]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: convert ext4_getblk() to use the ERR_PTR convention
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 150
bd9db175
ZL
151 if (ext4_has_inline_data(inode))
152 return 0;
153
ac27a0ec
DK
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155}
156
ac27a0ec
DK
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 175 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 176 ret = ext4_journal_restart(handle, nblocks);
487caeef 177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
2581fdc8 192
0930fcc1 193 if (inode->i_nlink) {
2d859db3
JK
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
d76a3a77 218 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
219 filemap_write_and_wait(&inode->i_data);
220 }
91b0abe3 221 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
222
223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
224 goto no_delete;
225 }
226
907f4554 227 if (!is_bad_inode(inode))
871a2931 228 dquot_initialize(inode);
907f4554 229
678aaf48
JK
230 if (ext4_should_order_data(inode))
231 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 232 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 233
5dc23bdd 234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
235 if (is_bad_inode(inode))
236 goto no_delete;
237
8e8ad8a5
JK
238 /*
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
241 */
242 sb_start_intwrite(inode->i_sb);
9924a92a
TT
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 245 if (IS_ERR(handle)) {
bc965ab3 246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
247 /*
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
250 * cleaned up.
251 */
617ba13b 252 ext4_orphan_del(NULL, inode);
8e8ad8a5 253 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
254 goto no_delete;
255 }
256
257 if (IS_SYNC(inode))
0390131b 258 ext4_handle_sync(handle);
ac27a0ec 259 inode->i_size = 0;
bc965ab3
TT
260 err = ext4_mark_inode_dirty(handle, inode);
261 if (err) {
12062ddd 262 ext4_warning(inode->i_sb,
bc965ab3
TT
263 "couldn't mark inode dirty (err %d)", err);
264 goto stop_handle;
265 }
ac27a0ec 266 if (inode->i_blocks)
617ba13b 267 ext4_truncate(inode);
bc965ab3
TT
268
269 /*
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
274 */
0390131b 275 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
276 err = ext4_journal_extend(handle, 3);
277 if (err > 0)
278 err = ext4_journal_restart(handle, 3);
279 if (err != 0) {
12062ddd 280 ext4_warning(inode->i_sb,
bc965ab3
TT
281 "couldn't extend journal (err %d)", err);
282 stop_handle:
283 ext4_journal_stop(handle);
45388219 284 ext4_orphan_del(NULL, inode);
8e8ad8a5 285 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
286 goto no_delete;
287 }
288 }
289
ac27a0ec 290 /*
617ba13b 291 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 292 * AKPM: I think this can be inside the above `if'.
617ba13b 293 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 294 * deletion of a non-existent orphan - this is because we don't
617ba13b 295 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
296 * (Well, we could do this if we need to, but heck - it works)
297 */
617ba13b
MC
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
300
301 /*
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
306 * fails.
307 */
617ba13b 308 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 309 /* If that failed, just do the required in-core inode clear. */
0930fcc1 310 ext4_clear_inode(inode);
ac27a0ec 311 else
617ba13b
MC
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
8e8ad8a5 314 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
315 return;
316no_delete:
0930fcc1 317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
318}
319
a9e7f447
DM
320#ifdef CONFIG_QUOTA
321qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 322{
a9e7f447 323 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 324}
a9e7f447 325#endif
9d0be502 326
0637c6f4
TT
327/*
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
330 */
5f634d06
AK
331void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
12219aea
AK
333{
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 335 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
336
337 spin_lock(&ei->i_block_reservation_lock);
d8990240 338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 339 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 341 "with only %d reserved data blocks",
0637c6f4
TT
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
344 WARN_ON(1);
345 used = ei->i_reserved_data_blocks;
346 }
12219aea 347
0637c6f4
TT
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
71d4f7d0 350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 351
12219aea 352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 353
72b8ab9d
ES
354 /* Update quota subsystem for data blocks */
355 if (quota_claim)
7b415bf6 356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 357 else {
5f634d06
AK
358 /*
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
72b8ab9d 361 * not re-claim the quota for fallocated blocks.
5f634d06 362 */
7b415bf6 363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 364 }
d6014301
AK
365
366 /*
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
370 */
0637c6f4
TT
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
d6014301 373 ext4_discard_preallocations(inode);
12219aea
AK
374}
375
e29136f8 376static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
377 unsigned int line,
378 struct ext4_map_blocks *map)
6fd058f7 379{
24676da4
TT
380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 map->m_len)) {
c398eda0
TT
382 ext4_error_inode(inode, func, line, map->m_pblk,
383 "lblock %lu mapped to illegal pblock "
384 "(length %d)", (unsigned long) map->m_lblk,
385 map->m_len);
6fd058f7
TT
386 return -EIO;
387 }
388 return 0;
389}
390
e29136f8 391#define check_block_validity(inode, map) \
c398eda0 392 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 393
921f266b
DM
394#ifdef ES_AGGRESSIVE_TEST
395static void ext4_map_blocks_es_recheck(handle_t *handle,
396 struct inode *inode,
397 struct ext4_map_blocks *es_map,
398 struct ext4_map_blocks *map,
399 int flags)
400{
401 int retval;
402
403 map->m_flags = 0;
404 /*
405 * There is a race window that the result is not the same.
406 * e.g. xfstests #223 when dioread_nolock enables. The reason
407 * is that we lookup a block mapping in extent status tree with
408 * out taking i_data_sem. So at the time the unwritten extent
409 * could be converted.
410 */
411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 412 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 } else {
417 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 EXT4_GET_BLOCKS_KEEP_SIZE);
419 }
420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 up_read((&EXT4_I(inode)->i_data_sem));
422 /*
423 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424 * because it shouldn't be marked in es_map->m_flags.
425 */
426 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
bdafe42a 435 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443}
444#endif /* ES_AGGRESSIVE_TEST */
445
f5ab0d1f 446/*
e35fd660 447 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 448 * and returns if the blocks are already mapped.
f5ab0d1f 449 *
f5ab0d1f
MC
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
e35fd660
TT
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
456 * based files
457 *
556615dc
LC
458 * On success, it returns the number of blocks being mapped or allocated.
459 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
460 * the result buffer head is unmapped. If the create ==1, it will make sure
461 * the buffer head is mapped.
462 *
463 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 464 * that case, buffer head is unmapped
f5ab0d1f
MC
465 *
466 * It returns the error in case of allocation failure.
467 */
e35fd660
TT
468int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
0e855ac8 470{
d100eef2 471 struct extent_status es;
0e855ac8 472 int retval;
b8a86845 473 int ret = 0;
921f266b
DM
474#ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478#endif
f5ab0d1f 479
e35fd660
TT
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
d100eef2 484
e861b5e9
TT
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
4adb6ab3
KM
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EIO;
494
d100eef2
ZL
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 497 ext4_es_lru_add(inode);
d100eef2
ZL
498 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499 map->m_pblk = ext4_es_pblock(&es) +
500 map->m_lblk - es.es_lblk;
501 map->m_flags |= ext4_es_is_written(&es) ?
502 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503 retval = es.es_len - (map->m_lblk - es.es_lblk);
504 if (retval > map->m_len)
505 retval = map->m_len;
506 map->m_len = retval;
507 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508 retval = 0;
509 } else {
510 BUG_ON(1);
511 }
921f266b
DM
512#ifdef ES_AGGRESSIVE_TEST
513 ext4_map_blocks_es_recheck(handle, inode, map,
514 &orig_map, flags);
515#endif
d100eef2
ZL
516 goto found;
517 }
518
4df3d265 519 /*
b920c755
TT
520 * Try to see if we can get the block without requesting a new
521 * file system block.
4df3d265 522 */
729f52c6 523 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 524 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
526 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 528 } else {
a4e5d88b
DM
529 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 531 }
f7fec032 532 if (retval > 0) {
3be78c73 533 unsigned int status;
f7fec032 534
44fb851d
ZL
535 if (unlikely(retval != map->m_len)) {
536 ext4_warning(inode->i_sb,
537 "ES len assertion failed for inode "
538 "%lu: retval %d != map->m_len %d",
539 inode->i_ino, retval, map->m_len);
540 WARN_ON(1);
921f266b 541 }
921f266b 542
f7fec032
ZL
543 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546 ext4_find_delalloc_range(inode, map->m_lblk,
547 map->m_lblk + map->m_len - 1))
548 status |= EXTENT_STATUS_DELAYED;
549 ret = ext4_es_insert_extent(inode, map->m_lblk,
550 map->m_len, map->m_pblk, status);
551 if (ret < 0)
552 retval = ret;
553 }
729f52c6
ZL
554 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 556
d100eef2 557found:
e35fd660 558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 559 ret = check_block_validity(inode, map);
6fd058f7
TT
560 if (ret != 0)
561 return ret;
562 }
563
f5ab0d1f 564 /* If it is only a block(s) look up */
c2177057 565 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
566 return retval;
567
568 /*
569 * Returns if the blocks have already allocated
570 *
571 * Note that if blocks have been preallocated
df3ab170 572 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
573 * with buffer head unmapped.
574 */
e35fd660 575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
576 /*
577 * If we need to convert extent to unwritten
578 * we continue and do the actual work in
579 * ext4_ext_map_blocks()
580 */
581 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582 return retval;
4df3d265 583
2a8964d6 584 /*
a25a4e1a
ZL
585 * Here we clear m_flags because after allocating an new extent,
586 * it will be set again.
2a8964d6 587 */
a25a4e1a 588 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 589
4df3d265 590 /*
556615dc 591 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f
MC
592 * will possibly result in updating i_data, so we take
593 * the write lock of i_data_sem, and call get_blocks()
594 * with create == 1 flag.
4df3d265 595 */
c8b459f4 596 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637
MC
597
598 /*
599 * if the caller is from delayed allocation writeout path
600 * we have already reserved fs blocks for allocation
601 * let the underlying get_block() function know to
602 * avoid double accounting
603 */
c2177057 604 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 605 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
606 /*
607 * We need to check for EXT4 here because migrate
608 * could have changed the inode type in between
609 */
12e9b892 610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 611 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 612 } else {
e35fd660 613 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 614
e35fd660 615 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
616 /*
617 * We allocated new blocks which will result in
618 * i_data's format changing. Force the migrate
619 * to fail by clearing migrate flags
620 */
19f5fb7a 621 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 622 }
d2a17637 623
5f634d06
AK
624 /*
625 * Update reserved blocks/metadata blocks after successful
626 * block allocation which had been deferred till now. We don't
627 * support fallocate for non extent files. So we can update
628 * reserve space here.
629 */
630 if ((retval > 0) &&
1296cc85 631 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
632 ext4_da_update_reserve_space(inode, retval, 1);
633 }
f7fec032 634 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 635 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 636
f7fec032 637 if (retval > 0) {
3be78c73 638 unsigned int status;
f7fec032 639
44fb851d
ZL
640 if (unlikely(retval != map->m_len)) {
641 ext4_warning(inode->i_sb,
642 "ES len assertion failed for inode "
643 "%lu: retval %d != map->m_len %d",
644 inode->i_ino, retval, map->m_len);
645 WARN_ON(1);
921f266b 646 }
921f266b 647
adb23551
ZL
648 /*
649 * If the extent has been zeroed out, we don't need to update
650 * extent status tree.
651 */
652 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654 if (ext4_es_is_written(&es))
655 goto has_zeroout;
656 }
f7fec032
ZL
657 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660 ext4_find_delalloc_range(inode, map->m_lblk,
661 map->m_lblk + map->m_len - 1))
662 status |= EXTENT_STATUS_DELAYED;
663 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664 map->m_pblk, status);
665 if (ret < 0)
666 retval = ret;
5356f261
AK
667 }
668
adb23551 669has_zeroout:
4df3d265 670 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 671 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 672 ret = check_block_validity(inode, map);
6fd058f7
TT
673 if (ret != 0)
674 return ret;
675 }
0e855ac8
AK
676 return retval;
677}
678
f3bd1f3f
MC
679/* Maximum number of blocks we map for direct IO at once. */
680#define DIO_MAX_BLOCKS 4096
681
2ed88685
TT
682static int _ext4_get_block(struct inode *inode, sector_t iblock,
683 struct buffer_head *bh, int flags)
ac27a0ec 684{
3e4fdaf8 685 handle_t *handle = ext4_journal_current_handle();
2ed88685 686 struct ext4_map_blocks map;
7fb5409d 687 int ret = 0, started = 0;
f3bd1f3f 688 int dio_credits;
ac27a0ec 689
46c7f254
TM
690 if (ext4_has_inline_data(inode))
691 return -ERANGE;
692
2ed88685
TT
693 map.m_lblk = iblock;
694 map.m_len = bh->b_size >> inode->i_blkbits;
695
8b0f165f 696 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 697 /* Direct IO write... */
2ed88685
TT
698 if (map.m_len > DIO_MAX_BLOCKS)
699 map.m_len = DIO_MAX_BLOCKS;
700 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
701 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702 dio_credits);
7fb5409d 703 if (IS_ERR(handle)) {
ac27a0ec 704 ret = PTR_ERR(handle);
2ed88685 705 return ret;
ac27a0ec 706 }
7fb5409d 707 started = 1;
ac27a0ec
DK
708 }
709
2ed88685 710 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 711 if (ret > 0) {
7b7a8665
CH
712 ext4_io_end_t *io_end = ext4_inode_aio(inode);
713
2ed88685
TT
714 map_bh(bh, inode->i_sb, map.m_pblk);
715 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
716 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717 set_buffer_defer_completion(bh);
2ed88685 718 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 719 ret = 0;
ac27a0ec 720 }
7fb5409d
JK
721 if (started)
722 ext4_journal_stop(handle);
ac27a0ec
DK
723 return ret;
724}
725
2ed88685
TT
726int ext4_get_block(struct inode *inode, sector_t iblock,
727 struct buffer_head *bh, int create)
728{
729 return _ext4_get_block(inode, iblock, bh,
730 create ? EXT4_GET_BLOCKS_CREATE : 0);
731}
732
ac27a0ec
DK
733/*
734 * `handle' can be NULL if create is zero
735 */
617ba13b 736struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
10560082 737 ext4_lblk_t block, int create)
ac27a0ec 738{
2ed88685
TT
739 struct ext4_map_blocks map;
740 struct buffer_head *bh;
10560082 741 int err;
ac27a0ec
DK
742
743 J_ASSERT(handle != NULL || create == 0);
744
2ed88685
TT
745 map.m_lblk = block;
746 map.m_len = 1;
747 err = ext4_map_blocks(handle, inode, &map,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 749
10560082
TT
750 if (err == 0)
751 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 752 if (err < 0)
10560082 753 return ERR_PTR(err);
2ed88685
TT
754
755 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
756 if (unlikely(!bh))
757 return ERR_PTR(-ENOMEM);
2ed88685
TT
758 if (map.m_flags & EXT4_MAP_NEW) {
759 J_ASSERT(create != 0);
760 J_ASSERT(handle != NULL);
ac27a0ec 761
2ed88685
TT
762 /*
763 * Now that we do not always journal data, we should
764 * keep in mind whether this should always journal the
765 * new buffer as metadata. For now, regular file
766 * writes use ext4_get_block instead, so it's not a
767 * problem.
768 */
769 lock_buffer(bh);
770 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
771 err = ext4_journal_get_create_access(handle, bh);
772 if (unlikely(err)) {
773 unlock_buffer(bh);
774 goto errout;
775 }
776 if (!buffer_uptodate(bh)) {
2ed88685
TT
777 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
778 set_buffer_uptodate(bh);
ac27a0ec 779 }
2ed88685
TT
780 unlock_buffer(bh);
781 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
782 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
783 if (unlikely(err))
784 goto errout;
785 } else
2ed88685 786 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 787 return bh;
10560082
TT
788errout:
789 brelse(bh);
790 return ERR_PTR(err);
ac27a0ec
DK
791}
792
617ba13b 793struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 794 ext4_lblk_t block, int create, int *err)
ac27a0ec 795{
af5bc92d 796 struct buffer_head *bh;
ac27a0ec 797
10560082
TT
798 *err = 0;
799 bh = ext4_getblk(handle, inode, block, create);
800 if (IS_ERR(bh)) {
801 *err = PTR_ERR(bh);
802 return NULL;
803 }
ac27a0ec
DK
804 if (!bh)
805 return bh;
806 if (buffer_uptodate(bh))
807 return bh;
65299a3b 808 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
809 wait_on_buffer(bh);
810 if (buffer_uptodate(bh))
811 return bh;
812 put_bh(bh);
813 *err = -EIO;
814 return NULL;
815}
816
f19d5870
TM
817int ext4_walk_page_buffers(handle_t *handle,
818 struct buffer_head *head,
819 unsigned from,
820 unsigned to,
821 int *partial,
822 int (*fn)(handle_t *handle,
823 struct buffer_head *bh))
ac27a0ec
DK
824{
825 struct buffer_head *bh;
826 unsigned block_start, block_end;
827 unsigned blocksize = head->b_size;
828 int err, ret = 0;
829 struct buffer_head *next;
830
af5bc92d
TT
831 for (bh = head, block_start = 0;
832 ret == 0 && (bh != head || !block_start);
de9a55b8 833 block_start = block_end, bh = next) {
ac27a0ec
DK
834 next = bh->b_this_page;
835 block_end = block_start + blocksize;
836 if (block_end <= from || block_start >= to) {
837 if (partial && !buffer_uptodate(bh))
838 *partial = 1;
839 continue;
840 }
841 err = (*fn)(handle, bh);
842 if (!ret)
843 ret = err;
844 }
845 return ret;
846}
847
848/*
849 * To preserve ordering, it is essential that the hole instantiation and
850 * the data write be encapsulated in a single transaction. We cannot
617ba13b 851 * close off a transaction and start a new one between the ext4_get_block()
dab291af 852 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
853 * prepare_write() is the right place.
854 *
36ade451
JK
855 * Also, this function can nest inside ext4_writepage(). In that case, we
856 * *know* that ext4_writepage() has generated enough buffer credits to do the
857 * whole page. So we won't block on the journal in that case, which is good,
858 * because the caller may be PF_MEMALLOC.
ac27a0ec 859 *
617ba13b 860 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
861 * quota file writes. If we were to commit the transaction while thus
862 * reentered, there can be a deadlock - we would be holding a quota
863 * lock, and the commit would never complete if another thread had a
864 * transaction open and was blocking on the quota lock - a ranking
865 * violation.
866 *
dab291af 867 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
868 * will _not_ run commit under these circumstances because handle->h_ref
869 * is elevated. We'll still have enough credits for the tiny quotafile
870 * write.
871 */
f19d5870
TM
872int do_journal_get_write_access(handle_t *handle,
873 struct buffer_head *bh)
ac27a0ec 874{
56d35a4c
JK
875 int dirty = buffer_dirty(bh);
876 int ret;
877
ac27a0ec
DK
878 if (!buffer_mapped(bh) || buffer_freed(bh))
879 return 0;
56d35a4c 880 /*
ebdec241 881 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
882 * the dirty bit as jbd2_journal_get_write_access() could complain
883 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 884 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
885 * the bit before releasing a page lock and thus writeback cannot
886 * ever write the buffer.
887 */
888 if (dirty)
889 clear_buffer_dirty(bh);
5d601255 890 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
891 ret = ext4_journal_get_write_access(handle, bh);
892 if (!ret && dirty)
893 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
894 return ret;
ac27a0ec
DK
895}
896
8b0f165f
AP
897static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
898 struct buffer_head *bh_result, int create);
bfc1af65 899static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
900 loff_t pos, unsigned len, unsigned flags,
901 struct page **pagep, void **fsdata)
ac27a0ec 902{
af5bc92d 903 struct inode *inode = mapping->host;
1938a150 904 int ret, needed_blocks;
ac27a0ec
DK
905 handle_t *handle;
906 int retries = 0;
af5bc92d 907 struct page *page;
de9a55b8 908 pgoff_t index;
af5bc92d 909 unsigned from, to;
bfc1af65 910
9bffad1e 911 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
912 /*
913 * Reserve one block more for addition to orphan list in case
914 * we allocate blocks but write fails for some reason
915 */
916 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 917 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
918 from = pos & (PAGE_CACHE_SIZE - 1);
919 to = from + len;
ac27a0ec 920
f19d5870
TM
921 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
922 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
923 flags, pagep);
924 if (ret < 0)
47564bfb
TT
925 return ret;
926 if (ret == 1)
927 return 0;
f19d5870
TM
928 }
929
47564bfb
TT
930 /*
931 * grab_cache_page_write_begin() can take a long time if the
932 * system is thrashing due to memory pressure, or if the page
933 * is being written back. So grab it first before we start
934 * the transaction handle. This also allows us to allocate
935 * the page (if needed) without using GFP_NOFS.
936 */
937retry_grab:
938 page = grab_cache_page_write_begin(mapping, index, flags);
939 if (!page)
940 return -ENOMEM;
941 unlock_page(page);
942
943retry_journal:
9924a92a 944 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 945 if (IS_ERR(handle)) {
47564bfb
TT
946 page_cache_release(page);
947 return PTR_ERR(handle);
7479d2b9 948 }
ac27a0ec 949
47564bfb
TT
950 lock_page(page);
951 if (page->mapping != mapping) {
952 /* The page got truncated from under us */
953 unlock_page(page);
954 page_cache_release(page);
cf108bca 955 ext4_journal_stop(handle);
47564bfb 956 goto retry_grab;
cf108bca 957 }
7afe5aa5
DM
958 /* In case writeback began while the page was unlocked */
959 wait_for_stable_page(page);
cf108bca 960
744692dc 961 if (ext4_should_dioread_nolock(inode))
6e1db88d 962 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 963 else
6e1db88d 964 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
965
966 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
967 ret = ext4_walk_page_buffers(handle, page_buffers(page),
968 from, to, NULL,
969 do_journal_get_write_access);
ac27a0ec 970 }
bfc1af65
NP
971
972 if (ret) {
af5bc92d 973 unlock_page(page);
ae4d5372 974 /*
6e1db88d 975 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
976 * outside i_size. Trim these off again. Don't need
977 * i_size_read because we hold i_mutex.
1938a150
AK
978 *
979 * Add inode to orphan list in case we crash before
980 * truncate finishes
ae4d5372 981 */
ffacfa7a 982 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
983 ext4_orphan_add(handle, inode);
984
985 ext4_journal_stop(handle);
986 if (pos + len > inode->i_size) {
b9a4207d 987 ext4_truncate_failed_write(inode);
de9a55b8 988 /*
ffacfa7a 989 * If truncate failed early the inode might
1938a150
AK
990 * still be on the orphan list; we need to
991 * make sure the inode is removed from the
992 * orphan list in that case.
993 */
994 if (inode->i_nlink)
995 ext4_orphan_del(NULL, inode);
996 }
bfc1af65 997
47564bfb
TT
998 if (ret == -ENOSPC &&
999 ext4_should_retry_alloc(inode->i_sb, &retries))
1000 goto retry_journal;
1001 page_cache_release(page);
1002 return ret;
1003 }
1004 *pagep = page;
ac27a0ec
DK
1005 return ret;
1006}
1007
bfc1af65
NP
1008/* For write_end() in data=journal mode */
1009static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1010{
13fca323 1011 int ret;
ac27a0ec
DK
1012 if (!buffer_mapped(bh) || buffer_freed(bh))
1013 return 0;
1014 set_buffer_uptodate(bh);
13fca323
TT
1015 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1016 clear_buffer_meta(bh);
1017 clear_buffer_prio(bh);
1018 return ret;
ac27a0ec
DK
1019}
1020
eed4333f
ZL
1021/*
1022 * We need to pick up the new inode size which generic_commit_write gave us
1023 * `file' can be NULL - eg, when called from page_symlink().
1024 *
1025 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1026 * buffers are managed internally.
1027 */
1028static int ext4_write_end(struct file *file,
1029 struct address_space *mapping,
1030 loff_t pos, unsigned len, unsigned copied,
1031 struct page *page, void *fsdata)
f8514083 1032{
f8514083 1033 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1034 struct inode *inode = mapping->host;
1035 int ret = 0, ret2;
1036 int i_size_changed = 0;
1037
1038 trace_ext4_write_end(inode, pos, len, copied);
1039 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1040 ret = ext4_jbd2_file_inode(handle, inode);
1041 if (ret) {
1042 unlock_page(page);
1043 page_cache_release(page);
1044 goto errout;
1045 }
1046 }
f8514083 1047
42c832de
TT
1048 if (ext4_has_inline_data(inode)) {
1049 ret = ext4_write_inline_data_end(inode, pos, len,
1050 copied, page);
1051 if (ret < 0)
1052 goto errout;
1053 copied = ret;
1054 } else
f19d5870
TM
1055 copied = block_write_end(file, mapping, pos,
1056 len, copied, page, fsdata);
f8514083 1057 /*
4631dbf6 1058 * it's important to update i_size while still holding page lock:
f8514083
AK
1059 * page writeout could otherwise come in and zero beyond i_size.
1060 */
4631dbf6 1061 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1062 unlock_page(page);
1063 page_cache_release(page);
1064
1065 /*
1066 * Don't mark the inode dirty under page lock. First, it unnecessarily
1067 * makes the holding time of page lock longer. Second, it forces lock
1068 * ordering of page lock and transaction start for journaling
1069 * filesystems.
1070 */
1071 if (i_size_changed)
1072 ext4_mark_inode_dirty(handle, inode);
1073
ffacfa7a 1074 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1075 /* if we have allocated more blocks and copied
1076 * less. We will have blocks allocated outside
1077 * inode->i_size. So truncate them
1078 */
1079 ext4_orphan_add(handle, inode);
74d553aa 1080errout:
617ba13b 1081 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1082 if (!ret)
1083 ret = ret2;
bfc1af65 1084
f8514083 1085 if (pos + len > inode->i_size) {
b9a4207d 1086 ext4_truncate_failed_write(inode);
de9a55b8 1087 /*
ffacfa7a 1088 * If truncate failed early the inode might still be
f8514083
AK
1089 * on the orphan list; we need to make sure the inode
1090 * is removed from the orphan list in that case.
1091 */
1092 if (inode->i_nlink)
1093 ext4_orphan_del(NULL, inode);
1094 }
1095
bfc1af65 1096 return ret ? ret : copied;
ac27a0ec
DK
1097}
1098
bfc1af65 1099static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1100 struct address_space *mapping,
1101 loff_t pos, unsigned len, unsigned copied,
1102 struct page *page, void *fsdata)
ac27a0ec 1103{
617ba13b 1104 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1105 struct inode *inode = mapping->host;
ac27a0ec
DK
1106 int ret = 0, ret2;
1107 int partial = 0;
bfc1af65 1108 unsigned from, to;
4631dbf6 1109 int size_changed = 0;
ac27a0ec 1110
9bffad1e 1111 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1112 from = pos & (PAGE_CACHE_SIZE - 1);
1113 to = from + len;
1114
441c8508
CW
1115 BUG_ON(!ext4_handle_valid(handle));
1116
3fdcfb66
TM
1117 if (ext4_has_inline_data(inode))
1118 copied = ext4_write_inline_data_end(inode, pos, len,
1119 copied, page);
1120 else {
1121 if (copied < len) {
1122 if (!PageUptodate(page))
1123 copied = 0;
1124 page_zero_new_buffers(page, from+copied, to);
1125 }
ac27a0ec 1126
3fdcfb66
TM
1127 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1128 to, &partial, write_end_fn);
1129 if (!partial)
1130 SetPageUptodate(page);
1131 }
4631dbf6 1132 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1133 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1134 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1135 unlock_page(page);
1136 page_cache_release(page);
1137
1138 if (size_changed) {
617ba13b 1139 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1140 if (!ret)
1141 ret = ret2;
1142 }
bfc1af65 1143
ffacfa7a 1144 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1145 /* if we have allocated more blocks and copied
1146 * less. We will have blocks allocated outside
1147 * inode->i_size. So truncate them
1148 */
1149 ext4_orphan_add(handle, inode);
1150
617ba13b 1151 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1152 if (!ret)
1153 ret = ret2;
f8514083 1154 if (pos + len > inode->i_size) {
b9a4207d 1155 ext4_truncate_failed_write(inode);
de9a55b8 1156 /*
ffacfa7a 1157 * If truncate failed early the inode might still be
f8514083
AK
1158 * on the orphan list; we need to make sure the inode
1159 * is removed from the orphan list in that case.
1160 */
1161 if (inode->i_nlink)
1162 ext4_orphan_del(NULL, inode);
1163 }
bfc1af65
NP
1164
1165 return ret ? ret : copied;
ac27a0ec 1166}
d2a17637 1167
9d0be502 1168/*
7b415bf6 1169 * Reserve a single cluster located at lblock
9d0be502 1170 */
01f49d0b 1171static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1172{
60e58e0f 1173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1174 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1175 unsigned int md_needed;
5dd4056d 1176 int ret;
03179fe9
TT
1177
1178 /*
1179 * We will charge metadata quota at writeout time; this saves
1180 * us from metadata over-estimation, though we may go over by
1181 * a small amount in the end. Here we just reserve for data.
1182 */
1183 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1184 if (ret)
1185 return ret;
d2a17637
MC
1186
1187 /*
1188 * recalculate the amount of metadata blocks to reserve
1189 * in order to allocate nrblocks
1190 * worse case is one extent per block
1191 */
0637c6f4 1192 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1193 /*
1194 * ext4_calc_metadata_amount() has side effects, which we have
1195 * to be prepared undo if we fail to claim space.
1196 */
71d4f7d0
TT
1197 md_needed = 0;
1198 trace_ext4_da_reserve_space(inode, 0);
d2a17637 1199
71d4f7d0 1200 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1201 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1202 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1203 return -ENOSPC;
1204 }
9d0be502 1205 ei->i_reserved_data_blocks++;
0637c6f4 1206 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1207
d2a17637
MC
1208 return 0; /* success */
1209}
1210
12219aea 1211static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1212{
1213 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1214 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1215
cd213226
MC
1216 if (!to_free)
1217 return; /* Nothing to release, exit */
1218
d2a17637 1219 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1220
5a58ec87 1221 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1222 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1223 /*
0637c6f4
TT
1224 * if there aren't enough reserved blocks, then the
1225 * counter is messed up somewhere. Since this
1226 * function is called from invalidate page, it's
1227 * harmless to return without any action.
cd213226 1228 */
8de5c325 1229 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1230 "ino %lu, to_free %d with only %d reserved "
1084f252 1231 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1232 ei->i_reserved_data_blocks);
1233 WARN_ON(1);
1234 to_free = ei->i_reserved_data_blocks;
cd213226 1235 }
0637c6f4 1236 ei->i_reserved_data_blocks -= to_free;
cd213226 1237
72b8ab9d 1238 /* update fs dirty data blocks counter */
57042651 1239 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1240
d2a17637 1241 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1242
7b415bf6 1243 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1244}
1245
1246static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1247 unsigned int offset,
1248 unsigned int length)
d2a17637
MC
1249{
1250 int to_release = 0;
1251 struct buffer_head *head, *bh;
1252 unsigned int curr_off = 0;
7b415bf6
AK
1253 struct inode *inode = page->mapping->host;
1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1255 unsigned int stop = offset + length;
7b415bf6 1256 int num_clusters;
51865fda 1257 ext4_fsblk_t lblk;
d2a17637 1258
ca99fdd2
LC
1259 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1260
d2a17637
MC
1261 head = page_buffers(page);
1262 bh = head;
1263 do {
1264 unsigned int next_off = curr_off + bh->b_size;
1265
ca99fdd2
LC
1266 if (next_off > stop)
1267 break;
1268
d2a17637
MC
1269 if ((offset <= curr_off) && (buffer_delay(bh))) {
1270 to_release++;
1271 clear_buffer_delay(bh);
1272 }
1273 curr_off = next_off;
1274 } while ((bh = bh->b_this_page) != head);
7b415bf6 1275
51865fda
ZL
1276 if (to_release) {
1277 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1278 ext4_es_remove_extent(inode, lblk, to_release);
1279 }
1280
7b415bf6
AK
1281 /* If we have released all the blocks belonging to a cluster, then we
1282 * need to release the reserved space for that cluster. */
1283 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1284 while (num_clusters > 0) {
7b415bf6
AK
1285 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1286 ((num_clusters - 1) << sbi->s_cluster_bits);
1287 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1288 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1289 ext4_da_release_space(inode, 1);
1290
1291 num_clusters--;
1292 }
d2a17637 1293}
ac27a0ec 1294
64769240
AT
1295/*
1296 * Delayed allocation stuff
1297 */
1298
4e7ea81d
JK
1299struct mpage_da_data {
1300 struct inode *inode;
1301 struct writeback_control *wbc;
6b523df4 1302
4e7ea81d
JK
1303 pgoff_t first_page; /* The first page to write */
1304 pgoff_t next_page; /* Current page to examine */
1305 pgoff_t last_page; /* Last page to examine */
791b7f08 1306 /*
4e7ea81d
JK
1307 * Extent to map - this can be after first_page because that can be
1308 * fully mapped. We somewhat abuse m_flags to store whether the extent
1309 * is delalloc or unwritten.
791b7f08 1310 */
4e7ea81d
JK
1311 struct ext4_map_blocks map;
1312 struct ext4_io_submit io_submit; /* IO submission data */
1313};
64769240 1314
4e7ea81d
JK
1315static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1316 bool invalidate)
c4a0c46e
AK
1317{
1318 int nr_pages, i;
1319 pgoff_t index, end;
1320 struct pagevec pvec;
1321 struct inode *inode = mpd->inode;
1322 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1323
1324 /* This is necessary when next_page == 0. */
1325 if (mpd->first_page >= mpd->next_page)
1326 return;
c4a0c46e 1327
c7f5938a
CW
1328 index = mpd->first_page;
1329 end = mpd->next_page - 1;
4e7ea81d
JK
1330 if (invalidate) {
1331 ext4_lblk_t start, last;
1332 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1333 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1334 ext4_es_remove_extent(inode, start, last - start + 1);
1335 }
51865fda 1336
66bea92c 1337 pagevec_init(&pvec, 0);
c4a0c46e
AK
1338 while (index <= end) {
1339 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1340 if (nr_pages == 0)
1341 break;
1342 for (i = 0; i < nr_pages; i++) {
1343 struct page *page = pvec.pages[i];
9b1d0998 1344 if (page->index > end)
c4a0c46e 1345 break;
c4a0c46e
AK
1346 BUG_ON(!PageLocked(page));
1347 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1348 if (invalidate) {
1349 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1350 ClearPageUptodate(page);
1351 }
c4a0c46e
AK
1352 unlock_page(page);
1353 }
9b1d0998
JK
1354 index = pvec.pages[nr_pages - 1]->index + 1;
1355 pagevec_release(&pvec);
c4a0c46e 1356 }
c4a0c46e
AK
1357}
1358
df22291f
AK
1359static void ext4_print_free_blocks(struct inode *inode)
1360{
1361 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1362 struct super_block *sb = inode->i_sb;
f78ee70d 1363 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1364
1365 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1366 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1367 ext4_count_free_clusters(sb)));
92b97816
TT
1368 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1369 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1370 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1371 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1372 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1373 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1374 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1375 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1376 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1377 ei->i_reserved_data_blocks);
df22291f
AK
1378 return;
1379}
1380
c364b22c 1381static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1382{
c364b22c 1383 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1384}
1385
5356f261
AK
1386/*
1387 * This function is grabs code from the very beginning of
1388 * ext4_map_blocks, but assumes that the caller is from delayed write
1389 * time. This function looks up the requested blocks and sets the
1390 * buffer delay bit under the protection of i_data_sem.
1391 */
1392static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1393 struct ext4_map_blocks *map,
1394 struct buffer_head *bh)
1395{
d100eef2 1396 struct extent_status es;
5356f261
AK
1397 int retval;
1398 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1399#ifdef ES_AGGRESSIVE_TEST
1400 struct ext4_map_blocks orig_map;
1401
1402 memcpy(&orig_map, map, sizeof(*map));
1403#endif
5356f261
AK
1404
1405 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1406 invalid_block = ~0;
1407
1408 map->m_flags = 0;
1409 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1410 "logical block %lu\n", inode->i_ino, map->m_len,
1411 (unsigned long) map->m_lblk);
d100eef2
ZL
1412
1413 /* Lookup extent status tree firstly */
1414 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1415 ext4_es_lru_add(inode);
d100eef2
ZL
1416 if (ext4_es_is_hole(&es)) {
1417 retval = 0;
c8b459f4 1418 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1419 goto add_delayed;
1420 }
1421
1422 /*
1423 * Delayed extent could be allocated by fallocate.
1424 * So we need to check it.
1425 */
1426 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1427 map_bh(bh, inode->i_sb, invalid_block);
1428 set_buffer_new(bh);
1429 set_buffer_delay(bh);
1430 return 0;
1431 }
1432
1433 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1434 retval = es.es_len - (iblock - es.es_lblk);
1435 if (retval > map->m_len)
1436 retval = map->m_len;
1437 map->m_len = retval;
1438 if (ext4_es_is_written(&es))
1439 map->m_flags |= EXT4_MAP_MAPPED;
1440 else if (ext4_es_is_unwritten(&es))
1441 map->m_flags |= EXT4_MAP_UNWRITTEN;
1442 else
1443 BUG_ON(1);
1444
921f266b
DM
1445#ifdef ES_AGGRESSIVE_TEST
1446 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1447#endif
d100eef2
ZL
1448 return retval;
1449 }
1450
5356f261
AK
1451 /*
1452 * Try to see if we can get the block without requesting a new
1453 * file system block.
1454 */
c8b459f4 1455 down_read(&EXT4_I(inode)->i_data_sem);
9c3569b5
TM
1456 if (ext4_has_inline_data(inode)) {
1457 /*
1458 * We will soon create blocks for this page, and let
1459 * us pretend as if the blocks aren't allocated yet.
1460 * In case of clusters, we have to handle the work
1461 * of mapping from cluster so that the reserved space
1462 * is calculated properly.
1463 */
1464 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1465 ext4_find_delalloc_cluster(inode, map->m_lblk))
1466 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1467 retval = 0;
1468 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1469 retval = ext4_ext_map_blocks(NULL, inode, map,
1470 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1471 else
d100eef2
ZL
1472 retval = ext4_ind_map_blocks(NULL, inode, map,
1473 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1474
d100eef2 1475add_delayed:
5356f261 1476 if (retval == 0) {
f7fec032 1477 int ret;
5356f261
AK
1478 /*
1479 * XXX: __block_prepare_write() unmaps passed block,
1480 * is it OK?
1481 */
386ad67c
LC
1482 /*
1483 * If the block was allocated from previously allocated cluster,
1484 * then we don't need to reserve it again. However we still need
1485 * to reserve metadata for every block we're going to write.
1486 */
5356f261 1487 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1488 ret = ext4_da_reserve_space(inode, iblock);
1489 if (ret) {
5356f261 1490 /* not enough space to reserve */
f7fec032 1491 retval = ret;
5356f261 1492 goto out_unlock;
f7fec032 1493 }
5356f261
AK
1494 }
1495
f7fec032
ZL
1496 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1497 ~0, EXTENT_STATUS_DELAYED);
1498 if (ret) {
1499 retval = ret;
51865fda 1500 goto out_unlock;
f7fec032 1501 }
51865fda 1502
5356f261
AK
1503 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1504 * and it should not appear on the bh->b_state.
1505 */
1506 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1507
1508 map_bh(bh, inode->i_sb, invalid_block);
1509 set_buffer_new(bh);
1510 set_buffer_delay(bh);
f7fec032
ZL
1511 } else if (retval > 0) {
1512 int ret;
3be78c73 1513 unsigned int status;
f7fec032 1514
44fb851d
ZL
1515 if (unlikely(retval != map->m_len)) {
1516 ext4_warning(inode->i_sb,
1517 "ES len assertion failed for inode "
1518 "%lu: retval %d != map->m_len %d",
1519 inode->i_ino, retval, map->m_len);
1520 WARN_ON(1);
921f266b 1521 }
921f266b 1522
f7fec032
ZL
1523 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1524 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1525 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1526 map->m_pblk, status);
1527 if (ret != 0)
1528 retval = ret;
5356f261
AK
1529 }
1530
1531out_unlock:
1532 up_read((&EXT4_I(inode)->i_data_sem));
1533
1534 return retval;
1535}
1536
64769240 1537/*
b920c755
TT
1538 * This is a special get_blocks_t callback which is used by
1539 * ext4_da_write_begin(). It will either return mapped block or
1540 * reserve space for a single block.
29fa89d0
AK
1541 *
1542 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1543 * We also have b_blocknr = -1 and b_bdev initialized properly
1544 *
1545 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1546 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1547 * initialized properly.
64769240 1548 */
9c3569b5
TM
1549int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1550 struct buffer_head *bh, int create)
64769240 1551{
2ed88685 1552 struct ext4_map_blocks map;
64769240
AT
1553 int ret = 0;
1554
1555 BUG_ON(create == 0);
2ed88685
TT
1556 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1557
1558 map.m_lblk = iblock;
1559 map.m_len = 1;
64769240
AT
1560
1561 /*
1562 * first, we need to know whether the block is allocated already
1563 * preallocated blocks are unmapped but should treated
1564 * the same as allocated blocks.
1565 */
5356f261
AK
1566 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1567 if (ret <= 0)
2ed88685 1568 return ret;
64769240 1569
2ed88685
TT
1570 map_bh(bh, inode->i_sb, map.m_pblk);
1571 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1572
1573 if (buffer_unwritten(bh)) {
1574 /* A delayed write to unwritten bh should be marked
1575 * new and mapped. Mapped ensures that we don't do
1576 * get_block multiple times when we write to the same
1577 * offset and new ensures that we do proper zero out
1578 * for partial write.
1579 */
1580 set_buffer_new(bh);
c8205636 1581 set_buffer_mapped(bh);
2ed88685
TT
1582 }
1583 return 0;
64769240 1584}
61628a3f 1585
62e086be
AK
1586static int bget_one(handle_t *handle, struct buffer_head *bh)
1587{
1588 get_bh(bh);
1589 return 0;
1590}
1591
1592static int bput_one(handle_t *handle, struct buffer_head *bh)
1593{
1594 put_bh(bh);
1595 return 0;
1596}
1597
1598static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1599 unsigned int len)
1600{
1601 struct address_space *mapping = page->mapping;
1602 struct inode *inode = mapping->host;
3fdcfb66 1603 struct buffer_head *page_bufs = NULL;
62e086be 1604 handle_t *handle = NULL;
3fdcfb66
TM
1605 int ret = 0, err = 0;
1606 int inline_data = ext4_has_inline_data(inode);
1607 struct buffer_head *inode_bh = NULL;
62e086be 1608
cb20d518 1609 ClearPageChecked(page);
3fdcfb66
TM
1610
1611 if (inline_data) {
1612 BUG_ON(page->index != 0);
1613 BUG_ON(len > ext4_get_max_inline_size(inode));
1614 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1615 if (inode_bh == NULL)
1616 goto out;
1617 } else {
1618 page_bufs = page_buffers(page);
1619 if (!page_bufs) {
1620 BUG();
1621 goto out;
1622 }
1623 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1624 NULL, bget_one);
1625 }
62e086be
AK
1626 /* As soon as we unlock the page, it can go away, but we have
1627 * references to buffers so we are safe */
1628 unlock_page(page);
1629
9924a92a
TT
1630 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1631 ext4_writepage_trans_blocks(inode));
62e086be
AK
1632 if (IS_ERR(handle)) {
1633 ret = PTR_ERR(handle);
1634 goto out;
1635 }
1636
441c8508
CW
1637 BUG_ON(!ext4_handle_valid(handle));
1638
3fdcfb66 1639 if (inline_data) {
5d601255 1640 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1641 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1642
3fdcfb66
TM
1643 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1644
1645 } else {
1646 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1647 do_journal_get_write_access);
1648
1649 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1650 write_end_fn);
1651 }
62e086be
AK
1652 if (ret == 0)
1653 ret = err;
2d859db3 1654 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1655 err = ext4_journal_stop(handle);
1656 if (!ret)
1657 ret = err;
1658
3fdcfb66 1659 if (!ext4_has_inline_data(inode))
8c9367fd 1660 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1661 NULL, bput_one);
19f5fb7a 1662 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1663out:
3fdcfb66 1664 brelse(inode_bh);
62e086be
AK
1665 return ret;
1666}
1667
61628a3f 1668/*
43ce1d23
AK
1669 * Note that we don't need to start a transaction unless we're journaling data
1670 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1671 * need to file the inode to the transaction's list in ordered mode because if
1672 * we are writing back data added by write(), the inode is already there and if
25985edc 1673 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1674 * transaction the data will hit the disk. In case we are journaling data, we
1675 * cannot start transaction directly because transaction start ranks above page
1676 * lock so we have to do some magic.
1677 *
b920c755 1678 * This function can get called via...
20970ba6 1679 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1680 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1681 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1682 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1683 *
1684 * We don't do any block allocation in this function. If we have page with
1685 * multiple blocks we need to write those buffer_heads that are mapped. This
1686 * is important for mmaped based write. So if we do with blocksize 1K
1687 * truncate(f, 1024);
1688 * a = mmap(f, 0, 4096);
1689 * a[0] = 'a';
1690 * truncate(f, 4096);
1691 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1692 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1693 * do_wp_page). So writepage should write the first block. If we modify
1694 * the mmap area beyond 1024 we will again get a page_fault and the
1695 * page_mkwrite callback will do the block allocation and mark the
1696 * buffer_heads mapped.
1697 *
1698 * We redirty the page if we have any buffer_heads that is either delay or
1699 * unwritten in the page.
1700 *
1701 * We can get recursively called as show below.
1702 *
1703 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1704 * ext4_writepage()
1705 *
1706 * But since we don't do any block allocation we should not deadlock.
1707 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1708 */
43ce1d23 1709static int ext4_writepage(struct page *page,
62e086be 1710 struct writeback_control *wbc)
64769240 1711{
f8bec370 1712 int ret = 0;
61628a3f 1713 loff_t size;
498e5f24 1714 unsigned int len;
744692dc 1715 struct buffer_head *page_bufs = NULL;
61628a3f 1716 struct inode *inode = page->mapping->host;
36ade451 1717 struct ext4_io_submit io_submit;
1c8349a1 1718 bool keep_towrite = false;
61628a3f 1719
a9c667f8 1720 trace_ext4_writepage(page);
f0e6c985
AK
1721 size = i_size_read(inode);
1722 if (page->index == size >> PAGE_CACHE_SHIFT)
1723 len = size & ~PAGE_CACHE_MASK;
1724 else
1725 len = PAGE_CACHE_SIZE;
64769240 1726
a42afc5f 1727 page_bufs = page_buffers(page);
a42afc5f 1728 /*
fe386132
JK
1729 * We cannot do block allocation or other extent handling in this
1730 * function. If there are buffers needing that, we have to redirty
1731 * the page. But we may reach here when we do a journal commit via
1732 * journal_submit_inode_data_buffers() and in that case we must write
1733 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1734 */
f19d5870
TM
1735 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1736 ext4_bh_delay_or_unwritten)) {
f8bec370 1737 redirty_page_for_writepage(wbc, page);
fe386132
JK
1738 if (current->flags & PF_MEMALLOC) {
1739 /*
1740 * For memory cleaning there's no point in writing only
1741 * some buffers. So just bail out. Warn if we came here
1742 * from direct reclaim.
1743 */
1744 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1745 == PF_MEMALLOC);
f0e6c985
AK
1746 unlock_page(page);
1747 return 0;
1748 }
1c8349a1 1749 keep_towrite = true;
a42afc5f 1750 }
64769240 1751
cb20d518 1752 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1753 /*
1754 * It's mmapped pagecache. Add buffers and journal it. There
1755 * doesn't seem much point in redirtying the page here.
1756 */
3f0ca309 1757 return __ext4_journalled_writepage(page, len);
43ce1d23 1758
97a851ed
JK
1759 ext4_io_submit_init(&io_submit, wbc);
1760 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1761 if (!io_submit.io_end) {
1762 redirty_page_for_writepage(wbc, page);
1763 unlock_page(page);
1764 return -ENOMEM;
1765 }
1c8349a1 1766 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1767 ext4_io_submit(&io_submit);
97a851ed
JK
1768 /* Drop io_end reference we got from init */
1769 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1770 return ret;
1771}
1772
5f1132b2
JK
1773static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1774{
1775 int len;
1776 loff_t size = i_size_read(mpd->inode);
1777 int err;
1778
1779 BUG_ON(page->index != mpd->first_page);
1780 if (page->index == size >> PAGE_CACHE_SHIFT)
1781 len = size & ~PAGE_CACHE_MASK;
1782 else
1783 len = PAGE_CACHE_SIZE;
1784 clear_page_dirty_for_io(page);
1c8349a1 1785 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1786 if (!err)
1787 mpd->wbc->nr_to_write--;
1788 mpd->first_page++;
1789
1790 return err;
1791}
1792
4e7ea81d
JK
1793#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1794
61628a3f 1795/*
fffb2739
JK
1796 * mballoc gives us at most this number of blocks...
1797 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1798 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1799 */
fffb2739 1800#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1801
4e7ea81d
JK
1802/*
1803 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1804 *
1805 * @mpd - extent of blocks
1806 * @lblk - logical number of the block in the file
09930042 1807 * @bh - buffer head we want to add to the extent
4e7ea81d 1808 *
09930042
JK
1809 * The function is used to collect contig. blocks in the same state. If the
1810 * buffer doesn't require mapping for writeback and we haven't started the
1811 * extent of buffers to map yet, the function returns 'true' immediately - the
1812 * caller can write the buffer right away. Otherwise the function returns true
1813 * if the block has been added to the extent, false if the block couldn't be
1814 * added.
4e7ea81d 1815 */
09930042
JK
1816static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1817 struct buffer_head *bh)
4e7ea81d
JK
1818{
1819 struct ext4_map_blocks *map = &mpd->map;
1820
09930042
JK
1821 /* Buffer that doesn't need mapping for writeback? */
1822 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1823 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1824 /* So far no extent to map => we write the buffer right away */
1825 if (map->m_len == 0)
1826 return true;
1827 return false;
1828 }
4e7ea81d
JK
1829
1830 /* First block in the extent? */
1831 if (map->m_len == 0) {
1832 map->m_lblk = lblk;
1833 map->m_len = 1;
09930042
JK
1834 map->m_flags = bh->b_state & BH_FLAGS;
1835 return true;
4e7ea81d
JK
1836 }
1837
09930042
JK
1838 /* Don't go larger than mballoc is willing to allocate */
1839 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1840 return false;
1841
4e7ea81d
JK
1842 /* Can we merge the block to our big extent? */
1843 if (lblk == map->m_lblk + map->m_len &&
09930042 1844 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1845 map->m_len++;
09930042 1846 return true;
4e7ea81d 1847 }
09930042 1848 return false;
4e7ea81d
JK
1849}
1850
5f1132b2
JK
1851/*
1852 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1853 *
1854 * @mpd - extent of blocks for mapping
1855 * @head - the first buffer in the page
1856 * @bh - buffer we should start processing from
1857 * @lblk - logical number of the block in the file corresponding to @bh
1858 *
1859 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1860 * the page for IO if all buffers in this page were mapped and there's no
1861 * accumulated extent of buffers to map or add buffers in the page to the
1862 * extent of buffers to map. The function returns 1 if the caller can continue
1863 * by processing the next page, 0 if it should stop adding buffers to the
1864 * extent to map because we cannot extend it anymore. It can also return value
1865 * < 0 in case of error during IO submission.
1866 */
1867static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1868 struct buffer_head *head,
1869 struct buffer_head *bh,
1870 ext4_lblk_t lblk)
4e7ea81d
JK
1871{
1872 struct inode *inode = mpd->inode;
5f1132b2 1873 int err;
4e7ea81d
JK
1874 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1875 >> inode->i_blkbits;
1876
1877 do {
1878 BUG_ON(buffer_locked(bh));
1879
09930042 1880 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1881 /* Found extent to map? */
1882 if (mpd->map.m_len)
5f1132b2 1883 return 0;
09930042 1884 /* Everything mapped so far and we hit EOF */
5f1132b2 1885 break;
4e7ea81d 1886 }
4e7ea81d 1887 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1888 /* So far everything mapped? Submit the page for IO. */
1889 if (mpd->map.m_len == 0) {
1890 err = mpage_submit_page(mpd, head->b_page);
1891 if (err < 0)
1892 return err;
1893 }
1894 return lblk < blocks;
4e7ea81d
JK
1895}
1896
1897/*
1898 * mpage_map_buffers - update buffers corresponding to changed extent and
1899 * submit fully mapped pages for IO
1900 *
1901 * @mpd - description of extent to map, on return next extent to map
1902 *
1903 * Scan buffers corresponding to changed extent (we expect corresponding pages
1904 * to be already locked) and update buffer state according to new extent state.
1905 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1906 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1907 * and do extent conversion after IO is finished. If the last page is not fully
1908 * mapped, we update @map to the next extent in the last page that needs
1909 * mapping. Otherwise we submit the page for IO.
1910 */
1911static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1912{
1913 struct pagevec pvec;
1914 int nr_pages, i;
1915 struct inode *inode = mpd->inode;
1916 struct buffer_head *head, *bh;
1917 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1918 pgoff_t start, end;
1919 ext4_lblk_t lblk;
1920 sector_t pblock;
1921 int err;
1922
1923 start = mpd->map.m_lblk >> bpp_bits;
1924 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1925 lblk = start << bpp_bits;
1926 pblock = mpd->map.m_pblk;
1927
1928 pagevec_init(&pvec, 0);
1929 while (start <= end) {
1930 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1931 PAGEVEC_SIZE);
1932 if (nr_pages == 0)
1933 break;
1934 for (i = 0; i < nr_pages; i++) {
1935 struct page *page = pvec.pages[i];
1936
1937 if (page->index > end)
1938 break;
70261f56 1939 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
1940 BUG_ON(page->index != start);
1941 bh = head = page_buffers(page);
1942 do {
1943 if (lblk < mpd->map.m_lblk)
1944 continue;
1945 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1946 /*
1947 * Buffer after end of mapped extent.
1948 * Find next buffer in the page to map.
1949 */
1950 mpd->map.m_len = 0;
1951 mpd->map.m_flags = 0;
5f1132b2
JK
1952 /*
1953 * FIXME: If dioread_nolock supports
1954 * blocksize < pagesize, we need to make
1955 * sure we add size mapped so far to
1956 * io_end->size as the following call
1957 * can submit the page for IO.
1958 */
1959 err = mpage_process_page_bufs(mpd, head,
1960 bh, lblk);
4e7ea81d 1961 pagevec_release(&pvec);
5f1132b2
JK
1962 if (err > 0)
1963 err = 0;
1964 return err;
4e7ea81d
JK
1965 }
1966 if (buffer_delay(bh)) {
1967 clear_buffer_delay(bh);
1968 bh->b_blocknr = pblock++;
1969 }
4e7ea81d 1970 clear_buffer_unwritten(bh);
5f1132b2 1971 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
1972
1973 /*
1974 * FIXME: This is going to break if dioread_nolock
1975 * supports blocksize < pagesize as we will try to
1976 * convert potentially unmapped parts of inode.
1977 */
1978 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1979 /* Page fully mapped - let IO run! */
1980 err = mpage_submit_page(mpd, page);
1981 if (err < 0) {
1982 pagevec_release(&pvec);
1983 return err;
1984 }
1985 start++;
1986 }
1987 pagevec_release(&pvec);
1988 }
1989 /* Extent fully mapped and matches with page boundary. We are done. */
1990 mpd->map.m_len = 0;
1991 mpd->map.m_flags = 0;
1992 return 0;
1993}
1994
1995static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1996{
1997 struct inode *inode = mpd->inode;
1998 struct ext4_map_blocks *map = &mpd->map;
1999 int get_blocks_flags;
090f32ee 2000 int err, dioread_nolock;
4e7ea81d
JK
2001
2002 trace_ext4_da_write_pages_extent(inode, map);
2003 /*
2004 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2005 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2006 * where we have written into one or more preallocated blocks). It is
2007 * possible that we're going to need more metadata blocks than
2008 * previously reserved. However we must not fail because we're in
2009 * writeback and there is nothing we can do about it so it might result
2010 * in data loss. So use reserved blocks to allocate metadata if
2011 * possible.
2012 *
2013 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2014 * in question are delalloc blocks. This affects functions in many
2015 * different parts of the allocation call path. This flag exists
2016 * primarily because we don't want to change *many* call functions, so
2017 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2018 * once the inode's allocation semaphore is taken.
2019 */
2020 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2021 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2022 dioread_nolock = ext4_should_dioread_nolock(inode);
2023 if (dioread_nolock)
4e7ea81d
JK
2024 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2025 if (map->m_flags & (1 << BH_Delay))
2026 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2027
2028 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2029 if (err < 0)
2030 return err;
090f32ee 2031 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2032 if (!mpd->io_submit.io_end->handle &&
2033 ext4_handle_valid(handle)) {
2034 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2035 handle->h_rsv_handle = NULL;
2036 }
3613d228 2037 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2038 }
4e7ea81d
JK
2039
2040 BUG_ON(map->m_len == 0);
2041 if (map->m_flags & EXT4_MAP_NEW) {
2042 struct block_device *bdev = inode->i_sb->s_bdev;
2043 int i;
2044
2045 for (i = 0; i < map->m_len; i++)
2046 unmap_underlying_metadata(bdev, map->m_pblk + i);
2047 }
2048 return 0;
2049}
2050
2051/*
2052 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2053 * mpd->len and submit pages underlying it for IO
2054 *
2055 * @handle - handle for journal operations
2056 * @mpd - extent to map
7534e854
JK
2057 * @give_up_on_write - we set this to true iff there is a fatal error and there
2058 * is no hope of writing the data. The caller should discard
2059 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2060 *
2061 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2062 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2063 * them to initialized or split the described range from larger unwritten
2064 * extent. Note that we need not map all the described range since allocation
2065 * can return less blocks or the range is covered by more unwritten extents. We
2066 * cannot map more because we are limited by reserved transaction credits. On
2067 * the other hand we always make sure that the last touched page is fully
2068 * mapped so that it can be written out (and thus forward progress is
2069 * guaranteed). After mapping we submit all mapped pages for IO.
2070 */
2071static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2072 struct mpage_da_data *mpd,
2073 bool *give_up_on_write)
4e7ea81d
JK
2074{
2075 struct inode *inode = mpd->inode;
2076 struct ext4_map_blocks *map = &mpd->map;
2077 int err;
2078 loff_t disksize;
6603120e 2079 int progress = 0;
4e7ea81d
JK
2080
2081 mpd->io_submit.io_end->offset =
2082 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2083 do {
4e7ea81d
JK
2084 err = mpage_map_one_extent(handle, mpd);
2085 if (err < 0) {
2086 struct super_block *sb = inode->i_sb;
2087
cb530541
TT
2088 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2089 goto invalidate_dirty_pages;
4e7ea81d 2090 /*
cb530541
TT
2091 * Let the uper layers retry transient errors.
2092 * In the case of ENOSPC, if ext4_count_free_blocks()
2093 * is non-zero, a commit should free up blocks.
4e7ea81d 2094 */
cb530541 2095 if ((err == -ENOMEM) ||
6603120e
DM
2096 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2097 if (progress)
2098 goto update_disksize;
cb530541 2099 return err;
6603120e 2100 }
cb530541
TT
2101 ext4_msg(sb, KERN_CRIT,
2102 "Delayed block allocation failed for "
2103 "inode %lu at logical offset %llu with"
2104 " max blocks %u with error %d",
2105 inode->i_ino,
2106 (unsigned long long)map->m_lblk,
2107 (unsigned)map->m_len, -err);
2108 ext4_msg(sb, KERN_CRIT,
2109 "This should not happen!! Data will "
2110 "be lost\n");
2111 if (err == -ENOSPC)
2112 ext4_print_free_blocks(inode);
2113 invalidate_dirty_pages:
2114 *give_up_on_write = true;
4e7ea81d
JK
2115 return err;
2116 }
6603120e 2117 progress = 1;
4e7ea81d
JK
2118 /*
2119 * Update buffer state, submit mapped pages, and get us new
2120 * extent to map
2121 */
2122 err = mpage_map_and_submit_buffers(mpd);
2123 if (err < 0)
6603120e 2124 goto update_disksize;
27d7c4ed 2125 } while (map->m_len);
4e7ea81d 2126
6603120e 2127update_disksize:
622cad13
TT
2128 /*
2129 * Update on-disk size after IO is submitted. Races with
2130 * truncate are avoided by checking i_size under i_data_sem.
2131 */
4e7ea81d 2132 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2133 if (disksize > EXT4_I(inode)->i_disksize) {
2134 int err2;
622cad13
TT
2135 loff_t i_size;
2136
2137 down_write(&EXT4_I(inode)->i_data_sem);
2138 i_size = i_size_read(inode);
2139 if (disksize > i_size)
2140 disksize = i_size;
2141 if (disksize > EXT4_I(inode)->i_disksize)
2142 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2143 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2144 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2145 if (err2)
2146 ext4_error(inode->i_sb,
2147 "Failed to mark inode %lu dirty",
2148 inode->i_ino);
2149 if (!err)
2150 err = err2;
2151 }
2152 return err;
2153}
2154
fffb2739
JK
2155/*
2156 * Calculate the total number of credits to reserve for one writepages
20970ba6 2157 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2158 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2159 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2160 * bpp - 1 blocks in bpp different extents.
2161 */
525f4ed8
MC
2162static int ext4_da_writepages_trans_blocks(struct inode *inode)
2163{
fffb2739 2164 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2165
fffb2739
JK
2166 return ext4_meta_trans_blocks(inode,
2167 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2168}
61628a3f 2169
8e48dcfb 2170/*
4e7ea81d
JK
2171 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2172 * and underlying extent to map
2173 *
2174 * @mpd - where to look for pages
2175 *
2176 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2177 * IO immediately. When we find a page which isn't mapped we start accumulating
2178 * extent of buffers underlying these pages that needs mapping (formed by
2179 * either delayed or unwritten buffers). We also lock the pages containing
2180 * these buffers. The extent found is returned in @mpd structure (starting at
2181 * mpd->lblk with length mpd->len blocks).
2182 *
2183 * Note that this function can attach bios to one io_end structure which are
2184 * neither logically nor physically contiguous. Although it may seem as an
2185 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2186 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2187 */
4e7ea81d 2188static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2189{
4e7ea81d
JK
2190 struct address_space *mapping = mpd->inode->i_mapping;
2191 struct pagevec pvec;
2192 unsigned int nr_pages;
aeac589a 2193 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2194 pgoff_t index = mpd->first_page;
2195 pgoff_t end = mpd->last_page;
2196 int tag;
2197 int i, err = 0;
2198 int blkbits = mpd->inode->i_blkbits;
2199 ext4_lblk_t lblk;
2200 struct buffer_head *head;
8e48dcfb 2201
4e7ea81d 2202 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2203 tag = PAGECACHE_TAG_TOWRITE;
2204 else
2205 tag = PAGECACHE_TAG_DIRTY;
2206
4e7ea81d
JK
2207 pagevec_init(&pvec, 0);
2208 mpd->map.m_len = 0;
2209 mpd->next_page = index;
4f01b02c 2210 while (index <= end) {
5b41d924 2211 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2212 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2213 if (nr_pages == 0)
4e7ea81d 2214 goto out;
8e48dcfb
TT
2215
2216 for (i = 0; i < nr_pages; i++) {
2217 struct page *page = pvec.pages[i];
2218
2219 /*
2220 * At this point, the page may be truncated or
2221 * invalidated (changing page->mapping to NULL), or
2222 * even swizzled back from swapper_space to tmpfs file
2223 * mapping. However, page->index will not change
2224 * because we have a reference on the page.
2225 */
4f01b02c
TT
2226 if (page->index > end)
2227 goto out;
8e48dcfb 2228
aeac589a
ML
2229 /*
2230 * Accumulated enough dirty pages? This doesn't apply
2231 * to WB_SYNC_ALL mode. For integrity sync we have to
2232 * keep going because someone may be concurrently
2233 * dirtying pages, and we might have synced a lot of
2234 * newly appeared dirty pages, but have not synced all
2235 * of the old dirty pages.
2236 */
2237 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2238 goto out;
2239
4e7ea81d
JK
2240 /* If we can't merge this page, we are done. */
2241 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2242 goto out;
78aaced3 2243
8e48dcfb 2244 lock_page(page);
8e48dcfb 2245 /*
4e7ea81d
JK
2246 * If the page is no longer dirty, or its mapping no
2247 * longer corresponds to inode we are writing (which
2248 * means it has been truncated or invalidated), or the
2249 * page is already under writeback and we are not doing
2250 * a data integrity writeback, skip the page
8e48dcfb 2251 */
4f01b02c
TT
2252 if (!PageDirty(page) ||
2253 (PageWriteback(page) &&
4e7ea81d 2254 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2255 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2256 unlock_page(page);
2257 continue;
2258 }
2259
7cb1a535 2260 wait_on_page_writeback(page);
8e48dcfb 2261 BUG_ON(PageWriteback(page));
8e48dcfb 2262
4e7ea81d 2263 if (mpd->map.m_len == 0)
8eb9e5ce 2264 mpd->first_page = page->index;
8eb9e5ce 2265 mpd->next_page = page->index + 1;
f8bec370 2266 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2267 lblk = ((ext4_lblk_t)page->index) <<
2268 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2269 head = page_buffers(page);
5f1132b2
JK
2270 err = mpage_process_page_bufs(mpd, head, head, lblk);
2271 if (err <= 0)
4e7ea81d 2272 goto out;
5f1132b2 2273 err = 0;
aeac589a 2274 left--;
8e48dcfb
TT
2275 }
2276 pagevec_release(&pvec);
2277 cond_resched();
2278 }
4f01b02c 2279 return 0;
8eb9e5ce
TT
2280out:
2281 pagevec_release(&pvec);
4e7ea81d 2282 return err;
8e48dcfb
TT
2283}
2284
20970ba6
TT
2285static int __writepage(struct page *page, struct writeback_control *wbc,
2286 void *data)
2287{
2288 struct address_space *mapping = data;
2289 int ret = ext4_writepage(page, wbc);
2290 mapping_set_error(mapping, ret);
2291 return ret;
2292}
2293
2294static int ext4_writepages(struct address_space *mapping,
2295 struct writeback_control *wbc)
64769240 2296{
4e7ea81d
JK
2297 pgoff_t writeback_index = 0;
2298 long nr_to_write = wbc->nr_to_write;
22208ded 2299 int range_whole = 0;
4e7ea81d 2300 int cycled = 1;
61628a3f 2301 handle_t *handle = NULL;
df22291f 2302 struct mpage_da_data mpd;
5e745b04 2303 struct inode *inode = mapping->host;
6b523df4 2304 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2305 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2306 bool done;
1bce63d1 2307 struct blk_plug plug;
cb530541 2308 bool give_up_on_write = false;
61628a3f 2309
20970ba6 2310 trace_ext4_writepages(inode, wbc);
ba80b101 2311
61628a3f
MC
2312 /*
2313 * No pages to write? This is mainly a kludge to avoid starting
2314 * a transaction for special inodes like journal inode on last iput()
2315 * because that could violate lock ordering on umount
2316 */
a1d6cc56 2317 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2318 goto out_writepages;
2a21e37e 2319
20970ba6
TT
2320 if (ext4_should_journal_data(inode)) {
2321 struct blk_plug plug;
20970ba6
TT
2322
2323 blk_start_plug(&plug);
2324 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2325 blk_finish_plug(&plug);
bbf023c7 2326 goto out_writepages;
20970ba6
TT
2327 }
2328
2a21e37e
TT
2329 /*
2330 * If the filesystem has aborted, it is read-only, so return
2331 * right away instead of dumping stack traces later on that
2332 * will obscure the real source of the problem. We test
4ab2f15b 2333 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2334 * the latter could be true if the filesystem is mounted
20970ba6 2335 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2336 * *never* be called, so if that ever happens, we would want
2337 * the stack trace.
2338 */
bbf023c7
ML
2339 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2340 ret = -EROFS;
2341 goto out_writepages;
2342 }
2a21e37e 2343
6b523df4
JK
2344 if (ext4_should_dioread_nolock(inode)) {
2345 /*
70261f56 2346 * We may need to convert up to one extent per block in
6b523df4
JK
2347 * the page and we may dirty the inode.
2348 */
2349 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2350 }
2351
4e7ea81d
JK
2352 /*
2353 * If we have inline data and arrive here, it means that
2354 * we will soon create the block for the 1st page, so
2355 * we'd better clear the inline data here.
2356 */
2357 if (ext4_has_inline_data(inode)) {
2358 /* Just inode will be modified... */
2359 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2360 if (IS_ERR(handle)) {
2361 ret = PTR_ERR(handle);
2362 goto out_writepages;
2363 }
2364 BUG_ON(ext4_test_inode_state(inode,
2365 EXT4_STATE_MAY_INLINE_DATA));
2366 ext4_destroy_inline_data(handle, inode);
2367 ext4_journal_stop(handle);
2368 }
2369
22208ded
AK
2370 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2371 range_whole = 1;
61628a3f 2372
2acf2c26 2373 if (wbc->range_cyclic) {
4e7ea81d
JK
2374 writeback_index = mapping->writeback_index;
2375 if (writeback_index)
2acf2c26 2376 cycled = 0;
4e7ea81d
JK
2377 mpd.first_page = writeback_index;
2378 mpd.last_page = -1;
5b41d924 2379 } else {
4e7ea81d
JK
2380 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2381 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2382 }
a1d6cc56 2383
4e7ea81d
JK
2384 mpd.inode = inode;
2385 mpd.wbc = wbc;
2386 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2387retry:
6e6938b6 2388 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2389 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2390 done = false;
1bce63d1 2391 blk_start_plug(&plug);
4e7ea81d
JK
2392 while (!done && mpd.first_page <= mpd.last_page) {
2393 /* For each extent of pages we use new io_end */
2394 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2395 if (!mpd.io_submit.io_end) {
2396 ret = -ENOMEM;
2397 break;
2398 }
a1d6cc56
AK
2399
2400 /*
4e7ea81d
JK
2401 * We have two constraints: We find one extent to map and we
2402 * must always write out whole page (makes a difference when
2403 * blocksize < pagesize) so that we don't block on IO when we
2404 * try to write out the rest of the page. Journalled mode is
2405 * not supported by delalloc.
a1d6cc56
AK
2406 */
2407 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2408 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2409
4e7ea81d 2410 /* start a new transaction */
6b523df4
JK
2411 handle = ext4_journal_start_with_reserve(inode,
2412 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2413 if (IS_ERR(handle)) {
2414 ret = PTR_ERR(handle);
1693918e 2415 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2416 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2417 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2418 /* Release allocated io_end */
2419 ext4_put_io_end(mpd.io_submit.io_end);
2420 break;
61628a3f 2421 }
f63e6005 2422
4e7ea81d
JK
2423 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2424 ret = mpage_prepare_extent_to_map(&mpd);
2425 if (!ret) {
2426 if (mpd.map.m_len)
cb530541
TT
2427 ret = mpage_map_and_submit_extent(handle, &mpd,
2428 &give_up_on_write);
4e7ea81d
JK
2429 else {
2430 /*
2431 * We scanned the whole range (or exhausted
2432 * nr_to_write), submitted what was mapped and
2433 * didn't find anything needing mapping. We are
2434 * done.
2435 */
2436 done = true;
2437 }
f63e6005 2438 }
61628a3f 2439 ext4_journal_stop(handle);
4e7ea81d
JK
2440 /* Submit prepared bio */
2441 ext4_io_submit(&mpd.io_submit);
2442 /* Unlock pages we didn't use */
cb530541 2443 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2444 /* Drop our io_end reference we got from init */
2445 ext4_put_io_end(mpd.io_submit.io_end);
2446
2447 if (ret == -ENOSPC && sbi->s_journal) {
2448 /*
2449 * Commit the transaction which would
22208ded
AK
2450 * free blocks released in the transaction
2451 * and try again
2452 */
df22291f 2453 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2454 ret = 0;
4e7ea81d
JK
2455 continue;
2456 }
2457 /* Fatal error - ENOMEM, EIO... */
2458 if (ret)
61628a3f 2459 break;
a1d6cc56 2460 }
1bce63d1 2461 blk_finish_plug(&plug);
9c12a831 2462 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2463 cycled = 1;
4e7ea81d
JK
2464 mpd.last_page = writeback_index - 1;
2465 mpd.first_page = 0;
2acf2c26
AK
2466 goto retry;
2467 }
22208ded
AK
2468
2469 /* Update index */
22208ded
AK
2470 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2471 /*
4e7ea81d 2472 * Set the writeback_index so that range_cyclic
22208ded
AK
2473 * mode will write it back later
2474 */
4e7ea81d 2475 mapping->writeback_index = mpd.first_page;
a1d6cc56 2476
61628a3f 2477out_writepages:
20970ba6
TT
2478 trace_ext4_writepages_result(inode, wbc, ret,
2479 nr_to_write - wbc->nr_to_write);
61628a3f 2480 return ret;
64769240
AT
2481}
2482
79f0be8d
AK
2483static int ext4_nonda_switch(struct super_block *sb)
2484{
5c1ff336 2485 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2486 struct ext4_sb_info *sbi = EXT4_SB(sb);
2487
2488 /*
2489 * switch to non delalloc mode if we are running low
2490 * on free block. The free block accounting via percpu
179f7ebf 2491 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2492 * accumulated on each CPU without updating global counters
2493 * Delalloc need an accurate free block accounting. So switch
2494 * to non delalloc when we are near to error range.
2495 */
5c1ff336
EW
2496 free_clusters =
2497 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2498 dirty_clusters =
2499 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2500 /*
2501 * Start pushing delalloc when 1/2 of free blocks are dirty.
2502 */
5c1ff336 2503 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2504 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2505
5c1ff336
EW
2506 if (2 * free_clusters < 3 * dirty_clusters ||
2507 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2508 /*
c8afb446
ES
2509 * free block count is less than 150% of dirty blocks
2510 * or free blocks is less than watermark
79f0be8d
AK
2511 */
2512 return 1;
2513 }
2514 return 0;
2515}
2516
64769240 2517static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2518 loff_t pos, unsigned len, unsigned flags,
2519 struct page **pagep, void **fsdata)
64769240 2520{
72b8ab9d 2521 int ret, retries = 0;
64769240
AT
2522 struct page *page;
2523 pgoff_t index;
64769240
AT
2524 struct inode *inode = mapping->host;
2525 handle_t *handle;
2526
2527 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2528
2529 if (ext4_nonda_switch(inode->i_sb)) {
2530 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2531 return ext4_write_begin(file, mapping, pos,
2532 len, flags, pagep, fsdata);
2533 }
2534 *fsdata = (void *)0;
9bffad1e 2535 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2536
2537 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2538 ret = ext4_da_write_inline_data_begin(mapping, inode,
2539 pos, len, flags,
2540 pagep, fsdata);
2541 if (ret < 0)
47564bfb
TT
2542 return ret;
2543 if (ret == 1)
2544 return 0;
9c3569b5
TM
2545 }
2546
47564bfb
TT
2547 /*
2548 * grab_cache_page_write_begin() can take a long time if the
2549 * system is thrashing due to memory pressure, or if the page
2550 * is being written back. So grab it first before we start
2551 * the transaction handle. This also allows us to allocate
2552 * the page (if needed) without using GFP_NOFS.
2553 */
2554retry_grab:
2555 page = grab_cache_page_write_begin(mapping, index, flags);
2556 if (!page)
2557 return -ENOMEM;
2558 unlock_page(page);
2559
64769240
AT
2560 /*
2561 * With delayed allocation, we don't log the i_disksize update
2562 * if there is delayed block allocation. But we still need
2563 * to journalling the i_disksize update if writes to the end
2564 * of file which has an already mapped buffer.
2565 */
47564bfb 2566retry_journal:
9924a92a 2567 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2568 if (IS_ERR(handle)) {
47564bfb
TT
2569 page_cache_release(page);
2570 return PTR_ERR(handle);
64769240
AT
2571 }
2572
47564bfb
TT
2573 lock_page(page);
2574 if (page->mapping != mapping) {
2575 /* The page got truncated from under us */
2576 unlock_page(page);
2577 page_cache_release(page);
d5a0d4f7 2578 ext4_journal_stop(handle);
47564bfb 2579 goto retry_grab;
d5a0d4f7 2580 }
47564bfb 2581 /* In case writeback began while the page was unlocked */
7afe5aa5 2582 wait_for_stable_page(page);
64769240 2583
6e1db88d 2584 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2585 if (ret < 0) {
2586 unlock_page(page);
2587 ext4_journal_stop(handle);
ae4d5372
AK
2588 /*
2589 * block_write_begin may have instantiated a few blocks
2590 * outside i_size. Trim these off again. Don't need
2591 * i_size_read because we hold i_mutex.
2592 */
2593 if (pos + len > inode->i_size)
b9a4207d 2594 ext4_truncate_failed_write(inode);
47564bfb
TT
2595
2596 if (ret == -ENOSPC &&
2597 ext4_should_retry_alloc(inode->i_sb, &retries))
2598 goto retry_journal;
2599
2600 page_cache_release(page);
2601 return ret;
64769240
AT
2602 }
2603
47564bfb 2604 *pagep = page;
64769240
AT
2605 return ret;
2606}
2607
632eaeab
MC
2608/*
2609 * Check if we should update i_disksize
2610 * when write to the end of file but not require block allocation
2611 */
2612static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2613 unsigned long offset)
632eaeab
MC
2614{
2615 struct buffer_head *bh;
2616 struct inode *inode = page->mapping->host;
2617 unsigned int idx;
2618 int i;
2619
2620 bh = page_buffers(page);
2621 idx = offset >> inode->i_blkbits;
2622
af5bc92d 2623 for (i = 0; i < idx; i++)
632eaeab
MC
2624 bh = bh->b_this_page;
2625
29fa89d0 2626 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2627 return 0;
2628 return 1;
2629}
2630
64769240 2631static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2632 struct address_space *mapping,
2633 loff_t pos, unsigned len, unsigned copied,
2634 struct page *page, void *fsdata)
64769240
AT
2635{
2636 struct inode *inode = mapping->host;
2637 int ret = 0, ret2;
2638 handle_t *handle = ext4_journal_current_handle();
2639 loff_t new_i_size;
632eaeab 2640 unsigned long start, end;
79f0be8d
AK
2641 int write_mode = (int)(unsigned long)fsdata;
2642
74d553aa
TT
2643 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2644 return ext4_write_end(file, mapping, pos,
2645 len, copied, page, fsdata);
632eaeab 2646
9bffad1e 2647 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2648 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2649 end = start + copied - 1;
64769240
AT
2650
2651 /*
2652 * generic_write_end() will run mark_inode_dirty() if i_size
2653 * changes. So let's piggyback the i_disksize mark_inode_dirty
2654 * into that.
2655 */
64769240 2656 new_i_size = pos + copied;
ea51d132 2657 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2658 if (ext4_has_inline_data(inode) ||
2659 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2660 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2661 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2662 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2663 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2664 /* We need to mark inode dirty even if
2665 * new_i_size is less that inode->i_size
2666 * bu greater than i_disksize.(hint delalloc)
2667 */
2668 ext4_mark_inode_dirty(handle, inode);
64769240 2669 }
632eaeab 2670 }
9c3569b5
TM
2671
2672 if (write_mode != CONVERT_INLINE_DATA &&
2673 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2674 ext4_has_inline_data(inode))
2675 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2676 page);
2677 else
2678 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2679 page, fsdata);
9c3569b5 2680
64769240
AT
2681 copied = ret2;
2682 if (ret2 < 0)
2683 ret = ret2;
2684 ret2 = ext4_journal_stop(handle);
2685 if (!ret)
2686 ret = ret2;
2687
2688 return ret ? ret : copied;
2689}
2690
d47992f8
LC
2691static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2692 unsigned int length)
64769240 2693{
64769240
AT
2694 /*
2695 * Drop reserved blocks
2696 */
2697 BUG_ON(!PageLocked(page));
2698 if (!page_has_buffers(page))
2699 goto out;
2700
ca99fdd2 2701 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2702
2703out:
d47992f8 2704 ext4_invalidatepage(page, offset, length);
64769240
AT
2705
2706 return;
2707}
2708
ccd2506b
TT
2709/*
2710 * Force all delayed allocation blocks to be allocated for a given inode.
2711 */
2712int ext4_alloc_da_blocks(struct inode *inode)
2713{
fb40ba0d
TT
2714 trace_ext4_alloc_da_blocks(inode);
2715
71d4f7d0 2716 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2717 return 0;
2718
2719 /*
2720 * We do something simple for now. The filemap_flush() will
2721 * also start triggering a write of the data blocks, which is
2722 * not strictly speaking necessary (and for users of
2723 * laptop_mode, not even desirable). However, to do otherwise
2724 * would require replicating code paths in:
de9a55b8 2725 *
20970ba6 2726 * ext4_writepages() ->
ccd2506b
TT
2727 * write_cache_pages() ---> (via passed in callback function)
2728 * __mpage_da_writepage() -->
2729 * mpage_add_bh_to_extent()
2730 * mpage_da_map_blocks()
2731 *
2732 * The problem is that write_cache_pages(), located in
2733 * mm/page-writeback.c, marks pages clean in preparation for
2734 * doing I/O, which is not desirable if we're not planning on
2735 * doing I/O at all.
2736 *
2737 * We could call write_cache_pages(), and then redirty all of
380cf090 2738 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2739 * would be ugly in the extreme. So instead we would need to
2740 * replicate parts of the code in the above functions,
25985edc 2741 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2742 * write out the pages, but rather only collect contiguous
2743 * logical block extents, call the multi-block allocator, and
2744 * then update the buffer heads with the block allocations.
de9a55b8 2745 *
ccd2506b
TT
2746 * For now, though, we'll cheat by calling filemap_flush(),
2747 * which will map the blocks, and start the I/O, but not
2748 * actually wait for the I/O to complete.
2749 */
2750 return filemap_flush(inode->i_mapping);
2751}
64769240 2752
ac27a0ec
DK
2753/*
2754 * bmap() is special. It gets used by applications such as lilo and by
2755 * the swapper to find the on-disk block of a specific piece of data.
2756 *
2757 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2758 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2759 * filesystem and enables swap, then they may get a nasty shock when the
2760 * data getting swapped to that swapfile suddenly gets overwritten by
2761 * the original zero's written out previously to the journal and
2762 * awaiting writeback in the kernel's buffer cache.
2763 *
2764 * So, if we see any bmap calls here on a modified, data-journaled file,
2765 * take extra steps to flush any blocks which might be in the cache.
2766 */
617ba13b 2767static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2768{
2769 struct inode *inode = mapping->host;
2770 journal_t *journal;
2771 int err;
2772
46c7f254
TM
2773 /*
2774 * We can get here for an inline file via the FIBMAP ioctl
2775 */
2776 if (ext4_has_inline_data(inode))
2777 return 0;
2778
64769240
AT
2779 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2780 test_opt(inode->i_sb, DELALLOC)) {
2781 /*
2782 * With delalloc we want to sync the file
2783 * so that we can make sure we allocate
2784 * blocks for file
2785 */
2786 filemap_write_and_wait(mapping);
2787 }
2788
19f5fb7a
TT
2789 if (EXT4_JOURNAL(inode) &&
2790 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2791 /*
2792 * This is a REALLY heavyweight approach, but the use of
2793 * bmap on dirty files is expected to be extremely rare:
2794 * only if we run lilo or swapon on a freshly made file
2795 * do we expect this to happen.
2796 *
2797 * (bmap requires CAP_SYS_RAWIO so this does not
2798 * represent an unprivileged user DOS attack --- we'd be
2799 * in trouble if mortal users could trigger this path at
2800 * will.)
2801 *
617ba13b 2802 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2803 * regular files. If somebody wants to bmap a directory
2804 * or symlink and gets confused because the buffer
2805 * hasn't yet been flushed to disk, they deserve
2806 * everything they get.
2807 */
2808
19f5fb7a 2809 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2810 journal = EXT4_JOURNAL(inode);
dab291af
MC
2811 jbd2_journal_lock_updates(journal);
2812 err = jbd2_journal_flush(journal);
2813 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2814
2815 if (err)
2816 return 0;
2817 }
2818
af5bc92d 2819 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2820}
2821
617ba13b 2822static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2823{
46c7f254
TM
2824 int ret = -EAGAIN;
2825 struct inode *inode = page->mapping->host;
2826
0562e0ba 2827 trace_ext4_readpage(page);
46c7f254
TM
2828
2829 if (ext4_has_inline_data(inode))
2830 ret = ext4_readpage_inline(inode, page);
2831
2832 if (ret == -EAGAIN)
2833 return mpage_readpage(page, ext4_get_block);
2834
2835 return ret;
ac27a0ec
DK
2836}
2837
2838static int
617ba13b 2839ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2840 struct list_head *pages, unsigned nr_pages)
2841{
46c7f254
TM
2842 struct inode *inode = mapping->host;
2843
2844 /* If the file has inline data, no need to do readpages. */
2845 if (ext4_has_inline_data(inode))
2846 return 0;
2847
617ba13b 2848 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2849}
2850
d47992f8
LC
2851static void ext4_invalidatepage(struct page *page, unsigned int offset,
2852 unsigned int length)
ac27a0ec 2853{
ca99fdd2 2854 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2855
4520fb3c
JK
2856 /* No journalling happens on data buffers when this function is used */
2857 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2858
ca99fdd2 2859 block_invalidatepage(page, offset, length);
4520fb3c
JK
2860}
2861
53e87268 2862static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2863 unsigned int offset,
2864 unsigned int length)
4520fb3c
JK
2865{
2866 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2867
ca99fdd2 2868 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2869
ac27a0ec
DK
2870 /*
2871 * If it's a full truncate we just forget about the pending dirtying
2872 */
ca99fdd2 2873 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2874 ClearPageChecked(page);
2875
ca99fdd2 2876 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2877}
2878
2879/* Wrapper for aops... */
2880static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2881 unsigned int offset,
2882 unsigned int length)
53e87268 2883{
ca99fdd2 2884 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2885}
2886
617ba13b 2887static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2888{
617ba13b 2889 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2890
0562e0ba
JZ
2891 trace_ext4_releasepage(page);
2892
e1c36595
JK
2893 /* Page has dirty journalled data -> cannot release */
2894 if (PageChecked(page))
ac27a0ec 2895 return 0;
0390131b
FM
2896 if (journal)
2897 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2898 else
2899 return try_to_free_buffers(page);
ac27a0ec
DK
2900}
2901
2ed88685
TT
2902/*
2903 * ext4_get_block used when preparing for a DIO write or buffer write.
2904 * We allocate an uinitialized extent if blocks haven't been allocated.
2905 * The extent will be converted to initialized after the IO is complete.
2906 */
f19d5870 2907int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2908 struct buffer_head *bh_result, int create)
2909{
c7064ef1 2910 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2911 inode->i_ino, create);
2ed88685
TT
2912 return _ext4_get_block(inode, iblock, bh_result,
2913 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2914}
2915
729f52c6 2916static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2917 struct buffer_head *bh_result, int create)
729f52c6 2918{
8b0f165f
AP
2919 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2920 inode->i_ino, create);
2921 return _ext4_get_block(inode, iblock, bh_result,
2922 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2923}
2924
4c0425ff 2925static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2926 ssize_t size, void *private)
4c0425ff
MC
2927{
2928 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2929
97a851ed 2930 /* if not async direct IO just return */
7b7a8665 2931 if (!io_end)
97a851ed 2932 return;
4b70df18 2933
88635ca2 2934 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2935 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2936 iocb->private, io_end->inode->i_ino, iocb, offset,
2937 size);
8d5d02e6 2938
b5a7e970 2939 iocb->private = NULL;
4c0425ff
MC
2940 io_end->offset = offset;
2941 io_end->size = size;
7b7a8665 2942 ext4_put_io_end(io_end);
4c0425ff 2943}
c7064ef1 2944
4c0425ff
MC
2945/*
2946 * For ext4 extent files, ext4 will do direct-io write to holes,
2947 * preallocated extents, and those write extend the file, no need to
2948 * fall back to buffered IO.
2949 *
556615dc 2950 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 2951 * If those blocks were preallocated, we mark sure they are split, but
556615dc 2952 * still keep the range to write as unwritten.
4c0425ff 2953 *
69c499d1 2954 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2955 * For async direct IO, since the IO may still pending when return, we
25985edc 2956 * set up an end_io call back function, which will do the conversion
8d5d02e6 2957 * when async direct IO completed.
4c0425ff
MC
2958 *
2959 * If the O_DIRECT write will extend the file then add this inode to the
2960 * orphan list. So recovery will truncate it back to the original size
2961 * if the machine crashes during the write.
2962 *
2963 */
2964static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
16b1f05d 2965 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
2966{
2967 struct file *file = iocb->ki_filp;
2968 struct inode *inode = file->f_mapping->host;
2969 ssize_t ret;
a6cbcd4a 2970 size_t count = iov_iter_count(iter);
69c499d1
TT
2971 int overwrite = 0;
2972 get_block_t *get_block_func = NULL;
2973 int dio_flags = 0;
4c0425ff 2974 loff_t final_size = offset + count;
97a851ed 2975 ext4_io_end_t *io_end = NULL;
729f52c6 2976
69c499d1
TT
2977 /* Use the old path for reads and writes beyond i_size. */
2978 if (rw != WRITE || final_size > inode->i_size)
16b1f05d 2979 return ext4_ind_direct_IO(rw, iocb, iter, offset);
4bd809db 2980
69c499d1 2981 BUG_ON(iocb->private == NULL);
4bd809db 2982
e8340395
JK
2983 /*
2984 * Make all waiters for direct IO properly wait also for extent
2985 * conversion. This also disallows race between truncate() and
2986 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2987 */
2988 if (rw == WRITE)
2989 atomic_inc(&inode->i_dio_count);
2990
69c499d1
TT
2991 /* If we do a overwrite dio, i_mutex locking can be released */
2992 overwrite = *((int *)iocb->private);
4bd809db 2993
69c499d1 2994 if (overwrite) {
69c499d1
TT
2995 down_read(&EXT4_I(inode)->i_data_sem);
2996 mutex_unlock(&inode->i_mutex);
2997 }
8d5d02e6 2998
69c499d1
TT
2999 /*
3000 * We could direct write to holes and fallocate.
3001 *
3002 * Allocated blocks to fill the hole are marked as
556615dc 3003 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3004 * the stale data before DIO complete the data IO.
3005 *
3006 * As to previously fallocated extents, ext4 get_block will
3007 * just simply mark the buffer mapped but still keep the
556615dc 3008 * extents unwritten.
69c499d1
TT
3009 *
3010 * For non AIO case, we will convert those unwritten extents
3011 * to written after return back from blockdev_direct_IO.
3012 *
3013 * For async DIO, the conversion needs to be deferred when the
3014 * IO is completed. The ext4 end_io callback function will be
3015 * called to take care of the conversion work. Here for async
3016 * case, we allocate an io_end structure to hook to the iocb.
3017 */
3018 iocb->private = NULL;
3019 ext4_inode_aio_set(inode, NULL);
3020 if (!is_sync_kiocb(iocb)) {
97a851ed 3021 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3022 if (!io_end) {
3023 ret = -ENOMEM;
3024 goto retake_lock;
8b0f165f 3025 }
97a851ed
JK
3026 /*
3027 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3028 */
3029 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3030 /*
69c499d1
TT
3031 * we save the io structure for current async direct
3032 * IO, so that later ext4_map_blocks() could flag the
3033 * io structure whether there is a unwritten extents
3034 * needs to be converted when IO is completed.
8d5d02e6 3035 */
69c499d1
TT
3036 ext4_inode_aio_set(inode, io_end);
3037 }
4bd809db 3038
69c499d1
TT
3039 if (overwrite) {
3040 get_block_func = ext4_get_block_write_nolock;
3041 } else {
3042 get_block_func = ext4_get_block_write;
3043 dio_flags = DIO_LOCKING;
3044 }
3045 ret = __blockdev_direct_IO(rw, iocb, inode,
31b14039
AV
3046 inode->i_sb->s_bdev, iter,
3047 offset,
69c499d1
TT
3048 get_block_func,
3049 ext4_end_io_dio,
3050 NULL,
3051 dio_flags);
3052
69c499d1 3053 /*
97a851ed
JK
3054 * Put our reference to io_end. This can free the io_end structure e.g.
3055 * in sync IO case or in case of error. It can even perform extent
3056 * conversion if all bios we submitted finished before we got here.
3057 * Note that in that case iocb->private can be already set to NULL
3058 * here.
69c499d1 3059 */
97a851ed
JK
3060 if (io_end) {
3061 ext4_inode_aio_set(inode, NULL);
3062 ext4_put_io_end(io_end);
3063 /*
3064 * When no IO was submitted ext4_end_io_dio() was not
3065 * called so we have to put iocb's reference.
3066 */
3067 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3068 WARN_ON(iocb->private != io_end);
3069 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3070 ext4_put_io_end(io_end);
3071 iocb->private = NULL;
3072 }
3073 }
3074 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3075 EXT4_STATE_DIO_UNWRITTEN)) {
3076 int err;
3077 /*
3078 * for non AIO case, since the IO is already
3079 * completed, we could do the conversion right here
3080 */
6b523df4 3081 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3082 offset, ret);
3083 if (err < 0)
3084 ret = err;
3085 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3086 }
4bd809db 3087
69c499d1 3088retake_lock:
e8340395
JK
3089 if (rw == WRITE)
3090 inode_dio_done(inode);
69c499d1
TT
3091 /* take i_mutex locking again if we do a ovewrite dio */
3092 if (overwrite) {
69c499d1
TT
3093 up_read(&EXT4_I(inode)->i_data_sem);
3094 mutex_lock(&inode->i_mutex);
4c0425ff 3095 }
8d5d02e6 3096
69c499d1 3097 return ret;
4c0425ff
MC
3098}
3099
3100static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 3101 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
3102{
3103 struct file *file = iocb->ki_filp;
3104 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3105 size_t count = iov_iter_count(iter);
0562e0ba 3106 ssize_t ret;
4c0425ff 3107
84ebd795
TT
3108 /*
3109 * If we are doing data journalling we don't support O_DIRECT
3110 */
3111 if (ext4_should_journal_data(inode))
3112 return 0;
3113
46c7f254
TM
3114 /* Let buffer I/O handle the inline data case. */
3115 if (ext4_has_inline_data(inode))
3116 return 0;
3117
a6cbcd4a 3118 trace_ext4_direct_IO_enter(inode, offset, count, rw);
12e9b892 3119 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
16b1f05d 3120 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
0562e0ba 3121 else
16b1f05d 3122 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
a6cbcd4a 3123 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
0562e0ba 3124 return ret;
4c0425ff
MC
3125}
3126
ac27a0ec 3127/*
617ba13b 3128 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3129 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3130 * much here because ->set_page_dirty is called under VFS locks. The page is
3131 * not necessarily locked.
3132 *
3133 * We cannot just dirty the page and leave attached buffers clean, because the
3134 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3135 * or jbddirty because all the journalling code will explode.
3136 *
3137 * So what we do is to mark the page "pending dirty" and next time writepage
3138 * is called, propagate that into the buffers appropriately.
3139 */
617ba13b 3140static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3141{
3142 SetPageChecked(page);
3143 return __set_page_dirty_nobuffers(page);
3144}
3145
74d553aa 3146static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3147 .readpage = ext4_readpage,
3148 .readpages = ext4_readpages,
43ce1d23 3149 .writepage = ext4_writepage,
20970ba6 3150 .writepages = ext4_writepages,
8ab22b9a 3151 .write_begin = ext4_write_begin,
74d553aa 3152 .write_end = ext4_write_end,
8ab22b9a
HH
3153 .bmap = ext4_bmap,
3154 .invalidatepage = ext4_invalidatepage,
3155 .releasepage = ext4_releasepage,
3156 .direct_IO = ext4_direct_IO,
3157 .migratepage = buffer_migrate_page,
3158 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3159 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3160};
3161
617ba13b 3162static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3163 .readpage = ext4_readpage,
3164 .readpages = ext4_readpages,
43ce1d23 3165 .writepage = ext4_writepage,
20970ba6 3166 .writepages = ext4_writepages,
8ab22b9a
HH
3167 .write_begin = ext4_write_begin,
3168 .write_end = ext4_journalled_write_end,
3169 .set_page_dirty = ext4_journalled_set_page_dirty,
3170 .bmap = ext4_bmap,
4520fb3c 3171 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3172 .releasepage = ext4_releasepage,
84ebd795 3173 .direct_IO = ext4_direct_IO,
8ab22b9a 3174 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3175 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3176};
3177
64769240 3178static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3179 .readpage = ext4_readpage,
3180 .readpages = ext4_readpages,
43ce1d23 3181 .writepage = ext4_writepage,
20970ba6 3182 .writepages = ext4_writepages,
8ab22b9a
HH
3183 .write_begin = ext4_da_write_begin,
3184 .write_end = ext4_da_write_end,
3185 .bmap = ext4_bmap,
3186 .invalidatepage = ext4_da_invalidatepage,
3187 .releasepage = ext4_releasepage,
3188 .direct_IO = ext4_direct_IO,
3189 .migratepage = buffer_migrate_page,
3190 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3191 .error_remove_page = generic_error_remove_page,
64769240
AT
3192};
3193
617ba13b 3194void ext4_set_aops(struct inode *inode)
ac27a0ec 3195{
3d2b1582
LC
3196 switch (ext4_inode_journal_mode(inode)) {
3197 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3198 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3199 break;
3200 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3201 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3202 break;
3203 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3204 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3205 return;
3d2b1582
LC
3206 default:
3207 BUG();
3208 }
74d553aa
TT
3209 if (test_opt(inode->i_sb, DELALLOC))
3210 inode->i_mapping->a_ops = &ext4_da_aops;
3211 else
3212 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3213}
3214
d863dc36
LC
3215/*
3216 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3217 * starting from file offset 'from'. The range to be zero'd must
3218 * be contained with in one block. If the specified range exceeds
3219 * the end of the block it will be shortened to end of the block
3220 * that cooresponds to 'from'
3221 */
94350ab5 3222static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3223 struct address_space *mapping, loff_t from, loff_t length)
3224{
3225 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3226 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3227 unsigned blocksize, max, pos;
3228 ext4_lblk_t iblock;
3229 struct inode *inode = mapping->host;
3230 struct buffer_head *bh;
3231 struct page *page;
3232 int err = 0;
3233
3234 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3235 mapping_gfp_mask(mapping) & ~__GFP_FS);
3236 if (!page)
3237 return -ENOMEM;
3238
3239 blocksize = inode->i_sb->s_blocksize;
3240 max = blocksize - (offset & (blocksize - 1));
3241
3242 /*
3243 * correct length if it does not fall between
3244 * 'from' and the end of the block
3245 */
3246 if (length > max || length < 0)
3247 length = max;
3248
3249 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3250
3251 if (!page_has_buffers(page))
3252 create_empty_buffers(page, blocksize, 0);
3253
3254 /* Find the buffer that contains "offset" */
3255 bh = page_buffers(page);
3256 pos = blocksize;
3257 while (offset >= pos) {
3258 bh = bh->b_this_page;
3259 iblock++;
3260 pos += blocksize;
3261 }
d863dc36
LC
3262 if (buffer_freed(bh)) {
3263 BUFFER_TRACE(bh, "freed: skip");
3264 goto unlock;
3265 }
d863dc36
LC
3266 if (!buffer_mapped(bh)) {
3267 BUFFER_TRACE(bh, "unmapped");
3268 ext4_get_block(inode, iblock, bh, 0);
3269 /* unmapped? It's a hole - nothing to do */
3270 if (!buffer_mapped(bh)) {
3271 BUFFER_TRACE(bh, "still unmapped");
3272 goto unlock;
3273 }
3274 }
3275
3276 /* Ok, it's mapped. Make sure it's up-to-date */
3277 if (PageUptodate(page))
3278 set_buffer_uptodate(bh);
3279
3280 if (!buffer_uptodate(bh)) {
3281 err = -EIO;
3282 ll_rw_block(READ, 1, &bh);
3283 wait_on_buffer(bh);
3284 /* Uhhuh. Read error. Complain and punt. */
3285 if (!buffer_uptodate(bh))
3286 goto unlock;
3287 }
d863dc36
LC
3288 if (ext4_should_journal_data(inode)) {
3289 BUFFER_TRACE(bh, "get write access");
3290 err = ext4_journal_get_write_access(handle, bh);
3291 if (err)
3292 goto unlock;
3293 }
d863dc36 3294 zero_user(page, offset, length);
d863dc36
LC
3295 BUFFER_TRACE(bh, "zeroed end of block");
3296
d863dc36
LC
3297 if (ext4_should_journal_data(inode)) {
3298 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3299 } else {
353eefd3 3300 err = 0;
d863dc36 3301 mark_buffer_dirty(bh);
0713ed0c
LC
3302 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3303 err = ext4_jbd2_file_inode(handle, inode);
3304 }
d863dc36
LC
3305
3306unlock:
3307 unlock_page(page);
3308 page_cache_release(page);
3309 return err;
3310}
3311
94350ab5
MW
3312/*
3313 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3314 * up to the end of the block which corresponds to `from'.
3315 * This required during truncate. We need to physically zero the tail end
3316 * of that block so it doesn't yield old data if the file is later grown.
3317 */
c197855e 3318static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3319 struct address_space *mapping, loff_t from)
3320{
3321 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3322 unsigned length;
3323 unsigned blocksize;
3324 struct inode *inode = mapping->host;
3325
3326 blocksize = inode->i_sb->s_blocksize;
3327 length = blocksize - (offset & (blocksize - 1));
3328
3329 return ext4_block_zero_page_range(handle, mapping, from, length);
3330}
3331
a87dd18c
LC
3332int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3333 loff_t lstart, loff_t length)
3334{
3335 struct super_block *sb = inode->i_sb;
3336 struct address_space *mapping = inode->i_mapping;
e1be3a92 3337 unsigned partial_start, partial_end;
a87dd18c
LC
3338 ext4_fsblk_t start, end;
3339 loff_t byte_end = (lstart + length - 1);
3340 int err = 0;
3341
e1be3a92
LC
3342 partial_start = lstart & (sb->s_blocksize - 1);
3343 partial_end = byte_end & (sb->s_blocksize - 1);
3344
a87dd18c
LC
3345 start = lstart >> sb->s_blocksize_bits;
3346 end = byte_end >> sb->s_blocksize_bits;
3347
3348 /* Handle partial zero within the single block */
e1be3a92
LC
3349 if (start == end &&
3350 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3351 err = ext4_block_zero_page_range(handle, mapping,
3352 lstart, length);
3353 return err;
3354 }
3355 /* Handle partial zero out on the start of the range */
e1be3a92 3356 if (partial_start) {
a87dd18c
LC
3357 err = ext4_block_zero_page_range(handle, mapping,
3358 lstart, sb->s_blocksize);
3359 if (err)
3360 return err;
3361 }
3362 /* Handle partial zero out on the end of the range */
e1be3a92 3363 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3364 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3365 byte_end - partial_end,
3366 partial_end + 1);
a87dd18c
LC
3367 return err;
3368}
3369
91ef4caf
DG
3370int ext4_can_truncate(struct inode *inode)
3371{
91ef4caf
DG
3372 if (S_ISREG(inode->i_mode))
3373 return 1;
3374 if (S_ISDIR(inode->i_mode))
3375 return 1;
3376 if (S_ISLNK(inode->i_mode))
3377 return !ext4_inode_is_fast_symlink(inode);
3378 return 0;
3379}
3380
a4bb6b64
AH
3381/*
3382 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3383 * associated with the given offset and length
3384 *
3385 * @inode: File inode
3386 * @offset: The offset where the hole will begin
3387 * @len: The length of the hole
3388 *
4907cb7b 3389 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3390 */
3391
aeb2817a 3392int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3393{
26a4c0c6
TT
3394 struct super_block *sb = inode->i_sb;
3395 ext4_lblk_t first_block, stop_block;
3396 struct address_space *mapping = inode->i_mapping;
a87dd18c 3397 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3398 handle_t *handle;
3399 unsigned int credits;
3400 int ret = 0;
3401
a4bb6b64 3402 if (!S_ISREG(inode->i_mode))
73355192 3403 return -EOPNOTSUPP;
a4bb6b64 3404
b8a86845 3405 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3406
26a4c0c6
TT
3407 /*
3408 * Write out all dirty pages to avoid race conditions
3409 * Then release them.
3410 */
3411 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3412 ret = filemap_write_and_wait_range(mapping, offset,
3413 offset + length - 1);
3414 if (ret)
3415 return ret;
3416 }
3417
3418 mutex_lock(&inode->i_mutex);
9ef06cec 3419
26a4c0c6
TT
3420 /* No need to punch hole beyond i_size */
3421 if (offset >= inode->i_size)
3422 goto out_mutex;
3423
3424 /*
3425 * If the hole extends beyond i_size, set the hole
3426 * to end after the page that contains i_size
3427 */
3428 if (offset + length > inode->i_size) {
3429 length = inode->i_size +
3430 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3431 offset;
3432 }
3433
a361293f
JK
3434 if (offset & (sb->s_blocksize - 1) ||
3435 (offset + length) & (sb->s_blocksize - 1)) {
3436 /*
3437 * Attach jinode to inode for jbd2 if we do any zeroing of
3438 * partial block
3439 */
3440 ret = ext4_inode_attach_jinode(inode);
3441 if (ret < 0)
3442 goto out_mutex;
3443
3444 }
3445
a87dd18c
LC
3446 first_block_offset = round_up(offset, sb->s_blocksize);
3447 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3448
a87dd18c
LC
3449 /* Now release the pages and zero block aligned part of pages*/
3450 if (last_block_offset > first_block_offset)
3451 truncate_pagecache_range(inode, first_block_offset,
3452 last_block_offset);
26a4c0c6
TT
3453
3454 /* Wait all existing dio workers, newcomers will block on i_mutex */
3455 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3456 inode_dio_wait(inode);
3457
3458 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459 credits = ext4_writepage_trans_blocks(inode);
3460 else
3461 credits = ext4_blocks_for_truncate(inode);
3462 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3463 if (IS_ERR(handle)) {
3464 ret = PTR_ERR(handle);
3465 ext4_std_error(sb, ret);
3466 goto out_dio;
3467 }
3468
a87dd18c
LC
3469 ret = ext4_zero_partial_blocks(handle, inode, offset,
3470 length);
3471 if (ret)
3472 goto out_stop;
26a4c0c6
TT
3473
3474 first_block = (offset + sb->s_blocksize - 1) >>
3475 EXT4_BLOCK_SIZE_BITS(sb);
3476 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3477
3478 /* If there are no blocks to remove, return now */
3479 if (first_block >= stop_block)
3480 goto out_stop;
3481
3482 down_write(&EXT4_I(inode)->i_data_sem);
3483 ext4_discard_preallocations(inode);
3484
3485 ret = ext4_es_remove_extent(inode, first_block,
3486 stop_block - first_block);
3487 if (ret) {
3488 up_write(&EXT4_I(inode)->i_data_sem);
3489 goto out_stop;
3490 }
3491
3492 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3493 ret = ext4_ext_remove_space(inode, first_block,
3494 stop_block - 1);
3495 else
4f579ae7 3496 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3497 stop_block);
3498
819c4920 3499 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3500 if (IS_SYNC(inode))
3501 ext4_handle_sync(handle);
e251f9bc
MP
3502
3503 /* Now release the pages again to reduce race window */
3504 if (last_block_offset > first_block_offset)
3505 truncate_pagecache_range(inode, first_block_offset,
3506 last_block_offset);
3507
26a4c0c6
TT
3508 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3509 ext4_mark_inode_dirty(handle, inode);
3510out_stop:
3511 ext4_journal_stop(handle);
3512out_dio:
3513 ext4_inode_resume_unlocked_dio(inode);
3514out_mutex:
3515 mutex_unlock(&inode->i_mutex);
3516 return ret;
a4bb6b64
AH
3517}
3518
a361293f
JK
3519int ext4_inode_attach_jinode(struct inode *inode)
3520{
3521 struct ext4_inode_info *ei = EXT4_I(inode);
3522 struct jbd2_inode *jinode;
3523
3524 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3525 return 0;
3526
3527 jinode = jbd2_alloc_inode(GFP_KERNEL);
3528 spin_lock(&inode->i_lock);
3529 if (!ei->jinode) {
3530 if (!jinode) {
3531 spin_unlock(&inode->i_lock);
3532 return -ENOMEM;
3533 }
3534 ei->jinode = jinode;
3535 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3536 jinode = NULL;
3537 }
3538 spin_unlock(&inode->i_lock);
3539 if (unlikely(jinode != NULL))
3540 jbd2_free_inode(jinode);
3541 return 0;
3542}
3543
ac27a0ec 3544/*
617ba13b 3545 * ext4_truncate()
ac27a0ec 3546 *
617ba13b
MC
3547 * We block out ext4_get_block() block instantiations across the entire
3548 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3549 * simultaneously on behalf of the same inode.
3550 *
42b2aa86 3551 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3552 * is one core, guiding principle: the file's tree must always be consistent on
3553 * disk. We must be able to restart the truncate after a crash.
3554 *
3555 * The file's tree may be transiently inconsistent in memory (although it
3556 * probably isn't), but whenever we close off and commit a journal transaction,
3557 * the contents of (the filesystem + the journal) must be consistent and
3558 * restartable. It's pretty simple, really: bottom up, right to left (although
3559 * left-to-right works OK too).
3560 *
3561 * Note that at recovery time, journal replay occurs *before* the restart of
3562 * truncate against the orphan inode list.
3563 *
3564 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3565 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3566 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3567 * ext4_truncate() to have another go. So there will be instantiated blocks
3568 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3569 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3570 * ext4_truncate() run will find them and release them.
ac27a0ec 3571 */
617ba13b 3572void ext4_truncate(struct inode *inode)
ac27a0ec 3573{
819c4920
TT
3574 struct ext4_inode_info *ei = EXT4_I(inode);
3575 unsigned int credits;
3576 handle_t *handle;
3577 struct address_space *mapping = inode->i_mapping;
819c4920 3578
19b5ef61
TT
3579 /*
3580 * There is a possibility that we're either freeing the inode
e04027e8 3581 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3582 * have i_mutex locked because it's not necessary.
3583 */
3584 if (!(inode->i_state & (I_NEW|I_FREEING)))
3585 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3586 trace_ext4_truncate_enter(inode);
3587
91ef4caf 3588 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3589 return;
3590
12e9b892 3591 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3592
5534fb5b 3593 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3594 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3595
aef1c851
TM
3596 if (ext4_has_inline_data(inode)) {
3597 int has_inline = 1;
3598
3599 ext4_inline_data_truncate(inode, &has_inline);
3600 if (has_inline)
3601 return;
3602 }
3603
a361293f
JK
3604 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3605 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3606 if (ext4_inode_attach_jinode(inode) < 0)
3607 return;
3608 }
3609
819c4920
TT
3610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3611 credits = ext4_writepage_trans_blocks(inode);
3612 else
3613 credits = ext4_blocks_for_truncate(inode);
3614
3615 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3616 if (IS_ERR(handle)) {
3617 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3618 return;
3619 }
3620
eb3544c6
LC
3621 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3622 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3623
3624 /*
3625 * We add the inode to the orphan list, so that if this
3626 * truncate spans multiple transactions, and we crash, we will
3627 * resume the truncate when the filesystem recovers. It also
3628 * marks the inode dirty, to catch the new size.
3629 *
3630 * Implication: the file must always be in a sane, consistent
3631 * truncatable state while each transaction commits.
3632 */
3633 if (ext4_orphan_add(handle, inode))
3634 goto out_stop;
3635
3636 down_write(&EXT4_I(inode)->i_data_sem);
3637
3638 ext4_discard_preallocations(inode);
3639
ff9893dc 3640 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3641 ext4_ext_truncate(handle, inode);
ff9893dc 3642 else
819c4920
TT
3643 ext4_ind_truncate(handle, inode);
3644
3645 up_write(&ei->i_data_sem);
3646
3647 if (IS_SYNC(inode))
3648 ext4_handle_sync(handle);
3649
3650out_stop:
3651 /*
3652 * If this was a simple ftruncate() and the file will remain alive,
3653 * then we need to clear up the orphan record which we created above.
3654 * However, if this was a real unlink then we were called by
3655 * ext4_delete_inode(), and we allow that function to clean up the
3656 * orphan info for us.
3657 */
3658 if (inode->i_nlink)
3659 ext4_orphan_del(handle, inode);
3660
3661 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3662 ext4_mark_inode_dirty(handle, inode);
3663 ext4_journal_stop(handle);
ac27a0ec 3664
0562e0ba 3665 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3666}
3667
ac27a0ec 3668/*
617ba13b 3669 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3670 * underlying buffer_head on success. If 'in_mem' is true, we have all
3671 * data in memory that is needed to recreate the on-disk version of this
3672 * inode.
3673 */
617ba13b
MC
3674static int __ext4_get_inode_loc(struct inode *inode,
3675 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3676{
240799cd
TT
3677 struct ext4_group_desc *gdp;
3678 struct buffer_head *bh;
3679 struct super_block *sb = inode->i_sb;
3680 ext4_fsblk_t block;
3681 int inodes_per_block, inode_offset;
3682
3a06d778 3683 iloc->bh = NULL;
240799cd
TT
3684 if (!ext4_valid_inum(sb, inode->i_ino))
3685 return -EIO;
ac27a0ec 3686
240799cd
TT
3687 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3688 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3689 if (!gdp)
ac27a0ec
DK
3690 return -EIO;
3691
240799cd
TT
3692 /*
3693 * Figure out the offset within the block group inode table
3694 */
00d09882 3695 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3696 inode_offset = ((inode->i_ino - 1) %
3697 EXT4_INODES_PER_GROUP(sb));
3698 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3699 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3700
3701 bh = sb_getblk(sb, block);
aebf0243 3702 if (unlikely(!bh))
860d21e2 3703 return -ENOMEM;
ac27a0ec
DK
3704 if (!buffer_uptodate(bh)) {
3705 lock_buffer(bh);
9c83a923
HK
3706
3707 /*
3708 * If the buffer has the write error flag, we have failed
3709 * to write out another inode in the same block. In this
3710 * case, we don't have to read the block because we may
3711 * read the old inode data successfully.
3712 */
3713 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3714 set_buffer_uptodate(bh);
3715
ac27a0ec
DK
3716 if (buffer_uptodate(bh)) {
3717 /* someone brought it uptodate while we waited */
3718 unlock_buffer(bh);
3719 goto has_buffer;
3720 }
3721
3722 /*
3723 * If we have all information of the inode in memory and this
3724 * is the only valid inode in the block, we need not read the
3725 * block.
3726 */
3727 if (in_mem) {
3728 struct buffer_head *bitmap_bh;
240799cd 3729 int i, start;
ac27a0ec 3730
240799cd 3731 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3732
240799cd
TT
3733 /* Is the inode bitmap in cache? */
3734 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3735 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3736 goto make_io;
3737
3738 /*
3739 * If the inode bitmap isn't in cache then the
3740 * optimisation may end up performing two reads instead
3741 * of one, so skip it.
3742 */
3743 if (!buffer_uptodate(bitmap_bh)) {
3744 brelse(bitmap_bh);
3745 goto make_io;
3746 }
240799cd 3747 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3748 if (i == inode_offset)
3749 continue;
617ba13b 3750 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3751 break;
3752 }
3753 brelse(bitmap_bh);
240799cd 3754 if (i == start + inodes_per_block) {
ac27a0ec
DK
3755 /* all other inodes are free, so skip I/O */
3756 memset(bh->b_data, 0, bh->b_size);
3757 set_buffer_uptodate(bh);
3758 unlock_buffer(bh);
3759 goto has_buffer;
3760 }
3761 }
3762
3763make_io:
240799cd
TT
3764 /*
3765 * If we need to do any I/O, try to pre-readahead extra
3766 * blocks from the inode table.
3767 */
3768 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3769 ext4_fsblk_t b, end, table;
3770 unsigned num;
0d606e2c 3771 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3772
3773 table = ext4_inode_table(sb, gdp);
b713a5ec 3774 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3775 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3776 if (table > b)
3777 b = table;
0d606e2c 3778 end = b + ra_blks;
240799cd 3779 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3780 if (ext4_has_group_desc_csum(sb))
560671a0 3781 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3782 table += num / inodes_per_block;
3783 if (end > table)
3784 end = table;
3785 while (b <= end)
3786 sb_breadahead(sb, b++);
3787 }
3788
ac27a0ec
DK
3789 /*
3790 * There are other valid inodes in the buffer, this inode
3791 * has in-inode xattrs, or we don't have this inode in memory.
3792 * Read the block from disk.
3793 */
0562e0ba 3794 trace_ext4_load_inode(inode);
ac27a0ec
DK
3795 get_bh(bh);
3796 bh->b_end_io = end_buffer_read_sync;
65299a3b 3797 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3798 wait_on_buffer(bh);
3799 if (!buffer_uptodate(bh)) {
c398eda0
TT
3800 EXT4_ERROR_INODE_BLOCK(inode, block,
3801 "unable to read itable block");
ac27a0ec
DK
3802 brelse(bh);
3803 return -EIO;
3804 }
3805 }
3806has_buffer:
3807 iloc->bh = bh;
3808 return 0;
3809}
3810
617ba13b 3811int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3812{
3813 /* We have all inode data except xattrs in memory here. */
617ba13b 3814 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3815 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3816}
3817
617ba13b 3818void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3819{
617ba13b 3820 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3821 unsigned int new_fl = 0;
ac27a0ec 3822
617ba13b 3823 if (flags & EXT4_SYNC_FL)
00a1a053 3824 new_fl |= S_SYNC;
617ba13b 3825 if (flags & EXT4_APPEND_FL)
00a1a053 3826 new_fl |= S_APPEND;
617ba13b 3827 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3828 new_fl |= S_IMMUTABLE;
617ba13b 3829 if (flags & EXT4_NOATIME_FL)
00a1a053 3830 new_fl |= S_NOATIME;
617ba13b 3831 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3832 new_fl |= S_DIRSYNC;
5f16f322
TT
3833 inode_set_flags(inode, new_fl,
3834 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3835}
3836
ff9ddf7e
JK
3837/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3838void ext4_get_inode_flags(struct ext4_inode_info *ei)
3839{
84a8dce2
DM
3840 unsigned int vfs_fl;
3841 unsigned long old_fl, new_fl;
3842
3843 do {
3844 vfs_fl = ei->vfs_inode.i_flags;
3845 old_fl = ei->i_flags;
3846 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3847 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3848 EXT4_DIRSYNC_FL);
3849 if (vfs_fl & S_SYNC)
3850 new_fl |= EXT4_SYNC_FL;
3851 if (vfs_fl & S_APPEND)
3852 new_fl |= EXT4_APPEND_FL;
3853 if (vfs_fl & S_IMMUTABLE)
3854 new_fl |= EXT4_IMMUTABLE_FL;
3855 if (vfs_fl & S_NOATIME)
3856 new_fl |= EXT4_NOATIME_FL;
3857 if (vfs_fl & S_DIRSYNC)
3858 new_fl |= EXT4_DIRSYNC_FL;
3859 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3860}
de9a55b8 3861
0fc1b451 3862static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3863 struct ext4_inode_info *ei)
0fc1b451
AK
3864{
3865 blkcnt_t i_blocks ;
8180a562
AK
3866 struct inode *inode = &(ei->vfs_inode);
3867 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3868
3869 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3870 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3871 /* we are using combined 48 bit field */
3872 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3873 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3874 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3875 /* i_blocks represent file system block size */
3876 return i_blocks << (inode->i_blkbits - 9);
3877 } else {
3878 return i_blocks;
3879 }
0fc1b451
AK
3880 } else {
3881 return le32_to_cpu(raw_inode->i_blocks_lo);
3882 }
3883}
ff9ddf7e 3884
152a7b0a
TM
3885static inline void ext4_iget_extra_inode(struct inode *inode,
3886 struct ext4_inode *raw_inode,
3887 struct ext4_inode_info *ei)
3888{
3889 __le32 *magic = (void *)raw_inode +
3890 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3891 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3892 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3893 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3894 } else
3895 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3896}
3897
1d1fe1ee 3898struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3899{
617ba13b
MC
3900 struct ext4_iloc iloc;
3901 struct ext4_inode *raw_inode;
1d1fe1ee 3902 struct ext4_inode_info *ei;
1d1fe1ee 3903 struct inode *inode;
b436b9be 3904 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3905 long ret;
ac27a0ec 3906 int block;
08cefc7a
EB
3907 uid_t i_uid;
3908 gid_t i_gid;
ac27a0ec 3909
1d1fe1ee
DH
3910 inode = iget_locked(sb, ino);
3911 if (!inode)
3912 return ERR_PTR(-ENOMEM);
3913 if (!(inode->i_state & I_NEW))
3914 return inode;
3915
3916 ei = EXT4_I(inode);
7dc57615 3917 iloc.bh = NULL;
ac27a0ec 3918
1d1fe1ee
DH
3919 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3920 if (ret < 0)
ac27a0ec 3921 goto bad_inode;
617ba13b 3922 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3923
3924 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3925 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3926 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3927 EXT4_INODE_SIZE(inode->i_sb)) {
3928 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3929 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3930 EXT4_INODE_SIZE(inode->i_sb));
3931 ret = -EIO;
3932 goto bad_inode;
3933 }
3934 } else
3935 ei->i_extra_isize = 0;
3936
3937 /* Precompute checksum seed for inode metadata */
3938 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3939 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3940 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3941 __u32 csum;
3942 __le32 inum = cpu_to_le32(inode->i_ino);
3943 __le32 gen = raw_inode->i_generation;
3944 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3945 sizeof(inum));
3946 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3947 sizeof(gen));
3948 }
3949
3950 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3951 EXT4_ERROR_INODE(inode, "checksum invalid");
3952 ret = -EIO;
3953 goto bad_inode;
3954 }
3955
ac27a0ec 3956 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3957 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3958 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3959 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3960 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3961 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3962 }
08cefc7a
EB
3963 i_uid_write(inode, i_uid);
3964 i_gid_write(inode, i_gid);
bfe86848 3965 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3966
353eb83c 3967 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3968 ei->i_inline_off = 0;
ac27a0ec
DK
3969 ei->i_dir_start_lookup = 0;
3970 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3971 /* We now have enough fields to check if the inode was active or not.
3972 * This is needed because nfsd might try to access dead inodes
3973 * the test is that same one that e2fsck uses
3974 * NeilBrown 1999oct15
3975 */
3976 if (inode->i_nlink == 0) {
393d1d1d
DTB
3977 if ((inode->i_mode == 0 ||
3978 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3979 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3980 /* this inode is deleted */
1d1fe1ee 3981 ret = -ESTALE;
ac27a0ec
DK
3982 goto bad_inode;
3983 }
3984 /* The only unlinked inodes we let through here have
3985 * valid i_mode and are being read by the orphan
3986 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
3987 * the process of deleting those.
3988 * OR it is the EXT4_BOOT_LOADER_INO which is
3989 * not initialized on a new filesystem. */
ac27a0ec 3990 }
ac27a0ec 3991 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3992 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3993 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3994 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3995 ei->i_file_acl |=
3996 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3997 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3998 ei->i_disksize = inode->i_size;
a9e7f447
DM
3999#ifdef CONFIG_QUOTA
4000 ei->i_reserved_quota = 0;
4001#endif
ac27a0ec
DK
4002 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4003 ei->i_block_group = iloc.block_group;
a4912123 4004 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4005 /*
4006 * NOTE! The in-memory inode i_data array is in little-endian order
4007 * even on big-endian machines: we do NOT byteswap the block numbers!
4008 */
617ba13b 4009 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4010 ei->i_data[block] = raw_inode->i_block[block];
4011 INIT_LIST_HEAD(&ei->i_orphan);
4012
b436b9be
JK
4013 /*
4014 * Set transaction id's of transactions that have to be committed
4015 * to finish f[data]sync. We set them to currently running transaction
4016 * as we cannot be sure that the inode or some of its metadata isn't
4017 * part of the transaction - the inode could have been reclaimed and
4018 * now it is reread from disk.
4019 */
4020 if (journal) {
4021 transaction_t *transaction;
4022 tid_t tid;
4023
a931da6a 4024 read_lock(&journal->j_state_lock);
b436b9be
JK
4025 if (journal->j_running_transaction)
4026 transaction = journal->j_running_transaction;
4027 else
4028 transaction = journal->j_committing_transaction;
4029 if (transaction)
4030 tid = transaction->t_tid;
4031 else
4032 tid = journal->j_commit_sequence;
a931da6a 4033 read_unlock(&journal->j_state_lock);
b436b9be
JK
4034 ei->i_sync_tid = tid;
4035 ei->i_datasync_tid = tid;
4036 }
4037
0040d987 4038 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4039 if (ei->i_extra_isize == 0) {
4040 /* The extra space is currently unused. Use it. */
617ba13b
MC
4041 ei->i_extra_isize = sizeof(struct ext4_inode) -
4042 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4043 } else {
152a7b0a 4044 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4045 }
814525f4 4046 }
ac27a0ec 4047
ef7f3835
KS
4048 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4049 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4050 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4051 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4052
ed3654eb 4053 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4054 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4055 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4056 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4057 inode->i_version |=
4058 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4059 }
25ec56b5
JNC
4060 }
4061
c4b5a614 4062 ret = 0;
485c26ec 4063 if (ei->i_file_acl &&
1032988c 4064 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4065 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4066 ei->i_file_acl);
485c26ec
TT
4067 ret = -EIO;
4068 goto bad_inode;
f19d5870
TM
4069 } else if (!ext4_has_inline_data(inode)) {
4070 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4071 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4072 (S_ISLNK(inode->i_mode) &&
4073 !ext4_inode_is_fast_symlink(inode))))
4074 /* Validate extent which is part of inode */
4075 ret = ext4_ext_check_inode(inode);
4076 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4077 (S_ISLNK(inode->i_mode) &&
4078 !ext4_inode_is_fast_symlink(inode))) {
4079 /* Validate block references which are part of inode */
4080 ret = ext4_ind_check_inode(inode);
4081 }
fe2c8191 4082 }
567f3e9a 4083 if (ret)
de9a55b8 4084 goto bad_inode;
7a262f7c 4085
ac27a0ec 4086 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4087 inode->i_op = &ext4_file_inode_operations;
4088 inode->i_fop = &ext4_file_operations;
4089 ext4_set_aops(inode);
ac27a0ec 4090 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4091 inode->i_op = &ext4_dir_inode_operations;
4092 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4093 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4094 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4095 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4096 nd_terminate_link(ei->i_data, inode->i_size,
4097 sizeof(ei->i_data) - 1);
4098 } else {
617ba13b
MC
4099 inode->i_op = &ext4_symlink_inode_operations;
4100 ext4_set_aops(inode);
ac27a0ec 4101 }
563bdd61
TT
4102 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4103 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4104 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4105 if (raw_inode->i_block[0])
4106 init_special_inode(inode, inode->i_mode,
4107 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4108 else
4109 init_special_inode(inode, inode->i_mode,
4110 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4111 } else if (ino == EXT4_BOOT_LOADER_INO) {
4112 make_bad_inode(inode);
563bdd61 4113 } else {
563bdd61 4114 ret = -EIO;
24676da4 4115 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4116 goto bad_inode;
ac27a0ec 4117 }
af5bc92d 4118 brelse(iloc.bh);
617ba13b 4119 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4120 unlock_new_inode(inode);
4121 return inode;
ac27a0ec
DK
4122
4123bad_inode:
567f3e9a 4124 brelse(iloc.bh);
1d1fe1ee
DH
4125 iget_failed(inode);
4126 return ERR_PTR(ret);
ac27a0ec
DK
4127}
4128
0fc1b451
AK
4129static int ext4_inode_blocks_set(handle_t *handle,
4130 struct ext4_inode *raw_inode,
4131 struct ext4_inode_info *ei)
4132{
4133 struct inode *inode = &(ei->vfs_inode);
4134 u64 i_blocks = inode->i_blocks;
4135 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4136
4137 if (i_blocks <= ~0U) {
4138 /*
4907cb7b 4139 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4140 * as multiple of 512 bytes
4141 */
8180a562 4142 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4143 raw_inode->i_blocks_high = 0;
84a8dce2 4144 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4145 return 0;
4146 }
4147 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4148 return -EFBIG;
4149
4150 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4151 /*
4152 * i_blocks can be represented in a 48 bit variable
4153 * as multiple of 512 bytes
4154 */
8180a562 4155 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4156 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4157 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4158 } else {
84a8dce2 4159 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4160 /* i_block is stored in file system block size */
4161 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4162 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4163 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4164 }
f287a1a5 4165 return 0;
0fc1b451
AK
4166}
4167
ac27a0ec
DK
4168/*
4169 * Post the struct inode info into an on-disk inode location in the
4170 * buffer-cache. This gobbles the caller's reference to the
4171 * buffer_head in the inode location struct.
4172 *
4173 * The caller must have write access to iloc->bh.
4174 */
617ba13b 4175static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4176 struct inode *inode,
830156c7 4177 struct ext4_iloc *iloc)
ac27a0ec 4178{
617ba13b
MC
4179 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4180 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4181 struct buffer_head *bh = iloc->bh;
202ee5df 4182 struct super_block *sb = inode->i_sb;
ac27a0ec 4183 int err = 0, rc, block;
202ee5df 4184 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4185 uid_t i_uid;
4186 gid_t i_gid;
ac27a0ec 4187
202ee5df
TT
4188 spin_lock(&ei->i_raw_lock);
4189
4190 /* For fields not tracked in the in-memory inode,
ac27a0ec 4191 * initialise them to zero for new inodes. */
19f5fb7a 4192 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4193 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4194
ff9ddf7e 4195 ext4_get_inode_flags(ei);
ac27a0ec 4196 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4197 i_uid = i_uid_read(inode);
4198 i_gid = i_gid_read(inode);
af5bc92d 4199 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4200 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4201 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4202/*
4203 * Fix up interoperability with old kernels. Otherwise, old inodes get
4204 * re-used with the upper 16 bits of the uid/gid intact
4205 */
af5bc92d 4206 if (!ei->i_dtime) {
ac27a0ec 4207 raw_inode->i_uid_high =
08cefc7a 4208 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4209 raw_inode->i_gid_high =
08cefc7a 4210 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4211 } else {
4212 raw_inode->i_uid_high = 0;
4213 raw_inode->i_gid_high = 0;
4214 }
4215 } else {
08cefc7a
EB
4216 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4217 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4218 raw_inode->i_uid_high = 0;
4219 raw_inode->i_gid_high = 0;
4220 }
4221 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4222
4223 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4224 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4225 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4226 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4227
202ee5df
TT
4228 if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4229 spin_unlock(&ei->i_raw_lock);
0fc1b451 4230 goto out_brelse;
202ee5df 4231 }
ac27a0ec 4232 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4233 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4234 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4235 raw_inode->i_file_acl_high =
4236 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4237 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4238 if (ei->i_disksize != ext4_isize(raw_inode)) {
4239 ext4_isize_set(raw_inode, ei->i_disksize);
4240 need_datasync = 1;
4241 }
a48380f7 4242 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4243 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4244 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4245 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4246 cpu_to_le32(EXT4_GOOD_OLD_REV))
4247 set_large_file = 1;
ac27a0ec
DK
4248 }
4249 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4250 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4251 if (old_valid_dev(inode->i_rdev)) {
4252 raw_inode->i_block[0] =
4253 cpu_to_le32(old_encode_dev(inode->i_rdev));
4254 raw_inode->i_block[1] = 0;
4255 } else {
4256 raw_inode->i_block[0] = 0;
4257 raw_inode->i_block[1] =
4258 cpu_to_le32(new_encode_dev(inode->i_rdev));
4259 raw_inode->i_block[2] = 0;
4260 }
f19d5870 4261 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4262 for (block = 0; block < EXT4_N_BLOCKS; block++)
4263 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4264 }
ac27a0ec 4265
ed3654eb 4266 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4267 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4268 if (ei->i_extra_isize) {
4269 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4270 raw_inode->i_version_hi =
4271 cpu_to_le32(inode->i_version >> 32);
4272 raw_inode->i_extra_isize =
4273 cpu_to_le16(ei->i_extra_isize);
4274 }
25ec56b5
JNC
4275 }
4276
814525f4
DW
4277 ext4_inode_csum_set(inode, raw_inode, ei);
4278
202ee5df
TT
4279 spin_unlock(&ei->i_raw_lock);
4280
830156c7 4281 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4282 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4283 if (!err)
4284 err = rc;
19f5fb7a 4285 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4286 if (set_large_file) {
5d601255 4287 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4288 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4289 if (err)
4290 goto out_brelse;
4291 ext4_update_dynamic_rev(sb);
4292 EXT4_SET_RO_COMPAT_FEATURE(sb,
4293 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4294 ext4_handle_sync(handle);
4295 err = ext4_handle_dirty_super(handle, sb);
4296 }
b71fc079 4297 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4298out_brelse:
af5bc92d 4299 brelse(bh);
617ba13b 4300 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4301 return err;
4302}
4303
4304/*
617ba13b 4305 * ext4_write_inode()
ac27a0ec
DK
4306 *
4307 * We are called from a few places:
4308 *
87f7e416 4309 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4310 * Here, there will be no transaction running. We wait for any running
4907cb7b 4311 * transaction to commit.
ac27a0ec 4312 *
87f7e416
TT
4313 * - Within flush work (sys_sync(), kupdate and such).
4314 * We wait on commit, if told to.
ac27a0ec 4315 *
87f7e416
TT
4316 * - Within iput_final() -> write_inode_now()
4317 * We wait on commit, if told to.
ac27a0ec
DK
4318 *
4319 * In all cases it is actually safe for us to return without doing anything,
4320 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4321 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4322 * writeback.
ac27a0ec
DK
4323 *
4324 * Note that we are absolutely dependent upon all inode dirtiers doing the
4325 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4326 * which we are interested.
4327 *
4328 * It would be a bug for them to not do this. The code:
4329 *
4330 * mark_inode_dirty(inode)
4331 * stuff();
4332 * inode->i_size = expr;
4333 *
87f7e416
TT
4334 * is in error because write_inode() could occur while `stuff()' is running,
4335 * and the new i_size will be lost. Plus the inode will no longer be on the
4336 * superblock's dirty inode list.
ac27a0ec 4337 */
a9185b41 4338int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4339{
91ac6f43
FM
4340 int err;
4341
87f7e416 4342 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4343 return 0;
4344
91ac6f43
FM
4345 if (EXT4_SB(inode->i_sb)->s_journal) {
4346 if (ext4_journal_current_handle()) {
4347 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4348 dump_stack();
4349 return -EIO;
4350 }
ac27a0ec 4351
10542c22
JK
4352 /*
4353 * No need to force transaction in WB_SYNC_NONE mode. Also
4354 * ext4_sync_fs() will force the commit after everything is
4355 * written.
4356 */
4357 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4358 return 0;
4359
4360 err = ext4_force_commit(inode->i_sb);
4361 } else {
4362 struct ext4_iloc iloc;
ac27a0ec 4363
8b472d73 4364 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4365 if (err)
4366 return err;
10542c22
JK
4367 /*
4368 * sync(2) will flush the whole buffer cache. No need to do
4369 * it here separately for each inode.
4370 */
4371 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4372 sync_dirty_buffer(iloc.bh);
4373 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4374 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4375 "IO error syncing inode");
830156c7
FM
4376 err = -EIO;
4377 }
fd2dd9fb 4378 brelse(iloc.bh);
91ac6f43
FM
4379 }
4380 return err;
ac27a0ec
DK
4381}
4382
53e87268
JK
4383/*
4384 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4385 * buffers that are attached to a page stradding i_size and are undergoing
4386 * commit. In that case we have to wait for commit to finish and try again.
4387 */
4388static void ext4_wait_for_tail_page_commit(struct inode *inode)
4389{
4390 struct page *page;
4391 unsigned offset;
4392 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4393 tid_t commit_tid = 0;
4394 int ret;
4395
4396 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4397 /*
4398 * All buffers in the last page remain valid? Then there's nothing to
4399 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4400 * blocksize case
4401 */
4402 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4403 return;
4404 while (1) {
4405 page = find_lock_page(inode->i_mapping,
4406 inode->i_size >> PAGE_CACHE_SHIFT);
4407 if (!page)
4408 return;
ca99fdd2
LC
4409 ret = __ext4_journalled_invalidatepage(page, offset,
4410 PAGE_CACHE_SIZE - offset);
53e87268
JK
4411 unlock_page(page);
4412 page_cache_release(page);
4413 if (ret != -EBUSY)
4414 return;
4415 commit_tid = 0;
4416 read_lock(&journal->j_state_lock);
4417 if (journal->j_committing_transaction)
4418 commit_tid = journal->j_committing_transaction->t_tid;
4419 read_unlock(&journal->j_state_lock);
4420 if (commit_tid)
4421 jbd2_log_wait_commit(journal, commit_tid);
4422 }
4423}
4424
ac27a0ec 4425/*
617ba13b 4426 * ext4_setattr()
ac27a0ec
DK
4427 *
4428 * Called from notify_change.
4429 *
4430 * We want to trap VFS attempts to truncate the file as soon as
4431 * possible. In particular, we want to make sure that when the VFS
4432 * shrinks i_size, we put the inode on the orphan list and modify
4433 * i_disksize immediately, so that during the subsequent flushing of
4434 * dirty pages and freeing of disk blocks, we can guarantee that any
4435 * commit will leave the blocks being flushed in an unused state on
4436 * disk. (On recovery, the inode will get truncated and the blocks will
4437 * be freed, so we have a strong guarantee that no future commit will
4438 * leave these blocks visible to the user.)
4439 *
678aaf48
JK
4440 * Another thing we have to assure is that if we are in ordered mode
4441 * and inode is still attached to the committing transaction, we must
4442 * we start writeout of all the dirty pages which are being truncated.
4443 * This way we are sure that all the data written in the previous
4444 * transaction are already on disk (truncate waits for pages under
4445 * writeback).
4446 *
4447 * Called with inode->i_mutex down.
ac27a0ec 4448 */
617ba13b 4449int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4450{
4451 struct inode *inode = dentry->d_inode;
4452 int error, rc = 0;
3d287de3 4453 int orphan = 0;
ac27a0ec
DK
4454 const unsigned int ia_valid = attr->ia_valid;
4455
4456 error = inode_change_ok(inode, attr);
4457 if (error)
4458 return error;
4459
12755627 4460 if (is_quota_modification(inode, attr))
871a2931 4461 dquot_initialize(inode);
08cefc7a
EB
4462 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4463 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4464 handle_t *handle;
4465
4466 /* (user+group)*(old+new) structure, inode write (sb,
4467 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4468 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4469 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4470 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4471 if (IS_ERR(handle)) {
4472 error = PTR_ERR(handle);
4473 goto err_out;
4474 }
b43fa828 4475 error = dquot_transfer(inode, attr);
ac27a0ec 4476 if (error) {
617ba13b 4477 ext4_journal_stop(handle);
ac27a0ec
DK
4478 return error;
4479 }
4480 /* Update corresponding info in inode so that everything is in
4481 * one transaction */
4482 if (attr->ia_valid & ATTR_UID)
4483 inode->i_uid = attr->ia_uid;
4484 if (attr->ia_valid & ATTR_GID)
4485 inode->i_gid = attr->ia_gid;
617ba13b
MC
4486 error = ext4_mark_inode_dirty(handle, inode);
4487 ext4_journal_stop(handle);
ac27a0ec
DK
4488 }
4489
5208386c
JK
4490 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4491 handle_t *handle;
562c72aa 4492
12e9b892 4493 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4495
0c095c7f
TT
4496 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4497 return -EFBIG;
e2b46574 4498 }
dff6efc3
CH
4499
4500 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4501 inode_inc_iversion(inode);
4502
5208386c
JK
4503 if (S_ISREG(inode->i_mode) &&
4504 (attr->ia_size < inode->i_size)) {
4505 if (ext4_should_order_data(inode)) {
4506 error = ext4_begin_ordered_truncate(inode,
678aaf48 4507 attr->ia_size);
5208386c 4508 if (error)
678aaf48 4509 goto err_out;
5208386c
JK
4510 }
4511 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4512 if (IS_ERR(handle)) {
4513 error = PTR_ERR(handle);
4514 goto err_out;
4515 }
4516 if (ext4_handle_valid(handle)) {
4517 error = ext4_orphan_add(handle, inode);
4518 orphan = 1;
4519 }
90e775b7 4520 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4521 EXT4_I(inode)->i_disksize = attr->ia_size;
4522 rc = ext4_mark_inode_dirty(handle, inode);
4523 if (!error)
4524 error = rc;
90e775b7
JK
4525 /*
4526 * We have to update i_size under i_data_sem together
4527 * with i_disksize to avoid races with writeback code
4528 * running ext4_wb_update_i_disksize().
4529 */
4530 if (!error)
4531 i_size_write(inode, attr->ia_size);
4532 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4533 ext4_journal_stop(handle);
4534 if (error) {
4535 ext4_orphan_del(NULL, inode);
678aaf48
JK
4536 goto err_out;
4537 }
90e775b7
JK
4538 } else
4539 i_size_write(inode, attr->ia_size);
53e87268 4540
5208386c
JK
4541 /*
4542 * Blocks are going to be removed from the inode. Wait
4543 * for dio in flight. Temporarily disable
4544 * dioread_nolock to prevent livelock.
4545 */
4546 if (orphan) {
4547 if (!ext4_should_journal_data(inode)) {
4548 ext4_inode_block_unlocked_dio(inode);
4549 inode_dio_wait(inode);
4550 ext4_inode_resume_unlocked_dio(inode);
4551 } else
4552 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4553 }
5208386c
JK
4554 /*
4555 * Truncate pagecache after we've waited for commit
4556 * in data=journal mode to make pages freeable.
4557 */
7caef267 4558 truncate_pagecache(inode, inode->i_size);
072bd7ea 4559 }
5208386c
JK
4560 /*
4561 * We want to call ext4_truncate() even if attr->ia_size ==
4562 * inode->i_size for cases like truncation of fallocated space
4563 */
4564 if (attr->ia_valid & ATTR_SIZE)
4565 ext4_truncate(inode);
ac27a0ec 4566
1025774c
CH
4567 if (!rc) {
4568 setattr_copy(inode, attr);
4569 mark_inode_dirty(inode);
4570 }
4571
4572 /*
4573 * If the call to ext4_truncate failed to get a transaction handle at
4574 * all, we need to clean up the in-core orphan list manually.
4575 */
3d287de3 4576 if (orphan && inode->i_nlink)
617ba13b 4577 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4578
4579 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4580 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4581
4582err_out:
617ba13b 4583 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4584 if (!error)
4585 error = rc;
4586 return error;
4587}
4588
3e3398a0
MC
4589int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4590 struct kstat *stat)
4591{
4592 struct inode *inode;
8af8eecc 4593 unsigned long long delalloc_blocks;
3e3398a0
MC
4594
4595 inode = dentry->d_inode;
4596 generic_fillattr(inode, stat);
4597
9206c561
AD
4598 /*
4599 * If there is inline data in the inode, the inode will normally not
4600 * have data blocks allocated (it may have an external xattr block).
4601 * Report at least one sector for such files, so tools like tar, rsync,
4602 * others doen't incorrectly think the file is completely sparse.
4603 */
4604 if (unlikely(ext4_has_inline_data(inode)))
4605 stat->blocks += (stat->size + 511) >> 9;
4606
3e3398a0
MC
4607 /*
4608 * We can't update i_blocks if the block allocation is delayed
4609 * otherwise in the case of system crash before the real block
4610 * allocation is done, we will have i_blocks inconsistent with
4611 * on-disk file blocks.
4612 * We always keep i_blocks updated together with real
4613 * allocation. But to not confuse with user, stat
4614 * will return the blocks that include the delayed allocation
4615 * blocks for this file.
4616 */
96607551 4617 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4618 EXT4_I(inode)->i_reserved_data_blocks);
4619 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4620 return 0;
4621}
ac27a0ec 4622
fffb2739
JK
4623static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4624 int pextents)
a02908f1 4625{
12e9b892 4626 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4627 return ext4_ind_trans_blocks(inode, lblocks);
4628 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4629}
ac51d837 4630
ac27a0ec 4631/*
a02908f1
MC
4632 * Account for index blocks, block groups bitmaps and block group
4633 * descriptor blocks if modify datablocks and index blocks
4634 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4635 *
a02908f1 4636 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4637 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4638 * they could still across block group boundary.
ac27a0ec 4639 *
a02908f1
MC
4640 * Also account for superblock, inode, quota and xattr blocks
4641 */
fffb2739
JK
4642static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4643 int pextents)
a02908f1 4644{
8df9675f
TT
4645 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4646 int gdpblocks;
a02908f1
MC
4647 int idxblocks;
4648 int ret = 0;
4649
4650 /*
fffb2739
JK
4651 * How many index blocks need to touch to map @lblocks logical blocks
4652 * to @pextents physical extents?
a02908f1 4653 */
fffb2739 4654 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4655
4656 ret = idxblocks;
4657
4658 /*
4659 * Now let's see how many group bitmaps and group descriptors need
4660 * to account
4661 */
fffb2739 4662 groups = idxblocks + pextents;
a02908f1 4663 gdpblocks = groups;
8df9675f
TT
4664 if (groups > ngroups)
4665 groups = ngroups;
a02908f1
MC
4666 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4667 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4668
4669 /* bitmaps and block group descriptor blocks */
4670 ret += groups + gdpblocks;
4671
4672 /* Blocks for super block, inode, quota and xattr blocks */
4673 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4674
4675 return ret;
4676}
4677
4678/*
25985edc 4679 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4680 * the modification of a single pages into a single transaction,
4681 * which may include multiple chunks of block allocations.
ac27a0ec 4682 *
525f4ed8 4683 * This could be called via ext4_write_begin()
ac27a0ec 4684 *
525f4ed8 4685 * We need to consider the worse case, when
a02908f1 4686 * one new block per extent.
ac27a0ec 4687 */
a86c6181 4688int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4689{
617ba13b 4690 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4691 int ret;
4692
fffb2739 4693 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4694
a02908f1 4695 /* Account for data blocks for journalled mode */
617ba13b 4696 if (ext4_should_journal_data(inode))
a02908f1 4697 ret += bpp;
ac27a0ec
DK
4698 return ret;
4699}
f3bd1f3f
MC
4700
4701/*
4702 * Calculate the journal credits for a chunk of data modification.
4703 *
4704 * This is called from DIO, fallocate or whoever calling
79e83036 4705 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4706 *
4707 * journal buffers for data blocks are not included here, as DIO
4708 * and fallocate do no need to journal data buffers.
4709 */
4710int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4711{
4712 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4713}
4714
ac27a0ec 4715/*
617ba13b 4716 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4717 * Give this, we know that the caller already has write access to iloc->bh.
4718 */
617ba13b 4719int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4720 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4721{
4722 int err = 0;
4723
c64db50e 4724 if (IS_I_VERSION(inode))
25ec56b5
JNC
4725 inode_inc_iversion(inode);
4726
ac27a0ec
DK
4727 /* the do_update_inode consumes one bh->b_count */
4728 get_bh(iloc->bh);
4729
dab291af 4730 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4731 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4732 put_bh(iloc->bh);
4733 return err;
4734}
4735
4736/*
4737 * On success, We end up with an outstanding reference count against
4738 * iloc->bh. This _must_ be cleaned up later.
4739 */
4740
4741int
617ba13b
MC
4742ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4743 struct ext4_iloc *iloc)
ac27a0ec 4744{
0390131b
FM
4745 int err;
4746
4747 err = ext4_get_inode_loc(inode, iloc);
4748 if (!err) {
4749 BUFFER_TRACE(iloc->bh, "get_write_access");
4750 err = ext4_journal_get_write_access(handle, iloc->bh);
4751 if (err) {
4752 brelse(iloc->bh);
4753 iloc->bh = NULL;
ac27a0ec
DK
4754 }
4755 }
617ba13b 4756 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4757 return err;
4758}
4759
6dd4ee7c
KS
4760/*
4761 * Expand an inode by new_extra_isize bytes.
4762 * Returns 0 on success or negative error number on failure.
4763 */
1d03ec98
AK
4764static int ext4_expand_extra_isize(struct inode *inode,
4765 unsigned int new_extra_isize,
4766 struct ext4_iloc iloc,
4767 handle_t *handle)
6dd4ee7c
KS
4768{
4769 struct ext4_inode *raw_inode;
4770 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4771
4772 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4773 return 0;
4774
4775 raw_inode = ext4_raw_inode(&iloc);
4776
4777 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4778
4779 /* No extended attributes present */
19f5fb7a
TT
4780 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4781 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4782 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4783 new_extra_isize);
4784 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4785 return 0;
4786 }
4787
4788 /* try to expand with EAs present */
4789 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4790 raw_inode, handle);
4791}
4792
ac27a0ec
DK
4793/*
4794 * What we do here is to mark the in-core inode as clean with respect to inode
4795 * dirtiness (it may still be data-dirty).
4796 * This means that the in-core inode may be reaped by prune_icache
4797 * without having to perform any I/O. This is a very good thing,
4798 * because *any* task may call prune_icache - even ones which
4799 * have a transaction open against a different journal.
4800 *
4801 * Is this cheating? Not really. Sure, we haven't written the
4802 * inode out, but prune_icache isn't a user-visible syncing function.
4803 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4804 * we start and wait on commits.
ac27a0ec 4805 */
617ba13b 4806int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4807{
617ba13b 4808 struct ext4_iloc iloc;
6dd4ee7c
KS
4809 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4810 static unsigned int mnt_count;
4811 int err, ret;
ac27a0ec
DK
4812
4813 might_sleep();
7ff9c073 4814 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4815 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4816 if (ext4_handle_valid(handle) &&
4817 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4818 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4819 /*
4820 * We need extra buffer credits since we may write into EA block
4821 * with this same handle. If journal_extend fails, then it will
4822 * only result in a minor loss of functionality for that inode.
4823 * If this is felt to be critical, then e2fsck should be run to
4824 * force a large enough s_min_extra_isize.
4825 */
4826 if ((jbd2_journal_extend(handle,
4827 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4828 ret = ext4_expand_extra_isize(inode,
4829 sbi->s_want_extra_isize,
4830 iloc, handle);
4831 if (ret) {
19f5fb7a
TT
4832 ext4_set_inode_state(inode,
4833 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4834 if (mnt_count !=
4835 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4836 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4837 "Unable to expand inode %lu. Delete"
4838 " some EAs or run e2fsck.",
4839 inode->i_ino);
c1bddad9
AK
4840 mnt_count =
4841 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4842 }
4843 }
4844 }
4845 }
ac27a0ec 4846 if (!err)
617ba13b 4847 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4848 return err;
4849}
4850
4851/*
617ba13b 4852 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4853 *
4854 * We're really interested in the case where a file is being extended.
4855 * i_size has been changed by generic_commit_write() and we thus need
4856 * to include the updated inode in the current transaction.
4857 *
5dd4056d 4858 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4859 * are allocated to the file.
4860 *
4861 * If the inode is marked synchronous, we don't honour that here - doing
4862 * so would cause a commit on atime updates, which we don't bother doing.
4863 * We handle synchronous inodes at the highest possible level.
4864 */
aa385729 4865void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4866{
ac27a0ec
DK
4867 handle_t *handle;
4868
9924a92a 4869 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4870 if (IS_ERR(handle))
4871 goto out;
f3dc272f 4872
f3dc272f
CW
4873 ext4_mark_inode_dirty(handle, inode);
4874
617ba13b 4875 ext4_journal_stop(handle);
ac27a0ec
DK
4876out:
4877 return;
4878}
4879
4880#if 0
4881/*
4882 * Bind an inode's backing buffer_head into this transaction, to prevent
4883 * it from being flushed to disk early. Unlike
617ba13b 4884 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4885 * returns no iloc structure, so the caller needs to repeat the iloc
4886 * lookup to mark the inode dirty later.
4887 */
617ba13b 4888static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4889{
617ba13b 4890 struct ext4_iloc iloc;
ac27a0ec
DK
4891
4892 int err = 0;
4893 if (handle) {
617ba13b 4894 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4895 if (!err) {
4896 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4897 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4898 if (!err)
0390131b 4899 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4900 NULL,
0390131b 4901 iloc.bh);
ac27a0ec
DK
4902 brelse(iloc.bh);
4903 }
4904 }
617ba13b 4905 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4906 return err;
4907}
4908#endif
4909
617ba13b 4910int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4911{
4912 journal_t *journal;
4913 handle_t *handle;
4914 int err;
4915
4916 /*
4917 * We have to be very careful here: changing a data block's
4918 * journaling status dynamically is dangerous. If we write a
4919 * data block to the journal, change the status and then delete
4920 * that block, we risk forgetting to revoke the old log record
4921 * from the journal and so a subsequent replay can corrupt data.
4922 * So, first we make sure that the journal is empty and that
4923 * nobody is changing anything.
4924 */
4925
617ba13b 4926 journal = EXT4_JOURNAL(inode);
0390131b
FM
4927 if (!journal)
4928 return 0;
d699594d 4929 if (is_journal_aborted(journal))
ac27a0ec 4930 return -EROFS;
2aff57b0
YY
4931 /* We have to allocate physical blocks for delalloc blocks
4932 * before flushing journal. otherwise delalloc blocks can not
4933 * be allocated any more. even more truncate on delalloc blocks
4934 * could trigger BUG by flushing delalloc blocks in journal.
4935 * There is no delalloc block in non-journal data mode.
4936 */
4937 if (val && test_opt(inode->i_sb, DELALLOC)) {
4938 err = ext4_alloc_da_blocks(inode);
4939 if (err < 0)
4940 return err;
4941 }
ac27a0ec 4942
17335dcc
DM
4943 /* Wait for all existing dio workers */
4944 ext4_inode_block_unlocked_dio(inode);
4945 inode_dio_wait(inode);
4946
dab291af 4947 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4948
4949 /*
4950 * OK, there are no updates running now, and all cached data is
4951 * synced to disk. We are now in a completely consistent state
4952 * which doesn't have anything in the journal, and we know that
4953 * no filesystem updates are running, so it is safe to modify
4954 * the inode's in-core data-journaling state flag now.
4955 */
4956
4957 if (val)
12e9b892 4958 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4959 else {
4960 jbd2_journal_flush(journal);
12e9b892 4961 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4962 }
617ba13b 4963 ext4_set_aops(inode);
ac27a0ec 4964
dab291af 4965 jbd2_journal_unlock_updates(journal);
17335dcc 4966 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4967
4968 /* Finally we can mark the inode as dirty. */
4969
9924a92a 4970 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4971 if (IS_ERR(handle))
4972 return PTR_ERR(handle);
4973
617ba13b 4974 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4975 ext4_handle_sync(handle);
617ba13b
MC
4976 ext4_journal_stop(handle);
4977 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4978
4979 return err;
4980}
2e9ee850
AK
4981
4982static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4983{
4984 return !buffer_mapped(bh);
4985}
4986
c2ec175c 4987int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4988{
c2ec175c 4989 struct page *page = vmf->page;
2e9ee850
AK
4990 loff_t size;
4991 unsigned long len;
9ea7df53 4992 int ret;
2e9ee850 4993 struct file *file = vma->vm_file;
496ad9aa 4994 struct inode *inode = file_inode(file);
2e9ee850 4995 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4996 handle_t *handle;
4997 get_block_t *get_block;
4998 int retries = 0;
2e9ee850 4999
8e8ad8a5 5000 sb_start_pagefault(inode->i_sb);
041bbb6d 5001 file_update_time(vma->vm_file);
9ea7df53
JK
5002 /* Delalloc case is easy... */
5003 if (test_opt(inode->i_sb, DELALLOC) &&
5004 !ext4_should_journal_data(inode) &&
5005 !ext4_nonda_switch(inode->i_sb)) {
5006 do {
5007 ret = __block_page_mkwrite(vma, vmf,
5008 ext4_da_get_block_prep);
5009 } while (ret == -ENOSPC &&
5010 ext4_should_retry_alloc(inode->i_sb, &retries));
5011 goto out_ret;
2e9ee850 5012 }
0e499890
DW
5013
5014 lock_page(page);
9ea7df53
JK
5015 size = i_size_read(inode);
5016 /* Page got truncated from under us? */
5017 if (page->mapping != mapping || page_offset(page) > size) {
5018 unlock_page(page);
5019 ret = VM_FAULT_NOPAGE;
5020 goto out;
0e499890 5021 }
2e9ee850
AK
5022
5023 if (page->index == size >> PAGE_CACHE_SHIFT)
5024 len = size & ~PAGE_CACHE_MASK;
5025 else
5026 len = PAGE_CACHE_SIZE;
a827eaff 5027 /*
9ea7df53
JK
5028 * Return if we have all the buffers mapped. This avoids the need to do
5029 * journal_start/journal_stop which can block and take a long time
a827eaff 5030 */
2e9ee850 5031 if (page_has_buffers(page)) {
f19d5870
TM
5032 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5033 0, len, NULL,
5034 ext4_bh_unmapped)) {
9ea7df53 5035 /* Wait so that we don't change page under IO */
1d1d1a76 5036 wait_for_stable_page(page);
9ea7df53
JK
5037 ret = VM_FAULT_LOCKED;
5038 goto out;
a827eaff 5039 }
2e9ee850 5040 }
a827eaff 5041 unlock_page(page);
9ea7df53
JK
5042 /* OK, we need to fill the hole... */
5043 if (ext4_should_dioread_nolock(inode))
5044 get_block = ext4_get_block_write;
5045 else
5046 get_block = ext4_get_block;
5047retry_alloc:
9924a92a
TT
5048 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5049 ext4_writepage_trans_blocks(inode));
9ea7df53 5050 if (IS_ERR(handle)) {
c2ec175c 5051 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5052 goto out;
5053 }
5054 ret = __block_page_mkwrite(vma, vmf, get_block);
5055 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5056 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5057 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5058 unlock_page(page);
5059 ret = VM_FAULT_SIGBUS;
fcbb5515 5060 ext4_journal_stop(handle);
9ea7df53
JK
5061 goto out;
5062 }
5063 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5064 }
5065 ext4_journal_stop(handle);
5066 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5067 goto retry_alloc;
5068out_ret:
5069 ret = block_page_mkwrite_return(ret);
5070out:
8e8ad8a5 5071 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5072 return ret;
5073}