]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: get rid of EXT4_MAP_UNINIT flag
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec
DK
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152}
153
ac27a0ec
DK
154/*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
fa5d1113 159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 160 int nblocks)
ac27a0ec 161{
487caeef
JK
162 int ret;
163
164 /*
e35fd660 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
0390131b 170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 171 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 172 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 173 ret = ext4_journal_restart(handle, nblocks);
487caeef 174 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 175 ext4_discard_preallocations(inode);
487caeef
JK
176
177 return ret;
ac27a0ec
DK
178}
179
180/*
181 * Called at the last iput() if i_nlink is zero.
182 */
0930fcc1 183void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
184{
185 handle_t *handle;
bc965ab3 186 int err;
ac27a0ec 187
7ff9c073 188 trace_ext4_evict_inode(inode);
2581fdc8 189
0930fcc1 190 if (inode->i_nlink) {
2d859db3
JK
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
d76a3a77 215 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
216 filemap_write_and_wait(&inode->i_data);
217 }
91b0abe3 218 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
219
220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
221 goto no_delete;
222 }
223
907f4554 224 if (!is_bad_inode(inode))
871a2931 225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
232 if (is_bad_inode(inode))
233 goto no_delete;
234
8e8ad8a5
JK
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
9924a92a
TT
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 348 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
97795d2a
BF
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
0637c6f4
TT
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
0637c6f4 370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 372 used + ei->i_allocated_meta_blocks);
0637c6f4 373 ei->i_allocated_meta_blocks = 0;
6bc6e63f 374
0637c6f4
TT
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
57042651 381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 382 ei->i_reserved_meta_blocks);
ee5f4d9c 383 ei->i_reserved_meta_blocks = 0;
9d0be502 384 ei->i_da_metadata_calc_len = 0;
6bc6e63f 385 }
12219aea 386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 387
72b8ab9d
ES
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
7b415bf6 390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 391 else {
5f634d06
AK
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
72b8ab9d 395 * not re-claim the quota for fallocated blocks.
5f634d06 396 */
7b415bf6 397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 398 }
d6014301
AK
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
0637c6f4
TT
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
d6014301 407 ext4_discard_preallocations(inode);
12219aea
AK
408}
409
e29136f8 410static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
411 unsigned int line,
412 struct ext4_map_blocks *map)
6fd058f7 413{
24676da4
TT
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
c398eda0
TT
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
6fd058f7
TT
420 return -EIO;
421 }
422 return 0;
423}
424
e29136f8 425#define check_block_validity(inode, map) \
c398eda0 426 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 427
921f266b
DM
428#ifdef ES_AGGRESSIVE_TEST
429static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct inode *inode,
431 struct ext4_map_blocks *es_map,
432 struct ext4_map_blocks *map,
433 int flags)
434{
435 int retval;
436
437 map->m_flags = 0;
438 /*
439 * There is a race window that the result is not the same.
440 * e.g. xfstests #223 when dioread_nolock enables. The reason
441 * is that we lookup a block mapping in extent status tree with
442 * out taking i_data_sem. So at the time the unwritten extent
443 * could be converted.
444 */
445 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446 down_read((&EXT4_I(inode)->i_data_sem));
447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449 EXT4_GET_BLOCKS_KEEP_SIZE);
450 } else {
451 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452 EXT4_GET_BLOCKS_KEEP_SIZE);
453 }
454 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455 up_read((&EXT4_I(inode)->i_data_sem));
456 /*
457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 * because it shouldn't be marked in es_map->m_flags.
459 */
460 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
bdafe42a 469 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
f5ab0d1f 480/*
e35fd660 481 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 482 * and returns if the blocks are already mapped.
f5ab0d1f 483 *
f5ab0d1f
MC
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
e35fd660
TT
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocate.
493 * if create==0 and the blocks are pre-allocated and uninitialized block,
494 * the result buffer head is unmapped. If the create ==1, it will make sure
495 * the buffer head is mapped.
496 *
497 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 498 * that case, buffer head is unmapped
f5ab0d1f
MC
499 *
500 * It returns the error in case of allocation failure.
501 */
e35fd660
TT
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
0e855ac8 504{
d100eef2 505 struct extent_status es;
0e855ac8 506 int retval;
b8a86845 507 int ret = 0;
921f266b
DM
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
f5ab0d1f 513
e35fd660
TT
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
d100eef2 518
e861b5e9
TT
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
4adb6ab3
KM
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EIO;
528
d100eef2
ZL
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 531 ext4_es_lru_add(inode);
d100eef2
ZL
532 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533 map->m_pblk = ext4_es_pblock(&es) +
534 map->m_lblk - es.es_lblk;
535 map->m_flags |= ext4_es_is_written(&es) ?
536 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537 retval = es.es_len - (map->m_lblk - es.es_lblk);
538 if (retval > map->m_len)
539 retval = map->m_len;
540 map->m_len = retval;
541 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
921f266b
DM
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
d100eef2
ZL
550 goto found;
551 }
552
4df3d265 553 /*
b920c755
TT
554 * Try to see if we can get the block without requesting a new
555 * file system block.
4df3d265 556 */
729f52c6
ZL
557 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 559 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
560 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 562 } else {
a4e5d88b
DM
563 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 565 }
f7fec032 566 if (retval > 0) {
3be78c73 567 unsigned int status;
f7fec032 568
44fb851d
ZL
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
921f266b 575 }
921f266b 576
f7fec032
ZL
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
729f52c6
ZL
588 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 590
d100eef2 591found:
e35fd660 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 593 ret = check_block_validity(inode, map);
6fd058f7
TT
594 if (ret != 0)
595 return ret;
596 }
597
f5ab0d1f 598 /* If it is only a block(s) look up */
c2177057 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
600 return retval;
601
602 /*
603 * Returns if the blocks have already allocated
604 *
605 * Note that if blocks have been preallocated
df3ab170 606 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
607 * with buffer head unmapped.
608 */
e35fd660 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
610 /*
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
614 */
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
4df3d265 617
2a8964d6 618 /*
a25a4e1a
ZL
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
2a8964d6 621 */
a25a4e1a 622 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 623
4df3d265 624 /*
f5ab0d1f
MC
625 * New blocks allocate and/or writing to uninitialized extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_blocks()
628 * with create == 1 flag.
4df3d265
AK
629 */
630 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
631
632 /*
633 * if the caller is from delayed allocation writeout path
634 * we have already reserved fs blocks for allocation
635 * let the underlying get_block() function know to
636 * avoid double accounting
637 */
c2177057 638 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 639 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
640 /*
641 * We need to check for EXT4 here because migrate
642 * could have changed the inode type in between
643 */
12e9b892 644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 645 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 646 } else {
e35fd660 647 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 648
e35fd660 649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
650 /*
651 * We allocated new blocks which will result in
652 * i_data's format changing. Force the migrate
653 * to fail by clearing migrate flags
654 */
19f5fb7a 655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 656 }
d2a17637 657
5f634d06
AK
658 /*
659 * Update reserved blocks/metadata blocks after successful
660 * block allocation which had been deferred till now. We don't
661 * support fallocate for non extent files. So we can update
662 * reserve space here.
663 */
664 if ((retval > 0) &&
1296cc85 665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
666 ext4_da_update_reserve_space(inode, retval, 1);
667 }
f7fec032 668 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 669 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 670
f7fec032 671 if (retval > 0) {
3be78c73 672 unsigned int status;
f7fec032 673
44fb851d
ZL
674 if (unlikely(retval != map->m_len)) {
675 ext4_warning(inode->i_sb,
676 "ES len assertion failed for inode "
677 "%lu: retval %d != map->m_len %d",
678 inode->i_ino, retval, map->m_len);
679 WARN_ON(1);
921f266b 680 }
921f266b 681
adb23551
ZL
682 /*
683 * If the extent has been zeroed out, we don't need to update
684 * extent status tree.
685 */
686 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688 if (ext4_es_is_written(&es))
689 goto has_zeroout;
690 }
f7fec032
ZL
691 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694 ext4_find_delalloc_range(inode, map->m_lblk,
695 map->m_lblk + map->m_len - 1))
696 status |= EXTENT_STATUS_DELAYED;
697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 map->m_pblk, status);
699 if (ret < 0)
700 retval = ret;
5356f261
AK
701 }
702
adb23551 703has_zeroout:
4df3d265 704 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 706 ret = check_block_validity(inode, map);
6fd058f7
TT
707 if (ret != 0)
708 return ret;
709 }
0e855ac8
AK
710 return retval;
711}
712
f3bd1f3f
MC
713/* Maximum number of blocks we map for direct IO at once. */
714#define DIO_MAX_BLOCKS 4096
715
2ed88685
TT
716static int _ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int flags)
ac27a0ec 718{
3e4fdaf8 719 handle_t *handle = ext4_journal_current_handle();
2ed88685 720 struct ext4_map_blocks map;
7fb5409d 721 int ret = 0, started = 0;
f3bd1f3f 722 int dio_credits;
ac27a0ec 723
46c7f254
TM
724 if (ext4_has_inline_data(inode))
725 return -ERANGE;
726
2ed88685
TT
727 map.m_lblk = iblock;
728 map.m_len = bh->b_size >> inode->i_blkbits;
729
8b0f165f 730 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 731 /* Direct IO write... */
2ed88685
TT
732 if (map.m_len > DIO_MAX_BLOCKS)
733 map.m_len = DIO_MAX_BLOCKS;
734 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
735 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736 dio_credits);
7fb5409d 737 if (IS_ERR(handle)) {
ac27a0ec 738 ret = PTR_ERR(handle);
2ed88685 739 return ret;
ac27a0ec 740 }
7fb5409d 741 started = 1;
ac27a0ec
DK
742 }
743
2ed88685 744 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 745 if (ret > 0) {
7b7a8665
CH
746 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
2ed88685
TT
748 map_bh(bh, inode->i_sb, map.m_pblk);
749 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
750 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751 set_buffer_defer_completion(bh);
2ed88685 752 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 753 ret = 0;
ac27a0ec 754 }
7fb5409d
JK
755 if (started)
756 ext4_journal_stop(handle);
ac27a0ec
DK
757 return ret;
758}
759
2ed88685
TT
760int ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int create)
762{
763 return _ext4_get_block(inode, iblock, bh,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
765}
766
ac27a0ec
DK
767/*
768 * `handle' can be NULL if create is zero
769 */
617ba13b 770struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 771 ext4_lblk_t block, int create, int *errp)
ac27a0ec 772{
2ed88685
TT
773 struct ext4_map_blocks map;
774 struct buffer_head *bh;
ac27a0ec
DK
775 int fatal = 0, err;
776
777 J_ASSERT(handle != NULL || create == 0);
778
2ed88685
TT
779 map.m_lblk = block;
780 map.m_len = 1;
781 err = ext4_map_blocks(handle, inode, &map,
782 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 783
90b0a973
CM
784 /* ensure we send some value back into *errp */
785 *errp = 0;
786
0f70b406
TT
787 if (create && err == 0)
788 err = -ENOSPC; /* should never happen */
2ed88685
TT
789 if (err < 0)
790 *errp = err;
791 if (err <= 0)
792 return NULL;
2ed88685
TT
793
794 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 795 if (unlikely(!bh)) {
860d21e2 796 *errp = -ENOMEM;
2ed88685 797 return NULL;
ac27a0ec 798 }
2ed88685
TT
799 if (map.m_flags & EXT4_MAP_NEW) {
800 J_ASSERT(create != 0);
801 J_ASSERT(handle != NULL);
ac27a0ec 802
2ed88685
TT
803 /*
804 * Now that we do not always journal data, we should
805 * keep in mind whether this should always journal the
806 * new buffer as metadata. For now, regular file
807 * writes use ext4_get_block instead, so it's not a
808 * problem.
809 */
810 lock_buffer(bh);
811 BUFFER_TRACE(bh, "call get_create_access");
812 fatal = ext4_journal_get_create_access(handle, bh);
813 if (!fatal && !buffer_uptodate(bh)) {
814 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815 set_buffer_uptodate(bh);
ac27a0ec 816 }
2ed88685
TT
817 unlock_buffer(bh);
818 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819 err = ext4_handle_dirty_metadata(handle, inode, bh);
820 if (!fatal)
821 fatal = err;
822 } else {
823 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 824 }
2ed88685
TT
825 if (fatal) {
826 *errp = fatal;
827 brelse(bh);
828 bh = NULL;
829 }
830 return bh;
ac27a0ec
DK
831}
832
617ba13b 833struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 834 ext4_lblk_t block, int create, int *err)
ac27a0ec 835{
af5bc92d 836 struct buffer_head *bh;
ac27a0ec 837
617ba13b 838 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
839 if (!bh)
840 return bh;
841 if (buffer_uptodate(bh))
842 return bh;
65299a3b 843 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
844 wait_on_buffer(bh);
845 if (buffer_uptodate(bh))
846 return bh;
847 put_bh(bh);
848 *err = -EIO;
849 return NULL;
850}
851
f19d5870
TM
852int ext4_walk_page_buffers(handle_t *handle,
853 struct buffer_head *head,
854 unsigned from,
855 unsigned to,
856 int *partial,
857 int (*fn)(handle_t *handle,
858 struct buffer_head *bh))
ac27a0ec
DK
859{
860 struct buffer_head *bh;
861 unsigned block_start, block_end;
862 unsigned blocksize = head->b_size;
863 int err, ret = 0;
864 struct buffer_head *next;
865
af5bc92d
TT
866 for (bh = head, block_start = 0;
867 ret == 0 && (bh != head || !block_start);
de9a55b8 868 block_start = block_end, bh = next) {
ac27a0ec
DK
869 next = bh->b_this_page;
870 block_end = block_start + blocksize;
871 if (block_end <= from || block_start >= to) {
872 if (partial && !buffer_uptodate(bh))
873 *partial = 1;
874 continue;
875 }
876 err = (*fn)(handle, bh);
877 if (!ret)
878 ret = err;
879 }
880 return ret;
881}
882
883/*
884 * To preserve ordering, it is essential that the hole instantiation and
885 * the data write be encapsulated in a single transaction. We cannot
617ba13b 886 * close off a transaction and start a new one between the ext4_get_block()
dab291af 887 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
888 * prepare_write() is the right place.
889 *
36ade451
JK
890 * Also, this function can nest inside ext4_writepage(). In that case, we
891 * *know* that ext4_writepage() has generated enough buffer credits to do the
892 * whole page. So we won't block on the journal in that case, which is good,
893 * because the caller may be PF_MEMALLOC.
ac27a0ec 894 *
617ba13b 895 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
896 * quota file writes. If we were to commit the transaction while thus
897 * reentered, there can be a deadlock - we would be holding a quota
898 * lock, and the commit would never complete if another thread had a
899 * transaction open and was blocking on the quota lock - a ranking
900 * violation.
901 *
dab291af 902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
903 * will _not_ run commit under these circumstances because handle->h_ref
904 * is elevated. We'll still have enough credits for the tiny quotafile
905 * write.
906 */
f19d5870
TM
907int do_journal_get_write_access(handle_t *handle,
908 struct buffer_head *bh)
ac27a0ec 909{
56d35a4c
JK
910 int dirty = buffer_dirty(bh);
911 int ret;
912
ac27a0ec
DK
913 if (!buffer_mapped(bh) || buffer_freed(bh))
914 return 0;
56d35a4c 915 /*
ebdec241 916 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
917 * the dirty bit as jbd2_journal_get_write_access() could complain
918 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 919 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
920 * the bit before releasing a page lock and thus writeback cannot
921 * ever write the buffer.
922 */
923 if (dirty)
924 clear_buffer_dirty(bh);
925 ret = ext4_journal_get_write_access(handle, bh);
926 if (!ret && dirty)
927 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928 return ret;
ac27a0ec
DK
929}
930
8b0f165f
AP
931static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932 struct buffer_head *bh_result, int create);
bfc1af65 933static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
934 loff_t pos, unsigned len, unsigned flags,
935 struct page **pagep, void **fsdata)
ac27a0ec 936{
af5bc92d 937 struct inode *inode = mapping->host;
1938a150 938 int ret, needed_blocks;
ac27a0ec
DK
939 handle_t *handle;
940 int retries = 0;
af5bc92d 941 struct page *page;
de9a55b8 942 pgoff_t index;
af5bc92d 943 unsigned from, to;
bfc1af65 944
9bffad1e 945 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
946 /*
947 * Reserve one block more for addition to orphan list in case
948 * we allocate blocks but write fails for some reason
949 */
950 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 951 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
952 from = pos & (PAGE_CACHE_SIZE - 1);
953 to = from + len;
ac27a0ec 954
f19d5870
TM
955 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957 flags, pagep);
958 if (ret < 0)
47564bfb
TT
959 return ret;
960 if (ret == 1)
961 return 0;
f19d5870
TM
962 }
963
47564bfb
TT
964 /*
965 * grab_cache_page_write_begin() can take a long time if the
966 * system is thrashing due to memory pressure, or if the page
967 * is being written back. So grab it first before we start
968 * the transaction handle. This also allows us to allocate
969 * the page (if needed) without using GFP_NOFS.
970 */
971retry_grab:
972 page = grab_cache_page_write_begin(mapping, index, flags);
973 if (!page)
974 return -ENOMEM;
975 unlock_page(page);
976
977retry_journal:
9924a92a 978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 979 if (IS_ERR(handle)) {
47564bfb
TT
980 page_cache_release(page);
981 return PTR_ERR(handle);
7479d2b9 982 }
ac27a0ec 983
47564bfb
TT
984 lock_page(page);
985 if (page->mapping != mapping) {
986 /* The page got truncated from under us */
987 unlock_page(page);
988 page_cache_release(page);
cf108bca 989 ext4_journal_stop(handle);
47564bfb 990 goto retry_grab;
cf108bca 991 }
7afe5aa5
DM
992 /* In case writeback began while the page was unlocked */
993 wait_for_stable_page(page);
cf108bca 994
744692dc 995 if (ext4_should_dioread_nolock(inode))
6e1db88d 996 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 997 else
6e1db88d 998 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
999
1000 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1001 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002 from, to, NULL,
1003 do_journal_get_write_access);
ac27a0ec 1004 }
bfc1af65
NP
1005
1006 if (ret) {
af5bc92d 1007 unlock_page(page);
ae4d5372 1008 /*
6e1db88d 1009 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1010 * outside i_size. Trim these off again. Don't need
1011 * i_size_read because we hold i_mutex.
1938a150
AK
1012 *
1013 * Add inode to orphan list in case we crash before
1014 * truncate finishes
ae4d5372 1015 */
ffacfa7a 1016 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1017 ext4_orphan_add(handle, inode);
1018
1019 ext4_journal_stop(handle);
1020 if (pos + len > inode->i_size) {
b9a4207d 1021 ext4_truncate_failed_write(inode);
de9a55b8 1022 /*
ffacfa7a 1023 * If truncate failed early the inode might
1938a150
AK
1024 * still be on the orphan list; we need to
1025 * make sure the inode is removed from the
1026 * orphan list in that case.
1027 */
1028 if (inode->i_nlink)
1029 ext4_orphan_del(NULL, inode);
1030 }
bfc1af65 1031
47564bfb
TT
1032 if (ret == -ENOSPC &&
1033 ext4_should_retry_alloc(inode->i_sb, &retries))
1034 goto retry_journal;
1035 page_cache_release(page);
1036 return ret;
1037 }
1038 *pagep = page;
ac27a0ec
DK
1039 return ret;
1040}
1041
bfc1af65
NP
1042/* For write_end() in data=journal mode */
1043static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1044{
13fca323 1045 int ret;
ac27a0ec
DK
1046 if (!buffer_mapped(bh) || buffer_freed(bh))
1047 return 0;
1048 set_buffer_uptodate(bh);
13fca323
TT
1049 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050 clear_buffer_meta(bh);
1051 clear_buffer_prio(bh);
1052 return ret;
ac27a0ec
DK
1053}
1054
eed4333f
ZL
1055/*
1056 * We need to pick up the new inode size which generic_commit_write gave us
1057 * `file' can be NULL - eg, when called from page_symlink().
1058 *
1059 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1060 * buffers are managed internally.
1061 */
1062static int ext4_write_end(struct file *file,
1063 struct address_space *mapping,
1064 loff_t pos, unsigned len, unsigned copied,
1065 struct page *page, void *fsdata)
f8514083 1066{
f8514083 1067 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1068 struct inode *inode = mapping->host;
1069 int ret = 0, ret2;
1070 int i_size_changed = 0;
1071
1072 trace_ext4_write_end(inode, pos, len, copied);
1073 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074 ret = ext4_jbd2_file_inode(handle, inode);
1075 if (ret) {
1076 unlock_page(page);
1077 page_cache_release(page);
1078 goto errout;
1079 }
1080 }
f8514083 1081
42c832de
TT
1082 if (ext4_has_inline_data(inode)) {
1083 ret = ext4_write_inline_data_end(inode, pos, len,
1084 copied, page);
1085 if (ret < 0)
1086 goto errout;
1087 copied = ret;
1088 } else
f19d5870
TM
1089 copied = block_write_end(file, mapping, pos,
1090 len, copied, page, fsdata);
f8514083
AK
1091
1092 /*
1093 * No need to use i_size_read() here, the i_size
eed4333f 1094 * cannot change under us because we hole i_mutex.
f8514083
AK
1095 *
1096 * But it's important to update i_size while still holding page lock:
1097 * page writeout could otherwise come in and zero beyond i_size.
1098 */
1099 if (pos + copied > inode->i_size) {
1100 i_size_write(inode, pos + copied);
1101 i_size_changed = 1;
1102 }
1103
eed4333f 1104 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1105 /* We need to mark inode dirty even if
1106 * new_i_size is less that inode->i_size
eed4333f 1107 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1108 */
1109 ext4_update_i_disksize(inode, (pos + copied));
1110 i_size_changed = 1;
1111 }
1112 unlock_page(page);
1113 page_cache_release(page);
1114
1115 /*
1116 * Don't mark the inode dirty under page lock. First, it unnecessarily
1117 * makes the holding time of page lock longer. Second, it forces lock
1118 * ordering of page lock and transaction start for journaling
1119 * filesystems.
1120 */
1121 if (i_size_changed)
1122 ext4_mark_inode_dirty(handle, inode);
1123
ffacfa7a 1124 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1125 /* if we have allocated more blocks and copied
1126 * less. We will have blocks allocated outside
1127 * inode->i_size. So truncate them
1128 */
1129 ext4_orphan_add(handle, inode);
74d553aa 1130errout:
617ba13b 1131 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1132 if (!ret)
1133 ret = ret2;
bfc1af65 1134
f8514083 1135 if (pos + len > inode->i_size) {
b9a4207d 1136 ext4_truncate_failed_write(inode);
de9a55b8 1137 /*
ffacfa7a 1138 * If truncate failed early the inode might still be
f8514083
AK
1139 * on the orphan list; we need to make sure the inode
1140 * is removed from the orphan list in that case.
1141 */
1142 if (inode->i_nlink)
1143 ext4_orphan_del(NULL, inode);
1144 }
1145
bfc1af65 1146 return ret ? ret : copied;
ac27a0ec
DK
1147}
1148
bfc1af65 1149static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1150 struct address_space *mapping,
1151 loff_t pos, unsigned len, unsigned copied,
1152 struct page *page, void *fsdata)
ac27a0ec 1153{
617ba13b 1154 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1155 struct inode *inode = mapping->host;
ac27a0ec
DK
1156 int ret = 0, ret2;
1157 int partial = 0;
bfc1af65 1158 unsigned from, to;
cf17fea6 1159 loff_t new_i_size;
ac27a0ec 1160
9bffad1e 1161 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1162 from = pos & (PAGE_CACHE_SIZE - 1);
1163 to = from + len;
1164
441c8508
CW
1165 BUG_ON(!ext4_handle_valid(handle));
1166
3fdcfb66
TM
1167 if (ext4_has_inline_data(inode))
1168 copied = ext4_write_inline_data_end(inode, pos, len,
1169 copied, page);
1170 else {
1171 if (copied < len) {
1172 if (!PageUptodate(page))
1173 copied = 0;
1174 page_zero_new_buffers(page, from+copied, to);
1175 }
ac27a0ec 1176
3fdcfb66
TM
1177 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178 to, &partial, write_end_fn);
1179 if (!partial)
1180 SetPageUptodate(page);
1181 }
cf17fea6
AK
1182 new_i_size = pos + copied;
1183 if (new_i_size > inode->i_size)
bfc1af65 1184 i_size_write(inode, pos+copied);
19f5fb7a 1185 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1186 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1187 if (new_i_size > EXT4_I(inode)->i_disksize) {
1188 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1189 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1190 if (!ret)
1191 ret = ret2;
1192 }
bfc1af65 1193
cf108bca 1194 unlock_page(page);
f8514083 1195 page_cache_release(page);
ffacfa7a 1196 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1197 /* if we have allocated more blocks and copied
1198 * less. We will have blocks allocated outside
1199 * inode->i_size. So truncate them
1200 */
1201 ext4_orphan_add(handle, inode);
1202
617ba13b 1203 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1204 if (!ret)
1205 ret = ret2;
f8514083 1206 if (pos + len > inode->i_size) {
b9a4207d 1207 ext4_truncate_failed_write(inode);
de9a55b8 1208 /*
ffacfa7a 1209 * If truncate failed early the inode might still be
f8514083
AK
1210 * on the orphan list; we need to make sure the inode
1211 * is removed from the orphan list in that case.
1212 */
1213 if (inode->i_nlink)
1214 ext4_orphan_del(NULL, inode);
1215 }
bfc1af65
NP
1216
1217 return ret ? ret : copied;
ac27a0ec 1218}
d2a17637 1219
386ad67c
LC
1220/*
1221 * Reserve a metadata for a single block located at lblock
1222 */
1223static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224{
386ad67c
LC
1225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226 struct ext4_inode_info *ei = EXT4_I(inode);
1227 unsigned int md_needed;
1228 ext4_lblk_t save_last_lblock;
1229 int save_len;
1230
1231 /*
1232 * recalculate the amount of metadata blocks to reserve
1233 * in order to allocate nrblocks
1234 * worse case is one extent per block
1235 */
386ad67c
LC
1236 spin_lock(&ei->i_block_reservation_lock);
1237 /*
1238 * ext4_calc_metadata_amount() has side effects, which we have
1239 * to be prepared undo if we fail to claim space.
1240 */
1241 save_len = ei->i_da_metadata_calc_len;
1242 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243 md_needed = EXT4_NUM_B2C(sbi,
1244 ext4_calc_metadata_amount(inode, lblock));
1245 trace_ext4_da_reserve_space(inode, md_needed);
1246
1247 /*
1248 * We do still charge estimated metadata to the sb though;
1249 * we cannot afford to run out of free blocks.
1250 */
1251 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252 ei->i_da_metadata_calc_len = save_len;
1253 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254 spin_unlock(&ei->i_block_reservation_lock);
386ad67c
LC
1255 return -ENOSPC;
1256 }
1257 ei->i_reserved_meta_blocks += md_needed;
1258 spin_unlock(&ei->i_block_reservation_lock);
1259
1260 return 0; /* success */
1261}
1262
9d0be502 1263/*
7b415bf6 1264 * Reserve a single cluster located at lblock
9d0be502 1265 */
01f49d0b 1266static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1267{
60e58e0f 1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1269 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1270 unsigned int md_needed;
5dd4056d 1271 int ret;
03179fe9
TT
1272 ext4_lblk_t save_last_lblock;
1273 int save_len;
1274
1275 /*
1276 * We will charge metadata quota at writeout time; this saves
1277 * us from metadata over-estimation, though we may go over by
1278 * a small amount in the end. Here we just reserve for data.
1279 */
1280 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281 if (ret)
1282 return ret;
d2a17637
MC
1283
1284 /*
1285 * recalculate the amount of metadata blocks to reserve
1286 * in order to allocate nrblocks
1287 * worse case is one extent per block
1288 */
0637c6f4 1289 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1290 /*
1291 * ext4_calc_metadata_amount() has side effects, which we have
1292 * to be prepared undo if we fail to claim space.
1293 */
1294 save_len = ei->i_da_metadata_calc_len;
1295 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1296 md_needed = EXT4_NUM_B2C(sbi,
1297 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1298 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1299
72b8ab9d
ES
1300 /*
1301 * We do still charge estimated metadata to the sb though;
1302 * we cannot afford to run out of free blocks.
1303 */
e7d5f315 1304 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1305 ei->i_da_metadata_calc_len = save_len;
1306 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1308 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1309 return -ENOSPC;
1310 }
9d0be502 1311 ei->i_reserved_data_blocks++;
0637c6f4
TT
1312 ei->i_reserved_meta_blocks += md_needed;
1313 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1314
d2a17637
MC
1315 return 0; /* success */
1316}
1317
12219aea 1318static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1319{
1320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1321 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1322
cd213226
MC
1323 if (!to_free)
1324 return; /* Nothing to release, exit */
1325
d2a17637 1326 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1327
5a58ec87 1328 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1329 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1330 /*
0637c6f4
TT
1331 * if there aren't enough reserved blocks, then the
1332 * counter is messed up somewhere. Since this
1333 * function is called from invalidate page, it's
1334 * harmless to return without any action.
cd213226 1335 */
8de5c325 1336 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1337 "ino %lu, to_free %d with only %d reserved "
1084f252 1338 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1339 ei->i_reserved_data_blocks);
1340 WARN_ON(1);
1341 to_free = ei->i_reserved_data_blocks;
cd213226 1342 }
0637c6f4 1343 ei->i_reserved_data_blocks -= to_free;
cd213226 1344
0637c6f4
TT
1345 if (ei->i_reserved_data_blocks == 0) {
1346 /*
1347 * We can release all of the reserved metadata blocks
1348 * only when we have written all of the delayed
1349 * allocation blocks.
7b415bf6
AK
1350 * Note that in case of bigalloc, i_reserved_meta_blocks,
1351 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1352 */
57042651 1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1354 ei->i_reserved_meta_blocks);
ee5f4d9c 1355 ei->i_reserved_meta_blocks = 0;
9d0be502 1356 ei->i_da_metadata_calc_len = 0;
0637c6f4 1357 }
d2a17637 1358
72b8ab9d 1359 /* update fs dirty data blocks counter */
57042651 1360 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1361
d2a17637 1362 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1363
7b415bf6 1364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1365}
1366
1367static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1368 unsigned int offset,
1369 unsigned int length)
d2a17637
MC
1370{
1371 int to_release = 0;
1372 struct buffer_head *head, *bh;
1373 unsigned int curr_off = 0;
7b415bf6
AK
1374 struct inode *inode = page->mapping->host;
1375 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1376 unsigned int stop = offset + length;
7b415bf6 1377 int num_clusters;
51865fda 1378 ext4_fsblk_t lblk;
d2a17637 1379
ca99fdd2
LC
1380 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
d2a17637
MC
1382 head = page_buffers(page);
1383 bh = head;
1384 do {
1385 unsigned int next_off = curr_off + bh->b_size;
1386
ca99fdd2
LC
1387 if (next_off > stop)
1388 break;
1389
d2a17637
MC
1390 if ((offset <= curr_off) && (buffer_delay(bh))) {
1391 to_release++;
1392 clear_buffer_delay(bh);
1393 }
1394 curr_off = next_off;
1395 } while ((bh = bh->b_this_page) != head);
7b415bf6 1396
51865fda
ZL
1397 if (to_release) {
1398 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399 ext4_es_remove_extent(inode, lblk, to_release);
1400 }
1401
7b415bf6
AK
1402 /* If we have released all the blocks belonging to a cluster, then we
1403 * need to release the reserved space for that cluster. */
1404 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405 while (num_clusters > 0) {
7b415bf6
AK
1406 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407 ((num_clusters - 1) << sbi->s_cluster_bits);
1408 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1409 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1410 ext4_da_release_space(inode, 1);
1411
1412 num_clusters--;
1413 }
d2a17637 1414}
ac27a0ec 1415
64769240
AT
1416/*
1417 * Delayed allocation stuff
1418 */
1419
4e7ea81d
JK
1420struct mpage_da_data {
1421 struct inode *inode;
1422 struct writeback_control *wbc;
6b523df4 1423
4e7ea81d
JK
1424 pgoff_t first_page; /* The first page to write */
1425 pgoff_t next_page; /* Current page to examine */
1426 pgoff_t last_page; /* Last page to examine */
791b7f08 1427 /*
4e7ea81d
JK
1428 * Extent to map - this can be after first_page because that can be
1429 * fully mapped. We somewhat abuse m_flags to store whether the extent
1430 * is delalloc or unwritten.
791b7f08 1431 */
4e7ea81d
JK
1432 struct ext4_map_blocks map;
1433 struct ext4_io_submit io_submit; /* IO submission data */
1434};
64769240 1435
4e7ea81d
JK
1436static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437 bool invalidate)
c4a0c46e
AK
1438{
1439 int nr_pages, i;
1440 pgoff_t index, end;
1441 struct pagevec pvec;
1442 struct inode *inode = mpd->inode;
1443 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1444
1445 /* This is necessary when next_page == 0. */
1446 if (mpd->first_page >= mpd->next_page)
1447 return;
c4a0c46e 1448
c7f5938a
CW
1449 index = mpd->first_page;
1450 end = mpd->next_page - 1;
4e7ea81d
JK
1451 if (invalidate) {
1452 ext4_lblk_t start, last;
1453 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455 ext4_es_remove_extent(inode, start, last - start + 1);
1456 }
51865fda 1457
66bea92c 1458 pagevec_init(&pvec, 0);
c4a0c46e
AK
1459 while (index <= end) {
1460 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461 if (nr_pages == 0)
1462 break;
1463 for (i = 0; i < nr_pages; i++) {
1464 struct page *page = pvec.pages[i];
9b1d0998 1465 if (page->index > end)
c4a0c46e 1466 break;
c4a0c46e
AK
1467 BUG_ON(!PageLocked(page));
1468 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1469 if (invalidate) {
1470 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471 ClearPageUptodate(page);
1472 }
c4a0c46e
AK
1473 unlock_page(page);
1474 }
9b1d0998
JK
1475 index = pvec.pages[nr_pages - 1]->index + 1;
1476 pagevec_release(&pvec);
c4a0c46e 1477 }
c4a0c46e
AK
1478}
1479
df22291f
AK
1480static void ext4_print_free_blocks(struct inode *inode)
1481{
1482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1483 struct super_block *sb = inode->i_sb;
f78ee70d 1484 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1485
1486 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1487 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1488 ext4_count_free_clusters(sb)));
92b97816
TT
1489 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1491 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1492 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1493 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1494 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1495 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1496 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1498 ei->i_reserved_data_blocks);
92b97816 1499 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1500 ei->i_reserved_meta_blocks);
1501 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502 ei->i_allocated_meta_blocks);
df22291f
AK
1503 return;
1504}
1505
c364b22c 1506static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1507{
c364b22c 1508 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1509}
1510
5356f261
AK
1511/*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1516 */
1517static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518 struct ext4_map_blocks *map,
1519 struct buffer_head *bh)
1520{
d100eef2 1521 struct extent_status es;
5356f261
AK
1522 int retval;
1523 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1524#ifdef ES_AGGRESSIVE_TEST
1525 struct ext4_map_blocks orig_map;
1526
1527 memcpy(&orig_map, map, sizeof(*map));
1528#endif
5356f261
AK
1529
1530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531 invalid_block = ~0;
1532
1533 map->m_flags = 0;
1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535 "logical block %lu\n", inode->i_ino, map->m_len,
1536 (unsigned long) map->m_lblk);
d100eef2
ZL
1537
1538 /* Lookup extent status tree firstly */
1539 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1540 ext4_es_lru_add(inode);
d100eef2
ZL
1541 if (ext4_es_is_hole(&es)) {
1542 retval = 0;
1543 down_read((&EXT4_I(inode)->i_data_sem));
1544 goto add_delayed;
1545 }
1546
1547 /*
1548 * Delayed extent could be allocated by fallocate.
1549 * So we need to check it.
1550 */
1551 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552 map_bh(bh, inode->i_sb, invalid_block);
1553 set_buffer_new(bh);
1554 set_buffer_delay(bh);
1555 return 0;
1556 }
1557
1558 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559 retval = es.es_len - (iblock - es.es_lblk);
1560 if (retval > map->m_len)
1561 retval = map->m_len;
1562 map->m_len = retval;
1563 if (ext4_es_is_written(&es))
1564 map->m_flags |= EXT4_MAP_MAPPED;
1565 else if (ext4_es_is_unwritten(&es))
1566 map->m_flags |= EXT4_MAP_UNWRITTEN;
1567 else
1568 BUG_ON(1);
1569
921f266b
DM
1570#ifdef ES_AGGRESSIVE_TEST
1571 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572#endif
d100eef2
ZL
1573 return retval;
1574 }
1575
5356f261
AK
1576 /*
1577 * Try to see if we can get the block without requesting a new
1578 * file system block.
1579 */
1580 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1581 if (ext4_has_inline_data(inode)) {
1582 /*
1583 * We will soon create blocks for this page, and let
1584 * us pretend as if the blocks aren't allocated yet.
1585 * In case of clusters, we have to handle the work
1586 * of mapping from cluster so that the reserved space
1587 * is calculated properly.
1588 */
1589 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590 ext4_find_delalloc_cluster(inode, map->m_lblk))
1591 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592 retval = 0;
1593 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1594 retval = ext4_ext_map_blocks(NULL, inode, map,
1595 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1596 else
d100eef2
ZL
1597 retval = ext4_ind_map_blocks(NULL, inode, map,
1598 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1599
d100eef2 1600add_delayed:
5356f261 1601 if (retval == 0) {
f7fec032 1602 int ret;
5356f261
AK
1603 /*
1604 * XXX: __block_prepare_write() unmaps passed block,
1605 * is it OK?
1606 */
386ad67c
LC
1607 /*
1608 * If the block was allocated from previously allocated cluster,
1609 * then we don't need to reserve it again. However we still need
1610 * to reserve metadata for every block we're going to write.
1611 */
5356f261 1612 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1613 ret = ext4_da_reserve_space(inode, iblock);
1614 if (ret) {
5356f261 1615 /* not enough space to reserve */
f7fec032 1616 retval = ret;
5356f261 1617 goto out_unlock;
f7fec032 1618 }
386ad67c
LC
1619 } else {
1620 ret = ext4_da_reserve_metadata(inode, iblock);
1621 if (ret) {
1622 /* not enough space to reserve */
1623 retval = ret;
1624 goto out_unlock;
1625 }
5356f261
AK
1626 }
1627
f7fec032
ZL
1628 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629 ~0, EXTENT_STATUS_DELAYED);
1630 if (ret) {
1631 retval = ret;
51865fda 1632 goto out_unlock;
f7fec032 1633 }
51865fda 1634
5356f261
AK
1635 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636 * and it should not appear on the bh->b_state.
1637 */
1638 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640 map_bh(bh, inode->i_sb, invalid_block);
1641 set_buffer_new(bh);
1642 set_buffer_delay(bh);
f7fec032
ZL
1643 } else if (retval > 0) {
1644 int ret;
3be78c73 1645 unsigned int status;
f7fec032 1646
44fb851d
ZL
1647 if (unlikely(retval != map->m_len)) {
1648 ext4_warning(inode->i_sb,
1649 "ES len assertion failed for inode "
1650 "%lu: retval %d != map->m_len %d",
1651 inode->i_ino, retval, map->m_len);
1652 WARN_ON(1);
921f266b 1653 }
921f266b 1654
f7fec032
ZL
1655 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658 map->m_pblk, status);
1659 if (ret != 0)
1660 retval = ret;
5356f261
AK
1661 }
1662
1663out_unlock:
1664 up_read((&EXT4_I(inode)->i_data_sem));
1665
1666 return retval;
1667}
1668
64769240 1669/*
b920c755
TT
1670 * This is a special get_blocks_t callback which is used by
1671 * ext4_da_write_begin(). It will either return mapped block or
1672 * reserve space for a single block.
29fa89d0
AK
1673 *
1674 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675 * We also have b_blocknr = -1 and b_bdev initialized properly
1676 *
1677 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679 * initialized properly.
64769240 1680 */
9c3569b5
TM
1681int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682 struct buffer_head *bh, int create)
64769240 1683{
2ed88685 1684 struct ext4_map_blocks map;
64769240
AT
1685 int ret = 0;
1686
1687 BUG_ON(create == 0);
2ed88685
TT
1688 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690 map.m_lblk = iblock;
1691 map.m_len = 1;
64769240
AT
1692
1693 /*
1694 * first, we need to know whether the block is allocated already
1695 * preallocated blocks are unmapped but should treated
1696 * the same as allocated blocks.
1697 */
5356f261
AK
1698 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699 if (ret <= 0)
2ed88685 1700 return ret;
64769240 1701
2ed88685
TT
1702 map_bh(bh, inode->i_sb, map.m_pblk);
1703 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705 if (buffer_unwritten(bh)) {
1706 /* A delayed write to unwritten bh should be marked
1707 * new and mapped. Mapped ensures that we don't do
1708 * get_block multiple times when we write to the same
1709 * offset and new ensures that we do proper zero out
1710 * for partial write.
1711 */
1712 set_buffer_new(bh);
c8205636 1713 set_buffer_mapped(bh);
2ed88685
TT
1714 }
1715 return 0;
64769240 1716}
61628a3f 1717
62e086be
AK
1718static int bget_one(handle_t *handle, struct buffer_head *bh)
1719{
1720 get_bh(bh);
1721 return 0;
1722}
1723
1724static int bput_one(handle_t *handle, struct buffer_head *bh)
1725{
1726 put_bh(bh);
1727 return 0;
1728}
1729
1730static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1731 unsigned int len)
1732{
1733 struct address_space *mapping = page->mapping;
1734 struct inode *inode = mapping->host;
3fdcfb66 1735 struct buffer_head *page_bufs = NULL;
62e086be 1736 handle_t *handle = NULL;
3fdcfb66
TM
1737 int ret = 0, err = 0;
1738 int inline_data = ext4_has_inline_data(inode);
1739 struct buffer_head *inode_bh = NULL;
62e086be 1740
cb20d518 1741 ClearPageChecked(page);
3fdcfb66
TM
1742
1743 if (inline_data) {
1744 BUG_ON(page->index != 0);
1745 BUG_ON(len > ext4_get_max_inline_size(inode));
1746 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747 if (inode_bh == NULL)
1748 goto out;
1749 } else {
1750 page_bufs = page_buffers(page);
1751 if (!page_bufs) {
1752 BUG();
1753 goto out;
1754 }
1755 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756 NULL, bget_one);
1757 }
62e086be
AK
1758 /* As soon as we unlock the page, it can go away, but we have
1759 * references to buffers so we are safe */
1760 unlock_page(page);
1761
9924a92a
TT
1762 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763 ext4_writepage_trans_blocks(inode));
62e086be
AK
1764 if (IS_ERR(handle)) {
1765 ret = PTR_ERR(handle);
1766 goto out;
1767 }
1768
441c8508
CW
1769 BUG_ON(!ext4_handle_valid(handle));
1770
3fdcfb66
TM
1771 if (inline_data) {
1772 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1773
3fdcfb66
TM
1774 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776 } else {
1777 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778 do_journal_get_write_access);
1779
1780 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781 write_end_fn);
1782 }
62e086be
AK
1783 if (ret == 0)
1784 ret = err;
2d859db3 1785 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1786 err = ext4_journal_stop(handle);
1787 if (!ret)
1788 ret = err;
1789
3fdcfb66 1790 if (!ext4_has_inline_data(inode))
8c9367fd 1791 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1792 NULL, bput_one);
19f5fb7a 1793 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1794out:
3fdcfb66 1795 brelse(inode_bh);
62e086be
AK
1796 return ret;
1797}
1798
61628a3f 1799/*
43ce1d23
AK
1800 * Note that we don't need to start a transaction unless we're journaling data
1801 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802 * need to file the inode to the transaction's list in ordered mode because if
1803 * we are writing back data added by write(), the inode is already there and if
25985edc 1804 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1805 * transaction the data will hit the disk. In case we are journaling data, we
1806 * cannot start transaction directly because transaction start ranks above page
1807 * lock so we have to do some magic.
1808 *
b920c755 1809 * This function can get called via...
20970ba6 1810 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1811 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1812 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1813 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1814 *
1815 * We don't do any block allocation in this function. If we have page with
1816 * multiple blocks we need to write those buffer_heads that are mapped. This
1817 * is important for mmaped based write. So if we do with blocksize 1K
1818 * truncate(f, 1024);
1819 * a = mmap(f, 0, 4096);
1820 * a[0] = 'a';
1821 * truncate(f, 4096);
1822 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1823 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1824 * do_wp_page). So writepage should write the first block. If we modify
1825 * the mmap area beyond 1024 we will again get a page_fault and the
1826 * page_mkwrite callback will do the block allocation and mark the
1827 * buffer_heads mapped.
1828 *
1829 * We redirty the page if we have any buffer_heads that is either delay or
1830 * unwritten in the page.
1831 *
1832 * We can get recursively called as show below.
1833 *
1834 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835 * ext4_writepage()
1836 *
1837 * But since we don't do any block allocation we should not deadlock.
1838 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1839 */
43ce1d23 1840static int ext4_writepage(struct page *page,
62e086be 1841 struct writeback_control *wbc)
64769240 1842{
f8bec370 1843 int ret = 0;
61628a3f 1844 loff_t size;
498e5f24 1845 unsigned int len;
744692dc 1846 struct buffer_head *page_bufs = NULL;
61628a3f 1847 struct inode *inode = page->mapping->host;
36ade451 1848 struct ext4_io_submit io_submit;
61628a3f 1849
a9c667f8 1850 trace_ext4_writepage(page);
f0e6c985
AK
1851 size = i_size_read(inode);
1852 if (page->index == size >> PAGE_CACHE_SHIFT)
1853 len = size & ~PAGE_CACHE_MASK;
1854 else
1855 len = PAGE_CACHE_SIZE;
64769240 1856
a42afc5f 1857 page_bufs = page_buffers(page);
a42afc5f 1858 /*
fe386132
JK
1859 * We cannot do block allocation or other extent handling in this
1860 * function. If there are buffers needing that, we have to redirty
1861 * the page. But we may reach here when we do a journal commit via
1862 * journal_submit_inode_data_buffers() and in that case we must write
1863 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1864 */
f19d5870
TM
1865 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866 ext4_bh_delay_or_unwritten)) {
f8bec370 1867 redirty_page_for_writepage(wbc, page);
fe386132
JK
1868 if (current->flags & PF_MEMALLOC) {
1869 /*
1870 * For memory cleaning there's no point in writing only
1871 * some buffers. So just bail out. Warn if we came here
1872 * from direct reclaim.
1873 */
1874 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875 == PF_MEMALLOC);
f0e6c985
AK
1876 unlock_page(page);
1877 return 0;
1878 }
a42afc5f 1879 }
64769240 1880
cb20d518 1881 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1882 /*
1883 * It's mmapped pagecache. Add buffers and journal it. There
1884 * doesn't seem much point in redirtying the page here.
1885 */
3f0ca309 1886 return __ext4_journalled_writepage(page, len);
43ce1d23 1887
97a851ed
JK
1888 ext4_io_submit_init(&io_submit, wbc);
1889 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890 if (!io_submit.io_end) {
1891 redirty_page_for_writepage(wbc, page);
1892 unlock_page(page);
1893 return -ENOMEM;
1894 }
36ade451
JK
1895 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896 ext4_io_submit(&io_submit);
97a851ed
JK
1897 /* Drop io_end reference we got from init */
1898 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1899 return ret;
1900}
1901
5f1132b2
JK
1902static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903{
1904 int len;
1905 loff_t size = i_size_read(mpd->inode);
1906 int err;
1907
1908 BUG_ON(page->index != mpd->first_page);
1909 if (page->index == size >> PAGE_CACHE_SHIFT)
1910 len = size & ~PAGE_CACHE_MASK;
1911 else
1912 len = PAGE_CACHE_SIZE;
1913 clear_page_dirty_for_io(page);
1914 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915 if (!err)
1916 mpd->wbc->nr_to_write--;
1917 mpd->first_page++;
1918
1919 return err;
1920}
1921
4e7ea81d
JK
1922#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
61628a3f 1924/*
fffb2739
JK
1925 * mballoc gives us at most this number of blocks...
1926 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1927 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1928 */
fffb2739 1929#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1930
4e7ea81d
JK
1931/*
1932 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933 *
1934 * @mpd - extent of blocks
1935 * @lblk - logical number of the block in the file
09930042 1936 * @bh - buffer head we want to add to the extent
4e7ea81d 1937 *
09930042
JK
1938 * The function is used to collect contig. blocks in the same state. If the
1939 * buffer doesn't require mapping for writeback and we haven't started the
1940 * extent of buffers to map yet, the function returns 'true' immediately - the
1941 * caller can write the buffer right away. Otherwise the function returns true
1942 * if the block has been added to the extent, false if the block couldn't be
1943 * added.
4e7ea81d 1944 */
09930042
JK
1945static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946 struct buffer_head *bh)
4e7ea81d
JK
1947{
1948 struct ext4_map_blocks *map = &mpd->map;
1949
09930042
JK
1950 /* Buffer that doesn't need mapping for writeback? */
1951 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953 /* So far no extent to map => we write the buffer right away */
1954 if (map->m_len == 0)
1955 return true;
1956 return false;
1957 }
4e7ea81d
JK
1958
1959 /* First block in the extent? */
1960 if (map->m_len == 0) {
1961 map->m_lblk = lblk;
1962 map->m_len = 1;
09930042
JK
1963 map->m_flags = bh->b_state & BH_FLAGS;
1964 return true;
4e7ea81d
JK
1965 }
1966
09930042
JK
1967 /* Don't go larger than mballoc is willing to allocate */
1968 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969 return false;
1970
4e7ea81d
JK
1971 /* Can we merge the block to our big extent? */
1972 if (lblk == map->m_lblk + map->m_len &&
09930042 1973 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1974 map->m_len++;
09930042 1975 return true;
4e7ea81d 1976 }
09930042 1977 return false;
4e7ea81d
JK
1978}
1979
5f1132b2
JK
1980/*
1981 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982 *
1983 * @mpd - extent of blocks for mapping
1984 * @head - the first buffer in the page
1985 * @bh - buffer we should start processing from
1986 * @lblk - logical number of the block in the file corresponding to @bh
1987 *
1988 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989 * the page for IO if all buffers in this page were mapped and there's no
1990 * accumulated extent of buffers to map or add buffers in the page to the
1991 * extent of buffers to map. The function returns 1 if the caller can continue
1992 * by processing the next page, 0 if it should stop adding buffers to the
1993 * extent to map because we cannot extend it anymore. It can also return value
1994 * < 0 in case of error during IO submission.
1995 */
1996static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997 struct buffer_head *head,
1998 struct buffer_head *bh,
1999 ext4_lblk_t lblk)
4e7ea81d
JK
2000{
2001 struct inode *inode = mpd->inode;
5f1132b2 2002 int err;
4e7ea81d
JK
2003 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004 >> inode->i_blkbits;
2005
2006 do {
2007 BUG_ON(buffer_locked(bh));
2008
09930042 2009 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2010 /* Found extent to map? */
2011 if (mpd->map.m_len)
5f1132b2 2012 return 0;
09930042 2013 /* Everything mapped so far and we hit EOF */
5f1132b2 2014 break;
4e7ea81d 2015 }
4e7ea81d 2016 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2017 /* So far everything mapped? Submit the page for IO. */
2018 if (mpd->map.m_len == 0) {
2019 err = mpage_submit_page(mpd, head->b_page);
2020 if (err < 0)
2021 return err;
2022 }
2023 return lblk < blocks;
4e7ea81d
JK
2024}
2025
2026/*
2027 * mpage_map_buffers - update buffers corresponding to changed extent and
2028 * submit fully mapped pages for IO
2029 *
2030 * @mpd - description of extent to map, on return next extent to map
2031 *
2032 * Scan buffers corresponding to changed extent (we expect corresponding pages
2033 * to be already locked) and update buffer state according to new extent state.
2034 * We map delalloc buffers to their physical location, clear unwritten bits,
2035 * and mark buffers as uninit when we perform writes to uninitialized extents
2036 * and do extent conversion after IO is finished. If the last page is not fully
2037 * mapped, we update @map to the next extent in the last page that needs
2038 * mapping. Otherwise we submit the page for IO.
2039 */
2040static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041{
2042 struct pagevec pvec;
2043 int nr_pages, i;
2044 struct inode *inode = mpd->inode;
2045 struct buffer_head *head, *bh;
2046 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2047 pgoff_t start, end;
2048 ext4_lblk_t lblk;
2049 sector_t pblock;
2050 int err;
2051
2052 start = mpd->map.m_lblk >> bpp_bits;
2053 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054 lblk = start << bpp_bits;
2055 pblock = mpd->map.m_pblk;
2056
2057 pagevec_init(&pvec, 0);
2058 while (start <= end) {
2059 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060 PAGEVEC_SIZE);
2061 if (nr_pages == 0)
2062 break;
2063 for (i = 0; i < nr_pages; i++) {
2064 struct page *page = pvec.pages[i];
2065
2066 if (page->index > end)
2067 break;
70261f56 2068 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2069 BUG_ON(page->index != start);
2070 bh = head = page_buffers(page);
2071 do {
2072 if (lblk < mpd->map.m_lblk)
2073 continue;
2074 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075 /*
2076 * Buffer after end of mapped extent.
2077 * Find next buffer in the page to map.
2078 */
2079 mpd->map.m_len = 0;
2080 mpd->map.m_flags = 0;
5f1132b2
JK
2081 /*
2082 * FIXME: If dioread_nolock supports
2083 * blocksize < pagesize, we need to make
2084 * sure we add size mapped so far to
2085 * io_end->size as the following call
2086 * can submit the page for IO.
2087 */
2088 err = mpage_process_page_bufs(mpd, head,
2089 bh, lblk);
4e7ea81d 2090 pagevec_release(&pvec);
5f1132b2
JK
2091 if (err > 0)
2092 err = 0;
2093 return err;
4e7ea81d
JK
2094 }
2095 if (buffer_delay(bh)) {
2096 clear_buffer_delay(bh);
2097 bh->b_blocknr = pblock++;
2098 }
4e7ea81d 2099 clear_buffer_unwritten(bh);
5f1132b2 2100 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2101
2102 /*
2103 * FIXME: This is going to break if dioread_nolock
2104 * supports blocksize < pagesize as we will try to
2105 * convert potentially unmapped parts of inode.
2106 */
2107 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108 /* Page fully mapped - let IO run! */
2109 err = mpage_submit_page(mpd, page);
2110 if (err < 0) {
2111 pagevec_release(&pvec);
2112 return err;
2113 }
2114 start++;
2115 }
2116 pagevec_release(&pvec);
2117 }
2118 /* Extent fully mapped and matches with page boundary. We are done. */
2119 mpd->map.m_len = 0;
2120 mpd->map.m_flags = 0;
2121 return 0;
2122}
2123
2124static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125{
2126 struct inode *inode = mpd->inode;
2127 struct ext4_map_blocks *map = &mpd->map;
2128 int get_blocks_flags;
090f32ee 2129 int err, dioread_nolock;
4e7ea81d
JK
2130
2131 trace_ext4_da_write_pages_extent(inode, map);
2132 /*
2133 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134 * to convert an uninitialized extent to be initialized (in the case
2135 * where we have written into one or more preallocated blocks). It is
2136 * possible that we're going to need more metadata blocks than
2137 * previously reserved. However we must not fail because we're in
2138 * writeback and there is nothing we can do about it so it might result
2139 * in data loss. So use reserved blocks to allocate metadata if
2140 * possible.
2141 *
2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143 * in question are delalloc blocks. This affects functions in many
2144 * different parts of the allocation call path. This flag exists
2145 * primarily because we don't want to change *many* call functions, so
2146 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147 * once the inode's allocation semaphore is taken.
2148 */
2149 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2151 dioread_nolock = ext4_should_dioread_nolock(inode);
2152 if (dioread_nolock)
4e7ea81d
JK
2153 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2154 if (map->m_flags & (1 << BH_Delay))
2155 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2156
2157 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2158 if (err < 0)
2159 return err;
090f32ee 2160 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2161 if (!mpd->io_submit.io_end->handle &&
2162 ext4_handle_valid(handle)) {
2163 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2164 handle->h_rsv_handle = NULL;
2165 }
3613d228 2166 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2167 }
4e7ea81d
JK
2168
2169 BUG_ON(map->m_len == 0);
2170 if (map->m_flags & EXT4_MAP_NEW) {
2171 struct block_device *bdev = inode->i_sb->s_bdev;
2172 int i;
2173
2174 for (i = 0; i < map->m_len; i++)
2175 unmap_underlying_metadata(bdev, map->m_pblk + i);
2176 }
2177 return 0;
2178}
2179
2180/*
2181 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2182 * mpd->len and submit pages underlying it for IO
2183 *
2184 * @handle - handle for journal operations
2185 * @mpd - extent to map
7534e854
JK
2186 * @give_up_on_write - we set this to true iff there is a fatal error and there
2187 * is no hope of writing the data. The caller should discard
2188 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2189 *
2190 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2191 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2192 * them to initialized or split the described range from larger unwritten
2193 * extent. Note that we need not map all the described range since allocation
2194 * can return less blocks or the range is covered by more unwritten extents. We
2195 * cannot map more because we are limited by reserved transaction credits. On
2196 * the other hand we always make sure that the last touched page is fully
2197 * mapped so that it can be written out (and thus forward progress is
2198 * guaranteed). After mapping we submit all mapped pages for IO.
2199 */
2200static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2201 struct mpage_da_data *mpd,
2202 bool *give_up_on_write)
4e7ea81d
JK
2203{
2204 struct inode *inode = mpd->inode;
2205 struct ext4_map_blocks *map = &mpd->map;
2206 int err;
2207 loff_t disksize;
2208
2209 mpd->io_submit.io_end->offset =
2210 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2211 do {
4e7ea81d
JK
2212 err = mpage_map_one_extent(handle, mpd);
2213 if (err < 0) {
2214 struct super_block *sb = inode->i_sb;
2215
cb530541
TT
2216 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2217 goto invalidate_dirty_pages;
4e7ea81d 2218 /*
cb530541
TT
2219 * Let the uper layers retry transient errors.
2220 * In the case of ENOSPC, if ext4_count_free_blocks()
2221 * is non-zero, a commit should free up blocks.
4e7ea81d 2222 */
cb530541
TT
2223 if ((err == -ENOMEM) ||
2224 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2225 return err;
2226 ext4_msg(sb, KERN_CRIT,
2227 "Delayed block allocation failed for "
2228 "inode %lu at logical offset %llu with"
2229 " max blocks %u with error %d",
2230 inode->i_ino,
2231 (unsigned long long)map->m_lblk,
2232 (unsigned)map->m_len, -err);
2233 ext4_msg(sb, KERN_CRIT,
2234 "This should not happen!! Data will "
2235 "be lost\n");
2236 if (err == -ENOSPC)
2237 ext4_print_free_blocks(inode);
2238 invalidate_dirty_pages:
2239 *give_up_on_write = true;
4e7ea81d
JK
2240 return err;
2241 }
2242 /*
2243 * Update buffer state, submit mapped pages, and get us new
2244 * extent to map
2245 */
2246 err = mpage_map_and_submit_buffers(mpd);
2247 if (err < 0)
2248 return err;
27d7c4ed 2249 } while (map->m_len);
4e7ea81d 2250
622cad13
TT
2251 /*
2252 * Update on-disk size after IO is submitted. Races with
2253 * truncate are avoided by checking i_size under i_data_sem.
2254 */
4e7ea81d 2255 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2256 if (disksize > EXT4_I(inode)->i_disksize) {
2257 int err2;
622cad13
TT
2258 loff_t i_size;
2259
2260 down_write(&EXT4_I(inode)->i_data_sem);
2261 i_size = i_size_read(inode);
2262 if (disksize > i_size)
2263 disksize = i_size;
2264 if (disksize > EXT4_I(inode)->i_disksize)
2265 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2266 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2267 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2268 if (err2)
2269 ext4_error(inode->i_sb,
2270 "Failed to mark inode %lu dirty",
2271 inode->i_ino);
2272 if (!err)
2273 err = err2;
2274 }
2275 return err;
2276}
2277
fffb2739
JK
2278/*
2279 * Calculate the total number of credits to reserve for one writepages
20970ba6 2280 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2281 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2282 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2283 * bpp - 1 blocks in bpp different extents.
2284 */
525f4ed8
MC
2285static int ext4_da_writepages_trans_blocks(struct inode *inode)
2286{
fffb2739 2287 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2288
fffb2739
JK
2289 return ext4_meta_trans_blocks(inode,
2290 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2291}
61628a3f 2292
8e48dcfb 2293/*
4e7ea81d
JK
2294 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2295 * and underlying extent to map
2296 *
2297 * @mpd - where to look for pages
2298 *
2299 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2300 * IO immediately. When we find a page which isn't mapped we start accumulating
2301 * extent of buffers underlying these pages that needs mapping (formed by
2302 * either delayed or unwritten buffers). We also lock the pages containing
2303 * these buffers. The extent found is returned in @mpd structure (starting at
2304 * mpd->lblk with length mpd->len blocks).
2305 *
2306 * Note that this function can attach bios to one io_end structure which are
2307 * neither logically nor physically contiguous. Although it may seem as an
2308 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2309 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2310 */
4e7ea81d 2311static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2312{
4e7ea81d
JK
2313 struct address_space *mapping = mpd->inode->i_mapping;
2314 struct pagevec pvec;
2315 unsigned int nr_pages;
aeac589a 2316 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2317 pgoff_t index = mpd->first_page;
2318 pgoff_t end = mpd->last_page;
2319 int tag;
2320 int i, err = 0;
2321 int blkbits = mpd->inode->i_blkbits;
2322 ext4_lblk_t lblk;
2323 struct buffer_head *head;
8e48dcfb 2324
4e7ea81d 2325 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2326 tag = PAGECACHE_TAG_TOWRITE;
2327 else
2328 tag = PAGECACHE_TAG_DIRTY;
2329
4e7ea81d
JK
2330 pagevec_init(&pvec, 0);
2331 mpd->map.m_len = 0;
2332 mpd->next_page = index;
4f01b02c 2333 while (index <= end) {
5b41d924 2334 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2335 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2336 if (nr_pages == 0)
4e7ea81d 2337 goto out;
8e48dcfb
TT
2338
2339 for (i = 0; i < nr_pages; i++) {
2340 struct page *page = pvec.pages[i];
2341
2342 /*
2343 * At this point, the page may be truncated or
2344 * invalidated (changing page->mapping to NULL), or
2345 * even swizzled back from swapper_space to tmpfs file
2346 * mapping. However, page->index will not change
2347 * because we have a reference on the page.
2348 */
4f01b02c
TT
2349 if (page->index > end)
2350 goto out;
8e48dcfb 2351
aeac589a
ML
2352 /*
2353 * Accumulated enough dirty pages? This doesn't apply
2354 * to WB_SYNC_ALL mode. For integrity sync we have to
2355 * keep going because someone may be concurrently
2356 * dirtying pages, and we might have synced a lot of
2357 * newly appeared dirty pages, but have not synced all
2358 * of the old dirty pages.
2359 */
2360 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2361 goto out;
2362
4e7ea81d
JK
2363 /* If we can't merge this page, we are done. */
2364 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2365 goto out;
78aaced3 2366
8e48dcfb 2367 lock_page(page);
8e48dcfb 2368 /*
4e7ea81d
JK
2369 * If the page is no longer dirty, or its mapping no
2370 * longer corresponds to inode we are writing (which
2371 * means it has been truncated or invalidated), or the
2372 * page is already under writeback and we are not doing
2373 * a data integrity writeback, skip the page
8e48dcfb 2374 */
4f01b02c
TT
2375 if (!PageDirty(page) ||
2376 (PageWriteback(page) &&
4e7ea81d 2377 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2378 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2379 unlock_page(page);
2380 continue;
2381 }
2382
7cb1a535 2383 wait_on_page_writeback(page);
8e48dcfb 2384 BUG_ON(PageWriteback(page));
8e48dcfb 2385
4e7ea81d 2386 if (mpd->map.m_len == 0)
8eb9e5ce 2387 mpd->first_page = page->index;
8eb9e5ce 2388 mpd->next_page = page->index + 1;
f8bec370 2389 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2390 lblk = ((ext4_lblk_t)page->index) <<
2391 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2392 head = page_buffers(page);
5f1132b2
JK
2393 err = mpage_process_page_bufs(mpd, head, head, lblk);
2394 if (err <= 0)
4e7ea81d 2395 goto out;
5f1132b2 2396 err = 0;
aeac589a 2397 left--;
8e48dcfb
TT
2398 }
2399 pagevec_release(&pvec);
2400 cond_resched();
2401 }
4f01b02c 2402 return 0;
8eb9e5ce
TT
2403out:
2404 pagevec_release(&pvec);
4e7ea81d 2405 return err;
8e48dcfb
TT
2406}
2407
20970ba6
TT
2408static int __writepage(struct page *page, struct writeback_control *wbc,
2409 void *data)
2410{
2411 struct address_space *mapping = data;
2412 int ret = ext4_writepage(page, wbc);
2413 mapping_set_error(mapping, ret);
2414 return ret;
2415}
2416
2417static int ext4_writepages(struct address_space *mapping,
2418 struct writeback_control *wbc)
64769240 2419{
4e7ea81d
JK
2420 pgoff_t writeback_index = 0;
2421 long nr_to_write = wbc->nr_to_write;
22208ded 2422 int range_whole = 0;
4e7ea81d 2423 int cycled = 1;
61628a3f 2424 handle_t *handle = NULL;
df22291f 2425 struct mpage_da_data mpd;
5e745b04 2426 struct inode *inode = mapping->host;
6b523df4 2427 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2428 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2429 bool done;
1bce63d1 2430 struct blk_plug plug;
cb530541 2431 bool give_up_on_write = false;
61628a3f 2432
20970ba6 2433 trace_ext4_writepages(inode, wbc);
ba80b101 2434
61628a3f
MC
2435 /*
2436 * No pages to write? This is mainly a kludge to avoid starting
2437 * a transaction for special inodes like journal inode on last iput()
2438 * because that could violate lock ordering on umount
2439 */
a1d6cc56 2440 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2441 goto out_writepages;
2a21e37e 2442
20970ba6
TT
2443 if (ext4_should_journal_data(inode)) {
2444 struct blk_plug plug;
20970ba6
TT
2445
2446 blk_start_plug(&plug);
2447 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2448 blk_finish_plug(&plug);
bbf023c7 2449 goto out_writepages;
20970ba6
TT
2450 }
2451
2a21e37e
TT
2452 /*
2453 * If the filesystem has aborted, it is read-only, so return
2454 * right away instead of dumping stack traces later on that
2455 * will obscure the real source of the problem. We test
4ab2f15b 2456 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2457 * the latter could be true if the filesystem is mounted
20970ba6 2458 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2459 * *never* be called, so if that ever happens, we would want
2460 * the stack trace.
2461 */
bbf023c7
ML
2462 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2463 ret = -EROFS;
2464 goto out_writepages;
2465 }
2a21e37e 2466
6b523df4
JK
2467 if (ext4_should_dioread_nolock(inode)) {
2468 /*
70261f56 2469 * We may need to convert up to one extent per block in
6b523df4
JK
2470 * the page and we may dirty the inode.
2471 */
2472 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2473 }
2474
4e7ea81d
JK
2475 /*
2476 * If we have inline data and arrive here, it means that
2477 * we will soon create the block for the 1st page, so
2478 * we'd better clear the inline data here.
2479 */
2480 if (ext4_has_inline_data(inode)) {
2481 /* Just inode will be modified... */
2482 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2483 if (IS_ERR(handle)) {
2484 ret = PTR_ERR(handle);
2485 goto out_writepages;
2486 }
2487 BUG_ON(ext4_test_inode_state(inode,
2488 EXT4_STATE_MAY_INLINE_DATA));
2489 ext4_destroy_inline_data(handle, inode);
2490 ext4_journal_stop(handle);
2491 }
2492
22208ded
AK
2493 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2494 range_whole = 1;
61628a3f 2495
2acf2c26 2496 if (wbc->range_cyclic) {
4e7ea81d
JK
2497 writeback_index = mapping->writeback_index;
2498 if (writeback_index)
2acf2c26 2499 cycled = 0;
4e7ea81d
JK
2500 mpd.first_page = writeback_index;
2501 mpd.last_page = -1;
5b41d924 2502 } else {
4e7ea81d
JK
2503 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2504 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2505 }
a1d6cc56 2506
4e7ea81d
JK
2507 mpd.inode = inode;
2508 mpd.wbc = wbc;
2509 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2510retry:
6e6938b6 2511 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2512 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2513 done = false;
1bce63d1 2514 blk_start_plug(&plug);
4e7ea81d
JK
2515 while (!done && mpd.first_page <= mpd.last_page) {
2516 /* For each extent of pages we use new io_end */
2517 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2518 if (!mpd.io_submit.io_end) {
2519 ret = -ENOMEM;
2520 break;
2521 }
a1d6cc56
AK
2522
2523 /*
4e7ea81d
JK
2524 * We have two constraints: We find one extent to map and we
2525 * must always write out whole page (makes a difference when
2526 * blocksize < pagesize) so that we don't block on IO when we
2527 * try to write out the rest of the page. Journalled mode is
2528 * not supported by delalloc.
a1d6cc56
AK
2529 */
2530 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2531 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2532
4e7ea81d 2533 /* start a new transaction */
6b523df4
JK
2534 handle = ext4_journal_start_with_reserve(inode,
2535 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2536 if (IS_ERR(handle)) {
2537 ret = PTR_ERR(handle);
1693918e 2538 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2539 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2540 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2541 /* Release allocated io_end */
2542 ext4_put_io_end(mpd.io_submit.io_end);
2543 break;
61628a3f 2544 }
f63e6005 2545
4e7ea81d
JK
2546 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2547 ret = mpage_prepare_extent_to_map(&mpd);
2548 if (!ret) {
2549 if (mpd.map.m_len)
cb530541
TT
2550 ret = mpage_map_and_submit_extent(handle, &mpd,
2551 &give_up_on_write);
4e7ea81d
JK
2552 else {
2553 /*
2554 * We scanned the whole range (or exhausted
2555 * nr_to_write), submitted what was mapped and
2556 * didn't find anything needing mapping. We are
2557 * done.
2558 */
2559 done = true;
2560 }
f63e6005 2561 }
61628a3f 2562 ext4_journal_stop(handle);
4e7ea81d
JK
2563 /* Submit prepared bio */
2564 ext4_io_submit(&mpd.io_submit);
2565 /* Unlock pages we didn't use */
cb530541 2566 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2567 /* Drop our io_end reference we got from init */
2568 ext4_put_io_end(mpd.io_submit.io_end);
2569
2570 if (ret == -ENOSPC && sbi->s_journal) {
2571 /*
2572 * Commit the transaction which would
22208ded
AK
2573 * free blocks released in the transaction
2574 * and try again
2575 */
df22291f 2576 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2577 ret = 0;
4e7ea81d
JK
2578 continue;
2579 }
2580 /* Fatal error - ENOMEM, EIO... */
2581 if (ret)
61628a3f 2582 break;
a1d6cc56 2583 }
1bce63d1 2584 blk_finish_plug(&plug);
9c12a831 2585 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2586 cycled = 1;
4e7ea81d
JK
2587 mpd.last_page = writeback_index - 1;
2588 mpd.first_page = 0;
2acf2c26
AK
2589 goto retry;
2590 }
22208ded
AK
2591
2592 /* Update index */
22208ded
AK
2593 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2594 /*
4e7ea81d 2595 * Set the writeback_index so that range_cyclic
22208ded
AK
2596 * mode will write it back later
2597 */
4e7ea81d 2598 mapping->writeback_index = mpd.first_page;
a1d6cc56 2599
61628a3f 2600out_writepages:
20970ba6
TT
2601 trace_ext4_writepages_result(inode, wbc, ret,
2602 nr_to_write - wbc->nr_to_write);
61628a3f 2603 return ret;
64769240
AT
2604}
2605
79f0be8d
AK
2606static int ext4_nonda_switch(struct super_block *sb)
2607{
5c1ff336 2608 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2609 struct ext4_sb_info *sbi = EXT4_SB(sb);
2610
2611 /*
2612 * switch to non delalloc mode if we are running low
2613 * on free block. The free block accounting via percpu
179f7ebf 2614 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2615 * accumulated on each CPU without updating global counters
2616 * Delalloc need an accurate free block accounting. So switch
2617 * to non delalloc when we are near to error range.
2618 */
5c1ff336
EW
2619 free_clusters =
2620 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2621 dirty_clusters =
2622 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2623 /*
2624 * Start pushing delalloc when 1/2 of free blocks are dirty.
2625 */
5c1ff336 2626 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2627 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2628
5c1ff336
EW
2629 if (2 * free_clusters < 3 * dirty_clusters ||
2630 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2631 /*
c8afb446
ES
2632 * free block count is less than 150% of dirty blocks
2633 * or free blocks is less than watermark
79f0be8d
AK
2634 */
2635 return 1;
2636 }
2637 return 0;
2638}
2639
64769240 2640static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2641 loff_t pos, unsigned len, unsigned flags,
2642 struct page **pagep, void **fsdata)
64769240 2643{
72b8ab9d 2644 int ret, retries = 0;
64769240
AT
2645 struct page *page;
2646 pgoff_t index;
64769240
AT
2647 struct inode *inode = mapping->host;
2648 handle_t *handle;
2649
2650 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2651
2652 if (ext4_nonda_switch(inode->i_sb)) {
2653 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2654 return ext4_write_begin(file, mapping, pos,
2655 len, flags, pagep, fsdata);
2656 }
2657 *fsdata = (void *)0;
9bffad1e 2658 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2659
2660 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2661 ret = ext4_da_write_inline_data_begin(mapping, inode,
2662 pos, len, flags,
2663 pagep, fsdata);
2664 if (ret < 0)
47564bfb
TT
2665 return ret;
2666 if (ret == 1)
2667 return 0;
9c3569b5
TM
2668 }
2669
47564bfb
TT
2670 /*
2671 * grab_cache_page_write_begin() can take a long time if the
2672 * system is thrashing due to memory pressure, or if the page
2673 * is being written back. So grab it first before we start
2674 * the transaction handle. This also allows us to allocate
2675 * the page (if needed) without using GFP_NOFS.
2676 */
2677retry_grab:
2678 page = grab_cache_page_write_begin(mapping, index, flags);
2679 if (!page)
2680 return -ENOMEM;
2681 unlock_page(page);
2682
64769240
AT
2683 /*
2684 * With delayed allocation, we don't log the i_disksize update
2685 * if there is delayed block allocation. But we still need
2686 * to journalling the i_disksize update if writes to the end
2687 * of file which has an already mapped buffer.
2688 */
47564bfb 2689retry_journal:
9924a92a 2690 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2691 if (IS_ERR(handle)) {
47564bfb
TT
2692 page_cache_release(page);
2693 return PTR_ERR(handle);
64769240
AT
2694 }
2695
47564bfb
TT
2696 lock_page(page);
2697 if (page->mapping != mapping) {
2698 /* The page got truncated from under us */
2699 unlock_page(page);
2700 page_cache_release(page);
d5a0d4f7 2701 ext4_journal_stop(handle);
47564bfb 2702 goto retry_grab;
d5a0d4f7 2703 }
47564bfb 2704 /* In case writeback began while the page was unlocked */
7afe5aa5 2705 wait_for_stable_page(page);
64769240 2706
6e1db88d 2707 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2708 if (ret < 0) {
2709 unlock_page(page);
2710 ext4_journal_stop(handle);
ae4d5372
AK
2711 /*
2712 * block_write_begin may have instantiated a few blocks
2713 * outside i_size. Trim these off again. Don't need
2714 * i_size_read because we hold i_mutex.
2715 */
2716 if (pos + len > inode->i_size)
b9a4207d 2717 ext4_truncate_failed_write(inode);
47564bfb
TT
2718
2719 if (ret == -ENOSPC &&
2720 ext4_should_retry_alloc(inode->i_sb, &retries))
2721 goto retry_journal;
2722
2723 page_cache_release(page);
2724 return ret;
64769240
AT
2725 }
2726
47564bfb 2727 *pagep = page;
64769240
AT
2728 return ret;
2729}
2730
632eaeab
MC
2731/*
2732 * Check if we should update i_disksize
2733 * when write to the end of file but not require block allocation
2734 */
2735static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2736 unsigned long offset)
632eaeab
MC
2737{
2738 struct buffer_head *bh;
2739 struct inode *inode = page->mapping->host;
2740 unsigned int idx;
2741 int i;
2742
2743 bh = page_buffers(page);
2744 idx = offset >> inode->i_blkbits;
2745
af5bc92d 2746 for (i = 0; i < idx; i++)
632eaeab
MC
2747 bh = bh->b_this_page;
2748
29fa89d0 2749 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2750 return 0;
2751 return 1;
2752}
2753
64769240 2754static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2755 struct address_space *mapping,
2756 loff_t pos, unsigned len, unsigned copied,
2757 struct page *page, void *fsdata)
64769240
AT
2758{
2759 struct inode *inode = mapping->host;
2760 int ret = 0, ret2;
2761 handle_t *handle = ext4_journal_current_handle();
2762 loff_t new_i_size;
632eaeab 2763 unsigned long start, end;
79f0be8d
AK
2764 int write_mode = (int)(unsigned long)fsdata;
2765
74d553aa
TT
2766 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2767 return ext4_write_end(file, mapping, pos,
2768 len, copied, page, fsdata);
632eaeab 2769
9bffad1e 2770 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2771 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2772 end = start + copied - 1;
64769240
AT
2773
2774 /*
2775 * generic_write_end() will run mark_inode_dirty() if i_size
2776 * changes. So let's piggyback the i_disksize mark_inode_dirty
2777 * into that.
2778 */
64769240 2779 new_i_size = pos + copied;
ea51d132 2780 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2781 if (ext4_has_inline_data(inode) ||
2782 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2783 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2784 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2785 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2786 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2787 /* We need to mark inode dirty even if
2788 * new_i_size is less that inode->i_size
2789 * bu greater than i_disksize.(hint delalloc)
2790 */
2791 ext4_mark_inode_dirty(handle, inode);
64769240 2792 }
632eaeab 2793 }
9c3569b5
TM
2794
2795 if (write_mode != CONVERT_INLINE_DATA &&
2796 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2797 ext4_has_inline_data(inode))
2798 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2799 page);
2800 else
2801 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2802 page, fsdata);
9c3569b5 2803
64769240
AT
2804 copied = ret2;
2805 if (ret2 < 0)
2806 ret = ret2;
2807 ret2 = ext4_journal_stop(handle);
2808 if (!ret)
2809 ret = ret2;
2810
2811 return ret ? ret : copied;
2812}
2813
d47992f8
LC
2814static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2815 unsigned int length)
64769240 2816{
64769240
AT
2817 /*
2818 * Drop reserved blocks
2819 */
2820 BUG_ON(!PageLocked(page));
2821 if (!page_has_buffers(page))
2822 goto out;
2823
ca99fdd2 2824 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2825
2826out:
d47992f8 2827 ext4_invalidatepage(page, offset, length);
64769240
AT
2828
2829 return;
2830}
2831
ccd2506b
TT
2832/*
2833 * Force all delayed allocation blocks to be allocated for a given inode.
2834 */
2835int ext4_alloc_da_blocks(struct inode *inode)
2836{
fb40ba0d
TT
2837 trace_ext4_alloc_da_blocks(inode);
2838
ccd2506b
TT
2839 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2840 !EXT4_I(inode)->i_reserved_meta_blocks)
2841 return 0;
2842
2843 /*
2844 * We do something simple for now. The filemap_flush() will
2845 * also start triggering a write of the data blocks, which is
2846 * not strictly speaking necessary (and for users of
2847 * laptop_mode, not even desirable). However, to do otherwise
2848 * would require replicating code paths in:
de9a55b8 2849 *
20970ba6 2850 * ext4_writepages() ->
ccd2506b
TT
2851 * write_cache_pages() ---> (via passed in callback function)
2852 * __mpage_da_writepage() -->
2853 * mpage_add_bh_to_extent()
2854 * mpage_da_map_blocks()
2855 *
2856 * The problem is that write_cache_pages(), located in
2857 * mm/page-writeback.c, marks pages clean in preparation for
2858 * doing I/O, which is not desirable if we're not planning on
2859 * doing I/O at all.
2860 *
2861 * We could call write_cache_pages(), and then redirty all of
380cf090 2862 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2863 * would be ugly in the extreme. So instead we would need to
2864 * replicate parts of the code in the above functions,
25985edc 2865 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2866 * write out the pages, but rather only collect contiguous
2867 * logical block extents, call the multi-block allocator, and
2868 * then update the buffer heads with the block allocations.
de9a55b8 2869 *
ccd2506b
TT
2870 * For now, though, we'll cheat by calling filemap_flush(),
2871 * which will map the blocks, and start the I/O, but not
2872 * actually wait for the I/O to complete.
2873 */
2874 return filemap_flush(inode->i_mapping);
2875}
64769240 2876
ac27a0ec
DK
2877/*
2878 * bmap() is special. It gets used by applications such as lilo and by
2879 * the swapper to find the on-disk block of a specific piece of data.
2880 *
2881 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2882 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2883 * filesystem and enables swap, then they may get a nasty shock when the
2884 * data getting swapped to that swapfile suddenly gets overwritten by
2885 * the original zero's written out previously to the journal and
2886 * awaiting writeback in the kernel's buffer cache.
2887 *
2888 * So, if we see any bmap calls here on a modified, data-journaled file,
2889 * take extra steps to flush any blocks which might be in the cache.
2890 */
617ba13b 2891static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2892{
2893 struct inode *inode = mapping->host;
2894 journal_t *journal;
2895 int err;
2896
46c7f254
TM
2897 /*
2898 * We can get here for an inline file via the FIBMAP ioctl
2899 */
2900 if (ext4_has_inline_data(inode))
2901 return 0;
2902
64769240
AT
2903 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2904 test_opt(inode->i_sb, DELALLOC)) {
2905 /*
2906 * With delalloc we want to sync the file
2907 * so that we can make sure we allocate
2908 * blocks for file
2909 */
2910 filemap_write_and_wait(mapping);
2911 }
2912
19f5fb7a
TT
2913 if (EXT4_JOURNAL(inode) &&
2914 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2915 /*
2916 * This is a REALLY heavyweight approach, but the use of
2917 * bmap on dirty files is expected to be extremely rare:
2918 * only if we run lilo or swapon on a freshly made file
2919 * do we expect this to happen.
2920 *
2921 * (bmap requires CAP_SYS_RAWIO so this does not
2922 * represent an unprivileged user DOS attack --- we'd be
2923 * in trouble if mortal users could trigger this path at
2924 * will.)
2925 *
617ba13b 2926 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2927 * regular files. If somebody wants to bmap a directory
2928 * or symlink and gets confused because the buffer
2929 * hasn't yet been flushed to disk, they deserve
2930 * everything they get.
2931 */
2932
19f5fb7a 2933 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2934 journal = EXT4_JOURNAL(inode);
dab291af
MC
2935 jbd2_journal_lock_updates(journal);
2936 err = jbd2_journal_flush(journal);
2937 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2938
2939 if (err)
2940 return 0;
2941 }
2942
af5bc92d 2943 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2944}
2945
617ba13b 2946static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2947{
46c7f254
TM
2948 int ret = -EAGAIN;
2949 struct inode *inode = page->mapping->host;
2950
0562e0ba 2951 trace_ext4_readpage(page);
46c7f254
TM
2952
2953 if (ext4_has_inline_data(inode))
2954 ret = ext4_readpage_inline(inode, page);
2955
2956 if (ret == -EAGAIN)
2957 return mpage_readpage(page, ext4_get_block);
2958
2959 return ret;
ac27a0ec
DK
2960}
2961
2962static int
617ba13b 2963ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2964 struct list_head *pages, unsigned nr_pages)
2965{
46c7f254
TM
2966 struct inode *inode = mapping->host;
2967
2968 /* If the file has inline data, no need to do readpages. */
2969 if (ext4_has_inline_data(inode))
2970 return 0;
2971
617ba13b 2972 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2973}
2974
d47992f8
LC
2975static void ext4_invalidatepage(struct page *page, unsigned int offset,
2976 unsigned int length)
ac27a0ec 2977{
ca99fdd2 2978 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2979
4520fb3c
JK
2980 /* No journalling happens on data buffers when this function is used */
2981 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2982
ca99fdd2 2983 block_invalidatepage(page, offset, length);
4520fb3c
JK
2984}
2985
53e87268 2986static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2987 unsigned int offset,
2988 unsigned int length)
4520fb3c
JK
2989{
2990 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2991
ca99fdd2 2992 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2993
ac27a0ec
DK
2994 /*
2995 * If it's a full truncate we just forget about the pending dirtying
2996 */
ca99fdd2 2997 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2998 ClearPageChecked(page);
2999
ca99fdd2 3000 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3001}
3002
3003/* Wrapper for aops... */
3004static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3005 unsigned int offset,
3006 unsigned int length)
53e87268 3007{
ca99fdd2 3008 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3009}
3010
617ba13b 3011static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3012{
617ba13b 3013 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3014
0562e0ba
JZ
3015 trace_ext4_releasepage(page);
3016
e1c36595
JK
3017 /* Page has dirty journalled data -> cannot release */
3018 if (PageChecked(page))
ac27a0ec 3019 return 0;
0390131b
FM
3020 if (journal)
3021 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3022 else
3023 return try_to_free_buffers(page);
ac27a0ec
DK
3024}
3025
2ed88685
TT
3026/*
3027 * ext4_get_block used when preparing for a DIO write or buffer write.
3028 * We allocate an uinitialized extent if blocks haven't been allocated.
3029 * The extent will be converted to initialized after the IO is complete.
3030 */
f19d5870 3031int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3032 struct buffer_head *bh_result, int create)
3033{
c7064ef1 3034 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3035 inode->i_ino, create);
2ed88685
TT
3036 return _ext4_get_block(inode, iblock, bh_result,
3037 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3038}
3039
729f52c6 3040static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3041 struct buffer_head *bh_result, int create)
729f52c6 3042{
8b0f165f
AP
3043 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3044 inode->i_ino, create);
3045 return _ext4_get_block(inode, iblock, bh_result,
3046 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3047}
3048
4c0425ff 3049static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3050 ssize_t size, void *private)
4c0425ff
MC
3051{
3052 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3053
97a851ed 3054 /* if not async direct IO just return */
7b7a8665 3055 if (!io_end)
97a851ed 3056 return;
4b70df18 3057
88635ca2 3058 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3059 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3060 iocb->private, io_end->inode->i_ino, iocb, offset,
3061 size);
8d5d02e6 3062
b5a7e970 3063 iocb->private = NULL;
4c0425ff
MC
3064 io_end->offset = offset;
3065 io_end->size = size;
7b7a8665 3066 ext4_put_io_end(io_end);
4c0425ff 3067}
c7064ef1 3068
4c0425ff
MC
3069/*
3070 * For ext4 extent files, ext4 will do direct-io write to holes,
3071 * preallocated extents, and those write extend the file, no need to
3072 * fall back to buffered IO.
3073 *
b595076a 3074 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3075 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3076 * still keep the range to write as uninitialized.
4c0425ff 3077 *
69c499d1 3078 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3079 * For async direct IO, since the IO may still pending when return, we
25985edc 3080 * set up an end_io call back function, which will do the conversion
8d5d02e6 3081 * when async direct IO completed.
4c0425ff
MC
3082 *
3083 * If the O_DIRECT write will extend the file then add this inode to the
3084 * orphan list. So recovery will truncate it back to the original size
3085 * if the machine crashes during the write.
3086 *
3087 */
3088static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3089 const struct iovec *iov, loff_t offset,
3090 unsigned long nr_segs)
3091{
3092 struct file *file = iocb->ki_filp;
3093 struct inode *inode = file->f_mapping->host;
3094 ssize_t ret;
3095 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3096 int overwrite = 0;
3097 get_block_t *get_block_func = NULL;
3098 int dio_flags = 0;
4c0425ff 3099 loff_t final_size = offset + count;
97a851ed 3100 ext4_io_end_t *io_end = NULL;
729f52c6 3101
69c499d1
TT
3102 /* Use the old path for reads and writes beyond i_size. */
3103 if (rw != WRITE || final_size > inode->i_size)
3104 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3105
69c499d1 3106 BUG_ON(iocb->private == NULL);
4bd809db 3107
e8340395
JK
3108 /*
3109 * Make all waiters for direct IO properly wait also for extent
3110 * conversion. This also disallows race between truncate() and
3111 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3112 */
3113 if (rw == WRITE)
3114 atomic_inc(&inode->i_dio_count);
3115
69c499d1
TT
3116 /* If we do a overwrite dio, i_mutex locking can be released */
3117 overwrite = *((int *)iocb->private);
4bd809db 3118
69c499d1 3119 if (overwrite) {
69c499d1
TT
3120 down_read(&EXT4_I(inode)->i_data_sem);
3121 mutex_unlock(&inode->i_mutex);
3122 }
8d5d02e6 3123
69c499d1
TT
3124 /*
3125 * We could direct write to holes and fallocate.
3126 *
3127 * Allocated blocks to fill the hole are marked as
3128 * uninitialized to prevent parallel buffered read to expose
3129 * the stale data before DIO complete the data IO.
3130 *
3131 * As to previously fallocated extents, ext4 get_block will
3132 * just simply mark the buffer mapped but still keep the
3133 * extents uninitialized.
3134 *
3135 * For non AIO case, we will convert those unwritten extents
3136 * to written after return back from blockdev_direct_IO.
3137 *
3138 * For async DIO, the conversion needs to be deferred when the
3139 * IO is completed. The ext4 end_io callback function will be
3140 * called to take care of the conversion work. Here for async
3141 * case, we allocate an io_end structure to hook to the iocb.
3142 */
3143 iocb->private = NULL;
3144 ext4_inode_aio_set(inode, NULL);
3145 if (!is_sync_kiocb(iocb)) {
97a851ed 3146 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3147 if (!io_end) {
3148 ret = -ENOMEM;
3149 goto retake_lock;
8b0f165f 3150 }
97a851ed
JK
3151 /*
3152 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3153 */
3154 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3155 /*
69c499d1
TT
3156 * we save the io structure for current async direct
3157 * IO, so that later ext4_map_blocks() could flag the
3158 * io structure whether there is a unwritten extents
3159 * needs to be converted when IO is completed.
8d5d02e6 3160 */
69c499d1
TT
3161 ext4_inode_aio_set(inode, io_end);
3162 }
4bd809db 3163
69c499d1
TT
3164 if (overwrite) {
3165 get_block_func = ext4_get_block_write_nolock;
3166 } else {
3167 get_block_func = ext4_get_block_write;
3168 dio_flags = DIO_LOCKING;
3169 }
3170 ret = __blockdev_direct_IO(rw, iocb, inode,
3171 inode->i_sb->s_bdev, iov,
3172 offset, nr_segs,
3173 get_block_func,
3174 ext4_end_io_dio,
3175 NULL,
3176 dio_flags);
3177
69c499d1 3178 /*
97a851ed
JK
3179 * Put our reference to io_end. This can free the io_end structure e.g.
3180 * in sync IO case or in case of error. It can even perform extent
3181 * conversion if all bios we submitted finished before we got here.
3182 * Note that in that case iocb->private can be already set to NULL
3183 * here.
69c499d1 3184 */
97a851ed
JK
3185 if (io_end) {
3186 ext4_inode_aio_set(inode, NULL);
3187 ext4_put_io_end(io_end);
3188 /*
3189 * When no IO was submitted ext4_end_io_dio() was not
3190 * called so we have to put iocb's reference.
3191 */
3192 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3193 WARN_ON(iocb->private != io_end);
3194 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3195 ext4_put_io_end(io_end);
3196 iocb->private = NULL;
3197 }
3198 }
3199 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3200 EXT4_STATE_DIO_UNWRITTEN)) {
3201 int err;
3202 /*
3203 * for non AIO case, since the IO is already
3204 * completed, we could do the conversion right here
3205 */
6b523df4 3206 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3207 offset, ret);
3208 if (err < 0)
3209 ret = err;
3210 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3211 }
4bd809db 3212
69c499d1 3213retake_lock:
e8340395
JK
3214 if (rw == WRITE)
3215 inode_dio_done(inode);
69c499d1
TT
3216 /* take i_mutex locking again if we do a ovewrite dio */
3217 if (overwrite) {
69c499d1
TT
3218 up_read(&EXT4_I(inode)->i_data_sem);
3219 mutex_lock(&inode->i_mutex);
4c0425ff 3220 }
8d5d02e6 3221
69c499d1 3222 return ret;
4c0425ff
MC
3223}
3224
3225static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3226 const struct iovec *iov, loff_t offset,
3227 unsigned long nr_segs)
3228{
3229 struct file *file = iocb->ki_filp;
3230 struct inode *inode = file->f_mapping->host;
0562e0ba 3231 ssize_t ret;
4c0425ff 3232
84ebd795
TT
3233 /*
3234 * If we are doing data journalling we don't support O_DIRECT
3235 */
3236 if (ext4_should_journal_data(inode))
3237 return 0;
3238
46c7f254
TM
3239 /* Let buffer I/O handle the inline data case. */
3240 if (ext4_has_inline_data(inode))
3241 return 0;
3242
0562e0ba 3243 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3244 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3245 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3246 else
3247 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3248 trace_ext4_direct_IO_exit(inode, offset,
3249 iov_length(iov, nr_segs), rw, ret);
3250 return ret;
4c0425ff
MC
3251}
3252
ac27a0ec 3253/*
617ba13b 3254 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3255 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3256 * much here because ->set_page_dirty is called under VFS locks. The page is
3257 * not necessarily locked.
3258 *
3259 * We cannot just dirty the page and leave attached buffers clean, because the
3260 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3261 * or jbddirty because all the journalling code will explode.
3262 *
3263 * So what we do is to mark the page "pending dirty" and next time writepage
3264 * is called, propagate that into the buffers appropriately.
3265 */
617ba13b 3266static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3267{
3268 SetPageChecked(page);
3269 return __set_page_dirty_nobuffers(page);
3270}
3271
74d553aa 3272static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3273 .readpage = ext4_readpage,
3274 .readpages = ext4_readpages,
43ce1d23 3275 .writepage = ext4_writepage,
20970ba6 3276 .writepages = ext4_writepages,
8ab22b9a 3277 .write_begin = ext4_write_begin,
74d553aa 3278 .write_end = ext4_write_end,
8ab22b9a
HH
3279 .bmap = ext4_bmap,
3280 .invalidatepage = ext4_invalidatepage,
3281 .releasepage = ext4_releasepage,
3282 .direct_IO = ext4_direct_IO,
3283 .migratepage = buffer_migrate_page,
3284 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3285 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3286};
3287
617ba13b 3288static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3289 .readpage = ext4_readpage,
3290 .readpages = ext4_readpages,
43ce1d23 3291 .writepage = ext4_writepage,
20970ba6 3292 .writepages = ext4_writepages,
8ab22b9a
HH
3293 .write_begin = ext4_write_begin,
3294 .write_end = ext4_journalled_write_end,
3295 .set_page_dirty = ext4_journalled_set_page_dirty,
3296 .bmap = ext4_bmap,
4520fb3c 3297 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3298 .releasepage = ext4_releasepage,
84ebd795 3299 .direct_IO = ext4_direct_IO,
8ab22b9a 3300 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3301 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3302};
3303
64769240 3304static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3305 .readpage = ext4_readpage,
3306 .readpages = ext4_readpages,
43ce1d23 3307 .writepage = ext4_writepage,
20970ba6 3308 .writepages = ext4_writepages,
8ab22b9a
HH
3309 .write_begin = ext4_da_write_begin,
3310 .write_end = ext4_da_write_end,
3311 .bmap = ext4_bmap,
3312 .invalidatepage = ext4_da_invalidatepage,
3313 .releasepage = ext4_releasepage,
3314 .direct_IO = ext4_direct_IO,
3315 .migratepage = buffer_migrate_page,
3316 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3317 .error_remove_page = generic_error_remove_page,
64769240
AT
3318};
3319
617ba13b 3320void ext4_set_aops(struct inode *inode)
ac27a0ec 3321{
3d2b1582
LC
3322 switch (ext4_inode_journal_mode(inode)) {
3323 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3324 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3325 break;
3326 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3327 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3328 break;
3329 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3330 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3331 return;
3d2b1582
LC
3332 default:
3333 BUG();
3334 }
74d553aa
TT
3335 if (test_opt(inode->i_sb, DELALLOC))
3336 inode->i_mapping->a_ops = &ext4_da_aops;
3337 else
3338 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3339}
3340
d863dc36
LC
3341/*
3342 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3343 * starting from file offset 'from'. The range to be zero'd must
3344 * be contained with in one block. If the specified range exceeds
3345 * the end of the block it will be shortened to end of the block
3346 * that cooresponds to 'from'
3347 */
94350ab5 3348static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3349 struct address_space *mapping, loff_t from, loff_t length)
3350{
3351 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3352 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3353 unsigned blocksize, max, pos;
3354 ext4_lblk_t iblock;
3355 struct inode *inode = mapping->host;
3356 struct buffer_head *bh;
3357 struct page *page;
3358 int err = 0;
3359
3360 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3361 mapping_gfp_mask(mapping) & ~__GFP_FS);
3362 if (!page)
3363 return -ENOMEM;
3364
3365 blocksize = inode->i_sb->s_blocksize;
3366 max = blocksize - (offset & (blocksize - 1));
3367
3368 /*
3369 * correct length if it does not fall between
3370 * 'from' and the end of the block
3371 */
3372 if (length > max || length < 0)
3373 length = max;
3374
3375 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3376
3377 if (!page_has_buffers(page))
3378 create_empty_buffers(page, blocksize, 0);
3379
3380 /* Find the buffer that contains "offset" */
3381 bh = page_buffers(page);
3382 pos = blocksize;
3383 while (offset >= pos) {
3384 bh = bh->b_this_page;
3385 iblock++;
3386 pos += blocksize;
3387 }
d863dc36
LC
3388 if (buffer_freed(bh)) {
3389 BUFFER_TRACE(bh, "freed: skip");
3390 goto unlock;
3391 }
d863dc36
LC
3392 if (!buffer_mapped(bh)) {
3393 BUFFER_TRACE(bh, "unmapped");
3394 ext4_get_block(inode, iblock, bh, 0);
3395 /* unmapped? It's a hole - nothing to do */
3396 if (!buffer_mapped(bh)) {
3397 BUFFER_TRACE(bh, "still unmapped");
3398 goto unlock;
3399 }
3400 }
3401
3402 /* Ok, it's mapped. Make sure it's up-to-date */
3403 if (PageUptodate(page))
3404 set_buffer_uptodate(bh);
3405
3406 if (!buffer_uptodate(bh)) {
3407 err = -EIO;
3408 ll_rw_block(READ, 1, &bh);
3409 wait_on_buffer(bh);
3410 /* Uhhuh. Read error. Complain and punt. */
3411 if (!buffer_uptodate(bh))
3412 goto unlock;
3413 }
d863dc36
LC
3414 if (ext4_should_journal_data(inode)) {
3415 BUFFER_TRACE(bh, "get write access");
3416 err = ext4_journal_get_write_access(handle, bh);
3417 if (err)
3418 goto unlock;
3419 }
d863dc36 3420 zero_user(page, offset, length);
d863dc36
LC
3421 BUFFER_TRACE(bh, "zeroed end of block");
3422
d863dc36
LC
3423 if (ext4_should_journal_data(inode)) {
3424 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3425 } else {
353eefd3 3426 err = 0;
d863dc36 3427 mark_buffer_dirty(bh);
0713ed0c
LC
3428 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3429 err = ext4_jbd2_file_inode(handle, inode);
3430 }
d863dc36
LC
3431
3432unlock:
3433 unlock_page(page);
3434 page_cache_release(page);
3435 return err;
3436}
3437
94350ab5
MW
3438/*
3439 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440 * up to the end of the block which corresponds to `from'.
3441 * This required during truncate. We need to physically zero the tail end
3442 * of that block so it doesn't yield old data if the file is later grown.
3443 */
3444int ext4_block_truncate_page(handle_t *handle,
3445 struct address_space *mapping, loff_t from)
3446{
3447 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3448 unsigned length;
3449 unsigned blocksize;
3450 struct inode *inode = mapping->host;
3451
3452 blocksize = inode->i_sb->s_blocksize;
3453 length = blocksize - (offset & (blocksize - 1));
3454
3455 return ext4_block_zero_page_range(handle, mapping, from, length);
3456}
3457
a87dd18c
LC
3458int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3459 loff_t lstart, loff_t length)
3460{
3461 struct super_block *sb = inode->i_sb;
3462 struct address_space *mapping = inode->i_mapping;
e1be3a92 3463 unsigned partial_start, partial_end;
a87dd18c
LC
3464 ext4_fsblk_t start, end;
3465 loff_t byte_end = (lstart + length - 1);
3466 int err = 0;
3467
e1be3a92
LC
3468 partial_start = lstart & (sb->s_blocksize - 1);
3469 partial_end = byte_end & (sb->s_blocksize - 1);
3470
a87dd18c
LC
3471 start = lstart >> sb->s_blocksize_bits;
3472 end = byte_end >> sb->s_blocksize_bits;
3473
3474 /* Handle partial zero within the single block */
e1be3a92
LC
3475 if (start == end &&
3476 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3477 err = ext4_block_zero_page_range(handle, mapping,
3478 lstart, length);
3479 return err;
3480 }
3481 /* Handle partial zero out on the start of the range */
e1be3a92 3482 if (partial_start) {
a87dd18c
LC
3483 err = ext4_block_zero_page_range(handle, mapping,
3484 lstart, sb->s_blocksize);
3485 if (err)
3486 return err;
3487 }
3488 /* Handle partial zero out on the end of the range */
e1be3a92 3489 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3490 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3491 byte_end - partial_end,
3492 partial_end + 1);
a87dd18c
LC
3493 return err;
3494}
3495
91ef4caf
DG
3496int ext4_can_truncate(struct inode *inode)
3497{
91ef4caf
DG
3498 if (S_ISREG(inode->i_mode))
3499 return 1;
3500 if (S_ISDIR(inode->i_mode))
3501 return 1;
3502 if (S_ISLNK(inode->i_mode))
3503 return !ext4_inode_is_fast_symlink(inode);
3504 return 0;
3505}
3506
a4bb6b64
AH
3507/*
3508 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3509 * associated with the given offset and length
3510 *
3511 * @inode: File inode
3512 * @offset: The offset where the hole will begin
3513 * @len: The length of the hole
3514 *
4907cb7b 3515 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3516 */
3517
aeb2817a 3518int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3519{
26a4c0c6
TT
3520 struct super_block *sb = inode->i_sb;
3521 ext4_lblk_t first_block, stop_block;
3522 struct address_space *mapping = inode->i_mapping;
a87dd18c 3523 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3524 handle_t *handle;
3525 unsigned int credits;
3526 int ret = 0;
3527
a4bb6b64 3528 if (!S_ISREG(inode->i_mode))
73355192 3529 return -EOPNOTSUPP;
a4bb6b64 3530
b8a86845 3531 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3532
26a4c0c6
TT
3533 /*
3534 * Write out all dirty pages to avoid race conditions
3535 * Then release them.
3536 */
3537 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3538 ret = filemap_write_and_wait_range(mapping, offset,
3539 offset + length - 1);
3540 if (ret)
3541 return ret;
3542 }
3543
3544 mutex_lock(&inode->i_mutex);
9ef06cec 3545
26a4c0c6
TT
3546 /* No need to punch hole beyond i_size */
3547 if (offset >= inode->i_size)
3548 goto out_mutex;
3549
3550 /*
3551 * If the hole extends beyond i_size, set the hole
3552 * to end after the page that contains i_size
3553 */
3554 if (offset + length > inode->i_size) {
3555 length = inode->i_size +
3556 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3557 offset;
3558 }
3559
a361293f
JK
3560 if (offset & (sb->s_blocksize - 1) ||
3561 (offset + length) & (sb->s_blocksize - 1)) {
3562 /*
3563 * Attach jinode to inode for jbd2 if we do any zeroing of
3564 * partial block
3565 */
3566 ret = ext4_inode_attach_jinode(inode);
3567 if (ret < 0)
3568 goto out_mutex;
3569
3570 }
3571
a87dd18c
LC
3572 first_block_offset = round_up(offset, sb->s_blocksize);
3573 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3574
a87dd18c
LC
3575 /* Now release the pages and zero block aligned part of pages*/
3576 if (last_block_offset > first_block_offset)
3577 truncate_pagecache_range(inode, first_block_offset,
3578 last_block_offset);
26a4c0c6
TT
3579
3580 /* Wait all existing dio workers, newcomers will block on i_mutex */
3581 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3582 inode_dio_wait(inode);
3583
3584 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3585 credits = ext4_writepage_trans_blocks(inode);
3586 else
3587 credits = ext4_blocks_for_truncate(inode);
3588 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3589 if (IS_ERR(handle)) {
3590 ret = PTR_ERR(handle);
3591 ext4_std_error(sb, ret);
3592 goto out_dio;
3593 }
3594
a87dd18c
LC
3595 ret = ext4_zero_partial_blocks(handle, inode, offset,
3596 length);
3597 if (ret)
3598 goto out_stop;
26a4c0c6
TT
3599
3600 first_block = (offset + sb->s_blocksize - 1) >>
3601 EXT4_BLOCK_SIZE_BITS(sb);
3602 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3603
3604 /* If there are no blocks to remove, return now */
3605 if (first_block >= stop_block)
3606 goto out_stop;
3607
3608 down_write(&EXT4_I(inode)->i_data_sem);
3609 ext4_discard_preallocations(inode);
3610
3611 ret = ext4_es_remove_extent(inode, first_block,
3612 stop_block - first_block);
3613 if (ret) {
3614 up_write(&EXT4_I(inode)->i_data_sem);
3615 goto out_stop;
3616 }
3617
3618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3619 ret = ext4_ext_remove_space(inode, first_block,
3620 stop_block - 1);
3621 else
3622 ret = ext4_free_hole_blocks(handle, inode, first_block,
3623 stop_block);
3624
819c4920 3625 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3626 if (IS_SYNC(inode))
3627 ext4_handle_sync(handle);
e251f9bc
MP
3628
3629 /* Now release the pages again to reduce race window */
3630 if (last_block_offset > first_block_offset)
3631 truncate_pagecache_range(inode, first_block_offset,
3632 last_block_offset);
3633
26a4c0c6
TT
3634 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3635 ext4_mark_inode_dirty(handle, inode);
3636out_stop:
3637 ext4_journal_stop(handle);
3638out_dio:
3639 ext4_inode_resume_unlocked_dio(inode);
3640out_mutex:
3641 mutex_unlock(&inode->i_mutex);
3642 return ret;
a4bb6b64
AH
3643}
3644
a361293f
JK
3645int ext4_inode_attach_jinode(struct inode *inode)
3646{
3647 struct ext4_inode_info *ei = EXT4_I(inode);
3648 struct jbd2_inode *jinode;
3649
3650 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3651 return 0;
3652
3653 jinode = jbd2_alloc_inode(GFP_KERNEL);
3654 spin_lock(&inode->i_lock);
3655 if (!ei->jinode) {
3656 if (!jinode) {
3657 spin_unlock(&inode->i_lock);
3658 return -ENOMEM;
3659 }
3660 ei->jinode = jinode;
3661 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3662 jinode = NULL;
3663 }
3664 spin_unlock(&inode->i_lock);
3665 if (unlikely(jinode != NULL))
3666 jbd2_free_inode(jinode);
3667 return 0;
3668}
3669
ac27a0ec 3670/*
617ba13b 3671 * ext4_truncate()
ac27a0ec 3672 *
617ba13b
MC
3673 * We block out ext4_get_block() block instantiations across the entire
3674 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3675 * simultaneously on behalf of the same inode.
3676 *
42b2aa86 3677 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3678 * is one core, guiding principle: the file's tree must always be consistent on
3679 * disk. We must be able to restart the truncate after a crash.
3680 *
3681 * The file's tree may be transiently inconsistent in memory (although it
3682 * probably isn't), but whenever we close off and commit a journal transaction,
3683 * the contents of (the filesystem + the journal) must be consistent and
3684 * restartable. It's pretty simple, really: bottom up, right to left (although
3685 * left-to-right works OK too).
3686 *
3687 * Note that at recovery time, journal replay occurs *before* the restart of
3688 * truncate against the orphan inode list.
3689 *
3690 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3691 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3692 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3693 * ext4_truncate() to have another go. So there will be instantiated blocks
3694 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3695 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3696 * ext4_truncate() run will find them and release them.
ac27a0ec 3697 */
617ba13b 3698void ext4_truncate(struct inode *inode)
ac27a0ec 3699{
819c4920
TT
3700 struct ext4_inode_info *ei = EXT4_I(inode);
3701 unsigned int credits;
3702 handle_t *handle;
3703 struct address_space *mapping = inode->i_mapping;
819c4920 3704
19b5ef61
TT
3705 /*
3706 * There is a possibility that we're either freeing the inode
e04027e8 3707 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3708 * have i_mutex locked because it's not necessary.
3709 */
3710 if (!(inode->i_state & (I_NEW|I_FREEING)))
3711 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3712 trace_ext4_truncate_enter(inode);
3713
91ef4caf 3714 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3715 return;
3716
12e9b892 3717 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3718
5534fb5b 3719 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3720 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3721
aef1c851
TM
3722 if (ext4_has_inline_data(inode)) {
3723 int has_inline = 1;
3724
3725 ext4_inline_data_truncate(inode, &has_inline);
3726 if (has_inline)
3727 return;
3728 }
3729
a361293f
JK
3730 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3731 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3732 if (ext4_inode_attach_jinode(inode) < 0)
3733 return;
3734 }
3735
819c4920
TT
3736 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3737 credits = ext4_writepage_trans_blocks(inode);
3738 else
3739 credits = ext4_blocks_for_truncate(inode);
3740
3741 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3742 if (IS_ERR(handle)) {
3743 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3744 return;
3745 }
3746
eb3544c6
LC
3747 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3748 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3749
3750 /*
3751 * We add the inode to the orphan list, so that if this
3752 * truncate spans multiple transactions, and we crash, we will
3753 * resume the truncate when the filesystem recovers. It also
3754 * marks the inode dirty, to catch the new size.
3755 *
3756 * Implication: the file must always be in a sane, consistent
3757 * truncatable state while each transaction commits.
3758 */
3759 if (ext4_orphan_add(handle, inode))
3760 goto out_stop;
3761
3762 down_write(&EXT4_I(inode)->i_data_sem);
3763
3764 ext4_discard_preallocations(inode);
3765
ff9893dc 3766 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3767 ext4_ext_truncate(handle, inode);
ff9893dc 3768 else
819c4920
TT
3769 ext4_ind_truncate(handle, inode);
3770
3771 up_write(&ei->i_data_sem);
3772
3773 if (IS_SYNC(inode))
3774 ext4_handle_sync(handle);
3775
3776out_stop:
3777 /*
3778 * If this was a simple ftruncate() and the file will remain alive,
3779 * then we need to clear up the orphan record which we created above.
3780 * However, if this was a real unlink then we were called by
3781 * ext4_delete_inode(), and we allow that function to clean up the
3782 * orphan info for us.
3783 */
3784 if (inode->i_nlink)
3785 ext4_orphan_del(handle, inode);
3786
3787 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3788 ext4_mark_inode_dirty(handle, inode);
3789 ext4_journal_stop(handle);
ac27a0ec 3790
0562e0ba 3791 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3792}
3793
ac27a0ec 3794/*
617ba13b 3795 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3796 * underlying buffer_head on success. If 'in_mem' is true, we have all
3797 * data in memory that is needed to recreate the on-disk version of this
3798 * inode.
3799 */
617ba13b
MC
3800static int __ext4_get_inode_loc(struct inode *inode,
3801 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3802{
240799cd
TT
3803 struct ext4_group_desc *gdp;
3804 struct buffer_head *bh;
3805 struct super_block *sb = inode->i_sb;
3806 ext4_fsblk_t block;
3807 int inodes_per_block, inode_offset;
3808
3a06d778 3809 iloc->bh = NULL;
240799cd
TT
3810 if (!ext4_valid_inum(sb, inode->i_ino))
3811 return -EIO;
ac27a0ec 3812
240799cd
TT
3813 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3814 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3815 if (!gdp)
ac27a0ec
DK
3816 return -EIO;
3817
240799cd
TT
3818 /*
3819 * Figure out the offset within the block group inode table
3820 */
00d09882 3821 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3822 inode_offset = ((inode->i_ino - 1) %
3823 EXT4_INODES_PER_GROUP(sb));
3824 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3825 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3826
3827 bh = sb_getblk(sb, block);
aebf0243 3828 if (unlikely(!bh))
860d21e2 3829 return -ENOMEM;
ac27a0ec
DK
3830 if (!buffer_uptodate(bh)) {
3831 lock_buffer(bh);
9c83a923
HK
3832
3833 /*
3834 * If the buffer has the write error flag, we have failed
3835 * to write out another inode in the same block. In this
3836 * case, we don't have to read the block because we may
3837 * read the old inode data successfully.
3838 */
3839 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3840 set_buffer_uptodate(bh);
3841
ac27a0ec
DK
3842 if (buffer_uptodate(bh)) {
3843 /* someone brought it uptodate while we waited */
3844 unlock_buffer(bh);
3845 goto has_buffer;
3846 }
3847
3848 /*
3849 * If we have all information of the inode in memory and this
3850 * is the only valid inode in the block, we need not read the
3851 * block.
3852 */
3853 if (in_mem) {
3854 struct buffer_head *bitmap_bh;
240799cd 3855 int i, start;
ac27a0ec 3856
240799cd 3857 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3858
240799cd
TT
3859 /* Is the inode bitmap in cache? */
3860 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3861 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3862 goto make_io;
3863
3864 /*
3865 * If the inode bitmap isn't in cache then the
3866 * optimisation may end up performing two reads instead
3867 * of one, so skip it.
3868 */
3869 if (!buffer_uptodate(bitmap_bh)) {
3870 brelse(bitmap_bh);
3871 goto make_io;
3872 }
240799cd 3873 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3874 if (i == inode_offset)
3875 continue;
617ba13b 3876 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3877 break;
3878 }
3879 brelse(bitmap_bh);
240799cd 3880 if (i == start + inodes_per_block) {
ac27a0ec
DK
3881 /* all other inodes are free, so skip I/O */
3882 memset(bh->b_data, 0, bh->b_size);
3883 set_buffer_uptodate(bh);
3884 unlock_buffer(bh);
3885 goto has_buffer;
3886 }
3887 }
3888
3889make_io:
240799cd
TT
3890 /*
3891 * If we need to do any I/O, try to pre-readahead extra
3892 * blocks from the inode table.
3893 */
3894 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3895 ext4_fsblk_t b, end, table;
3896 unsigned num;
0d606e2c 3897 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3898
3899 table = ext4_inode_table(sb, gdp);
b713a5ec 3900 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3901 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3902 if (table > b)
3903 b = table;
0d606e2c 3904 end = b + ra_blks;
240799cd 3905 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3906 if (ext4_has_group_desc_csum(sb))
560671a0 3907 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3908 table += num / inodes_per_block;
3909 if (end > table)
3910 end = table;
3911 while (b <= end)
3912 sb_breadahead(sb, b++);
3913 }
3914
ac27a0ec
DK
3915 /*
3916 * There are other valid inodes in the buffer, this inode
3917 * has in-inode xattrs, or we don't have this inode in memory.
3918 * Read the block from disk.
3919 */
0562e0ba 3920 trace_ext4_load_inode(inode);
ac27a0ec
DK
3921 get_bh(bh);
3922 bh->b_end_io = end_buffer_read_sync;
65299a3b 3923 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3924 wait_on_buffer(bh);
3925 if (!buffer_uptodate(bh)) {
c398eda0
TT
3926 EXT4_ERROR_INODE_BLOCK(inode, block,
3927 "unable to read itable block");
ac27a0ec
DK
3928 brelse(bh);
3929 return -EIO;
3930 }
3931 }
3932has_buffer:
3933 iloc->bh = bh;
3934 return 0;
3935}
3936
617ba13b 3937int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3938{
3939 /* We have all inode data except xattrs in memory here. */
617ba13b 3940 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3941 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3942}
3943
617ba13b 3944void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3945{
617ba13b 3946 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3947 unsigned int new_fl = 0;
ac27a0ec 3948
617ba13b 3949 if (flags & EXT4_SYNC_FL)
00a1a053 3950 new_fl |= S_SYNC;
617ba13b 3951 if (flags & EXT4_APPEND_FL)
00a1a053 3952 new_fl |= S_APPEND;
617ba13b 3953 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3954 new_fl |= S_IMMUTABLE;
617ba13b 3955 if (flags & EXT4_NOATIME_FL)
00a1a053 3956 new_fl |= S_NOATIME;
617ba13b 3957 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3958 new_fl |= S_DIRSYNC;
5f16f322
TT
3959 inode_set_flags(inode, new_fl,
3960 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3961}
3962
ff9ddf7e
JK
3963/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3964void ext4_get_inode_flags(struct ext4_inode_info *ei)
3965{
84a8dce2
DM
3966 unsigned int vfs_fl;
3967 unsigned long old_fl, new_fl;
3968
3969 do {
3970 vfs_fl = ei->vfs_inode.i_flags;
3971 old_fl = ei->i_flags;
3972 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3973 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3974 EXT4_DIRSYNC_FL);
3975 if (vfs_fl & S_SYNC)
3976 new_fl |= EXT4_SYNC_FL;
3977 if (vfs_fl & S_APPEND)
3978 new_fl |= EXT4_APPEND_FL;
3979 if (vfs_fl & S_IMMUTABLE)
3980 new_fl |= EXT4_IMMUTABLE_FL;
3981 if (vfs_fl & S_NOATIME)
3982 new_fl |= EXT4_NOATIME_FL;
3983 if (vfs_fl & S_DIRSYNC)
3984 new_fl |= EXT4_DIRSYNC_FL;
3985 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3986}
de9a55b8 3987
0fc1b451 3988static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3989 struct ext4_inode_info *ei)
0fc1b451
AK
3990{
3991 blkcnt_t i_blocks ;
8180a562
AK
3992 struct inode *inode = &(ei->vfs_inode);
3993 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3994
3995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3996 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3997 /* we are using combined 48 bit field */
3998 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3999 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4000 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4001 /* i_blocks represent file system block size */
4002 return i_blocks << (inode->i_blkbits - 9);
4003 } else {
4004 return i_blocks;
4005 }
0fc1b451
AK
4006 } else {
4007 return le32_to_cpu(raw_inode->i_blocks_lo);
4008 }
4009}
ff9ddf7e 4010
152a7b0a
TM
4011static inline void ext4_iget_extra_inode(struct inode *inode,
4012 struct ext4_inode *raw_inode,
4013 struct ext4_inode_info *ei)
4014{
4015 __le32 *magic = (void *)raw_inode +
4016 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4017 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4018 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4019 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4020 } else
4021 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4022}
4023
1d1fe1ee 4024struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4025{
617ba13b
MC
4026 struct ext4_iloc iloc;
4027 struct ext4_inode *raw_inode;
1d1fe1ee 4028 struct ext4_inode_info *ei;
1d1fe1ee 4029 struct inode *inode;
b436b9be 4030 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4031 long ret;
ac27a0ec 4032 int block;
08cefc7a
EB
4033 uid_t i_uid;
4034 gid_t i_gid;
ac27a0ec 4035
1d1fe1ee
DH
4036 inode = iget_locked(sb, ino);
4037 if (!inode)
4038 return ERR_PTR(-ENOMEM);
4039 if (!(inode->i_state & I_NEW))
4040 return inode;
4041
4042 ei = EXT4_I(inode);
7dc57615 4043 iloc.bh = NULL;
ac27a0ec 4044
1d1fe1ee
DH
4045 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4046 if (ret < 0)
ac27a0ec 4047 goto bad_inode;
617ba13b 4048 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4049
4050 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4051 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4052 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4053 EXT4_INODE_SIZE(inode->i_sb)) {
4054 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4055 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4056 EXT4_INODE_SIZE(inode->i_sb));
4057 ret = -EIO;
4058 goto bad_inode;
4059 }
4060 } else
4061 ei->i_extra_isize = 0;
4062
4063 /* Precompute checksum seed for inode metadata */
4064 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4065 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4066 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4067 __u32 csum;
4068 __le32 inum = cpu_to_le32(inode->i_ino);
4069 __le32 gen = raw_inode->i_generation;
4070 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4071 sizeof(inum));
4072 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4073 sizeof(gen));
4074 }
4075
4076 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4077 EXT4_ERROR_INODE(inode, "checksum invalid");
4078 ret = -EIO;
4079 goto bad_inode;
4080 }
4081
ac27a0ec 4082 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4083 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4084 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4085 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4086 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4087 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4088 }
08cefc7a
EB
4089 i_uid_write(inode, i_uid);
4090 i_gid_write(inode, i_gid);
bfe86848 4091 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4092
353eb83c 4093 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4094 ei->i_inline_off = 0;
ac27a0ec
DK
4095 ei->i_dir_start_lookup = 0;
4096 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4097 /* We now have enough fields to check if the inode was active or not.
4098 * This is needed because nfsd might try to access dead inodes
4099 * the test is that same one that e2fsck uses
4100 * NeilBrown 1999oct15
4101 */
4102 if (inode->i_nlink == 0) {
393d1d1d
DTB
4103 if ((inode->i_mode == 0 ||
4104 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4105 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4106 /* this inode is deleted */
1d1fe1ee 4107 ret = -ESTALE;
ac27a0ec
DK
4108 goto bad_inode;
4109 }
4110 /* The only unlinked inodes we let through here have
4111 * valid i_mode and are being read by the orphan
4112 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4113 * the process of deleting those.
4114 * OR it is the EXT4_BOOT_LOADER_INO which is
4115 * not initialized on a new filesystem. */
ac27a0ec 4116 }
ac27a0ec 4117 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4118 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4119 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4120 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4121 ei->i_file_acl |=
4122 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4123 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4124 ei->i_disksize = inode->i_size;
a9e7f447
DM
4125#ifdef CONFIG_QUOTA
4126 ei->i_reserved_quota = 0;
4127#endif
ac27a0ec
DK
4128 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4129 ei->i_block_group = iloc.block_group;
a4912123 4130 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4131 /*
4132 * NOTE! The in-memory inode i_data array is in little-endian order
4133 * even on big-endian machines: we do NOT byteswap the block numbers!
4134 */
617ba13b 4135 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4136 ei->i_data[block] = raw_inode->i_block[block];
4137 INIT_LIST_HEAD(&ei->i_orphan);
4138
b436b9be
JK
4139 /*
4140 * Set transaction id's of transactions that have to be committed
4141 * to finish f[data]sync. We set them to currently running transaction
4142 * as we cannot be sure that the inode or some of its metadata isn't
4143 * part of the transaction - the inode could have been reclaimed and
4144 * now it is reread from disk.
4145 */
4146 if (journal) {
4147 transaction_t *transaction;
4148 tid_t tid;
4149
a931da6a 4150 read_lock(&journal->j_state_lock);
b436b9be
JK
4151 if (journal->j_running_transaction)
4152 transaction = journal->j_running_transaction;
4153 else
4154 transaction = journal->j_committing_transaction;
4155 if (transaction)
4156 tid = transaction->t_tid;
4157 else
4158 tid = journal->j_commit_sequence;
a931da6a 4159 read_unlock(&journal->j_state_lock);
b436b9be
JK
4160 ei->i_sync_tid = tid;
4161 ei->i_datasync_tid = tid;
4162 }
4163
0040d987 4164 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4165 if (ei->i_extra_isize == 0) {
4166 /* The extra space is currently unused. Use it. */
617ba13b
MC
4167 ei->i_extra_isize = sizeof(struct ext4_inode) -
4168 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4169 } else {
152a7b0a 4170 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4171 }
814525f4 4172 }
ac27a0ec 4173
ef7f3835
KS
4174 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4175 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4176 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4177 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4178
ed3654eb 4179 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4180 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4181 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4182 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4183 inode->i_version |=
4184 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4185 }
25ec56b5
JNC
4186 }
4187
c4b5a614 4188 ret = 0;
485c26ec 4189 if (ei->i_file_acl &&
1032988c 4190 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4191 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4192 ei->i_file_acl);
485c26ec
TT
4193 ret = -EIO;
4194 goto bad_inode;
f19d5870
TM
4195 } else if (!ext4_has_inline_data(inode)) {
4196 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4197 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4198 (S_ISLNK(inode->i_mode) &&
4199 !ext4_inode_is_fast_symlink(inode))))
4200 /* Validate extent which is part of inode */
4201 ret = ext4_ext_check_inode(inode);
4202 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4203 (S_ISLNK(inode->i_mode) &&
4204 !ext4_inode_is_fast_symlink(inode))) {
4205 /* Validate block references which are part of inode */
4206 ret = ext4_ind_check_inode(inode);
4207 }
fe2c8191 4208 }
567f3e9a 4209 if (ret)
de9a55b8 4210 goto bad_inode;
7a262f7c 4211
ac27a0ec 4212 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4213 inode->i_op = &ext4_file_inode_operations;
4214 inode->i_fop = &ext4_file_operations;
4215 ext4_set_aops(inode);
ac27a0ec 4216 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4217 inode->i_op = &ext4_dir_inode_operations;
4218 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4219 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4220 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4221 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4222 nd_terminate_link(ei->i_data, inode->i_size,
4223 sizeof(ei->i_data) - 1);
4224 } else {
617ba13b
MC
4225 inode->i_op = &ext4_symlink_inode_operations;
4226 ext4_set_aops(inode);
ac27a0ec 4227 }
563bdd61
TT
4228 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4229 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4230 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4231 if (raw_inode->i_block[0])
4232 init_special_inode(inode, inode->i_mode,
4233 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4234 else
4235 init_special_inode(inode, inode->i_mode,
4236 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4237 } else if (ino == EXT4_BOOT_LOADER_INO) {
4238 make_bad_inode(inode);
563bdd61 4239 } else {
563bdd61 4240 ret = -EIO;
24676da4 4241 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4242 goto bad_inode;
ac27a0ec 4243 }
af5bc92d 4244 brelse(iloc.bh);
617ba13b 4245 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4246 unlock_new_inode(inode);
4247 return inode;
ac27a0ec
DK
4248
4249bad_inode:
567f3e9a 4250 brelse(iloc.bh);
1d1fe1ee
DH
4251 iget_failed(inode);
4252 return ERR_PTR(ret);
ac27a0ec
DK
4253}
4254
0fc1b451
AK
4255static int ext4_inode_blocks_set(handle_t *handle,
4256 struct ext4_inode *raw_inode,
4257 struct ext4_inode_info *ei)
4258{
4259 struct inode *inode = &(ei->vfs_inode);
4260 u64 i_blocks = inode->i_blocks;
4261 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4262
4263 if (i_blocks <= ~0U) {
4264 /*
4907cb7b 4265 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4266 * as multiple of 512 bytes
4267 */
8180a562 4268 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4269 raw_inode->i_blocks_high = 0;
84a8dce2 4270 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4271 return 0;
4272 }
4273 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4274 return -EFBIG;
4275
4276 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4277 /*
4278 * i_blocks can be represented in a 48 bit variable
4279 * as multiple of 512 bytes
4280 */
8180a562 4281 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4282 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4283 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4284 } else {
84a8dce2 4285 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4286 /* i_block is stored in file system block size */
4287 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4288 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4289 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4290 }
f287a1a5 4291 return 0;
0fc1b451
AK
4292}
4293
ac27a0ec
DK
4294/*
4295 * Post the struct inode info into an on-disk inode location in the
4296 * buffer-cache. This gobbles the caller's reference to the
4297 * buffer_head in the inode location struct.
4298 *
4299 * The caller must have write access to iloc->bh.
4300 */
617ba13b 4301static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4302 struct inode *inode,
830156c7 4303 struct ext4_iloc *iloc)
ac27a0ec 4304{
617ba13b
MC
4305 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4306 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4307 struct buffer_head *bh = iloc->bh;
4308 int err = 0, rc, block;
b71fc079 4309 int need_datasync = 0;
08cefc7a
EB
4310 uid_t i_uid;
4311 gid_t i_gid;
ac27a0ec
DK
4312
4313 /* For fields not not tracking in the in-memory inode,
4314 * initialise them to zero for new inodes. */
19f5fb7a 4315 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4316 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4317
ff9ddf7e 4318 ext4_get_inode_flags(ei);
ac27a0ec 4319 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4320 i_uid = i_uid_read(inode);
4321 i_gid = i_gid_read(inode);
af5bc92d 4322 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4323 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4324 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4325/*
4326 * Fix up interoperability with old kernels. Otherwise, old inodes get
4327 * re-used with the upper 16 bits of the uid/gid intact
4328 */
af5bc92d 4329 if (!ei->i_dtime) {
ac27a0ec 4330 raw_inode->i_uid_high =
08cefc7a 4331 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4332 raw_inode->i_gid_high =
08cefc7a 4333 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4334 } else {
4335 raw_inode->i_uid_high = 0;
4336 raw_inode->i_gid_high = 0;
4337 }
4338 } else {
08cefc7a
EB
4339 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4340 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4341 raw_inode->i_uid_high = 0;
4342 raw_inode->i_gid_high = 0;
4343 }
4344 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4345
4346 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4347 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4348 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4349 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4350
0fc1b451
AK
4351 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4352 goto out_brelse;
ac27a0ec 4353 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4354 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4355 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4356 raw_inode->i_file_acl_high =
4357 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4358 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4359 if (ei->i_disksize != ext4_isize(raw_inode)) {
4360 ext4_isize_set(raw_inode, ei->i_disksize);
4361 need_datasync = 1;
4362 }
a48380f7
AK
4363 if (ei->i_disksize > 0x7fffffffULL) {
4364 struct super_block *sb = inode->i_sb;
4365 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4366 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4367 EXT4_SB(sb)->s_es->s_rev_level ==
4368 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4369 /* If this is the first large file
4370 * created, add a flag to the superblock.
4371 */
4372 err = ext4_journal_get_write_access(handle,
4373 EXT4_SB(sb)->s_sbh);
4374 if (err)
4375 goto out_brelse;
4376 ext4_update_dynamic_rev(sb);
4377 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4378 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4379 ext4_handle_sync(handle);
b50924c2 4380 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4381 }
4382 }
4383 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4384 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4385 if (old_valid_dev(inode->i_rdev)) {
4386 raw_inode->i_block[0] =
4387 cpu_to_le32(old_encode_dev(inode->i_rdev));
4388 raw_inode->i_block[1] = 0;
4389 } else {
4390 raw_inode->i_block[0] = 0;
4391 raw_inode->i_block[1] =
4392 cpu_to_le32(new_encode_dev(inode->i_rdev));
4393 raw_inode->i_block[2] = 0;
4394 }
f19d5870 4395 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4396 for (block = 0; block < EXT4_N_BLOCKS; block++)
4397 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4398 }
ac27a0ec 4399
ed3654eb 4400 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4401 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4402 if (ei->i_extra_isize) {
4403 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4404 raw_inode->i_version_hi =
4405 cpu_to_le32(inode->i_version >> 32);
4406 raw_inode->i_extra_isize =
4407 cpu_to_le16(ei->i_extra_isize);
4408 }
25ec56b5
JNC
4409 }
4410
814525f4
DW
4411 ext4_inode_csum_set(inode, raw_inode, ei);
4412
830156c7 4413 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4414 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4415 if (!err)
4416 err = rc;
19f5fb7a 4417 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4418
b71fc079 4419 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4420out_brelse:
af5bc92d 4421 brelse(bh);
617ba13b 4422 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4423 return err;
4424}
4425
4426/*
617ba13b 4427 * ext4_write_inode()
ac27a0ec
DK
4428 *
4429 * We are called from a few places:
4430 *
87f7e416 4431 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4432 * Here, there will be no transaction running. We wait for any running
4907cb7b 4433 * transaction to commit.
ac27a0ec 4434 *
87f7e416
TT
4435 * - Within flush work (sys_sync(), kupdate and such).
4436 * We wait on commit, if told to.
ac27a0ec 4437 *
87f7e416
TT
4438 * - Within iput_final() -> write_inode_now()
4439 * We wait on commit, if told to.
ac27a0ec
DK
4440 *
4441 * In all cases it is actually safe for us to return without doing anything,
4442 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4443 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4444 * writeback.
ac27a0ec
DK
4445 *
4446 * Note that we are absolutely dependent upon all inode dirtiers doing the
4447 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4448 * which we are interested.
4449 *
4450 * It would be a bug for them to not do this. The code:
4451 *
4452 * mark_inode_dirty(inode)
4453 * stuff();
4454 * inode->i_size = expr;
4455 *
87f7e416
TT
4456 * is in error because write_inode() could occur while `stuff()' is running,
4457 * and the new i_size will be lost. Plus the inode will no longer be on the
4458 * superblock's dirty inode list.
ac27a0ec 4459 */
a9185b41 4460int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4461{
91ac6f43
FM
4462 int err;
4463
87f7e416 4464 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4465 return 0;
4466
91ac6f43
FM
4467 if (EXT4_SB(inode->i_sb)->s_journal) {
4468 if (ext4_journal_current_handle()) {
4469 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4470 dump_stack();
4471 return -EIO;
4472 }
ac27a0ec 4473
10542c22
JK
4474 /*
4475 * No need to force transaction in WB_SYNC_NONE mode. Also
4476 * ext4_sync_fs() will force the commit after everything is
4477 * written.
4478 */
4479 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4480 return 0;
4481
4482 err = ext4_force_commit(inode->i_sb);
4483 } else {
4484 struct ext4_iloc iloc;
ac27a0ec 4485
8b472d73 4486 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4487 if (err)
4488 return err;
10542c22
JK
4489 /*
4490 * sync(2) will flush the whole buffer cache. No need to do
4491 * it here separately for each inode.
4492 */
4493 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4494 sync_dirty_buffer(iloc.bh);
4495 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4496 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4497 "IO error syncing inode");
830156c7
FM
4498 err = -EIO;
4499 }
fd2dd9fb 4500 brelse(iloc.bh);
91ac6f43
FM
4501 }
4502 return err;
ac27a0ec
DK
4503}
4504
53e87268
JK
4505/*
4506 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4507 * buffers that are attached to a page stradding i_size and are undergoing
4508 * commit. In that case we have to wait for commit to finish and try again.
4509 */
4510static void ext4_wait_for_tail_page_commit(struct inode *inode)
4511{
4512 struct page *page;
4513 unsigned offset;
4514 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4515 tid_t commit_tid = 0;
4516 int ret;
4517
4518 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4519 /*
4520 * All buffers in the last page remain valid? Then there's nothing to
4521 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4522 * blocksize case
4523 */
4524 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4525 return;
4526 while (1) {
4527 page = find_lock_page(inode->i_mapping,
4528 inode->i_size >> PAGE_CACHE_SHIFT);
4529 if (!page)
4530 return;
ca99fdd2
LC
4531 ret = __ext4_journalled_invalidatepage(page, offset,
4532 PAGE_CACHE_SIZE - offset);
53e87268
JK
4533 unlock_page(page);
4534 page_cache_release(page);
4535 if (ret != -EBUSY)
4536 return;
4537 commit_tid = 0;
4538 read_lock(&journal->j_state_lock);
4539 if (journal->j_committing_transaction)
4540 commit_tid = journal->j_committing_transaction->t_tid;
4541 read_unlock(&journal->j_state_lock);
4542 if (commit_tid)
4543 jbd2_log_wait_commit(journal, commit_tid);
4544 }
4545}
4546
ac27a0ec 4547/*
617ba13b 4548 * ext4_setattr()
ac27a0ec
DK
4549 *
4550 * Called from notify_change.
4551 *
4552 * We want to trap VFS attempts to truncate the file as soon as
4553 * possible. In particular, we want to make sure that when the VFS
4554 * shrinks i_size, we put the inode on the orphan list and modify
4555 * i_disksize immediately, so that during the subsequent flushing of
4556 * dirty pages and freeing of disk blocks, we can guarantee that any
4557 * commit will leave the blocks being flushed in an unused state on
4558 * disk. (On recovery, the inode will get truncated and the blocks will
4559 * be freed, so we have a strong guarantee that no future commit will
4560 * leave these blocks visible to the user.)
4561 *
678aaf48
JK
4562 * Another thing we have to assure is that if we are in ordered mode
4563 * and inode is still attached to the committing transaction, we must
4564 * we start writeout of all the dirty pages which are being truncated.
4565 * This way we are sure that all the data written in the previous
4566 * transaction are already on disk (truncate waits for pages under
4567 * writeback).
4568 *
4569 * Called with inode->i_mutex down.
ac27a0ec 4570 */
617ba13b 4571int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4572{
4573 struct inode *inode = dentry->d_inode;
4574 int error, rc = 0;
3d287de3 4575 int orphan = 0;
ac27a0ec
DK
4576 const unsigned int ia_valid = attr->ia_valid;
4577
4578 error = inode_change_ok(inode, attr);
4579 if (error)
4580 return error;
4581
12755627 4582 if (is_quota_modification(inode, attr))
871a2931 4583 dquot_initialize(inode);
08cefc7a
EB
4584 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4585 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4586 handle_t *handle;
4587
4588 /* (user+group)*(old+new) structure, inode write (sb,
4589 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4590 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4591 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4592 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4593 if (IS_ERR(handle)) {
4594 error = PTR_ERR(handle);
4595 goto err_out;
4596 }
b43fa828 4597 error = dquot_transfer(inode, attr);
ac27a0ec 4598 if (error) {
617ba13b 4599 ext4_journal_stop(handle);
ac27a0ec
DK
4600 return error;
4601 }
4602 /* Update corresponding info in inode so that everything is in
4603 * one transaction */
4604 if (attr->ia_valid & ATTR_UID)
4605 inode->i_uid = attr->ia_uid;
4606 if (attr->ia_valid & ATTR_GID)
4607 inode->i_gid = attr->ia_gid;
617ba13b
MC
4608 error = ext4_mark_inode_dirty(handle, inode);
4609 ext4_journal_stop(handle);
ac27a0ec
DK
4610 }
4611
5208386c
JK
4612 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4613 handle_t *handle;
562c72aa 4614
12e9b892 4615 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4616 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4617
0c095c7f
TT
4618 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4619 return -EFBIG;
e2b46574 4620 }
dff6efc3
CH
4621
4622 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4623 inode_inc_iversion(inode);
4624
5208386c
JK
4625 if (S_ISREG(inode->i_mode) &&
4626 (attr->ia_size < inode->i_size)) {
4627 if (ext4_should_order_data(inode)) {
4628 error = ext4_begin_ordered_truncate(inode,
678aaf48 4629 attr->ia_size);
5208386c 4630 if (error)
678aaf48 4631 goto err_out;
5208386c
JK
4632 }
4633 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4634 if (IS_ERR(handle)) {
4635 error = PTR_ERR(handle);
4636 goto err_out;
4637 }
4638 if (ext4_handle_valid(handle)) {
4639 error = ext4_orphan_add(handle, inode);
4640 orphan = 1;
4641 }
90e775b7 4642 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4643 EXT4_I(inode)->i_disksize = attr->ia_size;
4644 rc = ext4_mark_inode_dirty(handle, inode);
4645 if (!error)
4646 error = rc;
90e775b7
JK
4647 /*
4648 * We have to update i_size under i_data_sem together
4649 * with i_disksize to avoid races with writeback code
4650 * running ext4_wb_update_i_disksize().
4651 */
4652 if (!error)
4653 i_size_write(inode, attr->ia_size);
4654 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4655 ext4_journal_stop(handle);
4656 if (error) {
4657 ext4_orphan_del(NULL, inode);
678aaf48
JK
4658 goto err_out;
4659 }
90e775b7
JK
4660 } else
4661 i_size_write(inode, attr->ia_size);
53e87268 4662
5208386c
JK
4663 /*
4664 * Blocks are going to be removed from the inode. Wait
4665 * for dio in flight. Temporarily disable
4666 * dioread_nolock to prevent livelock.
4667 */
4668 if (orphan) {
4669 if (!ext4_should_journal_data(inode)) {
4670 ext4_inode_block_unlocked_dio(inode);
4671 inode_dio_wait(inode);
4672 ext4_inode_resume_unlocked_dio(inode);
4673 } else
4674 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4675 }
5208386c
JK
4676 /*
4677 * Truncate pagecache after we've waited for commit
4678 * in data=journal mode to make pages freeable.
4679 */
7caef267 4680 truncate_pagecache(inode, inode->i_size);
072bd7ea 4681 }
5208386c
JK
4682 /*
4683 * We want to call ext4_truncate() even if attr->ia_size ==
4684 * inode->i_size for cases like truncation of fallocated space
4685 */
4686 if (attr->ia_valid & ATTR_SIZE)
4687 ext4_truncate(inode);
ac27a0ec 4688
1025774c
CH
4689 if (!rc) {
4690 setattr_copy(inode, attr);
4691 mark_inode_dirty(inode);
4692 }
4693
4694 /*
4695 * If the call to ext4_truncate failed to get a transaction handle at
4696 * all, we need to clean up the in-core orphan list manually.
4697 */
3d287de3 4698 if (orphan && inode->i_nlink)
617ba13b 4699 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4700
4701 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4702 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4703
4704err_out:
617ba13b 4705 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4706 if (!error)
4707 error = rc;
4708 return error;
4709}
4710
3e3398a0
MC
4711int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4712 struct kstat *stat)
4713{
4714 struct inode *inode;
8af8eecc 4715 unsigned long long delalloc_blocks;
3e3398a0
MC
4716
4717 inode = dentry->d_inode;
4718 generic_fillattr(inode, stat);
4719
9206c561
AD
4720 /*
4721 * If there is inline data in the inode, the inode will normally not
4722 * have data blocks allocated (it may have an external xattr block).
4723 * Report at least one sector for such files, so tools like tar, rsync,
4724 * others doen't incorrectly think the file is completely sparse.
4725 */
4726 if (unlikely(ext4_has_inline_data(inode)))
4727 stat->blocks += (stat->size + 511) >> 9;
4728
3e3398a0
MC
4729 /*
4730 * We can't update i_blocks if the block allocation is delayed
4731 * otherwise in the case of system crash before the real block
4732 * allocation is done, we will have i_blocks inconsistent with
4733 * on-disk file blocks.
4734 * We always keep i_blocks updated together with real
4735 * allocation. But to not confuse with user, stat
4736 * will return the blocks that include the delayed allocation
4737 * blocks for this file.
4738 */
96607551 4739 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4740 EXT4_I(inode)->i_reserved_data_blocks);
4741 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4742 return 0;
4743}
ac27a0ec 4744
fffb2739
JK
4745static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4746 int pextents)
a02908f1 4747{
12e9b892 4748 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4749 return ext4_ind_trans_blocks(inode, lblocks);
4750 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4751}
ac51d837 4752
ac27a0ec 4753/*
a02908f1
MC
4754 * Account for index blocks, block groups bitmaps and block group
4755 * descriptor blocks if modify datablocks and index blocks
4756 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4757 *
a02908f1 4758 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4759 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4760 * they could still across block group boundary.
ac27a0ec 4761 *
a02908f1
MC
4762 * Also account for superblock, inode, quota and xattr blocks
4763 */
fffb2739
JK
4764static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4765 int pextents)
a02908f1 4766{
8df9675f
TT
4767 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4768 int gdpblocks;
a02908f1
MC
4769 int idxblocks;
4770 int ret = 0;
4771
4772 /*
fffb2739
JK
4773 * How many index blocks need to touch to map @lblocks logical blocks
4774 * to @pextents physical extents?
a02908f1 4775 */
fffb2739 4776 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4777
4778 ret = idxblocks;
4779
4780 /*
4781 * Now let's see how many group bitmaps and group descriptors need
4782 * to account
4783 */
fffb2739 4784 groups = idxblocks + pextents;
a02908f1 4785 gdpblocks = groups;
8df9675f
TT
4786 if (groups > ngroups)
4787 groups = ngroups;
a02908f1
MC
4788 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4789 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4790
4791 /* bitmaps and block group descriptor blocks */
4792 ret += groups + gdpblocks;
4793
4794 /* Blocks for super block, inode, quota and xattr blocks */
4795 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4796
4797 return ret;
4798}
4799
4800/*
25985edc 4801 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4802 * the modification of a single pages into a single transaction,
4803 * which may include multiple chunks of block allocations.
ac27a0ec 4804 *
525f4ed8 4805 * This could be called via ext4_write_begin()
ac27a0ec 4806 *
525f4ed8 4807 * We need to consider the worse case, when
a02908f1 4808 * one new block per extent.
ac27a0ec 4809 */
a86c6181 4810int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4811{
617ba13b 4812 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4813 int ret;
4814
fffb2739 4815 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4816
a02908f1 4817 /* Account for data blocks for journalled mode */
617ba13b 4818 if (ext4_should_journal_data(inode))
a02908f1 4819 ret += bpp;
ac27a0ec
DK
4820 return ret;
4821}
f3bd1f3f
MC
4822
4823/*
4824 * Calculate the journal credits for a chunk of data modification.
4825 *
4826 * This is called from DIO, fallocate or whoever calling
79e83036 4827 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4828 *
4829 * journal buffers for data blocks are not included here, as DIO
4830 * and fallocate do no need to journal data buffers.
4831 */
4832int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4833{
4834 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4835}
4836
ac27a0ec 4837/*
617ba13b 4838 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4839 * Give this, we know that the caller already has write access to iloc->bh.
4840 */
617ba13b 4841int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4842 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4843{
4844 int err = 0;
4845
c64db50e 4846 if (IS_I_VERSION(inode))
25ec56b5
JNC
4847 inode_inc_iversion(inode);
4848
ac27a0ec
DK
4849 /* the do_update_inode consumes one bh->b_count */
4850 get_bh(iloc->bh);
4851
dab291af 4852 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4853 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4854 put_bh(iloc->bh);
4855 return err;
4856}
4857
4858/*
4859 * On success, We end up with an outstanding reference count against
4860 * iloc->bh. This _must_ be cleaned up later.
4861 */
4862
4863int
617ba13b
MC
4864ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4865 struct ext4_iloc *iloc)
ac27a0ec 4866{
0390131b
FM
4867 int err;
4868
4869 err = ext4_get_inode_loc(inode, iloc);
4870 if (!err) {
4871 BUFFER_TRACE(iloc->bh, "get_write_access");
4872 err = ext4_journal_get_write_access(handle, iloc->bh);
4873 if (err) {
4874 brelse(iloc->bh);
4875 iloc->bh = NULL;
ac27a0ec
DK
4876 }
4877 }
617ba13b 4878 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4879 return err;
4880}
4881
6dd4ee7c
KS
4882/*
4883 * Expand an inode by new_extra_isize bytes.
4884 * Returns 0 on success or negative error number on failure.
4885 */
1d03ec98
AK
4886static int ext4_expand_extra_isize(struct inode *inode,
4887 unsigned int new_extra_isize,
4888 struct ext4_iloc iloc,
4889 handle_t *handle)
6dd4ee7c
KS
4890{
4891 struct ext4_inode *raw_inode;
4892 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4893
4894 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4895 return 0;
4896
4897 raw_inode = ext4_raw_inode(&iloc);
4898
4899 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4900
4901 /* No extended attributes present */
19f5fb7a
TT
4902 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4903 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4904 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4905 new_extra_isize);
4906 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4907 return 0;
4908 }
4909
4910 /* try to expand with EAs present */
4911 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4912 raw_inode, handle);
4913}
4914
ac27a0ec
DK
4915/*
4916 * What we do here is to mark the in-core inode as clean with respect to inode
4917 * dirtiness (it may still be data-dirty).
4918 * This means that the in-core inode may be reaped by prune_icache
4919 * without having to perform any I/O. This is a very good thing,
4920 * because *any* task may call prune_icache - even ones which
4921 * have a transaction open against a different journal.
4922 *
4923 * Is this cheating? Not really. Sure, we haven't written the
4924 * inode out, but prune_icache isn't a user-visible syncing function.
4925 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4926 * we start and wait on commits.
ac27a0ec 4927 */
617ba13b 4928int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4929{
617ba13b 4930 struct ext4_iloc iloc;
6dd4ee7c
KS
4931 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4932 static unsigned int mnt_count;
4933 int err, ret;
ac27a0ec
DK
4934
4935 might_sleep();
7ff9c073 4936 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4937 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4938 if (ext4_handle_valid(handle) &&
4939 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4940 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4941 /*
4942 * We need extra buffer credits since we may write into EA block
4943 * with this same handle. If journal_extend fails, then it will
4944 * only result in a minor loss of functionality for that inode.
4945 * If this is felt to be critical, then e2fsck should be run to
4946 * force a large enough s_min_extra_isize.
4947 */
4948 if ((jbd2_journal_extend(handle,
4949 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4950 ret = ext4_expand_extra_isize(inode,
4951 sbi->s_want_extra_isize,
4952 iloc, handle);
4953 if (ret) {
19f5fb7a
TT
4954 ext4_set_inode_state(inode,
4955 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4956 if (mnt_count !=
4957 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4958 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4959 "Unable to expand inode %lu. Delete"
4960 " some EAs or run e2fsck.",
4961 inode->i_ino);
c1bddad9
AK
4962 mnt_count =
4963 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4964 }
4965 }
4966 }
4967 }
ac27a0ec 4968 if (!err)
617ba13b 4969 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4970 return err;
4971}
4972
4973/*
617ba13b 4974 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4975 *
4976 * We're really interested in the case where a file is being extended.
4977 * i_size has been changed by generic_commit_write() and we thus need
4978 * to include the updated inode in the current transaction.
4979 *
5dd4056d 4980 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4981 * are allocated to the file.
4982 *
4983 * If the inode is marked synchronous, we don't honour that here - doing
4984 * so would cause a commit on atime updates, which we don't bother doing.
4985 * We handle synchronous inodes at the highest possible level.
4986 */
aa385729 4987void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4988{
ac27a0ec
DK
4989 handle_t *handle;
4990
9924a92a 4991 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4992 if (IS_ERR(handle))
4993 goto out;
f3dc272f 4994
f3dc272f
CW
4995 ext4_mark_inode_dirty(handle, inode);
4996
617ba13b 4997 ext4_journal_stop(handle);
ac27a0ec
DK
4998out:
4999 return;
5000}
5001
5002#if 0
5003/*
5004 * Bind an inode's backing buffer_head into this transaction, to prevent
5005 * it from being flushed to disk early. Unlike
617ba13b 5006 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5007 * returns no iloc structure, so the caller needs to repeat the iloc
5008 * lookup to mark the inode dirty later.
5009 */
617ba13b 5010static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5011{
617ba13b 5012 struct ext4_iloc iloc;
ac27a0ec
DK
5013
5014 int err = 0;
5015 if (handle) {
617ba13b 5016 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5017 if (!err) {
5018 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5019 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5020 if (!err)
0390131b 5021 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5022 NULL,
0390131b 5023 iloc.bh);
ac27a0ec
DK
5024 brelse(iloc.bh);
5025 }
5026 }
617ba13b 5027 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5028 return err;
5029}
5030#endif
5031
617ba13b 5032int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5033{
5034 journal_t *journal;
5035 handle_t *handle;
5036 int err;
5037
5038 /*
5039 * We have to be very careful here: changing a data block's
5040 * journaling status dynamically is dangerous. If we write a
5041 * data block to the journal, change the status and then delete
5042 * that block, we risk forgetting to revoke the old log record
5043 * from the journal and so a subsequent replay can corrupt data.
5044 * So, first we make sure that the journal is empty and that
5045 * nobody is changing anything.
5046 */
5047
617ba13b 5048 journal = EXT4_JOURNAL(inode);
0390131b
FM
5049 if (!journal)
5050 return 0;
d699594d 5051 if (is_journal_aborted(journal))
ac27a0ec 5052 return -EROFS;
2aff57b0
YY
5053 /* We have to allocate physical blocks for delalloc blocks
5054 * before flushing journal. otherwise delalloc blocks can not
5055 * be allocated any more. even more truncate on delalloc blocks
5056 * could trigger BUG by flushing delalloc blocks in journal.
5057 * There is no delalloc block in non-journal data mode.
5058 */
5059 if (val && test_opt(inode->i_sb, DELALLOC)) {
5060 err = ext4_alloc_da_blocks(inode);
5061 if (err < 0)
5062 return err;
5063 }
ac27a0ec 5064
17335dcc
DM
5065 /* Wait for all existing dio workers */
5066 ext4_inode_block_unlocked_dio(inode);
5067 inode_dio_wait(inode);
5068
dab291af 5069 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5070
5071 /*
5072 * OK, there are no updates running now, and all cached data is
5073 * synced to disk. We are now in a completely consistent state
5074 * which doesn't have anything in the journal, and we know that
5075 * no filesystem updates are running, so it is safe to modify
5076 * the inode's in-core data-journaling state flag now.
5077 */
5078
5079 if (val)
12e9b892 5080 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5081 else {
5082 jbd2_journal_flush(journal);
12e9b892 5083 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5084 }
617ba13b 5085 ext4_set_aops(inode);
ac27a0ec 5086
dab291af 5087 jbd2_journal_unlock_updates(journal);
17335dcc 5088 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5089
5090 /* Finally we can mark the inode as dirty. */
5091
9924a92a 5092 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5093 if (IS_ERR(handle))
5094 return PTR_ERR(handle);
5095
617ba13b 5096 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5097 ext4_handle_sync(handle);
617ba13b
MC
5098 ext4_journal_stop(handle);
5099 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5100
5101 return err;
5102}
2e9ee850
AK
5103
5104static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5105{
5106 return !buffer_mapped(bh);
5107}
5108
c2ec175c 5109int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5110{
c2ec175c 5111 struct page *page = vmf->page;
2e9ee850
AK
5112 loff_t size;
5113 unsigned long len;
9ea7df53 5114 int ret;
2e9ee850 5115 struct file *file = vma->vm_file;
496ad9aa 5116 struct inode *inode = file_inode(file);
2e9ee850 5117 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5118 handle_t *handle;
5119 get_block_t *get_block;
5120 int retries = 0;
2e9ee850 5121
8e8ad8a5 5122 sb_start_pagefault(inode->i_sb);
041bbb6d 5123 file_update_time(vma->vm_file);
9ea7df53
JK
5124 /* Delalloc case is easy... */
5125 if (test_opt(inode->i_sb, DELALLOC) &&
5126 !ext4_should_journal_data(inode) &&
5127 !ext4_nonda_switch(inode->i_sb)) {
5128 do {
5129 ret = __block_page_mkwrite(vma, vmf,
5130 ext4_da_get_block_prep);
5131 } while (ret == -ENOSPC &&
5132 ext4_should_retry_alloc(inode->i_sb, &retries));
5133 goto out_ret;
2e9ee850 5134 }
0e499890
DW
5135
5136 lock_page(page);
9ea7df53
JK
5137 size = i_size_read(inode);
5138 /* Page got truncated from under us? */
5139 if (page->mapping != mapping || page_offset(page) > size) {
5140 unlock_page(page);
5141 ret = VM_FAULT_NOPAGE;
5142 goto out;
0e499890 5143 }
2e9ee850
AK
5144
5145 if (page->index == size >> PAGE_CACHE_SHIFT)
5146 len = size & ~PAGE_CACHE_MASK;
5147 else
5148 len = PAGE_CACHE_SIZE;
a827eaff 5149 /*
9ea7df53
JK
5150 * Return if we have all the buffers mapped. This avoids the need to do
5151 * journal_start/journal_stop which can block and take a long time
a827eaff 5152 */
2e9ee850 5153 if (page_has_buffers(page)) {
f19d5870
TM
5154 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5155 0, len, NULL,
5156 ext4_bh_unmapped)) {
9ea7df53 5157 /* Wait so that we don't change page under IO */
1d1d1a76 5158 wait_for_stable_page(page);
9ea7df53
JK
5159 ret = VM_FAULT_LOCKED;
5160 goto out;
a827eaff 5161 }
2e9ee850 5162 }
a827eaff 5163 unlock_page(page);
9ea7df53
JK
5164 /* OK, we need to fill the hole... */
5165 if (ext4_should_dioread_nolock(inode))
5166 get_block = ext4_get_block_write;
5167 else
5168 get_block = ext4_get_block;
5169retry_alloc:
9924a92a
TT
5170 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5171 ext4_writepage_trans_blocks(inode));
9ea7df53 5172 if (IS_ERR(handle)) {
c2ec175c 5173 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5174 goto out;
5175 }
5176 ret = __block_page_mkwrite(vma, vmf, get_block);
5177 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5178 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5179 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5180 unlock_page(page);
5181 ret = VM_FAULT_SIGBUS;
fcbb5515 5182 ext4_journal_stop(handle);
9ea7df53
JK
5183 goto out;
5184 }
5185 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5186 }
5187 ext4_journal_stop(handle);
5188 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5189 goto retry_alloc;
5190out_ret:
5191 ret = block_page_mkwrite_return(ret);
5192out:
8e8ad8a5 5193 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5194 return ret;
5195}