]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: make online defrag error reporting consistent
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
25#include <linux/quotaops.h>
26#include <linux/string.h>
27#include <linux/buffer_head.h>
28#include <linux/writeback.h>
64769240 29#include <linux/pagevec.h>
ac27a0ec 30#include <linux/mpage.h>
e83c1397 31#include <linux/namei.h>
ac27a0ec
DK
32#include <linux/uio.h>
33#include <linux/bio.h>
4c0425ff 34#include <linux/workqueue.h>
744692dc 35#include <linux/kernel.h>
6db26ffc 36#include <linux/printk.h>
5a0e3ad6 37#include <linux/slab.h>
00a1a053 38#include <linux/bitops.h>
9bffad1e 39
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
9f125d64 43#include "truncate.h"
ac27a0ec 44
9bffad1e
TT
45#include <trace/events/ext4.h>
46
a1d6cc56
AK
47#define MPAGE_DA_EXTENT_TAIL 0x01
48
814525f4
DW
49static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 struct ext4_inode_info *ei)
51{
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 __u16 csum_lo;
54 __u16 csum_hi = 0;
55 __u32 csum;
56
171a7f21 57 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
58 raw->i_checksum_lo = 0;
59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 61 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
62 raw->i_checksum_hi = 0;
63 }
64
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 EXT4_INODE_SIZE(inode->i_sb));
67
171a7f21 68 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 71 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
72
73 return csum;
74}
75
76static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 struct ext4_inode_info *ei)
78{
79 __u32 provided, calculated;
80
81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 83 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
84 return 1;
85
86 provided = le16_to_cpu(raw->i_checksum_lo);
87 calculated = ext4_inode_csum(inode, raw, ei);
88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 else
92 calculated &= 0xFFFF;
93
94 return provided == calculated;
95}
96
97static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 struct ext4_inode_info *ei)
99{
100 __u32 csum;
101
102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 104 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
105 return;
106
107 csum = ext4_inode_csum(inode, raw, ei);
108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112}
113
678aaf48
JK
114static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 loff_t new_size)
116{
7ff9c073 117 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
118 /*
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
123 */
124 if (!EXT4_I(inode)->jinode)
125 return 0;
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 EXT4_I(inode)->jinode,
128 new_size);
678aaf48
JK
129}
130
d47992f8
LC
131static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 unsigned int length);
cb20d518
TT
133static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
135static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 int pextents);
64769240 137
ac27a0ec
DK
138/*
139 * Test whether an inode is a fast symlink.
140 */
f348c252 141int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 142{
65eddb56
YY
143 int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 145
bd9db175
ZL
146 if (ext4_has_inline_data(inode))
147 return 0;
148
ac27a0ec
DK
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
ac27a0ec
DK
152/*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
fa5d1113 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 158 int nblocks)
ac27a0ec 159{
487caeef
JK
160 int ret;
161
162 /*
e35fd660 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
0390131b 168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 169 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 170 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 171 ret = ext4_journal_restart(handle, nblocks);
487caeef 172 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 173 ext4_discard_preallocations(inode);
487caeef
JK
174
175 return ret;
ac27a0ec
DK
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
0930fcc1 181void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
182{
183 handle_t *handle;
bc965ab3 184 int err;
ac27a0ec 185
7ff9c073 186 trace_ext4_evict_inode(inode);
2581fdc8 187
0930fcc1 188 if (inode->i_nlink) {
2d859db3
JK
189 /*
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
203 *
204 * Note that directories do not have this problem because they
205 * don't use page cache.
206 */
207 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
d76a3a77 213 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
214 filemap_write_and_wait(&inode->i_data);
215 }
91b0abe3 216 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
217
218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
219 goto no_delete;
220 }
221
e2bfb088
TT
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 228 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 231
8e8ad8a5
JK
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
9924a92a
TT
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 239 if (IS_ERR(handle)) {
bc965ab3 240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
617ba13b 246 ext4_orphan_del(NULL, inode);
8e8ad8a5 247 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
0390131b 252 ext4_handle_sync(handle);
ac27a0ec 253 inode->i_size = 0;
bc965ab3
TT
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
12062ddd 256 ext4_warning(inode->i_sb,
bc965ab3
TT
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
ac27a0ec 260 if (inode->i_blocks)
617ba13b 261 ext4_truncate(inode);
bc965ab3
TT
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
0390131b 269 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
12062ddd 274 ext4_warning(inode->i_sb,
bc965ab3
TT
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
45388219 278 ext4_orphan_del(NULL, inode);
8e8ad8a5 279 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
280 goto no_delete;
281 }
282 }
283
ac27a0ec 284 /*
617ba13b 285 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 286 * AKPM: I think this can be inside the above `if'.
617ba13b 287 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 288 * deletion of a non-existent orphan - this is because we don't
617ba13b 289 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
290 * (Well, we could do this if we need to, but heck - it works)
291 */
617ba13b
MC
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
617ba13b 302 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 303 /* If that failed, just do the required in-core inode clear. */
0930fcc1 304 ext4_clear_inode(inode);
ac27a0ec 305 else
617ba13b
MC
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
8e8ad8a5 308 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
309 return;
310no_delete:
0930fcc1 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
312}
313
a9e7f447
DM
314#ifdef CONFIG_QUOTA
315qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 316{
a9e7f447 317 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 318}
a9e7f447 319#endif
9d0be502 320
0637c6f4
TT
321/*
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
324 */
5f634d06
AK
325void ext4_da_update_reserve_space(struct inode *inode,
326 int used, int quota_claim)
12219aea
AK
327{
328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 329 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
330
331 spin_lock(&ei->i_block_reservation_lock);
d8990240 332 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 333 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 335 "with only %d reserved data blocks",
0637c6f4
TT
336 __func__, inode->i_ino, used,
337 ei->i_reserved_data_blocks);
338 WARN_ON(1);
339 used = ei->i_reserved_data_blocks;
340 }
12219aea 341
0637c6f4
TT
342 /* Update per-inode reservations */
343 ei->i_reserved_data_blocks -= used;
71d4f7d0 344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 345
12219aea 346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 347
72b8ab9d
ES
348 /* Update quota subsystem for data blocks */
349 if (quota_claim)
7b415bf6 350 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 351 else {
5f634d06
AK
352 /*
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
72b8ab9d 355 * not re-claim the quota for fallocated blocks.
5f634d06 356 */
7b415bf6 357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 358 }
d6014301
AK
359
360 /*
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
364 */
0637c6f4
TT
365 if ((ei->i_reserved_data_blocks == 0) &&
366 (atomic_read(&inode->i_writecount) == 0))
d6014301 367 ext4_discard_preallocations(inode);
12219aea
AK
368}
369
e29136f8 370static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
371 unsigned int line,
372 struct ext4_map_blocks *map)
6fd058f7 373{
24676da4
TT
374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 map->m_len)) {
c398eda0
TT
376 ext4_error_inode(inode, func, line, map->m_pblk,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map->m_lblk,
379 map->m_len);
6fd058f7
TT
380 return -EIO;
381 }
382 return 0;
383}
384
e29136f8 385#define check_block_validity(inode, map) \
c398eda0 386 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 387
921f266b
DM
388#ifdef ES_AGGRESSIVE_TEST
389static void ext4_map_blocks_es_recheck(handle_t *handle,
390 struct inode *inode,
391 struct ext4_map_blocks *es_map,
392 struct ext4_map_blocks *map,
393 int flags)
394{
395 int retval;
396
397 map->m_flags = 0;
398 /*
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
404 */
405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 406 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 EXT4_GET_BLOCKS_KEEP_SIZE);
410 } else {
411 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 }
414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
416
417 /*
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
420 */
421 if (es_map->m_lblk != map->m_lblk ||
422 es_map->m_flags != map->m_flags ||
423 es_map->m_pblk != map->m_pblk) {
bdafe42a 424 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode->i_ino, es_map->m_lblk, es_map->m_len,
428 es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 map->m_len, map->m_pblk, map->m_flags,
430 retval, flags);
431 }
432}
433#endif /* ES_AGGRESSIVE_TEST */
434
f5ab0d1f 435/*
e35fd660 436 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 437 * and returns if the blocks are already mapped.
f5ab0d1f 438 *
f5ab0d1f
MC
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
441 * mapped.
442 *
e35fd660
TT
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
445 * based files
446 *
556615dc
LC
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
451 *
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 453 * that case, buffer head is unmapped
f5ab0d1f
MC
454 *
455 * It returns the error in case of allocation failure.
456 */
e35fd660
TT
457int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 struct ext4_map_blocks *map, int flags)
0e855ac8 459{
d100eef2 460 struct extent_status es;
0e855ac8 461 int retval;
b8a86845 462 int ret = 0;
921f266b
DM
463#ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map;
465
466 memcpy(&orig_map, map, sizeof(*map));
467#endif
f5ab0d1f 468
e35fd660
TT
469 map->m_flags = 0;
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 (unsigned long) map->m_lblk);
d100eef2 473
e861b5e9
TT
474 /*
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 */
477 if (unlikely(map->m_len > INT_MAX))
478 map->m_len = INT_MAX;
479
4adb6ab3
KM
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 return -EIO;
483
d100eef2
ZL
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 map->m_pblk = ext4_es_pblock(&es) +
488 map->m_lblk - es.es_lblk;
489 map->m_flags |= ext4_es_is_written(&es) ?
490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 retval = es.es_len - (map->m_lblk - es.es_lblk);
492 if (retval > map->m_len)
493 retval = map->m_len;
494 map->m_len = retval;
495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 retval = 0;
497 } else {
498 BUG_ON(1);
499 }
921f266b
DM
500#ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle, inode, map,
502 &orig_map, flags);
503#endif
d100eef2
ZL
504 goto found;
505 }
506
4df3d265 507 /*
b920c755
TT
508 * Try to see if we can get the block without requesting a new
509 * file system block.
4df3d265 510 */
729f52c6 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 512 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
514 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 516 } else {
a4e5d88b
DM
517 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 519 }
f7fec032 520 if (retval > 0) {
3be78c73 521 unsigned int status;
f7fec032 522
44fb851d
ZL
523 if (unlikely(retval != map->m_len)) {
524 ext4_warning(inode->i_sb,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode->i_ino, retval, map->m_len);
528 WARN_ON(1);
921f266b 529 }
921f266b 530
f7fec032
ZL
531 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 534 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
535 ext4_find_delalloc_range(inode, map->m_lblk,
536 map->m_lblk + map->m_len - 1))
537 status |= EXTENT_STATUS_DELAYED;
538 ret = ext4_es_insert_extent(inode, map->m_lblk,
539 map->m_len, map->m_pblk, status);
540 if (ret < 0)
541 retval = ret;
542 }
729f52c6
ZL
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 545
d100eef2 546found:
e35fd660 547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 548 ret = check_block_validity(inode, map);
6fd058f7
TT
549 if (ret != 0)
550 return ret;
551 }
552
f5ab0d1f 553 /* If it is only a block(s) look up */
c2177057 554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
555 return retval;
556
557 /*
558 * Returns if the blocks have already allocated
559 *
560 * Note that if blocks have been preallocated
df3ab170 561 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
562 * with buffer head unmapped.
563 */
e35fd660 564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
565 /*
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
569 */
570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 return retval;
4df3d265 572
2a8964d6 573 /*
a25a4e1a
ZL
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
2a8964d6 576 */
a25a4e1a 577 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 578
4df3d265 579 /*
556615dc 580 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 581 * will possibly result in updating i_data, so we take
d91bd2c1 582 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 583 * with create == 1 flag.
4df3d265 584 */
c8b459f4 585 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 586
4df3d265
AK
587 /*
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
590 */
12e9b892 591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 592 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 593 } else {
e35fd660 594 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 595
e35fd660 596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
597 /*
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
601 */
19f5fb7a 602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 603 }
d2a17637 604
5f634d06
AK
605 /*
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
610 */
611 if ((retval > 0) &&
1296cc85 612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
613 ext4_da_update_reserve_space(inode, retval, 1);
614 }
2ac3b6e0 615
f7fec032 616 if (retval > 0) {
3be78c73 617 unsigned int status;
f7fec032 618
44fb851d
ZL
619 if (unlikely(retval != map->m_len)) {
620 ext4_warning(inode->i_sb,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode->i_ino, retval, map->m_len);
624 WARN_ON(1);
921f266b 625 }
921f266b 626
adb23551
ZL
627 /*
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
630 */
631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 if (ext4_es_is_written(&es))
634 goto has_zeroout;
635 }
f7fec032
ZL
636 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 639 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
640 ext4_find_delalloc_range(inode, map->m_lblk,
641 map->m_lblk + map->m_len - 1))
642 status |= EXTENT_STATUS_DELAYED;
643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 map->m_pblk, status);
645 if (ret < 0)
646 retval = ret;
5356f261
AK
647 }
648
adb23551 649has_zeroout:
4df3d265 650 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 652 ret = check_block_validity(inode, map);
6fd058f7
TT
653 if (ret != 0)
654 return ret;
655 }
0e855ac8
AK
656 return retval;
657}
658
923ae0ff
RZ
659static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660{
661 struct inode *inode = bh->b_assoc_map->host;
662 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664 int err;
665 if (!uptodate)
666 return;
667 WARN_ON(!buffer_unwritten(bh));
668 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669}
670
f3bd1f3f
MC
671/* Maximum number of blocks we map for direct IO at once. */
672#define DIO_MAX_BLOCKS 4096
673
2ed88685
TT
674static int _ext4_get_block(struct inode *inode, sector_t iblock,
675 struct buffer_head *bh, int flags)
ac27a0ec 676{
3e4fdaf8 677 handle_t *handle = ext4_journal_current_handle();
2ed88685 678 struct ext4_map_blocks map;
7fb5409d 679 int ret = 0, started = 0;
f3bd1f3f 680 int dio_credits;
ac27a0ec 681
46c7f254
TM
682 if (ext4_has_inline_data(inode))
683 return -ERANGE;
684
2ed88685
TT
685 map.m_lblk = iblock;
686 map.m_len = bh->b_size >> inode->i_blkbits;
687
8b0f165f 688 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 689 /* Direct IO write... */
2ed88685
TT
690 if (map.m_len > DIO_MAX_BLOCKS)
691 map.m_len = DIO_MAX_BLOCKS;
692 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
693 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694 dio_credits);
7fb5409d 695 if (IS_ERR(handle)) {
ac27a0ec 696 ret = PTR_ERR(handle);
2ed88685 697 return ret;
ac27a0ec 698 }
7fb5409d 699 started = 1;
ac27a0ec
DK
700 }
701
2ed88685 702 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 703 if (ret > 0) {
7b7a8665
CH
704 ext4_io_end_t *io_end = ext4_inode_aio(inode);
705
2ed88685
TT
706 map_bh(bh, inode->i_sb, map.m_pblk);
707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
923ae0ff
RZ
708 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709 bh->b_assoc_map = inode->i_mapping;
710 bh->b_private = (void *)(unsigned long)iblock;
711 bh->b_end_io = ext4_end_io_unwritten;
712 }
7b7a8665
CH
713 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714 set_buffer_defer_completion(bh);
2ed88685 715 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 716 ret = 0;
ac27a0ec 717 }
7fb5409d
JK
718 if (started)
719 ext4_journal_stop(handle);
ac27a0ec
DK
720 return ret;
721}
722
2ed88685
TT
723int ext4_get_block(struct inode *inode, sector_t iblock,
724 struct buffer_head *bh, int create)
725{
726 return _ext4_get_block(inode, iblock, bh,
727 create ? EXT4_GET_BLOCKS_CREATE : 0);
728}
729
ac27a0ec
DK
730/*
731 * `handle' can be NULL if create is zero
732 */
617ba13b 733struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 734 ext4_lblk_t block, int map_flags)
ac27a0ec 735{
2ed88685
TT
736 struct ext4_map_blocks map;
737 struct buffer_head *bh;
c5e298ae 738 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 739 int err;
ac27a0ec
DK
740
741 J_ASSERT(handle != NULL || create == 0);
742
2ed88685
TT
743 map.m_lblk = block;
744 map.m_len = 1;
c5e298ae 745 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 746
10560082
TT
747 if (err == 0)
748 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 749 if (err < 0)
10560082 750 return ERR_PTR(err);
2ed88685
TT
751
752 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
753 if (unlikely(!bh))
754 return ERR_PTR(-ENOMEM);
2ed88685
TT
755 if (map.m_flags & EXT4_MAP_NEW) {
756 J_ASSERT(create != 0);
757 J_ASSERT(handle != NULL);
ac27a0ec 758
2ed88685
TT
759 /*
760 * Now that we do not always journal data, we should
761 * keep in mind whether this should always journal the
762 * new buffer as metadata. For now, regular file
763 * writes use ext4_get_block instead, so it's not a
764 * problem.
765 */
766 lock_buffer(bh);
767 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
768 err = ext4_journal_get_create_access(handle, bh);
769 if (unlikely(err)) {
770 unlock_buffer(bh);
771 goto errout;
772 }
773 if (!buffer_uptodate(bh)) {
2ed88685
TT
774 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775 set_buffer_uptodate(bh);
ac27a0ec 776 }
2ed88685
TT
777 unlock_buffer(bh);
778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
780 if (unlikely(err))
781 goto errout;
782 } else
2ed88685 783 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 784 return bh;
10560082
TT
785errout:
786 brelse(bh);
787 return ERR_PTR(err);
ac27a0ec
DK
788}
789
617ba13b 790struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 791 ext4_lblk_t block, int map_flags)
ac27a0ec 792{
af5bc92d 793 struct buffer_head *bh;
ac27a0ec 794
c5e298ae 795 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 796 if (IS_ERR(bh))
ac27a0ec 797 return bh;
1c215028 798 if (!bh || buffer_uptodate(bh))
ac27a0ec 799 return bh;
65299a3b 800 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
801 wait_on_buffer(bh);
802 if (buffer_uptodate(bh))
803 return bh;
804 put_bh(bh);
1c215028 805 return ERR_PTR(-EIO);
ac27a0ec
DK
806}
807
f19d5870
TM
808int ext4_walk_page_buffers(handle_t *handle,
809 struct buffer_head *head,
810 unsigned from,
811 unsigned to,
812 int *partial,
813 int (*fn)(handle_t *handle,
814 struct buffer_head *bh))
ac27a0ec
DK
815{
816 struct buffer_head *bh;
817 unsigned block_start, block_end;
818 unsigned blocksize = head->b_size;
819 int err, ret = 0;
820 struct buffer_head *next;
821
af5bc92d
TT
822 for (bh = head, block_start = 0;
823 ret == 0 && (bh != head || !block_start);
de9a55b8 824 block_start = block_end, bh = next) {
ac27a0ec
DK
825 next = bh->b_this_page;
826 block_end = block_start + blocksize;
827 if (block_end <= from || block_start >= to) {
828 if (partial && !buffer_uptodate(bh))
829 *partial = 1;
830 continue;
831 }
832 err = (*fn)(handle, bh);
833 if (!ret)
834 ret = err;
835 }
836 return ret;
837}
838
839/*
840 * To preserve ordering, it is essential that the hole instantiation and
841 * the data write be encapsulated in a single transaction. We cannot
617ba13b 842 * close off a transaction and start a new one between the ext4_get_block()
dab291af 843 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
844 * prepare_write() is the right place.
845 *
36ade451
JK
846 * Also, this function can nest inside ext4_writepage(). In that case, we
847 * *know* that ext4_writepage() has generated enough buffer credits to do the
848 * whole page. So we won't block on the journal in that case, which is good,
849 * because the caller may be PF_MEMALLOC.
ac27a0ec 850 *
617ba13b 851 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
852 * quota file writes. If we were to commit the transaction while thus
853 * reentered, there can be a deadlock - we would be holding a quota
854 * lock, and the commit would never complete if another thread had a
855 * transaction open and was blocking on the quota lock - a ranking
856 * violation.
857 *
dab291af 858 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
859 * will _not_ run commit under these circumstances because handle->h_ref
860 * is elevated. We'll still have enough credits for the tiny quotafile
861 * write.
862 */
f19d5870
TM
863int do_journal_get_write_access(handle_t *handle,
864 struct buffer_head *bh)
ac27a0ec 865{
56d35a4c
JK
866 int dirty = buffer_dirty(bh);
867 int ret;
868
ac27a0ec
DK
869 if (!buffer_mapped(bh) || buffer_freed(bh))
870 return 0;
56d35a4c 871 /*
ebdec241 872 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
873 * the dirty bit as jbd2_journal_get_write_access() could complain
874 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 875 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
876 * the bit before releasing a page lock and thus writeback cannot
877 * ever write the buffer.
878 */
879 if (dirty)
880 clear_buffer_dirty(bh);
5d601255 881 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
882 ret = ext4_journal_get_write_access(handle, bh);
883 if (!ret && dirty)
884 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885 return ret;
ac27a0ec
DK
886}
887
8b0f165f
AP
888static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889 struct buffer_head *bh_result, int create);
2058f83a
MH
890
891#ifdef CONFIG_EXT4_FS_ENCRYPTION
892static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
893 get_block_t *get_block)
894{
895 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
896 unsigned to = from + len;
897 struct inode *inode = page->mapping->host;
898 unsigned block_start, block_end;
899 sector_t block;
900 int err = 0;
901 unsigned blocksize = inode->i_sb->s_blocksize;
902 unsigned bbits;
903 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
904 bool decrypt = false;
905
906 BUG_ON(!PageLocked(page));
907 BUG_ON(from > PAGE_CACHE_SIZE);
908 BUG_ON(to > PAGE_CACHE_SIZE);
909 BUG_ON(from > to);
910
911 if (!page_has_buffers(page))
912 create_empty_buffers(page, blocksize, 0);
913 head = page_buffers(page);
914 bbits = ilog2(blocksize);
915 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
916
917 for (bh = head, block_start = 0; bh != head || !block_start;
918 block++, block_start = block_end, bh = bh->b_this_page) {
919 block_end = block_start + blocksize;
920 if (block_end <= from || block_start >= to) {
921 if (PageUptodate(page)) {
922 if (!buffer_uptodate(bh))
923 set_buffer_uptodate(bh);
924 }
925 continue;
926 }
927 if (buffer_new(bh))
928 clear_buffer_new(bh);
929 if (!buffer_mapped(bh)) {
930 WARN_ON(bh->b_size != blocksize);
931 err = get_block(inode, block, bh, 1);
932 if (err)
933 break;
934 if (buffer_new(bh)) {
935 unmap_underlying_metadata(bh->b_bdev,
936 bh->b_blocknr);
937 if (PageUptodate(page)) {
938 clear_buffer_new(bh);
939 set_buffer_uptodate(bh);
940 mark_buffer_dirty(bh);
941 continue;
942 }
943 if (block_end > to || block_start < from)
944 zero_user_segments(page, to, block_end,
945 block_start, from);
946 continue;
947 }
948 }
949 if (PageUptodate(page)) {
950 if (!buffer_uptodate(bh))
951 set_buffer_uptodate(bh);
952 continue;
953 }
954 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
955 !buffer_unwritten(bh) &&
956 (block_start < from || block_end > to)) {
957 ll_rw_block(READ, 1, &bh);
958 *wait_bh++ = bh;
959 decrypt = ext4_encrypted_inode(inode) &&
960 S_ISREG(inode->i_mode);
961 }
962 }
963 /*
964 * If we issued read requests, let them complete.
965 */
966 while (wait_bh > wait) {
967 wait_on_buffer(*--wait_bh);
968 if (!buffer_uptodate(*wait_bh))
969 err = -EIO;
970 }
971 if (unlikely(err))
972 page_zero_new_buffers(page, from, to);
973 else if (decrypt)
974 err = ext4_decrypt_one(inode, page);
975 return err;
976}
977#endif
978
bfc1af65 979static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
980 loff_t pos, unsigned len, unsigned flags,
981 struct page **pagep, void **fsdata)
ac27a0ec 982{
af5bc92d 983 struct inode *inode = mapping->host;
1938a150 984 int ret, needed_blocks;
ac27a0ec
DK
985 handle_t *handle;
986 int retries = 0;
af5bc92d 987 struct page *page;
de9a55b8 988 pgoff_t index;
af5bc92d 989 unsigned from, to;
bfc1af65 990
9bffad1e 991 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
992 /*
993 * Reserve one block more for addition to orphan list in case
994 * we allocate blocks but write fails for some reason
995 */
996 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 997 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
998 from = pos & (PAGE_CACHE_SIZE - 1);
999 to = from + len;
ac27a0ec 1000
f19d5870
TM
1001 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1002 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1003 flags, pagep);
1004 if (ret < 0)
47564bfb
TT
1005 return ret;
1006 if (ret == 1)
1007 return 0;
f19d5870
TM
1008 }
1009
47564bfb
TT
1010 /*
1011 * grab_cache_page_write_begin() can take a long time if the
1012 * system is thrashing due to memory pressure, or if the page
1013 * is being written back. So grab it first before we start
1014 * the transaction handle. This also allows us to allocate
1015 * the page (if needed) without using GFP_NOFS.
1016 */
1017retry_grab:
1018 page = grab_cache_page_write_begin(mapping, index, flags);
1019 if (!page)
1020 return -ENOMEM;
1021 unlock_page(page);
1022
1023retry_journal:
9924a92a 1024 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1025 if (IS_ERR(handle)) {
47564bfb
TT
1026 page_cache_release(page);
1027 return PTR_ERR(handle);
7479d2b9 1028 }
ac27a0ec 1029
47564bfb
TT
1030 lock_page(page);
1031 if (page->mapping != mapping) {
1032 /* The page got truncated from under us */
1033 unlock_page(page);
1034 page_cache_release(page);
cf108bca 1035 ext4_journal_stop(handle);
47564bfb 1036 goto retry_grab;
cf108bca 1037 }
7afe5aa5
DM
1038 /* In case writeback began while the page was unlocked */
1039 wait_for_stable_page(page);
cf108bca 1040
2058f83a
MH
1041#ifdef CONFIG_EXT4_FS_ENCRYPTION
1042 if (ext4_should_dioread_nolock(inode))
1043 ret = ext4_block_write_begin(page, pos, len,
1044 ext4_get_block_write);
1045 else
1046 ret = ext4_block_write_begin(page, pos, len,
1047 ext4_get_block);
1048#else
744692dc 1049 if (ext4_should_dioread_nolock(inode))
6e1db88d 1050 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1051 else
6e1db88d 1052 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1053#endif
bfc1af65 1054 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1055 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1056 from, to, NULL,
1057 do_journal_get_write_access);
ac27a0ec 1058 }
bfc1af65
NP
1059
1060 if (ret) {
af5bc92d 1061 unlock_page(page);
ae4d5372 1062 /*
6e1db88d 1063 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1064 * outside i_size. Trim these off again. Don't need
1065 * i_size_read because we hold i_mutex.
1938a150
AK
1066 *
1067 * Add inode to orphan list in case we crash before
1068 * truncate finishes
ae4d5372 1069 */
ffacfa7a 1070 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1071 ext4_orphan_add(handle, inode);
1072
1073 ext4_journal_stop(handle);
1074 if (pos + len > inode->i_size) {
b9a4207d 1075 ext4_truncate_failed_write(inode);
de9a55b8 1076 /*
ffacfa7a 1077 * If truncate failed early the inode might
1938a150
AK
1078 * still be on the orphan list; we need to
1079 * make sure the inode is removed from the
1080 * orphan list in that case.
1081 */
1082 if (inode->i_nlink)
1083 ext4_orphan_del(NULL, inode);
1084 }
bfc1af65 1085
47564bfb
TT
1086 if (ret == -ENOSPC &&
1087 ext4_should_retry_alloc(inode->i_sb, &retries))
1088 goto retry_journal;
1089 page_cache_release(page);
1090 return ret;
1091 }
1092 *pagep = page;
ac27a0ec
DK
1093 return ret;
1094}
1095
bfc1af65
NP
1096/* For write_end() in data=journal mode */
1097static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1098{
13fca323 1099 int ret;
ac27a0ec
DK
1100 if (!buffer_mapped(bh) || buffer_freed(bh))
1101 return 0;
1102 set_buffer_uptodate(bh);
13fca323
TT
1103 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1104 clear_buffer_meta(bh);
1105 clear_buffer_prio(bh);
1106 return ret;
ac27a0ec
DK
1107}
1108
eed4333f
ZL
1109/*
1110 * We need to pick up the new inode size which generic_commit_write gave us
1111 * `file' can be NULL - eg, when called from page_symlink().
1112 *
1113 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1114 * buffers are managed internally.
1115 */
1116static int ext4_write_end(struct file *file,
1117 struct address_space *mapping,
1118 loff_t pos, unsigned len, unsigned copied,
1119 struct page *page, void *fsdata)
f8514083 1120{
f8514083 1121 handle_t *handle = ext4_journal_current_handle();
eed4333f 1122 struct inode *inode = mapping->host;
0572639f 1123 loff_t old_size = inode->i_size;
eed4333f
ZL
1124 int ret = 0, ret2;
1125 int i_size_changed = 0;
1126
1127 trace_ext4_write_end(inode, pos, len, copied);
1128 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1129 ret = ext4_jbd2_file_inode(handle, inode);
1130 if (ret) {
1131 unlock_page(page);
1132 page_cache_release(page);
1133 goto errout;
1134 }
1135 }
f8514083 1136
42c832de
TT
1137 if (ext4_has_inline_data(inode)) {
1138 ret = ext4_write_inline_data_end(inode, pos, len,
1139 copied, page);
1140 if (ret < 0)
1141 goto errout;
1142 copied = ret;
1143 } else
f19d5870
TM
1144 copied = block_write_end(file, mapping, pos,
1145 len, copied, page, fsdata);
f8514083 1146 /*
4631dbf6 1147 * it's important to update i_size while still holding page lock:
f8514083
AK
1148 * page writeout could otherwise come in and zero beyond i_size.
1149 */
4631dbf6 1150 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1151 unlock_page(page);
1152 page_cache_release(page);
1153
0572639f
XW
1154 if (old_size < pos)
1155 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1156 /*
1157 * Don't mark the inode dirty under page lock. First, it unnecessarily
1158 * makes the holding time of page lock longer. Second, it forces lock
1159 * ordering of page lock and transaction start for journaling
1160 * filesystems.
1161 */
1162 if (i_size_changed)
1163 ext4_mark_inode_dirty(handle, inode);
1164
ffacfa7a 1165 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1166 /* if we have allocated more blocks and copied
1167 * less. We will have blocks allocated outside
1168 * inode->i_size. So truncate them
1169 */
1170 ext4_orphan_add(handle, inode);
74d553aa 1171errout:
617ba13b 1172 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1173 if (!ret)
1174 ret = ret2;
bfc1af65 1175
f8514083 1176 if (pos + len > inode->i_size) {
b9a4207d 1177 ext4_truncate_failed_write(inode);
de9a55b8 1178 /*
ffacfa7a 1179 * If truncate failed early the inode might still be
f8514083
AK
1180 * on the orphan list; we need to make sure the inode
1181 * is removed from the orphan list in that case.
1182 */
1183 if (inode->i_nlink)
1184 ext4_orphan_del(NULL, inode);
1185 }
1186
bfc1af65 1187 return ret ? ret : copied;
ac27a0ec
DK
1188}
1189
bfc1af65 1190static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1191 struct address_space *mapping,
1192 loff_t pos, unsigned len, unsigned copied,
1193 struct page *page, void *fsdata)
ac27a0ec 1194{
617ba13b 1195 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1196 struct inode *inode = mapping->host;
0572639f 1197 loff_t old_size = inode->i_size;
ac27a0ec
DK
1198 int ret = 0, ret2;
1199 int partial = 0;
bfc1af65 1200 unsigned from, to;
4631dbf6 1201 int size_changed = 0;
ac27a0ec 1202
9bffad1e 1203 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1204 from = pos & (PAGE_CACHE_SIZE - 1);
1205 to = from + len;
1206
441c8508
CW
1207 BUG_ON(!ext4_handle_valid(handle));
1208
3fdcfb66
TM
1209 if (ext4_has_inline_data(inode))
1210 copied = ext4_write_inline_data_end(inode, pos, len,
1211 copied, page);
1212 else {
1213 if (copied < len) {
1214 if (!PageUptodate(page))
1215 copied = 0;
1216 page_zero_new_buffers(page, from+copied, to);
1217 }
ac27a0ec 1218
3fdcfb66
TM
1219 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220 to, &partial, write_end_fn);
1221 if (!partial)
1222 SetPageUptodate(page);
1223 }
4631dbf6 1224 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1225 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1226 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1227 unlock_page(page);
1228 page_cache_release(page);
1229
0572639f
XW
1230 if (old_size < pos)
1231 pagecache_isize_extended(inode, old_size, pos);
1232
4631dbf6 1233 if (size_changed) {
617ba13b 1234 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1235 if (!ret)
1236 ret = ret2;
1237 }
bfc1af65 1238
ffacfa7a 1239 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1240 /* if we have allocated more blocks and copied
1241 * less. We will have blocks allocated outside
1242 * inode->i_size. So truncate them
1243 */
1244 ext4_orphan_add(handle, inode);
1245
617ba13b 1246 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1247 if (!ret)
1248 ret = ret2;
f8514083 1249 if (pos + len > inode->i_size) {
b9a4207d 1250 ext4_truncate_failed_write(inode);
de9a55b8 1251 /*
ffacfa7a 1252 * If truncate failed early the inode might still be
f8514083
AK
1253 * on the orphan list; we need to make sure the inode
1254 * is removed from the orphan list in that case.
1255 */
1256 if (inode->i_nlink)
1257 ext4_orphan_del(NULL, inode);
1258 }
bfc1af65
NP
1259
1260 return ret ? ret : copied;
ac27a0ec 1261}
d2a17637 1262
9d0be502 1263/*
c27e43a1 1264 * Reserve space for a single cluster
9d0be502 1265 */
c27e43a1 1266static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1267{
60e58e0f 1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1269 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1270 int ret;
03179fe9
TT
1271
1272 /*
1273 * We will charge metadata quota at writeout time; this saves
1274 * us from metadata over-estimation, though we may go over by
1275 * a small amount in the end. Here we just reserve for data.
1276 */
1277 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1278 if (ret)
1279 return ret;
d2a17637 1280
0637c6f4 1281 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1282 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1283 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1284 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1285 return -ENOSPC;
1286 }
9d0be502 1287 ei->i_reserved_data_blocks++;
c27e43a1 1288 trace_ext4_da_reserve_space(inode);
0637c6f4 1289 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1290
d2a17637
MC
1291 return 0; /* success */
1292}
1293
12219aea 1294static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1295{
1296 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1297 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1298
cd213226
MC
1299 if (!to_free)
1300 return; /* Nothing to release, exit */
1301
d2a17637 1302 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1303
5a58ec87 1304 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1305 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1306 /*
0637c6f4
TT
1307 * if there aren't enough reserved blocks, then the
1308 * counter is messed up somewhere. Since this
1309 * function is called from invalidate page, it's
1310 * harmless to return without any action.
cd213226 1311 */
8de5c325 1312 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1313 "ino %lu, to_free %d with only %d reserved "
1084f252 1314 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1315 ei->i_reserved_data_blocks);
1316 WARN_ON(1);
1317 to_free = ei->i_reserved_data_blocks;
cd213226 1318 }
0637c6f4 1319 ei->i_reserved_data_blocks -= to_free;
cd213226 1320
72b8ab9d 1321 /* update fs dirty data blocks counter */
57042651 1322 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1323
d2a17637 1324 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1325
7b415bf6 1326 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1327}
1328
1329static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1330 unsigned int offset,
1331 unsigned int length)
d2a17637
MC
1332{
1333 int to_release = 0;
1334 struct buffer_head *head, *bh;
1335 unsigned int curr_off = 0;
7b415bf6
AK
1336 struct inode *inode = page->mapping->host;
1337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1338 unsigned int stop = offset + length;
7b415bf6 1339 int num_clusters;
51865fda 1340 ext4_fsblk_t lblk;
d2a17637 1341
ca99fdd2
LC
1342 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1343
d2a17637
MC
1344 head = page_buffers(page);
1345 bh = head;
1346 do {
1347 unsigned int next_off = curr_off + bh->b_size;
1348
ca99fdd2
LC
1349 if (next_off > stop)
1350 break;
1351
d2a17637
MC
1352 if ((offset <= curr_off) && (buffer_delay(bh))) {
1353 to_release++;
1354 clear_buffer_delay(bh);
1355 }
1356 curr_off = next_off;
1357 } while ((bh = bh->b_this_page) != head);
7b415bf6 1358
51865fda
ZL
1359 if (to_release) {
1360 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1361 ext4_es_remove_extent(inode, lblk, to_release);
1362 }
1363
7b415bf6
AK
1364 /* If we have released all the blocks belonging to a cluster, then we
1365 * need to release the reserved space for that cluster. */
1366 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1367 while (num_clusters > 0) {
7b415bf6
AK
1368 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1369 ((num_clusters - 1) << sbi->s_cluster_bits);
1370 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1371 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1372 ext4_da_release_space(inode, 1);
1373
1374 num_clusters--;
1375 }
d2a17637 1376}
ac27a0ec 1377
64769240
AT
1378/*
1379 * Delayed allocation stuff
1380 */
1381
4e7ea81d
JK
1382struct mpage_da_data {
1383 struct inode *inode;
1384 struct writeback_control *wbc;
6b523df4 1385
4e7ea81d
JK
1386 pgoff_t first_page; /* The first page to write */
1387 pgoff_t next_page; /* Current page to examine */
1388 pgoff_t last_page; /* Last page to examine */
791b7f08 1389 /*
4e7ea81d
JK
1390 * Extent to map - this can be after first_page because that can be
1391 * fully mapped. We somewhat abuse m_flags to store whether the extent
1392 * is delalloc or unwritten.
791b7f08 1393 */
4e7ea81d
JK
1394 struct ext4_map_blocks map;
1395 struct ext4_io_submit io_submit; /* IO submission data */
1396};
64769240 1397
4e7ea81d
JK
1398static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1399 bool invalidate)
c4a0c46e
AK
1400{
1401 int nr_pages, i;
1402 pgoff_t index, end;
1403 struct pagevec pvec;
1404 struct inode *inode = mpd->inode;
1405 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1406
1407 /* This is necessary when next_page == 0. */
1408 if (mpd->first_page >= mpd->next_page)
1409 return;
c4a0c46e 1410
c7f5938a
CW
1411 index = mpd->first_page;
1412 end = mpd->next_page - 1;
4e7ea81d
JK
1413 if (invalidate) {
1414 ext4_lblk_t start, last;
1415 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1416 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1417 ext4_es_remove_extent(inode, start, last - start + 1);
1418 }
51865fda 1419
66bea92c 1420 pagevec_init(&pvec, 0);
c4a0c46e
AK
1421 while (index <= end) {
1422 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1423 if (nr_pages == 0)
1424 break;
1425 for (i = 0; i < nr_pages; i++) {
1426 struct page *page = pvec.pages[i];
9b1d0998 1427 if (page->index > end)
c4a0c46e 1428 break;
c4a0c46e
AK
1429 BUG_ON(!PageLocked(page));
1430 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1431 if (invalidate) {
1432 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1433 ClearPageUptodate(page);
1434 }
c4a0c46e
AK
1435 unlock_page(page);
1436 }
9b1d0998
JK
1437 index = pvec.pages[nr_pages - 1]->index + 1;
1438 pagevec_release(&pvec);
c4a0c46e 1439 }
c4a0c46e
AK
1440}
1441
df22291f
AK
1442static void ext4_print_free_blocks(struct inode *inode)
1443{
1444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1445 struct super_block *sb = inode->i_sb;
f78ee70d 1446 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1447
1448 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1449 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1450 ext4_count_free_clusters(sb)));
92b97816
TT
1451 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1452 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1453 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1454 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1455 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1456 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1457 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1458 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1459 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1460 ei->i_reserved_data_blocks);
df22291f
AK
1461 return;
1462}
1463
c364b22c 1464static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1465{
c364b22c 1466 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1467}
1468
5356f261
AK
1469/*
1470 * This function is grabs code from the very beginning of
1471 * ext4_map_blocks, but assumes that the caller is from delayed write
1472 * time. This function looks up the requested blocks and sets the
1473 * buffer delay bit under the protection of i_data_sem.
1474 */
1475static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1476 struct ext4_map_blocks *map,
1477 struct buffer_head *bh)
1478{
d100eef2 1479 struct extent_status es;
5356f261
AK
1480 int retval;
1481 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1482#ifdef ES_AGGRESSIVE_TEST
1483 struct ext4_map_blocks orig_map;
1484
1485 memcpy(&orig_map, map, sizeof(*map));
1486#endif
5356f261
AK
1487
1488 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1489 invalid_block = ~0;
1490
1491 map->m_flags = 0;
1492 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1493 "logical block %lu\n", inode->i_ino, map->m_len,
1494 (unsigned long) map->m_lblk);
d100eef2
ZL
1495
1496 /* Lookup extent status tree firstly */
1497 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1498 if (ext4_es_is_hole(&es)) {
1499 retval = 0;
c8b459f4 1500 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1501 goto add_delayed;
1502 }
1503
1504 /*
1505 * Delayed extent could be allocated by fallocate.
1506 * So we need to check it.
1507 */
1508 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1509 map_bh(bh, inode->i_sb, invalid_block);
1510 set_buffer_new(bh);
1511 set_buffer_delay(bh);
1512 return 0;
1513 }
1514
1515 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1516 retval = es.es_len - (iblock - es.es_lblk);
1517 if (retval > map->m_len)
1518 retval = map->m_len;
1519 map->m_len = retval;
1520 if (ext4_es_is_written(&es))
1521 map->m_flags |= EXT4_MAP_MAPPED;
1522 else if (ext4_es_is_unwritten(&es))
1523 map->m_flags |= EXT4_MAP_UNWRITTEN;
1524 else
1525 BUG_ON(1);
1526
921f266b
DM
1527#ifdef ES_AGGRESSIVE_TEST
1528 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1529#endif
d100eef2
ZL
1530 return retval;
1531 }
1532
5356f261
AK
1533 /*
1534 * Try to see if we can get the block without requesting a new
1535 * file system block.
1536 */
c8b459f4 1537 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1538 if (ext4_has_inline_data(inode))
9c3569b5 1539 retval = 0;
cbd7584e 1540 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1541 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1542 else
2f8e0a7c 1543 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1544
d100eef2 1545add_delayed:
5356f261 1546 if (retval == 0) {
f7fec032 1547 int ret;
5356f261
AK
1548 /*
1549 * XXX: __block_prepare_write() unmaps passed block,
1550 * is it OK?
1551 */
386ad67c
LC
1552 /*
1553 * If the block was allocated from previously allocated cluster,
1554 * then we don't need to reserve it again. However we still need
1555 * to reserve metadata for every block we're going to write.
1556 */
c27e43a1 1557 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1558 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1559 ret = ext4_da_reserve_space(inode);
f7fec032 1560 if (ret) {
5356f261 1561 /* not enough space to reserve */
f7fec032 1562 retval = ret;
5356f261 1563 goto out_unlock;
f7fec032 1564 }
5356f261
AK
1565 }
1566
f7fec032
ZL
1567 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1568 ~0, EXTENT_STATUS_DELAYED);
1569 if (ret) {
1570 retval = ret;
51865fda 1571 goto out_unlock;
f7fec032 1572 }
51865fda 1573
5356f261
AK
1574 map_bh(bh, inode->i_sb, invalid_block);
1575 set_buffer_new(bh);
1576 set_buffer_delay(bh);
f7fec032
ZL
1577 } else if (retval > 0) {
1578 int ret;
3be78c73 1579 unsigned int status;
f7fec032 1580
44fb851d
ZL
1581 if (unlikely(retval != map->m_len)) {
1582 ext4_warning(inode->i_sb,
1583 "ES len assertion failed for inode "
1584 "%lu: retval %d != map->m_len %d",
1585 inode->i_ino, retval, map->m_len);
1586 WARN_ON(1);
921f266b 1587 }
921f266b 1588
f7fec032
ZL
1589 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1590 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1591 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1592 map->m_pblk, status);
1593 if (ret != 0)
1594 retval = ret;
5356f261
AK
1595 }
1596
1597out_unlock:
1598 up_read((&EXT4_I(inode)->i_data_sem));
1599
1600 return retval;
1601}
1602
64769240 1603/*
d91bd2c1 1604 * This is a special get_block_t callback which is used by
b920c755
TT
1605 * ext4_da_write_begin(). It will either return mapped block or
1606 * reserve space for a single block.
29fa89d0
AK
1607 *
1608 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1609 * We also have b_blocknr = -1 and b_bdev initialized properly
1610 *
1611 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1612 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1613 * initialized properly.
64769240 1614 */
9c3569b5
TM
1615int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1616 struct buffer_head *bh, int create)
64769240 1617{
2ed88685 1618 struct ext4_map_blocks map;
64769240
AT
1619 int ret = 0;
1620
1621 BUG_ON(create == 0);
2ed88685
TT
1622 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1623
1624 map.m_lblk = iblock;
1625 map.m_len = 1;
64769240
AT
1626
1627 /*
1628 * first, we need to know whether the block is allocated already
1629 * preallocated blocks are unmapped but should treated
1630 * the same as allocated blocks.
1631 */
5356f261
AK
1632 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1633 if (ret <= 0)
2ed88685 1634 return ret;
64769240 1635
2ed88685
TT
1636 map_bh(bh, inode->i_sb, map.m_pblk);
1637 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1638
1639 if (buffer_unwritten(bh)) {
1640 /* A delayed write to unwritten bh should be marked
1641 * new and mapped. Mapped ensures that we don't do
1642 * get_block multiple times when we write to the same
1643 * offset and new ensures that we do proper zero out
1644 * for partial write.
1645 */
1646 set_buffer_new(bh);
c8205636 1647 set_buffer_mapped(bh);
2ed88685
TT
1648 }
1649 return 0;
64769240 1650}
61628a3f 1651
62e086be
AK
1652static int bget_one(handle_t *handle, struct buffer_head *bh)
1653{
1654 get_bh(bh);
1655 return 0;
1656}
1657
1658static int bput_one(handle_t *handle, struct buffer_head *bh)
1659{
1660 put_bh(bh);
1661 return 0;
1662}
1663
1664static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1665 unsigned int len)
1666{
1667 struct address_space *mapping = page->mapping;
1668 struct inode *inode = mapping->host;
3fdcfb66 1669 struct buffer_head *page_bufs = NULL;
62e086be 1670 handle_t *handle = NULL;
3fdcfb66
TM
1671 int ret = 0, err = 0;
1672 int inline_data = ext4_has_inline_data(inode);
1673 struct buffer_head *inode_bh = NULL;
62e086be 1674
cb20d518 1675 ClearPageChecked(page);
3fdcfb66
TM
1676
1677 if (inline_data) {
1678 BUG_ON(page->index != 0);
1679 BUG_ON(len > ext4_get_max_inline_size(inode));
1680 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1681 if (inode_bh == NULL)
1682 goto out;
1683 } else {
1684 page_bufs = page_buffers(page);
1685 if (!page_bufs) {
1686 BUG();
1687 goto out;
1688 }
1689 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1690 NULL, bget_one);
1691 }
bdf96838
TT
1692 /*
1693 * We need to release the page lock before we start the
1694 * journal, so grab a reference so the page won't disappear
1695 * out from under us.
1696 */
1697 get_page(page);
62e086be
AK
1698 unlock_page(page);
1699
9924a92a
TT
1700 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1701 ext4_writepage_trans_blocks(inode));
62e086be
AK
1702 if (IS_ERR(handle)) {
1703 ret = PTR_ERR(handle);
bdf96838
TT
1704 put_page(page);
1705 goto out_no_pagelock;
62e086be 1706 }
441c8508
CW
1707 BUG_ON(!ext4_handle_valid(handle));
1708
bdf96838
TT
1709 lock_page(page);
1710 put_page(page);
1711 if (page->mapping != mapping) {
1712 /* The page got truncated from under us */
1713 ext4_journal_stop(handle);
1714 ret = 0;
1715 goto out;
1716 }
1717
3fdcfb66 1718 if (inline_data) {
5d601255 1719 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1720 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1721
3fdcfb66
TM
1722 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1723
1724 } else {
1725 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1726 do_journal_get_write_access);
1727
1728 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1729 write_end_fn);
1730 }
62e086be
AK
1731 if (ret == 0)
1732 ret = err;
2d859db3 1733 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1734 err = ext4_journal_stop(handle);
1735 if (!ret)
1736 ret = err;
1737
3fdcfb66 1738 if (!ext4_has_inline_data(inode))
8c9367fd 1739 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1740 NULL, bput_one);
19f5fb7a 1741 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1742out:
bdf96838
TT
1743 unlock_page(page);
1744out_no_pagelock:
3fdcfb66 1745 brelse(inode_bh);
62e086be
AK
1746 return ret;
1747}
1748
61628a3f 1749/*
43ce1d23
AK
1750 * Note that we don't need to start a transaction unless we're journaling data
1751 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1752 * need to file the inode to the transaction's list in ordered mode because if
1753 * we are writing back data added by write(), the inode is already there and if
25985edc 1754 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1755 * transaction the data will hit the disk. In case we are journaling data, we
1756 * cannot start transaction directly because transaction start ranks above page
1757 * lock so we have to do some magic.
1758 *
b920c755 1759 * This function can get called via...
20970ba6 1760 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1761 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1762 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1763 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1764 *
1765 * We don't do any block allocation in this function. If we have page with
1766 * multiple blocks we need to write those buffer_heads that are mapped. This
1767 * is important for mmaped based write. So if we do with blocksize 1K
1768 * truncate(f, 1024);
1769 * a = mmap(f, 0, 4096);
1770 * a[0] = 'a';
1771 * truncate(f, 4096);
1772 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1773 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1774 * do_wp_page). So writepage should write the first block. If we modify
1775 * the mmap area beyond 1024 we will again get a page_fault and the
1776 * page_mkwrite callback will do the block allocation and mark the
1777 * buffer_heads mapped.
1778 *
1779 * We redirty the page if we have any buffer_heads that is either delay or
1780 * unwritten in the page.
1781 *
1782 * We can get recursively called as show below.
1783 *
1784 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1785 * ext4_writepage()
1786 *
1787 * But since we don't do any block allocation we should not deadlock.
1788 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1789 */
43ce1d23 1790static int ext4_writepage(struct page *page,
62e086be 1791 struct writeback_control *wbc)
64769240 1792{
f8bec370 1793 int ret = 0;
61628a3f 1794 loff_t size;
498e5f24 1795 unsigned int len;
744692dc 1796 struct buffer_head *page_bufs = NULL;
61628a3f 1797 struct inode *inode = page->mapping->host;
36ade451 1798 struct ext4_io_submit io_submit;
1c8349a1 1799 bool keep_towrite = false;
61628a3f 1800
a9c667f8 1801 trace_ext4_writepage(page);
f0e6c985
AK
1802 size = i_size_read(inode);
1803 if (page->index == size >> PAGE_CACHE_SHIFT)
1804 len = size & ~PAGE_CACHE_MASK;
1805 else
1806 len = PAGE_CACHE_SIZE;
64769240 1807
a42afc5f 1808 page_bufs = page_buffers(page);
a42afc5f 1809 /*
fe386132
JK
1810 * We cannot do block allocation or other extent handling in this
1811 * function. If there are buffers needing that, we have to redirty
1812 * the page. But we may reach here when we do a journal commit via
1813 * journal_submit_inode_data_buffers() and in that case we must write
1814 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1815 */
f19d5870
TM
1816 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1817 ext4_bh_delay_or_unwritten)) {
f8bec370 1818 redirty_page_for_writepage(wbc, page);
fe386132
JK
1819 if (current->flags & PF_MEMALLOC) {
1820 /*
1821 * For memory cleaning there's no point in writing only
1822 * some buffers. So just bail out. Warn if we came here
1823 * from direct reclaim.
1824 */
1825 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1826 == PF_MEMALLOC);
f0e6c985
AK
1827 unlock_page(page);
1828 return 0;
1829 }
1c8349a1 1830 keep_towrite = true;
a42afc5f 1831 }
64769240 1832
cb20d518 1833 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1834 /*
1835 * It's mmapped pagecache. Add buffers and journal it. There
1836 * doesn't seem much point in redirtying the page here.
1837 */
3f0ca309 1838 return __ext4_journalled_writepage(page, len);
43ce1d23 1839
97a851ed
JK
1840 ext4_io_submit_init(&io_submit, wbc);
1841 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1842 if (!io_submit.io_end) {
1843 redirty_page_for_writepage(wbc, page);
1844 unlock_page(page);
1845 return -ENOMEM;
1846 }
1c8349a1 1847 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1848 ext4_io_submit(&io_submit);
97a851ed
JK
1849 /* Drop io_end reference we got from init */
1850 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1851 return ret;
1852}
1853
5f1132b2
JK
1854static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1855{
1856 int len;
1857 loff_t size = i_size_read(mpd->inode);
1858 int err;
1859
1860 BUG_ON(page->index != mpd->first_page);
1861 if (page->index == size >> PAGE_CACHE_SHIFT)
1862 len = size & ~PAGE_CACHE_MASK;
1863 else
1864 len = PAGE_CACHE_SIZE;
1865 clear_page_dirty_for_io(page);
1c8349a1 1866 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1867 if (!err)
1868 mpd->wbc->nr_to_write--;
1869 mpd->first_page++;
1870
1871 return err;
1872}
1873
4e7ea81d
JK
1874#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1875
61628a3f 1876/*
fffb2739
JK
1877 * mballoc gives us at most this number of blocks...
1878 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1879 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1880 */
fffb2739 1881#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1882
4e7ea81d
JK
1883/*
1884 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1885 *
1886 * @mpd - extent of blocks
1887 * @lblk - logical number of the block in the file
09930042 1888 * @bh - buffer head we want to add to the extent
4e7ea81d 1889 *
09930042
JK
1890 * The function is used to collect contig. blocks in the same state. If the
1891 * buffer doesn't require mapping for writeback and we haven't started the
1892 * extent of buffers to map yet, the function returns 'true' immediately - the
1893 * caller can write the buffer right away. Otherwise the function returns true
1894 * if the block has been added to the extent, false if the block couldn't be
1895 * added.
4e7ea81d 1896 */
09930042
JK
1897static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1898 struct buffer_head *bh)
4e7ea81d
JK
1899{
1900 struct ext4_map_blocks *map = &mpd->map;
1901
09930042
JK
1902 /* Buffer that doesn't need mapping for writeback? */
1903 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1904 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1905 /* So far no extent to map => we write the buffer right away */
1906 if (map->m_len == 0)
1907 return true;
1908 return false;
1909 }
4e7ea81d
JK
1910
1911 /* First block in the extent? */
1912 if (map->m_len == 0) {
1913 map->m_lblk = lblk;
1914 map->m_len = 1;
09930042
JK
1915 map->m_flags = bh->b_state & BH_FLAGS;
1916 return true;
4e7ea81d
JK
1917 }
1918
09930042
JK
1919 /* Don't go larger than mballoc is willing to allocate */
1920 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1921 return false;
1922
4e7ea81d
JK
1923 /* Can we merge the block to our big extent? */
1924 if (lblk == map->m_lblk + map->m_len &&
09930042 1925 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1926 map->m_len++;
09930042 1927 return true;
4e7ea81d 1928 }
09930042 1929 return false;
4e7ea81d
JK
1930}
1931
5f1132b2
JK
1932/*
1933 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1934 *
1935 * @mpd - extent of blocks for mapping
1936 * @head - the first buffer in the page
1937 * @bh - buffer we should start processing from
1938 * @lblk - logical number of the block in the file corresponding to @bh
1939 *
1940 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1941 * the page for IO if all buffers in this page were mapped and there's no
1942 * accumulated extent of buffers to map or add buffers in the page to the
1943 * extent of buffers to map. The function returns 1 if the caller can continue
1944 * by processing the next page, 0 if it should stop adding buffers to the
1945 * extent to map because we cannot extend it anymore. It can also return value
1946 * < 0 in case of error during IO submission.
1947 */
1948static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1949 struct buffer_head *head,
1950 struct buffer_head *bh,
1951 ext4_lblk_t lblk)
4e7ea81d
JK
1952{
1953 struct inode *inode = mpd->inode;
5f1132b2 1954 int err;
4e7ea81d
JK
1955 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1956 >> inode->i_blkbits;
1957
1958 do {
1959 BUG_ON(buffer_locked(bh));
1960
09930042 1961 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1962 /* Found extent to map? */
1963 if (mpd->map.m_len)
5f1132b2 1964 return 0;
09930042 1965 /* Everything mapped so far and we hit EOF */
5f1132b2 1966 break;
4e7ea81d 1967 }
4e7ea81d 1968 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1969 /* So far everything mapped? Submit the page for IO. */
1970 if (mpd->map.m_len == 0) {
1971 err = mpage_submit_page(mpd, head->b_page);
1972 if (err < 0)
1973 return err;
1974 }
1975 return lblk < blocks;
4e7ea81d
JK
1976}
1977
1978/*
1979 * mpage_map_buffers - update buffers corresponding to changed extent and
1980 * submit fully mapped pages for IO
1981 *
1982 * @mpd - description of extent to map, on return next extent to map
1983 *
1984 * Scan buffers corresponding to changed extent (we expect corresponding pages
1985 * to be already locked) and update buffer state according to new extent state.
1986 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1987 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1988 * and do extent conversion after IO is finished. If the last page is not fully
1989 * mapped, we update @map to the next extent in the last page that needs
1990 * mapping. Otherwise we submit the page for IO.
1991 */
1992static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1993{
1994 struct pagevec pvec;
1995 int nr_pages, i;
1996 struct inode *inode = mpd->inode;
1997 struct buffer_head *head, *bh;
1998 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1999 pgoff_t start, end;
2000 ext4_lblk_t lblk;
2001 sector_t pblock;
2002 int err;
2003
2004 start = mpd->map.m_lblk >> bpp_bits;
2005 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2006 lblk = start << bpp_bits;
2007 pblock = mpd->map.m_pblk;
2008
2009 pagevec_init(&pvec, 0);
2010 while (start <= end) {
2011 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2012 PAGEVEC_SIZE);
2013 if (nr_pages == 0)
2014 break;
2015 for (i = 0; i < nr_pages; i++) {
2016 struct page *page = pvec.pages[i];
2017
2018 if (page->index > end)
2019 break;
70261f56 2020 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2021 BUG_ON(page->index != start);
2022 bh = head = page_buffers(page);
2023 do {
2024 if (lblk < mpd->map.m_lblk)
2025 continue;
2026 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2027 /*
2028 * Buffer after end of mapped extent.
2029 * Find next buffer in the page to map.
2030 */
2031 mpd->map.m_len = 0;
2032 mpd->map.m_flags = 0;
5f1132b2
JK
2033 /*
2034 * FIXME: If dioread_nolock supports
2035 * blocksize < pagesize, we need to make
2036 * sure we add size mapped so far to
2037 * io_end->size as the following call
2038 * can submit the page for IO.
2039 */
2040 err = mpage_process_page_bufs(mpd, head,
2041 bh, lblk);
4e7ea81d 2042 pagevec_release(&pvec);
5f1132b2
JK
2043 if (err > 0)
2044 err = 0;
2045 return err;
4e7ea81d
JK
2046 }
2047 if (buffer_delay(bh)) {
2048 clear_buffer_delay(bh);
2049 bh->b_blocknr = pblock++;
2050 }
4e7ea81d 2051 clear_buffer_unwritten(bh);
5f1132b2 2052 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2053
2054 /*
2055 * FIXME: This is going to break if dioread_nolock
2056 * supports blocksize < pagesize as we will try to
2057 * convert potentially unmapped parts of inode.
2058 */
2059 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2060 /* Page fully mapped - let IO run! */
2061 err = mpage_submit_page(mpd, page);
2062 if (err < 0) {
2063 pagevec_release(&pvec);
2064 return err;
2065 }
2066 start++;
2067 }
2068 pagevec_release(&pvec);
2069 }
2070 /* Extent fully mapped and matches with page boundary. We are done. */
2071 mpd->map.m_len = 0;
2072 mpd->map.m_flags = 0;
2073 return 0;
2074}
2075
2076static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2077{
2078 struct inode *inode = mpd->inode;
2079 struct ext4_map_blocks *map = &mpd->map;
2080 int get_blocks_flags;
090f32ee 2081 int err, dioread_nolock;
4e7ea81d
JK
2082
2083 trace_ext4_da_write_pages_extent(inode, map);
2084 /*
2085 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2086 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2087 * where we have written into one or more preallocated blocks). It is
2088 * possible that we're going to need more metadata blocks than
2089 * previously reserved. However we must not fail because we're in
2090 * writeback and there is nothing we can do about it so it might result
2091 * in data loss. So use reserved blocks to allocate metadata if
2092 * possible.
2093 *
754cfed6
TT
2094 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2095 * the blocks in question are delalloc blocks. This indicates
2096 * that the blocks and quotas has already been checked when
2097 * the data was copied into the page cache.
4e7ea81d
JK
2098 */
2099 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2100 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2101 dioread_nolock = ext4_should_dioread_nolock(inode);
2102 if (dioread_nolock)
4e7ea81d
JK
2103 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2104 if (map->m_flags & (1 << BH_Delay))
2105 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2106
2107 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2108 if (err < 0)
2109 return err;
090f32ee 2110 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2111 if (!mpd->io_submit.io_end->handle &&
2112 ext4_handle_valid(handle)) {
2113 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2114 handle->h_rsv_handle = NULL;
2115 }
3613d228 2116 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2117 }
4e7ea81d
JK
2118
2119 BUG_ON(map->m_len == 0);
2120 if (map->m_flags & EXT4_MAP_NEW) {
2121 struct block_device *bdev = inode->i_sb->s_bdev;
2122 int i;
2123
2124 for (i = 0; i < map->m_len; i++)
2125 unmap_underlying_metadata(bdev, map->m_pblk + i);
2126 }
2127 return 0;
2128}
2129
2130/*
2131 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2132 * mpd->len and submit pages underlying it for IO
2133 *
2134 * @handle - handle for journal operations
2135 * @mpd - extent to map
7534e854
JK
2136 * @give_up_on_write - we set this to true iff there is a fatal error and there
2137 * is no hope of writing the data. The caller should discard
2138 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2139 *
2140 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2141 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2142 * them to initialized or split the described range from larger unwritten
2143 * extent. Note that we need not map all the described range since allocation
2144 * can return less blocks or the range is covered by more unwritten extents. We
2145 * cannot map more because we are limited by reserved transaction credits. On
2146 * the other hand we always make sure that the last touched page is fully
2147 * mapped so that it can be written out (and thus forward progress is
2148 * guaranteed). After mapping we submit all mapped pages for IO.
2149 */
2150static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2151 struct mpage_da_data *mpd,
2152 bool *give_up_on_write)
4e7ea81d
JK
2153{
2154 struct inode *inode = mpd->inode;
2155 struct ext4_map_blocks *map = &mpd->map;
2156 int err;
2157 loff_t disksize;
6603120e 2158 int progress = 0;
4e7ea81d
JK
2159
2160 mpd->io_submit.io_end->offset =
2161 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2162 do {
4e7ea81d
JK
2163 err = mpage_map_one_extent(handle, mpd);
2164 if (err < 0) {
2165 struct super_block *sb = inode->i_sb;
2166
cb530541
TT
2167 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2168 goto invalidate_dirty_pages;
4e7ea81d 2169 /*
cb530541
TT
2170 * Let the uper layers retry transient errors.
2171 * In the case of ENOSPC, if ext4_count_free_blocks()
2172 * is non-zero, a commit should free up blocks.
4e7ea81d 2173 */
cb530541 2174 if ((err == -ENOMEM) ||
6603120e
DM
2175 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2176 if (progress)
2177 goto update_disksize;
cb530541 2178 return err;
6603120e 2179 }
cb530541
TT
2180 ext4_msg(sb, KERN_CRIT,
2181 "Delayed block allocation failed for "
2182 "inode %lu at logical offset %llu with"
2183 " max blocks %u with error %d",
2184 inode->i_ino,
2185 (unsigned long long)map->m_lblk,
2186 (unsigned)map->m_len, -err);
2187 ext4_msg(sb, KERN_CRIT,
2188 "This should not happen!! Data will "
2189 "be lost\n");
2190 if (err == -ENOSPC)
2191 ext4_print_free_blocks(inode);
2192 invalidate_dirty_pages:
2193 *give_up_on_write = true;
4e7ea81d
JK
2194 return err;
2195 }
6603120e 2196 progress = 1;
4e7ea81d
JK
2197 /*
2198 * Update buffer state, submit mapped pages, and get us new
2199 * extent to map
2200 */
2201 err = mpage_map_and_submit_buffers(mpd);
2202 if (err < 0)
6603120e 2203 goto update_disksize;
27d7c4ed 2204 } while (map->m_len);
4e7ea81d 2205
6603120e 2206update_disksize:
622cad13
TT
2207 /*
2208 * Update on-disk size after IO is submitted. Races with
2209 * truncate are avoided by checking i_size under i_data_sem.
2210 */
4e7ea81d 2211 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2212 if (disksize > EXT4_I(inode)->i_disksize) {
2213 int err2;
622cad13
TT
2214 loff_t i_size;
2215
2216 down_write(&EXT4_I(inode)->i_data_sem);
2217 i_size = i_size_read(inode);
2218 if (disksize > i_size)
2219 disksize = i_size;
2220 if (disksize > EXT4_I(inode)->i_disksize)
2221 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2222 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2223 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2224 if (err2)
2225 ext4_error(inode->i_sb,
2226 "Failed to mark inode %lu dirty",
2227 inode->i_ino);
2228 if (!err)
2229 err = err2;
2230 }
2231 return err;
2232}
2233
fffb2739
JK
2234/*
2235 * Calculate the total number of credits to reserve for one writepages
20970ba6 2236 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2237 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2238 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2239 * bpp - 1 blocks in bpp different extents.
2240 */
525f4ed8
MC
2241static int ext4_da_writepages_trans_blocks(struct inode *inode)
2242{
fffb2739 2243 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2244
fffb2739
JK
2245 return ext4_meta_trans_blocks(inode,
2246 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2247}
61628a3f 2248
8e48dcfb 2249/*
4e7ea81d
JK
2250 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2251 * and underlying extent to map
2252 *
2253 * @mpd - where to look for pages
2254 *
2255 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2256 * IO immediately. When we find a page which isn't mapped we start accumulating
2257 * extent of buffers underlying these pages that needs mapping (formed by
2258 * either delayed or unwritten buffers). We also lock the pages containing
2259 * these buffers. The extent found is returned in @mpd structure (starting at
2260 * mpd->lblk with length mpd->len blocks).
2261 *
2262 * Note that this function can attach bios to one io_end structure which are
2263 * neither logically nor physically contiguous. Although it may seem as an
2264 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2265 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2266 */
4e7ea81d 2267static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2268{
4e7ea81d
JK
2269 struct address_space *mapping = mpd->inode->i_mapping;
2270 struct pagevec pvec;
2271 unsigned int nr_pages;
aeac589a 2272 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2273 pgoff_t index = mpd->first_page;
2274 pgoff_t end = mpd->last_page;
2275 int tag;
2276 int i, err = 0;
2277 int blkbits = mpd->inode->i_blkbits;
2278 ext4_lblk_t lblk;
2279 struct buffer_head *head;
8e48dcfb 2280
4e7ea81d 2281 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2282 tag = PAGECACHE_TAG_TOWRITE;
2283 else
2284 tag = PAGECACHE_TAG_DIRTY;
2285
4e7ea81d
JK
2286 pagevec_init(&pvec, 0);
2287 mpd->map.m_len = 0;
2288 mpd->next_page = index;
4f01b02c 2289 while (index <= end) {
5b41d924 2290 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2291 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2292 if (nr_pages == 0)
4e7ea81d 2293 goto out;
8e48dcfb
TT
2294
2295 for (i = 0; i < nr_pages; i++) {
2296 struct page *page = pvec.pages[i];
2297
2298 /*
2299 * At this point, the page may be truncated or
2300 * invalidated (changing page->mapping to NULL), or
2301 * even swizzled back from swapper_space to tmpfs file
2302 * mapping. However, page->index will not change
2303 * because we have a reference on the page.
2304 */
4f01b02c
TT
2305 if (page->index > end)
2306 goto out;
8e48dcfb 2307
aeac589a
ML
2308 /*
2309 * Accumulated enough dirty pages? This doesn't apply
2310 * to WB_SYNC_ALL mode. For integrity sync we have to
2311 * keep going because someone may be concurrently
2312 * dirtying pages, and we might have synced a lot of
2313 * newly appeared dirty pages, but have not synced all
2314 * of the old dirty pages.
2315 */
2316 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2317 goto out;
2318
4e7ea81d
JK
2319 /* If we can't merge this page, we are done. */
2320 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2321 goto out;
78aaced3 2322
8e48dcfb 2323 lock_page(page);
8e48dcfb 2324 /*
4e7ea81d
JK
2325 * If the page is no longer dirty, or its mapping no
2326 * longer corresponds to inode we are writing (which
2327 * means it has been truncated or invalidated), or the
2328 * page is already under writeback and we are not doing
2329 * a data integrity writeback, skip the page
8e48dcfb 2330 */
4f01b02c
TT
2331 if (!PageDirty(page) ||
2332 (PageWriteback(page) &&
4e7ea81d 2333 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2334 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2335 unlock_page(page);
2336 continue;
2337 }
2338
7cb1a535 2339 wait_on_page_writeback(page);
8e48dcfb 2340 BUG_ON(PageWriteback(page));
8e48dcfb 2341
4e7ea81d 2342 if (mpd->map.m_len == 0)
8eb9e5ce 2343 mpd->first_page = page->index;
8eb9e5ce 2344 mpd->next_page = page->index + 1;
f8bec370 2345 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2346 lblk = ((ext4_lblk_t)page->index) <<
2347 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2348 head = page_buffers(page);
5f1132b2
JK
2349 err = mpage_process_page_bufs(mpd, head, head, lblk);
2350 if (err <= 0)
4e7ea81d 2351 goto out;
5f1132b2 2352 err = 0;
aeac589a 2353 left--;
8e48dcfb
TT
2354 }
2355 pagevec_release(&pvec);
2356 cond_resched();
2357 }
4f01b02c 2358 return 0;
8eb9e5ce
TT
2359out:
2360 pagevec_release(&pvec);
4e7ea81d 2361 return err;
8e48dcfb
TT
2362}
2363
20970ba6
TT
2364static int __writepage(struct page *page, struct writeback_control *wbc,
2365 void *data)
2366{
2367 struct address_space *mapping = data;
2368 int ret = ext4_writepage(page, wbc);
2369 mapping_set_error(mapping, ret);
2370 return ret;
2371}
2372
2373static int ext4_writepages(struct address_space *mapping,
2374 struct writeback_control *wbc)
64769240 2375{
4e7ea81d
JK
2376 pgoff_t writeback_index = 0;
2377 long nr_to_write = wbc->nr_to_write;
22208ded 2378 int range_whole = 0;
4e7ea81d 2379 int cycled = 1;
61628a3f 2380 handle_t *handle = NULL;
df22291f 2381 struct mpage_da_data mpd;
5e745b04 2382 struct inode *inode = mapping->host;
6b523df4 2383 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2384 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2385 bool done;
1bce63d1 2386 struct blk_plug plug;
cb530541 2387 bool give_up_on_write = false;
61628a3f 2388
20970ba6 2389 trace_ext4_writepages(inode, wbc);
ba80b101 2390
61628a3f
MC
2391 /*
2392 * No pages to write? This is mainly a kludge to avoid starting
2393 * a transaction for special inodes like journal inode on last iput()
2394 * because that could violate lock ordering on umount
2395 */
a1d6cc56 2396 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2397 goto out_writepages;
2a21e37e 2398
20970ba6
TT
2399 if (ext4_should_journal_data(inode)) {
2400 struct blk_plug plug;
20970ba6
TT
2401
2402 blk_start_plug(&plug);
2403 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2404 blk_finish_plug(&plug);
bbf023c7 2405 goto out_writepages;
20970ba6
TT
2406 }
2407
2a21e37e
TT
2408 /*
2409 * If the filesystem has aborted, it is read-only, so return
2410 * right away instead of dumping stack traces later on that
2411 * will obscure the real source of the problem. We test
4ab2f15b 2412 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2413 * the latter could be true if the filesystem is mounted
20970ba6 2414 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2415 * *never* be called, so if that ever happens, we would want
2416 * the stack trace.
2417 */
bbf023c7
ML
2418 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2419 ret = -EROFS;
2420 goto out_writepages;
2421 }
2a21e37e 2422
6b523df4
JK
2423 if (ext4_should_dioread_nolock(inode)) {
2424 /*
70261f56 2425 * We may need to convert up to one extent per block in
6b523df4
JK
2426 * the page and we may dirty the inode.
2427 */
2428 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2429 }
2430
4e7ea81d
JK
2431 /*
2432 * If we have inline data and arrive here, it means that
2433 * we will soon create the block for the 1st page, so
2434 * we'd better clear the inline data here.
2435 */
2436 if (ext4_has_inline_data(inode)) {
2437 /* Just inode will be modified... */
2438 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2439 if (IS_ERR(handle)) {
2440 ret = PTR_ERR(handle);
2441 goto out_writepages;
2442 }
2443 BUG_ON(ext4_test_inode_state(inode,
2444 EXT4_STATE_MAY_INLINE_DATA));
2445 ext4_destroy_inline_data(handle, inode);
2446 ext4_journal_stop(handle);
2447 }
2448
22208ded
AK
2449 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2450 range_whole = 1;
61628a3f 2451
2acf2c26 2452 if (wbc->range_cyclic) {
4e7ea81d
JK
2453 writeback_index = mapping->writeback_index;
2454 if (writeback_index)
2acf2c26 2455 cycled = 0;
4e7ea81d
JK
2456 mpd.first_page = writeback_index;
2457 mpd.last_page = -1;
5b41d924 2458 } else {
4e7ea81d
JK
2459 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2460 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2461 }
a1d6cc56 2462
4e7ea81d
JK
2463 mpd.inode = inode;
2464 mpd.wbc = wbc;
2465 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2466retry:
6e6938b6 2467 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2468 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2469 done = false;
1bce63d1 2470 blk_start_plug(&plug);
4e7ea81d
JK
2471 while (!done && mpd.first_page <= mpd.last_page) {
2472 /* For each extent of pages we use new io_end */
2473 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2474 if (!mpd.io_submit.io_end) {
2475 ret = -ENOMEM;
2476 break;
2477 }
a1d6cc56
AK
2478
2479 /*
4e7ea81d
JK
2480 * We have two constraints: We find one extent to map and we
2481 * must always write out whole page (makes a difference when
2482 * blocksize < pagesize) so that we don't block on IO when we
2483 * try to write out the rest of the page. Journalled mode is
2484 * not supported by delalloc.
a1d6cc56
AK
2485 */
2486 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2487 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2488
4e7ea81d 2489 /* start a new transaction */
6b523df4
JK
2490 handle = ext4_journal_start_with_reserve(inode,
2491 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2492 if (IS_ERR(handle)) {
2493 ret = PTR_ERR(handle);
1693918e 2494 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2495 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2496 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2497 /* Release allocated io_end */
2498 ext4_put_io_end(mpd.io_submit.io_end);
2499 break;
61628a3f 2500 }
f63e6005 2501
4e7ea81d
JK
2502 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2503 ret = mpage_prepare_extent_to_map(&mpd);
2504 if (!ret) {
2505 if (mpd.map.m_len)
cb530541
TT
2506 ret = mpage_map_and_submit_extent(handle, &mpd,
2507 &give_up_on_write);
4e7ea81d
JK
2508 else {
2509 /*
2510 * We scanned the whole range (or exhausted
2511 * nr_to_write), submitted what was mapped and
2512 * didn't find anything needing mapping. We are
2513 * done.
2514 */
2515 done = true;
2516 }
f63e6005 2517 }
61628a3f 2518 ext4_journal_stop(handle);
4e7ea81d
JK
2519 /* Submit prepared bio */
2520 ext4_io_submit(&mpd.io_submit);
2521 /* Unlock pages we didn't use */
cb530541 2522 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2523 /* Drop our io_end reference we got from init */
2524 ext4_put_io_end(mpd.io_submit.io_end);
2525
2526 if (ret == -ENOSPC && sbi->s_journal) {
2527 /*
2528 * Commit the transaction which would
22208ded
AK
2529 * free blocks released in the transaction
2530 * and try again
2531 */
df22291f 2532 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2533 ret = 0;
4e7ea81d
JK
2534 continue;
2535 }
2536 /* Fatal error - ENOMEM, EIO... */
2537 if (ret)
61628a3f 2538 break;
a1d6cc56 2539 }
1bce63d1 2540 blk_finish_plug(&plug);
9c12a831 2541 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2542 cycled = 1;
4e7ea81d
JK
2543 mpd.last_page = writeback_index - 1;
2544 mpd.first_page = 0;
2acf2c26
AK
2545 goto retry;
2546 }
22208ded
AK
2547
2548 /* Update index */
22208ded
AK
2549 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2550 /*
4e7ea81d 2551 * Set the writeback_index so that range_cyclic
22208ded
AK
2552 * mode will write it back later
2553 */
4e7ea81d 2554 mapping->writeback_index = mpd.first_page;
a1d6cc56 2555
61628a3f 2556out_writepages:
20970ba6
TT
2557 trace_ext4_writepages_result(inode, wbc, ret,
2558 nr_to_write - wbc->nr_to_write);
61628a3f 2559 return ret;
64769240
AT
2560}
2561
79f0be8d
AK
2562static int ext4_nonda_switch(struct super_block *sb)
2563{
5c1ff336 2564 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2565 struct ext4_sb_info *sbi = EXT4_SB(sb);
2566
2567 /*
2568 * switch to non delalloc mode if we are running low
2569 * on free block. The free block accounting via percpu
179f7ebf 2570 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2571 * accumulated on each CPU without updating global counters
2572 * Delalloc need an accurate free block accounting. So switch
2573 * to non delalloc when we are near to error range.
2574 */
5c1ff336
EW
2575 free_clusters =
2576 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2577 dirty_clusters =
2578 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2579 /*
2580 * Start pushing delalloc when 1/2 of free blocks are dirty.
2581 */
5c1ff336 2582 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2583 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2584
5c1ff336
EW
2585 if (2 * free_clusters < 3 * dirty_clusters ||
2586 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2587 /*
c8afb446
ES
2588 * free block count is less than 150% of dirty blocks
2589 * or free blocks is less than watermark
79f0be8d
AK
2590 */
2591 return 1;
2592 }
2593 return 0;
2594}
2595
0ff8947f
ES
2596/* We always reserve for an inode update; the superblock could be there too */
2597static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2598{
2599 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2600 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2601 return 1;
2602
2603 if (pos + len <= 0x7fffffffULL)
2604 return 1;
2605
2606 /* We might need to update the superblock to set LARGE_FILE */
2607 return 2;
2608}
2609
64769240 2610static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2611 loff_t pos, unsigned len, unsigned flags,
2612 struct page **pagep, void **fsdata)
64769240 2613{
72b8ab9d 2614 int ret, retries = 0;
64769240
AT
2615 struct page *page;
2616 pgoff_t index;
64769240
AT
2617 struct inode *inode = mapping->host;
2618 handle_t *handle;
2619
2620 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2621
2622 if (ext4_nonda_switch(inode->i_sb)) {
2623 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2624 return ext4_write_begin(file, mapping, pos,
2625 len, flags, pagep, fsdata);
2626 }
2627 *fsdata = (void *)0;
9bffad1e 2628 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2629
2630 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2631 ret = ext4_da_write_inline_data_begin(mapping, inode,
2632 pos, len, flags,
2633 pagep, fsdata);
2634 if (ret < 0)
47564bfb
TT
2635 return ret;
2636 if (ret == 1)
2637 return 0;
9c3569b5
TM
2638 }
2639
47564bfb
TT
2640 /*
2641 * grab_cache_page_write_begin() can take a long time if the
2642 * system is thrashing due to memory pressure, or if the page
2643 * is being written back. So grab it first before we start
2644 * the transaction handle. This also allows us to allocate
2645 * the page (if needed) without using GFP_NOFS.
2646 */
2647retry_grab:
2648 page = grab_cache_page_write_begin(mapping, index, flags);
2649 if (!page)
2650 return -ENOMEM;
2651 unlock_page(page);
2652
64769240
AT
2653 /*
2654 * With delayed allocation, we don't log the i_disksize update
2655 * if there is delayed block allocation. But we still need
2656 * to journalling the i_disksize update if writes to the end
2657 * of file which has an already mapped buffer.
2658 */
47564bfb 2659retry_journal:
0ff8947f
ES
2660 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2661 ext4_da_write_credits(inode, pos, len));
64769240 2662 if (IS_ERR(handle)) {
47564bfb
TT
2663 page_cache_release(page);
2664 return PTR_ERR(handle);
64769240
AT
2665 }
2666
47564bfb
TT
2667 lock_page(page);
2668 if (page->mapping != mapping) {
2669 /* The page got truncated from under us */
2670 unlock_page(page);
2671 page_cache_release(page);
d5a0d4f7 2672 ext4_journal_stop(handle);
47564bfb 2673 goto retry_grab;
d5a0d4f7 2674 }
47564bfb 2675 /* In case writeback began while the page was unlocked */
7afe5aa5 2676 wait_for_stable_page(page);
64769240 2677
2058f83a
MH
2678#ifdef CONFIG_EXT4_FS_ENCRYPTION
2679 ret = ext4_block_write_begin(page, pos, len,
2680 ext4_da_get_block_prep);
2681#else
6e1db88d 2682 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2683#endif
64769240
AT
2684 if (ret < 0) {
2685 unlock_page(page);
2686 ext4_journal_stop(handle);
ae4d5372
AK
2687 /*
2688 * block_write_begin may have instantiated a few blocks
2689 * outside i_size. Trim these off again. Don't need
2690 * i_size_read because we hold i_mutex.
2691 */
2692 if (pos + len > inode->i_size)
b9a4207d 2693 ext4_truncate_failed_write(inode);
47564bfb
TT
2694
2695 if (ret == -ENOSPC &&
2696 ext4_should_retry_alloc(inode->i_sb, &retries))
2697 goto retry_journal;
2698
2699 page_cache_release(page);
2700 return ret;
64769240
AT
2701 }
2702
47564bfb 2703 *pagep = page;
64769240
AT
2704 return ret;
2705}
2706
632eaeab
MC
2707/*
2708 * Check if we should update i_disksize
2709 * when write to the end of file but not require block allocation
2710 */
2711static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2712 unsigned long offset)
632eaeab
MC
2713{
2714 struct buffer_head *bh;
2715 struct inode *inode = page->mapping->host;
2716 unsigned int idx;
2717 int i;
2718
2719 bh = page_buffers(page);
2720 idx = offset >> inode->i_blkbits;
2721
af5bc92d 2722 for (i = 0; i < idx; i++)
632eaeab
MC
2723 bh = bh->b_this_page;
2724
29fa89d0 2725 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2726 return 0;
2727 return 1;
2728}
2729
64769240 2730static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2731 struct address_space *mapping,
2732 loff_t pos, unsigned len, unsigned copied,
2733 struct page *page, void *fsdata)
64769240
AT
2734{
2735 struct inode *inode = mapping->host;
2736 int ret = 0, ret2;
2737 handle_t *handle = ext4_journal_current_handle();
2738 loff_t new_i_size;
632eaeab 2739 unsigned long start, end;
79f0be8d
AK
2740 int write_mode = (int)(unsigned long)fsdata;
2741
74d553aa
TT
2742 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2743 return ext4_write_end(file, mapping, pos,
2744 len, copied, page, fsdata);
632eaeab 2745
9bffad1e 2746 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2747 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2748 end = start + copied - 1;
64769240
AT
2749
2750 /*
2751 * generic_write_end() will run mark_inode_dirty() if i_size
2752 * changes. So let's piggyback the i_disksize mark_inode_dirty
2753 * into that.
2754 */
64769240 2755 new_i_size = pos + copied;
ea51d132 2756 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2757 if (ext4_has_inline_data(inode) ||
2758 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2759 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2760 /* We need to mark inode dirty even if
2761 * new_i_size is less that inode->i_size
2762 * bu greater than i_disksize.(hint delalloc)
2763 */
2764 ext4_mark_inode_dirty(handle, inode);
64769240 2765 }
632eaeab 2766 }
9c3569b5
TM
2767
2768 if (write_mode != CONVERT_INLINE_DATA &&
2769 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2770 ext4_has_inline_data(inode))
2771 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2772 page);
2773 else
2774 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2775 page, fsdata);
9c3569b5 2776
64769240
AT
2777 copied = ret2;
2778 if (ret2 < 0)
2779 ret = ret2;
2780 ret2 = ext4_journal_stop(handle);
2781 if (!ret)
2782 ret = ret2;
2783
2784 return ret ? ret : copied;
2785}
2786
d47992f8
LC
2787static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2788 unsigned int length)
64769240 2789{
64769240
AT
2790 /*
2791 * Drop reserved blocks
2792 */
2793 BUG_ON(!PageLocked(page));
2794 if (!page_has_buffers(page))
2795 goto out;
2796
ca99fdd2 2797 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2798
2799out:
d47992f8 2800 ext4_invalidatepage(page, offset, length);
64769240
AT
2801
2802 return;
2803}
2804
ccd2506b
TT
2805/*
2806 * Force all delayed allocation blocks to be allocated for a given inode.
2807 */
2808int ext4_alloc_da_blocks(struct inode *inode)
2809{
fb40ba0d
TT
2810 trace_ext4_alloc_da_blocks(inode);
2811
71d4f7d0 2812 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2813 return 0;
2814
2815 /*
2816 * We do something simple for now. The filemap_flush() will
2817 * also start triggering a write of the data blocks, which is
2818 * not strictly speaking necessary (and for users of
2819 * laptop_mode, not even desirable). However, to do otherwise
2820 * would require replicating code paths in:
de9a55b8 2821 *
20970ba6 2822 * ext4_writepages() ->
ccd2506b
TT
2823 * write_cache_pages() ---> (via passed in callback function)
2824 * __mpage_da_writepage() -->
2825 * mpage_add_bh_to_extent()
2826 * mpage_da_map_blocks()
2827 *
2828 * The problem is that write_cache_pages(), located in
2829 * mm/page-writeback.c, marks pages clean in preparation for
2830 * doing I/O, which is not desirable if we're not planning on
2831 * doing I/O at all.
2832 *
2833 * We could call write_cache_pages(), and then redirty all of
380cf090 2834 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2835 * would be ugly in the extreme. So instead we would need to
2836 * replicate parts of the code in the above functions,
25985edc 2837 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2838 * write out the pages, but rather only collect contiguous
2839 * logical block extents, call the multi-block allocator, and
2840 * then update the buffer heads with the block allocations.
de9a55b8 2841 *
ccd2506b
TT
2842 * For now, though, we'll cheat by calling filemap_flush(),
2843 * which will map the blocks, and start the I/O, but not
2844 * actually wait for the I/O to complete.
2845 */
2846 return filemap_flush(inode->i_mapping);
2847}
64769240 2848
ac27a0ec
DK
2849/*
2850 * bmap() is special. It gets used by applications such as lilo and by
2851 * the swapper to find the on-disk block of a specific piece of data.
2852 *
2853 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2854 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2855 * filesystem and enables swap, then they may get a nasty shock when the
2856 * data getting swapped to that swapfile suddenly gets overwritten by
2857 * the original zero's written out previously to the journal and
2858 * awaiting writeback in the kernel's buffer cache.
2859 *
2860 * So, if we see any bmap calls here on a modified, data-journaled file,
2861 * take extra steps to flush any blocks which might be in the cache.
2862 */
617ba13b 2863static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2864{
2865 struct inode *inode = mapping->host;
2866 journal_t *journal;
2867 int err;
2868
46c7f254
TM
2869 /*
2870 * We can get here for an inline file via the FIBMAP ioctl
2871 */
2872 if (ext4_has_inline_data(inode))
2873 return 0;
2874
64769240
AT
2875 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2876 test_opt(inode->i_sb, DELALLOC)) {
2877 /*
2878 * With delalloc we want to sync the file
2879 * so that we can make sure we allocate
2880 * blocks for file
2881 */
2882 filemap_write_and_wait(mapping);
2883 }
2884
19f5fb7a
TT
2885 if (EXT4_JOURNAL(inode) &&
2886 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2887 /*
2888 * This is a REALLY heavyweight approach, but the use of
2889 * bmap on dirty files is expected to be extremely rare:
2890 * only if we run lilo or swapon on a freshly made file
2891 * do we expect this to happen.
2892 *
2893 * (bmap requires CAP_SYS_RAWIO so this does not
2894 * represent an unprivileged user DOS attack --- we'd be
2895 * in trouble if mortal users could trigger this path at
2896 * will.)
2897 *
617ba13b 2898 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2899 * regular files. If somebody wants to bmap a directory
2900 * or symlink and gets confused because the buffer
2901 * hasn't yet been flushed to disk, they deserve
2902 * everything they get.
2903 */
2904
19f5fb7a 2905 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2906 journal = EXT4_JOURNAL(inode);
dab291af
MC
2907 jbd2_journal_lock_updates(journal);
2908 err = jbd2_journal_flush(journal);
2909 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2910
2911 if (err)
2912 return 0;
2913 }
2914
af5bc92d 2915 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2916}
2917
617ba13b 2918static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2919{
46c7f254
TM
2920 int ret = -EAGAIN;
2921 struct inode *inode = page->mapping->host;
2922
0562e0ba 2923 trace_ext4_readpage(page);
46c7f254
TM
2924
2925 if (ext4_has_inline_data(inode))
2926 ret = ext4_readpage_inline(inode, page);
2927
2928 if (ret == -EAGAIN)
f64e02fe 2929 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
2930
2931 return ret;
ac27a0ec
DK
2932}
2933
2934static int
617ba13b 2935ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2936 struct list_head *pages, unsigned nr_pages)
2937{
46c7f254
TM
2938 struct inode *inode = mapping->host;
2939
2940 /* If the file has inline data, no need to do readpages. */
2941 if (ext4_has_inline_data(inode))
2942 return 0;
2943
f64e02fe 2944 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
2945}
2946
d47992f8
LC
2947static void ext4_invalidatepage(struct page *page, unsigned int offset,
2948 unsigned int length)
ac27a0ec 2949{
ca99fdd2 2950 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2951
4520fb3c
JK
2952 /* No journalling happens on data buffers when this function is used */
2953 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2954
ca99fdd2 2955 block_invalidatepage(page, offset, length);
4520fb3c
JK
2956}
2957
53e87268 2958static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2959 unsigned int offset,
2960 unsigned int length)
4520fb3c
JK
2961{
2962 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2963
ca99fdd2 2964 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2965
ac27a0ec
DK
2966 /*
2967 * If it's a full truncate we just forget about the pending dirtying
2968 */
ca99fdd2 2969 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2970 ClearPageChecked(page);
2971
ca99fdd2 2972 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2973}
2974
2975/* Wrapper for aops... */
2976static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2977 unsigned int offset,
2978 unsigned int length)
53e87268 2979{
ca99fdd2 2980 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2981}
2982
617ba13b 2983static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2984{
617ba13b 2985 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2986
0562e0ba
JZ
2987 trace_ext4_releasepage(page);
2988
e1c36595
JK
2989 /* Page has dirty journalled data -> cannot release */
2990 if (PageChecked(page))
ac27a0ec 2991 return 0;
0390131b
FM
2992 if (journal)
2993 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2994 else
2995 return try_to_free_buffers(page);
ac27a0ec
DK
2996}
2997
2ed88685
TT
2998/*
2999 * ext4_get_block used when preparing for a DIO write or buffer write.
3000 * We allocate an uinitialized extent if blocks haven't been allocated.
3001 * The extent will be converted to initialized after the IO is complete.
3002 */
f19d5870 3003int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3004 struct buffer_head *bh_result, int create)
3005{
c7064ef1 3006 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3007 inode->i_ino, create);
2ed88685
TT
3008 return _ext4_get_block(inode, iblock, bh_result,
3009 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3010}
3011
729f52c6 3012static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3013 struct buffer_head *bh_result, int create)
729f52c6 3014{
8b0f165f
AP
3015 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3016 inode->i_ino, create);
3017 return _ext4_get_block(inode, iblock, bh_result,
3018 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3019}
3020
4c0425ff 3021static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3022 ssize_t size, void *private)
4c0425ff
MC
3023{
3024 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3025
97a851ed 3026 /* if not async direct IO just return */
7b7a8665 3027 if (!io_end)
97a851ed 3028 return;
4b70df18 3029
88635ca2 3030 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3031 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3032 iocb->private, io_end->inode->i_ino, iocb, offset,
3033 size);
8d5d02e6 3034
b5a7e970 3035 iocb->private = NULL;
4c0425ff
MC
3036 io_end->offset = offset;
3037 io_end->size = size;
7b7a8665 3038 ext4_put_io_end(io_end);
4c0425ff 3039}
c7064ef1 3040
4c0425ff
MC
3041/*
3042 * For ext4 extent files, ext4 will do direct-io write to holes,
3043 * preallocated extents, and those write extend the file, no need to
3044 * fall back to buffered IO.
3045 *
556615dc 3046 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3047 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3048 * still keep the range to write as unwritten.
4c0425ff 3049 *
69c499d1 3050 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3051 * For async direct IO, since the IO may still pending when return, we
25985edc 3052 * set up an end_io call back function, which will do the conversion
8d5d02e6 3053 * when async direct IO completed.
4c0425ff
MC
3054 *
3055 * If the O_DIRECT write will extend the file then add this inode to the
3056 * orphan list. So recovery will truncate it back to the original size
3057 * if the machine crashes during the write.
3058 *
3059 */
6f673763
OS
3060static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3061 loff_t offset)
4c0425ff
MC
3062{
3063 struct file *file = iocb->ki_filp;
3064 struct inode *inode = file->f_mapping->host;
3065 ssize_t ret;
a6cbcd4a 3066 size_t count = iov_iter_count(iter);
69c499d1
TT
3067 int overwrite = 0;
3068 get_block_t *get_block_func = NULL;
3069 int dio_flags = 0;
4c0425ff 3070 loff_t final_size = offset + count;
97a851ed 3071 ext4_io_end_t *io_end = NULL;
729f52c6 3072
69c499d1 3073 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3074 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3075 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3076
69c499d1 3077 BUG_ON(iocb->private == NULL);
4bd809db 3078
e8340395
JK
3079 /*
3080 * Make all waiters for direct IO properly wait also for extent
3081 * conversion. This also disallows race between truncate() and
3082 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3083 */
6f673763 3084 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3085 inode_dio_begin(inode);
e8340395 3086
69c499d1
TT
3087 /* If we do a overwrite dio, i_mutex locking can be released */
3088 overwrite = *((int *)iocb->private);
4bd809db 3089
69c499d1 3090 if (overwrite) {
69c499d1
TT
3091 down_read(&EXT4_I(inode)->i_data_sem);
3092 mutex_unlock(&inode->i_mutex);
3093 }
8d5d02e6 3094
69c499d1
TT
3095 /*
3096 * We could direct write to holes and fallocate.
3097 *
3098 * Allocated blocks to fill the hole are marked as
556615dc 3099 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3100 * the stale data before DIO complete the data IO.
3101 *
3102 * As to previously fallocated extents, ext4 get_block will
3103 * just simply mark the buffer mapped but still keep the
556615dc 3104 * extents unwritten.
69c499d1
TT
3105 *
3106 * For non AIO case, we will convert those unwritten extents
3107 * to written after return back from blockdev_direct_IO.
3108 *
3109 * For async DIO, the conversion needs to be deferred when the
3110 * IO is completed. The ext4 end_io callback function will be
3111 * called to take care of the conversion work. Here for async
3112 * case, we allocate an io_end structure to hook to the iocb.
3113 */
3114 iocb->private = NULL;
3115 ext4_inode_aio_set(inode, NULL);
3116 if (!is_sync_kiocb(iocb)) {
97a851ed 3117 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3118 if (!io_end) {
3119 ret = -ENOMEM;
3120 goto retake_lock;
8b0f165f 3121 }
97a851ed
JK
3122 /*
3123 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3124 */
3125 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3126 /*
69c499d1
TT
3127 * we save the io structure for current async direct
3128 * IO, so that later ext4_map_blocks() could flag the
3129 * io structure whether there is a unwritten extents
3130 * needs to be converted when IO is completed.
8d5d02e6 3131 */
69c499d1
TT
3132 ext4_inode_aio_set(inode, io_end);
3133 }
4bd809db 3134
69c499d1
TT
3135 if (overwrite) {
3136 get_block_func = ext4_get_block_write_nolock;
3137 } else {
3138 get_block_func = ext4_get_block_write;
3139 dio_flags = DIO_LOCKING;
3140 }
2058f83a
MH
3141#ifdef CONFIG_EXT4_FS_ENCRYPTION
3142 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3143#endif
923ae0ff 3144 if (IS_DAX(inode))
a95cd631 3145 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3146 ext4_end_io_dio, dio_flags);
3147 else
17f8c842 3148 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3149 inode->i_sb->s_bdev, iter, offset,
3150 get_block_func,
3151 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3152
69c499d1 3153 /*
97a851ed
JK
3154 * Put our reference to io_end. This can free the io_end structure e.g.
3155 * in sync IO case or in case of error. It can even perform extent
3156 * conversion if all bios we submitted finished before we got here.
3157 * Note that in that case iocb->private can be already set to NULL
3158 * here.
69c499d1 3159 */
97a851ed
JK
3160 if (io_end) {
3161 ext4_inode_aio_set(inode, NULL);
3162 ext4_put_io_end(io_end);
3163 /*
3164 * When no IO was submitted ext4_end_io_dio() was not
3165 * called so we have to put iocb's reference.
3166 */
3167 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3168 WARN_ON(iocb->private != io_end);
3169 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3170 ext4_put_io_end(io_end);
3171 iocb->private = NULL;
3172 }
3173 }
3174 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3175 EXT4_STATE_DIO_UNWRITTEN)) {
3176 int err;
3177 /*
3178 * for non AIO case, since the IO is already
3179 * completed, we could do the conversion right here
3180 */
6b523df4 3181 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3182 offset, ret);
3183 if (err < 0)
3184 ret = err;
3185 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3186 }
4bd809db 3187
69c499d1 3188retake_lock:
6f673763 3189 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3190 inode_dio_end(inode);
69c499d1
TT
3191 /* take i_mutex locking again if we do a ovewrite dio */
3192 if (overwrite) {
69c499d1
TT
3193 up_read(&EXT4_I(inode)->i_data_sem);
3194 mutex_lock(&inode->i_mutex);
4c0425ff 3195 }
8d5d02e6 3196
69c499d1 3197 return ret;
4c0425ff
MC
3198}
3199
22c6186e
OS
3200static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3201 loff_t offset)
4c0425ff
MC
3202{
3203 struct file *file = iocb->ki_filp;
3204 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3205 size_t count = iov_iter_count(iter);
0562e0ba 3206 ssize_t ret;
4c0425ff 3207
2058f83a
MH
3208#ifdef CONFIG_EXT4_FS_ENCRYPTION
3209 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3210 return 0;
3211#endif
3212
84ebd795
TT
3213 /*
3214 * If we are doing data journalling we don't support O_DIRECT
3215 */
3216 if (ext4_should_journal_data(inode))
3217 return 0;
3218
46c7f254
TM
3219 /* Let buffer I/O handle the inline data case. */
3220 if (ext4_has_inline_data(inode))
3221 return 0;
3222
6f673763 3223 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3224 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3225 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3226 else
6f673763
OS
3227 ret = ext4_ind_direct_IO(iocb, iter, offset);
3228 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3229 return ret;
4c0425ff
MC
3230}
3231
ac27a0ec 3232/*
617ba13b 3233 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3234 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3235 * much here because ->set_page_dirty is called under VFS locks. The page is
3236 * not necessarily locked.
3237 *
3238 * We cannot just dirty the page and leave attached buffers clean, because the
3239 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3240 * or jbddirty because all the journalling code will explode.
3241 *
3242 * So what we do is to mark the page "pending dirty" and next time writepage
3243 * is called, propagate that into the buffers appropriately.
3244 */
617ba13b 3245static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3246{
3247 SetPageChecked(page);
3248 return __set_page_dirty_nobuffers(page);
3249}
3250
74d553aa 3251static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3252 .readpage = ext4_readpage,
3253 .readpages = ext4_readpages,
43ce1d23 3254 .writepage = ext4_writepage,
20970ba6 3255 .writepages = ext4_writepages,
8ab22b9a 3256 .write_begin = ext4_write_begin,
74d553aa 3257 .write_end = ext4_write_end,
8ab22b9a
HH
3258 .bmap = ext4_bmap,
3259 .invalidatepage = ext4_invalidatepage,
3260 .releasepage = ext4_releasepage,
3261 .direct_IO = ext4_direct_IO,
3262 .migratepage = buffer_migrate_page,
3263 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3264 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3265};
3266
617ba13b 3267static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3268 .readpage = ext4_readpage,
3269 .readpages = ext4_readpages,
43ce1d23 3270 .writepage = ext4_writepage,
20970ba6 3271 .writepages = ext4_writepages,
8ab22b9a
HH
3272 .write_begin = ext4_write_begin,
3273 .write_end = ext4_journalled_write_end,
3274 .set_page_dirty = ext4_journalled_set_page_dirty,
3275 .bmap = ext4_bmap,
4520fb3c 3276 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3277 .releasepage = ext4_releasepage,
84ebd795 3278 .direct_IO = ext4_direct_IO,
8ab22b9a 3279 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3280 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3281};
3282
64769240 3283static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3284 .readpage = ext4_readpage,
3285 .readpages = ext4_readpages,
43ce1d23 3286 .writepage = ext4_writepage,
20970ba6 3287 .writepages = ext4_writepages,
8ab22b9a
HH
3288 .write_begin = ext4_da_write_begin,
3289 .write_end = ext4_da_write_end,
3290 .bmap = ext4_bmap,
3291 .invalidatepage = ext4_da_invalidatepage,
3292 .releasepage = ext4_releasepage,
3293 .direct_IO = ext4_direct_IO,
3294 .migratepage = buffer_migrate_page,
3295 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3296 .error_remove_page = generic_error_remove_page,
64769240
AT
3297};
3298
617ba13b 3299void ext4_set_aops(struct inode *inode)
ac27a0ec 3300{
3d2b1582
LC
3301 switch (ext4_inode_journal_mode(inode)) {
3302 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3303 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3304 break;
3305 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3306 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3307 break;
3308 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3309 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3310 return;
3d2b1582
LC
3311 default:
3312 BUG();
3313 }
74d553aa
TT
3314 if (test_opt(inode->i_sb, DELALLOC))
3315 inode->i_mapping->a_ops = &ext4_da_aops;
3316 else
3317 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3318}
3319
923ae0ff 3320static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3321 struct address_space *mapping, loff_t from, loff_t length)
3322{
3323 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3324 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3325 unsigned blocksize, pos;
d863dc36
LC
3326 ext4_lblk_t iblock;
3327 struct inode *inode = mapping->host;
3328 struct buffer_head *bh;
3329 struct page *page;
3330 int err = 0;
3331
3332 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3333 mapping_gfp_mask(mapping) & ~__GFP_FS);
3334 if (!page)
3335 return -ENOMEM;
3336
3337 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3338
3339 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3340
3341 if (!page_has_buffers(page))
3342 create_empty_buffers(page, blocksize, 0);
3343
3344 /* Find the buffer that contains "offset" */
3345 bh = page_buffers(page);
3346 pos = blocksize;
3347 while (offset >= pos) {
3348 bh = bh->b_this_page;
3349 iblock++;
3350 pos += blocksize;
3351 }
d863dc36
LC
3352 if (buffer_freed(bh)) {
3353 BUFFER_TRACE(bh, "freed: skip");
3354 goto unlock;
3355 }
d863dc36
LC
3356 if (!buffer_mapped(bh)) {
3357 BUFFER_TRACE(bh, "unmapped");
3358 ext4_get_block(inode, iblock, bh, 0);
3359 /* unmapped? It's a hole - nothing to do */
3360 if (!buffer_mapped(bh)) {
3361 BUFFER_TRACE(bh, "still unmapped");
3362 goto unlock;
3363 }
3364 }
3365
3366 /* Ok, it's mapped. Make sure it's up-to-date */
3367 if (PageUptodate(page))
3368 set_buffer_uptodate(bh);
3369
3370 if (!buffer_uptodate(bh)) {
3371 err = -EIO;
3372 ll_rw_block(READ, 1, &bh);
3373 wait_on_buffer(bh);
3374 /* Uhhuh. Read error. Complain and punt. */
3375 if (!buffer_uptodate(bh))
3376 goto unlock;
c9c7429c
MH
3377 if (S_ISREG(inode->i_mode) &&
3378 ext4_encrypted_inode(inode)) {
3379 /* We expect the key to be set. */
3380 BUG_ON(!ext4_has_encryption_key(inode));
3381 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3382 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3383 }
d863dc36 3384 }
d863dc36
LC
3385 if (ext4_should_journal_data(inode)) {
3386 BUFFER_TRACE(bh, "get write access");
3387 err = ext4_journal_get_write_access(handle, bh);
3388 if (err)
3389 goto unlock;
3390 }
d863dc36 3391 zero_user(page, offset, length);
d863dc36
LC
3392 BUFFER_TRACE(bh, "zeroed end of block");
3393
d863dc36
LC
3394 if (ext4_should_journal_data(inode)) {
3395 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3396 } else {
353eefd3 3397 err = 0;
d863dc36 3398 mark_buffer_dirty(bh);
0713ed0c
LC
3399 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3400 err = ext4_jbd2_file_inode(handle, inode);
3401 }
d863dc36
LC
3402
3403unlock:
3404 unlock_page(page);
3405 page_cache_release(page);
3406 return err;
3407}
3408
923ae0ff
RZ
3409/*
3410 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3411 * starting from file offset 'from'. The range to be zero'd must
3412 * be contained with in one block. If the specified range exceeds
3413 * the end of the block it will be shortened to end of the block
3414 * that cooresponds to 'from'
3415 */
3416static int ext4_block_zero_page_range(handle_t *handle,
3417 struct address_space *mapping, loff_t from, loff_t length)
3418{
3419 struct inode *inode = mapping->host;
3420 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3421 unsigned blocksize = inode->i_sb->s_blocksize;
3422 unsigned max = blocksize - (offset & (blocksize - 1));
3423
3424 /*
3425 * correct length if it does not fall between
3426 * 'from' and the end of the block
3427 */
3428 if (length > max || length < 0)
3429 length = max;
3430
3431 if (IS_DAX(inode))
3432 return dax_zero_page_range(inode, from, length, ext4_get_block);
3433 return __ext4_block_zero_page_range(handle, mapping, from, length);
3434}
3435
94350ab5
MW
3436/*
3437 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3438 * up to the end of the block which corresponds to `from'.
3439 * This required during truncate. We need to physically zero the tail end
3440 * of that block so it doesn't yield old data if the file is later grown.
3441 */
c197855e 3442static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3443 struct address_space *mapping, loff_t from)
3444{
3445 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3446 unsigned length;
3447 unsigned blocksize;
3448 struct inode *inode = mapping->host;
3449
3450 blocksize = inode->i_sb->s_blocksize;
3451 length = blocksize - (offset & (blocksize - 1));
3452
3453 return ext4_block_zero_page_range(handle, mapping, from, length);
3454}
3455
a87dd18c
LC
3456int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3457 loff_t lstart, loff_t length)
3458{
3459 struct super_block *sb = inode->i_sb;
3460 struct address_space *mapping = inode->i_mapping;
e1be3a92 3461 unsigned partial_start, partial_end;
a87dd18c
LC
3462 ext4_fsblk_t start, end;
3463 loff_t byte_end = (lstart + length - 1);
3464 int err = 0;
3465
e1be3a92
LC
3466 partial_start = lstart & (sb->s_blocksize - 1);
3467 partial_end = byte_end & (sb->s_blocksize - 1);
3468
a87dd18c
LC
3469 start = lstart >> sb->s_blocksize_bits;
3470 end = byte_end >> sb->s_blocksize_bits;
3471
3472 /* Handle partial zero within the single block */
e1be3a92
LC
3473 if (start == end &&
3474 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3475 err = ext4_block_zero_page_range(handle, mapping,
3476 lstart, length);
3477 return err;
3478 }
3479 /* Handle partial zero out on the start of the range */
e1be3a92 3480 if (partial_start) {
a87dd18c
LC
3481 err = ext4_block_zero_page_range(handle, mapping,
3482 lstart, sb->s_blocksize);
3483 if (err)
3484 return err;
3485 }
3486 /* Handle partial zero out on the end of the range */
e1be3a92 3487 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3488 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3489 byte_end - partial_end,
3490 partial_end + 1);
a87dd18c
LC
3491 return err;
3492}
3493
91ef4caf
DG
3494int ext4_can_truncate(struct inode *inode)
3495{
91ef4caf
DG
3496 if (S_ISREG(inode->i_mode))
3497 return 1;
3498 if (S_ISDIR(inode->i_mode))
3499 return 1;
3500 if (S_ISLNK(inode->i_mode))
3501 return !ext4_inode_is_fast_symlink(inode);
3502 return 0;
3503}
3504
a4bb6b64
AH
3505/*
3506 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3507 * associated with the given offset and length
3508 *
3509 * @inode: File inode
3510 * @offset: The offset where the hole will begin
3511 * @len: The length of the hole
3512 *
4907cb7b 3513 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3514 */
3515
aeb2817a 3516int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3517{
26a4c0c6
TT
3518 struct super_block *sb = inode->i_sb;
3519 ext4_lblk_t first_block, stop_block;
3520 struct address_space *mapping = inode->i_mapping;
a87dd18c 3521 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3522 handle_t *handle;
3523 unsigned int credits;
3524 int ret = 0;
3525
a4bb6b64 3526 if (!S_ISREG(inode->i_mode))
73355192 3527 return -EOPNOTSUPP;
a4bb6b64 3528
b8a86845 3529 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3530
26a4c0c6
TT
3531 /*
3532 * Write out all dirty pages to avoid race conditions
3533 * Then release them.
3534 */
3535 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3536 ret = filemap_write_and_wait_range(mapping, offset,
3537 offset + length - 1);
3538 if (ret)
3539 return ret;
3540 }
3541
3542 mutex_lock(&inode->i_mutex);
9ef06cec 3543
26a4c0c6
TT
3544 /* No need to punch hole beyond i_size */
3545 if (offset >= inode->i_size)
3546 goto out_mutex;
3547
3548 /*
3549 * If the hole extends beyond i_size, set the hole
3550 * to end after the page that contains i_size
3551 */
3552 if (offset + length > inode->i_size) {
3553 length = inode->i_size +
3554 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3555 offset;
3556 }
3557
a361293f
JK
3558 if (offset & (sb->s_blocksize - 1) ||
3559 (offset + length) & (sb->s_blocksize - 1)) {
3560 /*
3561 * Attach jinode to inode for jbd2 if we do any zeroing of
3562 * partial block
3563 */
3564 ret = ext4_inode_attach_jinode(inode);
3565 if (ret < 0)
3566 goto out_mutex;
3567
3568 }
3569
a87dd18c
LC
3570 first_block_offset = round_up(offset, sb->s_blocksize);
3571 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3572
a87dd18c
LC
3573 /* Now release the pages and zero block aligned part of pages*/
3574 if (last_block_offset > first_block_offset)
3575 truncate_pagecache_range(inode, first_block_offset,
3576 last_block_offset);
26a4c0c6
TT
3577
3578 /* Wait all existing dio workers, newcomers will block on i_mutex */
3579 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3580 inode_dio_wait(inode);
3581
3582 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3583 credits = ext4_writepage_trans_blocks(inode);
3584 else
3585 credits = ext4_blocks_for_truncate(inode);
3586 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3587 if (IS_ERR(handle)) {
3588 ret = PTR_ERR(handle);
3589 ext4_std_error(sb, ret);
3590 goto out_dio;
3591 }
3592
a87dd18c
LC
3593 ret = ext4_zero_partial_blocks(handle, inode, offset,
3594 length);
3595 if (ret)
3596 goto out_stop;
26a4c0c6
TT
3597
3598 first_block = (offset + sb->s_blocksize - 1) >>
3599 EXT4_BLOCK_SIZE_BITS(sb);
3600 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3601
3602 /* If there are no blocks to remove, return now */
3603 if (first_block >= stop_block)
3604 goto out_stop;
3605
3606 down_write(&EXT4_I(inode)->i_data_sem);
3607 ext4_discard_preallocations(inode);
3608
3609 ret = ext4_es_remove_extent(inode, first_block,
3610 stop_block - first_block);
3611 if (ret) {
3612 up_write(&EXT4_I(inode)->i_data_sem);
3613 goto out_stop;
3614 }
3615
3616 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3617 ret = ext4_ext_remove_space(inode, first_block,
3618 stop_block - 1);
3619 else
4f579ae7 3620 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3621 stop_block);
3622
819c4920 3623 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3624 if (IS_SYNC(inode))
3625 ext4_handle_sync(handle);
e251f9bc
MP
3626
3627 /* Now release the pages again to reduce race window */
3628 if (last_block_offset > first_block_offset)
3629 truncate_pagecache_range(inode, first_block_offset,
3630 last_block_offset);
3631
26a4c0c6
TT
3632 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3633 ext4_mark_inode_dirty(handle, inode);
3634out_stop:
3635 ext4_journal_stop(handle);
3636out_dio:
3637 ext4_inode_resume_unlocked_dio(inode);
3638out_mutex:
3639 mutex_unlock(&inode->i_mutex);
3640 return ret;
a4bb6b64
AH
3641}
3642
a361293f
JK
3643int ext4_inode_attach_jinode(struct inode *inode)
3644{
3645 struct ext4_inode_info *ei = EXT4_I(inode);
3646 struct jbd2_inode *jinode;
3647
3648 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3649 return 0;
3650
3651 jinode = jbd2_alloc_inode(GFP_KERNEL);
3652 spin_lock(&inode->i_lock);
3653 if (!ei->jinode) {
3654 if (!jinode) {
3655 spin_unlock(&inode->i_lock);
3656 return -ENOMEM;
3657 }
3658 ei->jinode = jinode;
3659 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3660 jinode = NULL;
3661 }
3662 spin_unlock(&inode->i_lock);
3663 if (unlikely(jinode != NULL))
3664 jbd2_free_inode(jinode);
3665 return 0;
3666}
3667
ac27a0ec 3668/*
617ba13b 3669 * ext4_truncate()
ac27a0ec 3670 *
617ba13b
MC
3671 * We block out ext4_get_block() block instantiations across the entire
3672 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3673 * simultaneously on behalf of the same inode.
3674 *
42b2aa86 3675 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3676 * is one core, guiding principle: the file's tree must always be consistent on
3677 * disk. We must be able to restart the truncate after a crash.
3678 *
3679 * The file's tree may be transiently inconsistent in memory (although it
3680 * probably isn't), but whenever we close off and commit a journal transaction,
3681 * the contents of (the filesystem + the journal) must be consistent and
3682 * restartable. It's pretty simple, really: bottom up, right to left (although
3683 * left-to-right works OK too).
3684 *
3685 * Note that at recovery time, journal replay occurs *before* the restart of
3686 * truncate against the orphan inode list.
3687 *
3688 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3689 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3690 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3691 * ext4_truncate() to have another go. So there will be instantiated blocks
3692 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3693 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3694 * ext4_truncate() run will find them and release them.
ac27a0ec 3695 */
617ba13b 3696void ext4_truncate(struct inode *inode)
ac27a0ec 3697{
819c4920
TT
3698 struct ext4_inode_info *ei = EXT4_I(inode);
3699 unsigned int credits;
3700 handle_t *handle;
3701 struct address_space *mapping = inode->i_mapping;
819c4920 3702
19b5ef61
TT
3703 /*
3704 * There is a possibility that we're either freeing the inode
e04027e8 3705 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3706 * have i_mutex locked because it's not necessary.
3707 */
3708 if (!(inode->i_state & (I_NEW|I_FREEING)))
3709 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3710 trace_ext4_truncate_enter(inode);
3711
91ef4caf 3712 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3713 return;
3714
12e9b892 3715 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3716
5534fb5b 3717 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3718 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3719
aef1c851
TM
3720 if (ext4_has_inline_data(inode)) {
3721 int has_inline = 1;
3722
3723 ext4_inline_data_truncate(inode, &has_inline);
3724 if (has_inline)
3725 return;
3726 }
3727
a361293f
JK
3728 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3729 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3730 if (ext4_inode_attach_jinode(inode) < 0)
3731 return;
3732 }
3733
819c4920
TT
3734 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3735 credits = ext4_writepage_trans_blocks(inode);
3736 else
3737 credits = ext4_blocks_for_truncate(inode);
3738
3739 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3740 if (IS_ERR(handle)) {
3741 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3742 return;
3743 }
3744
eb3544c6
LC
3745 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3746 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3747
3748 /*
3749 * We add the inode to the orphan list, so that if this
3750 * truncate spans multiple transactions, and we crash, we will
3751 * resume the truncate when the filesystem recovers. It also
3752 * marks the inode dirty, to catch the new size.
3753 *
3754 * Implication: the file must always be in a sane, consistent
3755 * truncatable state while each transaction commits.
3756 */
3757 if (ext4_orphan_add(handle, inode))
3758 goto out_stop;
3759
3760 down_write(&EXT4_I(inode)->i_data_sem);
3761
3762 ext4_discard_preallocations(inode);
3763
ff9893dc 3764 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3765 ext4_ext_truncate(handle, inode);
ff9893dc 3766 else
819c4920
TT
3767 ext4_ind_truncate(handle, inode);
3768
3769 up_write(&ei->i_data_sem);
3770
3771 if (IS_SYNC(inode))
3772 ext4_handle_sync(handle);
3773
3774out_stop:
3775 /*
3776 * If this was a simple ftruncate() and the file will remain alive,
3777 * then we need to clear up the orphan record which we created above.
3778 * However, if this was a real unlink then we were called by
58d86a50 3779 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3780 * orphan info for us.
3781 */
3782 if (inode->i_nlink)
3783 ext4_orphan_del(handle, inode);
3784
3785 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3786 ext4_mark_inode_dirty(handle, inode);
3787 ext4_journal_stop(handle);
ac27a0ec 3788
0562e0ba 3789 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3790}
3791
ac27a0ec 3792/*
617ba13b 3793 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3794 * underlying buffer_head on success. If 'in_mem' is true, we have all
3795 * data in memory that is needed to recreate the on-disk version of this
3796 * inode.
3797 */
617ba13b
MC
3798static int __ext4_get_inode_loc(struct inode *inode,
3799 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3800{
240799cd
TT
3801 struct ext4_group_desc *gdp;
3802 struct buffer_head *bh;
3803 struct super_block *sb = inode->i_sb;
3804 ext4_fsblk_t block;
3805 int inodes_per_block, inode_offset;
3806
3a06d778 3807 iloc->bh = NULL;
240799cd
TT
3808 if (!ext4_valid_inum(sb, inode->i_ino))
3809 return -EIO;
ac27a0ec 3810
240799cd
TT
3811 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3812 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3813 if (!gdp)
ac27a0ec
DK
3814 return -EIO;
3815
240799cd
TT
3816 /*
3817 * Figure out the offset within the block group inode table
3818 */
00d09882 3819 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3820 inode_offset = ((inode->i_ino - 1) %
3821 EXT4_INODES_PER_GROUP(sb));
3822 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3823 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3824
3825 bh = sb_getblk(sb, block);
aebf0243 3826 if (unlikely(!bh))
860d21e2 3827 return -ENOMEM;
ac27a0ec
DK
3828 if (!buffer_uptodate(bh)) {
3829 lock_buffer(bh);
9c83a923
HK
3830
3831 /*
3832 * If the buffer has the write error flag, we have failed
3833 * to write out another inode in the same block. In this
3834 * case, we don't have to read the block because we may
3835 * read the old inode data successfully.
3836 */
3837 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3838 set_buffer_uptodate(bh);
3839
ac27a0ec
DK
3840 if (buffer_uptodate(bh)) {
3841 /* someone brought it uptodate while we waited */
3842 unlock_buffer(bh);
3843 goto has_buffer;
3844 }
3845
3846 /*
3847 * If we have all information of the inode in memory and this
3848 * is the only valid inode in the block, we need not read the
3849 * block.
3850 */
3851 if (in_mem) {
3852 struct buffer_head *bitmap_bh;
240799cd 3853 int i, start;
ac27a0ec 3854
240799cd 3855 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3856
240799cd
TT
3857 /* Is the inode bitmap in cache? */
3858 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3859 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3860 goto make_io;
3861
3862 /*
3863 * If the inode bitmap isn't in cache then the
3864 * optimisation may end up performing two reads instead
3865 * of one, so skip it.
3866 */
3867 if (!buffer_uptodate(bitmap_bh)) {
3868 brelse(bitmap_bh);
3869 goto make_io;
3870 }
240799cd 3871 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3872 if (i == inode_offset)
3873 continue;
617ba13b 3874 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3875 break;
3876 }
3877 brelse(bitmap_bh);
240799cd 3878 if (i == start + inodes_per_block) {
ac27a0ec
DK
3879 /* all other inodes are free, so skip I/O */
3880 memset(bh->b_data, 0, bh->b_size);
3881 set_buffer_uptodate(bh);
3882 unlock_buffer(bh);
3883 goto has_buffer;
3884 }
3885 }
3886
3887make_io:
240799cd
TT
3888 /*
3889 * If we need to do any I/O, try to pre-readahead extra
3890 * blocks from the inode table.
3891 */
3892 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3893 ext4_fsblk_t b, end, table;
3894 unsigned num;
0d606e2c 3895 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3896
3897 table = ext4_inode_table(sb, gdp);
b713a5ec 3898 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3899 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3900 if (table > b)
3901 b = table;
0d606e2c 3902 end = b + ra_blks;
240799cd 3903 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3904 if (ext4_has_group_desc_csum(sb))
560671a0 3905 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3906 table += num / inodes_per_block;
3907 if (end > table)
3908 end = table;
3909 while (b <= end)
3910 sb_breadahead(sb, b++);
3911 }
3912
ac27a0ec
DK
3913 /*
3914 * There are other valid inodes in the buffer, this inode
3915 * has in-inode xattrs, or we don't have this inode in memory.
3916 * Read the block from disk.
3917 */
0562e0ba 3918 trace_ext4_load_inode(inode);
ac27a0ec
DK
3919 get_bh(bh);
3920 bh->b_end_io = end_buffer_read_sync;
65299a3b 3921 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3922 wait_on_buffer(bh);
3923 if (!buffer_uptodate(bh)) {
c398eda0
TT
3924 EXT4_ERROR_INODE_BLOCK(inode, block,
3925 "unable to read itable block");
ac27a0ec
DK
3926 brelse(bh);
3927 return -EIO;
3928 }
3929 }
3930has_buffer:
3931 iloc->bh = bh;
3932 return 0;
3933}
3934
617ba13b 3935int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3936{
3937 /* We have all inode data except xattrs in memory here. */
617ba13b 3938 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3939 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3940}
3941
617ba13b 3942void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3943{
617ba13b 3944 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3945 unsigned int new_fl = 0;
ac27a0ec 3946
617ba13b 3947 if (flags & EXT4_SYNC_FL)
00a1a053 3948 new_fl |= S_SYNC;
617ba13b 3949 if (flags & EXT4_APPEND_FL)
00a1a053 3950 new_fl |= S_APPEND;
617ba13b 3951 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3952 new_fl |= S_IMMUTABLE;
617ba13b 3953 if (flags & EXT4_NOATIME_FL)
00a1a053 3954 new_fl |= S_NOATIME;
617ba13b 3955 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3956 new_fl |= S_DIRSYNC;
923ae0ff
RZ
3957 if (test_opt(inode->i_sb, DAX))
3958 new_fl |= S_DAX;
5f16f322 3959 inode_set_flags(inode, new_fl,
923ae0ff 3960 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
3961}
3962
ff9ddf7e
JK
3963/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3964void ext4_get_inode_flags(struct ext4_inode_info *ei)
3965{
84a8dce2
DM
3966 unsigned int vfs_fl;
3967 unsigned long old_fl, new_fl;
3968
3969 do {
3970 vfs_fl = ei->vfs_inode.i_flags;
3971 old_fl = ei->i_flags;
3972 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3973 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3974 EXT4_DIRSYNC_FL);
3975 if (vfs_fl & S_SYNC)
3976 new_fl |= EXT4_SYNC_FL;
3977 if (vfs_fl & S_APPEND)
3978 new_fl |= EXT4_APPEND_FL;
3979 if (vfs_fl & S_IMMUTABLE)
3980 new_fl |= EXT4_IMMUTABLE_FL;
3981 if (vfs_fl & S_NOATIME)
3982 new_fl |= EXT4_NOATIME_FL;
3983 if (vfs_fl & S_DIRSYNC)
3984 new_fl |= EXT4_DIRSYNC_FL;
3985 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3986}
de9a55b8 3987
0fc1b451 3988static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3989 struct ext4_inode_info *ei)
0fc1b451
AK
3990{
3991 blkcnt_t i_blocks ;
8180a562
AK
3992 struct inode *inode = &(ei->vfs_inode);
3993 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3994
3995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3996 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3997 /* we are using combined 48 bit field */
3998 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3999 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4000 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4001 /* i_blocks represent file system block size */
4002 return i_blocks << (inode->i_blkbits - 9);
4003 } else {
4004 return i_blocks;
4005 }
0fc1b451
AK
4006 } else {
4007 return le32_to_cpu(raw_inode->i_blocks_lo);
4008 }
4009}
ff9ddf7e 4010
152a7b0a
TM
4011static inline void ext4_iget_extra_inode(struct inode *inode,
4012 struct ext4_inode *raw_inode,
4013 struct ext4_inode_info *ei)
4014{
4015 __le32 *magic = (void *)raw_inode +
4016 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4017 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4018 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4019 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4020 } else
4021 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4022}
4023
1d1fe1ee 4024struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4025{
617ba13b
MC
4026 struct ext4_iloc iloc;
4027 struct ext4_inode *raw_inode;
1d1fe1ee 4028 struct ext4_inode_info *ei;
1d1fe1ee 4029 struct inode *inode;
b436b9be 4030 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4031 long ret;
ac27a0ec 4032 int block;
08cefc7a
EB
4033 uid_t i_uid;
4034 gid_t i_gid;
ac27a0ec 4035
1d1fe1ee
DH
4036 inode = iget_locked(sb, ino);
4037 if (!inode)
4038 return ERR_PTR(-ENOMEM);
4039 if (!(inode->i_state & I_NEW))
4040 return inode;
4041
4042 ei = EXT4_I(inode);
7dc57615 4043 iloc.bh = NULL;
ac27a0ec 4044
1d1fe1ee
DH
4045 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4046 if (ret < 0)
ac27a0ec 4047 goto bad_inode;
617ba13b 4048 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4049
4050 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4051 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4052 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4053 EXT4_INODE_SIZE(inode->i_sb)) {
4054 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4055 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4056 EXT4_INODE_SIZE(inode->i_sb));
4057 ret = -EIO;
4058 goto bad_inode;
4059 }
4060 } else
4061 ei->i_extra_isize = 0;
4062
4063 /* Precompute checksum seed for inode metadata */
9aa5d32b 4064 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4065 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066 __u32 csum;
4067 __le32 inum = cpu_to_le32(inode->i_ino);
4068 __le32 gen = raw_inode->i_generation;
4069 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070 sizeof(inum));
4071 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072 sizeof(gen));
4073 }
4074
4075 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076 EXT4_ERROR_INODE(inode, "checksum invalid");
4077 ret = -EIO;
4078 goto bad_inode;
4079 }
4080
ac27a0ec 4081 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4082 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4084 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4085 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4087 }
08cefc7a
EB
4088 i_uid_write(inode, i_uid);
4089 i_gid_write(inode, i_gid);
bfe86848 4090 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4091
353eb83c 4092 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4093 ei->i_inline_off = 0;
ac27a0ec
DK
4094 ei->i_dir_start_lookup = 0;
4095 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096 /* We now have enough fields to check if the inode was active or not.
4097 * This is needed because nfsd might try to access dead inodes
4098 * the test is that same one that e2fsck uses
4099 * NeilBrown 1999oct15
4100 */
4101 if (inode->i_nlink == 0) {
393d1d1d
DTB
4102 if ((inode->i_mode == 0 ||
4103 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4105 /* this inode is deleted */
1d1fe1ee 4106 ret = -ESTALE;
ac27a0ec
DK
4107 goto bad_inode;
4108 }
4109 /* The only unlinked inodes we let through here have
4110 * valid i_mode and are being read by the orphan
4111 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4112 * the process of deleting those.
4113 * OR it is the EXT4_BOOT_LOADER_INO which is
4114 * not initialized on a new filesystem. */
ac27a0ec 4115 }
ac27a0ec 4116 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4117 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4118 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4119 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4120 ei->i_file_acl |=
4121 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4122 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4123 ei->i_disksize = inode->i_size;
a9e7f447
DM
4124#ifdef CONFIG_QUOTA
4125 ei->i_reserved_quota = 0;
4126#endif
ac27a0ec
DK
4127 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128 ei->i_block_group = iloc.block_group;
a4912123 4129 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4130 /*
4131 * NOTE! The in-memory inode i_data array is in little-endian order
4132 * even on big-endian machines: we do NOT byteswap the block numbers!
4133 */
617ba13b 4134 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4135 ei->i_data[block] = raw_inode->i_block[block];
4136 INIT_LIST_HEAD(&ei->i_orphan);
4137
b436b9be
JK
4138 /*
4139 * Set transaction id's of transactions that have to be committed
4140 * to finish f[data]sync. We set them to currently running transaction
4141 * as we cannot be sure that the inode or some of its metadata isn't
4142 * part of the transaction - the inode could have been reclaimed and
4143 * now it is reread from disk.
4144 */
4145 if (journal) {
4146 transaction_t *transaction;
4147 tid_t tid;
4148
a931da6a 4149 read_lock(&journal->j_state_lock);
b436b9be
JK
4150 if (journal->j_running_transaction)
4151 transaction = journal->j_running_transaction;
4152 else
4153 transaction = journal->j_committing_transaction;
4154 if (transaction)
4155 tid = transaction->t_tid;
4156 else
4157 tid = journal->j_commit_sequence;
a931da6a 4158 read_unlock(&journal->j_state_lock);
b436b9be
JK
4159 ei->i_sync_tid = tid;
4160 ei->i_datasync_tid = tid;
4161 }
4162
0040d987 4163 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4164 if (ei->i_extra_isize == 0) {
4165 /* The extra space is currently unused. Use it. */
617ba13b
MC
4166 ei->i_extra_isize = sizeof(struct ext4_inode) -
4167 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4168 } else {
152a7b0a 4169 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4170 }
814525f4 4171 }
ac27a0ec 4172
ef7f3835
KS
4173 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177
ed3654eb 4178 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4179 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4180 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182 inode->i_version |=
4183 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184 }
25ec56b5
JNC
4185 }
4186
c4b5a614 4187 ret = 0;
485c26ec 4188 if (ei->i_file_acl &&
1032988c 4189 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4190 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191 ei->i_file_acl);
485c26ec
TT
4192 ret = -EIO;
4193 goto bad_inode;
f19d5870
TM
4194 } else if (!ext4_has_inline_data(inode)) {
4195 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197 (S_ISLNK(inode->i_mode) &&
4198 !ext4_inode_is_fast_symlink(inode))))
4199 /* Validate extent which is part of inode */
4200 ret = ext4_ext_check_inode(inode);
4201 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202 (S_ISLNK(inode->i_mode) &&
4203 !ext4_inode_is_fast_symlink(inode))) {
4204 /* Validate block references which are part of inode */
4205 ret = ext4_ind_check_inode(inode);
4206 }
fe2c8191 4207 }
567f3e9a 4208 if (ret)
de9a55b8 4209 goto bad_inode;
7a262f7c 4210
ac27a0ec 4211 if (S_ISREG(inode->i_mode)) {
617ba13b 4212 inode->i_op = &ext4_file_inode_operations;
be64f884 4213 inode->i_fop = &ext4_file_operations;
617ba13b 4214 ext4_set_aops(inode);
ac27a0ec 4215 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4216 inode->i_op = &ext4_dir_inode_operations;
4217 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4218 } else if (S_ISLNK(inode->i_mode)) {
f348c252
TT
4219 if (ext4_inode_is_fast_symlink(inode) &&
4220 !ext4_encrypted_inode(inode)) {
617ba13b 4221 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4222 nd_terminate_link(ei->i_data, inode->i_size,
4223 sizeof(ei->i_data) - 1);
4224 } else {
617ba13b
MC
4225 inode->i_op = &ext4_symlink_inode_operations;
4226 ext4_set_aops(inode);
ac27a0ec 4227 }
563bdd61
TT
4228 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4229 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4230 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4231 if (raw_inode->i_block[0])
4232 init_special_inode(inode, inode->i_mode,
4233 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4234 else
4235 init_special_inode(inode, inode->i_mode,
4236 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4237 } else if (ino == EXT4_BOOT_LOADER_INO) {
4238 make_bad_inode(inode);
563bdd61 4239 } else {
563bdd61 4240 ret = -EIO;
24676da4 4241 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4242 goto bad_inode;
ac27a0ec 4243 }
af5bc92d 4244 brelse(iloc.bh);
617ba13b 4245 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4246 unlock_new_inode(inode);
4247 return inode;
ac27a0ec
DK
4248
4249bad_inode:
567f3e9a 4250 brelse(iloc.bh);
1d1fe1ee
DH
4251 iget_failed(inode);
4252 return ERR_PTR(ret);
ac27a0ec
DK
4253}
4254
f4bb2981
TT
4255struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4256{
4257 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4258 return ERR_PTR(-EIO);
4259 return ext4_iget(sb, ino);
4260}
4261
0fc1b451
AK
4262static int ext4_inode_blocks_set(handle_t *handle,
4263 struct ext4_inode *raw_inode,
4264 struct ext4_inode_info *ei)
4265{
4266 struct inode *inode = &(ei->vfs_inode);
4267 u64 i_blocks = inode->i_blocks;
4268 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4269
4270 if (i_blocks <= ~0U) {
4271 /*
4907cb7b 4272 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4273 * as multiple of 512 bytes
4274 */
8180a562 4275 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4276 raw_inode->i_blocks_high = 0;
84a8dce2 4277 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4278 return 0;
4279 }
4280 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4281 return -EFBIG;
4282
4283 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4284 /*
4285 * i_blocks can be represented in a 48 bit variable
4286 * as multiple of 512 bytes
4287 */
8180a562 4288 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4289 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4290 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4291 } else {
84a8dce2 4292 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4293 /* i_block is stored in file system block size */
4294 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4295 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4296 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4297 }
f287a1a5 4298 return 0;
0fc1b451
AK
4299}
4300
a26f4992
TT
4301struct other_inode {
4302 unsigned long orig_ino;
4303 struct ext4_inode *raw_inode;
4304};
4305
4306static int other_inode_match(struct inode * inode, unsigned long ino,
4307 void *data)
4308{
4309 struct other_inode *oi = (struct other_inode *) data;
4310
4311 if ((inode->i_ino != ino) ||
4312 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4313 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4314 ((inode->i_state & I_DIRTY_TIME) == 0))
4315 return 0;
4316 spin_lock(&inode->i_lock);
4317 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4318 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4319 (inode->i_state & I_DIRTY_TIME)) {
4320 struct ext4_inode_info *ei = EXT4_I(inode);
4321
4322 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4323 spin_unlock(&inode->i_lock);
4324
4325 spin_lock(&ei->i_raw_lock);
4326 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4327 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4328 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4329 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4330 spin_unlock(&ei->i_raw_lock);
4331 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4332 return -1;
4333 }
4334 spin_unlock(&inode->i_lock);
4335 return -1;
4336}
4337
4338/*
4339 * Opportunistically update the other time fields for other inodes in
4340 * the same inode table block.
4341 */
4342static void ext4_update_other_inodes_time(struct super_block *sb,
4343 unsigned long orig_ino, char *buf)
4344{
4345 struct other_inode oi;
4346 unsigned long ino;
4347 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4348 int inode_size = EXT4_INODE_SIZE(sb);
4349
4350 oi.orig_ino = orig_ino;
8f4d8558 4351 ino = (orig_ino & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4352 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4353 if (ino == orig_ino)
4354 continue;
4355 oi.raw_inode = (struct ext4_inode *) buf;
4356 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4357 }
4358}
4359
ac27a0ec
DK
4360/*
4361 * Post the struct inode info into an on-disk inode location in the
4362 * buffer-cache. This gobbles the caller's reference to the
4363 * buffer_head in the inode location struct.
4364 *
4365 * The caller must have write access to iloc->bh.
4366 */
617ba13b 4367static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4368 struct inode *inode,
830156c7 4369 struct ext4_iloc *iloc)
ac27a0ec 4370{
617ba13b
MC
4371 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4372 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4373 struct buffer_head *bh = iloc->bh;
202ee5df 4374 struct super_block *sb = inode->i_sb;
ac27a0ec 4375 int err = 0, rc, block;
202ee5df 4376 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4377 uid_t i_uid;
4378 gid_t i_gid;
ac27a0ec 4379
202ee5df
TT
4380 spin_lock(&ei->i_raw_lock);
4381
4382 /* For fields not tracked in the in-memory inode,
ac27a0ec 4383 * initialise them to zero for new inodes. */
19f5fb7a 4384 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4385 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4386
ff9ddf7e 4387 ext4_get_inode_flags(ei);
ac27a0ec 4388 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4389 i_uid = i_uid_read(inode);
4390 i_gid = i_gid_read(inode);
af5bc92d 4391 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4392 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4393 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4394/*
4395 * Fix up interoperability with old kernels. Otherwise, old inodes get
4396 * re-used with the upper 16 bits of the uid/gid intact
4397 */
af5bc92d 4398 if (!ei->i_dtime) {
ac27a0ec 4399 raw_inode->i_uid_high =
08cefc7a 4400 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4401 raw_inode->i_gid_high =
08cefc7a 4402 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4403 } else {
4404 raw_inode->i_uid_high = 0;
4405 raw_inode->i_gid_high = 0;
4406 }
4407 } else {
08cefc7a
EB
4408 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4409 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4410 raw_inode->i_uid_high = 0;
4411 raw_inode->i_gid_high = 0;
4412 }
4413 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4414
4415 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4416 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4417 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4418 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4419
bce92d56
LX
4420 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4421 if (err) {
202ee5df 4422 spin_unlock(&ei->i_raw_lock);
0fc1b451 4423 goto out_brelse;
202ee5df 4424 }
ac27a0ec 4425 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4426 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4427 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4428 raw_inode->i_file_acl_high =
4429 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4430 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4431 if (ei->i_disksize != ext4_isize(raw_inode)) {
4432 ext4_isize_set(raw_inode, ei->i_disksize);
4433 need_datasync = 1;
4434 }
a48380f7 4435 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4436 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4437 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4438 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4439 cpu_to_le32(EXT4_GOOD_OLD_REV))
4440 set_large_file = 1;
ac27a0ec
DK
4441 }
4442 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4443 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4444 if (old_valid_dev(inode->i_rdev)) {
4445 raw_inode->i_block[0] =
4446 cpu_to_le32(old_encode_dev(inode->i_rdev));
4447 raw_inode->i_block[1] = 0;
4448 } else {
4449 raw_inode->i_block[0] = 0;
4450 raw_inode->i_block[1] =
4451 cpu_to_le32(new_encode_dev(inode->i_rdev));
4452 raw_inode->i_block[2] = 0;
4453 }
f19d5870 4454 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4455 for (block = 0; block < EXT4_N_BLOCKS; block++)
4456 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4457 }
ac27a0ec 4458
ed3654eb 4459 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4460 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4461 if (ei->i_extra_isize) {
4462 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4463 raw_inode->i_version_hi =
4464 cpu_to_le32(inode->i_version >> 32);
4465 raw_inode->i_extra_isize =
4466 cpu_to_le16(ei->i_extra_isize);
4467 }
25ec56b5 4468 }
814525f4 4469 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4470 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4471 if (inode->i_sb->s_flags & MS_LAZYTIME)
4472 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4473 bh->b_data);
202ee5df 4474
830156c7 4475 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4476 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4477 if (!err)
4478 err = rc;
19f5fb7a 4479 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4480 if (set_large_file) {
5d601255 4481 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4482 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4483 if (err)
4484 goto out_brelse;
4485 ext4_update_dynamic_rev(sb);
4486 EXT4_SET_RO_COMPAT_FEATURE(sb,
4487 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4488 ext4_handle_sync(handle);
4489 err = ext4_handle_dirty_super(handle, sb);
4490 }
b71fc079 4491 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4492out_brelse:
af5bc92d 4493 brelse(bh);
617ba13b 4494 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4495 return err;
4496}
4497
4498/*
617ba13b 4499 * ext4_write_inode()
ac27a0ec
DK
4500 *
4501 * We are called from a few places:
4502 *
87f7e416 4503 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4504 * Here, there will be no transaction running. We wait for any running
4907cb7b 4505 * transaction to commit.
ac27a0ec 4506 *
87f7e416
TT
4507 * - Within flush work (sys_sync(), kupdate and such).
4508 * We wait on commit, if told to.
ac27a0ec 4509 *
87f7e416
TT
4510 * - Within iput_final() -> write_inode_now()
4511 * We wait on commit, if told to.
ac27a0ec
DK
4512 *
4513 * In all cases it is actually safe for us to return without doing anything,
4514 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4515 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4516 * writeback.
ac27a0ec
DK
4517 *
4518 * Note that we are absolutely dependent upon all inode dirtiers doing the
4519 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4520 * which we are interested.
4521 *
4522 * It would be a bug for them to not do this. The code:
4523 *
4524 * mark_inode_dirty(inode)
4525 * stuff();
4526 * inode->i_size = expr;
4527 *
87f7e416
TT
4528 * is in error because write_inode() could occur while `stuff()' is running,
4529 * and the new i_size will be lost. Plus the inode will no longer be on the
4530 * superblock's dirty inode list.
ac27a0ec 4531 */
a9185b41 4532int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4533{
91ac6f43
FM
4534 int err;
4535
87f7e416 4536 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4537 return 0;
4538
91ac6f43
FM
4539 if (EXT4_SB(inode->i_sb)->s_journal) {
4540 if (ext4_journal_current_handle()) {
4541 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4542 dump_stack();
4543 return -EIO;
4544 }
ac27a0ec 4545
10542c22
JK
4546 /*
4547 * No need to force transaction in WB_SYNC_NONE mode. Also
4548 * ext4_sync_fs() will force the commit after everything is
4549 * written.
4550 */
4551 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4552 return 0;
4553
4554 err = ext4_force_commit(inode->i_sb);
4555 } else {
4556 struct ext4_iloc iloc;
ac27a0ec 4557
8b472d73 4558 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4559 if (err)
4560 return err;
10542c22
JK
4561 /*
4562 * sync(2) will flush the whole buffer cache. No need to do
4563 * it here separately for each inode.
4564 */
4565 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4566 sync_dirty_buffer(iloc.bh);
4567 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4568 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4569 "IO error syncing inode");
830156c7
FM
4570 err = -EIO;
4571 }
fd2dd9fb 4572 brelse(iloc.bh);
91ac6f43
FM
4573 }
4574 return err;
ac27a0ec
DK
4575}
4576
53e87268
JK
4577/*
4578 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4579 * buffers that are attached to a page stradding i_size and are undergoing
4580 * commit. In that case we have to wait for commit to finish and try again.
4581 */
4582static void ext4_wait_for_tail_page_commit(struct inode *inode)
4583{
4584 struct page *page;
4585 unsigned offset;
4586 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4587 tid_t commit_tid = 0;
4588 int ret;
4589
4590 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4591 /*
4592 * All buffers in the last page remain valid? Then there's nothing to
4593 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4594 * blocksize case
4595 */
4596 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4597 return;
4598 while (1) {
4599 page = find_lock_page(inode->i_mapping,
4600 inode->i_size >> PAGE_CACHE_SHIFT);
4601 if (!page)
4602 return;
ca99fdd2
LC
4603 ret = __ext4_journalled_invalidatepage(page, offset,
4604 PAGE_CACHE_SIZE - offset);
53e87268
JK
4605 unlock_page(page);
4606 page_cache_release(page);
4607 if (ret != -EBUSY)
4608 return;
4609 commit_tid = 0;
4610 read_lock(&journal->j_state_lock);
4611 if (journal->j_committing_transaction)
4612 commit_tid = journal->j_committing_transaction->t_tid;
4613 read_unlock(&journal->j_state_lock);
4614 if (commit_tid)
4615 jbd2_log_wait_commit(journal, commit_tid);
4616 }
4617}
4618
ac27a0ec 4619/*
617ba13b 4620 * ext4_setattr()
ac27a0ec
DK
4621 *
4622 * Called from notify_change.
4623 *
4624 * We want to trap VFS attempts to truncate the file as soon as
4625 * possible. In particular, we want to make sure that when the VFS
4626 * shrinks i_size, we put the inode on the orphan list and modify
4627 * i_disksize immediately, so that during the subsequent flushing of
4628 * dirty pages and freeing of disk blocks, we can guarantee that any
4629 * commit will leave the blocks being flushed in an unused state on
4630 * disk. (On recovery, the inode will get truncated and the blocks will
4631 * be freed, so we have a strong guarantee that no future commit will
4632 * leave these blocks visible to the user.)
4633 *
678aaf48
JK
4634 * Another thing we have to assure is that if we are in ordered mode
4635 * and inode is still attached to the committing transaction, we must
4636 * we start writeout of all the dirty pages which are being truncated.
4637 * This way we are sure that all the data written in the previous
4638 * transaction are already on disk (truncate waits for pages under
4639 * writeback).
4640 *
4641 * Called with inode->i_mutex down.
ac27a0ec 4642 */
617ba13b 4643int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4644{
2b0143b5 4645 struct inode *inode = d_inode(dentry);
ac27a0ec 4646 int error, rc = 0;
3d287de3 4647 int orphan = 0;
ac27a0ec
DK
4648 const unsigned int ia_valid = attr->ia_valid;
4649
4650 error = inode_change_ok(inode, attr);
4651 if (error)
4652 return error;
4653
12755627 4654 if (is_quota_modification(inode, attr))
871a2931 4655 dquot_initialize(inode);
08cefc7a
EB
4656 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4657 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4658 handle_t *handle;
4659
4660 /* (user+group)*(old+new) structure, inode write (sb,
4661 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4662 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4663 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4664 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4665 if (IS_ERR(handle)) {
4666 error = PTR_ERR(handle);
4667 goto err_out;
4668 }
b43fa828 4669 error = dquot_transfer(inode, attr);
ac27a0ec 4670 if (error) {
617ba13b 4671 ext4_journal_stop(handle);
ac27a0ec
DK
4672 return error;
4673 }
4674 /* Update corresponding info in inode so that everything is in
4675 * one transaction */
4676 if (attr->ia_valid & ATTR_UID)
4677 inode->i_uid = attr->ia_uid;
4678 if (attr->ia_valid & ATTR_GID)
4679 inode->i_gid = attr->ia_gid;
617ba13b
MC
4680 error = ext4_mark_inode_dirty(handle, inode);
4681 ext4_journal_stop(handle);
ac27a0ec
DK
4682 }
4683
5208386c
JK
4684 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4685 handle_t *handle;
562c72aa 4686
12e9b892 4687 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4688 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4689
0c095c7f
TT
4690 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4691 return -EFBIG;
e2b46574 4692 }
dff6efc3
CH
4693
4694 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4695 inode_inc_iversion(inode);
4696
5208386c
JK
4697 if (S_ISREG(inode->i_mode) &&
4698 (attr->ia_size < inode->i_size)) {
4699 if (ext4_should_order_data(inode)) {
4700 error = ext4_begin_ordered_truncate(inode,
678aaf48 4701 attr->ia_size);
5208386c 4702 if (error)
678aaf48 4703 goto err_out;
5208386c
JK
4704 }
4705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4706 if (IS_ERR(handle)) {
4707 error = PTR_ERR(handle);
4708 goto err_out;
4709 }
4710 if (ext4_handle_valid(handle)) {
4711 error = ext4_orphan_add(handle, inode);
4712 orphan = 1;
4713 }
90e775b7 4714 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4715 EXT4_I(inode)->i_disksize = attr->ia_size;
4716 rc = ext4_mark_inode_dirty(handle, inode);
4717 if (!error)
4718 error = rc;
90e775b7
JK
4719 /*
4720 * We have to update i_size under i_data_sem together
4721 * with i_disksize to avoid races with writeback code
4722 * running ext4_wb_update_i_disksize().
4723 */
4724 if (!error)
4725 i_size_write(inode, attr->ia_size);
4726 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4727 ext4_journal_stop(handle);
4728 if (error) {
4729 ext4_orphan_del(NULL, inode);
678aaf48
JK
4730 goto err_out;
4731 }
d6320cbf
JK
4732 } else {
4733 loff_t oldsize = inode->i_size;
4734
90e775b7 4735 i_size_write(inode, attr->ia_size);
d6320cbf
JK
4736 pagecache_isize_extended(inode, oldsize, inode->i_size);
4737 }
53e87268 4738
5208386c
JK
4739 /*
4740 * Blocks are going to be removed from the inode. Wait
4741 * for dio in flight. Temporarily disable
4742 * dioread_nolock to prevent livelock.
4743 */
4744 if (orphan) {
4745 if (!ext4_should_journal_data(inode)) {
4746 ext4_inode_block_unlocked_dio(inode);
4747 inode_dio_wait(inode);
4748 ext4_inode_resume_unlocked_dio(inode);
4749 } else
4750 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4751 }
5208386c
JK
4752 /*
4753 * Truncate pagecache after we've waited for commit
4754 * in data=journal mode to make pages freeable.
4755 */
923ae0ff 4756 truncate_pagecache(inode, inode->i_size);
072bd7ea 4757 }
5208386c
JK
4758 /*
4759 * We want to call ext4_truncate() even if attr->ia_size ==
4760 * inode->i_size for cases like truncation of fallocated space
4761 */
4762 if (attr->ia_valid & ATTR_SIZE)
4763 ext4_truncate(inode);
ac27a0ec 4764
1025774c
CH
4765 if (!rc) {
4766 setattr_copy(inode, attr);
4767 mark_inode_dirty(inode);
4768 }
4769
4770 /*
4771 * If the call to ext4_truncate failed to get a transaction handle at
4772 * all, we need to clean up the in-core orphan list manually.
4773 */
3d287de3 4774 if (orphan && inode->i_nlink)
617ba13b 4775 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4776
4777 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4778 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4779
4780err_out:
617ba13b 4781 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4782 if (!error)
4783 error = rc;
4784 return error;
4785}
4786
3e3398a0
MC
4787int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4788 struct kstat *stat)
4789{
4790 struct inode *inode;
8af8eecc 4791 unsigned long long delalloc_blocks;
3e3398a0 4792
2b0143b5 4793 inode = d_inode(dentry);
3e3398a0
MC
4794 generic_fillattr(inode, stat);
4795
9206c561
AD
4796 /*
4797 * If there is inline data in the inode, the inode will normally not
4798 * have data blocks allocated (it may have an external xattr block).
4799 * Report at least one sector for such files, so tools like tar, rsync,
4800 * others doen't incorrectly think the file is completely sparse.
4801 */
4802 if (unlikely(ext4_has_inline_data(inode)))
4803 stat->blocks += (stat->size + 511) >> 9;
4804
3e3398a0
MC
4805 /*
4806 * We can't update i_blocks if the block allocation is delayed
4807 * otherwise in the case of system crash before the real block
4808 * allocation is done, we will have i_blocks inconsistent with
4809 * on-disk file blocks.
4810 * We always keep i_blocks updated together with real
4811 * allocation. But to not confuse with user, stat
4812 * will return the blocks that include the delayed allocation
4813 * blocks for this file.
4814 */
96607551 4815 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4816 EXT4_I(inode)->i_reserved_data_blocks);
4817 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4818 return 0;
4819}
ac27a0ec 4820
fffb2739
JK
4821static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4822 int pextents)
a02908f1 4823{
12e9b892 4824 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4825 return ext4_ind_trans_blocks(inode, lblocks);
4826 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4827}
ac51d837 4828
ac27a0ec 4829/*
a02908f1
MC
4830 * Account for index blocks, block groups bitmaps and block group
4831 * descriptor blocks if modify datablocks and index blocks
4832 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4833 *
a02908f1 4834 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4835 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4836 * they could still across block group boundary.
ac27a0ec 4837 *
a02908f1
MC
4838 * Also account for superblock, inode, quota and xattr blocks
4839 */
fffb2739
JK
4840static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4841 int pextents)
a02908f1 4842{
8df9675f
TT
4843 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4844 int gdpblocks;
a02908f1
MC
4845 int idxblocks;
4846 int ret = 0;
4847
4848 /*
fffb2739
JK
4849 * How many index blocks need to touch to map @lblocks logical blocks
4850 * to @pextents physical extents?
a02908f1 4851 */
fffb2739 4852 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4853
4854 ret = idxblocks;
4855
4856 /*
4857 * Now let's see how many group bitmaps and group descriptors need
4858 * to account
4859 */
fffb2739 4860 groups = idxblocks + pextents;
a02908f1 4861 gdpblocks = groups;
8df9675f
TT
4862 if (groups > ngroups)
4863 groups = ngroups;
a02908f1
MC
4864 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4865 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4866
4867 /* bitmaps and block group descriptor blocks */
4868 ret += groups + gdpblocks;
4869
4870 /* Blocks for super block, inode, quota and xattr blocks */
4871 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4872
4873 return ret;
4874}
4875
4876/*
25985edc 4877 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4878 * the modification of a single pages into a single transaction,
4879 * which may include multiple chunks of block allocations.
ac27a0ec 4880 *
525f4ed8 4881 * This could be called via ext4_write_begin()
ac27a0ec 4882 *
525f4ed8 4883 * We need to consider the worse case, when
a02908f1 4884 * one new block per extent.
ac27a0ec 4885 */
a86c6181 4886int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4887{
617ba13b 4888 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4889 int ret;
4890
fffb2739 4891 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4892
a02908f1 4893 /* Account for data blocks for journalled mode */
617ba13b 4894 if (ext4_should_journal_data(inode))
a02908f1 4895 ret += bpp;
ac27a0ec
DK
4896 return ret;
4897}
f3bd1f3f
MC
4898
4899/*
4900 * Calculate the journal credits for a chunk of data modification.
4901 *
4902 * This is called from DIO, fallocate or whoever calling
79e83036 4903 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4904 *
4905 * journal buffers for data blocks are not included here, as DIO
4906 * and fallocate do no need to journal data buffers.
4907 */
4908int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4909{
4910 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4911}
4912
ac27a0ec 4913/*
617ba13b 4914 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4915 * Give this, we know that the caller already has write access to iloc->bh.
4916 */
617ba13b 4917int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4918 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4919{
4920 int err = 0;
4921
c64db50e 4922 if (IS_I_VERSION(inode))
25ec56b5
JNC
4923 inode_inc_iversion(inode);
4924
ac27a0ec
DK
4925 /* the do_update_inode consumes one bh->b_count */
4926 get_bh(iloc->bh);
4927
dab291af 4928 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4929 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4930 put_bh(iloc->bh);
4931 return err;
4932}
4933
4934/*
4935 * On success, We end up with an outstanding reference count against
4936 * iloc->bh. This _must_ be cleaned up later.
4937 */
4938
4939int
617ba13b
MC
4940ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4941 struct ext4_iloc *iloc)
ac27a0ec 4942{
0390131b
FM
4943 int err;
4944
4945 err = ext4_get_inode_loc(inode, iloc);
4946 if (!err) {
4947 BUFFER_TRACE(iloc->bh, "get_write_access");
4948 err = ext4_journal_get_write_access(handle, iloc->bh);
4949 if (err) {
4950 brelse(iloc->bh);
4951 iloc->bh = NULL;
ac27a0ec
DK
4952 }
4953 }
617ba13b 4954 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4955 return err;
4956}
4957
6dd4ee7c
KS
4958/*
4959 * Expand an inode by new_extra_isize bytes.
4960 * Returns 0 on success or negative error number on failure.
4961 */
1d03ec98
AK
4962static int ext4_expand_extra_isize(struct inode *inode,
4963 unsigned int new_extra_isize,
4964 struct ext4_iloc iloc,
4965 handle_t *handle)
6dd4ee7c
KS
4966{
4967 struct ext4_inode *raw_inode;
4968 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4969
4970 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4971 return 0;
4972
4973 raw_inode = ext4_raw_inode(&iloc);
4974
4975 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4976
4977 /* No extended attributes present */
19f5fb7a
TT
4978 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4979 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4980 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4981 new_extra_isize);
4982 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4983 return 0;
4984 }
4985
4986 /* try to expand with EAs present */
4987 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4988 raw_inode, handle);
4989}
4990
ac27a0ec
DK
4991/*
4992 * What we do here is to mark the in-core inode as clean with respect to inode
4993 * dirtiness (it may still be data-dirty).
4994 * This means that the in-core inode may be reaped by prune_icache
4995 * without having to perform any I/O. This is a very good thing,
4996 * because *any* task may call prune_icache - even ones which
4997 * have a transaction open against a different journal.
4998 *
4999 * Is this cheating? Not really. Sure, we haven't written the
5000 * inode out, but prune_icache isn't a user-visible syncing function.
5001 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5002 * we start and wait on commits.
ac27a0ec 5003 */
617ba13b 5004int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5005{
617ba13b 5006 struct ext4_iloc iloc;
6dd4ee7c
KS
5007 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5008 static unsigned int mnt_count;
5009 int err, ret;
ac27a0ec
DK
5010
5011 might_sleep();
7ff9c073 5012 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5013 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5014 if (ext4_handle_valid(handle) &&
5015 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5016 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5017 /*
5018 * We need extra buffer credits since we may write into EA block
5019 * with this same handle. If journal_extend fails, then it will
5020 * only result in a minor loss of functionality for that inode.
5021 * If this is felt to be critical, then e2fsck should be run to
5022 * force a large enough s_min_extra_isize.
5023 */
5024 if ((jbd2_journal_extend(handle,
5025 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5026 ret = ext4_expand_extra_isize(inode,
5027 sbi->s_want_extra_isize,
5028 iloc, handle);
5029 if (ret) {
19f5fb7a
TT
5030 ext4_set_inode_state(inode,
5031 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5032 if (mnt_count !=
5033 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5034 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5035 "Unable to expand inode %lu. Delete"
5036 " some EAs or run e2fsck.",
5037 inode->i_ino);
c1bddad9
AK
5038 mnt_count =
5039 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5040 }
5041 }
5042 }
5043 }
ac27a0ec 5044 if (!err)
617ba13b 5045 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5046 return err;
5047}
5048
5049/*
617ba13b 5050 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5051 *
5052 * We're really interested in the case where a file is being extended.
5053 * i_size has been changed by generic_commit_write() and we thus need
5054 * to include the updated inode in the current transaction.
5055 *
5dd4056d 5056 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5057 * are allocated to the file.
5058 *
5059 * If the inode is marked synchronous, we don't honour that here - doing
5060 * so would cause a commit on atime updates, which we don't bother doing.
5061 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5062 *
5063 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5064 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5065 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5066 */
aa385729 5067void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5068{
ac27a0ec
DK
5069 handle_t *handle;
5070
0ae45f63
TT
5071 if (flags == I_DIRTY_TIME)
5072 return;
9924a92a 5073 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5074 if (IS_ERR(handle))
5075 goto out;
f3dc272f 5076
f3dc272f
CW
5077 ext4_mark_inode_dirty(handle, inode);
5078
617ba13b 5079 ext4_journal_stop(handle);
ac27a0ec
DK
5080out:
5081 return;
5082}
5083
5084#if 0
5085/*
5086 * Bind an inode's backing buffer_head into this transaction, to prevent
5087 * it from being flushed to disk early. Unlike
617ba13b 5088 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5089 * returns no iloc structure, so the caller needs to repeat the iloc
5090 * lookup to mark the inode dirty later.
5091 */
617ba13b 5092static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5093{
617ba13b 5094 struct ext4_iloc iloc;
ac27a0ec
DK
5095
5096 int err = 0;
5097 if (handle) {
617ba13b 5098 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5099 if (!err) {
5100 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5101 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5102 if (!err)
0390131b 5103 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5104 NULL,
0390131b 5105 iloc.bh);
ac27a0ec
DK
5106 brelse(iloc.bh);
5107 }
5108 }
617ba13b 5109 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5110 return err;
5111}
5112#endif
5113
617ba13b 5114int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5115{
5116 journal_t *journal;
5117 handle_t *handle;
5118 int err;
5119
5120 /*
5121 * We have to be very careful here: changing a data block's
5122 * journaling status dynamically is dangerous. If we write a
5123 * data block to the journal, change the status and then delete
5124 * that block, we risk forgetting to revoke the old log record
5125 * from the journal and so a subsequent replay can corrupt data.
5126 * So, first we make sure that the journal is empty and that
5127 * nobody is changing anything.
5128 */
5129
617ba13b 5130 journal = EXT4_JOURNAL(inode);
0390131b
FM
5131 if (!journal)
5132 return 0;
d699594d 5133 if (is_journal_aborted(journal))
ac27a0ec 5134 return -EROFS;
2aff57b0
YY
5135 /* We have to allocate physical blocks for delalloc blocks
5136 * before flushing journal. otherwise delalloc blocks can not
5137 * be allocated any more. even more truncate on delalloc blocks
5138 * could trigger BUG by flushing delalloc blocks in journal.
5139 * There is no delalloc block in non-journal data mode.
5140 */
5141 if (val && test_opt(inode->i_sb, DELALLOC)) {
5142 err = ext4_alloc_da_blocks(inode);
5143 if (err < 0)
5144 return err;
5145 }
ac27a0ec 5146
17335dcc
DM
5147 /* Wait for all existing dio workers */
5148 ext4_inode_block_unlocked_dio(inode);
5149 inode_dio_wait(inode);
5150
dab291af 5151 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5152
5153 /*
5154 * OK, there are no updates running now, and all cached data is
5155 * synced to disk. We are now in a completely consistent state
5156 * which doesn't have anything in the journal, and we know that
5157 * no filesystem updates are running, so it is safe to modify
5158 * the inode's in-core data-journaling state flag now.
5159 */
5160
5161 if (val)
12e9b892 5162 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5163 else {
4f879ca6
JK
5164 err = jbd2_journal_flush(journal);
5165 if (err < 0) {
5166 jbd2_journal_unlock_updates(journal);
5167 ext4_inode_resume_unlocked_dio(inode);
5168 return err;
5169 }
12e9b892 5170 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5171 }
617ba13b 5172 ext4_set_aops(inode);
ac27a0ec 5173
dab291af 5174 jbd2_journal_unlock_updates(journal);
17335dcc 5175 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5176
5177 /* Finally we can mark the inode as dirty. */
5178
9924a92a 5179 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5180 if (IS_ERR(handle))
5181 return PTR_ERR(handle);
5182
617ba13b 5183 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5184 ext4_handle_sync(handle);
617ba13b
MC
5185 ext4_journal_stop(handle);
5186 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5187
5188 return err;
5189}
2e9ee850
AK
5190
5191static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5192{
5193 return !buffer_mapped(bh);
5194}
5195
c2ec175c 5196int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5197{
c2ec175c 5198 struct page *page = vmf->page;
2e9ee850
AK
5199 loff_t size;
5200 unsigned long len;
9ea7df53 5201 int ret;
2e9ee850 5202 struct file *file = vma->vm_file;
496ad9aa 5203 struct inode *inode = file_inode(file);
2e9ee850 5204 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5205 handle_t *handle;
5206 get_block_t *get_block;
5207 int retries = 0;
2e9ee850 5208
8e8ad8a5 5209 sb_start_pagefault(inode->i_sb);
041bbb6d 5210 file_update_time(vma->vm_file);
9ea7df53
JK
5211 /* Delalloc case is easy... */
5212 if (test_opt(inode->i_sb, DELALLOC) &&
5213 !ext4_should_journal_data(inode) &&
5214 !ext4_nonda_switch(inode->i_sb)) {
5215 do {
5216 ret = __block_page_mkwrite(vma, vmf,
5217 ext4_da_get_block_prep);
5218 } while (ret == -ENOSPC &&
5219 ext4_should_retry_alloc(inode->i_sb, &retries));
5220 goto out_ret;
2e9ee850 5221 }
0e499890
DW
5222
5223 lock_page(page);
9ea7df53
JK
5224 size = i_size_read(inode);
5225 /* Page got truncated from under us? */
5226 if (page->mapping != mapping || page_offset(page) > size) {
5227 unlock_page(page);
5228 ret = VM_FAULT_NOPAGE;
5229 goto out;
0e499890 5230 }
2e9ee850
AK
5231
5232 if (page->index == size >> PAGE_CACHE_SHIFT)
5233 len = size & ~PAGE_CACHE_MASK;
5234 else
5235 len = PAGE_CACHE_SIZE;
a827eaff 5236 /*
9ea7df53
JK
5237 * Return if we have all the buffers mapped. This avoids the need to do
5238 * journal_start/journal_stop which can block and take a long time
a827eaff 5239 */
2e9ee850 5240 if (page_has_buffers(page)) {
f19d5870
TM
5241 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5242 0, len, NULL,
5243 ext4_bh_unmapped)) {
9ea7df53 5244 /* Wait so that we don't change page under IO */
1d1d1a76 5245 wait_for_stable_page(page);
9ea7df53
JK
5246 ret = VM_FAULT_LOCKED;
5247 goto out;
a827eaff 5248 }
2e9ee850 5249 }
a827eaff 5250 unlock_page(page);
9ea7df53
JK
5251 /* OK, we need to fill the hole... */
5252 if (ext4_should_dioread_nolock(inode))
5253 get_block = ext4_get_block_write;
5254 else
5255 get_block = ext4_get_block;
5256retry_alloc:
9924a92a
TT
5257 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5258 ext4_writepage_trans_blocks(inode));
9ea7df53 5259 if (IS_ERR(handle)) {
c2ec175c 5260 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5261 goto out;
5262 }
5263 ret = __block_page_mkwrite(vma, vmf, get_block);
5264 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5265 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5266 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5267 unlock_page(page);
5268 ret = VM_FAULT_SIGBUS;
fcbb5515 5269 ext4_journal_stop(handle);
9ea7df53
JK
5270 goto out;
5271 }
5272 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5273 }
5274 ext4_journal_stop(handle);
5275 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5276 goto retry_alloc;
5277out_ret:
5278 ret = block_page_mkwrite_return(ret);
5279out:
8e8ad8a5 5280 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5281 return ret;
5282}