]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
ext4: restart ext4_ext_remove_space() after transaction restart
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
ac27a0ec 228 /*
617ba13b 229 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 230 * AKPM: I think this can be inside the above `if'.
617ba13b 231 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 232 * deletion of a non-existent orphan - this is because we don't
617ba13b 233 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
234 * (Well, we could do this if we need to, but heck - it works)
235 */
617ba13b
MC
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
617ba13b 246 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
617ba13b
MC
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
ac27a0ec
DK
252 return;
253no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255}
256
257typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261} Indirect;
262
263static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264{
265 p->key = *(p->p = v);
266 p->bh = bh;
267}
268
ac27a0ec 269/**
617ba13b 270 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
8c55e204
DK
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
ac27a0ec 276 *
617ba13b 277 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290/*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
617ba13b 300static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 303{
617ba13b
MC
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
c333e073 312 if (i_block < direct_blocks) {
ac27a0ec
DK
313 offsets[n++] = i_block;
314 final = direct_blocks;
af5bc92d 315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 316 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 320 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 325 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
12062ddd 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338}
339
fe2c8191 340static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
341 __le32 *p, unsigned int max)
342{
f73953c0 343 __le32 *bref = p;
6fd058f7
TT
344 unsigned int blk;
345
fe2c8191 346 while (bref < p+max) {
6fd058f7 347 blk = le32_to_cpu(*bref++);
de9a55b8
TT
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 350 blk, 1))) {
24676da4
TT
351 ext4_error_inode(function, inode,
352 "invalid block reference %u", blk);
de9a55b8
TT
353 return -EIO;
354 }
355 }
356 return 0;
fe2c8191
TN
357}
358
359
360#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 361 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
362 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
363
364#define ext4_check_inode_blockref(inode) \
de9a55b8 365 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
366 EXT4_NDIR_BLOCKS)
367
ac27a0ec 368/**
617ba13b 369 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
370 * @inode: inode in question
371 * @depth: depth of the chain (1 - direct pointer, etc.)
372 * @offsets: offsets of pointers in inode/indirect blocks
373 * @chain: place to store the result
374 * @err: here we store the error value
375 *
376 * Function fills the array of triples <key, p, bh> and returns %NULL
377 * if everything went OK or the pointer to the last filled triple
378 * (incomplete one) otherwise. Upon the return chain[i].key contains
379 * the number of (i+1)-th block in the chain (as it is stored in memory,
380 * i.e. little-endian 32-bit), chain[i].p contains the address of that
381 * number (it points into struct inode for i==0 and into the bh->b_data
382 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
383 * block for i>0 and NULL for i==0. In other words, it holds the block
384 * numbers of the chain, addresses they were taken from (and where we can
385 * verify that chain did not change) and buffer_heads hosting these
386 * numbers.
387 *
388 * Function stops when it stumbles upon zero pointer (absent block)
389 * (pointer to last triple returned, *@err == 0)
390 * or when it gets an IO error reading an indirect block
391 * (ditto, *@err == -EIO)
ac27a0ec
DK
392 * or when it reads all @depth-1 indirect blocks successfully and finds
393 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
394 *
395 * Need to be called with
0e855ac8 396 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 397 */
725d26d3
AK
398static Indirect *ext4_get_branch(struct inode *inode, int depth,
399 ext4_lblk_t *offsets,
ac27a0ec
DK
400 Indirect chain[4], int *err)
401{
402 struct super_block *sb = inode->i_sb;
403 Indirect *p = chain;
404 struct buffer_head *bh;
405
406 *err = 0;
407 /* i_data is not going away, no lock needed */
af5bc92d 408 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
409 if (!p->key)
410 goto no_block;
411 while (--depth) {
fe2c8191
TN
412 bh = sb_getblk(sb, le32_to_cpu(p->key));
413 if (unlikely(!bh))
ac27a0ec 414 goto failure;
de9a55b8 415
fe2c8191
TN
416 if (!bh_uptodate_or_lock(bh)) {
417 if (bh_submit_read(bh) < 0) {
418 put_bh(bh);
419 goto failure;
420 }
421 /* validate block references */
422 if (ext4_check_indirect_blockref(inode, bh)) {
423 put_bh(bh);
424 goto failure;
425 }
426 }
de9a55b8 427
af5bc92d 428 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
429 /* Reader: end */
430 if (!p->key)
431 goto no_block;
432 }
433 return NULL;
434
ac27a0ec
DK
435failure:
436 *err = -EIO;
437no_block:
438 return p;
439}
440
441/**
617ba13b 442 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
443 * @inode: owner
444 * @ind: descriptor of indirect block.
445 *
1cc8dcf5 446 * This function returns the preferred place for block allocation.
ac27a0ec
DK
447 * It is used when heuristic for sequential allocation fails.
448 * Rules are:
449 * + if there is a block to the left of our position - allocate near it.
450 * + if pointer will live in indirect block - allocate near that block.
451 * + if pointer will live in inode - allocate in the same
452 * cylinder group.
453 *
454 * In the latter case we colour the starting block by the callers PID to
455 * prevent it from clashing with concurrent allocations for a different inode
456 * in the same block group. The PID is used here so that functionally related
457 * files will be close-by on-disk.
458 *
459 * Caller must make sure that @ind is valid and will stay that way.
460 */
617ba13b 461static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 462{
617ba13b 463 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 464 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 465 __le32 *p;
617ba13b 466 ext4_fsblk_t bg_start;
74d3487f 467 ext4_fsblk_t last_block;
617ba13b 468 ext4_grpblk_t colour;
a4912123
TT
469 ext4_group_t block_group;
470 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
471
472 /* Try to find previous block */
473 for (p = ind->p - 1; p >= start; p--) {
474 if (*p)
475 return le32_to_cpu(*p);
476 }
477
478 /* No such thing, so let's try location of indirect block */
479 if (ind->bh)
480 return ind->bh->b_blocknr;
481
482 /*
483 * It is going to be referred to from the inode itself? OK, just put it
484 * into the same cylinder group then.
485 */
a4912123
TT
486 block_group = ei->i_block_group;
487 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
488 block_group &= ~(flex_size-1);
489 if (S_ISREG(inode->i_mode))
490 block_group++;
491 }
492 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
493 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
494
a4912123
TT
495 /*
496 * If we are doing delayed allocation, we don't need take
497 * colour into account.
498 */
499 if (test_opt(inode->i_sb, DELALLOC))
500 return bg_start;
501
74d3487f
VC
502 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
503 colour = (current->pid % 16) *
617ba13b 504 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
505 else
506 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
507 return bg_start + colour;
508}
509
510/**
1cc8dcf5 511 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
512 * @inode: owner
513 * @block: block we want
ac27a0ec 514 * @partial: pointer to the last triple within a chain
ac27a0ec 515 *
1cc8dcf5 516 * Normally this function find the preferred place for block allocation,
fb01bfda 517 * returns it.
fb0a387d
ES
518 * Because this is only used for non-extent files, we limit the block nr
519 * to 32 bits.
ac27a0ec 520 */
725d26d3 521static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 522 Indirect *partial)
ac27a0ec 523{
fb0a387d
ES
524 ext4_fsblk_t goal;
525
ac27a0ec 526 /*
c2ea3fde 527 * XXX need to get goal block from mballoc's data structures
ac27a0ec 528 */
ac27a0ec 529
fb0a387d
ES
530 goal = ext4_find_near(inode, partial);
531 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
532 return goal;
ac27a0ec
DK
533}
534
535/**
617ba13b 536 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
537 * of direct blocks need to be allocated for the given branch.
538 *
539 * @branch: chain of indirect blocks
540 * @k: number of blocks need for indirect blocks
541 * @blks: number of data blocks to be mapped.
542 * @blocks_to_boundary: the offset in the indirect block
543 *
544 * return the total number of blocks to be allocate, including the
545 * direct and indirect blocks.
546 */
498e5f24 547static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 548 int blocks_to_boundary)
ac27a0ec 549{
498e5f24 550 unsigned int count = 0;
ac27a0ec
DK
551
552 /*
553 * Simple case, [t,d]Indirect block(s) has not allocated yet
554 * then it's clear blocks on that path have not allocated
555 */
556 if (k > 0) {
557 /* right now we don't handle cross boundary allocation */
558 if (blks < blocks_to_boundary + 1)
559 count += blks;
560 else
561 count += blocks_to_boundary + 1;
562 return count;
563 }
564
565 count++;
566 while (count < blks && count <= blocks_to_boundary &&
567 le32_to_cpu(*(branch[0].p + count)) == 0) {
568 count++;
569 }
570 return count;
571}
572
573/**
617ba13b 574 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
575 * @indirect_blks: the number of blocks need to allocate for indirect
576 * blocks
577 *
578 * @new_blocks: on return it will store the new block numbers for
579 * the indirect blocks(if needed) and the first direct block,
580 * @blks: on return it will store the total number of allocated
581 * direct blocks
582 */
617ba13b 583static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
584 ext4_lblk_t iblock, ext4_fsblk_t goal,
585 int indirect_blks, int blks,
586 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 587{
815a1130 588 struct ext4_allocation_request ar;
ac27a0ec 589 int target, i;
7061eba7 590 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 591 int index = 0;
617ba13b 592 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
593 int ret = 0;
594
595 /*
596 * Here we try to allocate the requested multiple blocks at once,
597 * on a best-effort basis.
598 * To build a branch, we should allocate blocks for
599 * the indirect blocks(if not allocated yet), and at least
600 * the first direct block of this branch. That's the
601 * minimum number of blocks need to allocate(required)
602 */
7061eba7
AK
603 /* first we try to allocate the indirect blocks */
604 target = indirect_blks;
605 while (target > 0) {
ac27a0ec
DK
606 count = target;
607 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
608 current_block = ext4_new_meta_blocks(handle, inode,
609 goal, &count, err);
ac27a0ec
DK
610 if (*err)
611 goto failed_out;
612
273df556
FM
613 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
614 EXT4_ERROR_INODE(inode,
615 "current_block %llu + count %lu > %d!",
616 current_block, count,
617 EXT4_MAX_BLOCK_FILE_PHYS);
618 *err = -EIO;
619 goto failed_out;
620 }
fb0a387d 621
ac27a0ec
DK
622 target -= count;
623 /* allocate blocks for indirect blocks */
624 while (index < indirect_blks && count) {
625 new_blocks[index++] = current_block++;
626 count--;
627 }
7061eba7
AK
628 if (count > 0) {
629 /*
630 * save the new block number
631 * for the first direct block
632 */
633 new_blocks[index] = current_block;
634 printk(KERN_INFO "%s returned more blocks than "
635 "requested\n", __func__);
636 WARN_ON(1);
ac27a0ec 637 break;
7061eba7 638 }
ac27a0ec
DK
639 }
640
7061eba7
AK
641 target = blks - count ;
642 blk_allocated = count;
643 if (!target)
644 goto allocated;
645 /* Now allocate data blocks */
815a1130
TT
646 memset(&ar, 0, sizeof(ar));
647 ar.inode = inode;
648 ar.goal = goal;
649 ar.len = target;
650 ar.logical = iblock;
651 if (S_ISREG(inode->i_mode))
652 /* enable in-core preallocation only for regular files */
653 ar.flags = EXT4_MB_HINT_DATA;
654
655 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
656 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
657 EXT4_ERROR_INODE(inode,
658 "current_block %llu + ar.len %d > %d!",
659 current_block, ar.len,
660 EXT4_MAX_BLOCK_FILE_PHYS);
661 *err = -EIO;
662 goto failed_out;
663 }
815a1130 664
7061eba7
AK
665 if (*err && (target == blks)) {
666 /*
667 * if the allocation failed and we didn't allocate
668 * any blocks before
669 */
670 goto failed_out;
671 }
672 if (!*err) {
673 if (target == blks) {
de9a55b8
TT
674 /*
675 * save the new block number
676 * for the first direct block
677 */
7061eba7
AK
678 new_blocks[index] = current_block;
679 }
815a1130 680 blk_allocated += ar.len;
7061eba7
AK
681 }
682allocated:
ac27a0ec 683 /* total number of blocks allocated for direct blocks */
7061eba7 684 ret = blk_allocated;
ac27a0ec
DK
685 *err = 0;
686 return ret;
687failed_out:
af5bc92d 688 for (i = 0; i < index; i++)
e6362609 689 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
690 return ret;
691}
692
693/**
617ba13b 694 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
695 * @inode: owner
696 * @indirect_blks: number of allocated indirect blocks
697 * @blks: number of allocated direct blocks
698 * @offsets: offsets (in the blocks) to store the pointers to next.
699 * @branch: place to store the chain in.
700 *
701 * This function allocates blocks, zeroes out all but the last one,
702 * links them into chain and (if we are synchronous) writes them to disk.
703 * In other words, it prepares a branch that can be spliced onto the
704 * inode. It stores the information about that chain in the branch[], in
617ba13b 705 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
706 * we had read the existing part of chain and partial points to the last
707 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 708 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
709 * place chain is disconnected - *branch->p is still zero (we did not
710 * set the last link), but branch->key contains the number that should
711 * be placed into *branch->p to fill that gap.
712 *
713 * If allocation fails we free all blocks we've allocated (and forget
714 * their buffer_heads) and return the error value the from failed
617ba13b 715 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
716 * as described above and return 0.
717 */
617ba13b 718static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
719 ext4_lblk_t iblock, int indirect_blks,
720 int *blks, ext4_fsblk_t goal,
721 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
722{
723 int blocksize = inode->i_sb->s_blocksize;
724 int i, n = 0;
725 int err = 0;
726 struct buffer_head *bh;
727 int num;
617ba13b
MC
728 ext4_fsblk_t new_blocks[4];
729 ext4_fsblk_t current_block;
ac27a0ec 730
7061eba7 731 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
732 *blks, new_blocks, &err);
733 if (err)
734 return err;
735
736 branch[0].key = cpu_to_le32(new_blocks[0]);
737 /*
738 * metadata blocks and data blocks are allocated.
739 */
740 for (n = 1; n <= indirect_blks; n++) {
741 /*
742 * Get buffer_head for parent block, zero it out
743 * and set the pointer to new one, then send
744 * parent to disk.
745 */
746 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
747 branch[n].bh = bh;
748 lock_buffer(bh);
749 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 750 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 751 if (err) {
6487a9d3
CW
752 /* Don't brelse(bh) here; it's done in
753 * ext4_journal_forget() below */
ac27a0ec 754 unlock_buffer(bh);
ac27a0ec
DK
755 goto failed;
756 }
757
758 memset(bh->b_data, 0, blocksize);
759 branch[n].p = (__le32 *) bh->b_data + offsets[n];
760 branch[n].key = cpu_to_le32(new_blocks[n]);
761 *branch[n].p = branch[n].key;
af5bc92d 762 if (n == indirect_blks) {
ac27a0ec
DK
763 current_block = new_blocks[n];
764 /*
765 * End of chain, update the last new metablock of
766 * the chain to point to the new allocated
767 * data blocks numbers
768 */
de9a55b8 769 for (i = 1; i < num; i++)
ac27a0ec
DK
770 *(branch[n].p + i) = cpu_to_le32(++current_block);
771 }
772 BUFFER_TRACE(bh, "marking uptodate");
773 set_buffer_uptodate(bh);
774 unlock_buffer(bh);
775
0390131b
FM
776 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
777 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
778 if (err)
779 goto failed;
780 }
781 *blks = num;
782 return err;
783failed:
784 /* Allocation failed, free what we already allocated */
e6362609 785 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 786 for (i = 1; i <= n ; i++) {
b7e57e7c 787 /*
e6362609
TT
788 * branch[i].bh is newly allocated, so there is no
789 * need to revoke the block, which is why we don't
790 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 791 */
e6362609
TT
792 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
793 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 794 }
e6362609
TT
795 for (i = n+1; i < indirect_blks; i++)
796 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 797
e6362609 798 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
799
800 return err;
801}
802
803/**
617ba13b 804 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
805 * @inode: owner
806 * @block: (logical) number of block we are adding
807 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 808 * ext4_alloc_branch)
ac27a0ec
DK
809 * @where: location of missing link
810 * @num: number of indirect blocks we are adding
811 * @blks: number of direct blocks we are adding
812 *
813 * This function fills the missing link and does all housekeeping needed in
814 * inode (->i_blocks, etc.). In case of success we end up with the full
815 * chain to new block and return 0.
816 */
617ba13b 817static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
818 ext4_lblk_t block, Indirect *where, int num,
819 int blks)
ac27a0ec
DK
820{
821 int i;
822 int err = 0;
617ba13b 823 ext4_fsblk_t current_block;
ac27a0ec 824
ac27a0ec
DK
825 /*
826 * If we're splicing into a [td]indirect block (as opposed to the
827 * inode) then we need to get write access to the [td]indirect block
828 * before the splice.
829 */
830 if (where->bh) {
831 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 832 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
833 if (err)
834 goto err_out;
835 }
836 /* That's it */
837
838 *where->p = where->key;
839
840 /*
841 * Update the host buffer_head or inode to point to more just allocated
842 * direct blocks blocks
843 */
844 if (num == 0 && blks > 1) {
845 current_block = le32_to_cpu(where->key) + 1;
846 for (i = 1; i < blks; i++)
af5bc92d 847 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
848 }
849
ac27a0ec 850 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
851 /* had we spliced it onto indirect block? */
852 if (where->bh) {
853 /*
854 * If we spliced it onto an indirect block, we haven't
855 * altered the inode. Note however that if it is being spliced
856 * onto an indirect block at the very end of the file (the
857 * file is growing) then we *will* alter the inode to reflect
858 * the new i_size. But that is not done here - it is done in
617ba13b 859 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
860 */
861 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
862 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
863 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
864 if (err)
865 goto err_out;
866 } else {
867 /*
868 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 869 */
41591750 870 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
871 jbd_debug(5, "splicing direct\n");
872 }
873 return err;
874
875err_out:
876 for (i = 1; i <= num; i++) {
b7e57e7c 877 /*
e6362609
TT
878 * branch[i].bh is newly allocated, so there is no
879 * need to revoke the block, which is why we don't
880 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 881 */
e6362609
TT
882 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
883 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 884 }
e6362609
TT
885 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
886 blks, 0);
ac27a0ec
DK
887
888 return err;
889}
890
891/*
e35fd660 892 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 893 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 894 * scheme) for ext4_map_blocks().
b920c755 895 *
ac27a0ec
DK
896 * Allocation strategy is simple: if we have to allocate something, we will
897 * have to go the whole way to leaf. So let's do it before attaching anything
898 * to tree, set linkage between the newborn blocks, write them if sync is
899 * required, recheck the path, free and repeat if check fails, otherwise
900 * set the last missing link (that will protect us from any truncate-generated
901 * removals - all blocks on the path are immune now) and possibly force the
902 * write on the parent block.
903 * That has a nice additional property: no special recovery from the failed
904 * allocations is needed - we simply release blocks and do not touch anything
905 * reachable from inode.
906 *
907 * `handle' can be NULL if create == 0.
908 *
ac27a0ec
DK
909 * return > 0, # of blocks mapped or allocated.
910 * return = 0, if plain lookup failed.
911 * return < 0, error case.
c278bfec 912 *
b920c755
TT
913 * The ext4_ind_get_blocks() function should be called with
914 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
915 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
916 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
917 * blocks.
ac27a0ec 918 */
e35fd660
TT
919static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
920 struct ext4_map_blocks *map,
de9a55b8 921 int flags)
ac27a0ec
DK
922{
923 int err = -EIO;
725d26d3 924 ext4_lblk_t offsets[4];
ac27a0ec
DK
925 Indirect chain[4];
926 Indirect *partial;
617ba13b 927 ext4_fsblk_t goal;
ac27a0ec
DK
928 int indirect_blks;
929 int blocks_to_boundary = 0;
930 int depth;
ac27a0ec 931 int count = 0;
617ba13b 932 ext4_fsblk_t first_block = 0;
ac27a0ec 933
12e9b892 934 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 935 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 936 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 937 &blocks_to_boundary);
ac27a0ec
DK
938
939 if (depth == 0)
940 goto out;
941
617ba13b 942 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
943
944 /* Simplest case - block found, no allocation needed */
945 if (!partial) {
946 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
947 count++;
948 /*map more blocks*/
e35fd660 949 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 950 ext4_fsblk_t blk;
ac27a0ec 951
ac27a0ec
DK
952 blk = le32_to_cpu(*(chain[depth-1].p + count));
953
954 if (blk == first_block + count)
955 count++;
956 else
957 break;
958 }
c278bfec 959 goto got_it;
ac27a0ec
DK
960 }
961
962 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 963 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
964 goto cleanup;
965
ac27a0ec 966 /*
c2ea3fde 967 * Okay, we need to do block allocation.
ac27a0ec 968 */
e35fd660 969 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
970
971 /* the number of blocks need to allocate for [d,t]indirect blocks */
972 indirect_blks = (chain + depth) - partial - 1;
973
974 /*
975 * Next look up the indirect map to count the totoal number of
976 * direct blocks to allocate for this branch.
977 */
617ba13b 978 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 979 map->m_len, blocks_to_boundary);
ac27a0ec 980 /*
617ba13b 981 * Block out ext4_truncate while we alter the tree
ac27a0ec 982 */
e35fd660 983 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
984 &count, goal,
985 offsets + (partial - chain), partial);
ac27a0ec
DK
986
987 /*
617ba13b 988 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
989 * on the new chain if there is a failure, but that risks using
990 * up transaction credits, especially for bitmaps where the
991 * credits cannot be returned. Can we handle this somehow? We
992 * may need to return -EAGAIN upwards in the worst case. --sct
993 */
994 if (!err)
e35fd660 995 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 996 partial, indirect_blks, count);
2bba702d 997 if (err)
ac27a0ec
DK
998 goto cleanup;
999
e35fd660 1000 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1001
1002 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1003got_it:
e35fd660
TT
1004 map->m_flags |= EXT4_MAP_MAPPED;
1005 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1006 map->m_len = count;
ac27a0ec 1007 if (count > blocks_to_boundary)
e35fd660 1008 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1009 err = count;
1010 /* Clean up and exit */
1011 partial = chain + depth - 1; /* the whole chain */
1012cleanup:
1013 while (partial > chain) {
1014 BUFFER_TRACE(partial->bh, "call brelse");
1015 brelse(partial->bh);
1016 partial--;
1017 }
ac27a0ec
DK
1018out:
1019 return err;
1020}
1021
a9e7f447
DM
1022#ifdef CONFIG_QUOTA
1023qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1024{
a9e7f447 1025 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1026}
a9e7f447 1027#endif
9d0be502 1028
12219aea
AK
1029/*
1030 * Calculate the number of metadata blocks need to reserve
9d0be502 1031 * to allocate a new block at @lblocks for non extent file based file
12219aea 1032 */
9d0be502
TT
1033static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1034 sector_t lblock)
12219aea 1035{
9d0be502 1036 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1037 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1038 int blk_bits;
12219aea 1039
9d0be502
TT
1040 if (lblock < EXT4_NDIR_BLOCKS)
1041 return 0;
12219aea 1042
9d0be502 1043 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1044
9d0be502
TT
1045 if (ei->i_da_metadata_calc_len &&
1046 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1047 ei->i_da_metadata_calc_len++;
1048 return 0;
1049 }
1050 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1051 ei->i_da_metadata_calc_len = 1;
d330a5be 1052 blk_bits = order_base_2(lblock);
9d0be502 1053 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1054}
1055
1056/*
1057 * Calculate the number of metadata blocks need to reserve
9d0be502 1058 * to allocate a block located at @lblock
12219aea 1059 */
9d0be502 1060static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1061{
12e9b892 1062 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1063 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1064
9d0be502 1065 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1066}
1067
0637c6f4
TT
1068/*
1069 * Called with i_data_sem down, which is important since we can call
1070 * ext4_discard_preallocations() from here.
1071 */
5f634d06
AK
1072void ext4_da_update_reserve_space(struct inode *inode,
1073 int used, int quota_claim)
12219aea
AK
1074{
1075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1076 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1077
1078 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1079 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1080 if (unlikely(used > ei->i_reserved_data_blocks)) {
1081 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1082 "with only %d reserved data blocks\n",
1083 __func__, inode->i_ino, used,
1084 ei->i_reserved_data_blocks);
1085 WARN_ON(1);
1086 used = ei->i_reserved_data_blocks;
1087 }
12219aea 1088
0637c6f4
TT
1089 /* Update per-inode reservations */
1090 ei->i_reserved_data_blocks -= used;
0637c6f4 1091 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1092 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1093 used + ei->i_allocated_meta_blocks);
0637c6f4 1094 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1095
0637c6f4
TT
1096 if (ei->i_reserved_data_blocks == 0) {
1097 /*
1098 * We can release all of the reserved metadata blocks
1099 * only when we have written all of the delayed
1100 * allocation blocks.
1101 */
72b8ab9d
ES
1102 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1103 ei->i_reserved_meta_blocks);
ee5f4d9c 1104 ei->i_reserved_meta_blocks = 0;
9d0be502 1105 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1106 }
12219aea 1107 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1108
72b8ab9d
ES
1109 /* Update quota subsystem for data blocks */
1110 if (quota_claim)
5dd4056d 1111 dquot_claim_block(inode, used);
72b8ab9d 1112 else {
5f634d06
AK
1113 /*
1114 * We did fallocate with an offset that is already delayed
1115 * allocated. So on delayed allocated writeback we should
72b8ab9d 1116 * not re-claim the quota for fallocated blocks.
5f634d06 1117 */
72b8ab9d 1118 dquot_release_reservation_block(inode, used);
5f634d06 1119 }
d6014301
AK
1120
1121 /*
1122 * If we have done all the pending block allocations and if
1123 * there aren't any writers on the inode, we can discard the
1124 * inode's preallocations.
1125 */
0637c6f4
TT
1126 if ((ei->i_reserved_data_blocks == 0) &&
1127 (atomic_read(&inode->i_writecount) == 0))
d6014301 1128 ext4_discard_preallocations(inode);
12219aea
AK
1129}
1130
24676da4
TT
1131static int check_block_validity(struct inode *inode, const char *func,
1132 struct ext4_map_blocks *map)
6fd058f7 1133{
24676da4
TT
1134 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1135 map->m_len)) {
1136 ext4_error_inode(func, inode,
1137 "lblock %lu mapped to illegal pblock %llu "
1138 "(length %d)", (unsigned long) map->m_lblk,
1139 map->m_pblk, map->m_len);
6fd058f7
TT
1140 return -EIO;
1141 }
1142 return 0;
1143}
1144
55138e0b 1145/*
1f94533d
TT
1146 * Return the number of contiguous dirty pages in a given inode
1147 * starting at page frame idx.
55138e0b
TT
1148 */
1149static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1150 unsigned int max_pages)
1151{
1152 struct address_space *mapping = inode->i_mapping;
1153 pgoff_t index;
1154 struct pagevec pvec;
1155 pgoff_t num = 0;
1156 int i, nr_pages, done = 0;
1157
1158 if (max_pages == 0)
1159 return 0;
1160 pagevec_init(&pvec, 0);
1161 while (!done) {
1162 index = idx;
1163 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1164 PAGECACHE_TAG_DIRTY,
1165 (pgoff_t)PAGEVEC_SIZE);
1166 if (nr_pages == 0)
1167 break;
1168 for (i = 0; i < nr_pages; i++) {
1169 struct page *page = pvec.pages[i];
1170 struct buffer_head *bh, *head;
1171
1172 lock_page(page);
1173 if (unlikely(page->mapping != mapping) ||
1174 !PageDirty(page) ||
1175 PageWriteback(page) ||
1176 page->index != idx) {
1177 done = 1;
1178 unlock_page(page);
1179 break;
1180 }
1f94533d
TT
1181 if (page_has_buffers(page)) {
1182 bh = head = page_buffers(page);
1183 do {
1184 if (!buffer_delay(bh) &&
1185 !buffer_unwritten(bh))
1186 done = 1;
1187 bh = bh->b_this_page;
1188 } while (!done && (bh != head));
1189 }
55138e0b
TT
1190 unlock_page(page);
1191 if (done)
1192 break;
1193 idx++;
1194 num++;
1195 if (num >= max_pages)
1196 break;
1197 }
1198 pagevec_release(&pvec);
1199 }
1200 return num;
1201}
1202
f5ab0d1f 1203/*
e35fd660 1204 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1205 * and returns if the blocks are already mapped.
f5ab0d1f 1206 *
f5ab0d1f
MC
1207 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1208 * and store the allocated blocks in the result buffer head and mark it
1209 * mapped.
1210 *
e35fd660
TT
1211 * If file type is extents based, it will call ext4_ext_map_blocks(),
1212 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1213 * based files
1214 *
1215 * On success, it returns the number of blocks being mapped or allocate.
1216 * if create==0 and the blocks are pre-allocated and uninitialized block,
1217 * the result buffer head is unmapped. If the create ==1, it will make sure
1218 * the buffer head is mapped.
1219 *
1220 * It returns 0 if plain look up failed (blocks have not been allocated), in
1221 * that casem, buffer head is unmapped
1222 *
1223 * It returns the error in case of allocation failure.
1224 */
e35fd660
TT
1225int ext4_map_blocks(handle_t *handle, struct inode *inode,
1226 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1227{
1228 int retval;
f5ab0d1f 1229
e35fd660
TT
1230 map->m_flags = 0;
1231 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1232 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1233 (unsigned long) map->m_lblk);
4df3d265 1234 /*
b920c755
TT
1235 * Try to see if we can get the block without requesting a new
1236 * file system block.
4df3d265
AK
1237 */
1238 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1240 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1241 } else {
e35fd660 1242 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1243 }
4df3d265 1244 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1245
e35fd660 1246 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
24676da4 1247 int ret = check_block_validity(inode, __func__, map);
6fd058f7
TT
1248 if (ret != 0)
1249 return ret;
1250 }
1251
f5ab0d1f 1252 /* If it is only a block(s) look up */
c2177057 1253 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1254 return retval;
1255
1256 /*
1257 * Returns if the blocks have already allocated
1258 *
1259 * Note that if blocks have been preallocated
1260 * ext4_ext_get_block() returns th create = 0
1261 * with buffer head unmapped.
1262 */
e35fd660 1263 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1264 return retval;
1265
2a8964d6
AK
1266 /*
1267 * When we call get_blocks without the create flag, the
1268 * BH_Unwritten flag could have gotten set if the blocks
1269 * requested were part of a uninitialized extent. We need to
1270 * clear this flag now that we are committed to convert all or
1271 * part of the uninitialized extent to be an initialized
1272 * extent. This is because we need to avoid the combination
1273 * of BH_Unwritten and BH_Mapped flags being simultaneously
1274 * set on the buffer_head.
1275 */
e35fd660 1276 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1277
4df3d265 1278 /*
f5ab0d1f
MC
1279 * New blocks allocate and/or writing to uninitialized extent
1280 * will possibly result in updating i_data, so we take
1281 * the write lock of i_data_sem, and call get_blocks()
1282 * with create == 1 flag.
4df3d265
AK
1283 */
1284 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1285
1286 /*
1287 * if the caller is from delayed allocation writeout path
1288 * we have already reserved fs blocks for allocation
1289 * let the underlying get_block() function know to
1290 * avoid double accounting
1291 */
c2177057 1292 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1293 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1294 /*
1295 * We need to check for EXT4 here because migrate
1296 * could have changed the inode type in between
1297 */
12e9b892 1298 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1299 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1300 } else {
e35fd660 1301 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1302
e35fd660 1303 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1304 /*
1305 * We allocated new blocks which will result in
1306 * i_data's format changing. Force the migrate
1307 * to fail by clearing migrate flags
1308 */
19f5fb7a 1309 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1310 }
d2a17637 1311
5f634d06
AK
1312 /*
1313 * Update reserved blocks/metadata blocks after successful
1314 * block allocation which had been deferred till now. We don't
1315 * support fallocate for non extent files. So we can update
1316 * reserve space here.
1317 */
1318 if ((retval > 0) &&
1296cc85 1319 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1320 ext4_da_update_reserve_space(inode, retval, 1);
1321 }
2ac3b6e0 1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1324
4df3d265 1325 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1326 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
24676da4
TT
1327 int ret = check_block_validity(inode,
1328 "ext4_map_blocks_after_alloc",
1329 map);
6fd058f7
TT
1330 if (ret != 0)
1331 return ret;
1332 }
0e855ac8
AK
1333 return retval;
1334}
1335
f3bd1f3f
MC
1336/* Maximum number of blocks we map for direct IO at once. */
1337#define DIO_MAX_BLOCKS 4096
1338
2ed88685
TT
1339static int _ext4_get_block(struct inode *inode, sector_t iblock,
1340 struct buffer_head *bh, int flags)
ac27a0ec 1341{
3e4fdaf8 1342 handle_t *handle = ext4_journal_current_handle();
2ed88685 1343 struct ext4_map_blocks map;
7fb5409d 1344 int ret = 0, started = 0;
f3bd1f3f 1345 int dio_credits;
ac27a0ec 1346
2ed88685
TT
1347 map.m_lblk = iblock;
1348 map.m_len = bh->b_size >> inode->i_blkbits;
1349
1350 if (flags && !handle) {
7fb5409d 1351 /* Direct IO write... */
2ed88685
TT
1352 if (map.m_len > DIO_MAX_BLOCKS)
1353 map.m_len = DIO_MAX_BLOCKS;
1354 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1355 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1356 if (IS_ERR(handle)) {
ac27a0ec 1357 ret = PTR_ERR(handle);
2ed88685 1358 return ret;
ac27a0ec 1359 }
7fb5409d 1360 started = 1;
ac27a0ec
DK
1361 }
1362
2ed88685 1363 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1364 if (ret > 0) {
2ed88685
TT
1365 map_bh(bh, inode->i_sb, map.m_pblk);
1366 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1367 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1368 ret = 0;
ac27a0ec 1369 }
7fb5409d
JK
1370 if (started)
1371 ext4_journal_stop(handle);
ac27a0ec
DK
1372 return ret;
1373}
1374
2ed88685
TT
1375int ext4_get_block(struct inode *inode, sector_t iblock,
1376 struct buffer_head *bh, int create)
1377{
1378 return _ext4_get_block(inode, iblock, bh,
1379 create ? EXT4_GET_BLOCKS_CREATE : 0);
1380}
1381
ac27a0ec
DK
1382/*
1383 * `handle' can be NULL if create is zero
1384 */
617ba13b 1385struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1386 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1387{
2ed88685
TT
1388 struct ext4_map_blocks map;
1389 struct buffer_head *bh;
ac27a0ec
DK
1390 int fatal = 0, err;
1391
1392 J_ASSERT(handle != NULL || create == 0);
1393
2ed88685
TT
1394 map.m_lblk = block;
1395 map.m_len = 1;
1396 err = ext4_map_blocks(handle, inode, &map,
1397 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1398
2ed88685
TT
1399 if (err < 0)
1400 *errp = err;
1401 if (err <= 0)
1402 return NULL;
1403 *errp = 0;
1404
1405 bh = sb_getblk(inode->i_sb, map.m_pblk);
1406 if (!bh) {
1407 *errp = -EIO;
1408 return NULL;
1409 }
1410 if (map.m_flags & EXT4_MAP_NEW) {
1411 J_ASSERT(create != 0);
1412 J_ASSERT(handle != NULL);
1413
1414 /*
1415 * Now that we do not always journal data, we should
1416 * keep in mind whether this should always journal the
1417 * new buffer as metadata. For now, regular file
1418 * writes use ext4_get_block instead, so it's not a
1419 * problem.
1420 */
1421 lock_buffer(bh);
1422 BUFFER_TRACE(bh, "call get_create_access");
1423 fatal = ext4_journal_get_create_access(handle, bh);
1424 if (!fatal && !buffer_uptodate(bh)) {
1425 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1426 set_buffer_uptodate(bh);
ac27a0ec 1427 }
2ed88685
TT
1428 unlock_buffer(bh);
1429 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1430 err = ext4_handle_dirty_metadata(handle, inode, bh);
1431 if (!fatal)
1432 fatal = err;
1433 } else {
1434 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1435 }
2ed88685
TT
1436 if (fatal) {
1437 *errp = fatal;
1438 brelse(bh);
1439 bh = NULL;
1440 }
1441 return bh;
ac27a0ec
DK
1442}
1443
617ba13b 1444struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1445 ext4_lblk_t block, int create, int *err)
ac27a0ec 1446{
af5bc92d 1447 struct buffer_head *bh;
ac27a0ec 1448
617ba13b 1449 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1450 if (!bh)
1451 return bh;
1452 if (buffer_uptodate(bh))
1453 return bh;
1454 ll_rw_block(READ_META, 1, &bh);
1455 wait_on_buffer(bh);
1456 if (buffer_uptodate(bh))
1457 return bh;
1458 put_bh(bh);
1459 *err = -EIO;
1460 return NULL;
1461}
1462
af5bc92d
TT
1463static int walk_page_buffers(handle_t *handle,
1464 struct buffer_head *head,
1465 unsigned from,
1466 unsigned to,
1467 int *partial,
1468 int (*fn)(handle_t *handle,
1469 struct buffer_head *bh))
ac27a0ec
DK
1470{
1471 struct buffer_head *bh;
1472 unsigned block_start, block_end;
1473 unsigned blocksize = head->b_size;
1474 int err, ret = 0;
1475 struct buffer_head *next;
1476
af5bc92d
TT
1477 for (bh = head, block_start = 0;
1478 ret == 0 && (bh != head || !block_start);
de9a55b8 1479 block_start = block_end, bh = next) {
ac27a0ec
DK
1480 next = bh->b_this_page;
1481 block_end = block_start + blocksize;
1482 if (block_end <= from || block_start >= to) {
1483 if (partial && !buffer_uptodate(bh))
1484 *partial = 1;
1485 continue;
1486 }
1487 err = (*fn)(handle, bh);
1488 if (!ret)
1489 ret = err;
1490 }
1491 return ret;
1492}
1493
1494/*
1495 * To preserve ordering, it is essential that the hole instantiation and
1496 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1497 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1498 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1499 * prepare_write() is the right place.
1500 *
617ba13b
MC
1501 * Also, this function can nest inside ext4_writepage() ->
1502 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1503 * has generated enough buffer credits to do the whole page. So we won't
1504 * block on the journal in that case, which is good, because the caller may
1505 * be PF_MEMALLOC.
1506 *
617ba13b 1507 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1508 * quota file writes. If we were to commit the transaction while thus
1509 * reentered, there can be a deadlock - we would be holding a quota
1510 * lock, and the commit would never complete if another thread had a
1511 * transaction open and was blocking on the quota lock - a ranking
1512 * violation.
1513 *
dab291af 1514 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1515 * will _not_ run commit under these circumstances because handle->h_ref
1516 * is elevated. We'll still have enough credits for the tiny quotafile
1517 * write.
1518 */
1519static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1520 struct buffer_head *bh)
ac27a0ec
DK
1521{
1522 if (!buffer_mapped(bh) || buffer_freed(bh))
1523 return 0;
617ba13b 1524 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1525}
1526
b9a4207d
JK
1527/*
1528 * Truncate blocks that were not used by write. We have to truncate the
1529 * pagecache as well so that corresponding buffers get properly unmapped.
1530 */
1531static void ext4_truncate_failed_write(struct inode *inode)
1532{
1533 truncate_inode_pages(inode->i_mapping, inode->i_size);
1534 ext4_truncate(inode);
1535}
1536
744692dc
JZ
1537static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1538 struct buffer_head *bh_result, int create);
bfc1af65 1539static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1540 loff_t pos, unsigned len, unsigned flags,
1541 struct page **pagep, void **fsdata)
ac27a0ec 1542{
af5bc92d 1543 struct inode *inode = mapping->host;
1938a150 1544 int ret, needed_blocks;
ac27a0ec
DK
1545 handle_t *handle;
1546 int retries = 0;
af5bc92d 1547 struct page *page;
de9a55b8 1548 pgoff_t index;
af5bc92d 1549 unsigned from, to;
bfc1af65 1550
9bffad1e 1551 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1552 /*
1553 * Reserve one block more for addition to orphan list in case
1554 * we allocate blocks but write fails for some reason
1555 */
1556 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1557 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1558 from = pos & (PAGE_CACHE_SIZE - 1);
1559 to = from + len;
ac27a0ec
DK
1560
1561retry:
af5bc92d
TT
1562 handle = ext4_journal_start(inode, needed_blocks);
1563 if (IS_ERR(handle)) {
1564 ret = PTR_ERR(handle);
1565 goto out;
7479d2b9 1566 }
ac27a0ec 1567
ebd3610b
JK
1568 /* We cannot recurse into the filesystem as the transaction is already
1569 * started */
1570 flags |= AOP_FLAG_NOFS;
1571
54566b2c 1572 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1573 if (!page) {
1574 ext4_journal_stop(handle);
1575 ret = -ENOMEM;
1576 goto out;
1577 }
1578 *pagep = page;
1579
744692dc
JZ
1580 if (ext4_should_dioread_nolock(inode))
1581 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1582 fsdata, ext4_get_block_write);
1583 else
1584 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1585 fsdata, ext4_get_block);
bfc1af65
NP
1586
1587 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1588 ret = walk_page_buffers(handle, page_buffers(page),
1589 from, to, NULL, do_journal_get_write_access);
1590 }
bfc1af65
NP
1591
1592 if (ret) {
af5bc92d 1593 unlock_page(page);
af5bc92d 1594 page_cache_release(page);
ae4d5372
AK
1595 /*
1596 * block_write_begin may have instantiated a few blocks
1597 * outside i_size. Trim these off again. Don't need
1598 * i_size_read because we hold i_mutex.
1938a150
AK
1599 *
1600 * Add inode to orphan list in case we crash before
1601 * truncate finishes
ae4d5372 1602 */
ffacfa7a 1603 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1604 ext4_orphan_add(handle, inode);
1605
1606 ext4_journal_stop(handle);
1607 if (pos + len > inode->i_size) {
b9a4207d 1608 ext4_truncate_failed_write(inode);
de9a55b8 1609 /*
ffacfa7a 1610 * If truncate failed early the inode might
1938a150
AK
1611 * still be on the orphan list; we need to
1612 * make sure the inode is removed from the
1613 * orphan list in that case.
1614 */
1615 if (inode->i_nlink)
1616 ext4_orphan_del(NULL, inode);
1617 }
bfc1af65
NP
1618 }
1619
617ba13b 1620 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1621 goto retry;
7479d2b9 1622out:
ac27a0ec
DK
1623 return ret;
1624}
1625
bfc1af65
NP
1626/* For write_end() in data=journal mode */
1627static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1628{
1629 if (!buffer_mapped(bh) || buffer_freed(bh))
1630 return 0;
1631 set_buffer_uptodate(bh);
0390131b 1632 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1633}
1634
f8514083 1635static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1636 struct address_space *mapping,
1637 loff_t pos, unsigned len, unsigned copied,
1638 struct page *page, void *fsdata)
f8514083
AK
1639{
1640 int i_size_changed = 0;
1641 struct inode *inode = mapping->host;
1642 handle_t *handle = ext4_journal_current_handle();
1643
1644 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1645
1646 /*
1647 * No need to use i_size_read() here, the i_size
1648 * cannot change under us because we hold i_mutex.
1649 *
1650 * But it's important to update i_size while still holding page lock:
1651 * page writeout could otherwise come in and zero beyond i_size.
1652 */
1653 if (pos + copied > inode->i_size) {
1654 i_size_write(inode, pos + copied);
1655 i_size_changed = 1;
1656 }
1657
1658 if (pos + copied > EXT4_I(inode)->i_disksize) {
1659 /* We need to mark inode dirty even if
1660 * new_i_size is less that inode->i_size
1661 * bu greater than i_disksize.(hint delalloc)
1662 */
1663 ext4_update_i_disksize(inode, (pos + copied));
1664 i_size_changed = 1;
1665 }
1666 unlock_page(page);
1667 page_cache_release(page);
1668
1669 /*
1670 * Don't mark the inode dirty under page lock. First, it unnecessarily
1671 * makes the holding time of page lock longer. Second, it forces lock
1672 * ordering of page lock and transaction start for journaling
1673 * filesystems.
1674 */
1675 if (i_size_changed)
1676 ext4_mark_inode_dirty(handle, inode);
1677
1678 return copied;
1679}
1680
ac27a0ec
DK
1681/*
1682 * We need to pick up the new inode size which generic_commit_write gave us
1683 * `file' can be NULL - eg, when called from page_symlink().
1684 *
617ba13b 1685 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1686 * buffers are managed internally.
1687 */
bfc1af65 1688static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1689 struct address_space *mapping,
1690 loff_t pos, unsigned len, unsigned copied,
1691 struct page *page, void *fsdata)
ac27a0ec 1692{
617ba13b 1693 handle_t *handle = ext4_journal_current_handle();
cf108bca 1694 struct inode *inode = mapping->host;
ac27a0ec
DK
1695 int ret = 0, ret2;
1696
9bffad1e 1697 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1698 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1699
1700 if (ret == 0) {
f8514083 1701 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1702 page, fsdata);
f8a87d89 1703 copied = ret2;
ffacfa7a 1704 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1705 /* if we have allocated more blocks and copied
1706 * less. We will have blocks allocated outside
1707 * inode->i_size. So truncate them
1708 */
1709 ext4_orphan_add(handle, inode);
f8a87d89
RK
1710 if (ret2 < 0)
1711 ret = ret2;
ac27a0ec 1712 }
617ba13b 1713 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1714 if (!ret)
1715 ret = ret2;
bfc1af65 1716
f8514083 1717 if (pos + len > inode->i_size) {
b9a4207d 1718 ext4_truncate_failed_write(inode);
de9a55b8 1719 /*
ffacfa7a 1720 * If truncate failed early the inode might still be
f8514083
AK
1721 * on the orphan list; we need to make sure the inode
1722 * is removed from the orphan list in that case.
1723 */
1724 if (inode->i_nlink)
1725 ext4_orphan_del(NULL, inode);
1726 }
1727
1728
bfc1af65 1729 return ret ? ret : copied;
ac27a0ec
DK
1730}
1731
bfc1af65 1732static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1733 struct address_space *mapping,
1734 loff_t pos, unsigned len, unsigned copied,
1735 struct page *page, void *fsdata)
ac27a0ec 1736{
617ba13b 1737 handle_t *handle = ext4_journal_current_handle();
cf108bca 1738 struct inode *inode = mapping->host;
ac27a0ec 1739 int ret = 0, ret2;
ac27a0ec 1740
9bffad1e 1741 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1742 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1743 page, fsdata);
f8a87d89 1744 copied = ret2;
ffacfa7a 1745 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1746 /* if we have allocated more blocks and copied
1747 * less. We will have blocks allocated outside
1748 * inode->i_size. So truncate them
1749 */
1750 ext4_orphan_add(handle, inode);
1751
f8a87d89
RK
1752 if (ret2 < 0)
1753 ret = ret2;
ac27a0ec 1754
617ba13b 1755 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1756 if (!ret)
1757 ret = ret2;
bfc1af65 1758
f8514083 1759 if (pos + len > inode->i_size) {
b9a4207d 1760 ext4_truncate_failed_write(inode);
de9a55b8 1761 /*
ffacfa7a 1762 * If truncate failed early the inode might still be
f8514083
AK
1763 * on the orphan list; we need to make sure the inode
1764 * is removed from the orphan list in that case.
1765 */
1766 if (inode->i_nlink)
1767 ext4_orphan_del(NULL, inode);
1768 }
1769
bfc1af65 1770 return ret ? ret : copied;
ac27a0ec
DK
1771}
1772
bfc1af65 1773static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1774 struct address_space *mapping,
1775 loff_t pos, unsigned len, unsigned copied,
1776 struct page *page, void *fsdata)
ac27a0ec 1777{
617ba13b 1778 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1779 struct inode *inode = mapping->host;
ac27a0ec
DK
1780 int ret = 0, ret2;
1781 int partial = 0;
bfc1af65 1782 unsigned from, to;
cf17fea6 1783 loff_t new_i_size;
ac27a0ec 1784
9bffad1e 1785 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1786 from = pos & (PAGE_CACHE_SIZE - 1);
1787 to = from + len;
1788
1789 if (copied < len) {
1790 if (!PageUptodate(page))
1791 copied = 0;
1792 page_zero_new_buffers(page, from+copied, to);
1793 }
ac27a0ec
DK
1794
1795 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1796 to, &partial, write_end_fn);
ac27a0ec
DK
1797 if (!partial)
1798 SetPageUptodate(page);
cf17fea6
AK
1799 new_i_size = pos + copied;
1800 if (new_i_size > inode->i_size)
bfc1af65 1801 i_size_write(inode, pos+copied);
19f5fb7a 1802 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1803 if (new_i_size > EXT4_I(inode)->i_disksize) {
1804 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1805 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1806 if (!ret)
1807 ret = ret2;
1808 }
bfc1af65 1809
cf108bca 1810 unlock_page(page);
f8514083 1811 page_cache_release(page);
ffacfa7a 1812 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1813 /* if we have allocated more blocks and copied
1814 * less. We will have blocks allocated outside
1815 * inode->i_size. So truncate them
1816 */
1817 ext4_orphan_add(handle, inode);
1818
617ba13b 1819 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1820 if (!ret)
1821 ret = ret2;
f8514083 1822 if (pos + len > inode->i_size) {
b9a4207d 1823 ext4_truncate_failed_write(inode);
de9a55b8 1824 /*
ffacfa7a 1825 * If truncate failed early the inode might still be
f8514083
AK
1826 * on the orphan list; we need to make sure the inode
1827 * is removed from the orphan list in that case.
1828 */
1829 if (inode->i_nlink)
1830 ext4_orphan_del(NULL, inode);
1831 }
bfc1af65
NP
1832
1833 return ret ? ret : copied;
ac27a0ec 1834}
d2a17637 1835
9d0be502
TT
1836/*
1837 * Reserve a single block located at lblock
1838 */
1839static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1840{
030ba6bc 1841 int retries = 0;
60e58e0f 1842 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1843 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1844 unsigned long md_needed;
5dd4056d 1845 int ret;
d2a17637
MC
1846
1847 /*
1848 * recalculate the amount of metadata blocks to reserve
1849 * in order to allocate nrblocks
1850 * worse case is one extent per block
1851 */
030ba6bc 1852repeat:
0637c6f4 1853 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1854 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1855 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1856 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1857
60e58e0f 1858 /*
72b8ab9d
ES
1859 * We will charge metadata quota at writeout time; this saves
1860 * us from metadata over-estimation, though we may go over by
1861 * a small amount in the end. Here we just reserve for data.
60e58e0f 1862 */
72b8ab9d 1863 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1864 if (ret)
1865 return ret;
72b8ab9d
ES
1866 /*
1867 * We do still charge estimated metadata to the sb though;
1868 * we cannot afford to run out of free blocks.
1869 */
9d0be502 1870 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1871 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1872 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1873 yield();
1874 goto repeat;
1875 }
d2a17637
MC
1876 return -ENOSPC;
1877 }
0637c6f4 1878 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1879 ei->i_reserved_data_blocks++;
0637c6f4
TT
1880 ei->i_reserved_meta_blocks += md_needed;
1881 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1882
d2a17637
MC
1883 return 0; /* success */
1884}
1885
12219aea 1886static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1887{
1888 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1889 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1890
cd213226
MC
1891 if (!to_free)
1892 return; /* Nothing to release, exit */
1893
d2a17637 1894 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1895
0637c6f4 1896 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1897 /*
0637c6f4
TT
1898 * if there aren't enough reserved blocks, then the
1899 * counter is messed up somewhere. Since this
1900 * function is called from invalidate page, it's
1901 * harmless to return without any action.
cd213226 1902 */
0637c6f4
TT
1903 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1904 "ino %lu, to_free %d with only %d reserved "
1905 "data blocks\n", inode->i_ino, to_free,
1906 ei->i_reserved_data_blocks);
1907 WARN_ON(1);
1908 to_free = ei->i_reserved_data_blocks;
cd213226 1909 }
0637c6f4 1910 ei->i_reserved_data_blocks -= to_free;
cd213226 1911
0637c6f4
TT
1912 if (ei->i_reserved_data_blocks == 0) {
1913 /*
1914 * We can release all of the reserved metadata blocks
1915 * only when we have written all of the delayed
1916 * allocation blocks.
1917 */
72b8ab9d
ES
1918 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1919 ei->i_reserved_meta_blocks);
ee5f4d9c 1920 ei->i_reserved_meta_blocks = 0;
9d0be502 1921 ei->i_da_metadata_calc_len = 0;
0637c6f4 1922 }
d2a17637 1923
72b8ab9d 1924 /* update fs dirty data blocks counter */
0637c6f4 1925 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1926
d2a17637 1927 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1928
5dd4056d 1929 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1930}
1931
1932static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1933 unsigned long offset)
d2a17637
MC
1934{
1935 int to_release = 0;
1936 struct buffer_head *head, *bh;
1937 unsigned int curr_off = 0;
1938
1939 head = page_buffers(page);
1940 bh = head;
1941 do {
1942 unsigned int next_off = curr_off + bh->b_size;
1943
1944 if ((offset <= curr_off) && (buffer_delay(bh))) {
1945 to_release++;
1946 clear_buffer_delay(bh);
1947 }
1948 curr_off = next_off;
1949 } while ((bh = bh->b_this_page) != head);
12219aea 1950 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1951}
ac27a0ec 1952
64769240
AT
1953/*
1954 * Delayed allocation stuff
1955 */
1956
64769240
AT
1957/*
1958 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1959 * them with writepage() call back
64769240
AT
1960 *
1961 * @mpd->inode: inode
1962 * @mpd->first_page: first page of the extent
1963 * @mpd->next_page: page after the last page of the extent
64769240
AT
1964 *
1965 * By the time mpage_da_submit_io() is called we expect all blocks
1966 * to be allocated. this may be wrong if allocation failed.
1967 *
1968 * As pages are already locked by write_cache_pages(), we can't use it
1969 */
1970static int mpage_da_submit_io(struct mpage_da_data *mpd)
1971{
22208ded 1972 long pages_skipped;
791b7f08
AK
1973 struct pagevec pvec;
1974 unsigned long index, end;
1975 int ret = 0, err, nr_pages, i;
1976 struct inode *inode = mpd->inode;
1977 struct address_space *mapping = inode->i_mapping;
64769240
AT
1978
1979 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1980 /*
1981 * We need to start from the first_page to the next_page - 1
1982 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1983 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1984 * at the currently mapped buffer_heads.
1985 */
64769240
AT
1986 index = mpd->first_page;
1987 end = mpd->next_page - 1;
1988
791b7f08 1989 pagevec_init(&pvec, 0);
64769240 1990 while (index <= end) {
791b7f08 1991 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1992 if (nr_pages == 0)
1993 break;
1994 for (i = 0; i < nr_pages; i++) {
1995 struct page *page = pvec.pages[i];
1996
791b7f08
AK
1997 index = page->index;
1998 if (index > end)
1999 break;
2000 index++;
2001
2002 BUG_ON(!PageLocked(page));
2003 BUG_ON(PageWriteback(page));
2004
22208ded 2005 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2006 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2007 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2008 /*
2009 * have successfully written the page
2010 * without skipping the same
2011 */
a1d6cc56 2012 mpd->pages_written++;
64769240
AT
2013 /*
2014 * In error case, we have to continue because
2015 * remaining pages are still locked
2016 * XXX: unlock and re-dirty them?
2017 */
2018 if (ret == 0)
2019 ret = err;
2020 }
2021 pagevec_release(&pvec);
2022 }
64769240
AT
2023 return ret;
2024}
2025
2026/*
2027 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2028 *
64769240 2029 * the function goes through all passed space and put actual disk
29fa89d0 2030 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2031 */
2ed88685
TT
2032static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2033 struct ext4_map_blocks *map)
64769240
AT
2034{
2035 struct inode *inode = mpd->inode;
2036 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2037 int blocks = map->m_len;
2038 sector_t pblock = map->m_pblk, cur_logical;
64769240 2039 struct buffer_head *head, *bh;
a1d6cc56 2040 pgoff_t index, end;
64769240
AT
2041 struct pagevec pvec;
2042 int nr_pages, i;
2043
2ed88685
TT
2044 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2045 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2046 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2047
2048 pagevec_init(&pvec, 0);
2049
2050 while (index <= end) {
2051 /* XXX: optimize tail */
2052 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2053 if (nr_pages == 0)
2054 break;
2055 for (i = 0; i < nr_pages; i++) {
2056 struct page *page = pvec.pages[i];
2057
2058 index = page->index;
2059 if (index > end)
2060 break;
2061 index++;
2062
2063 BUG_ON(!PageLocked(page));
2064 BUG_ON(PageWriteback(page));
2065 BUG_ON(!page_has_buffers(page));
2066
2067 bh = page_buffers(page);
2068 head = bh;
2069
2070 /* skip blocks out of the range */
2071 do {
2ed88685 2072 if (cur_logical >= map->m_lblk)
64769240
AT
2073 break;
2074 cur_logical++;
2075 } while ((bh = bh->b_this_page) != head);
2076
2077 do {
2ed88685 2078 if (cur_logical >= map->m_lblk + blocks)
64769240 2079 break;
29fa89d0 2080
2ed88685 2081 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2082
2083 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2084
2085 if (buffer_delay(bh)) {
2086 clear_buffer_delay(bh);
2087 bh->b_blocknr = pblock;
2088 } else {
2089 /*
2090 * unwritten already should have
2091 * blocknr assigned. Verify that
2092 */
2093 clear_buffer_unwritten(bh);
2094 BUG_ON(bh->b_blocknr != pblock);
2095 }
2096
61628a3f 2097 } else if (buffer_mapped(bh))
64769240 2098 BUG_ON(bh->b_blocknr != pblock);
64769240 2099
2ed88685 2100 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2101 set_buffer_uninit(bh);
64769240
AT
2102 cur_logical++;
2103 pblock++;
2104 } while ((bh = bh->b_this_page) != head);
2105 }
2106 pagevec_release(&pvec);
2107 }
2108}
2109
2110
c4a0c46e
AK
2111static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2112 sector_t logical, long blk_cnt)
2113{
2114 int nr_pages, i;
2115 pgoff_t index, end;
2116 struct pagevec pvec;
2117 struct inode *inode = mpd->inode;
2118 struct address_space *mapping = inode->i_mapping;
2119
2120 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2121 end = (logical + blk_cnt - 1) >>
2122 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2123 while (index <= end) {
2124 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2125 if (nr_pages == 0)
2126 break;
2127 for (i = 0; i < nr_pages; i++) {
2128 struct page *page = pvec.pages[i];
9b1d0998 2129 if (page->index > end)
c4a0c46e 2130 break;
c4a0c46e
AK
2131 BUG_ON(!PageLocked(page));
2132 BUG_ON(PageWriteback(page));
2133 block_invalidatepage(page, 0);
2134 ClearPageUptodate(page);
2135 unlock_page(page);
2136 }
9b1d0998
JK
2137 index = pvec.pages[nr_pages - 1]->index + 1;
2138 pagevec_release(&pvec);
c4a0c46e
AK
2139 }
2140 return;
2141}
2142
df22291f
AK
2143static void ext4_print_free_blocks(struct inode *inode)
2144{
2145 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2146 printk(KERN_CRIT "Total free blocks count %lld\n",
2147 ext4_count_free_blocks(inode->i_sb));
2148 printk(KERN_CRIT "Free/Dirty block details\n");
2149 printk(KERN_CRIT "free_blocks=%lld\n",
2150 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2151 printk(KERN_CRIT "dirty_blocks=%lld\n",
2152 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2153 printk(KERN_CRIT "Block reservation details\n");
2154 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2155 EXT4_I(inode)->i_reserved_data_blocks);
2156 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2157 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2158 return;
2159}
2160
64769240
AT
2161/*
2162 * mpage_da_map_blocks - go through given space
2163 *
8dc207c0 2164 * @mpd - bh describing space
64769240
AT
2165 *
2166 * The function skips space we know is already mapped to disk blocks.
2167 *
64769240 2168 */
ed5bde0b 2169static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2170{
2ac3b6e0 2171 int err, blks, get_blocks_flags;
2ed88685 2172 struct ext4_map_blocks map;
2fa3cdfb
TT
2173 sector_t next = mpd->b_blocknr;
2174 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2175 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2176 handle_t *handle = NULL;
64769240
AT
2177
2178 /*
2179 * We consider only non-mapped and non-allocated blocks
2180 */
8dc207c0 2181 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2182 !(mpd->b_state & (1 << BH_Delay)) &&
2183 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2184 return 0;
2fa3cdfb
TT
2185
2186 /*
2187 * If we didn't accumulate anything to write simply return
2188 */
2189 if (!mpd->b_size)
2190 return 0;
2191
2192 handle = ext4_journal_current_handle();
2193 BUG_ON(!handle);
2194
79ffab34 2195 /*
2ac3b6e0
TT
2196 * Call ext4_get_blocks() to allocate any delayed allocation
2197 * blocks, or to convert an uninitialized extent to be
2198 * initialized (in the case where we have written into
2199 * one or more preallocated blocks).
2200 *
2201 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2202 * indicate that we are on the delayed allocation path. This
2203 * affects functions in many different parts of the allocation
2204 * call path. This flag exists primarily because we don't
2205 * want to change *many* call functions, so ext4_get_blocks()
2206 * will set the magic i_delalloc_reserved_flag once the
2207 * inode's allocation semaphore is taken.
2208 *
2209 * If the blocks in questions were delalloc blocks, set
2210 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2211 * variables are updated after the blocks have been allocated.
79ffab34 2212 */
2ed88685
TT
2213 map.m_lblk = next;
2214 map.m_len = max_blocks;
1296cc85 2215 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2216 if (ext4_should_dioread_nolock(mpd->inode))
2217 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2218 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2219 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2220
2ed88685 2221 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb
TT
2222 if (blks < 0) {
2223 err = blks;
ed5bde0b
TT
2224 /*
2225 * If get block returns with error we simply
2226 * return. Later writepage will redirty the page and
2227 * writepages will find the dirty page again
c4a0c46e
AK
2228 */
2229 if (err == -EAGAIN)
2230 return 0;
df22291f
AK
2231
2232 if (err == -ENOSPC &&
ed5bde0b 2233 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2234 mpd->retval = err;
2235 return 0;
2236 }
2237
c4a0c46e 2238 /*
ed5bde0b
TT
2239 * get block failure will cause us to loop in
2240 * writepages, because a_ops->writepage won't be able
2241 * to make progress. The page will be redirtied by
2242 * writepage and writepages will again try to write
2243 * the same.
c4a0c46e 2244 */
1693918e
TT
2245 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2246 "delayed block allocation failed for inode %lu at "
2247 "logical offset %llu with max blocks %zd with "
fbe845dd 2248 "error %d", mpd->inode->i_ino,
1693918e
TT
2249 (unsigned long long) next,
2250 mpd->b_size >> mpd->inode->i_blkbits, err);
2251 printk(KERN_CRIT "This should not happen!! "
2252 "Data will be lost\n");
030ba6bc 2253 if (err == -ENOSPC) {
df22291f 2254 ext4_print_free_blocks(mpd->inode);
030ba6bc 2255 }
2fa3cdfb 2256 /* invalidate all the pages */
c4a0c46e 2257 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2258 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2259 return err;
2260 }
2fa3cdfb
TT
2261 BUG_ON(blks == 0);
2262
2ed88685
TT
2263 if (map.m_flags & EXT4_MAP_NEW) {
2264 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2265 int i;
64769240 2266
2ed88685
TT
2267 for (i = 0; i < map.m_len; i++)
2268 unmap_underlying_metadata(bdev, map.m_pblk + i);
2269 }
64769240 2270
a1d6cc56
AK
2271 /*
2272 * If blocks are delayed marked, we need to
2273 * put actual blocknr and drop delayed bit
2274 */
8dc207c0
TT
2275 if ((mpd->b_state & (1 << BH_Delay)) ||
2276 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2277 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2278
2fa3cdfb
TT
2279 if (ext4_should_order_data(mpd->inode)) {
2280 err = ext4_jbd2_file_inode(handle, mpd->inode);
2281 if (err)
2282 return err;
2283 }
2284
2285 /*
03f5d8bc 2286 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2287 */
2288 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2289 if (disksize > i_size_read(mpd->inode))
2290 disksize = i_size_read(mpd->inode);
2291 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2292 ext4_update_i_disksize(mpd->inode, disksize);
2293 return ext4_mark_inode_dirty(handle, mpd->inode);
2294 }
2295
c4a0c46e 2296 return 0;
64769240
AT
2297}
2298
bf068ee2
AK
2299#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2300 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2301
2302/*
2303 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2304 *
2305 * @mpd->lbh - extent of blocks
2306 * @logical - logical number of the block in the file
2307 * @bh - bh of the block (used to access block's state)
2308 *
2309 * the function is used to collect contig. blocks in same state
2310 */
2311static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2312 sector_t logical, size_t b_size,
2313 unsigned long b_state)
64769240 2314{
64769240 2315 sector_t next;
8dc207c0 2316 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2317
c445e3e0
ES
2318 /*
2319 * XXX Don't go larger than mballoc is willing to allocate
2320 * This is a stopgap solution. We eventually need to fold
2321 * mpage_da_submit_io() into this function and then call
2322 * ext4_get_blocks() multiple times in a loop
2323 */
2324 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2325 goto flush_it;
2326
525f4ed8 2327 /* check if thereserved journal credits might overflow */
12e9b892 2328 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2329 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2330 /*
2331 * With non-extent format we are limited by the journal
2332 * credit available. Total credit needed to insert
2333 * nrblocks contiguous blocks is dependent on the
2334 * nrblocks. So limit nrblocks.
2335 */
2336 goto flush_it;
2337 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2338 EXT4_MAX_TRANS_DATA) {
2339 /*
2340 * Adding the new buffer_head would make it cross the
2341 * allowed limit for which we have journal credit
2342 * reserved. So limit the new bh->b_size
2343 */
2344 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2345 mpd->inode->i_blkbits;
2346 /* we will do mpage_da_submit_io in the next loop */
2347 }
2348 }
64769240
AT
2349 /*
2350 * First block in the extent
2351 */
8dc207c0
TT
2352 if (mpd->b_size == 0) {
2353 mpd->b_blocknr = logical;
2354 mpd->b_size = b_size;
2355 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2356 return;
2357 }
2358
8dc207c0 2359 next = mpd->b_blocknr + nrblocks;
64769240
AT
2360 /*
2361 * Can we merge the block to our big extent?
2362 */
8dc207c0
TT
2363 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2364 mpd->b_size += b_size;
64769240
AT
2365 return;
2366 }
2367
525f4ed8 2368flush_it:
64769240
AT
2369 /*
2370 * We couldn't merge the block to our extent, so we
2371 * need to flush current extent and start new one
2372 */
c4a0c46e
AK
2373 if (mpage_da_map_blocks(mpd) == 0)
2374 mpage_da_submit_io(mpd);
a1d6cc56
AK
2375 mpd->io_done = 1;
2376 return;
64769240
AT
2377}
2378
c364b22c 2379static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2380{
c364b22c 2381 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2382}
2383
64769240
AT
2384/*
2385 * __mpage_da_writepage - finds extent of pages and blocks
2386 *
2387 * @page: page to consider
2388 * @wbc: not used, we just follow rules
2389 * @data: context
2390 *
2391 * The function finds extents of pages and scan them for all blocks.
2392 */
2393static int __mpage_da_writepage(struct page *page,
2394 struct writeback_control *wbc, void *data)
2395{
2396 struct mpage_da_data *mpd = data;
2397 struct inode *inode = mpd->inode;
8dc207c0 2398 struct buffer_head *bh, *head;
64769240
AT
2399 sector_t logical;
2400
2401 /*
2402 * Can we merge this page to current extent?
2403 */
2404 if (mpd->next_page != page->index) {
2405 /*
2406 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2407 * and start IO on them using writepage()
64769240
AT
2408 */
2409 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2410 if (mpage_da_map_blocks(mpd) == 0)
2411 mpage_da_submit_io(mpd);
a1d6cc56
AK
2412 /*
2413 * skip rest of the page in the page_vec
2414 */
2415 mpd->io_done = 1;
2416 redirty_page_for_writepage(wbc, page);
2417 unlock_page(page);
2418 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2419 }
2420
2421 /*
2422 * Start next extent of pages ...
2423 */
2424 mpd->first_page = page->index;
2425
2426 /*
2427 * ... and blocks
2428 */
8dc207c0
TT
2429 mpd->b_size = 0;
2430 mpd->b_state = 0;
2431 mpd->b_blocknr = 0;
64769240
AT
2432 }
2433
2434 mpd->next_page = page->index + 1;
2435 logical = (sector_t) page->index <<
2436 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2437
2438 if (!page_has_buffers(page)) {
8dc207c0
TT
2439 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2440 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2441 if (mpd->io_done)
2442 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2443 } else {
2444 /*
2445 * Page with regular buffer heads, just add all dirty ones
2446 */
2447 head = page_buffers(page);
2448 bh = head;
2449 do {
2450 BUG_ON(buffer_locked(bh));
791b7f08
AK
2451 /*
2452 * We need to try to allocate
2453 * unmapped blocks in the same page.
2454 * Otherwise we won't make progress
43ce1d23 2455 * with the page in ext4_writepage
791b7f08 2456 */
c364b22c 2457 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2458 mpage_add_bh_to_extent(mpd, logical,
2459 bh->b_size,
2460 bh->b_state);
a1d6cc56
AK
2461 if (mpd->io_done)
2462 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2463 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2464 /*
2465 * mapped dirty buffer. We need to update
2466 * the b_state because we look at
2467 * b_state in mpage_da_map_blocks. We don't
2468 * update b_size because if we find an
2469 * unmapped buffer_head later we need to
2470 * use the b_state flag of that buffer_head.
2471 */
8dc207c0
TT
2472 if (mpd->b_size == 0)
2473 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2474 }
64769240
AT
2475 logical++;
2476 } while ((bh = bh->b_this_page) != head);
2477 }
2478
2479 return 0;
2480}
2481
64769240 2482/*
b920c755
TT
2483 * This is a special get_blocks_t callback which is used by
2484 * ext4_da_write_begin(). It will either return mapped block or
2485 * reserve space for a single block.
29fa89d0
AK
2486 *
2487 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2488 * We also have b_blocknr = -1 and b_bdev initialized properly
2489 *
2490 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2491 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2492 * initialized properly.
64769240
AT
2493 */
2494static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2495 struct buffer_head *bh, int create)
64769240 2496{
2ed88685 2497 struct ext4_map_blocks map;
64769240 2498 int ret = 0;
33b9817e
AK
2499 sector_t invalid_block = ~((sector_t) 0xffff);
2500
2501 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2502 invalid_block = ~0;
64769240
AT
2503
2504 BUG_ON(create == 0);
2ed88685
TT
2505 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2506
2507 map.m_lblk = iblock;
2508 map.m_len = 1;
64769240
AT
2509
2510 /*
2511 * first, we need to know whether the block is allocated already
2512 * preallocated blocks are unmapped but should treated
2513 * the same as allocated blocks.
2514 */
2ed88685
TT
2515 ret = ext4_map_blocks(NULL, inode, &map, 0);
2516 if (ret < 0)
2517 return ret;
2518 if (ret == 0) {
2519 if (buffer_delay(bh))
2520 return 0; /* Not sure this could or should happen */
64769240
AT
2521 /*
2522 * XXX: __block_prepare_write() unmaps passed block,
2523 * is it OK?
2524 */
9d0be502 2525 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2526 if (ret)
2527 /* not enough space to reserve */
2528 return ret;
2529
2ed88685
TT
2530 map_bh(bh, inode->i_sb, invalid_block);
2531 set_buffer_new(bh);
2532 set_buffer_delay(bh);
2533 return 0;
64769240
AT
2534 }
2535
2ed88685
TT
2536 map_bh(bh, inode->i_sb, map.m_pblk);
2537 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2538
2539 if (buffer_unwritten(bh)) {
2540 /* A delayed write to unwritten bh should be marked
2541 * new and mapped. Mapped ensures that we don't do
2542 * get_block multiple times when we write to the same
2543 * offset and new ensures that we do proper zero out
2544 * for partial write.
2545 */
2546 set_buffer_new(bh);
2547 set_buffer_mapped(bh);
2548 }
2549 return 0;
64769240 2550}
61628a3f 2551
b920c755
TT
2552/*
2553 * This function is used as a standard get_block_t calback function
2554 * when there is no desire to allocate any blocks. It is used as a
2555 * callback function for block_prepare_write(), nobh_writepage(), and
2556 * block_write_full_page(). These functions should only try to map a
2557 * single block at a time.
2558 *
2559 * Since this function doesn't do block allocations even if the caller
2560 * requests it by passing in create=1, it is critically important that
2561 * any caller checks to make sure that any buffer heads are returned
2562 * by this function are either all already mapped or marked for
2563 * delayed allocation before calling nobh_writepage() or
2564 * block_write_full_page(). Otherwise, b_blocknr could be left
2565 * unitialized, and the page write functions will be taken by
2566 * surprise.
2567 */
2568static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2569 struct buffer_head *bh_result, int create)
2570{
a2dc52b5 2571 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2572 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2573}
2574
62e086be
AK
2575static int bget_one(handle_t *handle, struct buffer_head *bh)
2576{
2577 get_bh(bh);
2578 return 0;
2579}
2580
2581static int bput_one(handle_t *handle, struct buffer_head *bh)
2582{
2583 put_bh(bh);
2584 return 0;
2585}
2586
2587static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2588 unsigned int len)
2589{
2590 struct address_space *mapping = page->mapping;
2591 struct inode *inode = mapping->host;
2592 struct buffer_head *page_bufs;
2593 handle_t *handle = NULL;
2594 int ret = 0;
2595 int err;
2596
2597 page_bufs = page_buffers(page);
2598 BUG_ON(!page_bufs);
2599 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2600 /* As soon as we unlock the page, it can go away, but we have
2601 * references to buffers so we are safe */
2602 unlock_page(page);
2603
2604 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2605 if (IS_ERR(handle)) {
2606 ret = PTR_ERR(handle);
2607 goto out;
2608 }
2609
2610 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2611 do_journal_get_write_access);
2612
2613 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2614 write_end_fn);
2615 if (ret == 0)
2616 ret = err;
2617 err = ext4_journal_stop(handle);
2618 if (!ret)
2619 ret = err;
2620
2621 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2622 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2623out:
2624 return ret;
2625}
2626
744692dc
JZ
2627static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2628static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2629
61628a3f 2630/*
43ce1d23
AK
2631 * Note that we don't need to start a transaction unless we're journaling data
2632 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2633 * need to file the inode to the transaction's list in ordered mode because if
2634 * we are writing back data added by write(), the inode is already there and if
2635 * we are writing back data modified via mmap(), noone guarantees in which
2636 * transaction the data will hit the disk. In case we are journaling data, we
2637 * cannot start transaction directly because transaction start ranks above page
2638 * lock so we have to do some magic.
2639 *
b920c755
TT
2640 * This function can get called via...
2641 * - ext4_da_writepages after taking page lock (have journal handle)
2642 * - journal_submit_inode_data_buffers (no journal handle)
2643 * - shrink_page_list via pdflush (no journal handle)
2644 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2645 *
2646 * We don't do any block allocation in this function. If we have page with
2647 * multiple blocks we need to write those buffer_heads that are mapped. This
2648 * is important for mmaped based write. So if we do with blocksize 1K
2649 * truncate(f, 1024);
2650 * a = mmap(f, 0, 4096);
2651 * a[0] = 'a';
2652 * truncate(f, 4096);
2653 * we have in the page first buffer_head mapped via page_mkwrite call back
2654 * but other bufer_heads would be unmapped but dirty(dirty done via the
2655 * do_wp_page). So writepage should write the first block. If we modify
2656 * the mmap area beyond 1024 we will again get a page_fault and the
2657 * page_mkwrite callback will do the block allocation and mark the
2658 * buffer_heads mapped.
2659 *
2660 * We redirty the page if we have any buffer_heads that is either delay or
2661 * unwritten in the page.
2662 *
2663 * We can get recursively called as show below.
2664 *
2665 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2666 * ext4_writepage()
2667 *
2668 * But since we don't do any block allocation we should not deadlock.
2669 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2670 */
43ce1d23 2671static int ext4_writepage(struct page *page,
62e086be 2672 struct writeback_control *wbc)
64769240 2673{
64769240 2674 int ret = 0;
61628a3f 2675 loff_t size;
498e5f24 2676 unsigned int len;
744692dc 2677 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2678 struct inode *inode = page->mapping->host;
2679
43ce1d23 2680 trace_ext4_writepage(inode, page);
f0e6c985
AK
2681 size = i_size_read(inode);
2682 if (page->index == size >> PAGE_CACHE_SHIFT)
2683 len = size & ~PAGE_CACHE_MASK;
2684 else
2685 len = PAGE_CACHE_SIZE;
64769240 2686
f0e6c985 2687 if (page_has_buffers(page)) {
61628a3f 2688 page_bufs = page_buffers(page);
f0e6c985 2689 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2690 ext4_bh_delay_or_unwritten)) {
61628a3f 2691 /*
f0e6c985
AK
2692 * We don't want to do block allocation
2693 * So redirty the page and return
cd1aac32
AK
2694 * We may reach here when we do a journal commit
2695 * via journal_submit_inode_data_buffers.
2696 * If we don't have mapping block we just ignore
f0e6c985
AK
2697 * them. We can also reach here via shrink_page_list
2698 */
2699 redirty_page_for_writepage(wbc, page);
2700 unlock_page(page);
2701 return 0;
2702 }
2703 } else {
2704 /*
2705 * The test for page_has_buffers() is subtle:
2706 * We know the page is dirty but it lost buffers. That means
2707 * that at some moment in time after write_begin()/write_end()
2708 * has been called all buffers have been clean and thus they
2709 * must have been written at least once. So they are all
2710 * mapped and we can happily proceed with mapping them
2711 * and writing the page.
2712 *
2713 * Try to initialize the buffer_heads and check whether
2714 * all are mapped and non delay. We don't want to
2715 * do block allocation here.
2716 */
b767e78a 2717 ret = block_prepare_write(page, 0, len,
b920c755 2718 noalloc_get_block_write);
f0e6c985
AK
2719 if (!ret) {
2720 page_bufs = page_buffers(page);
2721 /* check whether all are mapped and non delay */
2722 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2723 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2724 redirty_page_for_writepage(wbc, page);
2725 unlock_page(page);
2726 return 0;
2727 }
2728 } else {
2729 /*
2730 * We can't do block allocation here
2731 * so just redity the page and unlock
2732 * and return
61628a3f 2733 */
61628a3f
MC
2734 redirty_page_for_writepage(wbc, page);
2735 unlock_page(page);
2736 return 0;
2737 }
ed9b3e33 2738 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2739 block_commit_write(page, 0, len);
64769240
AT
2740 }
2741
43ce1d23
AK
2742 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2743 /*
2744 * It's mmapped pagecache. Add buffers and journal it. There
2745 * doesn't seem much point in redirtying the page here.
2746 */
2747 ClearPageChecked(page);
3f0ca309 2748 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2749 }
2750
64769240 2751 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2752 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
744692dc
JZ
2753 else if (page_bufs && buffer_uninit(page_bufs)) {
2754 ext4_set_bh_endio(page_bufs, inode);
2755 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2756 wbc, ext4_end_io_buffer_write);
2757 } else
b920c755
TT
2758 ret = block_write_full_page(page, noalloc_get_block_write,
2759 wbc);
64769240 2760
64769240
AT
2761 return ret;
2762}
2763
61628a3f 2764/*
525f4ed8
MC
2765 * This is called via ext4_da_writepages() to
2766 * calulate the total number of credits to reserve to fit
2767 * a single extent allocation into a single transaction,
2768 * ext4_da_writpeages() will loop calling this before
2769 * the block allocation.
61628a3f 2770 */
525f4ed8
MC
2771
2772static int ext4_da_writepages_trans_blocks(struct inode *inode)
2773{
2774 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2775
2776 /*
2777 * With non-extent format the journal credit needed to
2778 * insert nrblocks contiguous block is dependent on
2779 * number of contiguous block. So we will limit
2780 * number of contiguous block to a sane value
2781 */
12e9b892 2782 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2783 (max_blocks > EXT4_MAX_TRANS_DATA))
2784 max_blocks = EXT4_MAX_TRANS_DATA;
2785
2786 return ext4_chunk_trans_blocks(inode, max_blocks);
2787}
61628a3f 2788
8e48dcfb
TT
2789/*
2790 * write_cache_pages_da - walk the list of dirty pages of the given
2791 * address space and call the callback function (which usually writes
2792 * the pages).
2793 *
2794 * This is a forked version of write_cache_pages(). Differences:
2795 * Range cyclic is ignored.
2796 * no_nrwrite_index_update is always presumed true
2797 */
2798static int write_cache_pages_da(struct address_space *mapping,
2799 struct writeback_control *wbc,
2800 struct mpage_da_data *mpd)
2801{
2802 int ret = 0;
2803 int done = 0;
2804 struct pagevec pvec;
2805 int nr_pages;
2806 pgoff_t index;
2807 pgoff_t end; /* Inclusive */
2808 long nr_to_write = wbc->nr_to_write;
2809
2810 pagevec_init(&pvec, 0);
2811 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2812 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2813
2814 while (!done && (index <= end)) {
2815 int i;
2816
2817 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2818 PAGECACHE_TAG_DIRTY,
2819 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2820 if (nr_pages == 0)
2821 break;
2822
2823 for (i = 0; i < nr_pages; i++) {
2824 struct page *page = pvec.pages[i];
2825
2826 /*
2827 * At this point, the page may be truncated or
2828 * invalidated (changing page->mapping to NULL), or
2829 * even swizzled back from swapper_space to tmpfs file
2830 * mapping. However, page->index will not change
2831 * because we have a reference on the page.
2832 */
2833 if (page->index > end) {
2834 done = 1;
2835 break;
2836 }
2837
2838 lock_page(page);
2839
2840 /*
2841 * Page truncated or invalidated. We can freely skip it
2842 * then, even for data integrity operations: the page
2843 * has disappeared concurrently, so there could be no
2844 * real expectation of this data interity operation
2845 * even if there is now a new, dirty page at the same
2846 * pagecache address.
2847 */
2848 if (unlikely(page->mapping != mapping)) {
2849continue_unlock:
2850 unlock_page(page);
2851 continue;
2852 }
2853
2854 if (!PageDirty(page)) {
2855 /* someone wrote it for us */
2856 goto continue_unlock;
2857 }
2858
2859 if (PageWriteback(page)) {
2860 if (wbc->sync_mode != WB_SYNC_NONE)
2861 wait_on_page_writeback(page);
2862 else
2863 goto continue_unlock;
2864 }
2865
2866 BUG_ON(PageWriteback(page));
2867 if (!clear_page_dirty_for_io(page))
2868 goto continue_unlock;
2869
2870 ret = __mpage_da_writepage(page, wbc, mpd);
2871 if (unlikely(ret)) {
2872 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2873 unlock_page(page);
2874 ret = 0;
2875 } else {
2876 done = 1;
2877 break;
2878 }
2879 }
2880
2881 if (nr_to_write > 0) {
2882 nr_to_write--;
2883 if (nr_to_write == 0 &&
2884 wbc->sync_mode == WB_SYNC_NONE) {
2885 /*
2886 * We stop writing back only if we are
2887 * not doing integrity sync. In case of
2888 * integrity sync we have to keep going
2889 * because someone may be concurrently
2890 * dirtying pages, and we might have
2891 * synced a lot of newly appeared dirty
2892 * pages, but have not synced all of the
2893 * old dirty pages.
2894 */
2895 done = 1;
2896 break;
2897 }
2898 }
2899 }
2900 pagevec_release(&pvec);
2901 cond_resched();
2902 }
2903 return ret;
2904}
2905
2906
64769240 2907static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2908 struct writeback_control *wbc)
64769240 2909{
22208ded
AK
2910 pgoff_t index;
2911 int range_whole = 0;
61628a3f 2912 handle_t *handle = NULL;
df22291f 2913 struct mpage_da_data mpd;
5e745b04 2914 struct inode *inode = mapping->host;
498e5f24
TT
2915 int pages_written = 0;
2916 long pages_skipped;
55138e0b 2917 unsigned int max_pages;
2acf2c26 2918 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2919 int needed_blocks, ret = 0;
2920 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2921 loff_t range_start = wbc->range_start;
5e745b04 2922 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2923
9bffad1e 2924 trace_ext4_da_writepages(inode, wbc);
ba80b101 2925
61628a3f
MC
2926 /*
2927 * No pages to write? This is mainly a kludge to avoid starting
2928 * a transaction for special inodes like journal inode on last iput()
2929 * because that could violate lock ordering on umount
2930 */
a1d6cc56 2931 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2932 return 0;
2a21e37e
TT
2933
2934 /*
2935 * If the filesystem has aborted, it is read-only, so return
2936 * right away instead of dumping stack traces later on that
2937 * will obscure the real source of the problem. We test
4ab2f15b 2938 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2939 * the latter could be true if the filesystem is mounted
2940 * read-only, and in that case, ext4_da_writepages should
2941 * *never* be called, so if that ever happens, we would want
2942 * the stack trace.
2943 */
4ab2f15b 2944 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2945 return -EROFS;
2946
22208ded
AK
2947 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2948 range_whole = 1;
61628a3f 2949
2acf2c26
AK
2950 range_cyclic = wbc->range_cyclic;
2951 if (wbc->range_cyclic) {
22208ded 2952 index = mapping->writeback_index;
2acf2c26
AK
2953 if (index)
2954 cycled = 0;
2955 wbc->range_start = index << PAGE_CACHE_SHIFT;
2956 wbc->range_end = LLONG_MAX;
2957 wbc->range_cyclic = 0;
2958 } else
22208ded 2959 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2960
55138e0b
TT
2961 /*
2962 * This works around two forms of stupidity. The first is in
2963 * the writeback code, which caps the maximum number of pages
2964 * written to be 1024 pages. This is wrong on multiple
2965 * levels; different architectues have a different page size,
2966 * which changes the maximum amount of data which gets
2967 * written. Secondly, 4 megabytes is way too small. XFS
2968 * forces this value to be 16 megabytes by multiplying
2969 * nr_to_write parameter by four, and then relies on its
2970 * allocator to allocate larger extents to make them
2971 * contiguous. Unfortunately this brings us to the second
2972 * stupidity, which is that ext4's mballoc code only allocates
2973 * at most 2048 blocks. So we force contiguous writes up to
2974 * the number of dirty blocks in the inode, or
2975 * sbi->max_writeback_mb_bump whichever is smaller.
2976 */
2977 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2978 if (!range_cyclic && range_whole)
2979 desired_nr_to_write = wbc->nr_to_write * 8;
2980 else
2981 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2982 max_pages);
2983 if (desired_nr_to_write > max_pages)
2984 desired_nr_to_write = max_pages;
2985
2986 if (wbc->nr_to_write < desired_nr_to_write) {
2987 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2988 wbc->nr_to_write = desired_nr_to_write;
2989 }
2990
df22291f
AK
2991 mpd.wbc = wbc;
2992 mpd.inode = mapping->host;
2993
22208ded
AK
2994 pages_skipped = wbc->pages_skipped;
2995
2acf2c26 2996retry:
22208ded 2997 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2998
2999 /*
3000 * we insert one extent at a time. So we need
3001 * credit needed for single extent allocation.
3002 * journalled mode is currently not supported
3003 * by delalloc
3004 */
3005 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3006 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3007
61628a3f
MC
3008 /* start a new transaction*/
3009 handle = ext4_journal_start(inode, needed_blocks);
3010 if (IS_ERR(handle)) {
3011 ret = PTR_ERR(handle);
1693918e 3012 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3013 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3014 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3015 goto out_writepages;
3016 }
f63e6005
TT
3017
3018 /*
3019 * Now call __mpage_da_writepage to find the next
3020 * contiguous region of logical blocks that need
3021 * blocks to be allocated by ext4. We don't actually
3022 * submit the blocks for I/O here, even though
3023 * write_cache_pages thinks it will, and will set the
3024 * pages as clean for write before calling
3025 * __mpage_da_writepage().
3026 */
3027 mpd.b_size = 0;
3028 mpd.b_state = 0;
3029 mpd.b_blocknr = 0;
3030 mpd.first_page = 0;
3031 mpd.next_page = 0;
3032 mpd.io_done = 0;
3033 mpd.pages_written = 0;
3034 mpd.retval = 0;
8e48dcfb 3035 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3036 /*
af901ca1 3037 * If we have a contiguous extent of pages and we
f63e6005
TT
3038 * haven't done the I/O yet, map the blocks and submit
3039 * them for I/O.
3040 */
3041 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3042 if (mpage_da_map_blocks(&mpd) == 0)
3043 mpage_da_submit_io(&mpd);
3044 mpd.io_done = 1;
3045 ret = MPAGE_DA_EXTENT_TAIL;
3046 }
b3a3ca8c 3047 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3048 wbc->nr_to_write -= mpd.pages_written;
df22291f 3049
61628a3f 3050 ext4_journal_stop(handle);
df22291f 3051
8f64b32e 3052 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3053 /* commit the transaction which would
3054 * free blocks released in the transaction
3055 * and try again
3056 */
df22291f 3057 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3058 wbc->pages_skipped = pages_skipped;
3059 ret = 0;
3060 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3061 /*
3062 * got one extent now try with
3063 * rest of the pages
3064 */
22208ded
AK
3065 pages_written += mpd.pages_written;
3066 wbc->pages_skipped = pages_skipped;
a1d6cc56 3067 ret = 0;
2acf2c26 3068 io_done = 1;
22208ded 3069 } else if (wbc->nr_to_write)
61628a3f
MC
3070 /*
3071 * There is no more writeout needed
3072 * or we requested for a noblocking writeout
3073 * and we found the device congested
3074 */
61628a3f 3075 break;
a1d6cc56 3076 }
2acf2c26
AK
3077 if (!io_done && !cycled) {
3078 cycled = 1;
3079 index = 0;
3080 wbc->range_start = index << PAGE_CACHE_SHIFT;
3081 wbc->range_end = mapping->writeback_index - 1;
3082 goto retry;
3083 }
22208ded 3084 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3085 ext4_msg(inode->i_sb, KERN_CRIT,
3086 "This should not happen leaving %s "
fbe845dd 3087 "with nr_to_write = %ld ret = %d",
1693918e 3088 __func__, wbc->nr_to_write, ret);
22208ded
AK
3089
3090 /* Update index */
3091 index += pages_written;
2acf2c26 3092 wbc->range_cyclic = range_cyclic;
22208ded
AK
3093 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3094 /*
3095 * set the writeback_index so that range_cyclic
3096 * mode will write it back later
3097 */
3098 mapping->writeback_index = index;
a1d6cc56 3099
61628a3f 3100out_writepages:
2faf2e19 3101 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3102 wbc->range_start = range_start;
9bffad1e 3103 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3104 return ret;
64769240
AT
3105}
3106
79f0be8d
AK
3107#define FALL_BACK_TO_NONDELALLOC 1
3108static int ext4_nonda_switch(struct super_block *sb)
3109{
3110 s64 free_blocks, dirty_blocks;
3111 struct ext4_sb_info *sbi = EXT4_SB(sb);
3112
3113 /*
3114 * switch to non delalloc mode if we are running low
3115 * on free block. The free block accounting via percpu
179f7ebf 3116 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3117 * accumulated on each CPU without updating global counters
3118 * Delalloc need an accurate free block accounting. So switch
3119 * to non delalloc when we are near to error range.
3120 */
3121 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3122 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3123 if (2 * free_blocks < 3 * dirty_blocks ||
3124 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3125 /*
c8afb446
ES
3126 * free block count is less than 150% of dirty blocks
3127 * or free blocks is less than watermark
79f0be8d
AK
3128 */
3129 return 1;
3130 }
c8afb446
ES
3131 /*
3132 * Even if we don't switch but are nearing capacity,
3133 * start pushing delalloc when 1/2 of free blocks are dirty.
3134 */
3135 if (free_blocks < 2 * dirty_blocks)
3136 writeback_inodes_sb_if_idle(sb);
3137
79f0be8d
AK
3138 return 0;
3139}
3140
64769240 3141static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3142 loff_t pos, unsigned len, unsigned flags,
3143 struct page **pagep, void **fsdata)
64769240 3144{
72b8ab9d 3145 int ret, retries = 0;
64769240
AT
3146 struct page *page;
3147 pgoff_t index;
3148 unsigned from, to;
3149 struct inode *inode = mapping->host;
3150 handle_t *handle;
3151
3152 index = pos >> PAGE_CACHE_SHIFT;
3153 from = pos & (PAGE_CACHE_SIZE - 1);
3154 to = from + len;
79f0be8d
AK
3155
3156 if (ext4_nonda_switch(inode->i_sb)) {
3157 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3158 return ext4_write_begin(file, mapping, pos,
3159 len, flags, pagep, fsdata);
3160 }
3161 *fsdata = (void *)0;
9bffad1e 3162 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3163retry:
64769240
AT
3164 /*
3165 * With delayed allocation, we don't log the i_disksize update
3166 * if there is delayed block allocation. But we still need
3167 * to journalling the i_disksize update if writes to the end
3168 * of file which has an already mapped buffer.
3169 */
3170 handle = ext4_journal_start(inode, 1);
3171 if (IS_ERR(handle)) {
3172 ret = PTR_ERR(handle);
3173 goto out;
3174 }
ebd3610b
JK
3175 /* We cannot recurse into the filesystem as the transaction is already
3176 * started */
3177 flags |= AOP_FLAG_NOFS;
64769240 3178
54566b2c 3179 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3180 if (!page) {
3181 ext4_journal_stop(handle);
3182 ret = -ENOMEM;
3183 goto out;
3184 }
64769240
AT
3185 *pagep = page;
3186
3187 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3188 ext4_da_get_block_prep);
64769240
AT
3189 if (ret < 0) {
3190 unlock_page(page);
3191 ext4_journal_stop(handle);
3192 page_cache_release(page);
ae4d5372
AK
3193 /*
3194 * block_write_begin may have instantiated a few blocks
3195 * outside i_size. Trim these off again. Don't need
3196 * i_size_read because we hold i_mutex.
3197 */
3198 if (pos + len > inode->i_size)
b9a4207d 3199 ext4_truncate_failed_write(inode);
64769240
AT
3200 }
3201
d2a17637
MC
3202 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3203 goto retry;
64769240
AT
3204out:
3205 return ret;
3206}
3207
632eaeab
MC
3208/*
3209 * Check if we should update i_disksize
3210 * when write to the end of file but not require block allocation
3211 */
3212static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3213 unsigned long offset)
632eaeab
MC
3214{
3215 struct buffer_head *bh;
3216 struct inode *inode = page->mapping->host;
3217 unsigned int idx;
3218 int i;
3219
3220 bh = page_buffers(page);
3221 idx = offset >> inode->i_blkbits;
3222
af5bc92d 3223 for (i = 0; i < idx; i++)
632eaeab
MC
3224 bh = bh->b_this_page;
3225
29fa89d0 3226 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3227 return 0;
3228 return 1;
3229}
3230
64769240 3231static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3232 struct address_space *mapping,
3233 loff_t pos, unsigned len, unsigned copied,
3234 struct page *page, void *fsdata)
64769240
AT
3235{
3236 struct inode *inode = mapping->host;
3237 int ret = 0, ret2;
3238 handle_t *handle = ext4_journal_current_handle();
3239 loff_t new_i_size;
632eaeab 3240 unsigned long start, end;
79f0be8d
AK
3241 int write_mode = (int)(unsigned long)fsdata;
3242
3243 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3244 if (ext4_should_order_data(inode)) {
3245 return ext4_ordered_write_end(file, mapping, pos,
3246 len, copied, page, fsdata);
3247 } else if (ext4_should_writeback_data(inode)) {
3248 return ext4_writeback_write_end(file, mapping, pos,
3249 len, copied, page, fsdata);
3250 } else {
3251 BUG();
3252 }
3253 }
632eaeab 3254
9bffad1e 3255 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3256 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3257 end = start + copied - 1;
64769240
AT
3258
3259 /*
3260 * generic_write_end() will run mark_inode_dirty() if i_size
3261 * changes. So let's piggyback the i_disksize mark_inode_dirty
3262 * into that.
3263 */
3264
3265 new_i_size = pos + copied;
632eaeab
MC
3266 if (new_i_size > EXT4_I(inode)->i_disksize) {
3267 if (ext4_da_should_update_i_disksize(page, end)) {
3268 down_write(&EXT4_I(inode)->i_data_sem);
3269 if (new_i_size > EXT4_I(inode)->i_disksize) {
3270 /*
3271 * Updating i_disksize when extending file
3272 * without needing block allocation
3273 */
3274 if (ext4_should_order_data(inode))
3275 ret = ext4_jbd2_file_inode(handle,
3276 inode);
64769240 3277
632eaeab
MC
3278 EXT4_I(inode)->i_disksize = new_i_size;
3279 }
3280 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3281 /* We need to mark inode dirty even if
3282 * new_i_size is less that inode->i_size
3283 * bu greater than i_disksize.(hint delalloc)
3284 */
3285 ext4_mark_inode_dirty(handle, inode);
64769240 3286 }
632eaeab 3287 }
64769240
AT
3288 ret2 = generic_write_end(file, mapping, pos, len, copied,
3289 page, fsdata);
3290 copied = ret2;
3291 if (ret2 < 0)
3292 ret = ret2;
3293 ret2 = ext4_journal_stop(handle);
3294 if (!ret)
3295 ret = ret2;
3296
3297 return ret ? ret : copied;
3298}
3299
3300static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3301{
64769240
AT
3302 /*
3303 * Drop reserved blocks
3304 */
3305 BUG_ON(!PageLocked(page));
3306 if (!page_has_buffers(page))
3307 goto out;
3308
d2a17637 3309 ext4_da_page_release_reservation(page, offset);
64769240
AT
3310
3311out:
3312 ext4_invalidatepage(page, offset);
3313
3314 return;
3315}
3316
ccd2506b
TT
3317/*
3318 * Force all delayed allocation blocks to be allocated for a given inode.
3319 */
3320int ext4_alloc_da_blocks(struct inode *inode)
3321{
fb40ba0d
TT
3322 trace_ext4_alloc_da_blocks(inode);
3323
ccd2506b
TT
3324 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3325 !EXT4_I(inode)->i_reserved_meta_blocks)
3326 return 0;
3327
3328 /*
3329 * We do something simple for now. The filemap_flush() will
3330 * also start triggering a write of the data blocks, which is
3331 * not strictly speaking necessary (and for users of
3332 * laptop_mode, not even desirable). However, to do otherwise
3333 * would require replicating code paths in:
de9a55b8 3334 *
ccd2506b
TT
3335 * ext4_da_writepages() ->
3336 * write_cache_pages() ---> (via passed in callback function)
3337 * __mpage_da_writepage() -->
3338 * mpage_add_bh_to_extent()
3339 * mpage_da_map_blocks()
3340 *
3341 * The problem is that write_cache_pages(), located in
3342 * mm/page-writeback.c, marks pages clean in preparation for
3343 * doing I/O, which is not desirable if we're not planning on
3344 * doing I/O at all.
3345 *
3346 * We could call write_cache_pages(), and then redirty all of
3347 * the pages by calling redirty_page_for_writeback() but that
3348 * would be ugly in the extreme. So instead we would need to
3349 * replicate parts of the code in the above functions,
3350 * simplifying them becuase we wouldn't actually intend to
3351 * write out the pages, but rather only collect contiguous
3352 * logical block extents, call the multi-block allocator, and
3353 * then update the buffer heads with the block allocations.
de9a55b8 3354 *
ccd2506b
TT
3355 * For now, though, we'll cheat by calling filemap_flush(),
3356 * which will map the blocks, and start the I/O, but not
3357 * actually wait for the I/O to complete.
3358 */
3359 return filemap_flush(inode->i_mapping);
3360}
64769240 3361
ac27a0ec
DK
3362/*
3363 * bmap() is special. It gets used by applications such as lilo and by
3364 * the swapper to find the on-disk block of a specific piece of data.
3365 *
3366 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3367 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3368 * filesystem and enables swap, then they may get a nasty shock when the
3369 * data getting swapped to that swapfile suddenly gets overwritten by
3370 * the original zero's written out previously to the journal and
3371 * awaiting writeback in the kernel's buffer cache.
3372 *
3373 * So, if we see any bmap calls here on a modified, data-journaled file,
3374 * take extra steps to flush any blocks which might be in the cache.
3375 */
617ba13b 3376static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3377{
3378 struct inode *inode = mapping->host;
3379 journal_t *journal;
3380 int err;
3381
64769240
AT
3382 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3383 test_opt(inode->i_sb, DELALLOC)) {
3384 /*
3385 * With delalloc we want to sync the file
3386 * so that we can make sure we allocate
3387 * blocks for file
3388 */
3389 filemap_write_and_wait(mapping);
3390 }
3391
19f5fb7a
TT
3392 if (EXT4_JOURNAL(inode) &&
3393 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3394 /*
3395 * This is a REALLY heavyweight approach, but the use of
3396 * bmap on dirty files is expected to be extremely rare:
3397 * only if we run lilo or swapon on a freshly made file
3398 * do we expect this to happen.
3399 *
3400 * (bmap requires CAP_SYS_RAWIO so this does not
3401 * represent an unprivileged user DOS attack --- we'd be
3402 * in trouble if mortal users could trigger this path at
3403 * will.)
3404 *
617ba13b 3405 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3406 * regular files. If somebody wants to bmap a directory
3407 * or symlink and gets confused because the buffer
3408 * hasn't yet been flushed to disk, they deserve
3409 * everything they get.
3410 */
3411
19f5fb7a 3412 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3413 journal = EXT4_JOURNAL(inode);
dab291af
MC
3414 jbd2_journal_lock_updates(journal);
3415 err = jbd2_journal_flush(journal);
3416 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3417
3418 if (err)
3419 return 0;
3420 }
3421
af5bc92d 3422 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3423}
3424
617ba13b 3425static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3426{
617ba13b 3427 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3428}
3429
3430static int
617ba13b 3431ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3432 struct list_head *pages, unsigned nr_pages)
3433{
617ba13b 3434 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3435}
3436
744692dc
JZ
3437static void ext4_free_io_end(ext4_io_end_t *io)
3438{
3439 BUG_ON(!io);
3440 if (io->page)
3441 put_page(io->page);
3442 iput(io->inode);
3443 kfree(io);
3444}
3445
3446static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3447{
3448 struct buffer_head *head, *bh;
3449 unsigned int curr_off = 0;
3450
3451 if (!page_has_buffers(page))
3452 return;
3453 head = bh = page_buffers(page);
3454 do {
3455 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3456 && bh->b_private) {
3457 ext4_free_io_end(bh->b_private);
3458 bh->b_private = NULL;
3459 bh->b_end_io = NULL;
3460 }
3461 curr_off = curr_off + bh->b_size;
3462 bh = bh->b_this_page;
3463 } while (bh != head);
3464}
3465
617ba13b 3466static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3467{
617ba13b 3468 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3469
744692dc
JZ
3470 /*
3471 * free any io_end structure allocated for buffers to be discarded
3472 */
3473 if (ext4_should_dioread_nolock(page->mapping->host))
3474 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3475 /*
3476 * If it's a full truncate we just forget about the pending dirtying
3477 */
3478 if (offset == 0)
3479 ClearPageChecked(page);
3480
0390131b
FM
3481 if (journal)
3482 jbd2_journal_invalidatepage(journal, page, offset);
3483 else
3484 block_invalidatepage(page, offset);
ac27a0ec
DK
3485}
3486
617ba13b 3487static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3488{
617ba13b 3489 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3490
3491 WARN_ON(PageChecked(page));
3492 if (!page_has_buffers(page))
3493 return 0;
0390131b
FM
3494 if (journal)
3495 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3496 else
3497 return try_to_free_buffers(page);
ac27a0ec
DK
3498}
3499
3500/*
4c0425ff
MC
3501 * O_DIRECT for ext3 (or indirect map) based files
3502 *
ac27a0ec
DK
3503 * If the O_DIRECT write will extend the file then add this inode to the
3504 * orphan list. So recovery will truncate it back to the original size
3505 * if the machine crashes during the write.
3506 *
3507 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3508 * crashes then stale disk data _may_ be exposed inside the file. But current
3509 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3510 */
4c0425ff 3511static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3512 const struct iovec *iov, loff_t offset,
3513 unsigned long nr_segs)
ac27a0ec
DK
3514{
3515 struct file *file = iocb->ki_filp;
3516 struct inode *inode = file->f_mapping->host;
617ba13b 3517 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3518 handle_t *handle;
ac27a0ec
DK
3519 ssize_t ret;
3520 int orphan = 0;
3521 size_t count = iov_length(iov, nr_segs);
fbbf6945 3522 int retries = 0;
ac27a0ec
DK
3523
3524 if (rw == WRITE) {
3525 loff_t final_size = offset + count;
3526
ac27a0ec 3527 if (final_size > inode->i_size) {
7fb5409d
JK
3528 /* Credits for sb + inode write */
3529 handle = ext4_journal_start(inode, 2);
3530 if (IS_ERR(handle)) {
3531 ret = PTR_ERR(handle);
3532 goto out;
3533 }
617ba13b 3534 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3535 if (ret) {
3536 ext4_journal_stop(handle);
3537 goto out;
3538 }
ac27a0ec
DK
3539 orphan = 1;
3540 ei->i_disksize = inode->i_size;
7fb5409d 3541 ext4_journal_stop(handle);
ac27a0ec
DK
3542 }
3543 }
3544
fbbf6945 3545retry:
b7adc1f3
JZ
3546 if (rw == READ && ext4_should_dioread_nolock(inode))
3547 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3548 inode->i_sb->s_bdev, iov,
3549 offset, nr_segs,
3550 ext4_get_block, NULL);
3551 else
3552 ret = blockdev_direct_IO(rw, iocb, inode,
3553 inode->i_sb->s_bdev, iov,
ac27a0ec 3554 offset, nr_segs,
617ba13b 3555 ext4_get_block, NULL);
fbbf6945
ES
3556 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3557 goto retry;
ac27a0ec 3558
7fb5409d 3559 if (orphan) {
ac27a0ec
DK
3560 int err;
3561
7fb5409d
JK
3562 /* Credits for sb + inode write */
3563 handle = ext4_journal_start(inode, 2);
3564 if (IS_ERR(handle)) {
3565 /* This is really bad luck. We've written the data
3566 * but cannot extend i_size. Bail out and pretend
3567 * the write failed... */
3568 ret = PTR_ERR(handle);
da1dafca
DM
3569 if (inode->i_nlink)
3570 ext4_orphan_del(NULL, inode);
3571
7fb5409d
JK
3572 goto out;
3573 }
3574 if (inode->i_nlink)
617ba13b 3575 ext4_orphan_del(handle, inode);
7fb5409d 3576 if (ret > 0) {
ac27a0ec
DK
3577 loff_t end = offset + ret;
3578 if (end > inode->i_size) {
3579 ei->i_disksize = end;
3580 i_size_write(inode, end);
3581 /*
3582 * We're going to return a positive `ret'
3583 * here due to non-zero-length I/O, so there's
3584 * no way of reporting error returns from
617ba13b 3585 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3586 * ignore it.
3587 */
617ba13b 3588 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3589 }
3590 }
617ba13b 3591 err = ext4_journal_stop(handle);
ac27a0ec
DK
3592 if (ret == 0)
3593 ret = err;
3594 }
3595out:
3596 return ret;
3597}
3598
2ed88685
TT
3599/*
3600 * ext4_get_block used when preparing for a DIO write or buffer write.
3601 * We allocate an uinitialized extent if blocks haven't been allocated.
3602 * The extent will be converted to initialized after the IO is complete.
3603 */
c7064ef1 3604static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3605 struct buffer_head *bh_result, int create)
3606{
c7064ef1 3607 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3608 inode->i_ino, create);
2ed88685
TT
3609 return _ext4_get_block(inode, iblock, bh_result,
3610 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3611}
3612
c7064ef1 3613static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3614{
3615#ifdef EXT4_DEBUG
3616 struct list_head *cur, *before, *after;
3617 ext4_io_end_t *io, *io0, *io1;
744692dc 3618 unsigned long flags;
8d5d02e6 3619
c7064ef1
JZ
3620 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3621 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3622 return;
3623 }
3624
c7064ef1 3625 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3626 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3627 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3628 cur = &io->list;
3629 before = cur->prev;
3630 io0 = container_of(before, ext4_io_end_t, list);
3631 after = cur->next;
3632 io1 = container_of(after, ext4_io_end_t, list);
3633
3634 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3635 io, inode->i_ino, io0, io1);
3636 }
744692dc 3637 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3638#endif
3639}
4c0425ff
MC
3640
3641/*
4c0425ff
MC
3642 * check a range of space and convert unwritten extents to written.
3643 */
c7064ef1 3644static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3645{
4c0425ff
MC
3646 struct inode *inode = io->inode;
3647 loff_t offset = io->offset;
a1de02dc 3648 ssize_t size = io->size;
4c0425ff 3649 int ret = 0;
4c0425ff 3650
c7064ef1 3651 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3652 "list->prev 0x%p\n",
3653 io, inode->i_ino, io->list.next, io->list.prev);
3654
3655 if (list_empty(&io->list))
3656 return ret;
3657
c7064ef1 3658 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3659 return ret;
3660
744692dc 3661 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3662 if (ret < 0) {
4c0425ff 3663 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3664 "extents to written extents, error is %d"
3665 " io is still on inode %lu aio dio list\n",
3666 __func__, ret, inode->i_ino);
3667 return ret;
3668 }
4c0425ff 3669
8d5d02e6
MC
3670 /* clear the DIO AIO unwritten flag */
3671 io->flag = 0;
3672 return ret;
4c0425ff 3673}
c7064ef1 3674
8d5d02e6
MC
3675/*
3676 * work on completed aio dio IO, to convert unwritten extents to extents
3677 */
c7064ef1 3678static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3679{
744692dc
JZ
3680 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3681 struct inode *inode = io->inode;
3682 struct ext4_inode_info *ei = EXT4_I(inode);
3683 unsigned long flags;
3684 int ret;
4c0425ff 3685
8d5d02e6 3686 mutex_lock(&inode->i_mutex);
c7064ef1 3687 ret = ext4_end_io_nolock(io);
744692dc
JZ
3688 if (ret < 0) {
3689 mutex_unlock(&inode->i_mutex);
3690 return;
8d5d02e6 3691 }
744692dc
JZ
3692
3693 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3694 if (!list_empty(&io->list))
3695 list_del_init(&io->list);
3696 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3697 mutex_unlock(&inode->i_mutex);
744692dc 3698 ext4_free_io_end(io);
8d5d02e6 3699}
c7064ef1 3700
8d5d02e6
MC
3701/*
3702 * This function is called from ext4_sync_file().
3703 *
c7064ef1
JZ
3704 * When IO is completed, the work to convert unwritten extents to
3705 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3706 * scheduled. When fsync is called, we need to ensure the
3707 * conversion is complete before fsync returns.
c7064ef1
JZ
3708 * The inode keeps track of a list of pending/completed IO that
3709 * might needs to do the conversion. This function walks through
3710 * the list and convert the related unwritten extents for completed IO
3711 * to written.
3712 * The function return the number of pending IOs on success.
8d5d02e6 3713 */
c7064ef1 3714int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3715{
3716 ext4_io_end_t *io;
744692dc
JZ
3717 struct ext4_inode_info *ei = EXT4_I(inode);
3718 unsigned long flags;
8d5d02e6
MC
3719 int ret = 0;
3720 int ret2 = 0;
3721
744692dc 3722 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3723 return ret;
3724
c7064ef1 3725 dump_completed_IO(inode);
744692dc
JZ
3726 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3727 while (!list_empty(&ei->i_completed_io_list)){
3728 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3729 ext4_io_end_t, list);
3730 /*
c7064ef1 3731 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3732 * IO to written.
3733 *
3734 * When ext4_sync_file() is called, run_queue() may already
3735 * about to flush the work corresponding to this io structure.
3736 * It will be upset if it founds the io structure related
3737 * to the work-to-be schedule is freed.
3738 *
3739 * Thus we need to keep the io structure still valid here after
3740 * convertion finished. The io structure has a flag to
3741 * avoid double converting from both fsync and background work
3742 * queue work.
3743 */
744692dc 3744 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3745 ret = ext4_end_io_nolock(io);
744692dc 3746 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3747 if (ret < 0)
3748 ret2 = ret;
3749 else
3750 list_del_init(&io->list);
3751 }
744692dc 3752 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3753 return (ret2 < 0) ? ret2 : 0;
3754}
3755
744692dc 3756static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3757{
3758 ext4_io_end_t *io = NULL;
3759
744692dc 3760 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3761
3762 if (io) {
8d5d02e6 3763 igrab(inode);
4c0425ff 3764 io->inode = inode;
8d5d02e6 3765 io->flag = 0;
4c0425ff
MC
3766 io->offset = 0;
3767 io->size = 0;
744692dc 3768 io->page = NULL;
c7064ef1 3769 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3770 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3771 }
3772
3773 return io;
3774}
3775
3776static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3777 ssize_t size, void *private)
3778{
3779 ext4_io_end_t *io_end = iocb->private;
3780 struct workqueue_struct *wq;
744692dc
JZ
3781 unsigned long flags;
3782 struct ext4_inode_info *ei;
4c0425ff 3783
4b70df18
M
3784 /* if not async direct IO or dio with 0 bytes write, just return */
3785 if (!io_end || !size)
3786 return;
3787
8d5d02e6
MC
3788 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3789 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3790 iocb->private, io_end->inode->i_ino, iocb, offset,
3791 size);
8d5d02e6
MC
3792
3793 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3794 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3795 ext4_free_io_end(io_end);
3796 iocb->private = NULL;
4c0425ff 3797 return;
8d5d02e6
MC
3798 }
3799
4c0425ff
MC
3800 io_end->offset = offset;
3801 io_end->size = size;
744692dc 3802 io_end->flag = EXT4_IO_UNWRITTEN;
4c0425ff
MC
3803 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3804
8d5d02e6 3805 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3806 queue_work(wq, &io_end->work);
3807
8d5d02e6 3808 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3809 ei = EXT4_I(io_end->inode);
3810 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3811 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3812 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3813 iocb->private = NULL;
3814}
c7064ef1 3815
744692dc
JZ
3816static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3817{
3818 ext4_io_end_t *io_end = bh->b_private;
3819 struct workqueue_struct *wq;
3820 struct inode *inode;
3821 unsigned long flags;
3822
3823 if (!test_clear_buffer_uninit(bh) || !io_end)
3824 goto out;
3825
3826 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3827 printk("sb umounted, discard end_io request for inode %lu\n",
3828 io_end->inode->i_ino);
3829 ext4_free_io_end(io_end);
3830 goto out;
3831 }
3832
3833 io_end->flag = EXT4_IO_UNWRITTEN;
3834 inode = io_end->inode;
3835
3836 /* Add the io_end to per-inode completed io list*/
3837 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3838 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3839 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3840
3841 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3842 /* queue the work to convert unwritten extents to written */
3843 queue_work(wq, &io_end->work);
3844out:
3845 bh->b_private = NULL;
3846 bh->b_end_io = NULL;
3847 clear_buffer_uninit(bh);
3848 end_buffer_async_write(bh, uptodate);
3849}
3850
3851static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3852{
3853 ext4_io_end_t *io_end;
3854 struct page *page = bh->b_page;
3855 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3856 size_t size = bh->b_size;
3857
3858retry:
3859 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3860 if (!io_end) {
3861 if (printk_ratelimit())
3862 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3863 schedule();
3864 goto retry;
3865 }
3866 io_end->offset = offset;
3867 io_end->size = size;
3868 /*
3869 * We need to hold a reference to the page to make sure it
3870 * doesn't get evicted before ext4_end_io_work() has a chance
3871 * to convert the extent from written to unwritten.
3872 */
3873 io_end->page = page;
3874 get_page(io_end->page);
3875
3876 bh->b_private = io_end;
3877 bh->b_end_io = ext4_end_io_buffer_write;
3878 return 0;
3879}
3880
4c0425ff
MC
3881/*
3882 * For ext4 extent files, ext4 will do direct-io write to holes,
3883 * preallocated extents, and those write extend the file, no need to
3884 * fall back to buffered IO.
3885 *
3886 * For holes, we fallocate those blocks, mark them as unintialized
3887 * If those blocks were preallocated, we mark sure they are splited, but
3888 * still keep the range to write as unintialized.
3889 *
8d5d02e6
MC
3890 * The unwrritten extents will be converted to written when DIO is completed.
3891 * For async direct IO, since the IO may still pending when return, we
3892 * set up an end_io call back function, which will do the convertion
3893 * when async direct IO completed.
4c0425ff
MC
3894 *
3895 * If the O_DIRECT write will extend the file then add this inode to the
3896 * orphan list. So recovery will truncate it back to the original size
3897 * if the machine crashes during the write.
3898 *
3899 */
3900static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3901 const struct iovec *iov, loff_t offset,
3902 unsigned long nr_segs)
3903{
3904 struct file *file = iocb->ki_filp;
3905 struct inode *inode = file->f_mapping->host;
3906 ssize_t ret;
3907 size_t count = iov_length(iov, nr_segs);
3908
3909 loff_t final_size = offset + count;
3910 if (rw == WRITE && final_size <= inode->i_size) {
3911 /*
8d5d02e6
MC
3912 * We could direct write to holes and fallocate.
3913 *
3914 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3915 * to prevent paralel buffered read to expose the stale data
3916 * before DIO complete the data IO.
8d5d02e6
MC
3917 *
3918 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3919 * will just simply mark the buffer mapped but still
3920 * keep the extents uninitialized.
3921 *
8d5d02e6
MC
3922 * for non AIO case, we will convert those unwritten extents
3923 * to written after return back from blockdev_direct_IO.
3924 *
3925 * for async DIO, the conversion needs to be defered when
3926 * the IO is completed. The ext4 end_io callback function
3927 * will be called to take care of the conversion work.
3928 * Here for async case, we allocate an io_end structure to
3929 * hook to the iocb.
4c0425ff 3930 */
8d5d02e6
MC
3931 iocb->private = NULL;
3932 EXT4_I(inode)->cur_aio_dio = NULL;
3933 if (!is_sync_kiocb(iocb)) {
744692dc 3934 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3935 if (!iocb->private)
3936 return -ENOMEM;
3937 /*
3938 * we save the io structure for current async
3939 * direct IO, so that later ext4_get_blocks()
3940 * could flag the io structure whether there
3941 * is a unwritten extents needs to be converted
3942 * when IO is completed.
3943 */
3944 EXT4_I(inode)->cur_aio_dio = iocb->private;
3945 }
3946
4c0425ff
MC
3947 ret = blockdev_direct_IO(rw, iocb, inode,
3948 inode->i_sb->s_bdev, iov,
3949 offset, nr_segs,
c7064ef1 3950 ext4_get_block_write,
4c0425ff 3951 ext4_end_io_dio);
8d5d02e6
MC
3952 if (iocb->private)
3953 EXT4_I(inode)->cur_aio_dio = NULL;
3954 /*
3955 * The io_end structure takes a reference to the inode,
3956 * that structure needs to be destroyed and the
3957 * reference to the inode need to be dropped, when IO is
3958 * complete, even with 0 byte write, or failed.
3959 *
3960 * In the successful AIO DIO case, the io_end structure will be
3961 * desctroyed and the reference to the inode will be dropped
3962 * after the end_io call back function is called.
3963 *
3964 * In the case there is 0 byte write, or error case, since
3965 * VFS direct IO won't invoke the end_io call back function,
3966 * we need to free the end_io structure here.
3967 */
3968 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3969 ext4_free_io_end(iocb->private);
3970 iocb->private = NULL;
19f5fb7a
TT
3971 } else if (ret > 0 && ext4_test_inode_state(inode,
3972 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3973 int err;
8d5d02e6
MC
3974 /*
3975 * for non AIO case, since the IO is already
3976 * completed, we could do the convertion right here
3977 */
109f5565
M
3978 err = ext4_convert_unwritten_extents(inode,
3979 offset, ret);
3980 if (err < 0)
3981 ret = err;
19f5fb7a 3982 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3983 }
4c0425ff
MC
3984 return ret;
3985 }
8d5d02e6
MC
3986
3987 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3988 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3989}
3990
3991static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3992 const struct iovec *iov, loff_t offset,
3993 unsigned long nr_segs)
3994{
3995 struct file *file = iocb->ki_filp;
3996 struct inode *inode = file->f_mapping->host;
3997
12e9b892 3998 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
3999 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4000
4001 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4002}
4003
ac27a0ec 4004/*
617ba13b 4005 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4006 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4007 * much here because ->set_page_dirty is called under VFS locks. The page is
4008 * not necessarily locked.
4009 *
4010 * We cannot just dirty the page and leave attached buffers clean, because the
4011 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4012 * or jbddirty because all the journalling code will explode.
4013 *
4014 * So what we do is to mark the page "pending dirty" and next time writepage
4015 * is called, propagate that into the buffers appropriately.
4016 */
617ba13b 4017static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4018{
4019 SetPageChecked(page);
4020 return __set_page_dirty_nobuffers(page);
4021}
4022
617ba13b 4023static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4024 .readpage = ext4_readpage,
4025 .readpages = ext4_readpages,
43ce1d23 4026 .writepage = ext4_writepage,
8ab22b9a
HH
4027 .sync_page = block_sync_page,
4028 .write_begin = ext4_write_begin,
4029 .write_end = ext4_ordered_write_end,
4030 .bmap = ext4_bmap,
4031 .invalidatepage = ext4_invalidatepage,
4032 .releasepage = ext4_releasepage,
4033 .direct_IO = ext4_direct_IO,
4034 .migratepage = buffer_migrate_page,
4035 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4036 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4037};
4038
617ba13b 4039static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4040 .readpage = ext4_readpage,
4041 .readpages = ext4_readpages,
43ce1d23 4042 .writepage = ext4_writepage,
8ab22b9a
HH
4043 .sync_page = block_sync_page,
4044 .write_begin = ext4_write_begin,
4045 .write_end = ext4_writeback_write_end,
4046 .bmap = ext4_bmap,
4047 .invalidatepage = ext4_invalidatepage,
4048 .releasepage = ext4_releasepage,
4049 .direct_IO = ext4_direct_IO,
4050 .migratepage = buffer_migrate_page,
4051 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4052 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4053};
4054
617ba13b 4055static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4056 .readpage = ext4_readpage,
4057 .readpages = ext4_readpages,
43ce1d23 4058 .writepage = ext4_writepage,
8ab22b9a
HH
4059 .sync_page = block_sync_page,
4060 .write_begin = ext4_write_begin,
4061 .write_end = ext4_journalled_write_end,
4062 .set_page_dirty = ext4_journalled_set_page_dirty,
4063 .bmap = ext4_bmap,
4064 .invalidatepage = ext4_invalidatepage,
4065 .releasepage = ext4_releasepage,
4066 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4067 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4068};
4069
64769240 4070static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4071 .readpage = ext4_readpage,
4072 .readpages = ext4_readpages,
43ce1d23 4073 .writepage = ext4_writepage,
8ab22b9a
HH
4074 .writepages = ext4_da_writepages,
4075 .sync_page = block_sync_page,
4076 .write_begin = ext4_da_write_begin,
4077 .write_end = ext4_da_write_end,
4078 .bmap = ext4_bmap,
4079 .invalidatepage = ext4_da_invalidatepage,
4080 .releasepage = ext4_releasepage,
4081 .direct_IO = ext4_direct_IO,
4082 .migratepage = buffer_migrate_page,
4083 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4084 .error_remove_page = generic_error_remove_page,
64769240
AT
4085};
4086
617ba13b 4087void ext4_set_aops(struct inode *inode)
ac27a0ec 4088{
cd1aac32
AK
4089 if (ext4_should_order_data(inode) &&
4090 test_opt(inode->i_sb, DELALLOC))
4091 inode->i_mapping->a_ops = &ext4_da_aops;
4092 else if (ext4_should_order_data(inode))
617ba13b 4093 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4094 else if (ext4_should_writeback_data(inode) &&
4095 test_opt(inode->i_sb, DELALLOC))
4096 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4097 else if (ext4_should_writeback_data(inode))
4098 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4099 else
617ba13b 4100 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4101}
4102
4103/*
617ba13b 4104 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4105 * up to the end of the block which corresponds to `from'.
4106 * This required during truncate. We need to physically zero the tail end
4107 * of that block so it doesn't yield old data if the file is later grown.
4108 */
cf108bca 4109int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4110 struct address_space *mapping, loff_t from)
4111{
617ba13b 4112 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4113 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4114 unsigned blocksize, length, pos;
4115 ext4_lblk_t iblock;
ac27a0ec
DK
4116 struct inode *inode = mapping->host;
4117 struct buffer_head *bh;
cf108bca 4118 struct page *page;
ac27a0ec 4119 int err = 0;
ac27a0ec 4120
f4a01017
TT
4121 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4122 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4123 if (!page)
4124 return -EINVAL;
4125
ac27a0ec
DK
4126 blocksize = inode->i_sb->s_blocksize;
4127 length = blocksize - (offset & (blocksize - 1));
4128 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4129
4130 /*
4131 * For "nobh" option, we can only work if we don't need to
4132 * read-in the page - otherwise we create buffers to do the IO.
4133 */
4134 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 4135 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 4136 zero_user(page, offset, length);
ac27a0ec
DK
4137 set_page_dirty(page);
4138 goto unlock;
4139 }
4140
4141 if (!page_has_buffers(page))
4142 create_empty_buffers(page, blocksize, 0);
4143
4144 /* Find the buffer that contains "offset" */
4145 bh = page_buffers(page);
4146 pos = blocksize;
4147 while (offset >= pos) {
4148 bh = bh->b_this_page;
4149 iblock++;
4150 pos += blocksize;
4151 }
4152
4153 err = 0;
4154 if (buffer_freed(bh)) {
4155 BUFFER_TRACE(bh, "freed: skip");
4156 goto unlock;
4157 }
4158
4159 if (!buffer_mapped(bh)) {
4160 BUFFER_TRACE(bh, "unmapped");
617ba13b 4161 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4162 /* unmapped? It's a hole - nothing to do */
4163 if (!buffer_mapped(bh)) {
4164 BUFFER_TRACE(bh, "still unmapped");
4165 goto unlock;
4166 }
4167 }
4168
4169 /* Ok, it's mapped. Make sure it's up-to-date */
4170 if (PageUptodate(page))
4171 set_buffer_uptodate(bh);
4172
4173 if (!buffer_uptodate(bh)) {
4174 err = -EIO;
4175 ll_rw_block(READ, 1, &bh);
4176 wait_on_buffer(bh);
4177 /* Uhhuh. Read error. Complain and punt. */
4178 if (!buffer_uptodate(bh))
4179 goto unlock;
4180 }
4181
617ba13b 4182 if (ext4_should_journal_data(inode)) {
ac27a0ec 4183 BUFFER_TRACE(bh, "get write access");
617ba13b 4184 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4185 if (err)
4186 goto unlock;
4187 }
4188
eebd2aa3 4189 zero_user(page, offset, length);
ac27a0ec
DK
4190
4191 BUFFER_TRACE(bh, "zeroed end of block");
4192
4193 err = 0;
617ba13b 4194 if (ext4_should_journal_data(inode)) {
0390131b 4195 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4196 } else {
617ba13b 4197 if (ext4_should_order_data(inode))
678aaf48 4198 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4199 mark_buffer_dirty(bh);
4200 }
4201
4202unlock:
4203 unlock_page(page);
4204 page_cache_release(page);
4205 return err;
4206}
4207
4208/*
4209 * Probably it should be a library function... search for first non-zero word
4210 * or memcmp with zero_page, whatever is better for particular architecture.
4211 * Linus?
4212 */
4213static inline int all_zeroes(__le32 *p, __le32 *q)
4214{
4215 while (p < q)
4216 if (*p++)
4217 return 0;
4218 return 1;
4219}
4220
4221/**
617ba13b 4222 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4223 * @inode: inode in question
4224 * @depth: depth of the affected branch
617ba13b 4225 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4226 * @chain: place to store the pointers to partial indirect blocks
4227 * @top: place to the (detached) top of branch
4228 *
617ba13b 4229 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4230 *
4231 * When we do truncate() we may have to clean the ends of several
4232 * indirect blocks but leave the blocks themselves alive. Block is
4233 * partially truncated if some data below the new i_size is refered
4234 * from it (and it is on the path to the first completely truncated
4235 * data block, indeed). We have to free the top of that path along
4236 * with everything to the right of the path. Since no allocation
617ba13b 4237 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4238 * finishes, we may safely do the latter, but top of branch may
4239 * require special attention - pageout below the truncation point
4240 * might try to populate it.
4241 *
4242 * We atomically detach the top of branch from the tree, store the
4243 * block number of its root in *@top, pointers to buffer_heads of
4244 * partially truncated blocks - in @chain[].bh and pointers to
4245 * their last elements that should not be removed - in
4246 * @chain[].p. Return value is the pointer to last filled element
4247 * of @chain.
4248 *
4249 * The work left to caller to do the actual freeing of subtrees:
4250 * a) free the subtree starting from *@top
4251 * b) free the subtrees whose roots are stored in
4252 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4253 * c) free the subtrees growing from the inode past the @chain[0].
4254 * (no partially truncated stuff there). */
4255
617ba13b 4256static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4257 ext4_lblk_t offsets[4], Indirect chain[4],
4258 __le32 *top)
ac27a0ec
DK
4259{
4260 Indirect *partial, *p;
4261 int k, err;
4262
4263 *top = 0;
bf48aabb 4264 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4265 for (k = depth; k > 1 && !offsets[k-1]; k--)
4266 ;
617ba13b 4267 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4268 /* Writer: pointers */
4269 if (!partial)
4270 partial = chain + k-1;
4271 /*
4272 * If the branch acquired continuation since we've looked at it -
4273 * fine, it should all survive and (new) top doesn't belong to us.
4274 */
4275 if (!partial->key && *partial->p)
4276 /* Writer: end */
4277 goto no_top;
af5bc92d 4278 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4279 ;
4280 /*
4281 * OK, we've found the last block that must survive. The rest of our
4282 * branch should be detached before unlocking. However, if that rest
4283 * of branch is all ours and does not grow immediately from the inode
4284 * it's easier to cheat and just decrement partial->p.
4285 */
4286 if (p == chain + k - 1 && p > chain) {
4287 p->p--;
4288 } else {
4289 *top = *p->p;
617ba13b 4290 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4291#if 0
4292 *p->p = 0;
4293#endif
4294 }
4295 /* Writer: end */
4296
af5bc92d 4297 while (partial > p) {
ac27a0ec
DK
4298 brelse(partial->bh);
4299 partial--;
4300 }
4301no_top:
4302 return partial;
4303}
4304
4305/*
4306 * Zero a number of block pointers in either an inode or an indirect block.
4307 * If we restart the transaction we must again get write access to the
4308 * indirect block for further modification.
4309 *
4310 * We release `count' blocks on disk, but (last - first) may be greater
4311 * than `count' because there can be holes in there.
4312 */
1f2acb60
TT
4313static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4314 struct buffer_head *bh,
4315 ext4_fsblk_t block_to_free,
4316 unsigned long count, __le32 *first,
4317 __le32 *last)
ac27a0ec
DK
4318{
4319 __le32 *p;
1f2acb60 4320 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4321
4322 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4323 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4324
1f2acb60
TT
4325 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4326 count)) {
24676da4
TT
4327 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4328 "blocks %llu len %lu",
4329 (unsigned long long) block_to_free, count);
1f2acb60
TT
4330 return 1;
4331 }
4332
ac27a0ec
DK
4333 if (try_to_extend_transaction(handle, inode)) {
4334 if (bh) {
0390131b
FM
4335 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4336 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4337 }
617ba13b 4338 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4339 ext4_truncate_restart_trans(handle, inode,
4340 blocks_for_truncate(inode));
ac27a0ec
DK
4341 if (bh) {
4342 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4343 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4344 }
4345 }
4346
e6362609
TT
4347 for (p = first; p < last; p++)
4348 *p = 0;
ac27a0ec 4349
e6362609 4350 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4351 return 0;
ac27a0ec
DK
4352}
4353
4354/**
617ba13b 4355 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4356 * @handle: handle for this transaction
4357 * @inode: inode we are dealing with
4358 * @this_bh: indirect buffer_head which contains *@first and *@last
4359 * @first: array of block numbers
4360 * @last: points immediately past the end of array
4361 *
4362 * We are freeing all blocks refered from that array (numbers are stored as
4363 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4364 *
4365 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4366 * blocks are contiguous then releasing them at one time will only affect one
4367 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4368 * actually use a lot of journal space.
4369 *
4370 * @this_bh will be %NULL if @first and @last point into the inode's direct
4371 * block pointers.
4372 */
617ba13b 4373static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4374 struct buffer_head *this_bh,
4375 __le32 *first, __le32 *last)
4376{
617ba13b 4377 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4378 unsigned long count = 0; /* Number of blocks in the run */
4379 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4380 corresponding to
4381 block_to_free */
617ba13b 4382 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4383 __le32 *p; /* Pointer into inode/ind
4384 for current block */
4385 int err;
4386
4387 if (this_bh) { /* For indirect block */
4388 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4389 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4390 /* Important: if we can't update the indirect pointers
4391 * to the blocks, we can't free them. */
4392 if (err)
4393 return;
4394 }
4395
4396 for (p = first; p < last; p++) {
4397 nr = le32_to_cpu(*p);
4398 if (nr) {
4399 /* accumulate blocks to free if they're contiguous */
4400 if (count == 0) {
4401 block_to_free = nr;
4402 block_to_free_p = p;
4403 count = 1;
4404 } else if (nr == block_to_free + count) {
4405 count++;
4406 } else {
1f2acb60
TT
4407 if (ext4_clear_blocks(handle, inode, this_bh,
4408 block_to_free, count,
4409 block_to_free_p, p))
4410 break;
ac27a0ec
DK
4411 block_to_free = nr;
4412 block_to_free_p = p;
4413 count = 1;
4414 }
4415 }
4416 }
4417
4418 if (count > 0)
617ba13b 4419 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4420 count, block_to_free_p, p);
4421
4422 if (this_bh) {
0390131b 4423 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4424
4425 /*
4426 * The buffer head should have an attached journal head at this
4427 * point. However, if the data is corrupted and an indirect
4428 * block pointed to itself, it would have been detached when
4429 * the block was cleared. Check for this instead of OOPSing.
4430 */
e7f07968 4431 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4432 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4433 else
24676da4
TT
4434 EXT4_ERROR_INODE(inode,
4435 "circular indirect block detected at "
4436 "block %llu",
4437 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4438 }
4439}
4440
4441/**
617ba13b 4442 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4443 * @handle: JBD handle for this transaction
4444 * @inode: inode we are dealing with
4445 * @parent_bh: the buffer_head which contains *@first and *@last
4446 * @first: array of block numbers
4447 * @last: pointer immediately past the end of array
4448 * @depth: depth of the branches to free
4449 *
4450 * We are freeing all blocks refered from these branches (numbers are
4451 * stored as little-endian 32-bit) and updating @inode->i_blocks
4452 * appropriately.
4453 */
617ba13b 4454static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4455 struct buffer_head *parent_bh,
4456 __le32 *first, __le32 *last, int depth)
4457{
617ba13b 4458 ext4_fsblk_t nr;
ac27a0ec
DK
4459 __le32 *p;
4460
0390131b 4461 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4462 return;
4463
4464 if (depth--) {
4465 struct buffer_head *bh;
617ba13b 4466 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4467 p = last;
4468 while (--p >= first) {
4469 nr = le32_to_cpu(*p);
4470 if (!nr)
4471 continue; /* A hole */
4472
1f2acb60
TT
4473 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4474 nr, 1)) {
24676da4
TT
4475 EXT4_ERROR_INODE(inode,
4476 "invalid indirect mapped "
4477 "block %lu (level %d)",
4478 (unsigned long) nr, depth);
1f2acb60
TT
4479 break;
4480 }
4481
ac27a0ec
DK
4482 /* Go read the buffer for the next level down */
4483 bh = sb_bread(inode->i_sb, nr);
4484
4485 /*
4486 * A read failure? Report error and clear slot
4487 * (should be rare).
4488 */
4489 if (!bh) {
24676da4
TT
4490 EXT4_ERROR_INODE(inode,
4491 "Read failure block=%llu",
4492 (unsigned long long) nr);
ac27a0ec
DK
4493 continue;
4494 }
4495
4496 /* This zaps the entire block. Bottom up. */
4497 BUFFER_TRACE(bh, "free child branches");
617ba13b 4498 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4499 (__le32 *) bh->b_data,
4500 (__le32 *) bh->b_data + addr_per_block,
4501 depth);
ac27a0ec
DK
4502
4503 /*
4504 * We've probably journalled the indirect block several
4505 * times during the truncate. But it's no longer
4506 * needed and we now drop it from the transaction via
dab291af 4507 * jbd2_journal_revoke().
ac27a0ec
DK
4508 *
4509 * That's easy if it's exclusively part of this
4510 * transaction. But if it's part of the committing
dab291af 4511 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4512 * brelse() it. That means that if the underlying
617ba13b 4513 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4514 * unmap_underlying_metadata() will find this block
4515 * and will try to get rid of it. damn, damn.
4516 *
4517 * If this block has already been committed to the
4518 * journal, a revoke record will be written. And
4519 * revoke records must be emitted *before* clearing
4520 * this block's bit in the bitmaps.
4521 */
617ba13b 4522 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4523
4524 /*
4525 * Everything below this this pointer has been
4526 * released. Now let this top-of-subtree go.
4527 *
4528 * We want the freeing of this indirect block to be
4529 * atomic in the journal with the updating of the
4530 * bitmap block which owns it. So make some room in
4531 * the journal.
4532 *
4533 * We zero the parent pointer *after* freeing its
4534 * pointee in the bitmaps, so if extend_transaction()
4535 * for some reason fails to put the bitmap changes and
4536 * the release into the same transaction, recovery
4537 * will merely complain about releasing a free block,
4538 * rather than leaking blocks.
4539 */
0390131b 4540 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4541 return;
4542 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4543 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4544 ext4_truncate_restart_trans(handle, inode,
4545 blocks_for_truncate(inode));
ac27a0ec
DK
4546 }
4547
e6362609
TT
4548 ext4_free_blocks(handle, inode, 0, nr, 1,
4549 EXT4_FREE_BLOCKS_METADATA);
ac27a0ec
DK
4550
4551 if (parent_bh) {
4552 /*
4553 * The block which we have just freed is
4554 * pointed to by an indirect block: journal it
4555 */
4556 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4557 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4558 parent_bh)){
4559 *p = 0;
4560 BUFFER_TRACE(parent_bh,
0390131b
FM
4561 "call ext4_handle_dirty_metadata");
4562 ext4_handle_dirty_metadata(handle,
4563 inode,
4564 parent_bh);
ac27a0ec
DK
4565 }
4566 }
4567 }
4568 } else {
4569 /* We have reached the bottom of the tree. */
4570 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4571 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4572 }
4573}
4574
91ef4caf
DG
4575int ext4_can_truncate(struct inode *inode)
4576{
4577 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4578 return 0;
4579 if (S_ISREG(inode->i_mode))
4580 return 1;
4581 if (S_ISDIR(inode->i_mode))
4582 return 1;
4583 if (S_ISLNK(inode->i_mode))
4584 return !ext4_inode_is_fast_symlink(inode);
4585 return 0;
4586}
4587
ac27a0ec 4588/*
617ba13b 4589 * ext4_truncate()
ac27a0ec 4590 *
617ba13b
MC
4591 * We block out ext4_get_block() block instantiations across the entire
4592 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4593 * simultaneously on behalf of the same inode.
4594 *
4595 * As we work through the truncate and commmit bits of it to the journal there
4596 * is one core, guiding principle: the file's tree must always be consistent on
4597 * disk. We must be able to restart the truncate after a crash.
4598 *
4599 * The file's tree may be transiently inconsistent in memory (although it
4600 * probably isn't), but whenever we close off and commit a journal transaction,
4601 * the contents of (the filesystem + the journal) must be consistent and
4602 * restartable. It's pretty simple, really: bottom up, right to left (although
4603 * left-to-right works OK too).
4604 *
4605 * Note that at recovery time, journal replay occurs *before* the restart of
4606 * truncate against the orphan inode list.
4607 *
4608 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4609 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4610 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4611 * ext4_truncate() to have another go. So there will be instantiated blocks
4612 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4613 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4614 * ext4_truncate() run will find them and release them.
ac27a0ec 4615 */
617ba13b 4616void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4617{
4618 handle_t *handle;
617ba13b 4619 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4620 __le32 *i_data = ei->i_data;
617ba13b 4621 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4622 struct address_space *mapping = inode->i_mapping;
725d26d3 4623 ext4_lblk_t offsets[4];
ac27a0ec
DK
4624 Indirect chain[4];
4625 Indirect *partial;
4626 __le32 nr = 0;
4627 int n;
725d26d3 4628 ext4_lblk_t last_block;
ac27a0ec 4629 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4630
91ef4caf 4631 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4632 return;
4633
12e9b892 4634 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4635
5534fb5b 4636 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4637 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4638
12e9b892 4639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4640 ext4_ext_truncate(inode);
1d03ec98
AK
4641 return;
4642 }
a86c6181 4643
ac27a0ec 4644 handle = start_transaction(inode);
cf108bca 4645 if (IS_ERR(handle))
ac27a0ec 4646 return; /* AKPM: return what? */
ac27a0ec
DK
4647
4648 last_block = (inode->i_size + blocksize-1)
617ba13b 4649 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4650
cf108bca
JK
4651 if (inode->i_size & (blocksize - 1))
4652 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4653 goto out_stop;
ac27a0ec 4654
617ba13b 4655 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4656 if (n == 0)
4657 goto out_stop; /* error */
4658
4659 /*
4660 * OK. This truncate is going to happen. We add the inode to the
4661 * orphan list, so that if this truncate spans multiple transactions,
4662 * and we crash, we will resume the truncate when the filesystem
4663 * recovers. It also marks the inode dirty, to catch the new size.
4664 *
4665 * Implication: the file must always be in a sane, consistent
4666 * truncatable state while each transaction commits.
4667 */
617ba13b 4668 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4669 goto out_stop;
4670
632eaeab
MC
4671 /*
4672 * From here we block out all ext4_get_block() callers who want to
4673 * modify the block allocation tree.
4674 */
4675 down_write(&ei->i_data_sem);
b4df2030 4676
c2ea3fde 4677 ext4_discard_preallocations(inode);
b4df2030 4678
ac27a0ec
DK
4679 /*
4680 * The orphan list entry will now protect us from any crash which
4681 * occurs before the truncate completes, so it is now safe to propagate
4682 * the new, shorter inode size (held for now in i_size) into the
4683 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4684 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4685 */
4686 ei->i_disksize = inode->i_size;
4687
ac27a0ec 4688 if (n == 1) { /* direct blocks */
617ba13b
MC
4689 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4690 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4691 goto do_indirects;
4692 }
4693
617ba13b 4694 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4695 /* Kill the top of shared branch (not detached) */
4696 if (nr) {
4697 if (partial == chain) {
4698 /* Shared branch grows from the inode */
617ba13b 4699 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4700 &nr, &nr+1, (chain+n-1) - partial);
4701 *partial->p = 0;
4702 /*
4703 * We mark the inode dirty prior to restart,
4704 * and prior to stop. No need for it here.
4705 */
4706 } else {
4707 /* Shared branch grows from an indirect block */
4708 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4709 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4710 partial->p,
4711 partial->p+1, (chain+n-1) - partial);
4712 }
4713 }
4714 /* Clear the ends of indirect blocks on the shared branch */
4715 while (partial > chain) {
617ba13b 4716 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4717 (__le32*)partial->bh->b_data+addr_per_block,
4718 (chain+n-1) - partial);
4719 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4720 brelse(partial->bh);
ac27a0ec
DK
4721 partial--;
4722 }
4723do_indirects:
4724 /* Kill the remaining (whole) subtrees */
4725 switch (offsets[0]) {
4726 default:
617ba13b 4727 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4728 if (nr) {
617ba13b
MC
4729 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4730 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4731 }
617ba13b
MC
4732 case EXT4_IND_BLOCK:
4733 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4734 if (nr) {
617ba13b
MC
4735 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4736 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4737 }
617ba13b
MC
4738 case EXT4_DIND_BLOCK:
4739 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4740 if (nr) {
617ba13b
MC
4741 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4742 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4743 }
617ba13b 4744 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4745 ;
4746 }
4747
0e855ac8 4748 up_write(&ei->i_data_sem);
ef7f3835 4749 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4750 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4751
4752 /*
4753 * In a multi-transaction truncate, we only make the final transaction
4754 * synchronous
4755 */
4756 if (IS_SYNC(inode))
0390131b 4757 ext4_handle_sync(handle);
ac27a0ec
DK
4758out_stop:
4759 /*
4760 * If this was a simple ftruncate(), and the file will remain alive
4761 * then we need to clear up the orphan record which we created above.
4762 * However, if this was a real unlink then we were called by
617ba13b 4763 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4764 * orphan info for us.
4765 */
4766 if (inode->i_nlink)
617ba13b 4767 ext4_orphan_del(handle, inode);
ac27a0ec 4768
617ba13b 4769 ext4_journal_stop(handle);
ac27a0ec
DK
4770}
4771
ac27a0ec 4772/*
617ba13b 4773 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4774 * underlying buffer_head on success. If 'in_mem' is true, we have all
4775 * data in memory that is needed to recreate the on-disk version of this
4776 * inode.
4777 */
617ba13b
MC
4778static int __ext4_get_inode_loc(struct inode *inode,
4779 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4780{
240799cd
TT
4781 struct ext4_group_desc *gdp;
4782 struct buffer_head *bh;
4783 struct super_block *sb = inode->i_sb;
4784 ext4_fsblk_t block;
4785 int inodes_per_block, inode_offset;
4786
3a06d778 4787 iloc->bh = NULL;
240799cd
TT
4788 if (!ext4_valid_inum(sb, inode->i_ino))
4789 return -EIO;
ac27a0ec 4790
240799cd
TT
4791 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4792 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4793 if (!gdp)
ac27a0ec
DK
4794 return -EIO;
4795
240799cd
TT
4796 /*
4797 * Figure out the offset within the block group inode table
4798 */
4799 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4800 inode_offset = ((inode->i_ino - 1) %
4801 EXT4_INODES_PER_GROUP(sb));
4802 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4803 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4804
4805 bh = sb_getblk(sb, block);
ac27a0ec 4806 if (!bh) {
24676da4
TT
4807 EXT4_ERROR_INODE(inode, "unable to read inode block - "
4808 "block %llu", block);
ac27a0ec
DK
4809 return -EIO;
4810 }
4811 if (!buffer_uptodate(bh)) {
4812 lock_buffer(bh);
9c83a923
HK
4813
4814 /*
4815 * If the buffer has the write error flag, we have failed
4816 * to write out another inode in the same block. In this
4817 * case, we don't have to read the block because we may
4818 * read the old inode data successfully.
4819 */
4820 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4821 set_buffer_uptodate(bh);
4822
ac27a0ec
DK
4823 if (buffer_uptodate(bh)) {
4824 /* someone brought it uptodate while we waited */
4825 unlock_buffer(bh);
4826 goto has_buffer;
4827 }
4828
4829 /*
4830 * If we have all information of the inode in memory and this
4831 * is the only valid inode in the block, we need not read the
4832 * block.
4833 */
4834 if (in_mem) {
4835 struct buffer_head *bitmap_bh;
240799cd 4836 int i, start;
ac27a0ec 4837
240799cd 4838 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4839
240799cd
TT
4840 /* Is the inode bitmap in cache? */
4841 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4842 if (!bitmap_bh)
4843 goto make_io;
4844
4845 /*
4846 * If the inode bitmap isn't in cache then the
4847 * optimisation may end up performing two reads instead
4848 * of one, so skip it.
4849 */
4850 if (!buffer_uptodate(bitmap_bh)) {
4851 brelse(bitmap_bh);
4852 goto make_io;
4853 }
240799cd 4854 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4855 if (i == inode_offset)
4856 continue;
617ba13b 4857 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4858 break;
4859 }
4860 brelse(bitmap_bh);
240799cd 4861 if (i == start + inodes_per_block) {
ac27a0ec
DK
4862 /* all other inodes are free, so skip I/O */
4863 memset(bh->b_data, 0, bh->b_size);
4864 set_buffer_uptodate(bh);
4865 unlock_buffer(bh);
4866 goto has_buffer;
4867 }
4868 }
4869
4870make_io:
240799cd
TT
4871 /*
4872 * If we need to do any I/O, try to pre-readahead extra
4873 * blocks from the inode table.
4874 */
4875 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4876 ext4_fsblk_t b, end, table;
4877 unsigned num;
4878
4879 table = ext4_inode_table(sb, gdp);
b713a5ec 4880 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4881 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4882 if (table > b)
4883 b = table;
4884 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4885 num = EXT4_INODES_PER_GROUP(sb);
4886 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4887 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4888 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4889 table += num / inodes_per_block;
4890 if (end > table)
4891 end = table;
4892 while (b <= end)
4893 sb_breadahead(sb, b++);
4894 }
4895
ac27a0ec
DK
4896 /*
4897 * There are other valid inodes in the buffer, this inode
4898 * has in-inode xattrs, or we don't have this inode in memory.
4899 * Read the block from disk.
4900 */
4901 get_bh(bh);
4902 bh->b_end_io = end_buffer_read_sync;
4903 submit_bh(READ_META, bh);
4904 wait_on_buffer(bh);
4905 if (!buffer_uptodate(bh)) {
24676da4
TT
4906 EXT4_ERROR_INODE(inode, "unable to read inode "
4907 "block %llu", block);
ac27a0ec
DK
4908 brelse(bh);
4909 return -EIO;
4910 }
4911 }
4912has_buffer:
4913 iloc->bh = bh;
4914 return 0;
4915}
4916
617ba13b 4917int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4918{
4919 /* We have all inode data except xattrs in memory here. */
617ba13b 4920 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4921 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4922}
4923
617ba13b 4924void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4925{
617ba13b 4926 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4927
4928 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4929 if (flags & EXT4_SYNC_FL)
ac27a0ec 4930 inode->i_flags |= S_SYNC;
617ba13b 4931 if (flags & EXT4_APPEND_FL)
ac27a0ec 4932 inode->i_flags |= S_APPEND;
617ba13b 4933 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4934 inode->i_flags |= S_IMMUTABLE;
617ba13b 4935 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4936 inode->i_flags |= S_NOATIME;
617ba13b 4937 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4938 inode->i_flags |= S_DIRSYNC;
4939}
4940
ff9ddf7e
JK
4941/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4942void ext4_get_inode_flags(struct ext4_inode_info *ei)
4943{
4944 unsigned int flags = ei->vfs_inode.i_flags;
4945
4946 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4947 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4948 if (flags & S_SYNC)
4949 ei->i_flags |= EXT4_SYNC_FL;
4950 if (flags & S_APPEND)
4951 ei->i_flags |= EXT4_APPEND_FL;
4952 if (flags & S_IMMUTABLE)
4953 ei->i_flags |= EXT4_IMMUTABLE_FL;
4954 if (flags & S_NOATIME)
4955 ei->i_flags |= EXT4_NOATIME_FL;
4956 if (flags & S_DIRSYNC)
4957 ei->i_flags |= EXT4_DIRSYNC_FL;
4958}
de9a55b8 4959
0fc1b451 4960static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4961 struct ext4_inode_info *ei)
0fc1b451
AK
4962{
4963 blkcnt_t i_blocks ;
8180a562
AK
4964 struct inode *inode = &(ei->vfs_inode);
4965 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4966
4967 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4968 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4969 /* we are using combined 48 bit field */
4970 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4971 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4972 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4973 /* i_blocks represent file system block size */
4974 return i_blocks << (inode->i_blkbits - 9);
4975 } else {
4976 return i_blocks;
4977 }
0fc1b451
AK
4978 } else {
4979 return le32_to_cpu(raw_inode->i_blocks_lo);
4980 }
4981}
ff9ddf7e 4982
1d1fe1ee 4983struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4984{
617ba13b
MC
4985 struct ext4_iloc iloc;
4986 struct ext4_inode *raw_inode;
1d1fe1ee 4987 struct ext4_inode_info *ei;
1d1fe1ee 4988 struct inode *inode;
b436b9be 4989 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4990 long ret;
ac27a0ec
DK
4991 int block;
4992
1d1fe1ee
DH
4993 inode = iget_locked(sb, ino);
4994 if (!inode)
4995 return ERR_PTR(-ENOMEM);
4996 if (!(inode->i_state & I_NEW))
4997 return inode;
4998
4999 ei = EXT4_I(inode);
567f3e9a 5000 iloc.bh = 0;
ac27a0ec 5001
1d1fe1ee
DH
5002 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5003 if (ret < 0)
ac27a0ec 5004 goto bad_inode;
617ba13b 5005 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5006 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5007 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5008 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5009 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5010 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5011 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5012 }
5013 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5014
19f5fb7a 5015 ei->i_state_flags = 0;
ac27a0ec
DK
5016 ei->i_dir_start_lookup = 0;
5017 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5018 /* We now have enough fields to check if the inode was active or not.
5019 * This is needed because nfsd might try to access dead inodes
5020 * the test is that same one that e2fsck uses
5021 * NeilBrown 1999oct15
5022 */
5023 if (inode->i_nlink == 0) {
5024 if (inode->i_mode == 0 ||
617ba13b 5025 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5026 /* this inode is deleted */
1d1fe1ee 5027 ret = -ESTALE;
ac27a0ec
DK
5028 goto bad_inode;
5029 }
5030 /* The only unlinked inodes we let through here have
5031 * valid i_mode and are being read by the orphan
5032 * recovery code: that's fine, we're about to complete
5033 * the process of deleting those. */
5034 }
ac27a0ec 5035 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5036 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5037 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5038 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5039 ei->i_file_acl |=
5040 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5041 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5042 ei->i_disksize = inode->i_size;
a9e7f447
DM
5043#ifdef CONFIG_QUOTA
5044 ei->i_reserved_quota = 0;
5045#endif
ac27a0ec
DK
5046 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5047 ei->i_block_group = iloc.block_group;
a4912123 5048 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5049 /*
5050 * NOTE! The in-memory inode i_data array is in little-endian order
5051 * even on big-endian machines: we do NOT byteswap the block numbers!
5052 */
617ba13b 5053 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5054 ei->i_data[block] = raw_inode->i_block[block];
5055 INIT_LIST_HEAD(&ei->i_orphan);
5056
b436b9be
JK
5057 /*
5058 * Set transaction id's of transactions that have to be committed
5059 * to finish f[data]sync. We set them to currently running transaction
5060 * as we cannot be sure that the inode or some of its metadata isn't
5061 * part of the transaction - the inode could have been reclaimed and
5062 * now it is reread from disk.
5063 */
5064 if (journal) {
5065 transaction_t *transaction;
5066 tid_t tid;
5067
5068 spin_lock(&journal->j_state_lock);
5069 if (journal->j_running_transaction)
5070 transaction = journal->j_running_transaction;
5071 else
5072 transaction = journal->j_committing_transaction;
5073 if (transaction)
5074 tid = transaction->t_tid;
5075 else
5076 tid = journal->j_commit_sequence;
5077 spin_unlock(&journal->j_state_lock);
5078 ei->i_sync_tid = tid;
5079 ei->i_datasync_tid = tid;
5080 }
5081
0040d987 5082 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5083 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5084 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5085 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5086 ret = -EIO;
ac27a0ec 5087 goto bad_inode;
e5d2861f 5088 }
ac27a0ec
DK
5089 if (ei->i_extra_isize == 0) {
5090 /* The extra space is currently unused. Use it. */
617ba13b
MC
5091 ei->i_extra_isize = sizeof(struct ext4_inode) -
5092 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5093 } else {
5094 __le32 *magic = (void *)raw_inode +
617ba13b 5095 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5096 ei->i_extra_isize;
617ba13b 5097 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5098 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5099 }
5100 } else
5101 ei->i_extra_isize = 0;
5102
ef7f3835
KS
5103 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5104 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5105 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5106 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5107
25ec56b5
JNC
5108 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5110 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5111 inode->i_version |=
5112 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5113 }
5114
c4b5a614 5115 ret = 0;
485c26ec 5116 if (ei->i_file_acl &&
1032988c 5117 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5118 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5119 ei->i_file_acl);
485c26ec
TT
5120 ret = -EIO;
5121 goto bad_inode;
5122 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
5123 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5124 (S_ISLNK(inode->i_mode) &&
5125 !ext4_inode_is_fast_symlink(inode)))
5126 /* Validate extent which is part of inode */
5127 ret = ext4_ext_check_inode(inode);
de9a55b8 5128 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5129 (S_ISLNK(inode->i_mode) &&
5130 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5131 /* Validate block references which are part of inode */
fe2c8191
TN
5132 ret = ext4_check_inode_blockref(inode);
5133 }
567f3e9a 5134 if (ret)
de9a55b8 5135 goto bad_inode;
7a262f7c 5136
ac27a0ec 5137 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5138 inode->i_op = &ext4_file_inode_operations;
5139 inode->i_fop = &ext4_file_operations;
5140 ext4_set_aops(inode);
ac27a0ec 5141 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5142 inode->i_op = &ext4_dir_inode_operations;
5143 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5144 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5145 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5146 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5147 nd_terminate_link(ei->i_data, inode->i_size,
5148 sizeof(ei->i_data) - 1);
5149 } else {
617ba13b
MC
5150 inode->i_op = &ext4_symlink_inode_operations;
5151 ext4_set_aops(inode);
ac27a0ec 5152 }
563bdd61
TT
5153 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5154 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5155 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5156 if (raw_inode->i_block[0])
5157 init_special_inode(inode, inode->i_mode,
5158 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5159 else
5160 init_special_inode(inode, inode->i_mode,
5161 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5162 } else {
563bdd61 5163 ret = -EIO;
24676da4 5164 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5165 goto bad_inode;
ac27a0ec 5166 }
af5bc92d 5167 brelse(iloc.bh);
617ba13b 5168 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5169 unlock_new_inode(inode);
5170 return inode;
ac27a0ec
DK
5171
5172bad_inode:
567f3e9a 5173 brelse(iloc.bh);
1d1fe1ee
DH
5174 iget_failed(inode);
5175 return ERR_PTR(ret);
ac27a0ec
DK
5176}
5177
0fc1b451
AK
5178static int ext4_inode_blocks_set(handle_t *handle,
5179 struct ext4_inode *raw_inode,
5180 struct ext4_inode_info *ei)
5181{
5182 struct inode *inode = &(ei->vfs_inode);
5183 u64 i_blocks = inode->i_blocks;
5184 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5185
5186 if (i_blocks <= ~0U) {
5187 /*
5188 * i_blocks can be represnted in a 32 bit variable
5189 * as multiple of 512 bytes
5190 */
8180a562 5191 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5192 raw_inode->i_blocks_high = 0;
8180a562 5193 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
5194 return 0;
5195 }
5196 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5197 return -EFBIG;
5198
5199 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5200 /*
5201 * i_blocks can be represented in a 48 bit variable
5202 * as multiple of 512 bytes
5203 */
8180a562 5204 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5205 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 5206 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 5207 } else {
8180a562
AK
5208 ei->i_flags |= EXT4_HUGE_FILE_FL;
5209 /* i_block is stored in file system block size */
5210 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5211 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5212 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5213 }
f287a1a5 5214 return 0;
0fc1b451
AK
5215}
5216
ac27a0ec
DK
5217/*
5218 * Post the struct inode info into an on-disk inode location in the
5219 * buffer-cache. This gobbles the caller's reference to the
5220 * buffer_head in the inode location struct.
5221 *
5222 * The caller must have write access to iloc->bh.
5223 */
617ba13b 5224static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5225 struct inode *inode,
830156c7 5226 struct ext4_iloc *iloc)
ac27a0ec 5227{
617ba13b
MC
5228 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5229 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5230 struct buffer_head *bh = iloc->bh;
5231 int err = 0, rc, block;
5232
5233 /* For fields not not tracking in the in-memory inode,
5234 * initialise them to zero for new inodes. */
19f5fb7a 5235 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5236 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5237
ff9ddf7e 5238 ext4_get_inode_flags(ei);
ac27a0ec 5239 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5240 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5241 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5242 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5243/*
5244 * Fix up interoperability with old kernels. Otherwise, old inodes get
5245 * re-used with the upper 16 bits of the uid/gid intact
5246 */
af5bc92d 5247 if (!ei->i_dtime) {
ac27a0ec
DK
5248 raw_inode->i_uid_high =
5249 cpu_to_le16(high_16_bits(inode->i_uid));
5250 raw_inode->i_gid_high =
5251 cpu_to_le16(high_16_bits(inode->i_gid));
5252 } else {
5253 raw_inode->i_uid_high = 0;
5254 raw_inode->i_gid_high = 0;
5255 }
5256 } else {
5257 raw_inode->i_uid_low =
5258 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5259 raw_inode->i_gid_low =
5260 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5261 raw_inode->i_uid_high = 0;
5262 raw_inode->i_gid_high = 0;
5263 }
5264 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5265
5266 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5267 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5268 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5269 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5270
0fc1b451
AK
5271 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5272 goto out_brelse;
ac27a0ec 5273 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5274 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5275 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5276 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5277 raw_inode->i_file_acl_high =
5278 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5279 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5280 ext4_isize_set(raw_inode, ei->i_disksize);
5281 if (ei->i_disksize > 0x7fffffffULL) {
5282 struct super_block *sb = inode->i_sb;
5283 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5284 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5285 EXT4_SB(sb)->s_es->s_rev_level ==
5286 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5287 /* If this is the first large file
5288 * created, add a flag to the superblock.
5289 */
5290 err = ext4_journal_get_write_access(handle,
5291 EXT4_SB(sb)->s_sbh);
5292 if (err)
5293 goto out_brelse;
5294 ext4_update_dynamic_rev(sb);
5295 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5296 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5297 sb->s_dirt = 1;
0390131b 5298 ext4_handle_sync(handle);
73b50c1c 5299 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5300 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5301 }
5302 }
5303 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5304 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5305 if (old_valid_dev(inode->i_rdev)) {
5306 raw_inode->i_block[0] =
5307 cpu_to_le32(old_encode_dev(inode->i_rdev));
5308 raw_inode->i_block[1] = 0;
5309 } else {
5310 raw_inode->i_block[0] = 0;
5311 raw_inode->i_block[1] =
5312 cpu_to_le32(new_encode_dev(inode->i_rdev));
5313 raw_inode->i_block[2] = 0;
5314 }
de9a55b8
TT
5315 } else
5316 for (block = 0; block < EXT4_N_BLOCKS; block++)
5317 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5318
25ec56b5
JNC
5319 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5320 if (ei->i_extra_isize) {
5321 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5322 raw_inode->i_version_hi =
5323 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5324 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5325 }
5326
830156c7 5327 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5328 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5329 if (!err)
5330 err = rc;
19f5fb7a 5331 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5332
b436b9be 5333 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5334out_brelse:
af5bc92d 5335 brelse(bh);
617ba13b 5336 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5337 return err;
5338}
5339
5340/*
617ba13b 5341 * ext4_write_inode()
ac27a0ec
DK
5342 *
5343 * We are called from a few places:
5344 *
5345 * - Within generic_file_write() for O_SYNC files.
5346 * Here, there will be no transaction running. We wait for any running
5347 * trasnaction to commit.
5348 *
5349 * - Within sys_sync(), kupdate and such.
5350 * We wait on commit, if tol to.
5351 *
5352 * - Within prune_icache() (PF_MEMALLOC == true)
5353 * Here we simply return. We can't afford to block kswapd on the
5354 * journal commit.
5355 *
5356 * In all cases it is actually safe for us to return without doing anything,
5357 * because the inode has been copied into a raw inode buffer in
617ba13b 5358 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5359 * knfsd.
5360 *
5361 * Note that we are absolutely dependent upon all inode dirtiers doing the
5362 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5363 * which we are interested.
5364 *
5365 * It would be a bug for them to not do this. The code:
5366 *
5367 * mark_inode_dirty(inode)
5368 * stuff();
5369 * inode->i_size = expr;
5370 *
5371 * is in error because a kswapd-driven write_inode() could occur while
5372 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5373 * will no longer be on the superblock's dirty inode list.
5374 */
a9185b41 5375int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5376{
91ac6f43
FM
5377 int err;
5378
ac27a0ec
DK
5379 if (current->flags & PF_MEMALLOC)
5380 return 0;
5381
91ac6f43
FM
5382 if (EXT4_SB(inode->i_sb)->s_journal) {
5383 if (ext4_journal_current_handle()) {
5384 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5385 dump_stack();
5386 return -EIO;
5387 }
ac27a0ec 5388
a9185b41 5389 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5390 return 0;
5391
5392 err = ext4_force_commit(inode->i_sb);
5393 } else {
5394 struct ext4_iloc iloc;
ac27a0ec 5395
8b472d73 5396 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5397 if (err)
5398 return err;
a9185b41 5399 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5400 sync_dirty_buffer(iloc.bh);
5401 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
24676da4
TT
5402 EXT4_ERROR_INODE(inode,
5403 "IO error syncing inode (block=%llu)",
5404 (unsigned long long) iloc.bh->b_blocknr);
830156c7
FM
5405 err = -EIO;
5406 }
fd2dd9fb 5407 brelse(iloc.bh);
91ac6f43
FM
5408 }
5409 return err;
ac27a0ec
DK
5410}
5411
5412/*
617ba13b 5413 * ext4_setattr()
ac27a0ec
DK
5414 *
5415 * Called from notify_change.
5416 *
5417 * We want to trap VFS attempts to truncate the file as soon as
5418 * possible. In particular, we want to make sure that when the VFS
5419 * shrinks i_size, we put the inode on the orphan list and modify
5420 * i_disksize immediately, so that during the subsequent flushing of
5421 * dirty pages and freeing of disk blocks, we can guarantee that any
5422 * commit will leave the blocks being flushed in an unused state on
5423 * disk. (On recovery, the inode will get truncated and the blocks will
5424 * be freed, so we have a strong guarantee that no future commit will
5425 * leave these blocks visible to the user.)
5426 *
678aaf48
JK
5427 * Another thing we have to assure is that if we are in ordered mode
5428 * and inode is still attached to the committing transaction, we must
5429 * we start writeout of all the dirty pages which are being truncated.
5430 * This way we are sure that all the data written in the previous
5431 * transaction are already on disk (truncate waits for pages under
5432 * writeback).
5433 *
5434 * Called with inode->i_mutex down.
ac27a0ec 5435 */
617ba13b 5436int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5437{
5438 struct inode *inode = dentry->d_inode;
5439 int error, rc = 0;
5440 const unsigned int ia_valid = attr->ia_valid;
5441
5442 error = inode_change_ok(inode, attr);
5443 if (error)
5444 return error;
5445
907f4554 5446 if (ia_valid & ATTR_SIZE)
871a2931 5447 dquot_initialize(inode);
ac27a0ec
DK
5448 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5449 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5450 handle_t *handle;
5451
5452 /* (user+group)*(old+new) structure, inode write (sb,
5453 * inode block, ? - but truncate inode update has it) */
5aca07eb 5454 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5455 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5456 if (IS_ERR(handle)) {
5457 error = PTR_ERR(handle);
5458 goto err_out;
5459 }
b43fa828 5460 error = dquot_transfer(inode, attr);
ac27a0ec 5461 if (error) {
617ba13b 5462 ext4_journal_stop(handle);
ac27a0ec
DK
5463 return error;
5464 }
5465 /* Update corresponding info in inode so that everything is in
5466 * one transaction */
5467 if (attr->ia_valid & ATTR_UID)
5468 inode->i_uid = attr->ia_uid;
5469 if (attr->ia_valid & ATTR_GID)
5470 inode->i_gid = attr->ia_gid;
617ba13b
MC
5471 error = ext4_mark_inode_dirty(handle, inode);
5472 ext4_journal_stop(handle);
ac27a0ec
DK
5473 }
5474
e2b46574 5475 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5476 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5478
5479 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5480 error = -EFBIG;
5481 goto err_out;
5482 }
5483 }
5484 }
5485
ac27a0ec 5486 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5487 attr->ia_valid & ATTR_SIZE &&
5488 (attr->ia_size < inode->i_size ||
12e9b892 5489 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5490 handle_t *handle;
5491
617ba13b 5492 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5493 if (IS_ERR(handle)) {
5494 error = PTR_ERR(handle);
5495 goto err_out;
5496 }
5497
617ba13b
MC
5498 error = ext4_orphan_add(handle, inode);
5499 EXT4_I(inode)->i_disksize = attr->ia_size;
5500 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5501 if (!error)
5502 error = rc;
617ba13b 5503 ext4_journal_stop(handle);
678aaf48
JK
5504
5505 if (ext4_should_order_data(inode)) {
5506 error = ext4_begin_ordered_truncate(inode,
5507 attr->ia_size);
5508 if (error) {
5509 /* Do as much error cleanup as possible */
5510 handle = ext4_journal_start(inode, 3);
5511 if (IS_ERR(handle)) {
5512 ext4_orphan_del(NULL, inode);
5513 goto err_out;
5514 }
5515 ext4_orphan_del(handle, inode);
5516 ext4_journal_stop(handle);
5517 goto err_out;
5518 }
5519 }
c8d46e41 5520 /* ext4_truncate will clear the flag */
12e9b892 5521 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5522 ext4_truncate(inode);
ac27a0ec
DK
5523 }
5524
5525 rc = inode_setattr(inode, attr);
5526
617ba13b 5527 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5528 * transaction handle at all, we need to clean up the in-core
5529 * orphan list manually. */
5530 if (inode->i_nlink)
617ba13b 5531 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5532
5533 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5534 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5535
5536err_out:
617ba13b 5537 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5538 if (!error)
5539 error = rc;
5540 return error;
5541}
5542
3e3398a0
MC
5543int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5544 struct kstat *stat)
5545{
5546 struct inode *inode;
5547 unsigned long delalloc_blocks;
5548
5549 inode = dentry->d_inode;
5550 generic_fillattr(inode, stat);
5551
5552 /*
5553 * We can't update i_blocks if the block allocation is delayed
5554 * otherwise in the case of system crash before the real block
5555 * allocation is done, we will have i_blocks inconsistent with
5556 * on-disk file blocks.
5557 * We always keep i_blocks updated together with real
5558 * allocation. But to not confuse with user, stat
5559 * will return the blocks that include the delayed allocation
5560 * blocks for this file.
5561 */
5562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5563 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5564 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5565
5566 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5567 return 0;
5568}
ac27a0ec 5569
a02908f1
MC
5570static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5571 int chunk)
5572{
5573 int indirects;
5574
5575 /* if nrblocks are contiguous */
5576 if (chunk) {
5577 /*
5578 * With N contiguous data blocks, it need at most
5579 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5580 * 2 dindirect blocks
5581 * 1 tindirect block
5582 */
5583 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5584 return indirects + 3;
5585 }
5586 /*
5587 * if nrblocks are not contiguous, worse case, each block touch
5588 * a indirect block, and each indirect block touch a double indirect
5589 * block, plus a triple indirect block
5590 */
5591 indirects = nrblocks * 2 + 1;
5592 return indirects;
5593}
5594
5595static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5596{
12e9b892 5597 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5598 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5599 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5600}
ac51d837 5601
ac27a0ec 5602/*
a02908f1
MC
5603 * Account for index blocks, block groups bitmaps and block group
5604 * descriptor blocks if modify datablocks and index blocks
5605 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5606 *
a02908f1 5607 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5608 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5609 * they could still across block group boundary.
ac27a0ec 5610 *
a02908f1
MC
5611 * Also account for superblock, inode, quota and xattr blocks
5612 */
5613int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5614{
8df9675f
TT
5615 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5616 int gdpblocks;
a02908f1
MC
5617 int idxblocks;
5618 int ret = 0;
5619
5620 /*
5621 * How many index blocks need to touch to modify nrblocks?
5622 * The "Chunk" flag indicating whether the nrblocks is
5623 * physically contiguous on disk
5624 *
5625 * For Direct IO and fallocate, they calls get_block to allocate
5626 * one single extent at a time, so they could set the "Chunk" flag
5627 */
5628 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5629
5630 ret = idxblocks;
5631
5632 /*
5633 * Now let's see how many group bitmaps and group descriptors need
5634 * to account
5635 */
5636 groups = idxblocks;
5637 if (chunk)
5638 groups += 1;
5639 else
5640 groups += nrblocks;
5641
5642 gdpblocks = groups;
8df9675f
TT
5643 if (groups > ngroups)
5644 groups = ngroups;
a02908f1
MC
5645 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5646 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5647
5648 /* bitmaps and block group descriptor blocks */
5649 ret += groups + gdpblocks;
5650
5651 /* Blocks for super block, inode, quota and xattr blocks */
5652 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5653
5654 return ret;
5655}
5656
5657/*
5658 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5659 * the modification of a single pages into a single transaction,
5660 * which may include multiple chunks of block allocations.
ac27a0ec 5661 *
525f4ed8 5662 * This could be called via ext4_write_begin()
ac27a0ec 5663 *
525f4ed8 5664 * We need to consider the worse case, when
a02908f1 5665 * one new block per extent.
ac27a0ec 5666 */
a86c6181 5667int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5668{
617ba13b 5669 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5670 int ret;
5671
a02908f1 5672 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5673
a02908f1 5674 /* Account for data blocks for journalled mode */
617ba13b 5675 if (ext4_should_journal_data(inode))
a02908f1 5676 ret += bpp;
ac27a0ec
DK
5677 return ret;
5678}
f3bd1f3f
MC
5679
5680/*
5681 * Calculate the journal credits for a chunk of data modification.
5682 *
5683 * This is called from DIO, fallocate or whoever calling
af901ca1 5684 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5685 *
5686 * journal buffers for data blocks are not included here, as DIO
5687 * and fallocate do no need to journal data buffers.
5688 */
5689int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5690{
5691 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5692}
5693
ac27a0ec 5694/*
617ba13b 5695 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5696 * Give this, we know that the caller already has write access to iloc->bh.
5697 */
617ba13b 5698int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5699 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5700{
5701 int err = 0;
5702
25ec56b5
JNC
5703 if (test_opt(inode->i_sb, I_VERSION))
5704 inode_inc_iversion(inode);
5705
ac27a0ec
DK
5706 /* the do_update_inode consumes one bh->b_count */
5707 get_bh(iloc->bh);
5708
dab291af 5709 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5710 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5711 put_bh(iloc->bh);
5712 return err;
5713}
5714
5715/*
5716 * On success, We end up with an outstanding reference count against
5717 * iloc->bh. This _must_ be cleaned up later.
5718 */
5719
5720int
617ba13b
MC
5721ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5722 struct ext4_iloc *iloc)
ac27a0ec 5723{
0390131b
FM
5724 int err;
5725
5726 err = ext4_get_inode_loc(inode, iloc);
5727 if (!err) {
5728 BUFFER_TRACE(iloc->bh, "get_write_access");
5729 err = ext4_journal_get_write_access(handle, iloc->bh);
5730 if (err) {
5731 brelse(iloc->bh);
5732 iloc->bh = NULL;
ac27a0ec
DK
5733 }
5734 }
617ba13b 5735 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5736 return err;
5737}
5738
6dd4ee7c
KS
5739/*
5740 * Expand an inode by new_extra_isize bytes.
5741 * Returns 0 on success or negative error number on failure.
5742 */
1d03ec98
AK
5743static int ext4_expand_extra_isize(struct inode *inode,
5744 unsigned int new_extra_isize,
5745 struct ext4_iloc iloc,
5746 handle_t *handle)
6dd4ee7c
KS
5747{
5748 struct ext4_inode *raw_inode;
5749 struct ext4_xattr_ibody_header *header;
5750 struct ext4_xattr_entry *entry;
5751
5752 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5753 return 0;
5754
5755 raw_inode = ext4_raw_inode(&iloc);
5756
5757 header = IHDR(inode, raw_inode);
5758 entry = IFIRST(header);
5759
5760 /* No extended attributes present */
19f5fb7a
TT
5761 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5762 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5763 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5764 new_extra_isize);
5765 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5766 return 0;
5767 }
5768
5769 /* try to expand with EAs present */
5770 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5771 raw_inode, handle);
5772}
5773
ac27a0ec
DK
5774/*
5775 * What we do here is to mark the in-core inode as clean with respect to inode
5776 * dirtiness (it may still be data-dirty).
5777 * This means that the in-core inode may be reaped by prune_icache
5778 * without having to perform any I/O. This is a very good thing,
5779 * because *any* task may call prune_icache - even ones which
5780 * have a transaction open against a different journal.
5781 *
5782 * Is this cheating? Not really. Sure, we haven't written the
5783 * inode out, but prune_icache isn't a user-visible syncing function.
5784 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5785 * we start and wait on commits.
5786 *
5787 * Is this efficient/effective? Well, we're being nice to the system
5788 * by cleaning up our inodes proactively so they can be reaped
5789 * without I/O. But we are potentially leaving up to five seconds'
5790 * worth of inodes floating about which prune_icache wants us to
5791 * write out. One way to fix that would be to get prune_icache()
5792 * to do a write_super() to free up some memory. It has the desired
5793 * effect.
5794 */
617ba13b 5795int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5796{
617ba13b 5797 struct ext4_iloc iloc;
6dd4ee7c
KS
5798 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5799 static unsigned int mnt_count;
5800 int err, ret;
ac27a0ec
DK
5801
5802 might_sleep();
617ba13b 5803 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5804 if (ext4_handle_valid(handle) &&
5805 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5806 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5807 /*
5808 * We need extra buffer credits since we may write into EA block
5809 * with this same handle. If journal_extend fails, then it will
5810 * only result in a minor loss of functionality for that inode.
5811 * If this is felt to be critical, then e2fsck should be run to
5812 * force a large enough s_min_extra_isize.
5813 */
5814 if ((jbd2_journal_extend(handle,
5815 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5816 ret = ext4_expand_extra_isize(inode,
5817 sbi->s_want_extra_isize,
5818 iloc, handle);
5819 if (ret) {
19f5fb7a
TT
5820 ext4_set_inode_state(inode,
5821 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5822 if (mnt_count !=
5823 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5824 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5825 "Unable to expand inode %lu. Delete"
5826 " some EAs or run e2fsck.",
5827 inode->i_ino);
c1bddad9
AK
5828 mnt_count =
5829 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5830 }
5831 }
5832 }
5833 }
ac27a0ec 5834 if (!err)
617ba13b 5835 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5836 return err;
5837}
5838
5839/*
617ba13b 5840 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5841 *
5842 * We're really interested in the case where a file is being extended.
5843 * i_size has been changed by generic_commit_write() and we thus need
5844 * to include the updated inode in the current transaction.
5845 *
5dd4056d 5846 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5847 * are allocated to the file.
5848 *
5849 * If the inode is marked synchronous, we don't honour that here - doing
5850 * so would cause a commit on atime updates, which we don't bother doing.
5851 * We handle synchronous inodes at the highest possible level.
5852 */
617ba13b 5853void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5854{
ac27a0ec
DK
5855 handle_t *handle;
5856
617ba13b 5857 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5858 if (IS_ERR(handle))
5859 goto out;
f3dc272f 5860
f3dc272f
CW
5861 ext4_mark_inode_dirty(handle, inode);
5862
617ba13b 5863 ext4_journal_stop(handle);
ac27a0ec
DK
5864out:
5865 return;
5866}
5867
5868#if 0
5869/*
5870 * Bind an inode's backing buffer_head into this transaction, to prevent
5871 * it from being flushed to disk early. Unlike
617ba13b 5872 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5873 * returns no iloc structure, so the caller needs to repeat the iloc
5874 * lookup to mark the inode dirty later.
5875 */
617ba13b 5876static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5877{
617ba13b 5878 struct ext4_iloc iloc;
ac27a0ec
DK
5879
5880 int err = 0;
5881 if (handle) {
617ba13b 5882 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5883 if (!err) {
5884 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5885 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5886 if (!err)
0390131b 5887 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5888 NULL,
0390131b 5889 iloc.bh);
ac27a0ec
DK
5890 brelse(iloc.bh);
5891 }
5892 }
617ba13b 5893 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5894 return err;
5895}
5896#endif
5897
617ba13b 5898int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5899{
5900 journal_t *journal;
5901 handle_t *handle;
5902 int err;
5903
5904 /*
5905 * We have to be very careful here: changing a data block's
5906 * journaling status dynamically is dangerous. If we write a
5907 * data block to the journal, change the status and then delete
5908 * that block, we risk forgetting to revoke the old log record
5909 * from the journal and so a subsequent replay can corrupt data.
5910 * So, first we make sure that the journal is empty and that
5911 * nobody is changing anything.
5912 */
5913
617ba13b 5914 journal = EXT4_JOURNAL(inode);
0390131b
FM
5915 if (!journal)
5916 return 0;
d699594d 5917 if (is_journal_aborted(journal))
ac27a0ec
DK
5918 return -EROFS;
5919
dab291af
MC
5920 jbd2_journal_lock_updates(journal);
5921 jbd2_journal_flush(journal);
ac27a0ec
DK
5922
5923 /*
5924 * OK, there are no updates running now, and all cached data is
5925 * synced to disk. We are now in a completely consistent state
5926 * which doesn't have anything in the journal, and we know that
5927 * no filesystem updates are running, so it is safe to modify
5928 * the inode's in-core data-journaling state flag now.
5929 */
5930
5931 if (val)
12e9b892 5932 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5933 else
12e9b892 5934 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5935 ext4_set_aops(inode);
ac27a0ec 5936
dab291af 5937 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5938
5939 /* Finally we can mark the inode as dirty. */
5940
617ba13b 5941 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5942 if (IS_ERR(handle))
5943 return PTR_ERR(handle);
5944
617ba13b 5945 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5946 ext4_handle_sync(handle);
617ba13b
MC
5947 ext4_journal_stop(handle);
5948 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5949
5950 return err;
5951}
2e9ee850
AK
5952
5953static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5954{
5955 return !buffer_mapped(bh);
5956}
5957
c2ec175c 5958int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5959{
c2ec175c 5960 struct page *page = vmf->page;
2e9ee850
AK
5961 loff_t size;
5962 unsigned long len;
5963 int ret = -EINVAL;
79f0be8d 5964 void *fsdata;
2e9ee850
AK
5965 struct file *file = vma->vm_file;
5966 struct inode *inode = file->f_path.dentry->d_inode;
5967 struct address_space *mapping = inode->i_mapping;
5968
5969 /*
5970 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5971 * get i_mutex because we are already holding mmap_sem.
5972 */
5973 down_read(&inode->i_alloc_sem);
5974 size = i_size_read(inode);
5975 if (page->mapping != mapping || size <= page_offset(page)
5976 || !PageUptodate(page)) {
5977 /* page got truncated from under us? */
5978 goto out_unlock;
5979 }
5980 ret = 0;
5981 if (PageMappedToDisk(page))
5982 goto out_unlock;
5983
5984 if (page->index == size >> PAGE_CACHE_SHIFT)
5985 len = size & ~PAGE_CACHE_MASK;
5986 else
5987 len = PAGE_CACHE_SIZE;
5988
a827eaff
AK
5989 lock_page(page);
5990 /*
5991 * return if we have all the buffers mapped. This avoid
5992 * the need to call write_begin/write_end which does a
5993 * journal_start/journal_stop which can block and take
5994 * long time
5995 */
2e9ee850 5996 if (page_has_buffers(page)) {
2e9ee850 5997 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5998 ext4_bh_unmapped)) {
5999 unlock_page(page);
2e9ee850 6000 goto out_unlock;
a827eaff 6001 }
2e9ee850 6002 }
a827eaff 6003 unlock_page(page);
2e9ee850
AK
6004 /*
6005 * OK, we need to fill the hole... Do write_begin write_end
6006 * to do block allocation/reservation.We are not holding
6007 * inode.i__mutex here. That allow * parallel write_begin,
6008 * write_end call. lock_page prevent this from happening
6009 * on the same page though
6010 */
6011 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6012 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6013 if (ret < 0)
6014 goto out_unlock;
6015 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6016 len, len, page, fsdata);
2e9ee850
AK
6017 if (ret < 0)
6018 goto out_unlock;
6019 ret = 0;
6020out_unlock:
c2ec175c
NP
6021 if (ret)
6022 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6023 up_read(&inode->i_alloc_sem);
6024 return ret;
6025}