inode = mpd->inode;
1639 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1640
1641 /* This is necessary when next_page == 0. */
1642 if (mpd->first_page >= mpd->next_page)
1643 return;
c4a0c46e 1644
c7f5938a
CW
1645 index = mpd->first_page;
1646 end = mpd->next_page - 1;
4e7ea81d
JK
1647 if (invalidate) {
1648 ext4_lblk_t start, last;
09cbfeaf
KS
1649 start = index << (PAGE_SHIFT - inode->i_blkbits);
1650 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1651 ext4_es_remove_extent(inode, start, last - start + 1);
1652 }
51865fda 1653
66bea92c 1654 pagevec_init(&pvec, 0);
c4a0c46e
AK
1655 while (index <= end) {
1656 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1657 if (nr_pages == 0)
1658 break;
1659 for (i = 0; i < nr_pages; i++) {
1660 struct page *page = pvec.pages[i];
9b1d0998 1661 if (page->index > end)
c4a0c46e 1662 break;
c4a0c46e
AK
1663 BUG_ON(!PageLocked(page));
1664 BUG_ON(PageWriteback(page));
4e7ea81d 1665 if (invalidate) {
4e800c03 1666 if (page_mapped(page))
1667 clear_page_dirty_for_io(page);
09cbfeaf 1668 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1669 ClearPageUptodate(page);
1670 }
c4a0c46e
AK
1671 unlock_page(page);
1672 }
9b1d0998
JK
1673 index = pvec.pages[nr_pages - 1]->index + 1;
1674 pagevec_release(&pvec);
c4a0c46e 1675 }
c4a0c46e
AK
1676}
1677
df22291f
AK
1678static void ext4_print_free_blocks(struct inode *inode)
1679{
1680 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1681 struct super_block *sb = inode->i_sb;
f78ee70d 1682 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1683
1684 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1685 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1686 ext4_count_free_clusters(sb)));
92b97816
TT
1687 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1688 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1689 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1690 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1691 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1692 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1693 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1694 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1695 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1696 ei->i_reserved_data_blocks);
df22291f
AK
1697 return;
1698}
1699
c364b22c 1700static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1701{
c364b22c 1702 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1703}
1704
5356f261
AK
1705/*
1706 * This function is grabs code from the very beginning of
1707 * ext4_map_blocks, but assumes that the caller is from delayed write
1708 * time. This function looks up the requested blocks and sets the
1709 * buffer delay bit under the protection of i_data_sem.
1710 */
1711static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1712 struct ext4_map_blocks *map,
1713 struct buffer_head *bh)
1714{
d100eef2 1715 struct extent_status es;
5356f261
AK
1716 int retval;
1717 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1718#ifdef ES_AGGRESSIVE_TEST
1719 struct ext4_map_blocks orig_map;
1720
1721 memcpy(&orig_map, map, sizeof(*map));
1722#endif
5356f261
AK
1723
1724 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1725 invalid_block = ~0;
1726
1727 map->m_flags = 0;
1728 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1729 "logical block %lu\n", inode->i_ino, map->m_len,
1730 (unsigned long) map->m_lblk);
d100eef2
ZL
1731
1732 /* Lookup extent status tree firstly */
1733 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1734 if (ext4_es_is_hole(&es)) {
1735 retval = 0;
c8b459f4 1736 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1737 goto add_delayed;
1738 }
1739
1740 /*
1741 * Delayed extent could be allocated by fallocate.
1742 * So we need to check it.
1743 */
1744 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1745 map_bh(bh, inode->i_sb, invalid_block);
1746 set_buffer_new(bh);
1747 set_buffer_delay(bh);
1748 return 0;
1749 }
1750
1751 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1752 retval = es.es_len - (iblock - es.es_lblk);
1753 if (retval > map->m_len)
1754 retval = map->m_len;
1755 map->m_len = retval;
1756 if (ext4_es_is_written(&es))
1757 map->m_flags |= EXT4_MAP_MAPPED;
1758 else if (ext4_es_is_unwritten(&es))
1759 map->m_flags |= EXT4_MAP_UNWRITTEN;
1760 else
1761 BUG_ON(1);
1762
921f266b
DM
1763#ifdef ES_AGGRESSIVE_TEST
1764 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1765#endif
d100eef2
ZL
1766 return retval;
1767 }
1768
5356f261
AK
1769 /*
1770 * Try to see if we can get the block without requesting a new
1771 * file system block.
1772 */
c8b459f4 1773 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1774 if (ext4_has_inline_data(inode))
9c3569b5 1775 retval = 0;
cbd7584e 1776 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1777 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1778 else
2f8e0a7c 1779 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1780
d100eef2 1781add_delayed:
5356f261 1782 if (retval == 0) {
f7fec032 1783 int ret;
5356f261
AK
1784 /*
1785 * XXX: __block_prepare_write() unmaps passed block,
1786 * is it OK?
1787 */
386ad67c
LC
1788 /*
1789 * If the block was allocated from previously allocated cluster,
1790 * then we don't need to reserve it again. However we still need
1791 * to reserve metadata for every block we're going to write.
1792 */
c27e43a1 1793 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1794 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1795 ret = ext4_da_reserve_space(inode);
f7fec032 1796 if (ret) {
5356f261 1797 /* not enough space to reserve */
f7fec032 1798 retval = ret;
5356f261 1799 goto out_unlock;
f7fec032 1800 }
5356f261
AK
1801 }
1802
f7fec032
ZL
1803 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1804 ~0, EXTENT_STATUS_DELAYED);
1805 if (ret) {
1806 retval = ret;
51865fda 1807 goto out_unlock;
f7fec032 1808 }
51865fda 1809
5356f261
AK
1810 map_bh(bh, inode->i_sb, invalid_block);
1811 set_buffer_new(bh);
1812 set_buffer_delay(bh);
f7fec032
ZL
1813 } else if (retval > 0) {
1814 int ret;
3be78c73 1815 unsigned int status;
f7fec032 1816
44fb851d
ZL
1817 if (unlikely(retval != map->m_len)) {
1818 ext4_warning(inode->i_sb,
1819 "ES len assertion failed for inode "
1820 "%lu: retval %d != map->m_len %d",
1821 inode->i_ino, retval, map->m_len);
1822 WARN_ON(1);
921f266b 1823 }
921f266b 1824
f7fec032
ZL
1825 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1826 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1827 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1828 map->m_pblk, status);
1829 if (ret != 0)
1830 retval = ret;
5356f261
AK
1831 }
1832
1833out_unlock:
1834 up_read((&EXT4_I(inode)->i_data_sem));
1835
1836 return retval;
1837}
1838
64769240 1839/*
d91bd2c1 1840 * This is a special get_block_t callback which is used by
b920c755
TT
1841 * ext4_da_write_begin(). It will either return mapped block or
1842 * reserve space for a single block.
29fa89d0
AK
1843 *
1844 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1845 * We also have b_blocknr = -1 and b_bdev initialized properly
1846 *
1847 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1848 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1849 * initialized properly.
64769240 1850 */
9c3569b5
TM
1851int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1852 struct buffer_head *bh, int create)
64769240 1853{
2ed88685 1854 struct ext4_map_blocks map;
64769240
AT
1855 int ret = 0;
1856
1857 BUG_ON(create == 0);
2ed88685
TT
1858 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1859
1860 map.m_lblk = iblock;
1861 map.m_len = 1;
64769240
AT
1862
1863 /*
1864 * first, we need to know whether the block is allocated already
1865 * preallocated blocks are unmapped but should treated
1866 * the same as allocated blocks.
1867 */
5356f261
AK
1868 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1869 if (ret <= 0)
2ed88685 1870 return ret;
64769240 1871
2ed88685 1872 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1873 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1874
1875 if (buffer_unwritten(bh)) {
1876 /* A delayed write to unwritten bh should be marked
1877 * new and mapped. Mapped ensures that we don't do
1878 * get_block multiple times when we write to the same
1879 * offset and new ensures that we do proper zero out
1880 * for partial write.
1881 */
1882 set_buffer_new(bh);
c8205636 1883 set_buffer_mapped(bh);
2ed88685
TT
1884 }
1885 return 0;
64769240 1886}
61628a3f 1887
62e086be
AK
1888static int bget_one(handle_t *handle, struct buffer_head *bh)
1889{
1890 get_bh(bh);
1891 return 0;
1892}
1893
1894static int bput_one(handle_t *handle, struct buffer_head *bh)
1895{
1896 put_bh(bh);
1897 return 0;
1898}
1899
1900static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1901 unsigned int len)
1902{
1903 struct address_space *mapping = page->mapping;
1904 struct inode *inode = mapping->host;
3fdcfb66 1905 struct buffer_head *page_bufs = NULL;
62e086be 1906 handle_t *handle = NULL;
3fdcfb66
TM
1907 int ret = 0, err = 0;
1908 int inline_data = ext4_has_inline_data(inode);
1909 struct buffer_head *inode_bh = NULL;
62e086be 1910
cb20d518 1911 ClearPageChecked(page);
3fdcfb66
TM
1912
1913 if (inline_data) {
1914 BUG_ON(page->index != 0);
1915 BUG_ON(len > ext4_get_max_inline_size(inode));
1916 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1917 if (inode_bh == NULL)
1918 goto out;
1919 } else {
1920 page_bufs = page_buffers(page);
1921 if (!page_bufs) {
1922 BUG();
1923 goto out;
1924 }
1925 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1926 NULL, bget_one);
1927 }
bdf96838
TT
1928 /*
1929 * We need to release the page lock before we start the
1930 * journal, so grab a reference so the page won't disappear
1931 * out from under us.
1932 */
1933 get_page(page);
62e086be
AK
1934 unlock_page(page);
1935
9924a92a
TT
1936 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1937 ext4_writepage_trans_blocks(inode));
62e086be
AK
1938 if (IS_ERR(handle)) {
1939 ret = PTR_ERR(handle);
bdf96838
TT
1940 put_page(page);
1941 goto out_no_pagelock;
62e086be 1942 }
441c8508
CW
1943 BUG_ON(!ext4_handle_valid(handle));
1944
bdf96838
TT
1945 lock_page(page);
1946 put_page(page);
1947 if (page->mapping != mapping) {
1948 /* The page got truncated from under us */
1949 ext4_journal_stop(handle);
1950 ret = 0;
1951 goto out;
1952 }
1953
3fdcfb66 1954 if (inline_data) {
5d601255 1955 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1956 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1957
3fdcfb66
TM
1958 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1959
1960 } else {
1961 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1962 do_journal_get_write_access);
1963
1964 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1965 write_end_fn);
1966 }
62e086be
AK
1967 if (ret == 0)
1968 ret = err;
2d859db3 1969 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1970 err = ext4_journal_stop(handle);
1971 if (!ret)
1972 ret = err;
1973
3fdcfb66 1974 if (!ext4_has_inline_data(inode))
8c9367fd 1975 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1976 NULL, bput_one);
19f5fb7a 1977 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1978out:
bdf96838
TT
1979 unlock_page(page);
1980out_no_pagelock:
3fdcfb66 1981 brelse(inode_bh);
62e086be
AK
1982 return ret;
1983}
1984
61628a3f 1985/*
43ce1d23
AK
1986 * Note that we don't need to start a transaction unless we're journaling data
1987 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1988 * need to file the inode to the transaction's list in ordered mode because if
1989 * we are writing back data added by write(), the inode is already there and if
25985edc 1990 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1991 * transaction the data will hit the disk. In case we are journaling data, we
1992 * cannot start transaction directly because transaction start ranks above page
1993 * lock so we have to do some magic.
1994 *
b920c755 1995 * This function can get called via...
20970ba6 1996 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1997 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1998 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1999 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2000 *
2001 * We don't do any block allocation in this function. If we have page with
2002 * multiple blocks we need to write those buffer_heads that are mapped. This
2003 * is important for mmaped based write. So if we do with blocksize 1K
2004 * truncate(f, 1024);
2005 * a = mmap(f, 0, 4096);
2006 * a[0] = 'a';
2007 * truncate(f, 4096);
2008 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2009 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2010 * do_wp_page). So writepage should write the first block. If we modify
2011 * the mmap area beyond 1024 we will again get a page_fault and the
2012 * page_mkwrite callback will do the block allocation and mark the
2013 * buffer_heads mapped.
2014 *
2015 * We redirty the page if we have any buffer_heads that is either delay or
2016 * unwritten in the page.
2017 *
2018 * We can get recursively called as show below.
2019 *
2020 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2021 * ext4_writepage()
2022 *
2023 * But since we don't do any block allocation we should not deadlock.
2024 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2025 */
43ce1d23 2026static int ext4_writepage(struct page *page,
62e086be 2027 struct writeback_control *wbc)
64769240 2028{
f8bec370 2029 int ret = 0;
61628a3f 2030 loff_t size;
498e5f24 2031 unsigned int len;
744692dc 2032 struct buffer_head *page_bufs = NULL;
61628a3f 2033 struct inode *inode = page->mapping->host;
36ade451 2034 struct ext4_io_submit io_submit;
1c8349a1 2035 bool keep_towrite = false;
61628a3f 2036
a9c667f8 2037 trace_ext4_writepage(page);
f0e6c985 2038 size = i_size_read(inode);
09cbfeaf
KS
2039 if (page->index == size >> PAGE_SHIFT)
2040 len = size & ~PAGE_MASK;
f0e6c985 2041 else
09cbfeaf 2042 len = PAGE_SIZE;
64769240 2043
a42afc5f 2044 page_bufs = page_buffers(page);
a42afc5f 2045 /*
fe386132
JK
2046 * We cannot do block allocation or other extent handling in this
2047 * function. If there are buffers needing that, we have to redirty
2048 * the page. But we may reach here when we do a journal commit via
2049 * journal_submit_inode_data_buffers() and in that case we must write
2050 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2051 *
2052 * Also, if there is only one buffer per page (the fs block
2053 * size == the page size), if one buffer needs block
2054 * allocation or needs to modify the extent tree to clear the
2055 * unwritten flag, we know that the page can't be written at
2056 * all, so we might as well refuse the write immediately.
2057 * Unfortunately if the block size != page size, we can't as
2058 * easily detect this case using ext4_walk_page_buffers(), but
2059 * for the extremely common case, this is an optimization that
2060 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2061 */
f19d5870
TM
2062 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2063 ext4_bh_delay_or_unwritten)) {
f8bec370 2064 redirty_page_for_writepage(wbc, page);
cccd147a 2065 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2066 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2067 /*
2068 * For memory cleaning there's no point in writing only
2069 * some buffers. So just bail out. Warn if we came here
2070 * from direct reclaim.
2071 */
2072 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2073 == PF_MEMALLOC);
f0e6c985
AK
2074 unlock_page(page);
2075 return 0;
2076 }
1c8349a1 2077 keep_towrite = true;
a42afc5f 2078 }
64769240 2079
cb20d518 2080 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2081 /*
2082 * It's mmapped pagecache. Add buffers and journal it. There
2083 * doesn't seem much point in redirtying the page here.
2084 */
3f0ca309 2085 return __ext4_journalled_writepage(page, len);
43ce1d23 2086
97a851ed
JK
2087 ext4_io_submit_init(&io_submit, wbc);
2088 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2089 if (!io_submit.io_end) {
2090 redirty_page_for_writepage(wbc, page);
2091 unlock_page(page);
2092 return -ENOMEM;
2093 }
1c8349a1 2094 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2095 ext4_io_submit(&io_submit);
97a851ed
JK
2096 /* Drop io_end reference we got from init */
2097 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2098 return ret;
2099}
2100
5f1132b2
JK
2101static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2102{
2103 int len;
2104 loff_t size = i_size_read(mpd->inode);
2105 int err;
2106
2107 BUG_ON(page->index != mpd->first_page);
09cbfeaf
KS
2108 if (page->index == size >> PAGE_SHIFT)
2109 len = size & ~PAGE_MASK;
5f1132b2 2110 else
09cbfeaf 2111 len = PAGE_SIZE;
5f1132b2 2112 clear_page_dirty_for_io(page);
1c8349a1 2113 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2114 if (!err)
2115 mpd->wbc->nr_to_write--;
2116 mpd->first_page++;
2117
2118 return err;
2119}
2120
4e7ea81d
JK
2121#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2122
61628a3f 2123/*
fffb2739
JK
2124 * mballoc gives us at most this number of blocks...
2125 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2126 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2127 */
fffb2739 2128#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2129
4e7ea81d
JK
2130/*
2131 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2132 *
2133 * @mpd - extent of blocks
2134 * @lblk - logical number of the block in the file
09930042 2135 * @bh - buffer head we want to add to the extent
4e7ea81d 2136 *
09930042
JK
2137 * The function is used to collect contig. blocks in the same state. If the
2138 * buffer doesn't require mapping for writeback and we haven't started the
2139 * extent of buffers to map yet, the function returns 'true' immediately - the
2140 * caller can write the buffer right away. Otherwise the function returns true
2141 * if the block has been added to the extent, false if the block couldn't be
2142 * added.
4e7ea81d 2143 */
09930042
JK
2144static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2145 struct buffer_head *bh)
4e7ea81d
JK
2146{
2147 struct ext4_map_blocks *map = &mpd->map;
2148
09930042
JK
2149 /* Buffer that doesn't need mapping for writeback? */
2150 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2151 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2152 /* So far no extent to map => we write the buffer right away */
2153 if (map->m_len == 0)
2154 return true;
2155 return false;
2156 }
4e7ea81d
JK
2157
2158 /* First block in the extent? */
2159 if (map->m_len == 0) {
2160 map->m_lblk = lblk;
2161 map->m_len = 1;
09930042
JK
2162 map->m_flags = bh->b_state & BH_FLAGS;
2163 return true;
4e7ea81d
JK
2164 }
2165
09930042
JK
2166 /* Don't go larger than mballoc is willing to allocate */
2167 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2168 return false;
2169
4e7ea81d
JK
2170 /* Can we merge the block to our big extent? */
2171 if (lblk == map->m_lblk + map->m_len &&
09930042 2172 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2173 map->m_len++;
09930042 2174 return true;
4e7ea81d 2175 }
09930042 2176 return false;
4e7ea81d
JK
2177}
2178
5f1132b2
JK
2179/*
2180 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2181 *
2182 * @mpd - extent of blocks for mapping
2183 * @head - the first buffer in the page
2184 * @bh - buffer we should start processing from
2185 * @lblk - logical number of the block in the file corresponding to @bh
2186 *
2187 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2188 * the page for IO if all buffers in this page were mapped and there's no
2189 * accumulated extent of buffers to map or add buffers in the page to the
2190 * extent of buffers to map. The function returns 1 if the caller can continue
2191 * by processing the next page, 0 if it should stop adding buffers to the
2192 * extent to map because we cannot extend it anymore. It can also return value
2193 * < 0 in case of error during IO submission.
2194 */
2195static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2196 struct buffer_head *head,
2197 struct buffer_head *bh,
2198 ext4_lblk_t lblk)
4e7ea81d
JK
2199{
2200 struct inode *inode = mpd->inode;
5f1132b2 2201 int err;
4e7ea81d
JK
2202 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2203 >> inode->i_blkbits;
2204
2205 do {
2206 BUG_ON(buffer_locked(bh));
2207
09930042 2208 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2209 /* Found extent to map? */
2210 if (mpd->map.m_len)
5f1132b2 2211 return 0;
09930042 2212 /* Everything mapped so far and we hit EOF */
5f1132b2 2213 break;
4e7ea81d 2214 }
4e7ea81d 2215 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2216 /* So far everything mapped? Submit the page for IO. */
2217 if (mpd->map.m_len == 0) {
2218 err = mpage_submit_page(mpd, head->b_page);
2219 if (err < 0)
2220 return err;
2221 }
2222 return lblk < blocks;
4e7ea81d
JK
2223}
2224
2225/*
2226 * mpage_map_buffers - update buffers corresponding to changed extent and
2227 * submit fully mapped pages for IO
2228 *
2229 * @mpd - description of extent to map, on return next extent to map
2230 *
2231 * Scan buffers corresponding to changed extent (we expect corresponding pages
2232 * to be already locked) and update buffer state according to new extent state.
2233 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2234 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2235 * and do extent conversion after IO is finished. If the last page is not fully
2236 * mapped, we update @map to the next extent in the last page that needs
2237 * mapping. Otherwise we submit the page for IO.
2238 */
2239static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2240{
2241 struct pagevec pvec;
2242 int nr_pages, i;
2243 struct inode *inode = mpd->inode;
2244 struct buffer_head *head, *bh;
09cbfeaf 2245 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2246 pgoff_t start, end;
2247 ext4_lblk_t lblk;
2248 sector_t pblock;
2249 int err;
2250
2251 start = mpd->map.m_lblk >> bpp_bits;
2252 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2253 lblk = start << bpp_bits;
2254 pblock = mpd->map.m_pblk;
2255
2256 pagevec_init(&pvec, 0);
2257 while (start <= end) {
2258 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2259 PAGEVEC_SIZE);
2260 if (nr_pages == 0)
2261 break;
2262 for (i = 0; i < nr_pages; i++) {
2263 struct page *page = pvec.pages[i];
2264
2265 if (page->index > end)
2266 break;
70261f56 2267 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2268 BUG_ON(page->index != start);
2269 bh = head = page_buffers(page);
2270 do {
2271 if (lblk < mpd->map.m_lblk)
2272 continue;
2273 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2274 /*
2275 * Buffer after end of mapped extent.
2276 * Find next buffer in the page to map.
2277 */
2278 mpd->map.m_len = 0;
2279 mpd->map.m_flags = 0;
5f1132b2
JK
2280 /*
2281 * FIXME: If dioread_nolock supports
2282 * blocksize < pagesize, we need to make
2283 * sure we add size mapped so far to
2284 * io_end->size as the following call
2285 * can submit the page for IO.
2286 */
2287 err = mpage_process_page_bufs(mpd, head,
2288 bh, lblk);
4e7ea81d 2289 pagevec_release(&pvec);
5f1132b2
JK
2290 if (err > 0)
2291 err = 0;
2292 return err;
4e7ea81d
JK
2293 }
2294 if (buffer_delay(bh)) {
2295 clear_buffer_delay(bh);
2296 bh->b_blocknr = pblock++;
2297 }
4e7ea81d 2298 clear_buffer_unwritten(bh);
5f1132b2 2299 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2300
2301 /*
2302 * FIXME: This is going to break if dioread_nolock
2303 * supports blocksize < pagesize as we will try to
2304 * convert potentially unmapped parts of inode.
2305 */
09cbfeaf 2306 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2307 /* Page fully mapped - let IO run! */
2308 err = mpage_submit_page(mpd, page);
2309 if (err < 0) {
2310 pagevec_release(&pvec);
2311 return err;
2312 }
2313 start++;
2314 }
2315 pagevec_release(&pvec);
2316 }
2317 /* Extent fully mapped and matches with page boundary. We are done. */
2318 mpd->map.m_len = 0;
2319 mpd->map.m_flags = 0;
2320 return 0;
2321}
2322
2323static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2324{
2325 struct inode *inode = mpd->inode;
2326 struct ext4_map_blocks *map = &mpd->map;
2327 int get_blocks_flags;
090f32ee 2328 int err, dioread_nolock;
4e7ea81d
JK
2329
2330 trace_ext4_da_write_pages_extent(inode, map);
2331 /*
2332 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2333 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2334 * where we have written into one or more preallocated blocks). It is
2335 * possible that we're going to need more metadata blocks than
2336 * previously reserved. However we must not fail because we're in
2337 * writeback and there is nothing we can do about it so it might result
2338 * in data loss. So use reserved blocks to allocate metadata if
2339 * possible.
2340 *
754cfed6
TT
2341 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2342 * the blocks in question are delalloc blocks. This indicates
2343 * that the blocks and quotas has already been checked when
2344 * the data was copied into the page cache.
4e7ea81d
JK
2345 */
2346 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2347 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2348 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2349 dioread_nolock = ext4_should_dioread_nolock(inode);
2350 if (dioread_nolock)
4e7ea81d
JK
2351 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2352 if (map->m_flags & (1 << BH_Delay))
2353 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2354
2355 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2356 if (err < 0)
2357 return err;
090f32ee 2358 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2359 if (!mpd->io_submit.io_end->handle &&
2360 ext4_handle_valid(handle)) {
2361 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2362 handle->h_rsv_handle = NULL;
2363 }
3613d228 2364 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2365 }
4e7ea81d
JK
2366
2367 BUG_ON(map->m_len == 0);
2368 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2369 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2370 map->m_len);
4e7ea81d
JK
2371 }
2372 return 0;
2373}
2374
2375/*
2376 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2377 * mpd->len and submit pages underlying it for IO
2378 *
2379 * @handle - handle for journal operations
2380 * @mpd - extent to map
7534e854
JK
2381 * @give_up_on_write - we set this to true iff there is a fatal error and there
2382 * is no hope of writing the data. The caller should discard
2383 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2384 *
2385 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2386 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2387 * them to initialized or split the described range from larger unwritten
2388 * extent. Note that we need not map all the described range since allocation
2389 * can return less blocks or the range is covered by more unwritten extents. We
2390 * cannot map more because we are limited by reserved transaction credits. On
2391 * the other hand we always make sure that the last touched page is fully
2392 * mapped so that it can be written out (and thus forward progress is
2393 * guaranteed). After mapping we submit all mapped pages for IO.
2394 */
2395static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2396 struct mpage_da_data *mpd,
2397 bool *give_up_on_write)
4e7ea81d
JK
2398{
2399 struct inode *inode = mpd->inode;
2400 struct ext4_map_blocks *map = &mpd->map;
2401 int err;
2402 loff_t disksize;
6603120e 2403 int progress = 0;
4e7ea81d
JK
2404
2405 mpd->io_submit.io_end->offset =
2406 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2407 do {
4e7ea81d
JK
2408 err = mpage_map_one_extent(handle, mpd);
2409 if (err < 0) {
2410 struct super_block *sb = inode->i_sb;
2411
cb530541
TT
2412 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2413 goto invalidate_dirty_pages;
4e7ea81d 2414 /*
cb530541
TT
2415 * Let the uper layers retry transient errors.
2416 * In the case of ENOSPC, if ext4_count_free_blocks()
2417 * is non-zero, a commit should free up blocks.
4e7ea81d 2418 */
cb530541 2419 if ((err == -ENOMEM) ||
6603120e
DM
2420 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2421 if (progress)
2422 goto update_disksize;
cb530541 2423 return err;
6603120e 2424 }
cb530541
TT
2425 ext4_msg(sb, KERN_CRIT,
2426 "Delayed block allocation failed for "
2427 "inode %lu at logical offset %llu with"
2428 " max blocks %u with error %d",
2429 inode->i_ino,
2430 (unsigned long long)map->m_lblk,
2431 (unsigned)map->m_len, -err);
2432 ext4_msg(sb, KERN_CRIT,
2433 "This should not happen!! Data will "
2434 "be lost\n");
2435 if (err == -ENOSPC)
2436 ext4_print_free_blocks(inode);
2437 invalidate_dirty_pages:
2438 *give_up_on_write = true;
4e7ea81d
JK
2439 return err;
2440 }
6603120e 2441 progress = 1;
4e7ea81d
JK
2442 /*
2443 * Update buffer state, submit mapped pages, and get us new
2444 * extent to map
2445 */
2446 err = mpage_map_and_submit_buffers(mpd);
2447 if (err < 0)
6603120e 2448 goto update_disksize;
27d7c4ed 2449 } while (map->m_len);
4e7ea81d 2450
6603120e 2451update_disksize:
622cad13
TT
2452 /*
2453 * Update on-disk size after IO is submitted. Races with
2454 * truncate are avoided by checking i_size under i_data_sem.
2455 */
09cbfeaf 2456 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2457 if (disksize > EXT4_I(inode)->i_disksize) {
2458 int err2;
622cad13
TT
2459 loff_t i_size;
2460
2461 down_write(&EXT4_I(inode)->i_data_sem);
2462 i_size = i_size_read(inode);
2463 if (disksize > i_size)
2464 disksize = i_size;
2465 if (disksize > EXT4_I(inode)->i_disksize)
2466 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2467 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2468 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2469 if (err2)
2470 ext4_error(inode->i_sb,
2471 "Failed to mark inode %lu dirty",
2472 inode->i_ino);
2473 if (!err)
2474 err = err2;
2475 }
2476 return err;
2477}
2478
fffb2739
JK
2479/*
2480 * Calculate the total number of credits to reserve for one writepages
20970ba6 2481 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2482 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2483 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2484 * bpp - 1 blocks in bpp different extents.
2485 */
525f4ed8
MC
2486static int ext4_da_writepages_trans_blocks(struct inode *inode)
2487{
fffb2739 2488 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2489
fffb2739
JK
2490 return ext4_meta_trans_blocks(inode,
2491 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2492}
61628a3f 2493
8e48dcfb 2494/*
4e7ea81d
JK
2495 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2496 * and underlying extent to map
2497 *
2498 * @mpd - where to look for pages
2499 *
2500 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2501 * IO immediately. When we find a page which isn't mapped we start accumulating
2502 * extent of buffers underlying these pages that needs mapping (formed by
2503 * either delayed or unwritten buffers). We also lock the pages containing
2504 * these buffers. The extent found is returned in @mpd structure (starting at
2505 * mpd->lblk with length mpd->len blocks).
2506 *
2507 * Note that this function can attach bios to one io_end structure which are
2508 * neither logically nor physically contiguous. Although it may seem as an
2509 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2510 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2511 */
4e7ea81d 2512static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2513{
4e7ea81d
JK
2514 struct address_space *mapping = mpd->inode->i_mapping;
2515 struct pagevec pvec;
2516 unsigned int nr_pages;
aeac589a 2517 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2518 pgoff_t index = mpd->first_page;
2519 pgoff_t end = mpd->last_page;
2520 int tag;
2521 int i, err = 0;
2522 int blkbits = mpd->inode->i_blkbits;
2523 ext4_lblk_t lblk;
2524 struct buffer_head *head;
8e48dcfb 2525
4e7ea81d 2526 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2527 tag = PAGECACHE_TAG_TOWRITE;
2528 else
2529 tag = PAGECACHE_TAG_DIRTY;
2530
4e7ea81d
JK
2531 pagevec_init(&pvec, 0);
2532 mpd->map.m_len = 0;
2533 mpd->next_page = index;
4f01b02c 2534 while (index <= end) {
5b41d924 2535 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2536 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2537 if (nr_pages == 0)
4e7ea81d 2538 goto out;
8e48dcfb
TT
2539
2540 for (i = 0; i < nr_pages; i++) {
2541 struct page *page = pvec.pages[i];
2542
2543 /*
2544 * At this point, the page may be truncated or
2545 * invalidated (changing page->mapping to NULL), or
2546 * even swizzled back from swapper_space to tmpfs file
2547 * mapping. However, page->index will not change
2548 * because we have a reference on the page.
2549 */
4f01b02c
TT
2550 if (page->index > end)
2551 goto out;
8e48dcfb 2552
aeac589a
ML
2553 /*
2554 * Accumulated enough dirty pages? This doesn't apply
2555 * to WB_SYNC_ALL mode. For integrity sync we have to
2556 * keep going because someone may be concurrently
2557 * dirtying pages, and we might have synced a lot of
2558 * newly appeared dirty pages, but have not synced all
2559 * of the old dirty pages.
2560 */
2561 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2562 goto out;
2563
4e7ea81d
JK
2564 /* If we can't merge this page, we are done. */
2565 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2566 goto out;
78aaced3 2567
8e48dcfb 2568 lock_page(page);
8e48dcfb 2569 /*
4e7ea81d
JK
2570 * If the page is no longer dirty, or its mapping no
2571 * longer corresponds to inode we are writing (which
2572 * means it has been truncated or invalidated), or the
2573 * page is already under writeback and we are not doing
2574 * a data integrity writeback, skip the page
8e48dcfb 2575 */
4f01b02c
TT
2576 if (!PageDirty(page) ||
2577 (PageWriteback(page) &&
4e7ea81d 2578 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2579 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2580 unlock_page(page);
2581 continue;
2582 }
2583
7cb1a535 2584 wait_on_page_writeback(page);
8e48dcfb 2585 BUG_ON(PageWriteback(page));
8e48dcfb 2586
4e7ea81d 2587 if (mpd->map.m_len == 0)
8eb9e5ce 2588 mpd->first_page = page->index;
8eb9e5ce 2589 mpd->next_page = page->index + 1;
f8bec370 2590 /* Add all dirty buffers to mpd */
4e7ea81d 2591 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2592 (PAGE_SHIFT - blkbits);
f8bec370 2593 head = page_buffers(page);
5f1132b2
JK
2594 err = mpage_process_page_bufs(mpd, head, head, lblk);
2595 if (err <= 0)
4e7ea81d 2596 goto out;
5f1132b2 2597 err = 0;
aeac589a 2598 left--;
8e48dcfb
TT
2599 }
2600 pagevec_release(&pvec);
2601 cond_resched();
2602 }
4f01b02c 2603 return 0;
8eb9e5ce
TT
2604out:
2605 pagevec_release(&pvec);
4e7ea81d 2606 return err;
8e48dcfb
TT
2607}
2608
20970ba6
TT
2609static int __writepage(struct page *page, struct writeback_control *wbc,
2610 void *data)
2611{
2612 struct address_space *mapping = data;
2613 int ret = ext4_writepage(page, wbc);
2614 mapping_set_error(mapping, ret);
2615 return ret;
2616}
2617
2618static int ext4_writepages(struct address_space *mapping,
2619 struct writeback_control *wbc)
64769240 2620{
4e7ea81d
JK
2621 pgoff_t writeback_index = 0;
2622 long nr_to_write = wbc->nr_to_write;
22208ded 2623 int range_whole = 0;
4e7ea81d 2624 int cycled = 1;
61628a3f 2625 handle_t *handle = NULL;
df22291f 2626 struct mpage_da_data mpd;
5e745b04 2627 struct inode *inode = mapping->host;
6b523df4 2628 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2629 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2630 bool done;
1bce63d1 2631 struct blk_plug plug;
cb530541 2632 bool give_up_on_write = false;
61628a3f 2633
c8585c6f 2634 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2635 trace_ext4_writepages(inode, wbc);
ba80b101 2636
c8585c6f
DJ
2637 if (dax_mapping(mapping)) {
2638 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2639 wbc);
2640 goto out_writepages;
2641 }
7f6d5b52 2642
61628a3f
MC
2643 /*
2644 * No pages to write? This is mainly a kludge to avoid starting
2645 * a transaction for special inodes like journal inode on last iput()
2646 * because that could violate lock ordering on umount
2647 */
a1d6cc56 2648 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2649 goto out_writepages;
2a21e37e 2650
20970ba6
TT
2651 if (ext4_should_journal_data(inode)) {
2652 struct blk_plug plug;
20970ba6
TT
2653
2654 blk_start_plug(&plug);
2655 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2656 blk_finish_plug(&plug);
bbf023c7 2657 goto out_writepages;
20970ba6
TT
2658 }
2659
2a21e37e
TT
2660 /*
2661 * If the filesystem has aborted, it is read-only, so return
2662 * right away instead of dumping stack traces later on that
2663 * will obscure the real source of the problem. We test
4ab2f15b 2664 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2665 * the latter could be true if the filesystem is mounted
20970ba6 2666 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2667 * *never* be called, so if that ever happens, we would want
2668 * the stack trace.
2669 */
bbf023c7
ML
2670 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2671 ret = -EROFS;
2672 goto out_writepages;
2673 }
2a21e37e 2674
6b523df4
JK
2675 if (ext4_should_dioread_nolock(inode)) {
2676 /*
70261f56 2677 * We may need to convert up to one extent per block in
6b523df4
JK
2678 * the page and we may dirty the inode.
2679 */
09cbfeaf 2680 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2681 }
2682
4e7ea81d
JK
2683 /*
2684 * If we have inline data and arrive here, it means that
2685 * we will soon create the block for the 1st page, so
2686 * we'd better clear the inline data here.
2687 */
2688 if (ext4_has_inline_data(inode)) {
2689 /* Just inode will be modified... */
2690 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2691 if (IS_ERR(handle)) {
2692 ret = PTR_ERR(handle);
2693 goto out_writepages;
2694 }
2695 BUG_ON(ext4_test_inode_state(inode,
2696 EXT4_STATE_MAY_INLINE_DATA));
2697 ext4_destroy_inline_data(handle, inode);
2698 ext4_journal_stop(handle);
2699 }
2700
22208ded
AK
2701 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702 range_whole = 1;
61628a3f 2703
2acf2c26 2704 if (wbc->range_cyclic) {
4e7ea81d
JK
2705 writeback_index = mapping->writeback_index;
2706 if (writeback_index)
2acf2c26 2707 cycled = 0;
4e7ea81d
JK
2708 mpd.first_page = writeback_index;
2709 mpd.last_page = -1;
5b41d924 2710 } else {
09cbfeaf
KS
2711 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2713 }
a1d6cc56 2714
4e7ea81d
JK
2715 mpd.inode = inode;
2716 mpd.wbc = wbc;
2717 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2718retry:
6e6938b6 2719 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2720 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721 done = false;
1bce63d1 2722 blk_start_plug(&plug);
4e7ea81d
JK
2723 while (!done && mpd.first_page <= mpd.last_page) {
2724 /* For each extent of pages we use new io_end */
2725 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2726 if (!mpd.io_submit.io_end) {
2727 ret = -ENOMEM;
2728 break;
2729 }
a1d6cc56
AK
2730
2731 /*
4e7ea81d
JK
2732 * We have two constraints: We find one extent to map and we
2733 * must always write out whole page (makes a difference when
2734 * blocksize < pagesize) so that we don't block on IO when we
2735 * try to write out the rest of the page. Journalled mode is
2736 * not supported by delalloc.
a1d6cc56
AK
2737 */
2738 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2739 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2740
4e7ea81d 2741 /* start a new transaction */
6b523df4
JK
2742 handle = ext4_journal_start_with_reserve(inode,
2743 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2744 if (IS_ERR(handle)) {
2745 ret = PTR_ERR(handle);
1693918e 2746 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2747 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2748 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2749 /* Release allocated io_end */
2750 ext4_put_io_end(mpd.io_submit.io_end);
2751 break;
61628a3f 2752 }
f63e6005 2753
4e7ea81d
JK
2754 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2755 ret = mpage_prepare_extent_to_map(&mpd);
2756 if (!ret) {
2757 if (mpd.map.m_len)
cb530541
TT
2758 ret = mpage_map_and_submit_extent(handle, &mpd,
2759 &give_up_on_write);
4e7ea81d
JK
2760 else {
2761 /*
2762 * We scanned the whole range (or exhausted
2763 * nr_to_write), submitted what was mapped and
2764 * didn't find anything needing mapping. We are
2765 * done.
2766 */
2767 done = true;
2768 }
f63e6005 2769 }
646caa9c
JK
2770 /*
2771 * Caution: If the handle is synchronous,
2772 * ext4_journal_stop() can wait for transaction commit
2773 * to finish which may depend on writeback of pages to
2774 * complete or on page lock to be released. In that
2775 * case, we have to wait until after after we have
2776 * submitted all the IO, released page locks we hold,
2777 * and dropped io_end reference (for extent conversion
2778 * to be able to complete) before stopping the handle.
2779 */
2780 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2781 ext4_journal_stop(handle);
2782 handle = NULL;
2783 }
4e7ea81d
JK
2784 /* Submit prepared bio */
2785 ext4_io_submit(&mpd.io_submit);
2786 /* Unlock pages we didn't use */
cb530541 2787 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2788 /*
2789 * Drop our io_end reference we got from init. We have
2790 * to be careful and use deferred io_end finishing if
2791 * we are still holding the transaction as we can
2792 * release the last reference to io_end which may end
2793 * up doing unwritten extent conversion.
2794 */
2795 if (handle) {
2796 ext4_put_io_end_defer(mpd.io_submit.io_end);
2797 ext4_journal_stop(handle);
2798 } else
2799 ext4_put_io_end(mpd.io_submit.io_end);
4e7ea81d
JK
2800
2801 if (ret == -ENOSPC && sbi->s_journal) {
2802 /*
2803 * Commit the transaction which would
22208ded
AK
2804 * free blocks released in the transaction
2805 * and try again
2806 */
df22291f 2807 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2808 ret = 0;
4e7ea81d
JK
2809 continue;
2810 }
2811 /* Fatal error - ENOMEM, EIO... */
2812 if (ret)
61628a3f 2813 break;
a1d6cc56 2814 }
1bce63d1 2815 blk_finish_plug(&plug);
9c12a831 2816 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2817 cycled = 1;
4e7ea81d
JK
2818 mpd.last_page = writeback_index - 1;
2819 mpd.first_page = 0;
2acf2c26
AK
2820 goto retry;
2821 }
22208ded
AK
2822
2823 /* Update index */
22208ded
AK
2824 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2825 /*
4e7ea81d 2826 * Set the writeback_index so that range_cyclic
22208ded
AK
2827 * mode will write it back later
2828 */
4e7ea81d 2829 mapping->writeback_index = mpd.first_page;
a1d6cc56 2830
61628a3f 2831out_writepages:
20970ba6
TT
2832 trace_ext4_writepages_result(inode, wbc, ret,
2833 nr_to_write - wbc->nr_to_write);
c8585c6f 2834 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2835 return ret;
64769240
AT
2836}
2837
79f0be8d
AK
2838static int ext4_nonda_switch(struct super_block *sb)
2839{
5c1ff336 2840 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2841 struct ext4_sb_info *sbi = EXT4_SB(sb);
2842
2843 /*
2844 * switch to non delalloc mode if we are running low
2845 * on free block. The free block accounting via percpu
179f7ebf 2846 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2847 * accumulated on each CPU without updating global counters
2848 * Delalloc need an accurate free block accounting. So switch
2849 * to non delalloc when we are near to error range.
2850 */
5c1ff336
EW
2851 free_clusters =
2852 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2853 dirty_clusters =
2854 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2855 /*
2856 * Start pushing delalloc when 1/2 of free blocks are dirty.
2857 */
5c1ff336 2858 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2859 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2860
5c1ff336
EW
2861 if (2 * free_clusters < 3 * dirty_clusters ||
2862 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2863 /*
c8afb446
ES
2864 * free block count is less than 150% of dirty blocks
2865 * or free blocks is less than watermark
79f0be8d
AK
2866 */
2867 return 1;
2868 }
2869 return 0;
2870}
2871
0ff8947f
ES
2872/* We always reserve for an inode update; the superblock could be there too */
2873static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2874{
e2b911c5 2875 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2876 return 1;
2877
2878 if (pos + len <= 0x7fffffffULL)
2879 return 1;
2880
2881 /* We might need to update the superblock to set LARGE_FILE */
2882 return 2;
2883}
2884
64769240 2885static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2886 loff_t pos, unsigned len, unsigned flags,
2887 struct page **pagep, void **fsdata)
64769240 2888{
72b8ab9d 2889 int ret, retries = 0;
64769240
AT
2890 struct page *page;
2891 pgoff_t index;
64769240
AT
2892 struct inode *inode = mapping->host;
2893 handle_t *handle;
2894
09cbfeaf 2895 index = pos >> PAGE_SHIFT;
79f0be8d 2896
4db0d88e
TT
2897 if (ext4_nonda_switch(inode->i_sb) ||
2898 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
2899 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2900 return ext4_write_begin(file, mapping, pos,
2901 len, flags, pagep, fsdata);
2902 }
2903 *fsdata = (void *)0;
9bffad1e 2904 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2905
2906 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2907 ret = ext4_da_write_inline_data_begin(mapping, inode,
2908 pos, len, flags,
2909 pagep, fsdata);
2910 if (ret < 0)
47564bfb
TT
2911 return ret;
2912 if (ret == 1)
2913 return 0;
9c3569b5
TM
2914 }
2915
47564bfb
TT
2916 /*
2917 * grab_cache_page_write_begin() can take a long time if the
2918 * system is thrashing due to memory pressure, or if the page
2919 * is being written back. So grab it first before we start
2920 * the transaction handle. This also allows us to allocate
2921 * the page (if needed) without using GFP_NOFS.
2922 */
2923retry_grab:
2924 page = grab_cache_page_write_begin(mapping, index, flags);
2925 if (!page)
2926 return -ENOMEM;
2927 unlock_page(page);
2928
64769240
AT
2929 /*
2930 * With delayed allocation, we don't log the i_disksize update
2931 * if there is delayed block allocation. But we still need
2932 * to journalling the i_disksize update if writes to the end
2933 * of file which has an already mapped buffer.
2934 */
47564bfb 2935retry_journal:
0ff8947f
ES
2936 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2937 ext4_da_write_credits(inode, pos, len));
64769240 2938 if (IS_ERR(handle)) {
09cbfeaf 2939 put_page(page);
47564bfb 2940 return PTR_ERR(handle);
64769240
AT
2941 }
2942
47564bfb
TT
2943 lock_page(page);
2944 if (page->mapping != mapping) {
2945 /* The page got truncated from under us */
2946 unlock_page(page);
09cbfeaf 2947 put_page(page);
d5a0d4f7 2948 ext4_journal_stop(handle);
47564bfb 2949 goto retry_grab;
d5a0d4f7 2950 }
47564bfb 2951 /* In case writeback began while the page was unlocked */
7afe5aa5 2952 wait_for_stable_page(page);
64769240 2953
2058f83a
MH
2954#ifdef CONFIG_EXT4_FS_ENCRYPTION
2955 ret = ext4_block_write_begin(page, pos, len,
2956 ext4_da_get_block_prep);
2957#else
6e1db88d 2958 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2959#endif
64769240
AT
2960 if (ret < 0) {
2961 unlock_page(page);
2962 ext4_journal_stop(handle);
ae4d5372
AK
2963 /*
2964 * block_write_begin may have instantiated a few blocks
2965 * outside i_size. Trim these off again. Don't need
2966 * i_size_read because we hold i_mutex.
2967 */
2968 if (pos + len > inode->i_size)
b9a4207d 2969 ext4_truncate_failed_write(inode);
47564bfb
TT
2970
2971 if (ret == -ENOSPC &&
2972 ext4_should_retry_alloc(inode->i_sb, &retries))
2973 goto retry_journal;
2974
09cbfeaf 2975 put_page(page);
47564bfb 2976 return ret;
64769240
AT
2977 }
2978
47564bfb 2979 *pagep = page;
64769240
AT
2980 return ret;
2981}
2982
632eaeab
MC
2983/*
2984 * Check if we should update i_disksize
2985 * when write to the end of file but not require block allocation
2986 */
2987static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2988 unsigned long offset)
632eaeab
MC
2989{
2990 struct buffer_head *bh;
2991 struct inode *inode = page->mapping->host;
2992 unsigned int idx;
2993 int i;
2994
2995 bh = page_buffers(page);
2996 idx = offset >> inode->i_blkbits;
2997
af5bc92d 2998 for (i = 0; i < idx; i++)
632eaeab
MC
2999 bh = bh->b_this_page;
3000
29fa89d0 3001 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3002 return 0;
3003 return 1;
3004}
3005
64769240 3006static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3007 struct address_space *mapping,
3008 loff_t pos, unsigned len, unsigned copied,
3009 struct page *page, void *fsdata)
64769240
AT
3010{
3011 struct inode *inode = mapping->host;
3012 int ret = 0, ret2;
3013 handle_t *handle = ext4_journal_current_handle();
3014 loff_t new_i_size;
632eaeab 3015 unsigned long start, end;
79f0be8d
AK
3016 int write_mode = (int)(unsigned long)fsdata;
3017
74d553aa
TT
3018 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3019 return ext4_write_end(file, mapping, pos,
3020 len, copied, page, fsdata);
632eaeab 3021
9bffad1e 3022 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3023 start = pos & (PAGE_SIZE - 1);
af5bc92d 3024 end = start + copied - 1;
64769240
AT
3025
3026 /*
3027 * generic_write_end() will run mark_inode_dirty() if i_size
3028 * changes. So let's piggyback the i_disksize mark_inode_dirty
3029 * into that.
3030 */
64769240 3031 new_i_size = pos + copied;
ea51d132 3032 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3033 if (ext4_has_inline_data(inode) ||
3034 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3035 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3036 /* We need to mark inode dirty even if
3037 * new_i_size is less that inode->i_size
3038 * bu greater than i_disksize.(hint delalloc)
3039 */
3040 ext4_mark_inode_dirty(handle, inode);
64769240 3041 }
632eaeab 3042 }
9c3569b5
TM
3043
3044 if (write_mode != CONVERT_INLINE_DATA &&
3045 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3046 ext4_has_inline_data(inode))
3047 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3048 page);
3049 else
3050 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3051 page, fsdata);
9c3569b5 3052
64769240
AT
3053 copied = ret2;
3054 if (ret2 < 0)
3055 ret = ret2;
3056 ret2 = ext4_journal_stop(handle);
3057 if (!ret)
3058 ret = ret2;
3059
3060 return ret ? ret : copied;
3061}
3062
d47992f8
LC
3063static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3064 unsigned int length)
64769240 3065{
64769240
AT
3066 /*
3067 * Drop reserved blocks
3068 */
3069 BUG_ON(!PageLocked(page));
3070 if (!page_has_buffers(page))
3071 goto out;
3072
ca99fdd2 3073 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3074
3075out:
d47992f8 3076 ext4_invalidatepage(page, offset, length);
64769240
AT
3077
3078 return;
3079}
3080
ccd2506b
TT
3081/*
3082 * Force all delayed allocation blocks to be allocated for a given inode.
3083 */
3084int ext4_alloc_da_blocks(struct inode *inode)
3085{
fb40ba0d
TT
3086 trace_ext4_alloc_da_blocks(inode);
3087
71d4f7d0 3088 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3089 return 0;
3090
3091 /*
3092 * We do something simple for now. The filemap_flush() will
3093 * also start triggering a write of the data blocks, which is
3094 * not strictly speaking necessary (and for users of
3095 * laptop_mode, not even desirable). However, to do otherwise
3096 * would require replicating code paths in:
de9a55b8 3097 *
20970ba6 3098 * ext4_writepages() ->
ccd2506b
TT
3099 * write_cache_pages() ---> (via passed in callback function)
3100 * __mpage_da_writepage() -->
3101 * mpage_add_bh_to_extent()
3102 * mpage_da_map_blocks()
3103 *
3104 * The problem is that write_cache_pages(), located in
3105 * mm/page-writeback.c, marks pages clean in preparation for
3106 * doing I/O, which is not desirable if we're not planning on
3107 * doing I/O at all.
3108 *
3109 * We could call write_cache_pages(), and then redirty all of
380cf090 3110 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3111 * would be ugly in the extreme. So instead we would need to
3112 * replicate parts of the code in the above functions,
25985edc 3113 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3114 * write out the pages, but rather only collect contiguous
3115 * logical block extents, call the multi-block allocator, and
3116 * then update the buffer heads with the block allocations.
de9a55b8 3117 *
ccd2506b
TT
3118 * For now, though, we'll cheat by calling filemap_flush(),
3119 * which will map the blocks, and start the I/O, but not
3120 * actually wait for the I/O to complete.
3121 */
3122 return filemap_flush(inode->i_mapping);
3123}
64769240 3124
ac27a0ec
DK
3125/*
3126 * bmap() is special. It gets used by applications such as lilo and by
3127 * the swapper to find the on-disk block of a specific piece of data.
3128 *
3129 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3130 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3131 * filesystem and enables swap, then they may get a nasty shock when the
3132 * data getting swapped to that swapfile suddenly gets overwritten by
3133 * the original zero's written out previously to the journal and
3134 * awaiting writeback in the kernel's buffer cache.
3135 *
3136 * So, if we see any bmap calls here on a modified, data-journaled file,
3137 * take extra steps to flush any blocks which might be in the cache.
3138 */
617ba13b 3139static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3140{
3141 struct inode *inode = mapping->host;
3142 journal_t *journal;
3143 int err;
3144
46c7f254
TM
3145 /*
3146 * We can get here for an inline file via the FIBMAP ioctl
3147 */
3148 if (ext4_has_inline_data(inode))
3149 return 0;
3150
64769240
AT
3151 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152 test_opt(inode->i_sb, DELALLOC)) {
3153 /*
3154 * With delalloc we want to sync the file
3155 * so that we can make sure we allocate
3156 * blocks for file
3157 */
3158 filemap_write_and_wait(mapping);
3159 }
3160
19f5fb7a
TT
3161 if (EXT4_JOURNAL(inode) &&
3162 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3163 /*
3164 * This is a REALLY heavyweight approach, but the use of
3165 * bmap on dirty files is expected to be extremely rare:
3166 * only if we run lilo or swapon on a freshly made file
3167 * do we expect this to happen.
3168 *
3169 * (bmap requires CAP_SYS_RAWIO so this does not
3170 * represent an unprivileged user DOS attack --- we'd be
3171 * in trouble if mortal users could trigger this path at
3172 * will.)
3173 *
617ba13b 3174 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3175 * regular files. If somebody wants to bmap a directory
3176 * or symlink and gets confused because the buffer
3177 * hasn't yet been flushed to disk, they deserve
3178 * everything they get.
3179 */
3180
19f5fb7a 3181 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3182 journal = EXT4_JOURNAL(inode);
dab291af
MC
3183 jbd2_journal_lock_updates(journal);
3184 err = jbd2_journal_flush(journal);
3185 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3186
3187 if (err)
3188 return 0;
3189 }
3190
af5bc92d 3191 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3192}
3193
617ba13b 3194static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3195{
46c7f254
TM
3196 int ret = -EAGAIN;
3197 struct inode *inode = page->mapping->host;
3198
0562e0ba 3199 trace_ext4_readpage(page);
46c7f254
TM
3200
3201 if (ext4_has_inline_data(inode))
3202 ret = ext4_readpage_inline(inode, page);
3203
3204 if (ret == -EAGAIN)
f64e02fe 3205 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3206
3207 return ret;
ac27a0ec
DK
3208}
3209
3210static int
617ba13b 3211ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3212 struct list_head *pages, unsigned nr_pages)
3213{
46c7f254
TM
3214 struct inode *inode = mapping->host;
3215
3216 /* If the file has inline data, no need to do readpages. */
3217 if (ext4_has_inline_data(inode))
3218 return 0;
3219
f64e02fe 3220 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3221}
3222
d47992f8
LC
3223static void ext4_invalidatepage(struct page *page, unsigned int offset,
3224 unsigned int length)
ac27a0ec 3225{
ca99fdd2 3226 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3227
4520fb3c
JK
3228 /* No journalling happens on data buffers when this function is used */
3229 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3230
ca99fdd2 3231 block_invalidatepage(page, offset, length);
4520fb3c
JK
3232}
3233
53e87268 3234static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3235 unsigned int offset,
3236 unsigned int length)
4520fb3c
JK
3237{
3238 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3239
ca99fdd2 3240 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3241
ac27a0ec
DK
3242 /*
3243 * If it's a full truncate we just forget about the pending dirtying
3244 */
09cbfeaf 3245 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3246 ClearPageChecked(page);
3247
ca99fdd2 3248 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3249}
3250
3251/* Wrapper for aops... */
3252static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3253 unsigned int offset,
3254 unsigned int length)
53e87268 3255{
ca99fdd2 3256 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3257}
3258
617ba13b 3259static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3260{
617ba13b 3261 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3262
0562e0ba
JZ
3263 trace_ext4_releasepage(page);
3264
e1c36595
JK
3265 /* Page has dirty journalled data -> cannot release */
3266 if (PageChecked(page))
ac27a0ec 3267 return 0;
0390131b
FM
3268 if (journal)
3269 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3270 else
3271 return try_to_free_buffers(page);
ac27a0ec
DK
3272}
3273
ba5843f5 3274#ifdef CONFIG_FS_DAX
364443cb
JK
3275static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3276 unsigned flags, struct iomap *iomap)
3277{
3278 unsigned int blkbits = inode->i_blkbits;
3279 unsigned long first_block = offset >> blkbits;
3280 unsigned long last_block = (offset + length - 1) >> blkbits;
3281 struct ext4_map_blocks map;
3282 int ret;
3283
364443cb
JK
3284 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3285 return -ERANGE;
3286
3287 map.m_lblk = first_block;
3288 map.m_len = last_block - first_block + 1;
3289
776722e8
JK
3290 if (!(flags & IOMAP_WRITE)) {
3291 ret = ext4_map_blocks(NULL, inode, &map, 0);
3292 } else {
3293 int dio_credits;
3294 handle_t *handle;
3295 int retries = 0;
3296
3297 /* Trim mapping request to maximum we can map at once for DIO */
3298 if (map.m_len > DIO_MAX_BLOCKS)
3299 map.m_len = DIO_MAX_BLOCKS;
3300 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3301retry:
3302 /*
3303 * Either we allocate blocks and then we don't get unwritten
3304 * extent so we have reserved enough credits, or the blocks
3305 * are already allocated and unwritten and in that case
3306 * extent conversion fits in the credits as well.
3307 */
3308 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3309 dio_credits);
3310 if (IS_ERR(handle))
3311 return PTR_ERR(handle);
3312
3313 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3314 EXT4_GET_BLOCKS_CREATE_ZERO);
3315 if (ret < 0) {
3316 ext4_journal_stop(handle);
3317 if (ret == -ENOSPC &&
3318 ext4_should_retry_alloc(inode->i_sb, &retries))
3319 goto retry;
3320 return ret;
3321 }
776722e8
JK
3322
3323 /*
e2ae766c 3324 * If we added blocks beyond i_size, we need to make sure they
776722e8 3325 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3326 * ext4_iomap_end(). For faults we don't need to do that (and
3327 * even cannot because for orphan list operations inode_lock is
3328 * required) - if we happen to instantiate block beyond i_size,
3329 * it is because we race with truncate which has already added
3330 * the inode to the orphan list.
776722e8 3331 */
e2ae766c
JK
3332 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3333 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3334 int err;
3335
3336 err = ext4_orphan_add(handle, inode);
3337 if (err < 0) {
3338 ext4_journal_stop(handle);
3339 return err;
3340 }
3341 }
3342 ext4_journal_stop(handle);
3343 }
364443cb
JK
3344
3345 iomap->flags = 0;
3346 iomap->bdev = inode->i_sb->s_bdev;
3347 iomap->offset = first_block << blkbits;
3348
3349 if (ret == 0) {
3350 iomap->type = IOMAP_HOLE;
3351 iomap->blkno = IOMAP_NULL_BLOCK;
3352 iomap->length = (u64)map.m_len << blkbits;
3353 } else {
3354 if (map.m_flags & EXT4_MAP_MAPPED) {
3355 iomap->type = IOMAP_MAPPED;
3356 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3357 iomap->type = IOMAP_UNWRITTEN;
3358 } else {
3359 WARN_ON_ONCE(1);
3360 return -EIO;
3361 }
3362 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3363 iomap->length = (u64)map.m_len << blkbits;
3364 }
3365
3366 if (map.m_flags & EXT4_MAP_NEW)
3367 iomap->flags |= IOMAP_F_NEW;
3368 return 0;
3369}
3370
776722e8
JK
3371static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3372 ssize_t written, unsigned flags, struct iomap *iomap)
3373{
3374 int ret = 0;
3375 handle_t *handle;
3376 int blkbits = inode->i_blkbits;
3377 bool truncate = false;
3378
e2ae766c 3379 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3380 return 0;
3381
3382 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3383 if (IS_ERR(handle)) {
3384 ret = PTR_ERR(handle);
3385 goto orphan_del;
3386 }
3387 if (ext4_update_inode_size(inode, offset + written))
3388 ext4_mark_inode_dirty(handle, inode);
3389 /*
3390 * We may need to truncate allocated but not written blocks beyond EOF.
3391 */
3392 if (iomap->offset + iomap->length >
3393 ALIGN(inode->i_size, 1 << blkbits)) {
3394 ext4_lblk_t written_blk, end_blk;
3395
3396 written_blk = (offset + written) >> blkbits;
3397 end_blk = (offset + length) >> blkbits;
3398 if (written_blk < end_blk && ext4_can_truncate(inode))
3399 truncate = true;
3400 }
3401 /*
3402 * Remove inode from orphan list if we were extending a inode and
3403 * everything went fine.
3404 */
3405 if (!truncate && inode->i_nlink &&
3406 !list_empty(&EXT4_I(inode)->i_orphan))
3407 ext4_orphan_del(handle, inode);
3408 ext4_journal_stop(handle);
3409 if (truncate) {
3410 ext4_truncate_failed_write(inode);
3411orphan_del:
3412 /*
3413 * If truncate failed early the inode might still be on the
3414 * orphan list; we need to make sure the inode is removed from
3415 * the orphan list in that case.
3416 */
3417 if (inode->i_nlink)
3418 ext4_orphan_del(NULL, inode);
3419 }
3420 return ret;
3421}
3422
364443cb
JK
3423struct iomap_ops ext4_iomap_ops = {
3424 .iomap_begin = ext4_iomap_begin,
776722e8 3425 .iomap_end = ext4_iomap_end,
364443cb
JK
3426};
3427
ba5843f5 3428#endif
ed923b57 3429
187372a3 3430static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3431 ssize_t size, void *private)
4c0425ff 3432{
109811c2 3433 ext4_io_end_t *io_end = private;
4c0425ff 3434
97a851ed 3435 /* if not async direct IO just return */
7b7a8665 3436 if (!io_end)
187372a3 3437 return 0;
4b70df18 3438
88635ca2 3439 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3440 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3441 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3442
74c66bcb
JK
3443 /*
3444 * Error during AIO DIO. We cannot convert unwritten extents as the
3445 * data was not written. Just clear the unwritten flag and drop io_end.
3446 */
3447 if (size <= 0) {
3448 ext4_clear_io_unwritten_flag(io_end);
3449 size = 0;
3450 }
4c0425ff
MC
3451 io_end->offset = offset;
3452 io_end->size = size;
7b7a8665 3453 ext4_put_io_end(io_end);
187372a3
CH
3454
3455 return 0;
4c0425ff 3456}
c7064ef1 3457
4c0425ff 3458/*
914f82a3
JK
3459 * Handling of direct IO writes.
3460 *
3461 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3462 * preallocated extents, and those write extend the file, no need to
3463 * fall back to buffered IO.
3464 *
556615dc 3465 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3466 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3467 * still keep the range to write as unwritten.
4c0425ff 3468 *
69c499d1 3469 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3470 * For async direct IO, since the IO may still pending when return, we
25985edc 3471 * set up an end_io call back function, which will do the conversion
8d5d02e6 3472 * when async direct IO completed.
4c0425ff
MC
3473 *
3474 * If the O_DIRECT write will extend the file then add this inode to the
3475 * orphan list. So recovery will truncate it back to the original size
3476 * if the machine crashes during the write.
3477 *
3478 */
0e01df10 3479static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3480{
3481 struct file *file = iocb->ki_filp;
3482 struct inode *inode = file->f_mapping->host;
914f82a3 3483 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3484 ssize_t ret;
c8b8e32d 3485 loff_t offset = iocb->ki_pos;
a6cbcd4a 3486 size_t count = iov_iter_count(iter);
69c499d1
TT
3487 int overwrite = 0;
3488 get_block_t *get_block_func = NULL;
3489 int dio_flags = 0;
4c0425ff 3490 loff_t final_size = offset + count;
914f82a3
JK
3491 int orphan = 0;
3492 handle_t *handle;
729f52c6 3493
914f82a3
JK
3494 if (final_size > inode->i_size) {
3495 /* Credits for sb + inode write */
3496 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3497 if (IS_ERR(handle)) {
3498 ret = PTR_ERR(handle);
3499 goto out;
3500 }
3501 ret = ext4_orphan_add(handle, inode);
3502 if (ret) {
3503 ext4_journal_stop(handle);
3504 goto out;
3505 }
3506 orphan = 1;
3507 ei->i_disksize = inode->i_size;
3508 ext4_journal_stop(handle);
3509 }
4bd809db 3510
69c499d1 3511 BUG_ON(iocb->private == NULL);
4bd809db 3512
e8340395
JK
3513 /*
3514 * Make all waiters for direct IO properly wait also for extent
3515 * conversion. This also disallows race between truncate() and
3516 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3517 */
914f82a3 3518 inode_dio_begin(inode);
e8340395 3519
69c499d1
TT
3520 /* If we do a overwrite dio, i_mutex locking can be released */
3521 overwrite = *((int *)iocb->private);
4bd809db 3522
2dcba478 3523 if (overwrite)
5955102c 3524 inode_unlock(inode);
8d5d02e6 3525
69c499d1 3526 /*
914f82a3 3527 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3528 *
109811c2
JK
3529 * Allocated blocks to fill the hole are marked as unwritten to prevent
3530 * parallel buffered read to expose the stale data before DIO complete
3531 * the data IO.
69c499d1 3532 *
109811c2
JK
3533 * As to previously fallocated extents, ext4 get_block will just simply
3534 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3535 *
109811c2
JK
3536 * For non AIO case, we will convert those unwritten extents to written
3537 * after return back from blockdev_direct_IO. That way we save us from
3538 * allocating io_end structure and also the overhead of offloading
3539 * the extent convertion to a workqueue.
69c499d1
TT
3540 *
3541 * For async DIO, the conversion needs to be deferred when the
3542 * IO is completed. The ext4 end_io callback function will be
3543 * called to take care of the conversion work. Here for async
3544 * case, we allocate an io_end structure to hook to the iocb.
3545 */
3546 iocb->private = NULL;
109811c2 3547 if (overwrite)
705965bd 3548 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3549 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
12735f88 3550 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
914f82a3
JK
3551 get_block_func = ext4_dio_get_block;
3552 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3553 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3554 get_block_func = ext4_dio_get_block_unwritten_sync;
3555 dio_flags = DIO_LOCKING;
69c499d1 3556 } else {
109811c2 3557 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3558 dio_flags = DIO_LOCKING;
3559 }
2058f83a
MH
3560#ifdef CONFIG_EXT4_FS_ENCRYPTION
3561 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3562#endif
0bd2d5ec
JK
3563 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3564 get_block_func, ext4_end_io_dio, NULL,
3565 dio_flags);
69c499d1 3566
97a851ed 3567 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3568 EXT4_STATE_DIO_UNWRITTEN)) {
3569 int err;
3570 /*
3571 * for non AIO case, since the IO is already
3572 * completed, we could do the conversion right here
3573 */
6b523df4 3574 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3575 offset, ret);
3576 if (err < 0)
3577 ret = err;
3578 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3579 }
4bd809db 3580
914f82a3 3581 inode_dio_end(inode);
69c499d1 3582 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3583 if (overwrite)
5955102c 3584 inode_lock(inode);
8d5d02e6 3585
914f82a3
JK
3586 if (ret < 0 && final_size > inode->i_size)
3587 ext4_truncate_failed_write(inode);
3588
3589 /* Handle extending of i_size after direct IO write */
3590 if (orphan) {
3591 int err;
3592
3593 /* Credits for sb + inode write */
3594 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3595 if (IS_ERR(handle)) {
3596 /* This is really bad luck. We've written the data
3597 * but cannot extend i_size. Bail out and pretend
3598 * the write failed... */
3599 ret = PTR_ERR(handle);
3600 if (inode->i_nlink)
3601 ext4_orphan_del(NULL, inode);
3602
3603 goto out;
3604 }
3605 if (inode->i_nlink)
3606 ext4_orphan_del(handle, inode);
3607 if (ret > 0) {
3608 loff_t end = offset + ret;
3609 if (end > inode->i_size) {
3610 ei->i_disksize = end;
3611 i_size_write(inode, end);
3612 /*
3613 * We're going to return a positive `ret'
3614 * here due to non-zero-length I/O, so there's
3615 * no way of reporting error returns from
3616 * ext4_mark_inode_dirty() to userspace. So
3617 * ignore it.
3618 */
3619 ext4_mark_inode_dirty(handle, inode);
3620 }
3621 }
3622 err = ext4_journal_stop(handle);
3623 if (ret == 0)
3624 ret = err;
3625 }
3626out:
3627 return ret;
3628}
3629
0e01df10 3630static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3631{
16c54688
JK
3632 struct address_space *mapping = iocb->ki_filp->f_mapping;
3633 struct inode *inode = mapping->host;
0bd2d5ec 3634 size_t count = iov_iter_count(iter);
914f82a3
JK
3635 ssize_t ret;
3636
16c54688
JK
3637 /*
3638 * Shared inode_lock is enough for us - it protects against concurrent
3639 * writes & truncates and since we take care of writing back page cache,
3640 * we are protected against page writeback as well.
3641 */
3642 inode_lock_shared(inode);
0bd2d5ec
JK
3643 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3644 iocb->ki_pos + count);
3645 if (ret)
3646 goto out_unlock;
3647 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3648 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3649out_unlock:
3650 inode_unlock_shared(inode);
69c499d1 3651 return ret;
4c0425ff
MC
3652}
3653
c8b8e32d 3654static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3655{
3656 struct file *file = iocb->ki_filp;
3657 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3658 size_t count = iov_iter_count(iter);
c8b8e32d 3659 loff_t offset = iocb->ki_pos;
0562e0ba 3660 ssize_t ret;
4c0425ff 3661
2058f83a
MH
3662#ifdef CONFIG_EXT4_FS_ENCRYPTION
3663 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3664 return 0;
3665#endif
3666
84ebd795
TT
3667 /*
3668 * If we are doing data journalling we don't support O_DIRECT
3669 */
3670 if (ext4_should_journal_data(inode))
3671 return 0;
3672
46c7f254
TM
3673 /* Let buffer I/O handle the inline data case. */
3674 if (ext4_has_inline_data(inode))
3675 return 0;
3676
0bd2d5ec
JK
3677 /* DAX uses iomap path now */
3678 if (WARN_ON_ONCE(IS_DAX(inode)))
3679 return 0;
3680
6f673763 3681 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3682 if (iov_iter_rw(iter) == READ)
0e01df10 3683 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3684 else
0e01df10 3685 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3686 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3687 return ret;
4c0425ff
MC
3688}
3689
ac27a0ec 3690/*
617ba13b 3691 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3692 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3693 * much here because ->set_page_dirty is called under VFS locks. The page is
3694 * not necessarily locked.
3695 *
3696 * We cannot just dirty the page and leave attached buffers clean, because the
3697 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3698 * or jbddirty because all the journalling code will explode.
3699 *
3700 * So what we do is to mark the page "pending dirty" and next time writepage
3701 * is called, propagate that into the buffers appropriately.
3702 */
617ba13b 3703static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3704{
3705 SetPageChecked(page);
3706 return __set_page_dirty_nobuffers(page);
3707}
3708
6dcc693b
JK
3709static int ext4_set_page_dirty(struct page *page)
3710{
3711 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3712 WARN_ON_ONCE(!page_has_buffers(page));
3713 return __set_page_dirty_buffers(page);
3714}
3715
74d553aa 3716static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3717 .readpage = ext4_readpage,
3718 .readpages = ext4_readpages,
43ce1d23 3719 .writepage = ext4_writepage,
20970ba6 3720 .writepages = ext4_writepages,
8ab22b9a 3721 .write_begin = ext4_write_begin,
74d553aa 3722 .write_end = ext4_write_end,
6dcc693b 3723 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3724 .bmap = ext4_bmap,
3725 .invalidatepage = ext4_invalidatepage,
3726 .releasepage = ext4_releasepage,
3727 .direct_IO = ext4_direct_IO,
3728 .migratepage = buffer_migrate_page,
3729 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3730 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3731};
3732
617ba13b 3733static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3734 .readpage = ext4_readpage,
3735 .readpages = ext4_readpages,
43ce1d23 3736 .writepage = ext4_writepage,
20970ba6 3737 .writepages = ext4_writepages,
8ab22b9a
HH
3738 .write_begin = ext4_write_begin,
3739 .write_end = ext4_journalled_write_end,
3740 .set_page_dirty = ext4_journalled_set_page_dirty,
3741 .bmap = ext4_bmap,
4520fb3c 3742 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3743 .releasepage = ext4_releasepage,
84ebd795 3744 .direct_IO = ext4_direct_IO,
8ab22b9a 3745 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3746 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3747};
3748
64769240 3749static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3750 .readpage = ext4_readpage,
3751 .readpages = ext4_readpages,
43ce1d23 3752 .writepage = ext4_writepage,
20970ba6 3753 .writepages = ext4_writepages,
8ab22b9a
HH
3754 .write_begin = ext4_da_write_begin,
3755 .write_end = ext4_da_write_end,
6dcc693b 3756 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3757 .bmap = ext4_bmap,
3758 .invalidatepage = ext4_da_invalidatepage,
3759 .releasepage = ext4_releasepage,
3760 .direct_IO = ext4_direct_IO,
3761 .migratepage = buffer_migrate_page,
3762 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3763 .error_remove_page = generic_error_remove_page,
64769240
AT
3764};
3765
617ba13b 3766void ext4_set_aops(struct inode *inode)
ac27a0ec 3767{
3d2b1582
LC
3768 switch (ext4_inode_journal_mode(inode)) {
3769 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3770 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3771 break;
3772 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3773 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3774 return;
3d2b1582
LC
3775 default:
3776 BUG();
3777 }
74d553aa
TT
3778 if (test_opt(inode->i_sb, DELALLOC))
3779 inode->i_mapping->a_ops = &ext4_da_aops;
3780 else
3781 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3782}
3783
923ae0ff 3784static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3785 struct address_space *mapping, loff_t from, loff_t length)
3786{
09cbfeaf
KS
3787 ext4_fsblk_t index = from >> PAGE_SHIFT;
3788 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3789 unsigned blocksize, pos;
d863dc36
LC
3790 ext4_lblk_t iblock;
3791 struct inode *inode = mapping->host;
3792 struct buffer_head *bh;
3793 struct page *page;
3794 int err = 0;
3795
09cbfeaf 3796 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3797 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3798 if (!page)
3799 return -ENOMEM;
3800
3801 blocksize = inode->i_sb->s_blocksize;
d863dc36 3802
09cbfeaf 3803 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3804
3805 if (!page_has_buffers(page))
3806 create_empty_buffers(page, blocksize, 0);
3807
3808 /* Find the buffer that contains "offset" */
3809 bh = page_buffers(page);
3810 pos = blocksize;
3811 while (offset >= pos) {
3812 bh = bh->b_this_page;
3813 iblock++;
3814 pos += blocksize;
3815 }
d863dc36
LC
3816 if (buffer_freed(bh)) {
3817 BUFFER_TRACE(bh, "freed: skip");
3818 goto unlock;
3819 }
d863dc36
LC
3820 if (!buffer_mapped(bh)) {
3821 BUFFER_TRACE(bh, "unmapped");
3822 ext4_get_block(inode, iblock, bh, 0);
3823 /* unmapped? It's a hole - nothing to do */
3824 if (!buffer_mapped(bh)) {
3825 BUFFER_TRACE(bh, "still unmapped");
3826 goto unlock;
3827 }
3828 }
3829
3830 /* Ok, it's mapped. Make sure it's up-to-date */
3831 if (PageUptodate(page))
3832 set_buffer_uptodate(bh);
3833
3834 if (!buffer_uptodate(bh)) {
3835 err = -EIO;
dfec8a14 3836 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3837 wait_on_buffer(bh);
3838 /* Uhhuh. Read error. Complain and punt. */
3839 if (!buffer_uptodate(bh))
3840 goto unlock;
c9c7429c
MH
3841 if (S_ISREG(inode->i_mode) &&
3842 ext4_encrypted_inode(inode)) {
3843 /* We expect the key to be set. */
a7550b30 3844 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3845 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 3846 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3847 page, PAGE_SIZE, 0, page->index));
c9c7429c 3848 }
d863dc36 3849 }
d863dc36
LC
3850 if (ext4_should_journal_data(inode)) {
3851 BUFFER_TRACE(bh, "get write access");
3852 err = ext4_journal_get_write_access(handle, bh);
3853 if (err)
3854 goto unlock;
3855 }
d863dc36 3856 zero_user(page, offset, length);
d863dc36
LC
3857 BUFFER_TRACE(bh, "zeroed end of block");
3858
d863dc36
LC
3859 if (ext4_should_journal_data(inode)) {
3860 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3861 } else {
353eefd3 3862 err = 0;
d863dc36 3863 mark_buffer_dirty(bh);
3957ef53 3864 if (ext4_should_order_data(inode))
ee0876bc 3865 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3866 }
d863dc36
LC
3867
3868unlock:
3869 unlock_page(page);
09cbfeaf 3870 put_page(page);
d863dc36
LC
3871 return err;
3872}
3873
923ae0ff
RZ
3874/*
3875 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3876 * starting from file offset 'from'. The range to be zero'd must
3877 * be contained with in one block. If the specified range exceeds
3878 * the end of the block it will be shortened to end of the block
3879 * that cooresponds to 'from'
3880 */
3881static int ext4_block_zero_page_range(handle_t *handle,
3882 struct address_space *mapping, loff_t from, loff_t length)
3883{
3884 struct inode *inode = mapping->host;
09cbfeaf 3885 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3886 unsigned blocksize = inode->i_sb->s_blocksize;
3887 unsigned max = blocksize - (offset & (blocksize - 1));
3888
3889 /*
3890 * correct length if it does not fall between
3891 * 'from' and the end of the block
3892 */
3893 if (length > max || length < 0)
3894 length = max;
3895
47e69351
JK
3896 if (IS_DAX(inode)) {
3897 return iomap_zero_range(inode, from, length, NULL,
3898 &ext4_iomap_ops);
3899 }
923ae0ff
RZ
3900 return __ext4_block_zero_page_range(handle, mapping, from, length);
3901}
3902
94350ab5
MW
3903/*
3904 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3905 * up to the end of the block which corresponds to `from'.
3906 * This required during truncate. We need to physically zero the tail end
3907 * of that block so it doesn't yield old data if the file is later grown.
3908 */
c197855e 3909static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3910 struct address_space *mapping, loff_t from)
3911{
09cbfeaf 3912 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3913 unsigned length;
3914 unsigned blocksize;
3915 struct inode *inode = mapping->host;
3916
3917 blocksize = inode->i_sb->s_blocksize;
3918 length = blocksize - (offset & (blocksize - 1));
3919
3920 return ext4_block_zero_page_range(handle, mapping, from, length);
3921}
3922
a87dd18c
LC
3923int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3924 loff_t lstart, loff_t length)
3925{
3926 struct super_block *sb = inode->i_sb;
3927 struct address_space *mapping = inode->i_mapping;
e1be3a92 3928 unsigned partial_start, partial_end;
a87dd18c
LC
3929 ext4_fsblk_t start, end;
3930 loff_t byte_end = (lstart + length - 1);
3931 int err = 0;
3932
e1be3a92
LC
3933 partial_start = lstart & (sb->s_blocksize - 1);
3934 partial_end = byte_end & (sb->s_blocksize - 1);
3935
a87dd18c
LC
3936 start = lstart >> sb->s_blocksize_bits;
3937 end = byte_end >> sb->s_blocksize_bits;
3938
3939 /* Handle partial zero within the single block */
e1be3a92
LC
3940 if (start == end &&
3941 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3942 err = ext4_block_zero_page_range(handle, mapping,
3943 lstart, length);
3944 return err;
3945 }
3946 /* Handle partial zero out on the start of the range */
e1be3a92 3947 if (partial_start) {
a87dd18c
LC
3948 err = ext4_block_zero_page_range(handle, mapping,
3949 lstart, sb->s_blocksize);
3950 if (err)
3951 return err;
3952 }
3953 /* Handle partial zero out on the end of the range */
e1be3a92 3954 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3955 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3956 byte_end - partial_end,
3957 partial_end + 1);
a87dd18c
LC
3958 return err;
3959}
3960
91ef4caf
DG
3961int ext4_can_truncate(struct inode *inode)
3962{
91ef4caf
DG
3963 if (S_ISREG(inode->i_mode))
3964 return 1;
3965 if (S_ISDIR(inode->i_mode))
3966 return 1;
3967 if (S_ISLNK(inode->i_mode))
3968 return !ext4_inode_is_fast_symlink(inode);
3969 return 0;
3970}
3971
01127848
JK
3972/*
3973 * We have to make sure i_disksize gets properly updated before we truncate
3974 * page cache due to hole punching or zero range. Otherwise i_disksize update
3975 * can get lost as it may have been postponed to submission of writeback but
3976 * that will never happen after we truncate page cache.
3977 */
3978int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3979 loff_t len)
3980{
3981 handle_t *handle;
3982 loff_t size = i_size_read(inode);
3983
5955102c 3984 WARN_ON(!inode_is_locked(inode));
01127848
JK
3985 if (offset > size || offset + len < size)
3986 return 0;
3987
3988 if (EXT4_I(inode)->i_disksize >= size)
3989 return 0;
3990
3991 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3992 if (IS_ERR(handle))
3993 return PTR_ERR(handle);
3994 ext4_update_i_disksize(inode, size);
3995 ext4_mark_inode_dirty(handle, inode);
3996 ext4_journal_stop(handle);
3997
3998 return 0;
3999}
4000
a4bb6b64 4001/*
cca32b7e 4002 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4003 * associated with the given offset and length
4004 *
4005 * @inode: File inode
4006 * @offset: The offset where the hole will begin
4007 * @len: The length of the hole
4008 *
4907cb7b 4009 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4010 */
4011
aeb2817a 4012int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4013{
26a4c0c6
TT
4014 struct super_block *sb = inode->i_sb;
4015 ext4_lblk_t first_block, stop_block;
4016 struct address_space *mapping = inode->i_mapping;
a87dd18c 4017 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4018 handle_t *handle;
4019 unsigned int credits;
4020 int ret = 0;
4021
a4bb6b64 4022 if (!S_ISREG(inode->i_mode))
73355192 4023 return -EOPNOTSUPP;
a4bb6b64 4024
b8a86845 4025 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4026
26a4c0c6
TT
4027 /*
4028 * Write out all dirty pages to avoid race conditions
4029 * Then release them.
4030 */
cca32b7e 4031 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4032 ret = filemap_write_and_wait_range(mapping, offset,
4033 offset + length - 1);
4034 if (ret)
4035 return ret;
4036 }
4037
5955102c 4038 inode_lock(inode);
9ef06cec 4039
26a4c0c6
TT
4040 /* No need to punch hole beyond i_size */
4041 if (offset >= inode->i_size)
4042 goto out_mutex;
4043
4044 /*
4045 * If the hole extends beyond i_size, set the hole
4046 * to end after the page that contains i_size
4047 */
4048 if (offset + length > inode->i_size) {
4049 length = inode->i_size +
09cbfeaf 4050 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4051 offset;
4052 }
4053
a361293f
JK
4054 if (offset & (sb->s_blocksize - 1) ||
4055 (offset + length) & (sb->s_blocksize - 1)) {
4056 /*
4057 * Attach jinode to inode for jbd2 if we do any zeroing of
4058 * partial block
4059 */
4060 ret = ext4_inode_attach_jinode(inode);
4061 if (ret < 0)
4062 goto out_mutex;
4063
4064 }
4065
ea3d7209
JK
4066 /* Wait all existing dio workers, newcomers will block on i_mutex */
4067 ext4_inode_block_unlocked_dio(inode);
4068 inode_dio_wait(inode);
4069
4070 /*
4071 * Prevent page faults from reinstantiating pages we have released from
4072 * page cache.
4073 */
4074 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4075 first_block_offset = round_up(offset, sb->s_blocksize);
4076 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4077
a87dd18c 4078 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4079 if (last_block_offset > first_block_offset) {
4080 ret = ext4_update_disksize_before_punch(inode, offset, length);
4081 if (ret)
4082 goto out_dio;
a87dd18c
LC
4083 truncate_pagecache_range(inode, first_block_offset,
4084 last_block_offset);
01127848 4085 }
26a4c0c6
TT
4086
4087 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4088 credits = ext4_writepage_trans_blocks(inode);
4089 else
4090 credits = ext4_blocks_for_truncate(inode);
4091 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4092 if (IS_ERR(handle)) {
4093 ret = PTR_ERR(handle);
4094 ext4_std_error(sb, ret);
4095 goto out_dio;
4096 }
4097
a87dd18c
LC
4098 ret = ext4_zero_partial_blocks(handle, inode, offset,
4099 length);
4100 if (ret)
4101 goto out_stop;
26a4c0c6
TT
4102
4103 first_block = (offset + sb->s_blocksize - 1) >>
4104 EXT4_BLOCK_SIZE_BITS(sb);
4105 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4106
4107 /* If there are no blocks to remove, return now */
4108 if (first_block >= stop_block)
4109 goto out_stop;
4110
4111 down_write(&EXT4_I(inode)->i_data_sem);
4112 ext4_discard_preallocations(inode);
4113
4114 ret = ext4_es_remove_extent(inode, first_block,
4115 stop_block - first_block);
4116 if (ret) {
4117 up_write(&EXT4_I(inode)->i_data_sem);
4118 goto out_stop;
4119 }
4120
4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 ret = ext4_ext_remove_space(inode, first_block,
4123 stop_block - 1);
4124 else
4f579ae7 4125 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4126 stop_block);
4127
819c4920 4128 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4129 if (IS_SYNC(inode))
4130 ext4_handle_sync(handle);
e251f9bc 4131
eeca7ea1 4132 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6
TT
4133 ext4_mark_inode_dirty(handle, inode);
4134out_stop:
4135 ext4_journal_stop(handle);
4136out_dio:
ea3d7209 4137 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4138 ext4_inode_resume_unlocked_dio(inode);
4139out_mutex:
5955102c 4140 inode_unlock(inode);
26a4c0c6 4141 return ret;
a4bb6b64
AH
4142}
4143
a361293f
JK
4144int ext4_inode_attach_jinode(struct inode *inode)
4145{
4146 struct ext4_inode_info *ei = EXT4_I(inode);
4147 struct jbd2_inode *jinode;
4148
4149 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4150 return 0;
4151
4152 jinode = jbd2_alloc_inode(GFP_KERNEL);
4153 spin_lock(&inode->i_lock);
4154 if (!ei->jinode) {
4155 if (!jinode) {
4156 spin_unlock(&inode->i_lock);
4157 return -ENOMEM;
4158 }
4159 ei->jinode = jinode;
4160 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4161 jinode = NULL;
4162 }
4163 spin_unlock(&inode->i_lock);
4164 if (unlikely(jinode != NULL))
4165 jbd2_free_inode(jinode);
4166 return 0;
4167}
4168
ac27a0ec 4169/*
617ba13b 4170 * ext4_truncate()
ac27a0ec 4171 *
617ba13b
MC
4172 * We block out ext4_get_block() block instantiations across the entire
4173 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4174 * simultaneously on behalf of the same inode.
4175 *
42b2aa86 4176 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4177 * is one core, guiding principle: the file's tree must always be consistent on
4178 * disk. We must be able to restart the truncate after a crash.
4179 *
4180 * The file's tree may be transiently inconsistent in memory (although it
4181 * probably isn't), but whenever we close off and commit a journal transaction,
4182 * the contents of (the filesystem + the journal) must be consistent and
4183 * restartable. It's pretty simple, really: bottom up, right to left (although
4184 * left-to-right works OK too).
4185 *
4186 * Note that at recovery time, journal replay occurs *before* the restart of
4187 * truncate against the orphan inode list.
4188 *
4189 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4190 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4191 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4192 * ext4_truncate() to have another go. So there will be instantiated blocks
4193 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4194 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4195 * ext4_truncate() run will find them and release them.
ac27a0ec 4196 */
2c98eb5e 4197int ext4_truncate(struct inode *inode)
ac27a0ec 4198{
819c4920
TT
4199 struct ext4_inode_info *ei = EXT4_I(inode);
4200 unsigned int credits;
2c98eb5e 4201 int err = 0;
819c4920
TT
4202 handle_t *handle;
4203 struct address_space *mapping = inode->i_mapping;
819c4920 4204
19b5ef61
TT
4205 /*
4206 * There is a possibility that we're either freeing the inode
e04027e8 4207 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4208 * have i_mutex locked because it's not necessary.
4209 */
4210 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4211 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4212 trace_ext4_truncate_enter(inode);
4213
91ef4caf 4214 if (!ext4_can_truncate(inode))
2c98eb5e 4215 return 0;
ac27a0ec 4216
12e9b892 4217 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4218
5534fb5b 4219 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4220 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4221
aef1c851
TM
4222 if (ext4_has_inline_data(inode)) {
4223 int has_inline = 1;
4224
4225 ext4_inline_data_truncate(inode, &has_inline);
4226 if (has_inline)
2c98eb5e 4227 return 0;
aef1c851
TM
4228 }
4229
a361293f
JK
4230 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4231 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4232 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4233 return 0;
a361293f
JK
4234 }
4235
819c4920
TT
4236 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4237 credits = ext4_writepage_trans_blocks(inode);
4238 else
4239 credits = ext4_blocks_for_truncate(inode);
4240
4241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4242 if (IS_ERR(handle))
4243 return PTR_ERR(handle);
819c4920 4244
eb3544c6
LC
4245 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4246 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4247
4248 /*
4249 * We add the inode to the orphan list, so that if this
4250 * truncate spans multiple transactions, and we crash, we will
4251 * resume the truncate when the filesystem recovers. It also
4252 * marks the inode dirty, to catch the new size.
4253 *
4254 * Implication: the file must always be in a sane, consistent
4255 * truncatable state while each transaction commits.
4256 */
2c98eb5e
TT
4257 err = ext4_orphan_add(handle, inode);
4258 if (err)
819c4920
TT
4259 goto out_stop;
4260
4261 down_write(&EXT4_I(inode)->i_data_sem);
4262
4263 ext4_discard_preallocations(inode);
4264
ff9893dc 4265 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4266 err = ext4_ext_truncate(handle, inode);
ff9893dc 4267 else
819c4920
TT
4268 ext4_ind_truncate(handle, inode);
4269
4270 up_write(&ei->i_data_sem);
d0abb36d
TT
4271 if (err)
4272 goto out_stop;
819c4920
TT
4273
4274 if (IS_SYNC(inode))
4275 ext4_handle_sync(handle);
4276
4277out_stop:
4278 /*
4279 * If this was a simple ftruncate() and the file will remain alive,
4280 * then we need to clear up the orphan record which we created above.
4281 * However, if this was a real unlink then we were called by
58d86a50 4282 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4283 * orphan info for us.
4284 */
4285 if (inode->i_nlink)
4286 ext4_orphan_del(handle, inode);
4287
eeca7ea1 4288 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4289 ext4_mark_inode_dirty(handle, inode);
4290 ext4_journal_stop(handle);
ac27a0ec 4291
0562e0ba 4292 trace_ext4_truncate_exit(inode);
2c98eb5e 4293 return err;
ac27a0ec
DK
4294}
4295
ac27a0ec 4296/*
617ba13b 4297 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4298 * underlying buffer_head on success. If 'in_mem' is true, we have all
4299 * data in memory that is needed to recreate the on-disk version of this
4300 * inode.
4301 */
617ba13b
MC
4302static int __ext4_get_inode_loc(struct inode *inode,
4303 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4304{
240799cd
TT
4305 struct ext4_group_desc *gdp;
4306 struct buffer_head *bh;
4307 struct super_block *sb = inode->i_sb;
4308 ext4_fsblk_t block;
4309 int inodes_per_block, inode_offset;
4310
3a06d778 4311 iloc->bh = NULL;
240799cd 4312 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4313 return -EFSCORRUPTED;
ac27a0ec 4314
240799cd
TT
4315 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4316 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4317 if (!gdp)
ac27a0ec
DK
4318 return -EIO;
4319
240799cd
TT
4320 /*
4321 * Figure out the offset within the block group inode table
4322 */
00d09882 4323 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4324 inode_offset = ((inode->i_ino - 1) %
4325 EXT4_INODES_PER_GROUP(sb));
4326 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4327 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4328
4329 bh = sb_getblk(sb, block);
aebf0243 4330 if (unlikely(!bh))
860d21e2 4331 return -ENOMEM;
ac27a0ec
DK
4332 if (!buffer_uptodate(bh)) {
4333 lock_buffer(bh);
9c83a923
HK
4334
4335 /*
4336 * If the buffer has the write error flag, we have failed
4337 * to write out another inode in the same block. In this
4338 * case, we don't have to read the block because we may
4339 * read the old inode data successfully.
4340 */
4341 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4342 set_buffer_uptodate(bh);
4343
ac27a0ec
DK
4344 if (buffer_uptodate(bh)) {
4345 /* someone brought it uptodate while we waited */
4346 unlock_buffer(bh);
4347 goto has_buffer;
4348 }
4349
4350 /*
4351 * If we have all information of the inode in memory and this
4352 * is the only valid inode in the block, we need not read the
4353 * block.
4354 */
4355 if (in_mem) {
4356 struct buffer_head *bitmap_bh;
240799cd 4357 int i, start;
ac27a0ec 4358
240799cd 4359 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4360
240799cd
TT
4361 /* Is the inode bitmap in cache? */
4362 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4363 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4364 goto make_io;
4365
4366 /*
4367 * If the inode bitmap isn't in cache then the
4368 * optimisation may end up performing two reads instead
4369 * of one, so skip it.
4370 */
4371 if (!buffer_uptodate(bitmap_bh)) {
4372 brelse(bitmap_bh);
4373 goto make_io;
4374 }
240799cd 4375 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4376 if (i == inode_offset)
4377 continue;
617ba13b 4378 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4379 break;
4380 }
4381 brelse(bitmap_bh);
240799cd 4382 if (i == start + inodes_per_block) {
ac27a0ec
DK
4383 /* all other inodes are free, so skip I/O */
4384 memset(bh->b_data, 0, bh->b_size);
4385 set_buffer_uptodate(bh);
4386 unlock_buffer(bh);
4387 goto has_buffer;
4388 }
4389 }
4390
4391make_io:
240799cd
TT
4392 /*
4393 * If we need to do any I/O, try to pre-readahead extra
4394 * blocks from the inode table.
4395 */
4396 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4397 ext4_fsblk_t b, end, table;
4398 unsigned num;
0d606e2c 4399 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4400
4401 table = ext4_inode_table(sb, gdp);
b713a5ec 4402 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4403 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4404 if (table > b)
4405 b = table;
0d606e2c 4406 end = b + ra_blks;
240799cd 4407 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4408 if (ext4_has_group_desc_csum(sb))
560671a0 4409 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4410 table += num / inodes_per_block;
4411 if (end > table)
4412 end = table;
4413 while (b <= end)
4414 sb_breadahead(sb, b++);
4415 }
4416
ac27a0ec
DK
4417 /*
4418 * There are other valid inodes in the buffer, this inode
4419 * has in-inode xattrs, or we don't have this inode in memory.
4420 * Read the block from disk.
4421 */
0562e0ba 4422 trace_ext4_load_inode(inode);
ac27a0ec
DK
4423 get_bh(bh);
4424 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4425 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4426 wait_on_buffer(bh);
4427 if (!buffer_uptodate(bh)) {
c398eda0
TT
4428 EXT4_ERROR_INODE_BLOCK(inode, block,
4429 "unable to read itable block");
ac27a0ec
DK
4430 brelse(bh);
4431 return -EIO;
4432 }
4433 }
4434has_buffer:
4435 iloc->bh = bh;
4436 return 0;
4437}
4438
617ba13b 4439int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4440{
4441 /* We have all inode data except xattrs in memory here. */
617ba13b 4442 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4443 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4444}
4445
617ba13b 4446void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4447{
617ba13b 4448 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4449 unsigned int new_fl = 0;
ac27a0ec 4450
617ba13b 4451 if (flags & EXT4_SYNC_FL)
00a1a053 4452 new_fl |= S_SYNC;
617ba13b 4453 if (flags & EXT4_APPEND_FL)
00a1a053 4454 new_fl |= S_APPEND;
617ba13b 4455 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4456 new_fl |= S_IMMUTABLE;
617ba13b 4457 if (flags & EXT4_NOATIME_FL)
00a1a053 4458 new_fl |= S_NOATIME;
617ba13b 4459 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4460 new_fl |= S_DIRSYNC;
a3caa24b
JK
4461 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4462 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4463 !ext4_encrypted_inode(inode))
923ae0ff 4464 new_fl |= S_DAX;
5f16f322 4465 inode_set_flags(inode, new_fl,
923ae0ff 4466 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4467}
4468
ff9ddf7e
JK
4469/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4470void ext4_get_inode_flags(struct ext4_inode_info *ei)
4471{
84a8dce2
DM
4472 unsigned int vfs_fl;
4473 unsigned long old_fl, new_fl;
4474
4475 do {
4476 vfs_fl = ei->vfs_inode.i_flags;
4477 old_fl = ei->i_flags;
4478 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4479 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4480 EXT4_DIRSYNC_FL);
4481 if (vfs_fl & S_SYNC)
4482 new_fl |= EXT4_SYNC_FL;
4483 if (vfs_fl & S_APPEND)
4484 new_fl |= EXT4_APPEND_FL;
4485 if (vfs_fl & S_IMMUTABLE)
4486 new_fl |= EXT4_IMMUTABLE_FL;
4487 if (vfs_fl & S_NOATIME)
4488 new_fl |= EXT4_NOATIME_FL;
4489 if (vfs_fl & S_DIRSYNC)
4490 new_fl |= EXT4_DIRSYNC_FL;
4491 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4492}
de9a55b8 4493
0fc1b451 4494static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4495 struct ext4_inode_info *ei)
0fc1b451
AK
4496{
4497 blkcnt_t i_blocks ;
8180a562
AK
4498 struct inode *inode = &(ei->vfs_inode);
4499 struct super_block *sb = inode->i_sb;
0fc1b451 4500
e2b911c5 4501 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4502 /* we are using combined 48 bit field */
4503 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4504 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4505 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4506 /* i_blocks represent file system block size */
4507 return i_blocks << (inode->i_blkbits - 9);
4508 } else {
4509 return i_blocks;
4510 }
0fc1b451
AK
4511 } else {
4512 return le32_to_cpu(raw_inode->i_blocks_lo);
4513 }
4514}
ff9ddf7e 4515
152a7b0a
TM
4516static inline void ext4_iget_extra_inode(struct inode *inode,
4517 struct ext4_inode *raw_inode,
4518 struct ext4_inode_info *ei)
4519{
4520 __le32 *magic = (void *)raw_inode +
4521 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4522 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4523 EXT4_INODE_SIZE(inode->i_sb) &&
4524 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4525 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4526 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4527 } else
4528 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4529}
4530
040cb378
LX
4531int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4532{
0b7b7779 4533 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4534 return -EOPNOTSUPP;
4535 *projid = EXT4_I(inode)->i_projid;
4536 return 0;
4537}
4538
1d1fe1ee 4539struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4540{
617ba13b
MC
4541 struct ext4_iloc iloc;
4542 struct ext4_inode *raw_inode;
1d1fe1ee 4543 struct ext4_inode_info *ei;
1d1fe1ee 4544 struct inode *inode;
b436b9be 4545 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4546 long ret;
7e6e1ef4 4547 loff_t size;
ac27a0ec 4548 int block;
08cefc7a
EB
4549 uid_t i_uid;
4550 gid_t i_gid;
040cb378 4551 projid_t i_projid;
ac27a0ec 4552
1d1fe1ee
DH
4553 inode = iget_locked(sb, ino);
4554 if (!inode)
4555 return ERR_PTR(-ENOMEM);
4556 if (!(inode->i_state & I_NEW))
4557 return inode;
4558
4559 ei = EXT4_I(inode);
7dc57615 4560 iloc.bh = NULL;
ac27a0ec 4561
1d1fe1ee
DH
4562 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4563 if (ret < 0)
ac27a0ec 4564 goto bad_inode;
617ba13b 4565 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4566
4567 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4568 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4569 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4570 EXT4_INODE_SIZE(inode->i_sb) ||
4571 (ei->i_extra_isize & 3)) {
4572 EXT4_ERROR_INODE(inode,
4573 "bad extra_isize %u (inode size %u)",
4574 ei->i_extra_isize,
4575 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4576 ret = -EFSCORRUPTED;
814525f4
DW
4577 goto bad_inode;
4578 }
4579 } else
4580 ei->i_extra_isize = 0;
4581
4582 /* Precompute checksum seed for inode metadata */
9aa5d32b 4583 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585 __u32 csum;
4586 __le32 inum = cpu_to_le32(inode->i_ino);
4587 __le32 gen = raw_inode->i_generation;
4588 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4589 sizeof(inum));
4590 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4591 sizeof(gen));
4592 }
4593
4594 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4595 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4596 ret = -EFSBADCRC;
814525f4
DW
4597 goto bad_inode;
4598 }
4599
ac27a0ec 4600 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4601 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4602 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4603 if (ext4_has_feature_project(sb) &&
040cb378
LX
4604 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4605 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4606 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4607 else
4608 i_projid = EXT4_DEF_PROJID;
4609
af5bc92d 4610 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4611 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4612 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4613 }
08cefc7a
EB
4614 i_uid_write(inode, i_uid);
4615 i_gid_write(inode, i_gid);
acc94812 4616 ei->i_projid = make_kprojid(sb->s_user_ns, i_projid);
bfe86848 4617 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4618
353eb83c 4619 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4620 ei->i_inline_off = 0;
ac27a0ec
DK
4621 ei->i_dir_start_lookup = 0;
4622 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4623 /* We now have enough fields to check if the inode was active or not.
4624 * This is needed because nfsd might try to access dead inodes
4625 * the test is that same one that e2fsck uses
4626 * NeilBrown 1999oct15
4627 */
4628 if (inode->i_nlink == 0) {
393d1d1d
DTB
4629 if ((inode->i_mode == 0 ||
4630 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4631 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4632 /* this inode is deleted */
1d1fe1ee 4633 ret = -ESTALE;
ac27a0ec
DK
4634 goto bad_inode;
4635 }
4636 /* The only unlinked inodes we let through here have
4637 * valid i_mode and are being read by the orphan
4638 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4639 * the process of deleting those.
4640 * OR it is the EXT4_BOOT_LOADER_INO which is
4641 * not initialized on a new filesystem. */
ac27a0ec 4642 }
ac27a0ec 4643 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4644 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4645 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4646 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4647 ei->i_file_acl |=
4648 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4649 inode->i_size = ext4_isize(raw_inode);
7e6e1ef4
DW
4650 if ((size = i_size_read(inode)) < 0) {
4651 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4652 ret = -EFSCORRUPTED;
4653 goto bad_inode;
4654 }
ac27a0ec 4655 ei->i_disksize = inode->i_size;
a9e7f447
DM
4656#ifdef CONFIG_QUOTA
4657 ei->i_reserved_quota = 0;
4658#endif
ac27a0ec
DK
4659 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4660 ei->i_block_group = iloc.block_group;
a4912123 4661 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4662 /*
4663 * NOTE! The in-memory inode i_data array is in little-endian order
4664 * even on big-endian machines: we do NOT byteswap the block numbers!
4665 */
617ba13b 4666 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4667 ei->i_data[block] = raw_inode->i_block[block];
4668 INIT_LIST_HEAD(&ei->i_orphan);
4669
b436b9be
JK
4670 /*
4671 * Set transaction id's of transactions that have to be committed
4672 * to finish f[data]sync. We set them to currently running transaction
4673 * as we cannot be sure that the inode or some of its metadata isn't
4674 * part of the transaction - the inode could have been reclaimed and
4675 * now it is reread from disk.
4676 */
4677 if (journal) {
4678 transaction_t *transaction;
4679 tid_t tid;
4680
a931da6a 4681 read_lock(&journal->j_state_lock);
b436b9be
JK
4682 if (journal->j_running_transaction)
4683 transaction = journal->j_running_transaction;
4684 else
4685 transaction = journal->j_committing_transaction;
4686 if (transaction)
4687 tid = transaction->t_tid;
4688 else
4689 tid = journal->j_commit_sequence;
a931da6a 4690 read_unlock(&journal->j_state_lock);
b436b9be
JK
4691 ei->i_sync_tid = tid;
4692 ei->i_datasync_tid = tid;
4693 }
4694
0040d987 4695 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4696 if (ei->i_extra_isize == 0) {
4697 /* The extra space is currently unused. Use it. */
2dc8d9e1 4698 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4699 ei->i_extra_isize = sizeof(struct ext4_inode) -
4700 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4701 } else {
152a7b0a 4702 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4703 }
814525f4 4704 }
ac27a0ec 4705
ef7f3835
KS
4706 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4707 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4708 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4709 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4710
ed3654eb 4711 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4712 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4713 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4715 inode->i_version |=
4716 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4717 }
25ec56b5
JNC
4718 }
4719
c4b5a614 4720 ret = 0;
485c26ec 4721 if (ei->i_file_acl &&
1032988c 4722 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4723 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4724 ei->i_file_acl);
6a797d27 4725 ret = -EFSCORRUPTED;
485c26ec 4726 goto bad_inode;
f19d5870
TM
4727 } else if (!ext4_has_inline_data(inode)) {
4728 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4729 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4730 (S_ISLNK(inode->i_mode) &&
4731 !ext4_inode_is_fast_symlink(inode))))
4732 /* Validate extent which is part of inode */
4733 ret = ext4_ext_check_inode(inode);
4734 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4735 (S_ISLNK(inode->i_mode) &&
4736 !ext4_inode_is_fast_symlink(inode))) {
4737 /* Validate block references which are part of inode */
4738 ret = ext4_ind_check_inode(inode);
4739 }
fe2c8191 4740 }
567f3e9a 4741 if (ret)
de9a55b8 4742 goto bad_inode;
7a262f7c 4743
ac27a0ec 4744 if (S_ISREG(inode->i_mode)) {
617ba13b 4745 inode->i_op = &ext4_file_inode_operations;
be64f884 4746 inode->i_fop = &ext4_file_operations;
617ba13b 4747 ext4_set_aops(inode);
ac27a0ec 4748 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4749 inode->i_op = &ext4_dir_inode_operations;
4750 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4751 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4752 if (ext4_encrypted_inode(inode)) {
4753 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4754 ext4_set_aops(inode);
4755 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4756 inode->i_link = (char *)ei->i_data;
617ba13b 4757 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4758 nd_terminate_link(ei->i_data, inode->i_size,
4759 sizeof(ei->i_data) - 1);
4760 } else {
617ba13b
MC
4761 inode->i_op = &ext4_symlink_inode_operations;
4762 ext4_set_aops(inode);
ac27a0ec 4763 }
21fc61c7 4764 inode_nohighmem(inode);
563bdd61
TT
4765 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4766 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4767 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4768 if (raw_inode->i_block[0])
4769 init_special_inode(inode, inode->i_mode,
4770 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4771 else
4772 init_special_inode(inode, inode->i_mode,
4773 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4774 } else if (ino == EXT4_BOOT_LOADER_INO) {
4775 make_bad_inode(inode);
563bdd61 4776 } else {
6a797d27 4777 ret = -EFSCORRUPTED;
24676da4 4778 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4779 goto bad_inode;
ac27a0ec 4780 }
af5bc92d 4781 brelse(iloc.bh);
617ba13b 4782 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4783 unlock_new_inode(inode);
4784 return inode;
ac27a0ec
DK
4785
4786bad_inode:
567f3e9a 4787 brelse(iloc.bh);
1d1fe1ee
DH
4788 iget_failed(inode);
4789 return ERR_PTR(ret);
ac27a0ec
DK
4790}
4791
f4bb2981
TT
4792struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4793{
4794 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4795 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4796 return ext4_iget(sb, ino);
4797}
4798
0fc1b451
AK
4799static int ext4_inode_blocks_set(handle_t *handle,
4800 struct ext4_inode *raw_inode,
4801 struct ext4_inode_info *ei)
4802{
4803 struct inode *inode = &(ei->vfs_inode);
4804 u64 i_blocks = inode->i_blocks;
4805 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4806
4807 if (i_blocks <= ~0U) {
4808 /*
4907cb7b 4809 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4810 * as multiple of 512 bytes
4811 */
8180a562 4812 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4813 raw_inode->i_blocks_high = 0;
84a8dce2 4814 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4815 return 0;
4816 }
e2b911c5 4817 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4818 return -EFBIG;
4819
4820 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4821 /*
4822 * i_blocks can be represented in a 48 bit variable
4823 * as multiple of 512 bytes
4824 */
8180a562 4825 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4826 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4827 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4828 } else {
84a8dce2 4829 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4830 /* i_block is stored in file system block size */
4831 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4832 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4833 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4834 }
f287a1a5 4835 return 0;
0fc1b451
AK
4836}
4837
a26f4992
TT
4838struct other_inode {
4839 unsigned long orig_ino;
4840 struct ext4_inode *raw_inode;
4841};
4842
4843static int other_inode_match(struct inode * inode, unsigned long ino,
4844 void *data)
4845{
4846 struct other_inode *oi = (struct other_inode *) data;
4847
4848 if ((inode->i_ino != ino) ||
4849 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4850 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4851 ((inode->i_state & I_DIRTY_TIME) == 0))
4852 return 0;
4853 spin_lock(&inode->i_lock);
4854 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4855 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4856 (inode->i_state & I_DIRTY_TIME)) {
4857 struct ext4_inode_info *ei = EXT4_I(inode);
4858
4859 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4860 spin_unlock(&inode->i_lock);
4861
4862 spin_lock(&ei->i_raw_lock);
4863 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4864 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4865 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4866 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4867 spin_unlock(&ei->i_raw_lock);
4868 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4869 return -1;
4870 }
4871 spin_unlock(&inode->i_lock);
4872 return -1;
4873}
4874
4875/*
4876 * Opportunistically update the other time fields for other inodes in
4877 * the same inode table block.
4878 */
4879static void ext4_update_other_inodes_time(struct super_block *sb,
4880 unsigned long orig_ino, char *buf)
4881{
4882 struct other_inode oi;
4883 unsigned long ino;
4884 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4885 int inode_size = EXT4_INODE_SIZE(sb);
4886
4887 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4888 /*
4889 * Calculate the first inode in the inode table block. Inode
4890 * numbers are one-based. That is, the first inode in a block
4891 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4892 */
4893 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4894 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4895 if (ino == orig_ino)
4896 continue;
4897 oi.raw_inode = (struct ext4_inode *) buf;
4898 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4899 }
4900}
4901
ac27a0ec
DK
4902/*
4903 * Post the struct inode info into an on-disk inode location in the
4904 * buffer-cache. This gobbles the caller's reference to the
4905 * buffer_head in the inode location struct.
4906 *
4907 * The caller must have write access to iloc->bh.
4908 */
617ba13b 4909static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4910 struct inode *inode,
830156c7 4911 struct ext4_iloc *iloc)
ac27a0ec 4912{
617ba13b
MC
4913 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4914 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4915 struct buffer_head *bh = iloc->bh;
202ee5df 4916 struct super_block *sb = inode->i_sb;
ac27a0ec 4917 int err = 0, rc, block;
202ee5df 4918 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4919 uid_t i_uid;
4920 gid_t i_gid;
040cb378 4921 projid_t i_projid;
ac27a0ec 4922
202ee5df
TT
4923 spin_lock(&ei->i_raw_lock);
4924
4925 /* For fields not tracked in the in-memory inode,
ac27a0ec 4926 * initialise them to zero for new inodes. */
19f5fb7a 4927 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4928 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4929
ff9ddf7e 4930 ext4_get_inode_flags(ei);
ac27a0ec 4931 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4932 i_uid = i_uid_read(inode);
4933 i_gid = i_gid_read(inode);
acc94812 4934 i_projid = from_kprojid(sb->s_user_ns, ei->i_projid);
af5bc92d 4935 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4936 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4937 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4938/*
4939 * Fix up interoperability with old kernels. Otherwise, old inodes get
4940 * re-used with the upper 16 bits of the uid/gid intact
4941 */
93e3b4e6
DJ
4942 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4943 raw_inode->i_uid_high = 0;
4944 raw_inode->i_gid_high = 0;
4945 } else {
ac27a0ec 4946 raw_inode->i_uid_high =
08cefc7a 4947 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4948 raw_inode->i_gid_high =
08cefc7a 4949 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4950 }
4951 } else {
08cefc7a
EB
4952 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4953 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4954 raw_inode->i_uid_high = 0;
4955 raw_inode->i_gid_high = 0;
4956 }
4957 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4958
4959 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4960 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4961 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4962 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4963
bce92d56
LX
4964 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4965 if (err) {
202ee5df 4966 spin_unlock(&ei->i_raw_lock);
0fc1b451 4967 goto out_brelse;
202ee5df 4968 }
ac27a0ec 4969 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4970 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4971 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4972 raw_inode->i_file_acl_high =
4973 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4974 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4975 if (ei->i_disksize != ext4_isize(raw_inode)) {
4976 ext4_isize_set(raw_inode, ei->i_disksize);
4977 need_datasync = 1;
4978 }
a48380f7 4979 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4980 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4981 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4982 cpu_to_le32(EXT4_GOOD_OLD_REV))
4983 set_large_file = 1;
ac27a0ec
DK
4984 }
4985 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4986 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4987 if (old_valid_dev(inode->i_rdev)) {
4988 raw_inode->i_block[0] =
4989 cpu_to_le32(old_encode_dev(inode->i_rdev));
4990 raw_inode->i_block[1] = 0;
4991 } else {
4992 raw_inode->i_block[0] = 0;
4993 raw_inode->i_block[1] =
4994 cpu_to_le32(new_encode_dev(inode->i_rdev));
4995 raw_inode->i_block[2] = 0;
4996 }
f19d5870 4997 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4998 for (block = 0; block < EXT4_N_BLOCKS; block++)
4999 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5000 }
ac27a0ec 5001
ed3654eb 5002 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5003 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5004 if (ei->i_extra_isize) {
5005 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006 raw_inode->i_version_hi =
5007 cpu_to_le32(inode->i_version >> 32);
5008 raw_inode->i_extra_isize =
5009 cpu_to_le16(ei->i_extra_isize);
5010 }
25ec56b5 5011 }
040cb378 5012
acc94812
SF
5013 if (i_projid != (projid_t)-1) {
5014 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5015 i_projid != EXT4_DEF_PROJID);
040cb378 5016
acc94812
SF
5017 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5018 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5019 raw_inode->i_projid = cpu_to_le32(i_projid);
5020 }
040cb378 5021
814525f4 5022 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5023 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
5024 if (inode->i_sb->s_flags & MS_LAZYTIME)
5025 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5026 bh->b_data);
202ee5df 5027
830156c7 5028 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5029 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5030 if (!err)
5031 err = rc;
19f5fb7a 5032 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5033 if (set_large_file) {
5d601255 5034 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5035 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5036 if (err)
5037 goto out_brelse;
5038 ext4_update_dynamic_rev(sb);
e2b911c5 5039 ext4_set_feature_large_file(sb);
202ee5df
TT
5040 ext4_handle_sync(handle);
5041 err = ext4_handle_dirty_super(handle, sb);
5042 }
b71fc079 5043 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5044out_brelse:
af5bc92d 5045 brelse(bh);
617ba13b 5046 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5047 return err;
5048}
5049
5050/*
617ba13b 5051 * ext4_write_inode()
ac27a0ec
DK
5052 *
5053 * We are called from a few places:
5054 *
87f7e416 5055 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5056 * Here, there will be no transaction running. We wait for any running
4907cb7b 5057 * transaction to commit.
ac27a0ec 5058 *
87f7e416
TT
5059 * - Within flush work (sys_sync(), kupdate and such).
5060 * We wait on commit, if told to.
ac27a0ec 5061 *
87f7e416
TT
5062 * - Within iput_final() -> write_inode_now()
5063 * We wait on commit, if told to.
ac27a0ec
DK
5064 *
5065 * In all cases it is actually safe for us to return without doing anything,
5066 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5067 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5068 * writeback.
ac27a0ec
DK
5069 *
5070 * Note that we are absolutely dependent upon all inode dirtiers doing the
5071 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5072 * which we are interested.
5073 *
5074 * It would be a bug for them to not do this. The code:
5075 *
5076 * mark_inode_dirty(inode)
5077 * stuff();
5078 * inode->i_size = expr;
5079 *
87f7e416
TT
5080 * is in error because write_inode() could occur while `stuff()' is running,
5081 * and the new i_size will be lost. Plus the inode will no longer be on the
5082 * superblock's dirty inode list.
ac27a0ec 5083 */
a9185b41 5084int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5085{
91ac6f43
FM
5086 int err;
5087
87f7e416 5088 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5089 return 0;
5090
91ac6f43
FM
5091 if (EXT4_SB(inode->i_sb)->s_journal) {
5092 if (ext4_journal_current_handle()) {
5093 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5094 dump_stack();
5095 return -EIO;
5096 }
ac27a0ec 5097
10542c22
JK
5098 /*
5099 * No need to force transaction in WB_SYNC_NONE mode. Also
5100 * ext4_sync_fs() will force the commit after everything is
5101 * written.
5102 */
5103 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5104 return 0;
5105
5106 err = ext4_force_commit(inode->i_sb);
5107 } else {
5108 struct ext4_iloc iloc;
ac27a0ec 5109
8b472d73 5110 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5111 if (err)
5112 return err;
10542c22
JK
5113 /*
5114 * sync(2) will flush the whole buffer cache. No need to do
5115 * it here separately for each inode.
5116 */
5117 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5118 sync_dirty_buffer(iloc.bh);
5119 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5120 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5121 "IO error syncing inode");
830156c7
FM
5122 err = -EIO;
5123 }
fd2dd9fb 5124 brelse(iloc.bh);
91ac6f43
FM
5125 }
5126 return err;
ac27a0ec
DK
5127}
5128
53e87268
JK
5129/*
5130 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5131 * buffers that are attached to a page stradding i_size and are undergoing
5132 * commit. In that case we have to wait for commit to finish and try again.
5133 */
5134static void ext4_wait_for_tail_page_commit(struct inode *inode)
5135{
5136 struct page *page;
5137 unsigned offset;
5138 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5139 tid_t commit_tid = 0;
5140 int ret;
5141
09cbfeaf 5142 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5143 /*
5144 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5145 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5146 * blocksize case
5147 */
09cbfeaf 5148 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
53e87268
JK
5149 return;
5150 while (1) {
5151 page = find_lock_page(inode->i_mapping,
09cbfeaf 5152 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5153 if (!page)
5154 return;
ca99fdd2 5155 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5156 PAGE_SIZE - offset);
53e87268 5157 unlock_page(page);
09cbfeaf 5158 put_page(page);
53e87268
JK
5159 if (ret != -EBUSY)
5160 return;
5161 commit_tid = 0;
5162 read_lock(&journal->j_state_lock);
5163 if (journal->j_committing_transaction)
5164 commit_tid = journal->j_committing_transaction->t_tid;
5165 read_unlock(&journal->j_state_lock);
5166 if (commit_tid)
5167 jbd2_log_wait_commit(journal, commit_tid);
5168 }
5169}
5170
ac27a0ec 5171/*
617ba13b 5172 * ext4_setattr()
ac27a0ec
DK
5173 *
5174 * Called from notify_change.
5175 *
5176 * We want to trap VFS attempts to truncate the file as soon as
5177 * possible. In particular, we want to make sure that when the VFS
5178 * shrinks i_size, we put the inode on the orphan list and modify
5179 * i_disksize immediately, so that during the subsequent flushing of
5180 * dirty pages and freeing of disk blocks, we can guarantee that any
5181 * commit will leave the blocks being flushed in an unused state on
5182 * disk. (On recovery, the inode will get truncated and the blocks will
5183 * be freed, so we have a strong guarantee that no future commit will
5184 * leave these blocks visible to the user.)
5185 *
678aaf48
JK
5186 * Another thing we have to assure is that if we are in ordered mode
5187 * and inode is still attached to the committing transaction, we must
5188 * we start writeout of all the dirty pages which are being truncated.
5189 * This way we are sure that all the data written in the previous
5190 * transaction are already on disk (truncate waits for pages under
5191 * writeback).
5192 *
5193 * Called with inode->i_mutex down.
ac27a0ec 5194 */
617ba13b 5195int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5196{
2b0143b5 5197 struct inode *inode = d_inode(dentry);
ac27a0ec 5198 int error, rc = 0;
3d287de3 5199 int orphan = 0;
ac27a0ec
DK
5200 const unsigned int ia_valid = attr->ia_valid;
5201
31051c85 5202 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5203 if (error)
5204 return error;
5205
a7cdadee
JK
5206 if (is_quota_modification(inode, attr)) {
5207 error = dquot_initialize(inode);
5208 if (error)
5209 return error;
5210 }
08cefc7a
EB
5211 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5212 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5213 handle_t *handle;
5214
5215 /* (user+group)*(old+new) structure, inode write (sb,
5216 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5217 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5218 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5219 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5220 if (IS_ERR(handle)) {
5221 error = PTR_ERR(handle);
5222 goto err_out;
5223 }
b43fa828 5224 error = dquot_transfer(inode, attr);
ac27a0ec 5225 if (error) {
617ba13b 5226 ext4_journal_stop(handle);
ac27a0ec
DK
5227 return error;
5228 }
5229 /* Update corresponding info in inode so that everything is in
5230 * one transaction */
5231 if (attr->ia_valid & ATTR_UID)
5232 inode->i_uid = attr->ia_uid;
5233 if (attr->ia_valid & ATTR_GID)
5234 inode->i_gid = attr->ia_gid;
617ba13b
MC
5235 error = ext4_mark_inode_dirty(handle, inode);
5236 ext4_journal_stop(handle);
ac27a0ec
DK
5237 }
5238
3da40c7b 5239 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5240 handle_t *handle;
3da40c7b
JB
5241 loff_t oldsize = inode->i_size;
5242 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5243
12e9b892 5244 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5245 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5246
0c095c7f
TT
5247 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5248 return -EFBIG;
e2b46574 5249 }
3da40c7b
JB
5250 if (!S_ISREG(inode->i_mode))
5251 return -EINVAL;
dff6efc3
CH
5252
5253 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5254 inode_inc_iversion(inode);
5255
3da40c7b 5256 if (ext4_should_order_data(inode) &&
5208386c 5257 (attr->ia_size < inode->i_size)) {
3da40c7b 5258 error = ext4_begin_ordered_truncate(inode,
678aaf48 5259 attr->ia_size);
3da40c7b
JB
5260 if (error)
5261 goto err_out;
5262 }
5263 if (attr->ia_size != inode->i_size) {
5208386c
JK
5264 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5265 if (IS_ERR(handle)) {
5266 error = PTR_ERR(handle);
5267 goto err_out;
5268 }
3da40c7b 5269 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5270 error = ext4_orphan_add(handle, inode);
5271 orphan = 1;
5272 }
911af577
EG
5273 /*
5274 * Update c/mtime on truncate up, ext4_truncate() will
5275 * update c/mtime in shrink case below
5276 */
5277 if (!shrink) {
eeca7ea1 5278 inode->i_mtime = current_time(inode);
911af577
EG
5279 inode->i_ctime = inode->i_mtime;
5280 }
90e775b7 5281 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5282 EXT4_I(inode)->i_disksize = attr->ia_size;
5283 rc = ext4_mark_inode_dirty(handle, inode);
5284 if (!error)
5285 error = rc;
90e775b7
JK
5286 /*
5287 * We have to update i_size under i_data_sem together
5288 * with i_disksize to avoid races with writeback code
5289 * running ext4_wb_update_i_disksize().
5290 */
5291 if (!error)
5292 i_size_write(inode, attr->ia_size);
5293 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5294 ext4_journal_stop(handle);
5295 if (error) {
3da40c7b
JB
5296 if (orphan)
5297 ext4_orphan_del(NULL, inode);
678aaf48
JK
5298 goto err_out;
5299 }
d6320cbf 5300 }
3da40c7b
JB
5301 if (!shrink)
5302 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5303
5208386c
JK
5304 /*
5305 * Blocks are going to be removed from the inode. Wait
5306 * for dio in flight. Temporarily disable
5307 * dioread_nolock to prevent livelock.
5308 */
5309 if (orphan) {
5310 if (!ext4_should_journal_data(inode)) {
5311 ext4_inode_block_unlocked_dio(inode);
5312 inode_dio_wait(inode);
5313 ext4_inode_resume_unlocked_dio(inode);
5314 } else
5315 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5316 }
ea3d7209 5317 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5318 /*
5319 * Truncate pagecache after we've waited for commit
5320 * in data=journal mode to make pages freeable.
5321 */
923ae0ff 5322 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5323 if (shrink) {
5324 rc = ext4_truncate(inode);
5325 if (rc)
5326 error = rc;
5327 }
ea3d7209 5328 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5329 }
ac27a0ec 5330
2c98eb5e 5331 if (!error) {
1025774c
CH
5332 setattr_copy(inode, attr);
5333 mark_inode_dirty(inode);
5334 }
5335
5336 /*
5337 * If the call to ext4_truncate failed to get a transaction handle at
5338 * all, we need to clean up the in-core orphan list manually.
5339 */
3d287de3 5340 if (orphan && inode->i_nlink)
617ba13b 5341 ext4_orphan_del(NULL, inode);
ac27a0ec 5342
2c98eb5e 5343 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5344 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5345
5346err_out:
617ba13b 5347 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5348 if (!error)
5349 error = rc;
5350 return error;
5351}
5352
3e3398a0
MC
5353int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5354 struct kstat *stat)
5355{
5356 struct inode *inode;
8af8eecc 5357 unsigned long long delalloc_blocks;
3e3398a0 5358
2b0143b5 5359 inode = d_inode(dentry);
3e3398a0
MC
5360 generic_fillattr(inode, stat);
5361
9206c561
AD
5362 /*
5363 * If there is inline data in the inode, the inode will normally not
5364 * have data blocks allocated (it may have an external xattr block).
5365 * Report at least one sector for such files, so tools like tar, rsync,
5366 * others doen't incorrectly think the file is completely sparse.
5367 */
5368 if (unlikely(ext4_has_inline_data(inode)))
5369 stat->blocks += (stat->size + 511) >> 9;
5370
3e3398a0
MC
5371 /*
5372 * We can't update i_blocks if the block allocation is delayed
5373 * otherwise in the case of system crash before the real block
5374 * allocation is done, we will have i_blocks inconsistent with
5375 * on-disk file blocks.
5376 * We always keep i_blocks updated together with real
5377 * allocation. But to not confuse with user, stat
5378 * will return the blocks that include the delayed allocation
5379 * blocks for this file.
5380 */
96607551 5381 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5382 EXT4_I(inode)->i_reserved_data_blocks);
5383 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5384 return 0;
5385}
ac27a0ec 5386
fffb2739
JK
5387static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5388 int pextents)
a02908f1 5389{
12e9b892 5390 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5391 return ext4_ind_trans_blocks(inode, lblocks);
5392 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5393}
ac51d837 5394
ac27a0ec 5395/*
a02908f1
MC
5396 * Account for index blocks, block groups bitmaps and block group
5397 * descriptor blocks if modify datablocks and index blocks
5398 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5399 *
a02908f1 5400 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5401 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5402 * they could still across block group boundary.
ac27a0ec 5403 *
a02908f1
MC
5404 * Also account for superblock, inode, quota and xattr blocks
5405 */
fffb2739
JK
5406static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5407 int pextents)
a02908f1 5408{
8df9675f
TT
5409 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5410 int gdpblocks;
a02908f1
MC
5411 int idxblocks;
5412 int ret = 0;
5413
5414 /*
fffb2739
JK
5415 * How many index blocks need to touch to map @lblocks logical blocks
5416 * to @pextents physical extents?
a02908f1 5417 */
fffb2739 5418 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5419
5420 ret = idxblocks;
5421
5422 /*
5423 * Now let's see how many group bitmaps and group descriptors need
5424 * to account
5425 */
fffb2739 5426 groups = idxblocks + pextents;
a02908f1 5427 gdpblocks = groups;
8df9675f
TT
5428 if (groups > ngroups)
5429 groups = ngroups;
a02908f1
MC
5430 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5431 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5432
5433 /* bitmaps and block group descriptor blocks */
5434 ret += groups + gdpblocks;
5435
5436 /* Blocks for super block, inode, quota and xattr blocks */
5437 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5438
5439 return ret;
5440}
5441
5442/*
25985edc 5443 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5444 * the modification of a single pages into a single transaction,
5445 * which may include multiple chunks of block allocations.
ac27a0ec 5446 *
525f4ed8 5447 * This could be called via ext4_write_begin()
ac27a0ec 5448 *
525f4ed8 5449 * We need to consider the worse case, when
a02908f1 5450 * one new block per extent.
ac27a0ec 5451 */
a86c6181 5452int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5453{
617ba13b 5454 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5455 int ret;
5456
fffb2739 5457 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5458
a02908f1 5459 /* Account for data blocks for journalled mode */
617ba13b 5460 if (ext4_should_journal_data(inode))
a02908f1 5461 ret += bpp;
ac27a0ec
DK
5462 return ret;
5463}
f3bd1f3f
MC
5464
5465/*
5466 * Calculate the journal credits for a chunk of data modification.
5467 *
5468 * This is called from DIO, fallocate or whoever calling
79e83036 5469 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5470 *
5471 * journal buffers for data blocks are not included here, as DIO
5472 * and fallocate do no need to journal data buffers.
5473 */
5474int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5475{
5476 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5477}
5478
ac27a0ec 5479/*
617ba13b 5480 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5481 * Give this, we know that the caller already has write access to iloc->bh.
5482 */
617ba13b 5483int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5484 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5485{
5486 int err = 0;
5487
c64db50e 5488 if (IS_I_VERSION(inode))
25ec56b5
JNC
5489 inode_inc_iversion(inode);
5490
ac27a0ec
DK
5491 /* the do_update_inode consumes one bh->b_count */
5492 get_bh(iloc->bh);
5493
dab291af 5494 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5495 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5496 put_bh(iloc->bh);
5497 return err;
5498}
5499
5500/*
5501 * On success, We end up with an outstanding reference count against
5502 * iloc->bh. This _must_ be cleaned up later.
5503 */
5504
5505int
617ba13b
MC
5506ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5507 struct ext4_iloc *iloc)
ac27a0ec 5508{
0390131b
FM
5509 int err;
5510
5511 err = ext4_get_inode_loc(inode, iloc);
5512 if (!err) {
5513 BUFFER_TRACE(iloc->bh, "get_write_access");
5514 err = ext4_journal_get_write_access(handle, iloc->bh);
5515 if (err) {
5516 brelse(iloc->bh);
5517 iloc->bh = NULL;
ac27a0ec
DK
5518 }
5519 }
617ba13b 5520 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5521 return err;
5522}
5523
6dd4ee7c
KS
5524/*
5525 * Expand an inode by new_extra_isize bytes.
5526 * Returns 0 on success or negative error number on failure.
5527 */
1d03ec98
AK
5528static int ext4_expand_extra_isize(struct inode *inode,
5529 unsigned int new_extra_isize,
5530 struct ext4_iloc iloc,
5531 handle_t *handle)
6dd4ee7c
KS
5532{
5533 struct ext4_inode *raw_inode;
5534 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5535
5536 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5537 return 0;
5538
5539 raw_inode = ext4_raw_inode(&iloc);
5540
5541 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5542
5543 /* No extended attributes present */
19f5fb7a
TT
5544 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5545 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5546 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5547 new_extra_isize);
5548 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5549 return 0;
5550 }
5551
5552 /* try to expand with EAs present */
5553 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5554 raw_inode, handle);
5555}
5556
ac27a0ec
DK
5557/*
5558 * What we do here is to mark the in-core inode as clean with respect to inode
5559 * dirtiness (it may still be data-dirty).
5560 * This means that the in-core inode may be reaped by prune_icache
5561 * without having to perform any I/O. This is a very good thing,
5562 * because *any* task may call prune_icache - even ones which
5563 * have a transaction open against a different journal.
5564 *
5565 * Is this cheating? Not really. Sure, we haven't written the
5566 * inode out, but prune_icache isn't a user-visible syncing function.
5567 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5568 * we start and wait on commits.
ac27a0ec 5569 */
617ba13b 5570int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5571{
617ba13b 5572 struct ext4_iloc iloc;
6dd4ee7c
KS
5573 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5574 static unsigned int mnt_count;
5575 int err, ret;
ac27a0ec
DK
5576
5577 might_sleep();
7ff9c073 5578 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5579 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5580 if (err)
5581 return err;
88e03877 5582 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5583 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c 5584 /*
88e03877
EW
5585 * In nojournal mode, we can immediately attempt to expand
5586 * the inode. When journaled, we first need to obtain extra
5587 * buffer credits since we may write into the EA block
6dd4ee7c
KS
5588 * with this same handle. If journal_extend fails, then it will
5589 * only result in a minor loss of functionality for that inode.
5590 * If this is felt to be critical, then e2fsck should be run to
5591 * force a large enough s_min_extra_isize.
5592 */
88e03877
EW
5593 if (!ext4_handle_valid(handle) ||
5594 jbd2_journal_extend(handle,
5595 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
6dd4ee7c
KS
5596 ret = ext4_expand_extra_isize(inode,
5597 sbi->s_want_extra_isize,
5598 iloc, handle);
5599 if (ret) {
c1bddad9
AK
5600 if (mnt_count !=
5601 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5602 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5603 "Unable to expand inode %lu. Delete"
5604 " some EAs or run e2fsck.",
5605 inode->i_ino);
c1bddad9
AK
5606 mnt_count =
5607 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5608 }
5609 }
5610 }
5611 }
5e1021f2 5612 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5613}
5614
5615/*
617ba13b 5616 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5617 *
5618 * We're really interested in the case where a file is being extended.
5619 * i_size has been changed by generic_commit_write() and we thus need
5620 * to include the updated inode in the current transaction.
5621 *
5dd4056d 5622 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5623 * are allocated to the file.
5624 *
5625 * If the inode is marked synchronous, we don't honour that here - doing
5626 * so would cause a commit on atime updates, which we don't bother doing.
5627 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5628 *
5629 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5630 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5631 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5632 */
aa385729 5633void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5634{
ac27a0ec
DK
5635 handle_t *handle;
5636
0ae45f63
TT
5637 if (flags == I_DIRTY_TIME)
5638 return;
9924a92a 5639 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5640 if (IS_ERR(handle))
5641 goto out;
f3dc272f 5642
f3dc272f
CW
5643 ext4_mark_inode_dirty(handle, inode);
5644
617ba13b 5645 ext4_journal_stop(handle);
ac27a0ec
DK
5646out:
5647 return;
5648}
5649
5650#if 0
5651/*
5652 * Bind an inode's backing buffer_head into this transaction, to prevent
5653 * it from being flushed to disk early. Unlike
617ba13b 5654 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5655 * returns no iloc structure, so the caller needs to repeat the iloc
5656 * lookup to mark the inode dirty later.
5657 */
617ba13b 5658static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5659{
617ba13b 5660 struct ext4_iloc iloc;
ac27a0ec
DK
5661
5662 int err = 0;
5663 if (handle) {
617ba13b 5664 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5665 if (!err) {
5666 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5667 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5668 if (!err)
0390131b 5669 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5670 NULL,
0390131b 5671 iloc.bh);
ac27a0ec
DK
5672 brelse(iloc.bh);
5673 }
5674 }
617ba13b 5675 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5676 return err;
5677}
5678#endif
5679
617ba13b 5680int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5681{
5682 journal_t *journal;
5683 handle_t *handle;
5684 int err;
c8585c6f 5685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5686
5687 /*
5688 * We have to be very careful here: changing a data block's
5689 * journaling status dynamically is dangerous. If we write a
5690 * data block to the journal, change the status and then delete
5691 * that block, we risk forgetting to revoke the old log record
5692 * from the journal and so a subsequent replay can corrupt data.
5693 * So, first we make sure that the journal is empty and that
5694 * nobody is changing anything.
5695 */
5696
617ba13b 5697 journal = EXT4_JOURNAL(inode);
0390131b
FM
5698 if (!journal)
5699 return 0;
d699594d 5700 if (is_journal_aborted(journal))
ac27a0ec
DK
5701 return -EROFS;
5702
17335dcc
DM
5703 /* Wait for all existing dio workers */
5704 ext4_inode_block_unlocked_dio(inode);
5705 inode_dio_wait(inode);
5706
4c546592
DJ
5707 /*
5708 * Before flushing the journal and switching inode's aops, we have
5709 * to flush all dirty data the inode has. There can be outstanding
5710 * delayed allocations, there can be unwritten extents created by
5711 * fallocate or buffered writes in dioread_nolock mode covered by
5712 * dirty data which can be converted only after flushing the dirty
5713 * data (and journalled aops don't know how to handle these cases).
5714 */
5715 if (val) {
5716 down_write(&EXT4_I(inode)->i_mmap_sem);
5717 err = filemap_write_and_wait(inode->i_mapping);
5718 if (err < 0) {
5719 up_write(&EXT4_I(inode)->i_mmap_sem);
5720 ext4_inode_resume_unlocked_dio(inode);
5721 return err;
5722 }
5723 }
5724
c8585c6f 5725 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5726 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5727
5728 /*
5729 * OK, there are no updates running now, and all cached data is
5730 * synced to disk. We are now in a completely consistent state
5731 * which doesn't have anything in the journal, and we know that
5732 * no filesystem updates are running, so it is safe to modify
5733 * the inode's in-core data-journaling state flag now.
5734 */
5735
5736 if (val)
12e9b892 5737 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5738 else {
4f879ca6
JK
5739 err = jbd2_journal_flush(journal);
5740 if (err < 0) {
5741 jbd2_journal_unlock_updates(journal);
c8585c6f 5742 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5743 ext4_inode_resume_unlocked_dio(inode);
5744 return err;
5745 }
12e9b892 5746 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5747 }
617ba13b 5748 ext4_set_aops(inode);
a3caa24b
JK
5749 /*
5750 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5751 * E.g. S_DAX may get cleared / set.
5752 */
5753 ext4_set_inode_flags(inode);
ac27a0ec 5754
dab291af 5755 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5756 percpu_up_write(&sbi->s_journal_flag_rwsem);
5757
4c546592
DJ
5758 if (val)
5759 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5760 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5761
5762 /* Finally we can mark the inode as dirty. */
5763
9924a92a 5764 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5765 if (IS_ERR(handle))
5766 return PTR_ERR(handle);
5767
617ba13b 5768 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5769 ext4_handle_sync(handle);
617ba13b
MC
5770 ext4_journal_stop(handle);
5771 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5772
5773 return err;
5774}
2e9ee850
AK
5775
5776static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5777{
5778 return !buffer_mapped(bh);
5779}
5780
c2ec175c 5781int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5782{
c2ec175c 5783 struct page *page = vmf->page;
2e9ee850
AK
5784 loff_t size;
5785 unsigned long len;
9ea7df53 5786 int ret;
2e9ee850 5787 struct file *file = vma->vm_file;
496ad9aa 5788 struct inode *inode = file_inode(file);
2e9ee850 5789 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5790 handle_t *handle;
5791 get_block_t *get_block;
5792 int retries = 0;
2e9ee850 5793
8e8ad8a5 5794 sb_start_pagefault(inode->i_sb);
041bbb6d 5795 file_update_time(vma->vm_file);
ea3d7209
JK
5796
5797 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5798 /* Delalloc case is easy... */
5799 if (test_opt(inode->i_sb, DELALLOC) &&
5800 !ext4_should_journal_data(inode) &&
5801 !ext4_nonda_switch(inode->i_sb)) {
5802 do {
5c500029 5803 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5804 ext4_da_get_block_prep);
5805 } while (ret == -ENOSPC &&
5806 ext4_should_retry_alloc(inode->i_sb, &retries));
5807 goto out_ret;
2e9ee850 5808 }
0e499890
DW
5809
5810 lock_page(page);
9ea7df53
JK
5811 size = i_size_read(inode);
5812 /* Page got truncated from under us? */
5813 if (page->mapping != mapping || page_offset(page) > size) {
5814 unlock_page(page);
5815 ret = VM_FAULT_NOPAGE;
5816 goto out;
0e499890 5817 }
2e9ee850 5818
09cbfeaf
KS
5819 if (page->index == size >> PAGE_SHIFT)
5820 len = size & ~PAGE_MASK;
2e9ee850 5821 else
09cbfeaf 5822 len = PAGE_SIZE;
a827eaff 5823 /*
9ea7df53
JK
5824 * Return if we have all the buffers mapped. This avoids the need to do
5825 * journal_start/journal_stop which can block and take a long time
a827eaff 5826 */
2e9ee850 5827 if (page_has_buffers(page)) {
f19d5870
TM
5828 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5829 0, len, NULL,
5830 ext4_bh_unmapped)) {
9ea7df53 5831 /* Wait so that we don't change page under IO */
1d1d1a76 5832 wait_for_stable_page(page);
9ea7df53
JK
5833 ret = VM_FAULT_LOCKED;
5834 goto out;
a827eaff 5835 }
2e9ee850 5836 }
a827eaff 5837 unlock_page(page);
9ea7df53
JK
5838 /* OK, we need to fill the hole... */
5839 if (ext4_should_dioread_nolock(inode))
705965bd 5840 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5841 else
5842 get_block = ext4_get_block;
5843retry_alloc:
9924a92a
TT
5844 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5845 ext4_writepage_trans_blocks(inode));
9ea7df53 5846 if (IS_ERR(handle)) {
c2ec175c 5847 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5848 goto out;
5849 }
5c500029 5850 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5851 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5852 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5853 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5854 unlock_page(page);
5855 ret = VM_FAULT_SIGBUS;
fcbb5515 5856 ext4_journal_stop(handle);
9ea7df53
JK
5857 goto out;
5858 }
5859 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5860 }
5861 ext4_journal_stop(handle);
5862 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5863 goto retry_alloc;
5864out_ret:
5865 ret = block_page_mkwrite_return(ret);
5866out:
ea3d7209 5867 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5868 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5869 return ret;
5870}
ea3d7209
JK
5871
5872int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5873{
5874 struct inode *inode = file_inode(vma->vm_file);
5875 int err;
5876
5877 down_read(&EXT4_I(inode)->i_mmap_sem);
5878 err = filemap_fault(vma, vmf);
5879 up_read(&EXT4_I(inode)->i_mmap_sem);
5880
5881 return err;
5882}
2d90c160
JK
5883
5884/*
5885 * Find the first extent at or after @lblk in an inode that is not a hole.
5886 * Search for @map_len blocks at most. The extent is returned in @result.
5887 *
5888 * The function returns 1 if we found an extent. The function returns 0 in
5889 * case there is no extent at or after @lblk and in that case also sets
5890 * @result->es_len to 0. In case of error, the error code is returned.
5891 */
5892int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5893 unsigned int map_len, struct extent_status *result)
5894{
5895 struct ext4_map_blocks map;
5896 struct extent_status es = {};
5897 int ret;
5898
5899 map.m_lblk = lblk;
5900 map.m_len = map_len;
5901
5902 /*
5903 * For non-extent based files this loop may iterate several times since
5904 * we do not determine full hole size.
5905 */
5906 while (map.m_len > 0) {
5907 ret = ext4_map_blocks(NULL, inode, &map, 0);
5908 if (ret < 0)
5909 return ret;
5910 /* There's extent covering m_lblk? Just return it. */
5911 if (ret > 0) {
5912 int status;
5913
5914 ext4_es_store_pblock(result, map.m_pblk);
5915 result->es_lblk = map.m_lblk;
5916 result->es_len = map.m_len;
5917 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5918 status = EXTENT_STATUS_UNWRITTEN;
5919 else
5920 status = EXTENT_STATUS_WRITTEN;
5921 ext4_es_store_status(result, status);
5922 return 1;
5923 }
5924 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5925 map.m_lblk + map.m_len - 1,
5926 &es);
5927 /* Is delalloc data before next block in extent tree? */
5928 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5929 ext4_lblk_t offset = 0;
5930
5931 if (es.es_lblk < lblk)
5932 offset = lblk - es.es_lblk;
5933 result->es_lblk = es.es_lblk + offset;
5934 ext4_es_store_pblock(result,
5935 ext4_es_pblock(&es) + offset);
5936 result->es_len = es.es_len - offset;
5937 ext4_es_store_status(result, ext4_es_status(&es));
5938
5939 return 1;
5940 }
5941 /* There's a hole at m_lblk, advance us after it */
5942 map.m_lblk += map.m_len;
5943 map_len -= map.m_len;
5944 map.m_len = map_len;
5945 cond_resched();
5946 }
5947 result->es_len = 0;
5948 return 0;
5949}