]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: evict inline data out if we need to strore xattr in inode
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9f125d64 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a
BF
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
f5ab0d1f 486/*
e35fd660 487 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 488 * and returns if the blocks are already mapped.
f5ab0d1f 489 *
f5ab0d1f
MC
490 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491 * and store the allocated blocks in the result buffer head and mark it
492 * mapped.
493 *
e35fd660
TT
494 * If file type is extents based, it will call ext4_ext_map_blocks(),
495 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
496 * based files
497 *
498 * On success, it returns the number of blocks being mapped or allocate.
499 * if create==0 and the blocks are pre-allocated and uninitialized block,
500 * the result buffer head is unmapped. If the create ==1, it will make sure
501 * the buffer head is mapped.
502 *
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 504 * that case, buffer head is unmapped
f5ab0d1f
MC
505 *
506 * It returns the error in case of allocation failure.
507 */
e35fd660
TT
508int ext4_map_blocks(handle_t *handle, struct inode *inode,
509 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
510{
511 int retval;
f5ab0d1f 512
e35fd660
TT
513 map->m_flags = 0;
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
4df3d265 517 /*
b920c755
TT
518 * Try to see if we can get the block without requesting a new
519 * file system block.
4df3d265 520 */
729f52c6
ZL
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 526 } else {
a4e5d88b
DM
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 }
729f52c6
ZL
530 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 532
e35fd660 533 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
51865fda
ZL
534 int ret;
535 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536 /* delayed alloc may be allocated by fallocate and
537 * coverted to initialized by directIO.
538 * we need to handle delayed extent here.
539 */
540 down_write((&EXT4_I(inode)->i_data_sem));
541 goto delayed_mapped;
542 }
543 ret = check_block_validity(inode, map);
6fd058f7
TT
544 if (ret != 0)
545 return ret;
546 }
547
f5ab0d1f 548 /* If it is only a block(s) look up */
c2177057 549 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
550 return retval;
551
552 /*
553 * Returns if the blocks have already allocated
554 *
555 * Note that if blocks have been preallocated
df3ab170 556 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
557 * with buffer head unmapped.
558 */
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
560 return retval;
561
2a8964d6
AK
562 /*
563 * When we call get_blocks without the create flag, the
564 * BH_Unwritten flag could have gotten set if the blocks
565 * requested were part of a uninitialized extent. We need to
566 * clear this flag now that we are committed to convert all or
567 * part of the uninitialized extent to be an initialized
568 * extent. This is because we need to avoid the combination
569 * of BH_Unwritten and BH_Mapped flags being simultaneously
570 * set on the buffer_head.
571 */
e35fd660 572 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 573
4df3d265 574 /*
f5ab0d1f
MC
575 * New blocks allocate and/or writing to uninitialized extent
576 * will possibly result in updating i_data, so we take
577 * the write lock of i_data_sem, and call get_blocks()
578 * with create == 1 flag.
4df3d265
AK
579 */
580 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
581
582 /*
583 * if the caller is from delayed allocation writeout path
584 * we have already reserved fs blocks for allocation
585 * let the underlying get_block() function know to
586 * avoid double accounting
587 */
c2177057 588 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 589 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
590 /*
591 * We need to check for EXT4 here because migrate
592 * could have changed the inode type in between
593 */
12e9b892 594 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 595 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 596 } else {
e35fd660 597 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 598
e35fd660 599 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
600 /*
601 * We allocated new blocks which will result in
602 * i_data's format changing. Force the migrate
603 * to fail by clearing migrate flags
604 */
19f5fb7a 605 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 606 }
d2a17637 607
5f634d06
AK
608 /*
609 * Update reserved blocks/metadata blocks after successful
610 * block allocation which had been deferred till now. We don't
611 * support fallocate for non extent files. So we can update
612 * reserve space here.
613 */
614 if ((retval > 0) &&
1296cc85 615 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
616 ext4_da_update_reserve_space(inode, retval, 1);
617 }
5356f261 618 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 619 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 620
51865fda
ZL
621 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622 int ret;
51865fda
ZL
623delayed_mapped:
624 /* delayed allocation blocks has been allocated */
625 ret = ext4_es_remove_extent(inode, map->m_lblk,
626 map->m_len);
627 if (ret < 0)
628 retval = ret;
629 }
5356f261
AK
630 }
631
4df3d265 632 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 633 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 634 int ret = check_block_validity(inode, map);
6fd058f7
TT
635 if (ret != 0)
636 return ret;
637 }
0e855ac8
AK
638 return retval;
639}
640
f3bd1f3f
MC
641/* Maximum number of blocks we map for direct IO at once. */
642#define DIO_MAX_BLOCKS 4096
643
2ed88685
TT
644static int _ext4_get_block(struct inode *inode, sector_t iblock,
645 struct buffer_head *bh, int flags)
ac27a0ec 646{
3e4fdaf8 647 handle_t *handle = ext4_journal_current_handle();
2ed88685 648 struct ext4_map_blocks map;
7fb5409d 649 int ret = 0, started = 0;
f3bd1f3f 650 int dio_credits;
ac27a0ec 651
46c7f254
TM
652 if (ext4_has_inline_data(inode))
653 return -ERANGE;
654
2ed88685
TT
655 map.m_lblk = iblock;
656 map.m_len = bh->b_size >> inode->i_blkbits;
657
8b0f165f 658 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 659 /* Direct IO write... */
2ed88685
TT
660 if (map.m_len > DIO_MAX_BLOCKS)
661 map.m_len = DIO_MAX_BLOCKS;
662 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 663 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 664 if (IS_ERR(handle)) {
ac27a0ec 665 ret = PTR_ERR(handle);
2ed88685 666 return ret;
ac27a0ec 667 }
7fb5409d 668 started = 1;
ac27a0ec
DK
669 }
670
2ed88685 671 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 672 if (ret > 0) {
2ed88685
TT
673 map_bh(bh, inode->i_sb, map.m_pblk);
674 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 676 ret = 0;
ac27a0ec 677 }
7fb5409d
JK
678 if (started)
679 ext4_journal_stop(handle);
ac27a0ec
DK
680 return ret;
681}
682
2ed88685
TT
683int ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int create)
685{
686 return _ext4_get_block(inode, iblock, bh,
687 create ? EXT4_GET_BLOCKS_CREATE : 0);
688}
689
ac27a0ec
DK
690/*
691 * `handle' can be NULL if create is zero
692 */
617ba13b 693struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 694 ext4_lblk_t block, int create, int *errp)
ac27a0ec 695{
2ed88685
TT
696 struct ext4_map_blocks map;
697 struct buffer_head *bh;
ac27a0ec
DK
698 int fatal = 0, err;
699
700 J_ASSERT(handle != NULL || create == 0);
701
2ed88685
TT
702 map.m_lblk = block;
703 map.m_len = 1;
704 err = ext4_map_blocks(handle, inode, &map,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 706
90b0a973
CM
707 /* ensure we send some value back into *errp */
708 *errp = 0;
709
2ed88685
TT
710 if (err < 0)
711 *errp = err;
712 if (err <= 0)
713 return NULL;
2ed88685
TT
714
715 bh = sb_getblk(inode->i_sb, map.m_pblk);
716 if (!bh) {
717 *errp = -EIO;
718 return NULL;
ac27a0ec 719 }
2ed88685
TT
720 if (map.m_flags & EXT4_MAP_NEW) {
721 J_ASSERT(create != 0);
722 J_ASSERT(handle != NULL);
ac27a0ec 723
2ed88685
TT
724 /*
725 * Now that we do not always journal data, we should
726 * keep in mind whether this should always journal the
727 * new buffer as metadata. For now, regular file
728 * writes use ext4_get_block instead, so it's not a
729 * problem.
730 */
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 fatal = ext4_journal_get_create_access(handle, bh);
734 if (!fatal && !buffer_uptodate(bh)) {
735 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736 set_buffer_uptodate(bh);
ac27a0ec 737 }
2ed88685
TT
738 unlock_buffer(bh);
739 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740 err = ext4_handle_dirty_metadata(handle, inode, bh);
741 if (!fatal)
742 fatal = err;
743 } else {
744 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 745 }
2ed88685
TT
746 if (fatal) {
747 *errp = fatal;
748 brelse(bh);
749 bh = NULL;
750 }
751 return bh;
ac27a0ec
DK
752}
753
617ba13b 754struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *err)
ac27a0ec 756{
af5bc92d 757 struct buffer_head *bh;
ac27a0ec 758
617ba13b 759 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
760 if (!bh)
761 return bh;
762 if (buffer_uptodate(bh))
763 return bh;
65299a3b 764 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
765 wait_on_buffer(bh);
766 if (buffer_uptodate(bh))
767 return bh;
768 put_bh(bh);
769 *err = -EIO;
770 return NULL;
771}
772
f19d5870
TM
773int ext4_walk_page_buffers(handle_t *handle,
774 struct buffer_head *head,
775 unsigned from,
776 unsigned to,
777 int *partial,
778 int (*fn)(handle_t *handle,
779 struct buffer_head *bh))
ac27a0ec
DK
780{
781 struct buffer_head *bh;
782 unsigned block_start, block_end;
783 unsigned blocksize = head->b_size;
784 int err, ret = 0;
785 struct buffer_head *next;
786
af5bc92d
TT
787 for (bh = head, block_start = 0;
788 ret == 0 && (bh != head || !block_start);
de9a55b8 789 block_start = block_end, bh = next) {
ac27a0ec
DK
790 next = bh->b_this_page;
791 block_end = block_start + blocksize;
792 if (block_end <= from || block_start >= to) {
793 if (partial && !buffer_uptodate(bh))
794 *partial = 1;
795 continue;
796 }
797 err = (*fn)(handle, bh);
798 if (!ret)
799 ret = err;
800 }
801 return ret;
802}
803
804/*
805 * To preserve ordering, it is essential that the hole instantiation and
806 * the data write be encapsulated in a single transaction. We cannot
617ba13b 807 * close off a transaction and start a new one between the ext4_get_block()
dab291af 808 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
809 * prepare_write() is the right place.
810 *
617ba13b
MC
811 * Also, this function can nest inside ext4_writepage() ->
812 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
813 * has generated enough buffer credits to do the whole page. So we won't
814 * block on the journal in that case, which is good, because the caller may
815 * be PF_MEMALLOC.
816 *
617ba13b 817 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
818 * quota file writes. If we were to commit the transaction while thus
819 * reentered, there can be a deadlock - we would be holding a quota
820 * lock, and the commit would never complete if another thread had a
821 * transaction open and was blocking on the quota lock - a ranking
822 * violation.
823 *
dab291af 824 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
825 * will _not_ run commit under these circumstances because handle->h_ref
826 * is elevated. We'll still have enough credits for the tiny quotafile
827 * write.
828 */
f19d5870
TM
829int do_journal_get_write_access(handle_t *handle,
830 struct buffer_head *bh)
ac27a0ec 831{
56d35a4c
JK
832 int dirty = buffer_dirty(bh);
833 int ret;
834
ac27a0ec
DK
835 if (!buffer_mapped(bh) || buffer_freed(bh))
836 return 0;
56d35a4c 837 /*
ebdec241 838 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
839 * the dirty bit as jbd2_journal_get_write_access() could complain
840 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 841 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
842 * the bit before releasing a page lock and thus writeback cannot
843 * ever write the buffer.
844 */
845 if (dirty)
846 clear_buffer_dirty(bh);
847 ret = ext4_journal_get_write_access(handle, bh);
848 if (!ret && dirty)
849 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850 return ret;
ac27a0ec
DK
851}
852
8b0f165f
AP
853static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh_result, int create);
bfc1af65 855static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
856 loff_t pos, unsigned len, unsigned flags,
857 struct page **pagep, void **fsdata)
ac27a0ec 858{
af5bc92d 859 struct inode *inode = mapping->host;
1938a150 860 int ret, needed_blocks;
ac27a0ec
DK
861 handle_t *handle;
862 int retries = 0;
af5bc92d 863 struct page *page;
de9a55b8 864 pgoff_t index;
af5bc92d 865 unsigned from, to;
bfc1af65 866
9bffad1e 867 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
868 /*
869 * Reserve one block more for addition to orphan list in case
870 * we allocate blocks but write fails for some reason
871 */
872 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 873 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
874 from = pos & (PAGE_CACHE_SIZE - 1);
875 to = from + len;
ac27a0ec 876
f19d5870
TM
877 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
878 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
879 flags, pagep);
880 if (ret < 0)
881 goto out;
882 if (ret == 1) {
883 ret = 0;
884 goto out;
885 }
886 }
887
ac27a0ec 888retry:
af5bc92d
TT
889 handle = ext4_journal_start(inode, needed_blocks);
890 if (IS_ERR(handle)) {
891 ret = PTR_ERR(handle);
892 goto out;
7479d2b9 893 }
ac27a0ec 894
ebd3610b
JK
895 /* We cannot recurse into the filesystem as the transaction is already
896 * started */
897 flags |= AOP_FLAG_NOFS;
898
54566b2c 899 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
900 if (!page) {
901 ext4_journal_stop(handle);
902 ret = -ENOMEM;
903 goto out;
904 }
f19d5870 905
cf108bca
JK
906 *pagep = page;
907
744692dc 908 if (ext4_should_dioread_nolock(inode))
6e1db88d 909 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 910 else
6e1db88d 911 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
912
913 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
914 ret = ext4_walk_page_buffers(handle, page_buffers(page),
915 from, to, NULL,
916 do_journal_get_write_access);
ac27a0ec 917 }
bfc1af65
NP
918
919 if (ret) {
af5bc92d 920 unlock_page(page);
af5bc92d 921 page_cache_release(page);
ae4d5372 922 /*
6e1db88d 923 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
924 * outside i_size. Trim these off again. Don't need
925 * i_size_read because we hold i_mutex.
1938a150
AK
926 *
927 * Add inode to orphan list in case we crash before
928 * truncate finishes
ae4d5372 929 */
ffacfa7a 930 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
931 ext4_orphan_add(handle, inode);
932
933 ext4_journal_stop(handle);
934 if (pos + len > inode->i_size) {
b9a4207d 935 ext4_truncate_failed_write(inode);
de9a55b8 936 /*
ffacfa7a 937 * If truncate failed early the inode might
1938a150
AK
938 * still be on the orphan list; we need to
939 * make sure the inode is removed from the
940 * orphan list in that case.
941 */
942 if (inode->i_nlink)
943 ext4_orphan_del(NULL, inode);
944 }
bfc1af65
NP
945 }
946
617ba13b 947 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 948 goto retry;
7479d2b9 949out:
ac27a0ec
DK
950 return ret;
951}
952
bfc1af65
NP
953/* For write_end() in data=journal mode */
954static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
955{
956 if (!buffer_mapped(bh) || buffer_freed(bh))
957 return 0;
958 set_buffer_uptodate(bh);
0390131b 959 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
960}
961
f8514083 962static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
963 struct address_space *mapping,
964 loff_t pos, unsigned len, unsigned copied,
965 struct page *page, void *fsdata)
f8514083
AK
966{
967 int i_size_changed = 0;
968 struct inode *inode = mapping->host;
969 handle_t *handle = ext4_journal_current_handle();
970
f19d5870
TM
971 if (ext4_has_inline_data(inode))
972 copied = ext4_write_inline_data_end(inode, pos, len,
973 copied, page);
974 else
975 copied = block_write_end(file, mapping, pos,
976 len, copied, page, fsdata);
f8514083
AK
977
978 /*
979 * No need to use i_size_read() here, the i_size
980 * cannot change under us because we hold i_mutex.
981 *
982 * But it's important to update i_size while still holding page lock:
983 * page writeout could otherwise come in and zero beyond i_size.
984 */
985 if (pos + copied > inode->i_size) {
986 i_size_write(inode, pos + copied);
987 i_size_changed = 1;
988 }
989
990 if (pos + copied > EXT4_I(inode)->i_disksize) {
991 /* We need to mark inode dirty even if
992 * new_i_size is less that inode->i_size
993 * bu greater than i_disksize.(hint delalloc)
994 */
995 ext4_update_i_disksize(inode, (pos + copied));
996 i_size_changed = 1;
997 }
998 unlock_page(page);
999 page_cache_release(page);
1000
1001 /*
1002 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 * makes the holding time of page lock longer. Second, it forces lock
1004 * ordering of page lock and transaction start for journaling
1005 * filesystems.
1006 */
1007 if (i_size_changed)
1008 ext4_mark_inode_dirty(handle, inode);
1009
1010 return copied;
1011}
1012
ac27a0ec
DK
1013/*
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1016 *
617ba13b 1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1018 * buffers are managed internally.
1019 */
bfc1af65 1020static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1021 struct address_space *mapping,
1022 loff_t pos, unsigned len, unsigned copied,
1023 struct page *page, void *fsdata)
ac27a0ec 1024{
617ba13b 1025 handle_t *handle = ext4_journal_current_handle();
cf108bca 1026 struct inode *inode = mapping->host;
ac27a0ec
DK
1027 int ret = 0, ret2;
1028
9bffad1e 1029 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1030 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1031
1032 if (ret == 0) {
f8514083 1033 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1034 page, fsdata);
f8a87d89 1035 copied = ret2;
ffacfa7a 1036 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1037 /* if we have allocated more blocks and copied
1038 * less. We will have blocks allocated outside
1039 * inode->i_size. So truncate them
1040 */
1041 ext4_orphan_add(handle, inode);
f8a87d89
RK
1042 if (ret2 < 0)
1043 ret = ret2;
09e0834f
AF
1044 } else {
1045 unlock_page(page);
1046 page_cache_release(page);
ac27a0ec 1047 }
09e0834f 1048
617ba13b 1049 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1050 if (!ret)
1051 ret = ret2;
bfc1af65 1052
f8514083 1053 if (pos + len > inode->i_size) {
b9a4207d 1054 ext4_truncate_failed_write(inode);
de9a55b8 1055 /*
ffacfa7a 1056 * If truncate failed early the inode might still be
f8514083
AK
1057 * on the orphan list; we need to make sure the inode
1058 * is removed from the orphan list in that case.
1059 */
1060 if (inode->i_nlink)
1061 ext4_orphan_del(NULL, inode);
1062 }
1063
1064
bfc1af65 1065 return ret ? ret : copied;
ac27a0ec
DK
1066}
1067
bfc1af65 1068static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1069 struct address_space *mapping,
1070 loff_t pos, unsigned len, unsigned copied,
1071 struct page *page, void *fsdata)
ac27a0ec 1072{
617ba13b 1073 handle_t *handle = ext4_journal_current_handle();
cf108bca 1074 struct inode *inode = mapping->host;
ac27a0ec 1075 int ret = 0, ret2;
ac27a0ec 1076
9bffad1e 1077 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1078 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1079 page, fsdata);
f8a87d89 1080 copied = ret2;
ffacfa7a 1081 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1082 /* if we have allocated more blocks and copied
1083 * less. We will have blocks allocated outside
1084 * inode->i_size. So truncate them
1085 */
1086 ext4_orphan_add(handle, inode);
1087
f8a87d89
RK
1088 if (ret2 < 0)
1089 ret = ret2;
ac27a0ec 1090
617ba13b 1091 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1092 if (!ret)
1093 ret = ret2;
bfc1af65 1094
f8514083 1095 if (pos + len > inode->i_size) {
b9a4207d 1096 ext4_truncate_failed_write(inode);
de9a55b8 1097 /*
ffacfa7a 1098 * If truncate failed early the inode might still be
f8514083
AK
1099 * on the orphan list; we need to make sure the inode
1100 * is removed from the orphan list in that case.
1101 */
1102 if (inode->i_nlink)
1103 ext4_orphan_del(NULL, inode);
1104 }
1105
bfc1af65 1106 return ret ? ret : copied;
ac27a0ec
DK
1107}
1108
bfc1af65 1109static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
ac27a0ec 1113{
617ba13b 1114 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1115 struct inode *inode = mapping->host;
ac27a0ec
DK
1116 int ret = 0, ret2;
1117 int partial = 0;
bfc1af65 1118 unsigned from, to;
cf17fea6 1119 loff_t new_i_size;
ac27a0ec 1120
9bffad1e 1121 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1122 from = pos & (PAGE_CACHE_SIZE - 1);
1123 to = from + len;
1124
441c8508
CW
1125 BUG_ON(!ext4_handle_valid(handle));
1126
3fdcfb66
TM
1127 if (ext4_has_inline_data(inode))
1128 copied = ext4_write_inline_data_end(inode, pos, len,
1129 copied, page);
1130 else {
1131 if (copied < len) {
1132 if (!PageUptodate(page))
1133 copied = 0;
1134 page_zero_new_buffers(page, from+copied, to);
1135 }
ac27a0ec 1136
3fdcfb66
TM
1137 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1138 to, &partial, write_end_fn);
1139 if (!partial)
1140 SetPageUptodate(page);
1141 }
cf17fea6
AK
1142 new_i_size = pos + copied;
1143 if (new_i_size > inode->i_size)
bfc1af65 1144 i_size_write(inode, pos+copied);
19f5fb7a 1145 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1146 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1147 if (new_i_size > EXT4_I(inode)->i_disksize) {
1148 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1149 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1150 if (!ret)
1151 ret = ret2;
1152 }
bfc1af65 1153
cf108bca 1154 unlock_page(page);
f8514083 1155 page_cache_release(page);
ffacfa7a 1156 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1157 /* if we have allocated more blocks and copied
1158 * less. We will have blocks allocated outside
1159 * inode->i_size. So truncate them
1160 */
1161 ext4_orphan_add(handle, inode);
1162
617ba13b 1163 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1164 if (!ret)
1165 ret = ret2;
f8514083 1166 if (pos + len > inode->i_size) {
b9a4207d 1167 ext4_truncate_failed_write(inode);
de9a55b8 1168 /*
ffacfa7a 1169 * If truncate failed early the inode might still be
f8514083
AK
1170 * on the orphan list; we need to make sure the inode
1171 * is removed from the orphan list in that case.
1172 */
1173 if (inode->i_nlink)
1174 ext4_orphan_del(NULL, inode);
1175 }
bfc1af65
NP
1176
1177 return ret ? ret : copied;
ac27a0ec 1178}
d2a17637 1179
9d0be502 1180/*
7b415bf6 1181 * Reserve a single cluster located at lblock
9d0be502 1182 */
01f49d0b 1183static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1184{
030ba6bc 1185 int retries = 0;
60e58e0f 1186 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1187 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1188 unsigned int md_needed;
5dd4056d 1189 int ret;
03179fe9
TT
1190 ext4_lblk_t save_last_lblock;
1191 int save_len;
1192
1193 /*
1194 * We will charge metadata quota at writeout time; this saves
1195 * us from metadata over-estimation, though we may go over by
1196 * a small amount in the end. Here we just reserve for data.
1197 */
1198 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1199 if (ret)
1200 return ret;
d2a17637
MC
1201
1202 /*
1203 * recalculate the amount of metadata blocks to reserve
1204 * in order to allocate nrblocks
1205 * worse case is one extent per block
1206 */
030ba6bc 1207repeat:
0637c6f4 1208 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1209 /*
1210 * ext4_calc_metadata_amount() has side effects, which we have
1211 * to be prepared undo if we fail to claim space.
1212 */
1213 save_len = ei->i_da_metadata_calc_len;
1214 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1215 md_needed = EXT4_NUM_B2C(sbi,
1216 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1217 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1218
72b8ab9d
ES
1219 /*
1220 * We do still charge estimated metadata to the sb though;
1221 * we cannot afford to run out of free blocks.
1222 */
e7d5f315 1223 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1224 ei->i_da_metadata_calc_len = save_len;
1225 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1226 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1227 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1228 yield();
1229 goto repeat;
1230 }
03179fe9 1231 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1232 return -ENOSPC;
1233 }
9d0be502 1234 ei->i_reserved_data_blocks++;
0637c6f4
TT
1235 ei->i_reserved_meta_blocks += md_needed;
1236 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1237
d2a17637
MC
1238 return 0; /* success */
1239}
1240
12219aea 1241static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1242{
1243 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1244 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1245
cd213226
MC
1246 if (!to_free)
1247 return; /* Nothing to release, exit */
1248
d2a17637 1249 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1250
5a58ec87 1251 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1252 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1253 /*
0637c6f4
TT
1254 * if there aren't enough reserved blocks, then the
1255 * counter is messed up somewhere. Since this
1256 * function is called from invalidate page, it's
1257 * harmless to return without any action.
cd213226 1258 */
0637c6f4
TT
1259 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1260 "ino %lu, to_free %d with only %d reserved "
1084f252 1261 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1262 ei->i_reserved_data_blocks);
1263 WARN_ON(1);
1264 to_free = ei->i_reserved_data_blocks;
cd213226 1265 }
0637c6f4 1266 ei->i_reserved_data_blocks -= to_free;
cd213226 1267
0637c6f4
TT
1268 if (ei->i_reserved_data_blocks == 0) {
1269 /*
1270 * We can release all of the reserved metadata blocks
1271 * only when we have written all of the delayed
1272 * allocation blocks.
7b415bf6
AK
1273 * Note that in case of bigalloc, i_reserved_meta_blocks,
1274 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1275 */
57042651 1276 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1277 ei->i_reserved_meta_blocks);
ee5f4d9c 1278 ei->i_reserved_meta_blocks = 0;
9d0be502 1279 ei->i_da_metadata_calc_len = 0;
0637c6f4 1280 }
d2a17637 1281
72b8ab9d 1282 /* update fs dirty data blocks counter */
57042651 1283 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1284
d2a17637 1285 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1286
7b415bf6 1287 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1288}
1289
1290static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1291 unsigned long offset)
d2a17637
MC
1292{
1293 int to_release = 0;
1294 struct buffer_head *head, *bh;
1295 unsigned int curr_off = 0;
7b415bf6
AK
1296 struct inode *inode = page->mapping->host;
1297 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1298 int num_clusters;
51865fda 1299 ext4_fsblk_t lblk;
d2a17637
MC
1300
1301 head = page_buffers(page);
1302 bh = head;
1303 do {
1304 unsigned int next_off = curr_off + bh->b_size;
1305
1306 if ((offset <= curr_off) && (buffer_delay(bh))) {
1307 to_release++;
1308 clear_buffer_delay(bh);
1309 }
1310 curr_off = next_off;
1311 } while ((bh = bh->b_this_page) != head);
7b415bf6 1312
51865fda
ZL
1313 if (to_release) {
1314 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315 ext4_es_remove_extent(inode, lblk, to_release);
1316 }
1317
7b415bf6
AK
1318 /* If we have released all the blocks belonging to a cluster, then we
1319 * need to release the reserved space for that cluster. */
1320 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321 while (num_clusters > 0) {
7b415bf6
AK
1322 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1323 ((num_clusters - 1) << sbi->s_cluster_bits);
1324 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1325 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1326 ext4_da_release_space(inode, 1);
1327
1328 num_clusters--;
1329 }
d2a17637 1330}
ac27a0ec 1331
64769240
AT
1332/*
1333 * Delayed allocation stuff
1334 */
1335
64769240
AT
1336/*
1337 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1338 * them with writepage() call back
64769240
AT
1339 *
1340 * @mpd->inode: inode
1341 * @mpd->first_page: first page of the extent
1342 * @mpd->next_page: page after the last page of the extent
64769240
AT
1343 *
1344 * By the time mpage_da_submit_io() is called we expect all blocks
1345 * to be allocated. this may be wrong if allocation failed.
1346 *
1347 * As pages are already locked by write_cache_pages(), we can't use it
1348 */
1de3e3df
TT
1349static int mpage_da_submit_io(struct mpage_da_data *mpd,
1350 struct ext4_map_blocks *map)
64769240 1351{
791b7f08
AK
1352 struct pagevec pvec;
1353 unsigned long index, end;
1354 int ret = 0, err, nr_pages, i;
1355 struct inode *inode = mpd->inode;
1356 struct address_space *mapping = inode->i_mapping;
cb20d518 1357 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1358 unsigned int len, block_start;
1359 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1360 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1361 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1362 struct ext4_io_submit io_submit;
64769240
AT
1363
1364 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1365 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1366 /*
1367 * We need to start from the first_page to the next_page - 1
1368 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1369 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1370 * at the currently mapped buffer_heads.
1371 */
64769240
AT
1372 index = mpd->first_page;
1373 end = mpd->next_page - 1;
1374
791b7f08 1375 pagevec_init(&pvec, 0);
64769240 1376 while (index <= end) {
791b7f08 1377 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1378 if (nr_pages == 0)
1379 break;
1380 for (i = 0; i < nr_pages; i++) {
97498956 1381 int commit_write = 0, skip_page = 0;
64769240
AT
1382 struct page *page = pvec.pages[i];
1383
791b7f08
AK
1384 index = page->index;
1385 if (index > end)
1386 break;
cb20d518
TT
1387
1388 if (index == size >> PAGE_CACHE_SHIFT)
1389 len = size & ~PAGE_CACHE_MASK;
1390 else
1391 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1392 if (map) {
1393 cur_logical = index << (PAGE_CACHE_SHIFT -
1394 inode->i_blkbits);
1395 pblock = map->m_pblk + (cur_logical -
1396 map->m_lblk);
1397 }
791b7f08
AK
1398 index++;
1399
1400 BUG_ON(!PageLocked(page));
1401 BUG_ON(PageWriteback(page));
1402
64769240 1403 /*
cb20d518
TT
1404 * If the page does not have buffers (for
1405 * whatever reason), try to create them using
a107e5a3 1406 * __block_write_begin. If this fails,
97498956 1407 * skip the page and move on.
64769240 1408 */
cb20d518 1409 if (!page_has_buffers(page)) {
a107e5a3 1410 if (__block_write_begin(page, 0, len,
cb20d518 1411 noalloc_get_block_write)) {
97498956 1412 skip_page:
cb20d518
TT
1413 unlock_page(page);
1414 continue;
1415 }
1416 commit_write = 1;
1417 }
64769240 1418
3ecdb3a1
TT
1419 bh = page_bufs = page_buffers(page);
1420 block_start = 0;
64769240 1421 do {
1de3e3df 1422 if (!bh)
97498956 1423 goto skip_page;
1de3e3df
TT
1424 if (map && (cur_logical >= map->m_lblk) &&
1425 (cur_logical <= (map->m_lblk +
1426 (map->m_len - 1)))) {
29fa89d0
AK
1427 if (buffer_delay(bh)) {
1428 clear_buffer_delay(bh);
1429 bh->b_blocknr = pblock;
29fa89d0 1430 }
1de3e3df
TT
1431 if (buffer_unwritten(bh) ||
1432 buffer_mapped(bh))
1433 BUG_ON(bh->b_blocknr != pblock);
1434 if (map->m_flags & EXT4_MAP_UNINIT)
1435 set_buffer_uninit(bh);
1436 clear_buffer_unwritten(bh);
1437 }
29fa89d0 1438
13a79a47
YY
1439 /*
1440 * skip page if block allocation undone and
1441 * block is dirty
1442 */
1443 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1444 skip_page = 1;
3ecdb3a1
TT
1445 bh = bh->b_this_page;
1446 block_start += bh->b_size;
64769240
AT
1447 cur_logical++;
1448 pblock++;
1de3e3df
TT
1449 } while (bh != page_bufs);
1450
97498956
TT
1451 if (skip_page)
1452 goto skip_page;
cb20d518
TT
1453
1454 if (commit_write)
1455 /* mark the buffer_heads as dirty & uptodate */
1456 block_commit_write(page, 0, len);
1457
97498956 1458 clear_page_dirty_for_io(page);
bd2d0210
TT
1459 /*
1460 * Delalloc doesn't support data journalling,
1461 * but eventually maybe we'll lift this
1462 * restriction.
1463 */
1464 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1465 err = __ext4_journalled_writepage(page, len);
1449032b 1466 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1467 err = ext4_bio_write_page(&io_submit, page,
1468 len, mpd->wbc);
9dd75f1f
TT
1469 else if (buffer_uninit(page_bufs)) {
1470 ext4_set_bh_endio(page_bufs, inode);
1471 err = block_write_full_page_endio(page,
1472 noalloc_get_block_write,
1473 mpd->wbc, ext4_end_io_buffer_write);
1474 } else
1449032b
TT
1475 err = block_write_full_page(page,
1476 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1477
1478 if (!err)
a1d6cc56 1479 mpd->pages_written++;
64769240
AT
1480 /*
1481 * In error case, we have to continue because
1482 * remaining pages are still locked
64769240
AT
1483 */
1484 if (ret == 0)
1485 ret = err;
64769240
AT
1486 }
1487 pagevec_release(&pvec);
1488 }
bd2d0210 1489 ext4_io_submit(&io_submit);
64769240 1490 return ret;
64769240
AT
1491}
1492
c7f5938a 1493static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1494{
1495 int nr_pages, i;
1496 pgoff_t index, end;
1497 struct pagevec pvec;
1498 struct inode *inode = mpd->inode;
1499 struct address_space *mapping = inode->i_mapping;
51865fda 1500 ext4_lblk_t start, last;
c4a0c46e 1501
c7f5938a
CW
1502 index = mpd->first_page;
1503 end = mpd->next_page - 1;
51865fda
ZL
1504
1505 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507 ext4_es_remove_extent(inode, start, last - start + 1);
1508
66bea92c 1509 pagevec_init(&pvec, 0);
c4a0c46e
AK
1510 while (index <= end) {
1511 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 if (nr_pages == 0)
1513 break;
1514 for (i = 0; i < nr_pages; i++) {
1515 struct page *page = pvec.pages[i];
9b1d0998 1516 if (page->index > end)
c4a0c46e 1517 break;
c4a0c46e
AK
1518 BUG_ON(!PageLocked(page));
1519 BUG_ON(PageWriteback(page));
1520 block_invalidatepage(page, 0);
1521 ClearPageUptodate(page);
1522 unlock_page(page);
1523 }
9b1d0998
JK
1524 index = pvec.pages[nr_pages - 1]->index + 1;
1525 pagevec_release(&pvec);
c4a0c46e
AK
1526 }
1527 return;
1528}
1529
df22291f
AK
1530static void ext4_print_free_blocks(struct inode *inode)
1531{
1532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1533 struct super_block *sb = inode->i_sb;
1534
1535 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1536 EXT4_C2B(EXT4_SB(inode->i_sb),
1537 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1538 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1540 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1542 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1543 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1545 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547 EXT4_I(inode)->i_reserved_data_blocks);
1548 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1549 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1550 return;
1551}
1552
64769240 1553/*
5a87b7a5
TT
1554 * mpage_da_map_and_submit - go through given space, map them
1555 * if necessary, and then submit them for I/O
64769240 1556 *
8dc207c0 1557 * @mpd - bh describing space
64769240
AT
1558 *
1559 * The function skips space we know is already mapped to disk blocks.
1560 *
64769240 1561 */
5a87b7a5 1562static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1563{
2ac3b6e0 1564 int err, blks, get_blocks_flags;
1de3e3df 1565 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1566 sector_t next = mpd->b_blocknr;
1567 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569 handle_t *handle = NULL;
64769240
AT
1570
1571 /*
5a87b7a5
TT
1572 * If the blocks are mapped already, or we couldn't accumulate
1573 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1574 */
5a87b7a5
TT
1575 if ((mpd->b_size == 0) ||
1576 ((mpd->b_state & (1 << BH_Mapped)) &&
1577 !(mpd->b_state & (1 << BH_Delay)) &&
1578 !(mpd->b_state & (1 << BH_Unwritten))))
1579 goto submit_io;
2fa3cdfb
TT
1580
1581 handle = ext4_journal_current_handle();
1582 BUG_ON(!handle);
1583
79ffab34 1584 /*
79e83036 1585 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1586 * blocks, or to convert an uninitialized extent to be
1587 * initialized (in the case where we have written into
1588 * one or more preallocated blocks).
1589 *
1590 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591 * indicate that we are on the delayed allocation path. This
1592 * affects functions in many different parts of the allocation
1593 * call path. This flag exists primarily because we don't
79e83036 1594 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1595 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1596 * inode's allocation semaphore is taken.
1597 *
1598 * If the blocks in questions were delalloc blocks, set
1599 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600 * variables are updated after the blocks have been allocated.
79ffab34 1601 */
2ed88685
TT
1602 map.m_lblk = next;
1603 map.m_len = max_blocks;
1296cc85 1604 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1605 if (ext4_should_dioread_nolock(mpd->inode))
1606 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1607 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1608 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
2ed88685 1610 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1611 if (blks < 0) {
e3570639
ES
1612 struct super_block *sb = mpd->inode->i_sb;
1613
2fa3cdfb 1614 err = blks;
ed5bde0b 1615 /*
5a87b7a5 1616 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1617 * appears to be free blocks we will just let
1618 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1619 */
1620 if (err == -EAGAIN)
5a87b7a5 1621 goto submit_io;
df22291f 1622
5dee5437 1623 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1624 mpd->retval = err;
5a87b7a5 1625 goto submit_io;
df22291f
AK
1626 }
1627
c4a0c46e 1628 /*
ed5bde0b
TT
1629 * get block failure will cause us to loop in
1630 * writepages, because a_ops->writepage won't be able
1631 * to make progress. The page will be redirtied by
1632 * writepage and writepages will again try to write
1633 * the same.
c4a0c46e 1634 */
e3570639
ES
1635 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636 ext4_msg(sb, KERN_CRIT,
1637 "delayed block allocation failed for inode %lu "
1638 "at logical offset %llu with max blocks %zd "
1639 "with error %d", mpd->inode->i_ino,
1640 (unsigned long long) next,
1641 mpd->b_size >> mpd->inode->i_blkbits, err);
1642 ext4_msg(sb, KERN_CRIT,
1643 "This should not happen!! Data will be lost\n");
1644 if (err == -ENOSPC)
1645 ext4_print_free_blocks(mpd->inode);
030ba6bc 1646 }
2fa3cdfb 1647 /* invalidate all the pages */
c7f5938a 1648 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1649
1650 /* Mark this page range as having been completed */
1651 mpd->io_done = 1;
5a87b7a5 1652 return;
c4a0c46e 1653 }
2fa3cdfb
TT
1654 BUG_ON(blks == 0);
1655
1de3e3df 1656 mapp = &map;
2ed88685
TT
1657 if (map.m_flags & EXT4_MAP_NEW) {
1658 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659 int i;
64769240 1660
2ed88685
TT
1661 for (i = 0; i < map.m_len; i++)
1662 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1663 }
1664
1665 /*
03f5d8bc 1666 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1667 */
1668 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669 if (disksize > i_size_read(mpd->inode))
1670 disksize = i_size_read(mpd->inode);
1671 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1673 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674 if (err)
1675 ext4_error(mpd->inode->i_sb,
1676 "Failed to mark inode %lu dirty",
1677 mpd->inode->i_ino);
2fa3cdfb
TT
1678 }
1679
5a87b7a5 1680submit_io:
1de3e3df 1681 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1682 mpd->io_done = 1;
64769240
AT
1683}
1684
bf068ee2
AK
1685#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1687
1688/*
1689 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690 *
1691 * @mpd->lbh - extent of blocks
1692 * @logical - logical number of the block in the file
1693 * @bh - bh of the block (used to access block's state)
1694 *
1695 * the function is used to collect contig. blocks in same state
1696 */
1697static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1698 sector_t logical, size_t b_size,
1699 unsigned long b_state)
64769240 1700{
64769240 1701 sector_t next;
8dc207c0 1702 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1703
c445e3e0
ES
1704 /*
1705 * XXX Don't go larger than mballoc is willing to allocate
1706 * This is a stopgap solution. We eventually need to fold
1707 * mpage_da_submit_io() into this function and then call
79e83036 1708 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1709 */
1710 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1711 goto flush_it;
1712
525f4ed8 1713 /* check if thereserved journal credits might overflow */
12e9b892 1714 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1715 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716 /*
1717 * With non-extent format we are limited by the journal
1718 * credit available. Total credit needed to insert
1719 * nrblocks contiguous blocks is dependent on the
1720 * nrblocks. So limit nrblocks.
1721 */
1722 goto flush_it;
1723 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1724 EXT4_MAX_TRANS_DATA) {
1725 /*
1726 * Adding the new buffer_head would make it cross the
1727 * allowed limit for which we have journal credit
1728 * reserved. So limit the new bh->b_size
1729 */
1730 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1731 mpd->inode->i_blkbits;
1732 /* we will do mpage_da_submit_io in the next loop */
1733 }
1734 }
64769240
AT
1735 /*
1736 * First block in the extent
1737 */
8dc207c0
TT
1738 if (mpd->b_size == 0) {
1739 mpd->b_blocknr = logical;
1740 mpd->b_size = b_size;
1741 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1742 return;
1743 }
1744
8dc207c0 1745 next = mpd->b_blocknr + nrblocks;
64769240
AT
1746 /*
1747 * Can we merge the block to our big extent?
1748 */
8dc207c0
TT
1749 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1750 mpd->b_size += b_size;
64769240
AT
1751 return;
1752 }
1753
525f4ed8 1754flush_it:
64769240
AT
1755 /*
1756 * We couldn't merge the block to our extent, so we
1757 * need to flush current extent and start new one
1758 */
5a87b7a5 1759 mpage_da_map_and_submit(mpd);
a1d6cc56 1760 return;
64769240
AT
1761}
1762
c364b22c 1763static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1764{
c364b22c 1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1766}
1767
5356f261
AK
1768/*
1769 * This function is grabs code from the very beginning of
1770 * ext4_map_blocks, but assumes that the caller is from delayed write
1771 * time. This function looks up the requested blocks and sets the
1772 * buffer delay bit under the protection of i_data_sem.
1773 */
1774static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1775 struct ext4_map_blocks *map,
1776 struct buffer_head *bh)
1777{
1778 int retval;
1779 sector_t invalid_block = ~((sector_t) 0xffff);
1780
1781 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1782 invalid_block = ~0;
1783
1784 map->m_flags = 0;
1785 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1786 "logical block %lu\n", inode->i_ino, map->m_len,
1787 (unsigned long) map->m_lblk);
1788 /*
1789 * Try to see if we can get the block without requesting a new
1790 * file system block.
1791 */
1792 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1793 if (ext4_has_inline_data(inode)) {
1794 /*
1795 * We will soon create blocks for this page, and let
1796 * us pretend as if the blocks aren't allocated yet.
1797 * In case of clusters, we have to handle the work
1798 * of mapping from cluster so that the reserved space
1799 * is calculated properly.
1800 */
1801 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1802 ext4_find_delalloc_cluster(inode, map->m_lblk))
1803 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1804 retval = 0;
1805 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5356f261
AK
1806 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1807 else
1808 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1809
1810 if (retval == 0) {
1811 /*
1812 * XXX: __block_prepare_write() unmaps passed block,
1813 * is it OK?
1814 */
1815 /* If the block was allocated from previously allocated cluster,
1816 * then we dont need to reserve it again. */
1817 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1818 retval = ext4_da_reserve_space(inode, iblock);
1819 if (retval)
1820 /* not enough space to reserve */
1821 goto out_unlock;
1822 }
1823
51865fda
ZL
1824 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1825 if (retval)
1826 goto out_unlock;
1827
5356f261
AK
1828 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1829 * and it should not appear on the bh->b_state.
1830 */
1831 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1832
1833 map_bh(bh, inode->i_sb, invalid_block);
1834 set_buffer_new(bh);
1835 set_buffer_delay(bh);
1836 }
1837
1838out_unlock:
1839 up_read((&EXT4_I(inode)->i_data_sem));
1840
1841 return retval;
1842}
1843
64769240 1844/*
b920c755
TT
1845 * This is a special get_blocks_t callback which is used by
1846 * ext4_da_write_begin(). It will either return mapped block or
1847 * reserve space for a single block.
29fa89d0
AK
1848 *
1849 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850 * We also have b_blocknr = -1 and b_bdev initialized properly
1851 *
1852 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854 * initialized properly.
64769240 1855 */
9c3569b5
TM
1856int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857 struct buffer_head *bh, int create)
64769240 1858{
2ed88685 1859 struct ext4_map_blocks map;
64769240
AT
1860 int ret = 0;
1861
1862 BUG_ON(create == 0);
2ed88685
TT
1863 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864
1865 map.m_lblk = iblock;
1866 map.m_len = 1;
64769240
AT
1867
1868 /*
1869 * first, we need to know whether the block is allocated already
1870 * preallocated blocks are unmapped but should treated
1871 * the same as allocated blocks.
1872 */
5356f261
AK
1873 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874 if (ret <= 0)
2ed88685 1875 return ret;
64769240 1876
2ed88685
TT
1877 map_bh(bh, inode->i_sb, map.m_pblk);
1878 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1879
1880 if (buffer_unwritten(bh)) {
1881 /* A delayed write to unwritten bh should be marked
1882 * new and mapped. Mapped ensures that we don't do
1883 * get_block multiple times when we write to the same
1884 * offset and new ensures that we do proper zero out
1885 * for partial write.
1886 */
1887 set_buffer_new(bh);
c8205636 1888 set_buffer_mapped(bh);
2ed88685
TT
1889 }
1890 return 0;
64769240 1891}
61628a3f 1892
b920c755
TT
1893/*
1894 * This function is used as a standard get_block_t calback function
1895 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1896 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1897 * These functions should only try to map a single block at a time.
b920c755
TT
1898 *
1899 * Since this function doesn't do block allocations even if the caller
1900 * requests it by passing in create=1, it is critically important that
1901 * any caller checks to make sure that any buffer heads are returned
1902 * by this function are either all already mapped or marked for
206f7ab4
CH
1903 * delayed allocation before calling block_write_full_page(). Otherwise,
1904 * b_blocknr could be left unitialized, and the page write functions will
1905 * be taken by surprise.
b920c755
TT
1906 */
1907static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1908 struct buffer_head *bh_result, int create)
1909{
a2dc52b5 1910 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1911 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1912}
1913
62e086be
AK
1914static int bget_one(handle_t *handle, struct buffer_head *bh)
1915{
1916 get_bh(bh);
1917 return 0;
1918}
1919
1920static int bput_one(handle_t *handle, struct buffer_head *bh)
1921{
1922 put_bh(bh);
1923 return 0;
1924}
1925
1926static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1927 unsigned int len)
1928{
1929 struct address_space *mapping = page->mapping;
1930 struct inode *inode = mapping->host;
3fdcfb66 1931 struct buffer_head *page_bufs = NULL;
62e086be 1932 handle_t *handle = NULL;
3fdcfb66
TM
1933 int ret = 0, err = 0;
1934 int inline_data = ext4_has_inline_data(inode);
1935 struct buffer_head *inode_bh = NULL;
62e086be 1936
cb20d518 1937 ClearPageChecked(page);
3fdcfb66
TM
1938
1939 if (inline_data) {
1940 BUG_ON(page->index != 0);
1941 BUG_ON(len > ext4_get_max_inline_size(inode));
1942 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1943 if (inode_bh == NULL)
1944 goto out;
1945 } else {
1946 page_bufs = page_buffers(page);
1947 if (!page_bufs) {
1948 BUG();
1949 goto out;
1950 }
1951 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1952 NULL, bget_one);
1953 }
62e086be
AK
1954 /* As soon as we unlock the page, it can go away, but we have
1955 * references to buffers so we are safe */
1956 unlock_page(page);
1957
1958 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1959 if (IS_ERR(handle)) {
1960 ret = PTR_ERR(handle);
1961 goto out;
1962 }
1963
441c8508
CW
1964 BUG_ON(!ext4_handle_valid(handle));
1965
3fdcfb66
TM
1966 if (inline_data) {
1967 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1968
3fdcfb66
TM
1969 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1970
1971 } else {
1972 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1973 do_journal_get_write_access);
1974
1975 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1976 write_end_fn);
1977 }
62e086be
AK
1978 if (ret == 0)
1979 ret = err;
2d859db3 1980 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1981 err = ext4_journal_stop(handle);
1982 if (!ret)
1983 ret = err;
1984
3fdcfb66
TM
1985 if (!ext4_has_inline_data(inode))
1986 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1987 NULL, bput_one);
19f5fb7a 1988 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1989out:
3fdcfb66 1990 brelse(inode_bh);
62e086be
AK
1991 return ret;
1992}
1993
61628a3f 1994/*
43ce1d23
AK
1995 * Note that we don't need to start a transaction unless we're journaling data
1996 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1997 * need to file the inode to the transaction's list in ordered mode because if
1998 * we are writing back data added by write(), the inode is already there and if
25985edc 1999 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2000 * transaction the data will hit the disk. In case we are journaling data, we
2001 * cannot start transaction directly because transaction start ranks above page
2002 * lock so we have to do some magic.
2003 *
b920c755
TT
2004 * This function can get called via...
2005 * - ext4_da_writepages after taking page lock (have journal handle)
2006 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2007 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2008 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2009 *
2010 * We don't do any block allocation in this function. If we have page with
2011 * multiple blocks we need to write those buffer_heads that are mapped. This
2012 * is important for mmaped based write. So if we do with blocksize 1K
2013 * truncate(f, 1024);
2014 * a = mmap(f, 0, 4096);
2015 * a[0] = 'a';
2016 * truncate(f, 4096);
2017 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2018 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2019 * do_wp_page). So writepage should write the first block. If we modify
2020 * the mmap area beyond 1024 we will again get a page_fault and the
2021 * page_mkwrite callback will do the block allocation and mark the
2022 * buffer_heads mapped.
2023 *
2024 * We redirty the page if we have any buffer_heads that is either delay or
2025 * unwritten in the page.
2026 *
2027 * We can get recursively called as show below.
2028 *
2029 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2030 * ext4_writepage()
2031 *
2032 * But since we don't do any block allocation we should not deadlock.
2033 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2034 */
43ce1d23 2035static int ext4_writepage(struct page *page,
62e086be 2036 struct writeback_control *wbc)
64769240 2037{
a42afc5f 2038 int ret = 0, commit_write = 0;
61628a3f 2039 loff_t size;
498e5f24 2040 unsigned int len;
744692dc 2041 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2042 struct inode *inode = page->mapping->host;
2043
a9c667f8 2044 trace_ext4_writepage(page);
f0e6c985
AK
2045 size = i_size_read(inode);
2046 if (page->index == size >> PAGE_CACHE_SHIFT)
2047 len = size & ~PAGE_CACHE_MASK;
2048 else
2049 len = PAGE_CACHE_SIZE;
64769240 2050
a42afc5f
TT
2051 /*
2052 * If the page does not have buffers (for whatever reason),
a107e5a3 2053 * try to create them using __block_write_begin. If this
a42afc5f
TT
2054 * fails, redirty the page and move on.
2055 */
b1142e8f 2056 if (!page_has_buffers(page)) {
a107e5a3 2057 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2058 noalloc_get_block_write)) {
2059 redirty_page:
f0e6c985
AK
2060 redirty_page_for_writepage(wbc, page);
2061 unlock_page(page);
2062 return 0;
2063 }
a42afc5f
TT
2064 commit_write = 1;
2065 }
2066 page_bufs = page_buffers(page);
f19d5870
TM
2067 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 ext4_bh_delay_or_unwritten)) {
f0e6c985 2069 /*
b1142e8f
TT
2070 * We don't want to do block allocation, so redirty
2071 * the page and return. We may reach here when we do
2072 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2073 * We can also reach here via shrink_page_list but it
2074 * should never be for direct reclaim so warn if that
2075 * happens
f0e6c985 2076 */
966dbde2
MG
2077 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2078 PF_MEMALLOC);
a42afc5f
TT
2079 goto redirty_page;
2080 }
2081 if (commit_write)
ed9b3e33 2082 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2083 block_commit_write(page, 0, len);
64769240 2084
cb20d518 2085 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2086 /*
2087 * It's mmapped pagecache. Add buffers and journal it. There
2088 * doesn't seem much point in redirtying the page here.
2089 */
3f0ca309 2090 return __ext4_journalled_writepage(page, len);
43ce1d23 2091
a42afc5f 2092 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2093 ext4_set_bh_endio(page_bufs, inode);
2094 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2095 wbc, ext4_end_io_buffer_write);
2096 } else
b920c755
TT
2097 ret = block_write_full_page(page, noalloc_get_block_write,
2098 wbc);
64769240 2099
64769240
AT
2100 return ret;
2101}
2102
61628a3f 2103/*
525f4ed8 2104 * This is called via ext4_da_writepages() to
25985edc 2105 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2106 * a single extent allocation into a single transaction,
2107 * ext4_da_writpeages() will loop calling this before
2108 * the block allocation.
61628a3f 2109 */
525f4ed8
MC
2110
2111static int ext4_da_writepages_trans_blocks(struct inode *inode)
2112{
2113 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2114
2115 /*
2116 * With non-extent format the journal credit needed to
2117 * insert nrblocks contiguous block is dependent on
2118 * number of contiguous block. So we will limit
2119 * number of contiguous block to a sane value
2120 */
12e9b892 2121 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2122 (max_blocks > EXT4_MAX_TRANS_DATA))
2123 max_blocks = EXT4_MAX_TRANS_DATA;
2124
2125 return ext4_chunk_trans_blocks(inode, max_blocks);
2126}
61628a3f 2127
8e48dcfb
TT
2128/*
2129 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2130 * address space and accumulate pages that need writing, and call
168fc022
TT
2131 * mpage_da_map_and_submit to map a single contiguous memory region
2132 * and then write them.
8e48dcfb 2133 */
9c3569b5
TM
2134static int write_cache_pages_da(handle_t *handle,
2135 struct address_space *mapping,
8e48dcfb 2136 struct writeback_control *wbc,
72f84e65
ES
2137 struct mpage_da_data *mpd,
2138 pgoff_t *done_index)
8e48dcfb 2139{
4f01b02c 2140 struct buffer_head *bh, *head;
168fc022 2141 struct inode *inode = mapping->host;
4f01b02c
TT
2142 struct pagevec pvec;
2143 unsigned int nr_pages;
2144 sector_t logical;
2145 pgoff_t index, end;
2146 long nr_to_write = wbc->nr_to_write;
2147 int i, tag, ret = 0;
8e48dcfb 2148
168fc022
TT
2149 memset(mpd, 0, sizeof(struct mpage_da_data));
2150 mpd->wbc = wbc;
2151 mpd->inode = inode;
8e48dcfb
TT
2152 pagevec_init(&pvec, 0);
2153 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2154 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2155
6e6938b6 2156 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2157 tag = PAGECACHE_TAG_TOWRITE;
2158 else
2159 tag = PAGECACHE_TAG_DIRTY;
2160
72f84e65 2161 *done_index = index;
4f01b02c 2162 while (index <= end) {
5b41d924 2163 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2164 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2165 if (nr_pages == 0)
4f01b02c 2166 return 0;
8e48dcfb
TT
2167
2168 for (i = 0; i < nr_pages; i++) {
2169 struct page *page = pvec.pages[i];
2170
2171 /*
2172 * At this point, the page may be truncated or
2173 * invalidated (changing page->mapping to NULL), or
2174 * even swizzled back from swapper_space to tmpfs file
2175 * mapping. However, page->index will not change
2176 * because we have a reference on the page.
2177 */
4f01b02c
TT
2178 if (page->index > end)
2179 goto out;
8e48dcfb 2180
72f84e65
ES
2181 *done_index = page->index + 1;
2182
78aaced3
TT
2183 /*
2184 * If we can't merge this page, and we have
2185 * accumulated an contiguous region, write it
2186 */
2187 if ((mpd->next_page != page->index) &&
2188 (mpd->next_page != mpd->first_page)) {
2189 mpage_da_map_and_submit(mpd);
2190 goto ret_extent_tail;
2191 }
2192
8e48dcfb
TT
2193 lock_page(page);
2194
2195 /*
4f01b02c
TT
2196 * If the page is no longer dirty, or its
2197 * mapping no longer corresponds to inode we
2198 * are writing (which means it has been
2199 * truncated or invalidated), or the page is
2200 * already under writeback and we are not
2201 * doing a data integrity writeback, skip the page
8e48dcfb 2202 */
4f01b02c
TT
2203 if (!PageDirty(page) ||
2204 (PageWriteback(page) &&
2205 (wbc->sync_mode == WB_SYNC_NONE)) ||
2206 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2207 unlock_page(page);
2208 continue;
2209 }
2210
7cb1a535 2211 wait_on_page_writeback(page);
8e48dcfb 2212 BUG_ON(PageWriteback(page));
8e48dcfb 2213
9c3569b5
TM
2214 /*
2215 * If we have inline data and arrive here, it means that
2216 * we will soon create the block for the 1st page, so
2217 * we'd better clear the inline data here.
2218 */
2219 if (ext4_has_inline_data(inode)) {
2220 BUG_ON(ext4_test_inode_state(inode,
2221 EXT4_STATE_MAY_INLINE_DATA));
2222 ext4_destroy_inline_data(handle, inode);
2223 }
2224
168fc022 2225 if (mpd->next_page != page->index)
8eb9e5ce 2226 mpd->first_page = page->index;
8eb9e5ce
TT
2227 mpd->next_page = page->index + 1;
2228 logical = (sector_t) page->index <<
2229 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2230
2231 if (!page_has_buffers(page)) {
4f01b02c
TT
2232 mpage_add_bh_to_extent(mpd, logical,
2233 PAGE_CACHE_SIZE,
8eb9e5ce 2234 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2235 if (mpd->io_done)
2236 goto ret_extent_tail;
8eb9e5ce
TT
2237 } else {
2238 /*
4f01b02c
TT
2239 * Page with regular buffer heads,
2240 * just add all dirty ones
8eb9e5ce
TT
2241 */
2242 head = page_buffers(page);
2243 bh = head;
2244 do {
2245 BUG_ON(buffer_locked(bh));
2246 /*
2247 * We need to try to allocate
2248 * unmapped blocks in the same page.
2249 * Otherwise we won't make progress
2250 * with the page in ext4_writepage
2251 */
2252 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2253 mpage_add_bh_to_extent(mpd, logical,
2254 bh->b_size,
2255 bh->b_state);
4f01b02c
TT
2256 if (mpd->io_done)
2257 goto ret_extent_tail;
8eb9e5ce
TT
2258 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2259 /*
4f01b02c
TT
2260 * mapped dirty buffer. We need
2261 * to update the b_state
2262 * because we look at b_state
2263 * in mpage_da_map_blocks. We
2264 * don't update b_size because
2265 * if we find an unmapped
2266 * buffer_head later we need to
2267 * use the b_state flag of that
2268 * buffer_head.
8eb9e5ce
TT
2269 */
2270 if (mpd->b_size == 0)
2271 mpd->b_state = bh->b_state & BH_FLAGS;
2272 }
2273 logical++;
2274 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2275 }
2276
2277 if (nr_to_write > 0) {
2278 nr_to_write--;
2279 if (nr_to_write == 0 &&
4f01b02c 2280 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2281 /*
2282 * We stop writing back only if we are
2283 * not doing integrity sync. In case of
2284 * integrity sync we have to keep going
2285 * because someone may be concurrently
2286 * dirtying pages, and we might have
2287 * synced a lot of newly appeared dirty
2288 * pages, but have not synced all of the
2289 * old dirty pages.
2290 */
4f01b02c 2291 goto out;
8e48dcfb
TT
2292 }
2293 }
2294 pagevec_release(&pvec);
2295 cond_resched();
2296 }
4f01b02c
TT
2297 return 0;
2298ret_extent_tail:
2299 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2300out:
2301 pagevec_release(&pvec);
2302 cond_resched();
8e48dcfb
TT
2303 return ret;
2304}
2305
2306
64769240 2307static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2308 struct writeback_control *wbc)
64769240 2309{
22208ded
AK
2310 pgoff_t index;
2311 int range_whole = 0;
61628a3f 2312 handle_t *handle = NULL;
df22291f 2313 struct mpage_da_data mpd;
5e745b04 2314 struct inode *inode = mapping->host;
498e5f24 2315 int pages_written = 0;
55138e0b 2316 unsigned int max_pages;
2acf2c26 2317 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2318 int needed_blocks, ret = 0;
2319 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2320 loff_t range_start = wbc->range_start;
5e745b04 2321 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2322 pgoff_t done_index = 0;
5b41d924 2323 pgoff_t end;
1bce63d1 2324 struct blk_plug plug;
61628a3f 2325
9bffad1e 2326 trace_ext4_da_writepages(inode, wbc);
ba80b101 2327
61628a3f
MC
2328 /*
2329 * No pages to write? This is mainly a kludge to avoid starting
2330 * a transaction for special inodes like journal inode on last iput()
2331 * because that could violate lock ordering on umount
2332 */
a1d6cc56 2333 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2334 return 0;
2a21e37e
TT
2335
2336 /*
2337 * If the filesystem has aborted, it is read-only, so return
2338 * right away instead of dumping stack traces later on that
2339 * will obscure the real source of the problem. We test
4ab2f15b 2340 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2341 * the latter could be true if the filesystem is mounted
2342 * read-only, and in that case, ext4_da_writepages should
2343 * *never* be called, so if that ever happens, we would want
2344 * the stack trace.
2345 */
4ab2f15b 2346 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2347 return -EROFS;
2348
22208ded
AK
2349 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350 range_whole = 1;
61628a3f 2351
2acf2c26
AK
2352 range_cyclic = wbc->range_cyclic;
2353 if (wbc->range_cyclic) {
22208ded 2354 index = mapping->writeback_index;
2acf2c26
AK
2355 if (index)
2356 cycled = 0;
2357 wbc->range_start = index << PAGE_CACHE_SHIFT;
2358 wbc->range_end = LLONG_MAX;
2359 wbc->range_cyclic = 0;
5b41d924
ES
2360 end = -1;
2361 } else {
22208ded 2362 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2363 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2364 }
a1d6cc56 2365
55138e0b
TT
2366 /*
2367 * This works around two forms of stupidity. The first is in
2368 * the writeback code, which caps the maximum number of pages
2369 * written to be 1024 pages. This is wrong on multiple
2370 * levels; different architectues have a different page size,
2371 * which changes the maximum amount of data which gets
2372 * written. Secondly, 4 megabytes is way too small. XFS
2373 * forces this value to be 16 megabytes by multiplying
2374 * nr_to_write parameter by four, and then relies on its
2375 * allocator to allocate larger extents to make them
2376 * contiguous. Unfortunately this brings us to the second
2377 * stupidity, which is that ext4's mballoc code only allocates
2378 * at most 2048 blocks. So we force contiguous writes up to
2379 * the number of dirty blocks in the inode, or
2380 * sbi->max_writeback_mb_bump whichever is smaller.
2381 */
2382 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2383 if (!range_cyclic && range_whole) {
2384 if (wbc->nr_to_write == LONG_MAX)
2385 desired_nr_to_write = wbc->nr_to_write;
2386 else
2387 desired_nr_to_write = wbc->nr_to_write * 8;
2388 } else
55138e0b
TT
2389 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2390 max_pages);
2391 if (desired_nr_to_write > max_pages)
2392 desired_nr_to_write = max_pages;
2393
2394 if (wbc->nr_to_write < desired_nr_to_write) {
2395 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2396 wbc->nr_to_write = desired_nr_to_write;
2397 }
2398
2acf2c26 2399retry:
6e6938b6 2400 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2401 tag_pages_for_writeback(mapping, index, end);
2402
1bce63d1 2403 blk_start_plug(&plug);
22208ded 2404 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2405
2406 /*
2407 * we insert one extent at a time. So we need
2408 * credit needed for single extent allocation.
2409 * journalled mode is currently not supported
2410 * by delalloc
2411 */
2412 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2413 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2414
61628a3f
MC
2415 /* start a new transaction*/
2416 handle = ext4_journal_start(inode, needed_blocks);
2417 if (IS_ERR(handle)) {
2418 ret = PTR_ERR(handle);
1693918e 2419 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2420 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2421 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2422 blk_finish_plug(&plug);
61628a3f
MC
2423 goto out_writepages;
2424 }
f63e6005
TT
2425
2426 /*
8eb9e5ce 2427 * Now call write_cache_pages_da() to find the next
f63e6005 2428 * contiguous region of logical blocks that need
8eb9e5ce 2429 * blocks to be allocated by ext4 and submit them.
f63e6005 2430 */
9c3569b5
TM
2431 ret = write_cache_pages_da(handle, mapping,
2432 wbc, &mpd, &done_index);
f63e6005 2433 /*
af901ca1 2434 * If we have a contiguous extent of pages and we
f63e6005
TT
2435 * haven't done the I/O yet, map the blocks and submit
2436 * them for I/O.
2437 */
2438 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2439 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2440 ret = MPAGE_DA_EXTENT_TAIL;
2441 }
b3a3ca8c 2442 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2443 wbc->nr_to_write -= mpd.pages_written;
df22291f 2444
61628a3f 2445 ext4_journal_stop(handle);
df22291f 2446
8f64b32e 2447 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2448 /* commit the transaction which would
2449 * free blocks released in the transaction
2450 * and try again
2451 */
df22291f 2452 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2453 ret = 0;
2454 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2455 /*
8de49e67
KM
2456 * Got one extent now try with rest of the pages.
2457 * If mpd.retval is set -EIO, journal is aborted.
2458 * So we don't need to write any more.
a1d6cc56 2459 */
22208ded 2460 pages_written += mpd.pages_written;
8de49e67 2461 ret = mpd.retval;
2acf2c26 2462 io_done = 1;
22208ded 2463 } else if (wbc->nr_to_write)
61628a3f
MC
2464 /*
2465 * There is no more writeout needed
2466 * or we requested for a noblocking writeout
2467 * and we found the device congested
2468 */
61628a3f 2469 break;
a1d6cc56 2470 }
1bce63d1 2471 blk_finish_plug(&plug);
2acf2c26
AK
2472 if (!io_done && !cycled) {
2473 cycled = 1;
2474 index = 0;
2475 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476 wbc->range_end = mapping->writeback_index - 1;
2477 goto retry;
2478 }
22208ded
AK
2479
2480 /* Update index */
2acf2c26 2481 wbc->range_cyclic = range_cyclic;
22208ded
AK
2482 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483 /*
2484 * set the writeback_index so that range_cyclic
2485 * mode will write it back later
2486 */
72f84e65 2487 mapping->writeback_index = done_index;
a1d6cc56 2488
61628a3f 2489out_writepages:
2faf2e19 2490 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2491 wbc->range_start = range_start;
9bffad1e 2492 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2493 return ret;
64769240
AT
2494}
2495
79f0be8d
AK
2496static int ext4_nonda_switch(struct super_block *sb)
2497{
2498 s64 free_blocks, dirty_blocks;
2499 struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501 /*
2502 * switch to non delalloc mode if we are running low
2503 * on free block. The free block accounting via percpu
179f7ebf 2504 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2505 * accumulated on each CPU without updating global counters
2506 * Delalloc need an accurate free block accounting. So switch
2507 * to non delalloc when we are near to error range.
2508 */
57042651
TT
2509 free_blocks = EXT4_C2B(sbi,
2510 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2512 /*
2513 * Start pushing delalloc when 1/2 of free blocks are dirty.
2514 */
2515 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2516 !writeback_in_progress(sb->s_bdi) &&
2517 down_read_trylock(&sb->s_umount)) {
2518 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2519 up_read(&sb->s_umount);
2520 }
2521
79f0be8d 2522 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2523 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2524 /*
c8afb446
ES
2525 * free block count is less than 150% of dirty blocks
2526 * or free blocks is less than watermark
79f0be8d
AK
2527 */
2528 return 1;
2529 }
2530 return 0;
2531}
2532
64769240 2533static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2534 loff_t pos, unsigned len, unsigned flags,
2535 struct page **pagep, void **fsdata)
64769240 2536{
72b8ab9d 2537 int ret, retries = 0;
64769240
AT
2538 struct page *page;
2539 pgoff_t index;
64769240
AT
2540 struct inode *inode = mapping->host;
2541 handle_t *handle;
2542
2543 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2544
2545 if (ext4_nonda_switch(inode->i_sb)) {
2546 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2547 return ext4_write_begin(file, mapping, pos,
2548 len, flags, pagep, fsdata);
2549 }
2550 *fsdata = (void *)0;
9bffad1e 2551 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2552
2553 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2554 ret = ext4_da_write_inline_data_begin(mapping, inode,
2555 pos, len, flags,
2556 pagep, fsdata);
2557 if (ret < 0)
2558 goto out;
2559 if (ret == 1) {
2560 ret = 0;
2561 goto out;
2562 }
2563 }
2564
d2a17637 2565retry:
64769240
AT
2566 /*
2567 * With delayed allocation, we don't log the i_disksize update
2568 * if there is delayed block allocation. But we still need
2569 * to journalling the i_disksize update if writes to the end
2570 * of file which has an already mapped buffer.
2571 */
2572 handle = ext4_journal_start(inode, 1);
2573 if (IS_ERR(handle)) {
2574 ret = PTR_ERR(handle);
2575 goto out;
2576 }
ebd3610b
JK
2577 /* We cannot recurse into the filesystem as the transaction is already
2578 * started */
2579 flags |= AOP_FLAG_NOFS;
64769240 2580
54566b2c 2581 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2582 if (!page) {
2583 ext4_journal_stop(handle);
2584 ret = -ENOMEM;
2585 goto out;
2586 }
64769240
AT
2587 *pagep = page;
2588
6e1db88d 2589 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2590 if (ret < 0) {
2591 unlock_page(page);
2592 ext4_journal_stop(handle);
2593 page_cache_release(page);
ae4d5372
AK
2594 /*
2595 * block_write_begin may have instantiated a few blocks
2596 * outside i_size. Trim these off again. Don't need
2597 * i_size_read because we hold i_mutex.
2598 */
2599 if (pos + len > inode->i_size)
b9a4207d 2600 ext4_truncate_failed_write(inode);
64769240
AT
2601 }
2602
d2a17637
MC
2603 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2604 goto retry;
64769240
AT
2605out:
2606 return ret;
2607}
2608
632eaeab
MC
2609/*
2610 * Check if we should update i_disksize
2611 * when write to the end of file but not require block allocation
2612 */
2613static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2614 unsigned long offset)
632eaeab
MC
2615{
2616 struct buffer_head *bh;
2617 struct inode *inode = page->mapping->host;
2618 unsigned int idx;
2619 int i;
2620
2621 bh = page_buffers(page);
2622 idx = offset >> inode->i_blkbits;
2623
af5bc92d 2624 for (i = 0; i < idx; i++)
632eaeab
MC
2625 bh = bh->b_this_page;
2626
29fa89d0 2627 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2628 return 0;
2629 return 1;
2630}
2631
64769240 2632static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2633 struct address_space *mapping,
2634 loff_t pos, unsigned len, unsigned copied,
2635 struct page *page, void *fsdata)
64769240
AT
2636{
2637 struct inode *inode = mapping->host;
2638 int ret = 0, ret2;
2639 handle_t *handle = ext4_journal_current_handle();
2640 loff_t new_i_size;
632eaeab 2641 unsigned long start, end;
79f0be8d
AK
2642 int write_mode = (int)(unsigned long)fsdata;
2643
2644 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2645 switch (ext4_inode_journal_mode(inode)) {
2646 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2647 return ext4_ordered_write_end(file, mapping, pos,
2648 len, copied, page, fsdata);
3d2b1582 2649 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2650 return ext4_writeback_write_end(file, mapping, pos,
2651 len, copied, page, fsdata);
3d2b1582 2652 default:
79f0be8d
AK
2653 BUG();
2654 }
2655 }
632eaeab 2656
9bffad1e 2657 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2658 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2659 end = start + copied - 1;
64769240
AT
2660
2661 /*
2662 * generic_write_end() will run mark_inode_dirty() if i_size
2663 * changes. So let's piggyback the i_disksize mark_inode_dirty
2664 * into that.
2665 */
64769240 2666 new_i_size = pos + copied;
ea51d132 2667 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2668 if (ext4_has_inline_data(inode) ||
2669 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2670 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2671 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2672 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2673 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2674 /* We need to mark inode dirty even if
2675 * new_i_size is less that inode->i_size
2676 * bu greater than i_disksize.(hint delalloc)
2677 */
2678 ext4_mark_inode_dirty(handle, inode);
64769240 2679 }
632eaeab 2680 }
9c3569b5
TM
2681
2682 if (write_mode != CONVERT_INLINE_DATA &&
2683 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2684 ext4_has_inline_data(inode))
2685 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2686 page);
2687 else
2688 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2689 page, fsdata);
9c3569b5 2690
64769240
AT
2691 copied = ret2;
2692 if (ret2 < 0)
2693 ret = ret2;
2694 ret2 = ext4_journal_stop(handle);
2695 if (!ret)
2696 ret = ret2;
2697
2698 return ret ? ret : copied;
2699}
2700
2701static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2702{
64769240
AT
2703 /*
2704 * Drop reserved blocks
2705 */
2706 BUG_ON(!PageLocked(page));
2707 if (!page_has_buffers(page))
2708 goto out;
2709
d2a17637 2710 ext4_da_page_release_reservation(page, offset);
64769240
AT
2711
2712out:
2713 ext4_invalidatepage(page, offset);
2714
2715 return;
2716}
2717
ccd2506b
TT
2718/*
2719 * Force all delayed allocation blocks to be allocated for a given inode.
2720 */
2721int ext4_alloc_da_blocks(struct inode *inode)
2722{
fb40ba0d
TT
2723 trace_ext4_alloc_da_blocks(inode);
2724
ccd2506b
TT
2725 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2726 !EXT4_I(inode)->i_reserved_meta_blocks)
2727 return 0;
2728
2729 /*
2730 * We do something simple for now. The filemap_flush() will
2731 * also start triggering a write of the data blocks, which is
2732 * not strictly speaking necessary (and for users of
2733 * laptop_mode, not even desirable). However, to do otherwise
2734 * would require replicating code paths in:
de9a55b8 2735 *
ccd2506b
TT
2736 * ext4_da_writepages() ->
2737 * write_cache_pages() ---> (via passed in callback function)
2738 * __mpage_da_writepage() -->
2739 * mpage_add_bh_to_extent()
2740 * mpage_da_map_blocks()
2741 *
2742 * The problem is that write_cache_pages(), located in
2743 * mm/page-writeback.c, marks pages clean in preparation for
2744 * doing I/O, which is not desirable if we're not planning on
2745 * doing I/O at all.
2746 *
2747 * We could call write_cache_pages(), and then redirty all of
380cf090 2748 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2749 * would be ugly in the extreme. So instead we would need to
2750 * replicate parts of the code in the above functions,
25985edc 2751 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2752 * write out the pages, but rather only collect contiguous
2753 * logical block extents, call the multi-block allocator, and
2754 * then update the buffer heads with the block allocations.
de9a55b8 2755 *
ccd2506b
TT
2756 * For now, though, we'll cheat by calling filemap_flush(),
2757 * which will map the blocks, and start the I/O, but not
2758 * actually wait for the I/O to complete.
2759 */
2760 return filemap_flush(inode->i_mapping);
2761}
64769240 2762
ac27a0ec
DK
2763/*
2764 * bmap() is special. It gets used by applications such as lilo and by
2765 * the swapper to find the on-disk block of a specific piece of data.
2766 *
2767 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2768 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2769 * filesystem and enables swap, then they may get a nasty shock when the
2770 * data getting swapped to that swapfile suddenly gets overwritten by
2771 * the original zero's written out previously to the journal and
2772 * awaiting writeback in the kernel's buffer cache.
2773 *
2774 * So, if we see any bmap calls here on a modified, data-journaled file,
2775 * take extra steps to flush any blocks which might be in the cache.
2776 */
617ba13b 2777static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2778{
2779 struct inode *inode = mapping->host;
2780 journal_t *journal;
2781 int err;
2782
46c7f254
TM
2783 /*
2784 * We can get here for an inline file via the FIBMAP ioctl
2785 */
2786 if (ext4_has_inline_data(inode))
2787 return 0;
2788
64769240
AT
2789 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2790 test_opt(inode->i_sb, DELALLOC)) {
2791 /*
2792 * With delalloc we want to sync the file
2793 * so that we can make sure we allocate
2794 * blocks for file
2795 */
2796 filemap_write_and_wait(mapping);
2797 }
2798
19f5fb7a
TT
2799 if (EXT4_JOURNAL(inode) &&
2800 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2801 /*
2802 * This is a REALLY heavyweight approach, but the use of
2803 * bmap on dirty files is expected to be extremely rare:
2804 * only if we run lilo or swapon on a freshly made file
2805 * do we expect this to happen.
2806 *
2807 * (bmap requires CAP_SYS_RAWIO so this does not
2808 * represent an unprivileged user DOS attack --- we'd be
2809 * in trouble if mortal users could trigger this path at
2810 * will.)
2811 *
617ba13b 2812 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2813 * regular files. If somebody wants to bmap a directory
2814 * or symlink and gets confused because the buffer
2815 * hasn't yet been flushed to disk, they deserve
2816 * everything they get.
2817 */
2818
19f5fb7a 2819 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2820 journal = EXT4_JOURNAL(inode);
dab291af
MC
2821 jbd2_journal_lock_updates(journal);
2822 err = jbd2_journal_flush(journal);
2823 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2824
2825 if (err)
2826 return 0;
2827 }
2828
af5bc92d 2829 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2830}
2831
617ba13b 2832static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2833{
46c7f254
TM
2834 int ret = -EAGAIN;
2835 struct inode *inode = page->mapping->host;
2836
0562e0ba 2837 trace_ext4_readpage(page);
46c7f254
TM
2838
2839 if (ext4_has_inline_data(inode))
2840 ret = ext4_readpage_inline(inode, page);
2841
2842 if (ret == -EAGAIN)
2843 return mpage_readpage(page, ext4_get_block);
2844
2845 return ret;
ac27a0ec
DK
2846}
2847
2848static int
617ba13b 2849ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2850 struct list_head *pages, unsigned nr_pages)
2851{
46c7f254
TM
2852 struct inode *inode = mapping->host;
2853
2854 /* If the file has inline data, no need to do readpages. */
2855 if (ext4_has_inline_data(inode))
2856 return 0;
2857
617ba13b 2858 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2859}
2860
744692dc
JZ
2861static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2862{
2863 struct buffer_head *head, *bh;
2864 unsigned int curr_off = 0;
2865
2866 if (!page_has_buffers(page))
2867 return;
2868 head = bh = page_buffers(page);
2869 do {
2870 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2871 && bh->b_private) {
2872 ext4_free_io_end(bh->b_private);
2873 bh->b_private = NULL;
2874 bh->b_end_io = NULL;
2875 }
2876 curr_off = curr_off + bh->b_size;
2877 bh = bh->b_this_page;
2878 } while (bh != head);
2879}
2880
617ba13b 2881static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2882{
617ba13b 2883 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2884
0562e0ba
JZ
2885 trace_ext4_invalidatepage(page, offset);
2886
744692dc
JZ
2887 /*
2888 * free any io_end structure allocated for buffers to be discarded
2889 */
2890 if (ext4_should_dioread_nolock(page->mapping->host))
2891 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2892 /*
2893 * If it's a full truncate we just forget about the pending dirtying
2894 */
2895 if (offset == 0)
2896 ClearPageChecked(page);
2897
0390131b
FM
2898 if (journal)
2899 jbd2_journal_invalidatepage(journal, page, offset);
2900 else
2901 block_invalidatepage(page, offset);
ac27a0ec
DK
2902}
2903
617ba13b 2904static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2905{
617ba13b 2906 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2907
0562e0ba
JZ
2908 trace_ext4_releasepage(page);
2909
ac27a0ec
DK
2910 WARN_ON(PageChecked(page));
2911 if (!page_has_buffers(page))
2912 return 0;
0390131b
FM
2913 if (journal)
2914 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2915 else
2916 return try_to_free_buffers(page);
ac27a0ec
DK
2917}
2918
2ed88685
TT
2919/*
2920 * ext4_get_block used when preparing for a DIO write or buffer write.
2921 * We allocate an uinitialized extent if blocks haven't been allocated.
2922 * The extent will be converted to initialized after the IO is complete.
2923 */
f19d5870 2924int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2925 struct buffer_head *bh_result, int create)
2926{
c7064ef1 2927 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2928 inode->i_ino, create);
2ed88685
TT
2929 return _ext4_get_block(inode, iblock, bh_result,
2930 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2931}
2932
729f52c6 2933static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2934 struct buffer_head *bh_result, int create)
729f52c6 2935{
8b0f165f
AP
2936 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2937 inode->i_ino, create);
2938 return _ext4_get_block(inode, iblock, bh_result,
2939 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2940}
2941
4c0425ff 2942static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2943 ssize_t size, void *private, int ret,
2944 bool is_async)
4c0425ff 2945{
72c5052d 2946 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff 2947 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2948
4b70df18
M
2949 /* if not async direct IO or dio with 0 bytes write, just return */
2950 if (!io_end || !size)
552ef802 2951 goto out;
4b70df18 2952
88635ca2 2953 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2954 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2955 iocb->private, io_end->inode->i_ino, iocb, offset,
2956 size);
8d5d02e6 2957
b5a7e970
TT
2958 iocb->private = NULL;
2959
8d5d02e6 2960 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2961 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2962 ext4_free_io_end(io_end);
5b3ff237
JZ
2963out:
2964 if (is_async)
2965 aio_complete(iocb, ret, 0);
72c5052d 2966 inode_dio_done(inode);
5b3ff237 2967 return;
8d5d02e6
MC
2968 }
2969
4c0425ff
MC
2970 io_end->offset = offset;
2971 io_end->size = size;
5b3ff237
JZ
2972 if (is_async) {
2973 io_end->iocb = iocb;
2974 io_end->result = ret;
2975 }
4c0425ff 2976
28a535f9 2977 ext4_add_complete_io(io_end);
4c0425ff 2978}
c7064ef1 2979
744692dc
JZ
2980static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2981{
2982 ext4_io_end_t *io_end = bh->b_private;
744692dc 2983 struct inode *inode;
744692dc
JZ
2984
2985 if (!test_clear_buffer_uninit(bh) || !io_end)
2986 goto out;
2987
2988 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2989 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2990 "sb umounted, discard end_io request for inode %lu",
2991 io_end->inode->i_ino);
744692dc
JZ
2992 ext4_free_io_end(io_end);
2993 goto out;
2994 }
2995
32c80b32
TM
2996 /*
2997 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2998 * but being more careful is always safe for the future change.
2999 */
744692dc 3000 inode = io_end->inode;
0edeb71d 3001 ext4_set_io_unwritten_flag(inode, io_end);
28a535f9 3002 ext4_add_complete_io(io_end);
744692dc
JZ
3003out:
3004 bh->b_private = NULL;
3005 bh->b_end_io = NULL;
3006 clear_buffer_uninit(bh);
3007 end_buffer_async_write(bh, uptodate);
3008}
3009
3010static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3011{
3012 ext4_io_end_t *io_end;
3013 struct page *page = bh->b_page;
3014 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3015 size_t size = bh->b_size;
3016
3017retry:
3018 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3019 if (!io_end) {
6db26ffc 3020 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
3021 schedule();
3022 goto retry;
3023 }
3024 io_end->offset = offset;
3025 io_end->size = size;
3026 /*
3027 * We need to hold a reference to the page to make sure it
3028 * doesn't get evicted before ext4_end_io_work() has a chance
3029 * to convert the extent from written to unwritten.
3030 */
3031 io_end->page = page;
3032 get_page(io_end->page);
3033
3034 bh->b_private = io_end;
3035 bh->b_end_io = ext4_end_io_buffer_write;
3036 return 0;
3037}
3038
4c0425ff
MC
3039/*
3040 * For ext4 extent files, ext4 will do direct-io write to holes,
3041 * preallocated extents, and those write extend the file, no need to
3042 * fall back to buffered IO.
3043 *
b595076a 3044 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3045 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3046 * still keep the range to write as uninitialized.
4c0425ff 3047 *
69c499d1 3048 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3049 * For async direct IO, since the IO may still pending when return, we
25985edc 3050 * set up an end_io call back function, which will do the conversion
8d5d02e6 3051 * when async direct IO completed.
4c0425ff
MC
3052 *
3053 * If the O_DIRECT write will extend the file then add this inode to the
3054 * orphan list. So recovery will truncate it back to the original size
3055 * if the machine crashes during the write.
3056 *
3057 */
3058static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3059 const struct iovec *iov, loff_t offset,
3060 unsigned long nr_segs)
3061{
3062 struct file *file = iocb->ki_filp;
3063 struct inode *inode = file->f_mapping->host;
3064 ssize_t ret;
3065 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3066 int overwrite = 0;
3067 get_block_t *get_block_func = NULL;
3068 int dio_flags = 0;
4c0425ff 3069 loff_t final_size = offset + count;
729f52c6 3070
69c499d1
TT
3071 /* Use the old path for reads and writes beyond i_size. */
3072 if (rw != WRITE || final_size > inode->i_size)
3073 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3074
69c499d1 3075 BUG_ON(iocb->private == NULL);
4bd809db 3076
69c499d1
TT
3077 /* If we do a overwrite dio, i_mutex locking can be released */
3078 overwrite = *((int *)iocb->private);
4bd809db 3079
69c499d1
TT
3080 if (overwrite) {
3081 atomic_inc(&inode->i_dio_count);
3082 down_read(&EXT4_I(inode)->i_data_sem);
3083 mutex_unlock(&inode->i_mutex);
3084 }
8d5d02e6 3085
69c499d1
TT
3086 /*
3087 * We could direct write to holes and fallocate.
3088 *
3089 * Allocated blocks to fill the hole are marked as
3090 * uninitialized to prevent parallel buffered read to expose
3091 * the stale data before DIO complete the data IO.
3092 *
3093 * As to previously fallocated extents, ext4 get_block will
3094 * just simply mark the buffer mapped but still keep the
3095 * extents uninitialized.
3096 *
3097 * For non AIO case, we will convert those unwritten extents
3098 * to written after return back from blockdev_direct_IO.
3099 *
3100 * For async DIO, the conversion needs to be deferred when the
3101 * IO is completed. The ext4 end_io callback function will be
3102 * called to take care of the conversion work. Here for async
3103 * case, we allocate an io_end structure to hook to the iocb.
3104 */
3105 iocb->private = NULL;
3106 ext4_inode_aio_set(inode, NULL);
3107 if (!is_sync_kiocb(iocb)) {
3108 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3109 if (!io_end) {
3110 ret = -ENOMEM;
3111 goto retake_lock;
8b0f165f 3112 }
69c499d1
TT
3113 io_end->flag |= EXT4_IO_END_DIRECT;
3114 iocb->private = io_end;
8d5d02e6 3115 /*
69c499d1
TT
3116 * we save the io structure for current async direct
3117 * IO, so that later ext4_map_blocks() could flag the
3118 * io structure whether there is a unwritten extents
3119 * needs to be converted when IO is completed.
8d5d02e6 3120 */
69c499d1
TT
3121 ext4_inode_aio_set(inode, io_end);
3122 }
4bd809db 3123
69c499d1
TT
3124 if (overwrite) {
3125 get_block_func = ext4_get_block_write_nolock;
3126 } else {
3127 get_block_func = ext4_get_block_write;
3128 dio_flags = DIO_LOCKING;
3129 }
3130 ret = __blockdev_direct_IO(rw, iocb, inode,
3131 inode->i_sb->s_bdev, iov,
3132 offset, nr_segs,
3133 get_block_func,
3134 ext4_end_io_dio,
3135 NULL,
3136 dio_flags);
3137
3138 if (iocb->private)
3139 ext4_inode_aio_set(inode, NULL);
3140 /*
3141 * The io_end structure takes a reference to the inode, that
3142 * structure needs to be destroyed and the reference to the
3143 * inode need to be dropped, when IO is complete, even with 0
3144 * byte write, or failed.
3145 *
3146 * In the successful AIO DIO case, the io_end structure will
3147 * be destroyed and the reference to the inode will be dropped
3148 * after the end_io call back function is called.
3149 *
3150 * In the case there is 0 byte write, or error case, since VFS
3151 * direct IO won't invoke the end_io call back function, we
3152 * need to free the end_io structure here.
3153 */
3154 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3155 ext4_free_io_end(iocb->private);
3156 iocb->private = NULL;
3157 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3158 EXT4_STATE_DIO_UNWRITTEN)) {
3159 int err;
3160 /*
3161 * for non AIO case, since the IO is already
3162 * completed, we could do the conversion right here
3163 */
3164 err = ext4_convert_unwritten_extents(inode,
3165 offset, ret);
3166 if (err < 0)
3167 ret = err;
3168 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3169 }
4bd809db 3170
69c499d1
TT
3171retake_lock:
3172 /* take i_mutex locking again if we do a ovewrite dio */
3173 if (overwrite) {
3174 inode_dio_done(inode);
3175 up_read(&EXT4_I(inode)->i_data_sem);
3176 mutex_lock(&inode->i_mutex);
4c0425ff 3177 }
8d5d02e6 3178
69c499d1 3179 return ret;
4c0425ff
MC
3180}
3181
3182static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3183 const struct iovec *iov, loff_t offset,
3184 unsigned long nr_segs)
3185{
3186 struct file *file = iocb->ki_filp;
3187 struct inode *inode = file->f_mapping->host;
0562e0ba 3188 ssize_t ret;
4c0425ff 3189
84ebd795
TT
3190 /*
3191 * If we are doing data journalling we don't support O_DIRECT
3192 */
3193 if (ext4_should_journal_data(inode))
3194 return 0;
3195
46c7f254
TM
3196 /* Let buffer I/O handle the inline data case. */
3197 if (ext4_has_inline_data(inode))
3198 return 0;
3199
0562e0ba 3200 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3201 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3202 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3203 else
3204 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3205 trace_ext4_direct_IO_exit(inode, offset,
3206 iov_length(iov, nr_segs), rw, ret);
3207 return ret;
4c0425ff
MC
3208}
3209
ac27a0ec 3210/*
617ba13b 3211 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3212 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3213 * much here because ->set_page_dirty is called under VFS locks. The page is
3214 * not necessarily locked.
3215 *
3216 * We cannot just dirty the page and leave attached buffers clean, because the
3217 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3218 * or jbddirty because all the journalling code will explode.
3219 *
3220 * So what we do is to mark the page "pending dirty" and next time writepage
3221 * is called, propagate that into the buffers appropriately.
3222 */
617ba13b 3223static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3224{
3225 SetPageChecked(page);
3226 return __set_page_dirty_nobuffers(page);
3227}
3228
617ba13b 3229static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3230 .readpage = ext4_readpage,
3231 .readpages = ext4_readpages,
43ce1d23 3232 .writepage = ext4_writepage,
8ab22b9a
HH
3233 .write_begin = ext4_write_begin,
3234 .write_end = ext4_ordered_write_end,
3235 .bmap = ext4_bmap,
3236 .invalidatepage = ext4_invalidatepage,
3237 .releasepage = ext4_releasepage,
3238 .direct_IO = ext4_direct_IO,
3239 .migratepage = buffer_migrate_page,
3240 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3241 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3242};
3243
617ba13b 3244static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3245 .readpage = ext4_readpage,
3246 .readpages = ext4_readpages,
43ce1d23 3247 .writepage = ext4_writepage,
8ab22b9a
HH
3248 .write_begin = ext4_write_begin,
3249 .write_end = ext4_writeback_write_end,
3250 .bmap = ext4_bmap,
3251 .invalidatepage = ext4_invalidatepage,
3252 .releasepage = ext4_releasepage,
3253 .direct_IO = ext4_direct_IO,
3254 .migratepage = buffer_migrate_page,
3255 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3256 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3257};
3258
617ba13b 3259static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3260 .readpage = ext4_readpage,
3261 .readpages = ext4_readpages,
43ce1d23 3262 .writepage = ext4_writepage,
8ab22b9a
HH
3263 .write_begin = ext4_write_begin,
3264 .write_end = ext4_journalled_write_end,
3265 .set_page_dirty = ext4_journalled_set_page_dirty,
3266 .bmap = ext4_bmap,
3267 .invalidatepage = ext4_invalidatepage,
3268 .releasepage = ext4_releasepage,
84ebd795 3269 .direct_IO = ext4_direct_IO,
8ab22b9a 3270 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3271 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3272};
3273
64769240 3274static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3275 .readpage = ext4_readpage,
3276 .readpages = ext4_readpages,
43ce1d23 3277 .writepage = ext4_writepage,
8ab22b9a 3278 .writepages = ext4_da_writepages,
8ab22b9a
HH
3279 .write_begin = ext4_da_write_begin,
3280 .write_end = ext4_da_write_end,
3281 .bmap = ext4_bmap,
3282 .invalidatepage = ext4_da_invalidatepage,
3283 .releasepage = ext4_releasepage,
3284 .direct_IO = ext4_direct_IO,
3285 .migratepage = buffer_migrate_page,
3286 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3287 .error_remove_page = generic_error_remove_page,
64769240
AT
3288};
3289
617ba13b 3290void ext4_set_aops(struct inode *inode)
ac27a0ec 3291{
3d2b1582
LC
3292 switch (ext4_inode_journal_mode(inode)) {
3293 case EXT4_INODE_ORDERED_DATA_MODE:
3294 if (test_opt(inode->i_sb, DELALLOC))
3295 inode->i_mapping->a_ops = &ext4_da_aops;
3296 else
3297 inode->i_mapping->a_ops = &ext4_ordered_aops;
3298 break;
3299 case EXT4_INODE_WRITEBACK_DATA_MODE:
3300 if (test_opt(inode->i_sb, DELALLOC))
3301 inode->i_mapping->a_ops = &ext4_da_aops;
3302 else
3303 inode->i_mapping->a_ops = &ext4_writeback_aops;
3304 break;
3305 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3306 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3307 break;
3308 default:
3309 BUG();
3310 }
ac27a0ec
DK
3311}
3312
4e96b2db
AH
3313
3314/*
3315 * ext4_discard_partial_page_buffers()
3316 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3317 * This function finds and locks the page containing the offset
3318 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3319 * Calling functions that already have the page locked should call
3320 * ext4_discard_partial_page_buffers_no_lock directly.
3321 */
3322int ext4_discard_partial_page_buffers(handle_t *handle,
3323 struct address_space *mapping, loff_t from,
3324 loff_t length, int flags)
3325{
3326 struct inode *inode = mapping->host;
3327 struct page *page;
3328 int err = 0;
3329
3330 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3331 mapping_gfp_mask(mapping) & ~__GFP_FS);
3332 if (!page)
5129d05f 3333 return -ENOMEM;
4e96b2db
AH
3334
3335 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3336 from, length, flags);
3337
3338 unlock_page(page);
3339 page_cache_release(page);
3340 return err;
3341}
3342
3343/*
3344 * ext4_discard_partial_page_buffers_no_lock()
3345 * Zeros a page range of length 'length' starting from offset 'from'.
3346 * Buffer heads that correspond to the block aligned regions of the
3347 * zeroed range will be unmapped. Unblock aligned regions
3348 * will have the corresponding buffer head mapped if needed so that
3349 * that region of the page can be updated with the partial zero out.
3350 *
3351 * This function assumes that the page has already been locked. The
3352 * The range to be discarded must be contained with in the given page.
3353 * If the specified range exceeds the end of the page it will be shortened
3354 * to the end of the page that corresponds to 'from'. This function is
3355 * appropriate for updating a page and it buffer heads to be unmapped and
3356 * zeroed for blocks that have been either released, or are going to be
3357 * released.
3358 *
3359 * handle: The journal handle
3360 * inode: The files inode
3361 * page: A locked page that contains the offset "from"
4907cb7b 3362 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3363 * to begin discarding
3364 * len: The length of bytes to discard
3365 * flags: Optional flags that may be used:
3366 *
3367 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3368 * Only zero the regions of the page whose buffer heads
3369 * have already been unmapped. This flag is appropriate
4907cb7b 3370 * for updating the contents of a page whose blocks may
4e96b2db
AH
3371 * have already been released, and we only want to zero
3372 * out the regions that correspond to those released blocks.
3373 *
4907cb7b 3374 * Returns zero on success or negative on failure.
4e96b2db 3375 */
5f163cc7 3376static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3377 struct inode *inode, struct page *page, loff_t from,
3378 loff_t length, int flags)
3379{
3380 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3381 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3382 unsigned int blocksize, max, pos;
4e96b2db
AH
3383 ext4_lblk_t iblock;
3384 struct buffer_head *bh;
3385 int err = 0;
3386
3387 blocksize = inode->i_sb->s_blocksize;
3388 max = PAGE_CACHE_SIZE - offset;
3389
3390 if (index != page->index)
3391 return -EINVAL;
3392
3393 /*
3394 * correct length if it does not fall between
3395 * 'from' and the end of the page
3396 */
3397 if (length > max || length < 0)
3398 length = max;
3399
3400 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3401
093e6e36
YY
3402 if (!page_has_buffers(page))
3403 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3404
3405 /* Find the buffer that contains "offset" */
3406 bh = page_buffers(page);
3407 pos = blocksize;
3408 while (offset >= pos) {
3409 bh = bh->b_this_page;
3410 iblock++;
3411 pos += blocksize;
3412 }
3413
3414 pos = offset;
3415 while (pos < offset + length) {
e260daf2
YY
3416 unsigned int end_of_block, range_to_discard;
3417
4e96b2db
AH
3418 err = 0;
3419
3420 /* The length of space left to zero and unmap */
3421 range_to_discard = offset + length - pos;
3422
3423 /* The length of space until the end of the block */
3424 end_of_block = blocksize - (pos & (blocksize-1));
3425
3426 /*
3427 * Do not unmap or zero past end of block
3428 * for this buffer head
3429 */
3430 if (range_to_discard > end_of_block)
3431 range_to_discard = end_of_block;
3432
3433
3434 /*
3435 * Skip this buffer head if we are only zeroing unampped
3436 * regions of the page
3437 */
3438 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3439 buffer_mapped(bh))
3440 goto next;
3441
3442 /* If the range is block aligned, unmap */
3443 if (range_to_discard == blocksize) {
3444 clear_buffer_dirty(bh);
3445 bh->b_bdev = NULL;
3446 clear_buffer_mapped(bh);
3447 clear_buffer_req(bh);
3448 clear_buffer_new(bh);
3449 clear_buffer_delay(bh);
3450 clear_buffer_unwritten(bh);
3451 clear_buffer_uptodate(bh);
3452 zero_user(page, pos, range_to_discard);
3453 BUFFER_TRACE(bh, "Buffer discarded");
3454 goto next;
3455 }
3456
3457 /*
3458 * If this block is not completely contained in the range
3459 * to be discarded, then it is not going to be released. Because
3460 * we need to keep this block, we need to make sure this part
3461 * of the page is uptodate before we modify it by writeing
3462 * partial zeros on it.
3463 */
3464 if (!buffer_mapped(bh)) {
3465 /*
3466 * Buffer head must be mapped before we can read
3467 * from the block
3468 */
3469 BUFFER_TRACE(bh, "unmapped");
3470 ext4_get_block(inode, iblock, bh, 0);
3471 /* unmapped? It's a hole - nothing to do */
3472 if (!buffer_mapped(bh)) {
3473 BUFFER_TRACE(bh, "still unmapped");
3474 goto next;
3475 }
3476 }
3477
3478 /* Ok, it's mapped. Make sure it's up-to-date */
3479 if (PageUptodate(page))
3480 set_buffer_uptodate(bh);
3481
3482 if (!buffer_uptodate(bh)) {
3483 err = -EIO;
3484 ll_rw_block(READ, 1, &bh);
3485 wait_on_buffer(bh);
3486 /* Uhhuh. Read error. Complain and punt.*/
3487 if (!buffer_uptodate(bh))
3488 goto next;
3489 }
3490
3491 if (ext4_should_journal_data(inode)) {
3492 BUFFER_TRACE(bh, "get write access");
3493 err = ext4_journal_get_write_access(handle, bh);
3494 if (err)
3495 goto next;
3496 }
3497
3498 zero_user(page, pos, range_to_discard);
3499
3500 err = 0;
3501 if (ext4_should_journal_data(inode)) {
3502 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3503 } else
4e96b2db 3504 mark_buffer_dirty(bh);
4e96b2db
AH
3505
3506 BUFFER_TRACE(bh, "Partial buffer zeroed");
3507next:
3508 bh = bh->b_this_page;
3509 iblock++;
3510 pos += range_to_discard;
3511 }
3512
3513 return err;
3514}
3515
91ef4caf
DG
3516int ext4_can_truncate(struct inode *inode)
3517{
91ef4caf
DG
3518 if (S_ISREG(inode->i_mode))
3519 return 1;
3520 if (S_ISDIR(inode->i_mode))
3521 return 1;
3522 if (S_ISLNK(inode->i_mode))
3523 return !ext4_inode_is_fast_symlink(inode);
3524 return 0;
3525}
3526
a4bb6b64
AH
3527/*
3528 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3529 * associated with the given offset and length
3530 *
3531 * @inode: File inode
3532 * @offset: The offset where the hole will begin
3533 * @len: The length of the hole
3534 *
4907cb7b 3535 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3536 */
3537
3538int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3539{
3540 struct inode *inode = file->f_path.dentry->d_inode;
3541 if (!S_ISREG(inode->i_mode))
73355192 3542 return -EOPNOTSUPP;
a4bb6b64
AH
3543
3544 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3545 /* TODO: Add support for non extent hole punching */
73355192 3546 return -EOPNOTSUPP;
a4bb6b64
AH
3547 }
3548
bab08ab9
TT
3549 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3550 /* TODO: Add support for bigalloc file systems */
73355192 3551 return -EOPNOTSUPP;
bab08ab9
TT
3552 }
3553
a4bb6b64
AH
3554 return ext4_ext_punch_hole(file, offset, length);
3555}
3556
ac27a0ec 3557/*
617ba13b 3558 * ext4_truncate()
ac27a0ec 3559 *
617ba13b
MC
3560 * We block out ext4_get_block() block instantiations across the entire
3561 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3562 * simultaneously on behalf of the same inode.
3563 *
42b2aa86 3564 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3565 * is one core, guiding principle: the file's tree must always be consistent on
3566 * disk. We must be able to restart the truncate after a crash.
3567 *
3568 * The file's tree may be transiently inconsistent in memory (although it
3569 * probably isn't), but whenever we close off and commit a journal transaction,
3570 * the contents of (the filesystem + the journal) must be consistent and
3571 * restartable. It's pretty simple, really: bottom up, right to left (although
3572 * left-to-right works OK too).
3573 *
3574 * Note that at recovery time, journal replay occurs *before* the restart of
3575 * truncate against the orphan inode list.
3576 *
3577 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3578 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3579 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3580 * ext4_truncate() to have another go. So there will be instantiated blocks
3581 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3582 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3583 * ext4_truncate() run will find them and release them.
ac27a0ec 3584 */
617ba13b 3585void ext4_truncate(struct inode *inode)
ac27a0ec 3586{
0562e0ba
JZ
3587 trace_ext4_truncate_enter(inode);
3588
91ef4caf 3589 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3590 return;
3591
12e9b892 3592 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3593
5534fb5b 3594 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3595 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3596
ff9893dc 3597 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3598 ext4_ext_truncate(inode);
ff9893dc
AG
3599 else
3600 ext4_ind_truncate(inode);
ac27a0ec 3601
0562e0ba 3602 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3603}
3604
ac27a0ec 3605/*
617ba13b 3606 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3607 * underlying buffer_head on success. If 'in_mem' is true, we have all
3608 * data in memory that is needed to recreate the on-disk version of this
3609 * inode.
3610 */
617ba13b
MC
3611static int __ext4_get_inode_loc(struct inode *inode,
3612 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3613{
240799cd
TT
3614 struct ext4_group_desc *gdp;
3615 struct buffer_head *bh;
3616 struct super_block *sb = inode->i_sb;
3617 ext4_fsblk_t block;
3618 int inodes_per_block, inode_offset;
3619
3a06d778 3620 iloc->bh = NULL;
240799cd
TT
3621 if (!ext4_valid_inum(sb, inode->i_ino))
3622 return -EIO;
ac27a0ec 3623
240799cd
TT
3624 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3625 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3626 if (!gdp)
ac27a0ec
DK
3627 return -EIO;
3628
240799cd
TT
3629 /*
3630 * Figure out the offset within the block group inode table
3631 */
00d09882 3632 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3633 inode_offset = ((inode->i_ino - 1) %
3634 EXT4_INODES_PER_GROUP(sb));
3635 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3636 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3637
3638 bh = sb_getblk(sb, block);
ac27a0ec 3639 if (!bh) {
c398eda0
TT
3640 EXT4_ERROR_INODE_BLOCK(inode, block,
3641 "unable to read itable block");
ac27a0ec
DK
3642 return -EIO;
3643 }
3644 if (!buffer_uptodate(bh)) {
3645 lock_buffer(bh);
9c83a923
HK
3646
3647 /*
3648 * If the buffer has the write error flag, we have failed
3649 * to write out another inode in the same block. In this
3650 * case, we don't have to read the block because we may
3651 * read the old inode data successfully.
3652 */
3653 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3654 set_buffer_uptodate(bh);
3655
ac27a0ec
DK
3656 if (buffer_uptodate(bh)) {
3657 /* someone brought it uptodate while we waited */
3658 unlock_buffer(bh);
3659 goto has_buffer;
3660 }
3661
3662 /*
3663 * If we have all information of the inode in memory and this
3664 * is the only valid inode in the block, we need not read the
3665 * block.
3666 */
3667 if (in_mem) {
3668 struct buffer_head *bitmap_bh;
240799cd 3669 int i, start;
ac27a0ec 3670
240799cd 3671 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3672
240799cd
TT
3673 /* Is the inode bitmap in cache? */
3674 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3675 if (!bitmap_bh)
3676 goto make_io;
3677
3678 /*
3679 * If the inode bitmap isn't in cache then the
3680 * optimisation may end up performing two reads instead
3681 * of one, so skip it.
3682 */
3683 if (!buffer_uptodate(bitmap_bh)) {
3684 brelse(bitmap_bh);
3685 goto make_io;
3686 }
240799cd 3687 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3688 if (i == inode_offset)
3689 continue;
617ba13b 3690 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3691 break;
3692 }
3693 brelse(bitmap_bh);
240799cd 3694 if (i == start + inodes_per_block) {
ac27a0ec
DK
3695 /* all other inodes are free, so skip I/O */
3696 memset(bh->b_data, 0, bh->b_size);
3697 set_buffer_uptodate(bh);
3698 unlock_buffer(bh);
3699 goto has_buffer;
3700 }
3701 }
3702
3703make_io:
240799cd
TT
3704 /*
3705 * If we need to do any I/O, try to pre-readahead extra
3706 * blocks from the inode table.
3707 */
3708 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3709 ext4_fsblk_t b, end, table;
3710 unsigned num;
3711
3712 table = ext4_inode_table(sb, gdp);
b713a5ec 3713 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3714 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3715 if (table > b)
3716 b = table;
3717 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3718 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3719 if (ext4_has_group_desc_csum(sb))
560671a0 3720 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3721 table += num / inodes_per_block;
3722 if (end > table)
3723 end = table;
3724 while (b <= end)
3725 sb_breadahead(sb, b++);
3726 }
3727
ac27a0ec
DK
3728 /*
3729 * There are other valid inodes in the buffer, this inode
3730 * has in-inode xattrs, or we don't have this inode in memory.
3731 * Read the block from disk.
3732 */
0562e0ba 3733 trace_ext4_load_inode(inode);
ac27a0ec
DK
3734 get_bh(bh);
3735 bh->b_end_io = end_buffer_read_sync;
65299a3b 3736 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3737 wait_on_buffer(bh);
3738 if (!buffer_uptodate(bh)) {
c398eda0
TT
3739 EXT4_ERROR_INODE_BLOCK(inode, block,
3740 "unable to read itable block");
ac27a0ec
DK
3741 brelse(bh);
3742 return -EIO;
3743 }
3744 }
3745has_buffer:
3746 iloc->bh = bh;
3747 return 0;
3748}
3749
617ba13b 3750int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3751{
3752 /* We have all inode data except xattrs in memory here. */
617ba13b 3753 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3754 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3755}
3756
617ba13b 3757void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3758{
617ba13b 3759 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3760
3761 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3762 if (flags & EXT4_SYNC_FL)
ac27a0ec 3763 inode->i_flags |= S_SYNC;
617ba13b 3764 if (flags & EXT4_APPEND_FL)
ac27a0ec 3765 inode->i_flags |= S_APPEND;
617ba13b 3766 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3767 inode->i_flags |= S_IMMUTABLE;
617ba13b 3768 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3769 inode->i_flags |= S_NOATIME;
617ba13b 3770 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3771 inode->i_flags |= S_DIRSYNC;
3772}
3773
ff9ddf7e
JK
3774/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3775void ext4_get_inode_flags(struct ext4_inode_info *ei)
3776{
84a8dce2
DM
3777 unsigned int vfs_fl;
3778 unsigned long old_fl, new_fl;
3779
3780 do {
3781 vfs_fl = ei->vfs_inode.i_flags;
3782 old_fl = ei->i_flags;
3783 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3784 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3785 EXT4_DIRSYNC_FL);
3786 if (vfs_fl & S_SYNC)
3787 new_fl |= EXT4_SYNC_FL;
3788 if (vfs_fl & S_APPEND)
3789 new_fl |= EXT4_APPEND_FL;
3790 if (vfs_fl & S_IMMUTABLE)
3791 new_fl |= EXT4_IMMUTABLE_FL;
3792 if (vfs_fl & S_NOATIME)
3793 new_fl |= EXT4_NOATIME_FL;
3794 if (vfs_fl & S_DIRSYNC)
3795 new_fl |= EXT4_DIRSYNC_FL;
3796 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3797}
de9a55b8 3798
0fc1b451 3799static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3800 struct ext4_inode_info *ei)
0fc1b451
AK
3801{
3802 blkcnt_t i_blocks ;
8180a562
AK
3803 struct inode *inode = &(ei->vfs_inode);
3804 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3805
3806 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3807 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3808 /* we are using combined 48 bit field */
3809 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3810 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3811 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3812 /* i_blocks represent file system block size */
3813 return i_blocks << (inode->i_blkbits - 9);
3814 } else {
3815 return i_blocks;
3816 }
0fc1b451
AK
3817 } else {
3818 return le32_to_cpu(raw_inode->i_blocks_lo);
3819 }
3820}
ff9ddf7e 3821
152a7b0a
TM
3822static inline void ext4_iget_extra_inode(struct inode *inode,
3823 struct ext4_inode *raw_inode,
3824 struct ext4_inode_info *ei)
3825{
3826 __le32 *magic = (void *)raw_inode +
3827 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3828 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3829 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3830 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3831 } else
3832 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3833}
3834
1d1fe1ee 3835struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3836{
617ba13b
MC
3837 struct ext4_iloc iloc;
3838 struct ext4_inode *raw_inode;
1d1fe1ee 3839 struct ext4_inode_info *ei;
1d1fe1ee 3840 struct inode *inode;
b436b9be 3841 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3842 long ret;
ac27a0ec 3843 int block;
08cefc7a
EB
3844 uid_t i_uid;
3845 gid_t i_gid;
ac27a0ec 3846
1d1fe1ee
DH
3847 inode = iget_locked(sb, ino);
3848 if (!inode)
3849 return ERR_PTR(-ENOMEM);
3850 if (!(inode->i_state & I_NEW))
3851 return inode;
3852
3853 ei = EXT4_I(inode);
7dc57615 3854 iloc.bh = NULL;
ac27a0ec 3855
1d1fe1ee
DH
3856 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3857 if (ret < 0)
ac27a0ec 3858 goto bad_inode;
617ba13b 3859 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3860
3861 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3862 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3863 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3864 EXT4_INODE_SIZE(inode->i_sb)) {
3865 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3866 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3867 EXT4_INODE_SIZE(inode->i_sb));
3868 ret = -EIO;
3869 goto bad_inode;
3870 }
3871 } else
3872 ei->i_extra_isize = 0;
3873
3874 /* Precompute checksum seed for inode metadata */
3875 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3876 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3878 __u32 csum;
3879 __le32 inum = cpu_to_le32(inode->i_ino);
3880 __le32 gen = raw_inode->i_generation;
3881 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3882 sizeof(inum));
3883 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3884 sizeof(gen));
3885 }
3886
3887 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3888 EXT4_ERROR_INODE(inode, "checksum invalid");
3889 ret = -EIO;
3890 goto bad_inode;
3891 }
3892
ac27a0ec 3893 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3894 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3895 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3896 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3897 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3898 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3899 }
08cefc7a
EB
3900 i_uid_write(inode, i_uid);
3901 i_gid_write(inode, i_gid);
bfe86848 3902 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3903
353eb83c 3904 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3905 ei->i_inline_off = 0;
ac27a0ec
DK
3906 ei->i_dir_start_lookup = 0;
3907 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3908 /* We now have enough fields to check if the inode was active or not.
3909 * This is needed because nfsd might try to access dead inodes
3910 * the test is that same one that e2fsck uses
3911 * NeilBrown 1999oct15
3912 */
3913 if (inode->i_nlink == 0) {
3914 if (inode->i_mode == 0 ||
617ba13b 3915 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3916 /* this inode is deleted */
1d1fe1ee 3917 ret = -ESTALE;
ac27a0ec
DK
3918 goto bad_inode;
3919 }
3920 /* The only unlinked inodes we let through here have
3921 * valid i_mode and are being read by the orphan
3922 * recovery code: that's fine, we're about to complete
3923 * the process of deleting those. */
3924 }
ac27a0ec 3925 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3926 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3927 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3928 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3929 ei->i_file_acl |=
3930 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3931 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3932 ei->i_disksize = inode->i_size;
a9e7f447
DM
3933#ifdef CONFIG_QUOTA
3934 ei->i_reserved_quota = 0;
3935#endif
ac27a0ec
DK
3936 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3937 ei->i_block_group = iloc.block_group;
a4912123 3938 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3939 /*
3940 * NOTE! The in-memory inode i_data array is in little-endian order
3941 * even on big-endian machines: we do NOT byteswap the block numbers!
3942 */
617ba13b 3943 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3944 ei->i_data[block] = raw_inode->i_block[block];
3945 INIT_LIST_HEAD(&ei->i_orphan);
3946
b436b9be
JK
3947 /*
3948 * Set transaction id's of transactions that have to be committed
3949 * to finish f[data]sync. We set them to currently running transaction
3950 * as we cannot be sure that the inode or some of its metadata isn't
3951 * part of the transaction - the inode could have been reclaimed and
3952 * now it is reread from disk.
3953 */
3954 if (journal) {
3955 transaction_t *transaction;
3956 tid_t tid;
3957
a931da6a 3958 read_lock(&journal->j_state_lock);
b436b9be
JK
3959 if (journal->j_running_transaction)
3960 transaction = journal->j_running_transaction;
3961 else
3962 transaction = journal->j_committing_transaction;
3963 if (transaction)
3964 tid = transaction->t_tid;
3965 else
3966 tid = journal->j_commit_sequence;
a931da6a 3967 read_unlock(&journal->j_state_lock);
b436b9be
JK
3968 ei->i_sync_tid = tid;
3969 ei->i_datasync_tid = tid;
3970 }
3971
0040d987 3972 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3973 if (ei->i_extra_isize == 0) {
3974 /* The extra space is currently unused. Use it. */
617ba13b
MC
3975 ei->i_extra_isize = sizeof(struct ext4_inode) -
3976 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 3977 } else {
152a7b0a 3978 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 3979 }
814525f4 3980 }
ac27a0ec 3981
ef7f3835
KS
3982 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3983 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3984 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3985 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3986
25ec56b5
JNC
3987 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3988 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3989 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3990 inode->i_version |=
3991 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3992 }
3993
c4b5a614 3994 ret = 0;
485c26ec 3995 if (ei->i_file_acl &&
1032988c 3996 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3997 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3998 ei->i_file_acl);
485c26ec
TT
3999 ret = -EIO;
4000 goto bad_inode;
f19d5870
TM
4001 } else if (!ext4_has_inline_data(inode)) {
4002 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4003 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4004 (S_ISLNK(inode->i_mode) &&
4005 !ext4_inode_is_fast_symlink(inode))))
4006 /* Validate extent which is part of inode */
4007 ret = ext4_ext_check_inode(inode);
4008 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4009 (S_ISLNK(inode->i_mode) &&
4010 !ext4_inode_is_fast_symlink(inode))) {
4011 /* Validate block references which are part of inode */
4012 ret = ext4_ind_check_inode(inode);
4013 }
fe2c8191 4014 }
567f3e9a 4015 if (ret)
de9a55b8 4016 goto bad_inode;
7a262f7c 4017
ac27a0ec 4018 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4019 inode->i_op = &ext4_file_inode_operations;
4020 inode->i_fop = &ext4_file_operations;
4021 ext4_set_aops(inode);
ac27a0ec 4022 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4023 inode->i_op = &ext4_dir_inode_operations;
4024 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4025 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4026 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4027 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4028 nd_terminate_link(ei->i_data, inode->i_size,
4029 sizeof(ei->i_data) - 1);
4030 } else {
617ba13b
MC
4031 inode->i_op = &ext4_symlink_inode_operations;
4032 ext4_set_aops(inode);
ac27a0ec 4033 }
563bdd61
TT
4034 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4035 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4036 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4037 if (raw_inode->i_block[0])
4038 init_special_inode(inode, inode->i_mode,
4039 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4040 else
4041 init_special_inode(inode, inode->i_mode,
4042 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4043 } else {
563bdd61 4044 ret = -EIO;
24676da4 4045 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4046 goto bad_inode;
ac27a0ec 4047 }
af5bc92d 4048 brelse(iloc.bh);
617ba13b 4049 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4050 unlock_new_inode(inode);
4051 return inode;
ac27a0ec
DK
4052
4053bad_inode:
567f3e9a 4054 brelse(iloc.bh);
1d1fe1ee
DH
4055 iget_failed(inode);
4056 return ERR_PTR(ret);
ac27a0ec
DK
4057}
4058
0fc1b451
AK
4059static int ext4_inode_blocks_set(handle_t *handle,
4060 struct ext4_inode *raw_inode,
4061 struct ext4_inode_info *ei)
4062{
4063 struct inode *inode = &(ei->vfs_inode);
4064 u64 i_blocks = inode->i_blocks;
4065 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4066
4067 if (i_blocks <= ~0U) {
4068 /*
4907cb7b 4069 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4070 * as multiple of 512 bytes
4071 */
8180a562 4072 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4073 raw_inode->i_blocks_high = 0;
84a8dce2 4074 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4075 return 0;
4076 }
4077 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4078 return -EFBIG;
4079
4080 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4081 /*
4082 * i_blocks can be represented in a 48 bit variable
4083 * as multiple of 512 bytes
4084 */
8180a562 4085 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4086 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4087 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4088 } else {
84a8dce2 4089 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4090 /* i_block is stored in file system block size */
4091 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4092 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4093 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4094 }
f287a1a5 4095 return 0;
0fc1b451
AK
4096}
4097
ac27a0ec
DK
4098/*
4099 * Post the struct inode info into an on-disk inode location in the
4100 * buffer-cache. This gobbles the caller's reference to the
4101 * buffer_head in the inode location struct.
4102 *
4103 * The caller must have write access to iloc->bh.
4104 */
617ba13b 4105static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4106 struct inode *inode,
830156c7 4107 struct ext4_iloc *iloc)
ac27a0ec 4108{
617ba13b
MC
4109 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4110 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4111 struct buffer_head *bh = iloc->bh;
4112 int err = 0, rc, block;
b71fc079 4113 int need_datasync = 0;
08cefc7a
EB
4114 uid_t i_uid;
4115 gid_t i_gid;
ac27a0ec
DK
4116
4117 /* For fields not not tracking in the in-memory inode,
4118 * initialise them to zero for new inodes. */
19f5fb7a 4119 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4120 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4121
ff9ddf7e 4122 ext4_get_inode_flags(ei);
ac27a0ec 4123 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4124 i_uid = i_uid_read(inode);
4125 i_gid = i_gid_read(inode);
af5bc92d 4126 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4127 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4128 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4129/*
4130 * Fix up interoperability with old kernels. Otherwise, old inodes get
4131 * re-used with the upper 16 bits of the uid/gid intact
4132 */
af5bc92d 4133 if (!ei->i_dtime) {
ac27a0ec 4134 raw_inode->i_uid_high =
08cefc7a 4135 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4136 raw_inode->i_gid_high =
08cefc7a 4137 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4138 } else {
4139 raw_inode->i_uid_high = 0;
4140 raw_inode->i_gid_high = 0;
4141 }
4142 } else {
08cefc7a
EB
4143 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4144 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4145 raw_inode->i_uid_high = 0;
4146 raw_inode->i_gid_high = 0;
4147 }
4148 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4149
4150 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4151 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4152 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4153 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4154
0fc1b451
AK
4155 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4156 goto out_brelse;
ac27a0ec 4157 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4158 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4159 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4160 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4161 raw_inode->i_file_acl_high =
4162 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4163 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4164 if (ei->i_disksize != ext4_isize(raw_inode)) {
4165 ext4_isize_set(raw_inode, ei->i_disksize);
4166 need_datasync = 1;
4167 }
a48380f7
AK
4168 if (ei->i_disksize > 0x7fffffffULL) {
4169 struct super_block *sb = inode->i_sb;
4170 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4171 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4172 EXT4_SB(sb)->s_es->s_rev_level ==
4173 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4174 /* If this is the first large file
4175 * created, add a flag to the superblock.
4176 */
4177 err = ext4_journal_get_write_access(handle,
4178 EXT4_SB(sb)->s_sbh);
4179 if (err)
4180 goto out_brelse;
4181 ext4_update_dynamic_rev(sb);
4182 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4183 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4184 ext4_handle_sync(handle);
b50924c2 4185 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4186 }
4187 }
4188 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4189 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4190 if (old_valid_dev(inode->i_rdev)) {
4191 raw_inode->i_block[0] =
4192 cpu_to_le32(old_encode_dev(inode->i_rdev));
4193 raw_inode->i_block[1] = 0;
4194 } else {
4195 raw_inode->i_block[0] = 0;
4196 raw_inode->i_block[1] =
4197 cpu_to_le32(new_encode_dev(inode->i_rdev));
4198 raw_inode->i_block[2] = 0;
4199 }
f19d5870 4200 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4201 for (block = 0; block < EXT4_N_BLOCKS; block++)
4202 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4203 }
ac27a0ec 4204
25ec56b5
JNC
4205 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4206 if (ei->i_extra_isize) {
4207 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4208 raw_inode->i_version_hi =
4209 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4210 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4211 }
4212
814525f4
DW
4213 ext4_inode_csum_set(inode, raw_inode, ei);
4214
830156c7 4215 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4216 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4217 if (!err)
4218 err = rc;
19f5fb7a 4219 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4220
b71fc079 4221 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4222out_brelse:
af5bc92d 4223 brelse(bh);
617ba13b 4224 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4225 return err;
4226}
4227
4228/*
617ba13b 4229 * ext4_write_inode()
ac27a0ec
DK
4230 *
4231 * We are called from a few places:
4232 *
4233 * - Within generic_file_write() for O_SYNC files.
4234 * Here, there will be no transaction running. We wait for any running
4907cb7b 4235 * transaction to commit.
ac27a0ec
DK
4236 *
4237 * - Within sys_sync(), kupdate and such.
4238 * We wait on commit, if tol to.
4239 *
4240 * - Within prune_icache() (PF_MEMALLOC == true)
4241 * Here we simply return. We can't afford to block kswapd on the
4242 * journal commit.
4243 *
4244 * In all cases it is actually safe for us to return without doing anything,
4245 * because the inode has been copied into a raw inode buffer in
617ba13b 4246 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4247 * knfsd.
4248 *
4249 * Note that we are absolutely dependent upon all inode dirtiers doing the
4250 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4251 * which we are interested.
4252 *
4253 * It would be a bug for them to not do this. The code:
4254 *
4255 * mark_inode_dirty(inode)
4256 * stuff();
4257 * inode->i_size = expr;
4258 *
4259 * is in error because a kswapd-driven write_inode() could occur while
4260 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4261 * will no longer be on the superblock's dirty inode list.
4262 */
a9185b41 4263int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4264{
91ac6f43
FM
4265 int err;
4266
ac27a0ec
DK
4267 if (current->flags & PF_MEMALLOC)
4268 return 0;
4269
91ac6f43
FM
4270 if (EXT4_SB(inode->i_sb)->s_journal) {
4271 if (ext4_journal_current_handle()) {
4272 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4273 dump_stack();
4274 return -EIO;
4275 }
ac27a0ec 4276
a9185b41 4277 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4278 return 0;
4279
4280 err = ext4_force_commit(inode->i_sb);
4281 } else {
4282 struct ext4_iloc iloc;
ac27a0ec 4283
8b472d73 4284 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4285 if (err)
4286 return err;
a9185b41 4287 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4288 sync_dirty_buffer(iloc.bh);
4289 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4290 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4291 "IO error syncing inode");
830156c7
FM
4292 err = -EIO;
4293 }
fd2dd9fb 4294 brelse(iloc.bh);
91ac6f43
FM
4295 }
4296 return err;
ac27a0ec
DK
4297}
4298
4299/*
617ba13b 4300 * ext4_setattr()
ac27a0ec
DK
4301 *
4302 * Called from notify_change.
4303 *
4304 * We want to trap VFS attempts to truncate the file as soon as
4305 * possible. In particular, we want to make sure that when the VFS
4306 * shrinks i_size, we put the inode on the orphan list and modify
4307 * i_disksize immediately, so that during the subsequent flushing of
4308 * dirty pages and freeing of disk blocks, we can guarantee that any
4309 * commit will leave the blocks being flushed in an unused state on
4310 * disk. (On recovery, the inode will get truncated and the blocks will
4311 * be freed, so we have a strong guarantee that no future commit will
4312 * leave these blocks visible to the user.)
4313 *
678aaf48
JK
4314 * Another thing we have to assure is that if we are in ordered mode
4315 * and inode is still attached to the committing transaction, we must
4316 * we start writeout of all the dirty pages which are being truncated.
4317 * This way we are sure that all the data written in the previous
4318 * transaction are already on disk (truncate waits for pages under
4319 * writeback).
4320 *
4321 * Called with inode->i_mutex down.
ac27a0ec 4322 */
617ba13b 4323int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4324{
4325 struct inode *inode = dentry->d_inode;
4326 int error, rc = 0;
3d287de3 4327 int orphan = 0;
ac27a0ec
DK
4328 const unsigned int ia_valid = attr->ia_valid;
4329
4330 error = inode_change_ok(inode, attr);
4331 if (error)
4332 return error;
4333
12755627 4334 if (is_quota_modification(inode, attr))
871a2931 4335 dquot_initialize(inode);
08cefc7a
EB
4336 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4337 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4338 handle_t *handle;
4339
4340 /* (user+group)*(old+new) structure, inode write (sb,
4341 * inode block, ? - but truncate inode update has it) */
5aca07eb 4342 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4343 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4344 if (IS_ERR(handle)) {
4345 error = PTR_ERR(handle);
4346 goto err_out;
4347 }
b43fa828 4348 error = dquot_transfer(inode, attr);
ac27a0ec 4349 if (error) {
617ba13b 4350 ext4_journal_stop(handle);
ac27a0ec
DK
4351 return error;
4352 }
4353 /* Update corresponding info in inode so that everything is in
4354 * one transaction */
4355 if (attr->ia_valid & ATTR_UID)
4356 inode->i_uid = attr->ia_uid;
4357 if (attr->ia_valid & ATTR_GID)
4358 inode->i_gid = attr->ia_gid;
617ba13b
MC
4359 error = ext4_mark_inode_dirty(handle, inode);
4360 ext4_journal_stop(handle);
ac27a0ec
DK
4361 }
4362
e2b46574 4363 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4364
12e9b892 4365 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4367
0c095c7f
TT
4368 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4369 return -EFBIG;
e2b46574
ES
4370 }
4371 }
4372
ac27a0ec 4373 if (S_ISREG(inode->i_mode) &&
c8d46e41 4374 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4375 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4376 handle_t *handle;
4377
617ba13b 4378 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4379 if (IS_ERR(handle)) {
4380 error = PTR_ERR(handle);
4381 goto err_out;
4382 }
3d287de3
DM
4383 if (ext4_handle_valid(handle)) {
4384 error = ext4_orphan_add(handle, inode);
4385 orphan = 1;
4386 }
617ba13b
MC
4387 EXT4_I(inode)->i_disksize = attr->ia_size;
4388 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4389 if (!error)
4390 error = rc;
617ba13b 4391 ext4_journal_stop(handle);
678aaf48
JK
4392
4393 if (ext4_should_order_data(inode)) {
4394 error = ext4_begin_ordered_truncate(inode,
4395 attr->ia_size);
4396 if (error) {
4397 /* Do as much error cleanup as possible */
4398 handle = ext4_journal_start(inode, 3);
4399 if (IS_ERR(handle)) {
4400 ext4_orphan_del(NULL, inode);
4401 goto err_out;
4402 }
4403 ext4_orphan_del(handle, inode);
3d287de3 4404 orphan = 0;
678aaf48
JK
4405 ext4_journal_stop(handle);
4406 goto err_out;
4407 }
4408 }
ac27a0ec
DK
4409 }
4410
072bd7ea 4411 if (attr->ia_valid & ATTR_SIZE) {
1c9114f9 4412 if (attr->ia_size != i_size_read(inode)) {
072bd7ea 4413 truncate_setsize(inode, attr->ia_size);
1b65007e
DM
4414 /* Inode size will be reduced, wait for dio in flight.
4415 * Temporarily disable dioread_nolock to prevent
4416 * livelock. */
4417 if (orphan) {
4418 ext4_inode_block_unlocked_dio(inode);
1c9114f9 4419 inode_dio_wait(inode);
1b65007e
DM
4420 ext4_inode_resume_unlocked_dio(inode);
4421 }
1c9114f9 4422 }
afcff5d8 4423 ext4_truncate(inode);
072bd7ea 4424 }
ac27a0ec 4425
1025774c
CH
4426 if (!rc) {
4427 setattr_copy(inode, attr);
4428 mark_inode_dirty(inode);
4429 }
4430
4431 /*
4432 * If the call to ext4_truncate failed to get a transaction handle at
4433 * all, we need to clean up the in-core orphan list manually.
4434 */
3d287de3 4435 if (orphan && inode->i_nlink)
617ba13b 4436 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4437
4438 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4439 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4440
4441err_out:
617ba13b 4442 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4443 if (!error)
4444 error = rc;
4445 return error;
4446}
4447
3e3398a0
MC
4448int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4449 struct kstat *stat)
4450{
4451 struct inode *inode;
4452 unsigned long delalloc_blocks;
4453
4454 inode = dentry->d_inode;
4455 generic_fillattr(inode, stat);
4456
4457 /*
4458 * We can't update i_blocks if the block allocation is delayed
4459 * otherwise in the case of system crash before the real block
4460 * allocation is done, we will have i_blocks inconsistent with
4461 * on-disk file blocks.
4462 * We always keep i_blocks updated together with real
4463 * allocation. But to not confuse with user, stat
4464 * will return the blocks that include the delayed allocation
4465 * blocks for this file.
4466 */
96607551
TM
4467 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4468 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4469
4470 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4471 return 0;
4472}
ac27a0ec 4473
a02908f1
MC
4474static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4475{
12e9b892 4476 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4477 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4478 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4479}
ac51d837 4480
ac27a0ec 4481/*
a02908f1
MC
4482 * Account for index blocks, block groups bitmaps and block group
4483 * descriptor blocks if modify datablocks and index blocks
4484 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4485 *
a02908f1 4486 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4487 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4488 * they could still across block group boundary.
ac27a0ec 4489 *
a02908f1
MC
4490 * Also account for superblock, inode, quota and xattr blocks
4491 */
1f109d5a 4492static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4493{
8df9675f
TT
4494 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4495 int gdpblocks;
a02908f1
MC
4496 int idxblocks;
4497 int ret = 0;
4498
4499 /*
4500 * How many index blocks need to touch to modify nrblocks?
4501 * The "Chunk" flag indicating whether the nrblocks is
4502 * physically contiguous on disk
4503 *
4504 * For Direct IO and fallocate, they calls get_block to allocate
4505 * one single extent at a time, so they could set the "Chunk" flag
4506 */
4507 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4508
4509 ret = idxblocks;
4510
4511 /*
4512 * Now let's see how many group bitmaps and group descriptors need
4513 * to account
4514 */
4515 groups = idxblocks;
4516 if (chunk)
4517 groups += 1;
4518 else
4519 groups += nrblocks;
4520
4521 gdpblocks = groups;
8df9675f
TT
4522 if (groups > ngroups)
4523 groups = ngroups;
a02908f1
MC
4524 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4525 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4526
4527 /* bitmaps and block group descriptor blocks */
4528 ret += groups + gdpblocks;
4529
4530 /* Blocks for super block, inode, quota and xattr blocks */
4531 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4532
4533 return ret;
4534}
4535
4536/*
25985edc 4537 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4538 * the modification of a single pages into a single transaction,
4539 * which may include multiple chunks of block allocations.
ac27a0ec 4540 *
525f4ed8 4541 * This could be called via ext4_write_begin()
ac27a0ec 4542 *
525f4ed8 4543 * We need to consider the worse case, when
a02908f1 4544 * one new block per extent.
ac27a0ec 4545 */
a86c6181 4546int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4547{
617ba13b 4548 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4549 int ret;
4550
a02908f1 4551 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4552
a02908f1 4553 /* Account for data blocks for journalled mode */
617ba13b 4554 if (ext4_should_journal_data(inode))
a02908f1 4555 ret += bpp;
ac27a0ec
DK
4556 return ret;
4557}
f3bd1f3f
MC
4558
4559/*
4560 * Calculate the journal credits for a chunk of data modification.
4561 *
4562 * This is called from DIO, fallocate or whoever calling
79e83036 4563 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4564 *
4565 * journal buffers for data blocks are not included here, as DIO
4566 * and fallocate do no need to journal data buffers.
4567 */
4568int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4569{
4570 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4571}
4572
ac27a0ec 4573/*
617ba13b 4574 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4575 * Give this, we know that the caller already has write access to iloc->bh.
4576 */
617ba13b 4577int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4578 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4579{
4580 int err = 0;
4581
c64db50e 4582 if (IS_I_VERSION(inode))
25ec56b5
JNC
4583 inode_inc_iversion(inode);
4584
ac27a0ec
DK
4585 /* the do_update_inode consumes one bh->b_count */
4586 get_bh(iloc->bh);
4587
dab291af 4588 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4589 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4590 put_bh(iloc->bh);
4591 return err;
4592}
4593
4594/*
4595 * On success, We end up with an outstanding reference count against
4596 * iloc->bh. This _must_ be cleaned up later.
4597 */
4598
4599int
617ba13b
MC
4600ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4601 struct ext4_iloc *iloc)
ac27a0ec 4602{
0390131b
FM
4603 int err;
4604
4605 err = ext4_get_inode_loc(inode, iloc);
4606 if (!err) {
4607 BUFFER_TRACE(iloc->bh, "get_write_access");
4608 err = ext4_journal_get_write_access(handle, iloc->bh);
4609 if (err) {
4610 brelse(iloc->bh);
4611 iloc->bh = NULL;
ac27a0ec
DK
4612 }
4613 }
617ba13b 4614 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4615 return err;
4616}
4617
6dd4ee7c
KS
4618/*
4619 * Expand an inode by new_extra_isize bytes.
4620 * Returns 0 on success or negative error number on failure.
4621 */
1d03ec98
AK
4622static int ext4_expand_extra_isize(struct inode *inode,
4623 unsigned int new_extra_isize,
4624 struct ext4_iloc iloc,
4625 handle_t *handle)
6dd4ee7c
KS
4626{
4627 struct ext4_inode *raw_inode;
4628 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4629
4630 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4631 return 0;
4632
4633 raw_inode = ext4_raw_inode(&iloc);
4634
4635 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4636
4637 /* No extended attributes present */
19f5fb7a
TT
4638 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4639 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4640 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4641 new_extra_isize);
4642 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4643 return 0;
4644 }
4645
4646 /* try to expand with EAs present */
4647 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4648 raw_inode, handle);
4649}
4650
ac27a0ec
DK
4651/*
4652 * What we do here is to mark the in-core inode as clean with respect to inode
4653 * dirtiness (it may still be data-dirty).
4654 * This means that the in-core inode may be reaped by prune_icache
4655 * without having to perform any I/O. This is a very good thing,
4656 * because *any* task may call prune_icache - even ones which
4657 * have a transaction open against a different journal.
4658 *
4659 * Is this cheating? Not really. Sure, we haven't written the
4660 * inode out, but prune_icache isn't a user-visible syncing function.
4661 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4662 * we start and wait on commits.
ac27a0ec 4663 */
617ba13b 4664int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4665{
617ba13b 4666 struct ext4_iloc iloc;
6dd4ee7c
KS
4667 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4668 static unsigned int mnt_count;
4669 int err, ret;
ac27a0ec
DK
4670
4671 might_sleep();
7ff9c073 4672 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4673 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4674 if (ext4_handle_valid(handle) &&
4675 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4676 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4677 /*
4678 * We need extra buffer credits since we may write into EA block
4679 * with this same handle. If journal_extend fails, then it will
4680 * only result in a minor loss of functionality for that inode.
4681 * If this is felt to be critical, then e2fsck should be run to
4682 * force a large enough s_min_extra_isize.
4683 */
4684 if ((jbd2_journal_extend(handle,
4685 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4686 ret = ext4_expand_extra_isize(inode,
4687 sbi->s_want_extra_isize,
4688 iloc, handle);
4689 if (ret) {
19f5fb7a
TT
4690 ext4_set_inode_state(inode,
4691 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4692 if (mnt_count !=
4693 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4694 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4695 "Unable to expand inode %lu. Delete"
4696 " some EAs or run e2fsck.",
4697 inode->i_ino);
c1bddad9
AK
4698 mnt_count =
4699 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4700 }
4701 }
4702 }
4703 }
ac27a0ec 4704 if (!err)
617ba13b 4705 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4706 return err;
4707}
4708
4709/*
617ba13b 4710 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4711 *
4712 * We're really interested in the case where a file is being extended.
4713 * i_size has been changed by generic_commit_write() and we thus need
4714 * to include the updated inode in the current transaction.
4715 *
5dd4056d 4716 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4717 * are allocated to the file.
4718 *
4719 * If the inode is marked synchronous, we don't honour that here - doing
4720 * so would cause a commit on atime updates, which we don't bother doing.
4721 * We handle synchronous inodes at the highest possible level.
4722 */
aa385729 4723void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4724{
ac27a0ec
DK
4725 handle_t *handle;
4726
617ba13b 4727 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4728 if (IS_ERR(handle))
4729 goto out;
f3dc272f 4730
f3dc272f
CW
4731 ext4_mark_inode_dirty(handle, inode);
4732
617ba13b 4733 ext4_journal_stop(handle);
ac27a0ec
DK
4734out:
4735 return;
4736}
4737
4738#if 0
4739/*
4740 * Bind an inode's backing buffer_head into this transaction, to prevent
4741 * it from being flushed to disk early. Unlike
617ba13b 4742 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4743 * returns no iloc structure, so the caller needs to repeat the iloc
4744 * lookup to mark the inode dirty later.
4745 */
617ba13b 4746static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4747{
617ba13b 4748 struct ext4_iloc iloc;
ac27a0ec
DK
4749
4750 int err = 0;
4751 if (handle) {
617ba13b 4752 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4753 if (!err) {
4754 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4755 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4756 if (!err)
0390131b 4757 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4758 NULL,
0390131b 4759 iloc.bh);
ac27a0ec
DK
4760 brelse(iloc.bh);
4761 }
4762 }
617ba13b 4763 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4764 return err;
4765}
4766#endif
4767
617ba13b 4768int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4769{
4770 journal_t *journal;
4771 handle_t *handle;
4772 int err;
4773
4774 /*
4775 * We have to be very careful here: changing a data block's
4776 * journaling status dynamically is dangerous. If we write a
4777 * data block to the journal, change the status and then delete
4778 * that block, we risk forgetting to revoke the old log record
4779 * from the journal and so a subsequent replay can corrupt data.
4780 * So, first we make sure that the journal is empty and that
4781 * nobody is changing anything.
4782 */
4783
617ba13b 4784 journal = EXT4_JOURNAL(inode);
0390131b
FM
4785 if (!journal)
4786 return 0;
d699594d 4787 if (is_journal_aborted(journal))
ac27a0ec 4788 return -EROFS;
2aff57b0
YY
4789 /* We have to allocate physical blocks for delalloc blocks
4790 * before flushing journal. otherwise delalloc blocks can not
4791 * be allocated any more. even more truncate on delalloc blocks
4792 * could trigger BUG by flushing delalloc blocks in journal.
4793 * There is no delalloc block in non-journal data mode.
4794 */
4795 if (val && test_opt(inode->i_sb, DELALLOC)) {
4796 err = ext4_alloc_da_blocks(inode);
4797 if (err < 0)
4798 return err;
4799 }
ac27a0ec 4800
17335dcc
DM
4801 /* Wait for all existing dio workers */
4802 ext4_inode_block_unlocked_dio(inode);
4803 inode_dio_wait(inode);
4804
dab291af 4805 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4806
4807 /*
4808 * OK, there are no updates running now, and all cached data is
4809 * synced to disk. We are now in a completely consistent state
4810 * which doesn't have anything in the journal, and we know that
4811 * no filesystem updates are running, so it is safe to modify
4812 * the inode's in-core data-journaling state flag now.
4813 */
4814
4815 if (val)
12e9b892 4816 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4817 else {
4818 jbd2_journal_flush(journal);
12e9b892 4819 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4820 }
617ba13b 4821 ext4_set_aops(inode);
ac27a0ec 4822
dab291af 4823 jbd2_journal_unlock_updates(journal);
17335dcc 4824 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4825
4826 /* Finally we can mark the inode as dirty. */
4827
617ba13b 4828 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4829 if (IS_ERR(handle))
4830 return PTR_ERR(handle);
4831
617ba13b 4832 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4833 ext4_handle_sync(handle);
617ba13b
MC
4834 ext4_journal_stop(handle);
4835 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4836
4837 return err;
4838}
2e9ee850
AK
4839
4840static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4841{
4842 return !buffer_mapped(bh);
4843}
4844
c2ec175c 4845int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4846{
c2ec175c 4847 struct page *page = vmf->page;
2e9ee850
AK
4848 loff_t size;
4849 unsigned long len;
9ea7df53 4850 int ret;
2e9ee850
AK
4851 struct file *file = vma->vm_file;
4852 struct inode *inode = file->f_path.dentry->d_inode;
4853 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4854 handle_t *handle;
4855 get_block_t *get_block;
4856 int retries = 0;
2e9ee850 4857
8e8ad8a5 4858 sb_start_pagefault(inode->i_sb);
041bbb6d 4859 file_update_time(vma->vm_file);
9ea7df53
JK
4860 /* Delalloc case is easy... */
4861 if (test_opt(inode->i_sb, DELALLOC) &&
4862 !ext4_should_journal_data(inode) &&
4863 !ext4_nonda_switch(inode->i_sb)) {
4864 do {
4865 ret = __block_page_mkwrite(vma, vmf,
4866 ext4_da_get_block_prep);
4867 } while (ret == -ENOSPC &&
4868 ext4_should_retry_alloc(inode->i_sb, &retries));
4869 goto out_ret;
2e9ee850 4870 }
0e499890
DW
4871
4872 lock_page(page);
9ea7df53
JK
4873 size = i_size_read(inode);
4874 /* Page got truncated from under us? */
4875 if (page->mapping != mapping || page_offset(page) > size) {
4876 unlock_page(page);
4877 ret = VM_FAULT_NOPAGE;
4878 goto out;
0e499890 4879 }
2e9ee850
AK
4880
4881 if (page->index == size >> PAGE_CACHE_SHIFT)
4882 len = size & ~PAGE_CACHE_MASK;
4883 else
4884 len = PAGE_CACHE_SIZE;
a827eaff 4885 /*
9ea7df53
JK
4886 * Return if we have all the buffers mapped. This avoids the need to do
4887 * journal_start/journal_stop which can block and take a long time
a827eaff 4888 */
2e9ee850 4889 if (page_has_buffers(page)) {
f19d5870
TM
4890 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4891 0, len, NULL,
4892 ext4_bh_unmapped)) {
9ea7df53
JK
4893 /* Wait so that we don't change page under IO */
4894 wait_on_page_writeback(page);
4895 ret = VM_FAULT_LOCKED;
4896 goto out;
a827eaff 4897 }
2e9ee850 4898 }
a827eaff 4899 unlock_page(page);
9ea7df53
JK
4900 /* OK, we need to fill the hole... */
4901 if (ext4_should_dioread_nolock(inode))
4902 get_block = ext4_get_block_write;
4903 else
4904 get_block = ext4_get_block;
4905retry_alloc:
4906 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4907 if (IS_ERR(handle)) {
c2ec175c 4908 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4909 goto out;
4910 }
4911 ret = __block_page_mkwrite(vma, vmf, get_block);
4912 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 4913 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
4914 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4915 unlock_page(page);
4916 ret = VM_FAULT_SIGBUS;
fcbb5515 4917 ext4_journal_stop(handle);
9ea7df53
JK
4918 goto out;
4919 }
4920 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4921 }
4922 ext4_journal_stop(handle);
4923 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4924 goto retry_alloc;
4925out_ret:
4926 ret = block_page_mkwrite_return(ret);
4927out:
8e8ad8a5 4928 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
4929 return ret;
4930}