]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
ext4: store EXT4_EXT_MIGRATE in i_state instead of i_flags
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
d2a17637 44#include "ext4_extents.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
678aaf48
JK
50static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52{
7f5aa215
JK
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
678aaf48
JK
57}
58
64769240
AT
59static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
ac27a0ec
DK
61/*
62 * Test whether an inode is a fast symlink.
63 */
617ba13b 64static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 65{
617ba13b 66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
67 (inode->i_sb->s_blocksize >> 9) : 0;
68
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70}
71
72/*
617ba13b 73 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
76 *
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
0390131b 80 *
e6b5d301
CW
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
ac27a0ec 83 */
617ba13b 84int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
de9a55b8 85 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
86{
87 int err;
88
89 might_sleep();
90
91 BUFFER_TRACE(bh, "enter");
92
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
7f4520cc 94 "data mode %x\n",
ac27a0ec
DK
95 bh, is_metadata, inode->i_mode,
96 test_opt(inode->i_sb, DATA_FLAGS));
97
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
101 * data blocks. */
102
617ba13b
MC
103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 105 if (bh) {
dab291af 106 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 107 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
108 }
109 return 0;
110 }
111
112 /*
113 * data!=journal && (is_metadata || should_journal_data(inode))
114 */
617ba13b
MC
115 BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 117 if (err)
46e665e9 118 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
119 "error %d when attempting revoke", err);
120 BUFFER_TRACE(bh, "exit");
121 return err;
122}
123
124/*
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
127 */
128static unsigned long blocks_for_truncate(struct inode *inode)
129{
725d26d3 130 ext4_lblk_t needed;
ac27a0ec
DK
131
132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
617ba13b 137 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
140 if (needed < 2)
141 needed = 2;
142
143 /* But we need to bound the transaction so we don't overflow the
144 * journal. */
617ba13b
MC
145 if (needed > EXT4_MAX_TRANS_DATA)
146 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 147
617ba13b 148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
149}
150
151/*
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
155 *
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
160 */
161static handle_t *start_transaction(struct inode *inode)
162{
163 handle_t *result;
164
617ba13b 165 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
166 if (!IS_ERR(result))
167 return result;
168
617ba13b 169 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
170 return result;
171}
172
173/*
174 * Try to extend this transaction for the purposes of truncation.
175 *
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
178 */
179static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180{
0390131b
FM
181 if (!ext4_handle_valid(handle))
182 return 0;
183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 184 return 0;
617ba13b 185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
186 return 0;
187 return 1;
188}
189
190/*
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
193 * this transaction.
194 */
487caeef
JK
195 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
196 int nblocks)
ac27a0ec 197{
487caeef
JK
198 int ret;
199
200 /*
201 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
202 * moment, get_block can be called only for blocks inside i_size since
203 * page cache has been already dropped and writes are blocked by
204 * i_mutex. So we can safely drop the i_data_sem here.
205 */
0390131b 206 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 207 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
208 up_write(&EXT4_I(inode)->i_data_sem);
209 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
210 down_write(&EXT4_I(inode)->i_data_sem);
211
212 return ret;
ac27a0ec
DK
213}
214
215/*
216 * Called at the last iput() if i_nlink is zero.
217 */
af5bc92d 218void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
219{
220 handle_t *handle;
bc965ab3 221 int err;
ac27a0ec 222
678aaf48
JK
223 if (ext4_should_order_data(inode))
224 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
225 truncate_inode_pages(&inode->i_data, 0);
226
227 if (is_bad_inode(inode))
228 goto no_delete;
229
bc965ab3 230 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 231 if (IS_ERR(handle)) {
bc965ab3 232 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
233 /*
234 * If we're going to skip the normal cleanup, we still need to
235 * make sure that the in-core orphan linked list is properly
236 * cleaned up.
237 */
617ba13b 238 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
239 goto no_delete;
240 }
241
242 if (IS_SYNC(inode))
0390131b 243 ext4_handle_sync(handle);
ac27a0ec 244 inode->i_size = 0;
bc965ab3
TT
245 err = ext4_mark_inode_dirty(handle, inode);
246 if (err) {
247 ext4_warning(inode->i_sb, __func__,
248 "couldn't mark inode dirty (err %d)", err);
249 goto stop_handle;
250 }
ac27a0ec 251 if (inode->i_blocks)
617ba13b 252 ext4_truncate(inode);
bc965ab3
TT
253
254 /*
255 * ext4_ext_truncate() doesn't reserve any slop when it
256 * restarts journal transactions; therefore there may not be
257 * enough credits left in the handle to remove the inode from
258 * the orphan list and set the dtime field.
259 */
0390131b 260 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
261 err = ext4_journal_extend(handle, 3);
262 if (err > 0)
263 err = ext4_journal_restart(handle, 3);
264 if (err != 0) {
265 ext4_warning(inode->i_sb, __func__,
266 "couldn't extend journal (err %d)", err);
267 stop_handle:
268 ext4_journal_stop(handle);
269 goto no_delete;
270 }
271 }
272
ac27a0ec 273 /*
617ba13b 274 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 275 * AKPM: I think this can be inside the above `if'.
617ba13b 276 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 277 * deletion of a non-existent orphan - this is because we don't
617ba13b 278 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
279 * (Well, we could do this if we need to, but heck - it works)
280 */
617ba13b
MC
281 ext4_orphan_del(handle, inode);
282 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
283
284 /*
285 * One subtle ordering requirement: if anything has gone wrong
286 * (transaction abort, IO errors, whatever), then we can still
287 * do these next steps (the fs will already have been marked as
288 * having errors), but we can't free the inode if the mark_dirty
289 * fails.
290 */
617ba13b 291 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
292 /* If that failed, just do the required in-core inode clear. */
293 clear_inode(inode);
294 else
617ba13b
MC
295 ext4_free_inode(handle, inode);
296 ext4_journal_stop(handle);
ac27a0ec
DK
297 return;
298no_delete:
299 clear_inode(inode); /* We must guarantee clearing of inode... */
300}
301
302typedef struct {
303 __le32 *p;
304 __le32 key;
305 struct buffer_head *bh;
306} Indirect;
307
308static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
309{
310 p->key = *(p->p = v);
311 p->bh = bh;
312}
313
ac27a0ec 314/**
617ba13b 315 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
316 * @inode: inode in question (we are only interested in its superblock)
317 * @i_block: block number to be parsed
318 * @offsets: array to store the offsets in
8c55e204
DK
319 * @boundary: set this non-zero if the referred-to block is likely to be
320 * followed (on disk) by an indirect block.
ac27a0ec 321 *
617ba13b 322 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
323 * for UNIX filesystems - tree of pointers anchored in the inode, with
324 * data blocks at leaves and indirect blocks in intermediate nodes.
325 * This function translates the block number into path in that tree -
326 * return value is the path length and @offsets[n] is the offset of
327 * pointer to (n+1)th node in the nth one. If @block is out of range
328 * (negative or too large) warning is printed and zero returned.
329 *
330 * Note: function doesn't find node addresses, so no IO is needed. All
331 * we need to know is the capacity of indirect blocks (taken from the
332 * inode->i_sb).
333 */
334
335/*
336 * Portability note: the last comparison (check that we fit into triple
337 * indirect block) is spelled differently, because otherwise on an
338 * architecture with 32-bit longs and 8Kb pages we might get into trouble
339 * if our filesystem had 8Kb blocks. We might use long long, but that would
340 * kill us on x86. Oh, well, at least the sign propagation does not matter -
341 * i_block would have to be negative in the very beginning, so we would not
342 * get there at all.
343 */
344
617ba13b 345static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
346 ext4_lblk_t i_block,
347 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 348{
617ba13b
MC
349 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
350 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
351 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
352 indirect_blocks = ptrs,
353 double_blocks = (1 << (ptrs_bits * 2));
354 int n = 0;
355 int final = 0;
356
c333e073 357 if (i_block < direct_blocks) {
ac27a0ec
DK
358 offsets[n++] = i_block;
359 final = direct_blocks;
af5bc92d 360 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 361 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
362 offsets[n++] = i_block;
363 final = ptrs;
364 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 365 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
366 offsets[n++] = i_block >> ptrs_bits;
367 offsets[n++] = i_block & (ptrs - 1);
368 final = ptrs;
369 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 370 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
371 offsets[n++] = i_block >> (ptrs_bits * 2);
372 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
373 offsets[n++] = i_block & (ptrs - 1);
374 final = ptrs;
375 } else {
e2b46574 376 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
377 "block %lu > max in inode %lu",
378 i_block + direct_blocks +
379 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
380 }
381 if (boundary)
382 *boundary = final - 1 - (i_block & (ptrs - 1));
383 return n;
384}
385
fe2c8191 386static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
387 __le32 *p, unsigned int max)
388{
f73953c0 389 __le32 *bref = p;
6fd058f7
TT
390 unsigned int blk;
391
fe2c8191 392 while (bref < p+max) {
6fd058f7 393 blk = le32_to_cpu(*bref++);
de9a55b8
TT
394 if (blk &&
395 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 396 blk, 1))) {
fe2c8191 397 ext4_error(inode->i_sb, function,
6fd058f7
TT
398 "invalid block reference %u "
399 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
400 return -EIO;
401 }
402 }
403 return 0;
fe2c8191
TN
404}
405
406
407#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 408 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
409 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
410
411#define ext4_check_inode_blockref(inode) \
de9a55b8 412 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
413 EXT4_NDIR_BLOCKS)
414
ac27a0ec 415/**
617ba13b 416 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
417 * @inode: inode in question
418 * @depth: depth of the chain (1 - direct pointer, etc.)
419 * @offsets: offsets of pointers in inode/indirect blocks
420 * @chain: place to store the result
421 * @err: here we store the error value
422 *
423 * Function fills the array of triples <key, p, bh> and returns %NULL
424 * if everything went OK or the pointer to the last filled triple
425 * (incomplete one) otherwise. Upon the return chain[i].key contains
426 * the number of (i+1)-th block in the chain (as it is stored in memory,
427 * i.e. little-endian 32-bit), chain[i].p contains the address of that
428 * number (it points into struct inode for i==0 and into the bh->b_data
429 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
430 * block for i>0 and NULL for i==0. In other words, it holds the block
431 * numbers of the chain, addresses they were taken from (and where we can
432 * verify that chain did not change) and buffer_heads hosting these
433 * numbers.
434 *
435 * Function stops when it stumbles upon zero pointer (absent block)
436 * (pointer to last triple returned, *@err == 0)
437 * or when it gets an IO error reading an indirect block
438 * (ditto, *@err == -EIO)
ac27a0ec
DK
439 * or when it reads all @depth-1 indirect blocks successfully and finds
440 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
441 *
442 * Need to be called with
0e855ac8 443 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 444 */
725d26d3
AK
445static Indirect *ext4_get_branch(struct inode *inode, int depth,
446 ext4_lblk_t *offsets,
ac27a0ec
DK
447 Indirect chain[4], int *err)
448{
449 struct super_block *sb = inode->i_sb;
450 Indirect *p = chain;
451 struct buffer_head *bh;
452
453 *err = 0;
454 /* i_data is not going away, no lock needed */
af5bc92d 455 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
456 if (!p->key)
457 goto no_block;
458 while (--depth) {
fe2c8191
TN
459 bh = sb_getblk(sb, le32_to_cpu(p->key));
460 if (unlikely(!bh))
ac27a0ec 461 goto failure;
de9a55b8 462
fe2c8191
TN
463 if (!bh_uptodate_or_lock(bh)) {
464 if (bh_submit_read(bh) < 0) {
465 put_bh(bh);
466 goto failure;
467 }
468 /* validate block references */
469 if (ext4_check_indirect_blockref(inode, bh)) {
470 put_bh(bh);
471 goto failure;
472 }
473 }
de9a55b8 474
af5bc92d 475 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
476 /* Reader: end */
477 if (!p->key)
478 goto no_block;
479 }
480 return NULL;
481
ac27a0ec
DK
482failure:
483 *err = -EIO;
484no_block:
485 return p;
486}
487
488/**
617ba13b 489 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
490 * @inode: owner
491 * @ind: descriptor of indirect block.
492 *
1cc8dcf5 493 * This function returns the preferred place for block allocation.
ac27a0ec
DK
494 * It is used when heuristic for sequential allocation fails.
495 * Rules are:
496 * + if there is a block to the left of our position - allocate near it.
497 * + if pointer will live in indirect block - allocate near that block.
498 * + if pointer will live in inode - allocate in the same
499 * cylinder group.
500 *
501 * In the latter case we colour the starting block by the callers PID to
502 * prevent it from clashing with concurrent allocations for a different inode
503 * in the same block group. The PID is used here so that functionally related
504 * files will be close-by on-disk.
505 *
506 * Caller must make sure that @ind is valid and will stay that way.
507 */
617ba13b 508static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 509{
617ba13b 510 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 511 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 512 __le32 *p;
617ba13b 513 ext4_fsblk_t bg_start;
74d3487f 514 ext4_fsblk_t last_block;
617ba13b 515 ext4_grpblk_t colour;
a4912123
TT
516 ext4_group_t block_group;
517 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
518
519 /* Try to find previous block */
520 for (p = ind->p - 1; p >= start; p--) {
521 if (*p)
522 return le32_to_cpu(*p);
523 }
524
525 /* No such thing, so let's try location of indirect block */
526 if (ind->bh)
527 return ind->bh->b_blocknr;
528
529 /*
530 * It is going to be referred to from the inode itself? OK, just put it
531 * into the same cylinder group then.
532 */
a4912123
TT
533 block_group = ei->i_block_group;
534 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
535 block_group &= ~(flex_size-1);
536 if (S_ISREG(inode->i_mode))
537 block_group++;
538 }
539 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
540 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
541
a4912123
TT
542 /*
543 * If we are doing delayed allocation, we don't need take
544 * colour into account.
545 */
546 if (test_opt(inode->i_sb, DELALLOC))
547 return bg_start;
548
74d3487f
VC
549 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
550 colour = (current->pid % 16) *
617ba13b 551 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
552 else
553 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
554 return bg_start + colour;
555}
556
557/**
1cc8dcf5 558 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
559 * @inode: owner
560 * @block: block we want
ac27a0ec 561 * @partial: pointer to the last triple within a chain
ac27a0ec 562 *
1cc8dcf5 563 * Normally this function find the preferred place for block allocation,
fb01bfda 564 * returns it.
fb0a387d
ES
565 * Because this is only used for non-extent files, we limit the block nr
566 * to 32 bits.
ac27a0ec 567 */
725d26d3 568static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 569 Indirect *partial)
ac27a0ec 570{
fb0a387d
ES
571 ext4_fsblk_t goal;
572
ac27a0ec 573 /*
c2ea3fde 574 * XXX need to get goal block from mballoc's data structures
ac27a0ec 575 */
ac27a0ec 576
fb0a387d
ES
577 goal = ext4_find_near(inode, partial);
578 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
579 return goal;
ac27a0ec
DK
580}
581
582/**
617ba13b 583 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
584 * of direct blocks need to be allocated for the given branch.
585 *
586 * @branch: chain of indirect blocks
587 * @k: number of blocks need for indirect blocks
588 * @blks: number of data blocks to be mapped.
589 * @blocks_to_boundary: the offset in the indirect block
590 *
591 * return the total number of blocks to be allocate, including the
592 * direct and indirect blocks.
593 */
498e5f24 594static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 595 int blocks_to_boundary)
ac27a0ec 596{
498e5f24 597 unsigned int count = 0;
ac27a0ec
DK
598
599 /*
600 * Simple case, [t,d]Indirect block(s) has not allocated yet
601 * then it's clear blocks on that path have not allocated
602 */
603 if (k > 0) {
604 /* right now we don't handle cross boundary allocation */
605 if (blks < blocks_to_boundary + 1)
606 count += blks;
607 else
608 count += blocks_to_boundary + 1;
609 return count;
610 }
611
612 count++;
613 while (count < blks && count <= blocks_to_boundary &&
614 le32_to_cpu(*(branch[0].p + count)) == 0) {
615 count++;
616 }
617 return count;
618}
619
620/**
617ba13b 621 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
622 * @indirect_blks: the number of blocks need to allocate for indirect
623 * blocks
624 *
625 * @new_blocks: on return it will store the new block numbers for
626 * the indirect blocks(if needed) and the first direct block,
627 * @blks: on return it will store the total number of allocated
628 * direct blocks
629 */
617ba13b 630static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
631 ext4_lblk_t iblock, ext4_fsblk_t goal,
632 int indirect_blks, int blks,
633 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 634{
815a1130 635 struct ext4_allocation_request ar;
ac27a0ec 636 int target, i;
7061eba7 637 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 638 int index = 0;
617ba13b 639 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
640 int ret = 0;
641
642 /*
643 * Here we try to allocate the requested multiple blocks at once,
644 * on a best-effort basis.
645 * To build a branch, we should allocate blocks for
646 * the indirect blocks(if not allocated yet), and at least
647 * the first direct block of this branch. That's the
648 * minimum number of blocks need to allocate(required)
649 */
7061eba7
AK
650 /* first we try to allocate the indirect blocks */
651 target = indirect_blks;
652 while (target > 0) {
ac27a0ec
DK
653 count = target;
654 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
655 current_block = ext4_new_meta_blocks(handle, inode,
656 goal, &count, err);
ac27a0ec
DK
657 if (*err)
658 goto failed_out;
659
fb0a387d
ES
660 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
661
ac27a0ec
DK
662 target -= count;
663 /* allocate blocks for indirect blocks */
664 while (index < indirect_blks && count) {
665 new_blocks[index++] = current_block++;
666 count--;
667 }
7061eba7
AK
668 if (count > 0) {
669 /*
670 * save the new block number
671 * for the first direct block
672 */
673 new_blocks[index] = current_block;
674 printk(KERN_INFO "%s returned more blocks than "
675 "requested\n", __func__);
676 WARN_ON(1);
ac27a0ec 677 break;
7061eba7 678 }
ac27a0ec
DK
679 }
680
7061eba7
AK
681 target = blks - count ;
682 blk_allocated = count;
683 if (!target)
684 goto allocated;
685 /* Now allocate data blocks */
815a1130
TT
686 memset(&ar, 0, sizeof(ar));
687 ar.inode = inode;
688 ar.goal = goal;
689 ar.len = target;
690 ar.logical = iblock;
691 if (S_ISREG(inode->i_mode))
692 /* enable in-core preallocation only for regular files */
693 ar.flags = EXT4_MB_HINT_DATA;
694
695 current_block = ext4_mb_new_blocks(handle, &ar, err);
fb0a387d 696 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
815a1130 697
7061eba7
AK
698 if (*err && (target == blks)) {
699 /*
700 * if the allocation failed and we didn't allocate
701 * any blocks before
702 */
703 goto failed_out;
704 }
705 if (!*err) {
706 if (target == blks) {
de9a55b8
TT
707 /*
708 * save the new block number
709 * for the first direct block
710 */
7061eba7
AK
711 new_blocks[index] = current_block;
712 }
815a1130 713 blk_allocated += ar.len;
7061eba7
AK
714 }
715allocated:
ac27a0ec 716 /* total number of blocks allocated for direct blocks */
7061eba7 717 ret = blk_allocated;
ac27a0ec
DK
718 *err = 0;
719 return ret;
720failed_out:
af5bc92d 721 for (i = 0; i < index; i++)
c9de560d 722 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
723 return ret;
724}
725
726/**
617ba13b 727 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
728 * @inode: owner
729 * @indirect_blks: number of allocated indirect blocks
730 * @blks: number of allocated direct blocks
731 * @offsets: offsets (in the blocks) to store the pointers to next.
732 * @branch: place to store the chain in.
733 *
734 * This function allocates blocks, zeroes out all but the last one,
735 * links them into chain and (if we are synchronous) writes them to disk.
736 * In other words, it prepares a branch that can be spliced onto the
737 * inode. It stores the information about that chain in the branch[], in
617ba13b 738 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
739 * we had read the existing part of chain and partial points to the last
740 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 741 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
742 * place chain is disconnected - *branch->p is still zero (we did not
743 * set the last link), but branch->key contains the number that should
744 * be placed into *branch->p to fill that gap.
745 *
746 * If allocation fails we free all blocks we've allocated (and forget
747 * their buffer_heads) and return the error value the from failed
617ba13b 748 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
749 * as described above and return 0.
750 */
617ba13b 751static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
752 ext4_lblk_t iblock, int indirect_blks,
753 int *blks, ext4_fsblk_t goal,
754 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
755{
756 int blocksize = inode->i_sb->s_blocksize;
757 int i, n = 0;
758 int err = 0;
759 struct buffer_head *bh;
760 int num;
617ba13b
MC
761 ext4_fsblk_t new_blocks[4];
762 ext4_fsblk_t current_block;
ac27a0ec 763
7061eba7 764 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
765 *blks, new_blocks, &err);
766 if (err)
767 return err;
768
769 branch[0].key = cpu_to_le32(new_blocks[0]);
770 /*
771 * metadata blocks and data blocks are allocated.
772 */
773 for (n = 1; n <= indirect_blks; n++) {
774 /*
775 * Get buffer_head for parent block, zero it out
776 * and set the pointer to new one, then send
777 * parent to disk.
778 */
779 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
780 branch[n].bh = bh;
781 lock_buffer(bh);
782 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 783 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 784 if (err) {
6487a9d3
CW
785 /* Don't brelse(bh) here; it's done in
786 * ext4_journal_forget() below */
ac27a0ec 787 unlock_buffer(bh);
ac27a0ec
DK
788 goto failed;
789 }
790
791 memset(bh->b_data, 0, blocksize);
792 branch[n].p = (__le32 *) bh->b_data + offsets[n];
793 branch[n].key = cpu_to_le32(new_blocks[n]);
794 *branch[n].p = branch[n].key;
af5bc92d 795 if (n == indirect_blks) {
ac27a0ec
DK
796 current_block = new_blocks[n];
797 /*
798 * End of chain, update the last new metablock of
799 * the chain to point to the new allocated
800 * data blocks numbers
801 */
de9a55b8 802 for (i = 1; i < num; i++)
ac27a0ec
DK
803 *(branch[n].p + i) = cpu_to_le32(++current_block);
804 }
805 BUFFER_TRACE(bh, "marking uptodate");
806 set_buffer_uptodate(bh);
807 unlock_buffer(bh);
808
0390131b
FM
809 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
810 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
811 if (err)
812 goto failed;
813 }
814 *blks = num;
815 return err;
816failed:
817 /* Allocation failed, free what we already allocated */
818 for (i = 1; i <= n ; i++) {
dab291af 819 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 820 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 821 }
af5bc92d 822 for (i = 0; i < indirect_blks; i++)
c9de560d 823 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 824
c9de560d 825 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
826
827 return err;
828}
829
830/**
617ba13b 831 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
832 * @inode: owner
833 * @block: (logical) number of block we are adding
834 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 835 * ext4_alloc_branch)
ac27a0ec
DK
836 * @where: location of missing link
837 * @num: number of indirect blocks we are adding
838 * @blks: number of direct blocks we are adding
839 *
840 * This function fills the missing link and does all housekeeping needed in
841 * inode (->i_blocks, etc.). In case of success we end up with the full
842 * chain to new block and return 0.
843 */
617ba13b 844static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
845 ext4_lblk_t block, Indirect *where, int num,
846 int blks)
ac27a0ec
DK
847{
848 int i;
849 int err = 0;
617ba13b 850 ext4_fsblk_t current_block;
ac27a0ec 851
ac27a0ec
DK
852 /*
853 * If we're splicing into a [td]indirect block (as opposed to the
854 * inode) then we need to get write access to the [td]indirect block
855 * before the splice.
856 */
857 if (where->bh) {
858 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 859 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
860 if (err)
861 goto err_out;
862 }
863 /* That's it */
864
865 *where->p = where->key;
866
867 /*
868 * Update the host buffer_head or inode to point to more just allocated
869 * direct blocks blocks
870 */
871 if (num == 0 && blks > 1) {
872 current_block = le32_to_cpu(where->key) + 1;
873 for (i = 1; i < blks; i++)
af5bc92d 874 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
875 }
876
ac27a0ec 877 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
878 /* had we spliced it onto indirect block? */
879 if (where->bh) {
880 /*
881 * If we spliced it onto an indirect block, we haven't
882 * altered the inode. Note however that if it is being spliced
883 * onto an indirect block at the very end of the file (the
884 * file is growing) then we *will* alter the inode to reflect
885 * the new i_size. But that is not done here - it is done in
617ba13b 886 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
887 */
888 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
889 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
890 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
891 if (err)
892 goto err_out;
893 } else {
894 /*
895 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 896 */
41591750 897 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
898 jbd_debug(5, "splicing direct\n");
899 }
900 return err;
901
902err_out:
903 for (i = 1; i <= num; i++) {
dab291af 904 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 905 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
906 ext4_free_blocks(handle, inode,
907 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 908 }
c9de560d 909 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
910
911 return err;
912}
913
914/*
b920c755
TT
915 * The ext4_ind_get_blocks() function handles non-extents inodes
916 * (i.e., using the traditional indirect/double-indirect i_blocks
917 * scheme) for ext4_get_blocks().
918 *
ac27a0ec
DK
919 * Allocation strategy is simple: if we have to allocate something, we will
920 * have to go the whole way to leaf. So let's do it before attaching anything
921 * to tree, set linkage between the newborn blocks, write them if sync is
922 * required, recheck the path, free and repeat if check fails, otherwise
923 * set the last missing link (that will protect us from any truncate-generated
924 * removals - all blocks on the path are immune now) and possibly force the
925 * write on the parent block.
926 * That has a nice additional property: no special recovery from the failed
927 * allocations is needed - we simply release blocks and do not touch anything
928 * reachable from inode.
929 *
930 * `handle' can be NULL if create == 0.
931 *
ac27a0ec
DK
932 * return > 0, # of blocks mapped or allocated.
933 * return = 0, if plain lookup failed.
934 * return < 0, error case.
c278bfec 935 *
b920c755
TT
936 * The ext4_ind_get_blocks() function should be called with
937 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
938 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
939 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
940 * blocks.
ac27a0ec 941 */
e4d996ca 942static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
943 ext4_lblk_t iblock, unsigned int maxblocks,
944 struct buffer_head *bh_result,
945 int flags)
ac27a0ec
DK
946{
947 int err = -EIO;
725d26d3 948 ext4_lblk_t offsets[4];
ac27a0ec
DK
949 Indirect chain[4];
950 Indirect *partial;
617ba13b 951 ext4_fsblk_t goal;
ac27a0ec
DK
952 int indirect_blks;
953 int blocks_to_boundary = 0;
954 int depth;
ac27a0ec 955 int count = 0;
617ba13b 956 ext4_fsblk_t first_block = 0;
ac27a0ec 957
a86c6181 958 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 959 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 960 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 961 &blocks_to_boundary);
ac27a0ec
DK
962
963 if (depth == 0)
964 goto out;
965
617ba13b 966 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
967
968 /* Simplest case - block found, no allocation needed */
969 if (!partial) {
970 first_block = le32_to_cpu(chain[depth - 1].key);
971 clear_buffer_new(bh_result);
972 count++;
973 /*map more blocks*/
974 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 975 ext4_fsblk_t blk;
ac27a0ec 976
ac27a0ec
DK
977 blk = le32_to_cpu(*(chain[depth-1].p + count));
978
979 if (blk == first_block + count)
980 count++;
981 else
982 break;
983 }
c278bfec 984 goto got_it;
ac27a0ec
DK
985 }
986
987 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 988 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
989 goto cleanup;
990
ac27a0ec 991 /*
c2ea3fde 992 * Okay, we need to do block allocation.
ac27a0ec 993 */
fb01bfda 994 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
995
996 /* the number of blocks need to allocate for [d,t]indirect blocks */
997 indirect_blks = (chain + depth) - partial - 1;
998
999 /*
1000 * Next look up the indirect map to count the totoal number of
1001 * direct blocks to allocate for this branch.
1002 */
617ba13b 1003 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
1004 maxblocks, blocks_to_boundary);
1005 /*
617ba13b 1006 * Block out ext4_truncate while we alter the tree
ac27a0ec 1007 */
7061eba7 1008 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
1009 &count, goal,
1010 offsets + (partial - chain), partial);
ac27a0ec
DK
1011
1012 /*
617ba13b 1013 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1014 * on the new chain if there is a failure, but that risks using
1015 * up transaction credits, especially for bitmaps where the
1016 * credits cannot be returned. Can we handle this somehow? We
1017 * may need to return -EAGAIN upwards in the worst case. --sct
1018 */
1019 if (!err)
617ba13b 1020 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8
TT
1021 partial, indirect_blks, count);
1022 else
ac27a0ec
DK
1023 goto cleanup;
1024
1025 set_buffer_new(bh_result);
1026got_it:
1027 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1028 if (count > blocks_to_boundary)
1029 set_buffer_boundary(bh_result);
1030 err = count;
1031 /* Clean up and exit */
1032 partial = chain + depth - 1; /* the whole chain */
1033cleanup:
1034 while (partial > chain) {
1035 BUFFER_TRACE(partial->bh, "call brelse");
1036 brelse(partial->bh);
1037 partial--;
1038 }
1039 BUFFER_TRACE(bh_result, "returned");
1040out:
1041 return err;
1042}
1043
60e58e0f
MC
1044qsize_t ext4_get_reserved_space(struct inode *inode)
1045{
1046 unsigned long long total;
1047
1048 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1049 total = EXT4_I(inode)->i_reserved_data_blocks +
1050 EXT4_I(inode)->i_reserved_meta_blocks;
1051 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1052
1053 return total;
1054}
12219aea
AK
1055/*
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate @blocks for non extent file based file
1058 */
1059static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1060{
1061 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1062 int ind_blks, dind_blks, tind_blks;
1063
1064 /* number of new indirect blocks needed */
1065 ind_blks = (blocks + icap - 1) / icap;
1066
1067 dind_blks = (ind_blks + icap - 1) / icap;
1068
1069 tind_blks = 1;
1070
1071 return ind_blks + dind_blks + tind_blks;
1072}
1073
1074/*
1075 * Calculate the number of metadata blocks need to reserve
1076 * to allocate given number of blocks
1077 */
1078static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1079{
cd213226
MC
1080 if (!blocks)
1081 return 0;
1082
12219aea
AK
1083 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1084 return ext4_ext_calc_metadata_amount(inode, blocks);
1085
1086 return ext4_indirect_calc_metadata_amount(inode, blocks);
1087}
1088
1089static void ext4_da_update_reserve_space(struct inode *inode, int used)
1090{
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 int total, mdb, mdb_free;
1093
1094 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1095 /* recalculate the number of metablocks still need to be reserved */
1096 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1097 mdb = ext4_calc_metadata_amount(inode, total);
1098
1099 /* figure out how many metablocks to release */
1100 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1101 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1102
6bc6e63f
AK
1103 if (mdb_free) {
1104 /* Account for allocated meta_blocks */
1105 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1106
1107 /* update fs dirty blocks counter */
1108 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1109 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1110 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1111 }
12219aea
AK
1112
1113 /* update per-inode reservations */
1114 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1115 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1116 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1117
1118 /*
1119 * free those over-booking quota for metadata blocks
1120 */
60e58e0f
MC
1121 if (mdb_free)
1122 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1123
1124 /*
1125 * If we have done all the pending block allocations and if
1126 * there aren't any writers on the inode, we can discard the
1127 * inode's preallocations.
1128 */
1129 if (!total && (atomic_read(&inode->i_writecount) == 0))
1130 ext4_discard_preallocations(inode);
12219aea
AK
1131}
1132
80e42468
TT
1133static int check_block_validity(struct inode *inode, const char *msg,
1134 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1135{
1136 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
80e42468 1137 ext4_error(inode->i_sb, msg,
6fd058f7
TT
1138 "inode #%lu logical block %llu mapped to %llu "
1139 "(size %d)", inode->i_ino,
1140 (unsigned long long) logical,
1141 (unsigned long long) phys, len);
6fd058f7
TT
1142 return -EIO;
1143 }
1144 return 0;
1145}
1146
f5ab0d1f 1147/*
12b7ac17 1148 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1149 * and returns if the blocks are already mapped.
f5ab0d1f 1150 *
f5ab0d1f
MC
1151 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1152 * and store the allocated blocks in the result buffer head and mark it
1153 * mapped.
1154 *
1155 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1156 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1157 * based files
1158 *
1159 * On success, it returns the number of blocks being mapped or allocate.
1160 * if create==0 and the blocks are pre-allocated and uninitialized block,
1161 * the result buffer head is unmapped. If the create ==1, it will make sure
1162 * the buffer head is mapped.
1163 *
1164 * It returns 0 if plain look up failed (blocks have not been allocated), in
1165 * that casem, buffer head is unmapped
1166 *
1167 * It returns the error in case of allocation failure.
1168 */
12b7ac17
TT
1169int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1170 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1171 int flags)
0e855ac8
AK
1172{
1173 int retval;
f5ab0d1f
MC
1174
1175 clear_buffer_mapped(bh);
2a8964d6 1176 clear_buffer_unwritten(bh);
f5ab0d1f 1177
4df3d265 1178 /*
b920c755
TT
1179 * Try to see if we can get the block without requesting a new
1180 * file system block.
4df3d265
AK
1181 */
1182 down_read((&EXT4_I(inode)->i_data_sem));
1183 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1184 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1185 bh, 0);
0e855ac8 1186 } else {
e4d996ca 1187 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1188 bh, 0);
0e855ac8 1189 }
4df3d265 1190 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1191
6fd058f7 1192 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1193 int ret = check_block_validity(inode, "file system corruption",
1194 block, bh->b_blocknr, retval);
6fd058f7
TT
1195 if (ret != 0)
1196 return ret;
1197 }
1198
f5ab0d1f 1199 /* If it is only a block(s) look up */
c2177057 1200 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1201 return retval;
1202
1203 /*
1204 * Returns if the blocks have already allocated
1205 *
1206 * Note that if blocks have been preallocated
1207 * ext4_ext_get_block() returns th create = 0
1208 * with buffer head unmapped.
1209 */
1210 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1211 return retval;
1212
2a8964d6
AK
1213 /*
1214 * When we call get_blocks without the create flag, the
1215 * BH_Unwritten flag could have gotten set if the blocks
1216 * requested were part of a uninitialized extent. We need to
1217 * clear this flag now that we are committed to convert all or
1218 * part of the uninitialized extent to be an initialized
1219 * extent. This is because we need to avoid the combination
1220 * of BH_Unwritten and BH_Mapped flags being simultaneously
1221 * set on the buffer_head.
1222 */
1223 clear_buffer_unwritten(bh);
1224
4df3d265 1225 /*
f5ab0d1f
MC
1226 * New blocks allocate and/or writing to uninitialized extent
1227 * will possibly result in updating i_data, so we take
1228 * the write lock of i_data_sem, and call get_blocks()
1229 * with create == 1 flag.
4df3d265
AK
1230 */
1231 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1232
1233 /*
1234 * if the caller is from delayed allocation writeout path
1235 * we have already reserved fs blocks for allocation
1236 * let the underlying get_block() function know to
1237 * avoid double accounting
1238 */
c2177057 1239 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1240 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1241 /*
1242 * We need to check for EXT4 here because migrate
1243 * could have changed the inode type in between
1244 */
0e855ac8
AK
1245 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1246 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1247 bh, flags);
0e855ac8 1248 } else {
e4d996ca 1249 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1250 max_blocks, bh, flags);
267e4db9
AK
1251
1252 if (retval > 0 && buffer_new(bh)) {
1253 /*
1254 * We allocated new blocks which will result in
1255 * i_data's format changing. Force the migrate
1256 * to fail by clearing migrate flags
1257 */
1b9c12f4 1258 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
267e4db9 1259 }
0e855ac8 1260 }
d2a17637 1261
2ac3b6e0 1262 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1263 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1264
1265 /*
1266 * Update reserved blocks/metadata blocks after successful
1267 * block allocation which had been deferred till now.
1268 */
1269 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1270 ext4_da_update_reserve_space(inode, retval);
d2a17637 1271
4df3d265 1272 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1273 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1274 int ret = check_block_validity(inode, "file system "
1275 "corruption after allocation",
1276 block, bh->b_blocknr, retval);
6fd058f7
TT
1277 if (ret != 0)
1278 return ret;
1279 }
0e855ac8
AK
1280 return retval;
1281}
1282
f3bd1f3f
MC
1283/* Maximum number of blocks we map for direct IO at once. */
1284#define DIO_MAX_BLOCKS 4096
1285
6873fa0d
ES
1286int ext4_get_block(struct inode *inode, sector_t iblock,
1287 struct buffer_head *bh_result, int create)
ac27a0ec 1288{
3e4fdaf8 1289 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1290 int ret = 0, started = 0;
ac27a0ec 1291 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1292 int dio_credits;
ac27a0ec 1293
7fb5409d
JK
1294 if (create && !handle) {
1295 /* Direct IO write... */
1296 if (max_blocks > DIO_MAX_BLOCKS)
1297 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1298 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1299 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1300 if (IS_ERR(handle)) {
ac27a0ec 1301 ret = PTR_ERR(handle);
7fb5409d 1302 goto out;
ac27a0ec 1303 }
7fb5409d 1304 started = 1;
ac27a0ec
DK
1305 }
1306
12b7ac17 1307 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1308 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1309 if (ret > 0) {
1310 bh_result->b_size = (ret << inode->i_blkbits);
1311 ret = 0;
ac27a0ec 1312 }
7fb5409d
JK
1313 if (started)
1314 ext4_journal_stop(handle);
1315out:
ac27a0ec
DK
1316 return ret;
1317}
1318
1319/*
1320 * `handle' can be NULL if create is zero
1321 */
617ba13b 1322struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1323 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1324{
1325 struct buffer_head dummy;
1326 int fatal = 0, err;
03f5d8bc 1327 int flags = 0;
ac27a0ec
DK
1328
1329 J_ASSERT(handle != NULL || create == 0);
1330
1331 dummy.b_state = 0;
1332 dummy.b_blocknr = -1000;
1333 buffer_trace_init(&dummy.b_history);
c2177057
TT
1334 if (create)
1335 flags |= EXT4_GET_BLOCKS_CREATE;
1336 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1337 /*
c2177057
TT
1338 * ext4_get_blocks() returns number of blocks mapped. 0 in
1339 * case of a HOLE.
ac27a0ec
DK
1340 */
1341 if (err > 0) {
1342 if (err > 1)
1343 WARN_ON(1);
1344 err = 0;
1345 }
1346 *errp = err;
1347 if (!err && buffer_mapped(&dummy)) {
1348 struct buffer_head *bh;
1349 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1350 if (!bh) {
1351 *errp = -EIO;
1352 goto err;
1353 }
1354 if (buffer_new(&dummy)) {
1355 J_ASSERT(create != 0);
ac39849d 1356 J_ASSERT(handle != NULL);
ac27a0ec
DK
1357
1358 /*
1359 * Now that we do not always journal data, we should
1360 * keep in mind whether this should always journal the
1361 * new buffer as metadata. For now, regular file
617ba13b 1362 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1363 * problem.
1364 */
1365 lock_buffer(bh);
1366 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1367 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1368 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1369 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1370 set_buffer_uptodate(bh);
1371 }
1372 unlock_buffer(bh);
0390131b
FM
1373 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1374 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1375 if (!fatal)
1376 fatal = err;
1377 } else {
1378 BUFFER_TRACE(bh, "not a new buffer");
1379 }
1380 if (fatal) {
1381 *errp = fatal;
1382 brelse(bh);
1383 bh = NULL;
1384 }
1385 return bh;
1386 }
1387err:
1388 return NULL;
1389}
1390
617ba13b 1391struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1392 ext4_lblk_t block, int create, int *err)
ac27a0ec 1393{
af5bc92d 1394 struct buffer_head *bh;
ac27a0ec 1395
617ba13b 1396 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1397 if (!bh)
1398 return bh;
1399 if (buffer_uptodate(bh))
1400 return bh;
1401 ll_rw_block(READ_META, 1, &bh);
1402 wait_on_buffer(bh);
1403 if (buffer_uptodate(bh))
1404 return bh;
1405 put_bh(bh);
1406 *err = -EIO;
1407 return NULL;
1408}
1409
af5bc92d
TT
1410static int walk_page_buffers(handle_t *handle,
1411 struct buffer_head *head,
1412 unsigned from,
1413 unsigned to,
1414 int *partial,
1415 int (*fn)(handle_t *handle,
1416 struct buffer_head *bh))
ac27a0ec
DK
1417{
1418 struct buffer_head *bh;
1419 unsigned block_start, block_end;
1420 unsigned blocksize = head->b_size;
1421 int err, ret = 0;
1422 struct buffer_head *next;
1423
af5bc92d
TT
1424 for (bh = head, block_start = 0;
1425 ret == 0 && (bh != head || !block_start);
de9a55b8 1426 block_start = block_end, bh = next) {
ac27a0ec
DK
1427 next = bh->b_this_page;
1428 block_end = block_start + blocksize;
1429 if (block_end <= from || block_start >= to) {
1430 if (partial && !buffer_uptodate(bh))
1431 *partial = 1;
1432 continue;
1433 }
1434 err = (*fn)(handle, bh);
1435 if (!ret)
1436 ret = err;
1437 }
1438 return ret;
1439}
1440
1441/*
1442 * To preserve ordering, it is essential that the hole instantiation and
1443 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1444 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1445 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1446 * prepare_write() is the right place.
1447 *
617ba13b
MC
1448 * Also, this function can nest inside ext4_writepage() ->
1449 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1450 * has generated enough buffer credits to do the whole page. So we won't
1451 * block on the journal in that case, which is good, because the caller may
1452 * be PF_MEMALLOC.
1453 *
617ba13b 1454 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1455 * quota file writes. If we were to commit the transaction while thus
1456 * reentered, there can be a deadlock - we would be holding a quota
1457 * lock, and the commit would never complete if another thread had a
1458 * transaction open and was blocking on the quota lock - a ranking
1459 * violation.
1460 *
dab291af 1461 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1462 * will _not_ run commit under these circumstances because handle->h_ref
1463 * is elevated. We'll still have enough credits for the tiny quotafile
1464 * write.
1465 */
1466static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1467 struct buffer_head *bh)
ac27a0ec
DK
1468{
1469 if (!buffer_mapped(bh) || buffer_freed(bh))
1470 return 0;
617ba13b 1471 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1472}
1473
bfc1af65 1474static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1475 loff_t pos, unsigned len, unsigned flags,
1476 struct page **pagep, void **fsdata)
ac27a0ec 1477{
af5bc92d 1478 struct inode *inode = mapping->host;
1938a150 1479 int ret, needed_blocks;
ac27a0ec
DK
1480 handle_t *handle;
1481 int retries = 0;
af5bc92d 1482 struct page *page;
de9a55b8 1483 pgoff_t index;
af5bc92d 1484 unsigned from, to;
bfc1af65 1485
9bffad1e 1486 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1487 /*
1488 * Reserve one block more for addition to orphan list in case
1489 * we allocate blocks but write fails for some reason
1490 */
1491 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1492 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1493 from = pos & (PAGE_CACHE_SIZE - 1);
1494 to = from + len;
ac27a0ec
DK
1495
1496retry:
af5bc92d
TT
1497 handle = ext4_journal_start(inode, needed_blocks);
1498 if (IS_ERR(handle)) {
1499 ret = PTR_ERR(handle);
1500 goto out;
7479d2b9 1501 }
ac27a0ec 1502
ebd3610b
JK
1503 /* We cannot recurse into the filesystem as the transaction is already
1504 * started */
1505 flags |= AOP_FLAG_NOFS;
1506
54566b2c 1507 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1508 if (!page) {
1509 ext4_journal_stop(handle);
1510 ret = -ENOMEM;
1511 goto out;
1512 }
1513 *pagep = page;
1514
bfc1af65 1515 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1516 ext4_get_block);
bfc1af65
NP
1517
1518 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1519 ret = walk_page_buffers(handle, page_buffers(page),
1520 from, to, NULL, do_journal_get_write_access);
1521 }
bfc1af65
NP
1522
1523 if (ret) {
af5bc92d 1524 unlock_page(page);
af5bc92d 1525 page_cache_release(page);
ae4d5372
AK
1526 /*
1527 * block_write_begin may have instantiated a few blocks
1528 * outside i_size. Trim these off again. Don't need
1529 * i_size_read because we hold i_mutex.
1938a150
AK
1530 *
1531 * Add inode to orphan list in case we crash before
1532 * truncate finishes
ae4d5372 1533 */
ffacfa7a 1534 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1535 ext4_orphan_add(handle, inode);
1536
1537 ext4_journal_stop(handle);
1538 if (pos + len > inode->i_size) {
ffacfa7a 1539 ext4_truncate(inode);
de9a55b8 1540 /*
ffacfa7a 1541 * If truncate failed early the inode might
1938a150
AK
1542 * still be on the orphan list; we need to
1543 * make sure the inode is removed from the
1544 * orphan list in that case.
1545 */
1546 if (inode->i_nlink)
1547 ext4_orphan_del(NULL, inode);
1548 }
bfc1af65
NP
1549 }
1550
617ba13b 1551 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1552 goto retry;
7479d2b9 1553out:
ac27a0ec
DK
1554 return ret;
1555}
1556
bfc1af65
NP
1557/* For write_end() in data=journal mode */
1558static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1559{
1560 if (!buffer_mapped(bh) || buffer_freed(bh))
1561 return 0;
1562 set_buffer_uptodate(bh);
0390131b 1563 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1564}
1565
f8514083 1566static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1567 struct address_space *mapping,
1568 loff_t pos, unsigned len, unsigned copied,
1569 struct page *page, void *fsdata)
f8514083
AK
1570{
1571 int i_size_changed = 0;
1572 struct inode *inode = mapping->host;
1573 handle_t *handle = ext4_journal_current_handle();
1574
1575 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1576
1577 /*
1578 * No need to use i_size_read() here, the i_size
1579 * cannot change under us because we hold i_mutex.
1580 *
1581 * But it's important to update i_size while still holding page lock:
1582 * page writeout could otherwise come in and zero beyond i_size.
1583 */
1584 if (pos + copied > inode->i_size) {
1585 i_size_write(inode, pos + copied);
1586 i_size_changed = 1;
1587 }
1588
1589 if (pos + copied > EXT4_I(inode)->i_disksize) {
1590 /* We need to mark inode dirty even if
1591 * new_i_size is less that inode->i_size
1592 * bu greater than i_disksize.(hint delalloc)
1593 */
1594 ext4_update_i_disksize(inode, (pos + copied));
1595 i_size_changed = 1;
1596 }
1597 unlock_page(page);
1598 page_cache_release(page);
1599
1600 /*
1601 * Don't mark the inode dirty under page lock. First, it unnecessarily
1602 * makes the holding time of page lock longer. Second, it forces lock
1603 * ordering of page lock and transaction start for journaling
1604 * filesystems.
1605 */
1606 if (i_size_changed)
1607 ext4_mark_inode_dirty(handle, inode);
1608
1609 return copied;
1610}
1611
ac27a0ec
DK
1612/*
1613 * We need to pick up the new inode size which generic_commit_write gave us
1614 * `file' can be NULL - eg, when called from page_symlink().
1615 *
617ba13b 1616 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1617 * buffers are managed internally.
1618 */
bfc1af65 1619static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1620 struct address_space *mapping,
1621 loff_t pos, unsigned len, unsigned copied,
1622 struct page *page, void *fsdata)
ac27a0ec 1623{
617ba13b 1624 handle_t *handle = ext4_journal_current_handle();
cf108bca 1625 struct inode *inode = mapping->host;
ac27a0ec
DK
1626 int ret = 0, ret2;
1627
9bffad1e 1628 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1629 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1630
1631 if (ret == 0) {
f8514083 1632 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1633 page, fsdata);
f8a87d89 1634 copied = ret2;
ffacfa7a 1635 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1636 /* if we have allocated more blocks and copied
1637 * less. We will have blocks allocated outside
1638 * inode->i_size. So truncate them
1639 */
1640 ext4_orphan_add(handle, inode);
f8a87d89
RK
1641 if (ret2 < 0)
1642 ret = ret2;
ac27a0ec 1643 }
617ba13b 1644 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1645 if (!ret)
1646 ret = ret2;
bfc1af65 1647
f8514083 1648 if (pos + len > inode->i_size) {
ffacfa7a 1649 ext4_truncate(inode);
de9a55b8 1650 /*
ffacfa7a 1651 * If truncate failed early the inode might still be
f8514083
AK
1652 * on the orphan list; we need to make sure the inode
1653 * is removed from the orphan list in that case.
1654 */
1655 if (inode->i_nlink)
1656 ext4_orphan_del(NULL, inode);
1657 }
1658
1659
bfc1af65 1660 return ret ? ret : copied;
ac27a0ec
DK
1661}
1662
bfc1af65 1663static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1664 struct address_space *mapping,
1665 loff_t pos, unsigned len, unsigned copied,
1666 struct page *page, void *fsdata)
ac27a0ec 1667{
617ba13b 1668 handle_t *handle = ext4_journal_current_handle();
cf108bca 1669 struct inode *inode = mapping->host;
ac27a0ec 1670 int ret = 0, ret2;
ac27a0ec 1671
9bffad1e 1672 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1673 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1674 page, fsdata);
f8a87d89 1675 copied = ret2;
ffacfa7a 1676 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1677 /* if we have allocated more blocks and copied
1678 * less. We will have blocks allocated outside
1679 * inode->i_size. So truncate them
1680 */
1681 ext4_orphan_add(handle, inode);
1682
f8a87d89
RK
1683 if (ret2 < 0)
1684 ret = ret2;
ac27a0ec 1685
617ba13b 1686 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1687 if (!ret)
1688 ret = ret2;
bfc1af65 1689
f8514083 1690 if (pos + len > inode->i_size) {
ffacfa7a 1691 ext4_truncate(inode);
de9a55b8 1692 /*
ffacfa7a 1693 * If truncate failed early the inode might still be
f8514083
AK
1694 * on the orphan list; we need to make sure the inode
1695 * is removed from the orphan list in that case.
1696 */
1697 if (inode->i_nlink)
1698 ext4_orphan_del(NULL, inode);
1699 }
1700
bfc1af65 1701 return ret ? ret : copied;
ac27a0ec
DK
1702}
1703
bfc1af65 1704static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1705 struct address_space *mapping,
1706 loff_t pos, unsigned len, unsigned copied,
1707 struct page *page, void *fsdata)
ac27a0ec 1708{
617ba13b 1709 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1710 struct inode *inode = mapping->host;
ac27a0ec
DK
1711 int ret = 0, ret2;
1712 int partial = 0;
bfc1af65 1713 unsigned from, to;
cf17fea6 1714 loff_t new_i_size;
ac27a0ec 1715
9bffad1e 1716 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1717 from = pos & (PAGE_CACHE_SIZE - 1);
1718 to = from + len;
1719
1720 if (copied < len) {
1721 if (!PageUptodate(page))
1722 copied = 0;
1723 page_zero_new_buffers(page, from+copied, to);
1724 }
ac27a0ec
DK
1725
1726 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1727 to, &partial, write_end_fn);
ac27a0ec
DK
1728 if (!partial)
1729 SetPageUptodate(page);
cf17fea6
AK
1730 new_i_size = pos + copied;
1731 if (new_i_size > inode->i_size)
bfc1af65 1732 i_size_write(inode, pos+copied);
617ba13b 1733 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1734 if (new_i_size > EXT4_I(inode)->i_disksize) {
1735 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1736 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1737 if (!ret)
1738 ret = ret2;
1739 }
bfc1af65 1740
cf108bca 1741 unlock_page(page);
f8514083 1742 page_cache_release(page);
ffacfa7a 1743 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1744 /* if we have allocated more blocks and copied
1745 * less. We will have blocks allocated outside
1746 * inode->i_size. So truncate them
1747 */
1748 ext4_orphan_add(handle, inode);
1749
617ba13b 1750 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1751 if (!ret)
1752 ret = ret2;
f8514083 1753 if (pos + len > inode->i_size) {
ffacfa7a 1754 ext4_truncate(inode);
de9a55b8 1755 /*
ffacfa7a 1756 * If truncate failed early the inode might still be
f8514083
AK
1757 * on the orphan list; we need to make sure the inode
1758 * is removed from the orphan list in that case.
1759 */
1760 if (inode->i_nlink)
1761 ext4_orphan_del(NULL, inode);
1762 }
bfc1af65
NP
1763
1764 return ret ? ret : copied;
ac27a0ec 1765}
d2a17637
MC
1766
1767static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1768{
030ba6bc 1769 int retries = 0;
60e58e0f
MC
1770 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1771 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1772
1773 /*
1774 * recalculate the amount of metadata blocks to reserve
1775 * in order to allocate nrblocks
1776 * worse case is one extent per block
1777 */
030ba6bc 1778repeat:
d2a17637
MC
1779 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1780 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1781 mdblocks = ext4_calc_metadata_amount(inode, total);
1782 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1783
1784 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1785 total = md_needed + nrblocks;
1786
60e58e0f
MC
1787 /*
1788 * Make quota reservation here to prevent quota overflow
1789 * later. Real quota accounting is done at pages writeout
1790 * time.
1791 */
1792 if (vfs_dq_reserve_block(inode, total)) {
1793 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1794 return -EDQUOT;
1795 }
1796
a30d542a 1797 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1798 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1799 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1800 yield();
1801 goto repeat;
1802 }
60e58e0f 1803 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1804 return -ENOSPC;
1805 }
d2a17637
MC
1806 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1807 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1808
1809 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1810 return 0; /* success */
1811}
1812
12219aea 1813static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1814{
1815 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1816 int total, mdb, mdb_free, release;
1817
cd213226
MC
1818 if (!to_free)
1819 return; /* Nothing to release, exit */
1820
d2a17637 1821 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1822
1823 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1824 /*
1825 * if there is no reserved blocks, but we try to free some
1826 * then the counter is messed up somewhere.
1827 * but since this function is called from invalidate
1828 * page, it's harmless to return without any action
1829 */
1830 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1831 "blocks for inode %lu, but there is no reserved "
1832 "data blocks\n", to_free, inode->i_ino);
1833 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1834 return;
1835 }
1836
d2a17637 1837 /* recalculate the number of metablocks still need to be reserved */
12219aea 1838 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1839 mdb = ext4_calc_metadata_amount(inode, total);
1840
1841 /* figure out how many metablocks to release */
1842 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1843 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1844
d2a17637
MC
1845 release = to_free + mdb_free;
1846
6bc6e63f
AK
1847 /* update fs dirty blocks counter for truncate case */
1848 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1849
1850 /* update per-inode reservations */
12219aea
AK
1851 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1852 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1853
1854 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1855 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1856 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1857
1858 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1859}
1860
1861static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1862 unsigned long offset)
d2a17637
MC
1863{
1864 int to_release = 0;
1865 struct buffer_head *head, *bh;
1866 unsigned int curr_off = 0;
1867
1868 head = page_buffers(page);
1869 bh = head;
1870 do {
1871 unsigned int next_off = curr_off + bh->b_size;
1872
1873 if ((offset <= curr_off) && (buffer_delay(bh))) {
1874 to_release++;
1875 clear_buffer_delay(bh);
1876 }
1877 curr_off = next_off;
1878 } while ((bh = bh->b_this_page) != head);
12219aea 1879 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1880}
ac27a0ec 1881
64769240
AT
1882/*
1883 * Delayed allocation stuff
1884 */
1885
64769240
AT
1886/*
1887 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1888 * them with writepage() call back
64769240
AT
1889 *
1890 * @mpd->inode: inode
1891 * @mpd->first_page: first page of the extent
1892 * @mpd->next_page: page after the last page of the extent
64769240
AT
1893 *
1894 * By the time mpage_da_submit_io() is called we expect all blocks
1895 * to be allocated. this may be wrong if allocation failed.
1896 *
1897 * As pages are already locked by write_cache_pages(), we can't use it
1898 */
1899static int mpage_da_submit_io(struct mpage_da_data *mpd)
1900{
22208ded 1901 long pages_skipped;
791b7f08
AK
1902 struct pagevec pvec;
1903 unsigned long index, end;
1904 int ret = 0, err, nr_pages, i;
1905 struct inode *inode = mpd->inode;
1906 struct address_space *mapping = inode->i_mapping;
64769240
AT
1907
1908 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1909 /*
1910 * We need to start from the first_page to the next_page - 1
1911 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1912 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1913 * at the currently mapped buffer_heads.
1914 */
64769240
AT
1915 index = mpd->first_page;
1916 end = mpd->next_page - 1;
1917
791b7f08 1918 pagevec_init(&pvec, 0);
64769240 1919 while (index <= end) {
791b7f08 1920 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1921 if (nr_pages == 0)
1922 break;
1923 for (i = 0; i < nr_pages; i++) {
1924 struct page *page = pvec.pages[i];
1925
791b7f08
AK
1926 index = page->index;
1927 if (index > end)
1928 break;
1929 index++;
1930
1931 BUG_ON(!PageLocked(page));
1932 BUG_ON(PageWriteback(page));
1933
22208ded 1934 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1935 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1936 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1937 /*
1938 * have successfully written the page
1939 * without skipping the same
1940 */
a1d6cc56 1941 mpd->pages_written++;
64769240
AT
1942 /*
1943 * In error case, we have to continue because
1944 * remaining pages are still locked
1945 * XXX: unlock and re-dirty them?
1946 */
1947 if (ret == 0)
1948 ret = err;
1949 }
1950 pagevec_release(&pvec);
1951 }
64769240
AT
1952 return ret;
1953}
1954
1955/*
1956 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1957 *
1958 * @mpd->inode - inode to walk through
1959 * @exbh->b_blocknr - first block on a disk
1960 * @exbh->b_size - amount of space in bytes
1961 * @logical - first logical block to start assignment with
1962 *
1963 * the function goes through all passed space and put actual disk
29fa89d0 1964 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1965 */
1966static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1967 struct buffer_head *exbh)
1968{
1969 struct inode *inode = mpd->inode;
1970 struct address_space *mapping = inode->i_mapping;
1971 int blocks = exbh->b_size >> inode->i_blkbits;
1972 sector_t pblock = exbh->b_blocknr, cur_logical;
1973 struct buffer_head *head, *bh;
a1d6cc56 1974 pgoff_t index, end;
64769240
AT
1975 struct pagevec pvec;
1976 int nr_pages, i;
1977
1978 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1979 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1980 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1981
1982 pagevec_init(&pvec, 0);
1983
1984 while (index <= end) {
1985 /* XXX: optimize tail */
1986 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1987 if (nr_pages == 0)
1988 break;
1989 for (i = 0; i < nr_pages; i++) {
1990 struct page *page = pvec.pages[i];
1991
1992 index = page->index;
1993 if (index > end)
1994 break;
1995 index++;
1996
1997 BUG_ON(!PageLocked(page));
1998 BUG_ON(PageWriteback(page));
1999 BUG_ON(!page_has_buffers(page));
2000
2001 bh = page_buffers(page);
2002 head = bh;
2003
2004 /* skip blocks out of the range */
2005 do {
2006 if (cur_logical >= logical)
2007 break;
2008 cur_logical++;
2009 } while ((bh = bh->b_this_page) != head);
2010
2011 do {
2012 if (cur_logical >= logical + blocks)
2013 break;
29fa89d0
AK
2014
2015 if (buffer_delay(bh) ||
2016 buffer_unwritten(bh)) {
2017
2018 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2019
2020 if (buffer_delay(bh)) {
2021 clear_buffer_delay(bh);
2022 bh->b_blocknr = pblock;
2023 } else {
2024 /*
2025 * unwritten already should have
2026 * blocknr assigned. Verify that
2027 */
2028 clear_buffer_unwritten(bh);
2029 BUG_ON(bh->b_blocknr != pblock);
2030 }
2031
61628a3f 2032 } else if (buffer_mapped(bh))
64769240 2033 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2034
2035 cur_logical++;
2036 pblock++;
2037 } while ((bh = bh->b_this_page) != head);
2038 }
2039 pagevec_release(&pvec);
2040 }
2041}
2042
2043
2044/*
2045 * __unmap_underlying_blocks - just a helper function to unmap
2046 * set of blocks described by @bh
2047 */
2048static inline void __unmap_underlying_blocks(struct inode *inode,
2049 struct buffer_head *bh)
2050{
2051 struct block_device *bdev = inode->i_sb->s_bdev;
2052 int blocks, i;
2053
2054 blocks = bh->b_size >> inode->i_blkbits;
2055 for (i = 0; i < blocks; i++)
2056 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2057}
2058
c4a0c46e
AK
2059static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2060 sector_t logical, long blk_cnt)
2061{
2062 int nr_pages, i;
2063 pgoff_t index, end;
2064 struct pagevec pvec;
2065 struct inode *inode = mpd->inode;
2066 struct address_space *mapping = inode->i_mapping;
2067
2068 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069 end = (logical + blk_cnt - 1) >>
2070 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2071 while (index <= end) {
2072 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2073 if (nr_pages == 0)
2074 break;
2075 for (i = 0; i < nr_pages; i++) {
2076 struct page *page = pvec.pages[i];
2077 index = page->index;
2078 if (index > end)
2079 break;
2080 index++;
2081
2082 BUG_ON(!PageLocked(page));
2083 BUG_ON(PageWriteback(page));
2084 block_invalidatepage(page, 0);
2085 ClearPageUptodate(page);
2086 unlock_page(page);
2087 }
2088 }
2089 return;
2090}
2091
df22291f
AK
2092static void ext4_print_free_blocks(struct inode *inode)
2093{
2094 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2095 printk(KERN_EMERG "Total free blocks count %lld\n",
2096 ext4_count_free_blocks(inode->i_sb));
2097 printk(KERN_EMERG "Free/Dirty block details\n");
2098 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 2099 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 2100 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 2101 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2102 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2103 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2104 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2105 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2106 EXT4_I(inode)->i_reserved_meta_blocks);
2107 return;
2108}
2109
64769240
AT
2110/*
2111 * mpage_da_map_blocks - go through given space
2112 *
8dc207c0 2113 * @mpd - bh describing space
64769240
AT
2114 *
2115 * The function skips space we know is already mapped to disk blocks.
2116 *
64769240 2117 */
ed5bde0b 2118static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2119{
2ac3b6e0 2120 int err, blks, get_blocks_flags;
030ba6bc 2121 struct buffer_head new;
2fa3cdfb
TT
2122 sector_t next = mpd->b_blocknr;
2123 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2124 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2125 handle_t *handle = NULL;
64769240
AT
2126
2127 /*
2128 * We consider only non-mapped and non-allocated blocks
2129 */
8dc207c0 2130 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2131 !(mpd->b_state & (1 << BH_Delay)) &&
2132 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2133 return 0;
2fa3cdfb
TT
2134
2135 /*
2136 * If we didn't accumulate anything to write simply return
2137 */
2138 if (!mpd->b_size)
2139 return 0;
2140
2141 handle = ext4_journal_current_handle();
2142 BUG_ON(!handle);
2143
79ffab34 2144 /*
2ac3b6e0
TT
2145 * Call ext4_get_blocks() to allocate any delayed allocation
2146 * blocks, or to convert an uninitialized extent to be
2147 * initialized (in the case where we have written into
2148 * one or more preallocated blocks).
2149 *
2150 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2151 * indicate that we are on the delayed allocation path. This
2152 * affects functions in many different parts of the allocation
2153 * call path. This flag exists primarily because we don't
2154 * want to change *many* call functions, so ext4_get_blocks()
2155 * will set the magic i_delalloc_reserved_flag once the
2156 * inode's allocation semaphore is taken.
2157 *
2158 * If the blocks in questions were delalloc blocks, set
2159 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2160 * variables are updated after the blocks have been allocated.
79ffab34 2161 */
2ac3b6e0
TT
2162 new.b_state = 0;
2163 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2164 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2165 if (mpd->b_state & (1 << BH_Delay))
2166 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2167 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2168 &new, get_blocks_flags);
2fa3cdfb
TT
2169 if (blks < 0) {
2170 err = blks;
ed5bde0b
TT
2171 /*
2172 * If get block returns with error we simply
2173 * return. Later writepage will redirty the page and
2174 * writepages will find the dirty page again
c4a0c46e
AK
2175 */
2176 if (err == -EAGAIN)
2177 return 0;
df22291f
AK
2178
2179 if (err == -ENOSPC &&
ed5bde0b 2180 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2181 mpd->retval = err;
2182 return 0;
2183 }
2184
c4a0c46e 2185 /*
ed5bde0b
TT
2186 * get block failure will cause us to loop in
2187 * writepages, because a_ops->writepage won't be able
2188 * to make progress. The page will be redirtied by
2189 * writepage and writepages will again try to write
2190 * the same.
c4a0c46e
AK
2191 */
2192 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2193 "at logical offset %llu with max blocks "
2194 "%zd with error %d\n",
2195 __func__, mpd->inode->i_ino,
2196 (unsigned long long)next,
8dc207c0 2197 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2198 printk(KERN_EMERG "This should not happen.!! "
2199 "Data will be lost\n");
030ba6bc 2200 if (err == -ENOSPC) {
df22291f 2201 ext4_print_free_blocks(mpd->inode);
030ba6bc 2202 }
2fa3cdfb 2203 /* invalidate all the pages */
c4a0c46e 2204 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2205 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2206 return err;
2207 }
2fa3cdfb
TT
2208 BUG_ON(blks == 0);
2209
2210 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2211
a1d6cc56
AK
2212 if (buffer_new(&new))
2213 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2214
a1d6cc56
AK
2215 /*
2216 * If blocks are delayed marked, we need to
2217 * put actual blocknr and drop delayed bit
2218 */
8dc207c0
TT
2219 if ((mpd->b_state & (1 << BH_Delay)) ||
2220 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2221 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2222
2fa3cdfb
TT
2223 if (ext4_should_order_data(mpd->inode)) {
2224 err = ext4_jbd2_file_inode(handle, mpd->inode);
2225 if (err)
2226 return err;
2227 }
2228
2229 /*
03f5d8bc 2230 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2231 */
2232 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2233 if (disksize > i_size_read(mpd->inode))
2234 disksize = i_size_read(mpd->inode);
2235 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2236 ext4_update_i_disksize(mpd->inode, disksize);
2237 return ext4_mark_inode_dirty(handle, mpd->inode);
2238 }
2239
c4a0c46e 2240 return 0;
64769240
AT
2241}
2242
bf068ee2
AK
2243#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2244 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2245
2246/*
2247 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2248 *
2249 * @mpd->lbh - extent of blocks
2250 * @logical - logical number of the block in the file
2251 * @bh - bh of the block (used to access block's state)
2252 *
2253 * the function is used to collect contig. blocks in same state
2254 */
2255static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2256 sector_t logical, size_t b_size,
2257 unsigned long b_state)
64769240 2258{
64769240 2259 sector_t next;
8dc207c0 2260 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2261
525f4ed8
MC
2262 /* check if thereserved journal credits might overflow */
2263 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2264 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2265 /*
2266 * With non-extent format we are limited by the journal
2267 * credit available. Total credit needed to insert
2268 * nrblocks contiguous blocks is dependent on the
2269 * nrblocks. So limit nrblocks.
2270 */
2271 goto flush_it;
2272 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2273 EXT4_MAX_TRANS_DATA) {
2274 /*
2275 * Adding the new buffer_head would make it cross the
2276 * allowed limit for which we have journal credit
2277 * reserved. So limit the new bh->b_size
2278 */
2279 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2280 mpd->inode->i_blkbits;
2281 /* we will do mpage_da_submit_io in the next loop */
2282 }
2283 }
64769240
AT
2284 /*
2285 * First block in the extent
2286 */
8dc207c0
TT
2287 if (mpd->b_size == 0) {
2288 mpd->b_blocknr = logical;
2289 mpd->b_size = b_size;
2290 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2291 return;
2292 }
2293
8dc207c0 2294 next = mpd->b_blocknr + nrblocks;
64769240
AT
2295 /*
2296 * Can we merge the block to our big extent?
2297 */
8dc207c0
TT
2298 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2299 mpd->b_size += b_size;
64769240
AT
2300 return;
2301 }
2302
525f4ed8 2303flush_it:
64769240
AT
2304 /*
2305 * We couldn't merge the block to our extent, so we
2306 * need to flush current extent and start new one
2307 */
c4a0c46e
AK
2308 if (mpage_da_map_blocks(mpd) == 0)
2309 mpage_da_submit_io(mpd);
a1d6cc56
AK
2310 mpd->io_done = 1;
2311 return;
64769240
AT
2312}
2313
c364b22c 2314static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2315{
c364b22c 2316 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2317}
2318
64769240
AT
2319/*
2320 * __mpage_da_writepage - finds extent of pages and blocks
2321 *
2322 * @page: page to consider
2323 * @wbc: not used, we just follow rules
2324 * @data: context
2325 *
2326 * The function finds extents of pages and scan them for all blocks.
2327 */
2328static int __mpage_da_writepage(struct page *page,
2329 struct writeback_control *wbc, void *data)
2330{
2331 struct mpage_da_data *mpd = data;
2332 struct inode *inode = mpd->inode;
8dc207c0 2333 struct buffer_head *bh, *head;
64769240
AT
2334 sector_t logical;
2335
a1d6cc56
AK
2336 if (mpd->io_done) {
2337 /*
2338 * Rest of the page in the page_vec
2339 * redirty then and skip then. We will
2340 * try to to write them again after
2341 * starting a new transaction
2342 */
2343 redirty_page_for_writepage(wbc, page);
2344 unlock_page(page);
2345 return MPAGE_DA_EXTENT_TAIL;
2346 }
64769240
AT
2347 /*
2348 * Can we merge this page to current extent?
2349 */
2350 if (mpd->next_page != page->index) {
2351 /*
2352 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2353 * and start IO on them using writepage()
64769240
AT
2354 */
2355 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2356 if (mpage_da_map_blocks(mpd) == 0)
2357 mpage_da_submit_io(mpd);
a1d6cc56
AK
2358 /*
2359 * skip rest of the page in the page_vec
2360 */
2361 mpd->io_done = 1;
2362 redirty_page_for_writepage(wbc, page);
2363 unlock_page(page);
2364 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2365 }
2366
2367 /*
2368 * Start next extent of pages ...
2369 */
2370 mpd->first_page = page->index;
2371
2372 /*
2373 * ... and blocks
2374 */
8dc207c0
TT
2375 mpd->b_size = 0;
2376 mpd->b_state = 0;
2377 mpd->b_blocknr = 0;
64769240
AT
2378 }
2379
2380 mpd->next_page = page->index + 1;
2381 logical = (sector_t) page->index <<
2382 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2383
2384 if (!page_has_buffers(page)) {
8dc207c0
TT
2385 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2386 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2387 if (mpd->io_done)
2388 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2389 } else {
2390 /*
2391 * Page with regular buffer heads, just add all dirty ones
2392 */
2393 head = page_buffers(page);
2394 bh = head;
2395 do {
2396 BUG_ON(buffer_locked(bh));
791b7f08
AK
2397 /*
2398 * We need to try to allocate
2399 * unmapped blocks in the same page.
2400 * Otherwise we won't make progress
43ce1d23 2401 * with the page in ext4_writepage
791b7f08 2402 */
c364b22c 2403 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2404 mpage_add_bh_to_extent(mpd, logical,
2405 bh->b_size,
2406 bh->b_state);
a1d6cc56
AK
2407 if (mpd->io_done)
2408 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2409 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2410 /*
2411 * mapped dirty buffer. We need to update
2412 * the b_state because we look at
2413 * b_state in mpage_da_map_blocks. We don't
2414 * update b_size because if we find an
2415 * unmapped buffer_head later we need to
2416 * use the b_state flag of that buffer_head.
2417 */
8dc207c0
TT
2418 if (mpd->b_size == 0)
2419 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2420 }
64769240
AT
2421 logical++;
2422 } while ((bh = bh->b_this_page) != head);
2423 }
2424
2425 return 0;
2426}
2427
64769240 2428/*
b920c755
TT
2429 * This is a special get_blocks_t callback which is used by
2430 * ext4_da_write_begin(). It will either return mapped block or
2431 * reserve space for a single block.
29fa89d0
AK
2432 *
2433 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2434 * We also have b_blocknr = -1 and b_bdev initialized properly
2435 *
2436 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2437 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2438 * initialized properly.
64769240
AT
2439 */
2440static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2441 struct buffer_head *bh_result, int create)
2442{
2443 int ret = 0;
33b9817e
AK
2444 sector_t invalid_block = ~((sector_t) 0xffff);
2445
2446 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2447 invalid_block = ~0;
64769240
AT
2448
2449 BUG_ON(create == 0);
2450 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2451
2452 /*
2453 * first, we need to know whether the block is allocated already
2454 * preallocated blocks are unmapped but should treated
2455 * the same as allocated blocks.
2456 */
c2177057 2457 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2458 if ((ret == 0) && !buffer_delay(bh_result)) {
2459 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2460 /*
2461 * XXX: __block_prepare_write() unmaps passed block,
2462 * is it OK?
2463 */
d2a17637
MC
2464 ret = ext4_da_reserve_space(inode, 1);
2465 if (ret)
2466 /* not enough space to reserve */
2467 return ret;
2468
33b9817e 2469 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2470 set_buffer_new(bh_result);
2471 set_buffer_delay(bh_result);
2472 } else if (ret > 0) {
2473 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2474 if (buffer_unwritten(bh_result)) {
2475 /* A delayed write to unwritten bh should
2476 * be marked new and mapped. Mapped ensures
2477 * that we don't do get_block multiple times
2478 * when we write to the same offset and new
2479 * ensures that we do proper zero out for
2480 * partial write.
2481 */
9c1ee184 2482 set_buffer_new(bh_result);
29fa89d0
AK
2483 set_buffer_mapped(bh_result);
2484 }
64769240
AT
2485 ret = 0;
2486 }
2487
2488 return ret;
2489}
61628a3f 2490
b920c755
TT
2491/*
2492 * This function is used as a standard get_block_t calback function
2493 * when there is no desire to allocate any blocks. It is used as a
2494 * callback function for block_prepare_write(), nobh_writepage(), and
2495 * block_write_full_page(). These functions should only try to map a
2496 * single block at a time.
2497 *
2498 * Since this function doesn't do block allocations even if the caller
2499 * requests it by passing in create=1, it is critically important that
2500 * any caller checks to make sure that any buffer heads are returned
2501 * by this function are either all already mapped or marked for
2502 * delayed allocation before calling nobh_writepage() or
2503 * block_write_full_page(). Otherwise, b_blocknr could be left
2504 * unitialized, and the page write functions will be taken by
2505 * surprise.
2506 */
2507static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2508 struct buffer_head *bh_result, int create)
2509{
2510 int ret = 0;
2511 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2512
a2dc52b5
TT
2513 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2514
f0e6c985
AK
2515 /*
2516 * we don't want to do block allocation in writepage
2517 * so call get_block_wrap with create = 0
2518 */
c2177057 2519 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2520 if (ret > 0) {
2521 bh_result->b_size = (ret << inode->i_blkbits);
2522 ret = 0;
2523 }
2524 return ret;
61628a3f
MC
2525}
2526
62e086be
AK
2527static int bget_one(handle_t *handle, struct buffer_head *bh)
2528{
2529 get_bh(bh);
2530 return 0;
2531}
2532
2533static int bput_one(handle_t *handle, struct buffer_head *bh)
2534{
2535 put_bh(bh);
2536 return 0;
2537}
2538
2539static int __ext4_journalled_writepage(struct page *page,
2540 struct writeback_control *wbc,
2541 unsigned int len)
2542{
2543 struct address_space *mapping = page->mapping;
2544 struct inode *inode = mapping->host;
2545 struct buffer_head *page_bufs;
2546 handle_t *handle = NULL;
2547 int ret = 0;
2548 int err;
2549
2550 page_bufs = page_buffers(page);
2551 BUG_ON(!page_bufs);
2552 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2553 /* As soon as we unlock the page, it can go away, but we have
2554 * references to buffers so we are safe */
2555 unlock_page(page);
2556
2557 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2558 if (IS_ERR(handle)) {
2559 ret = PTR_ERR(handle);
2560 goto out;
2561 }
2562
2563 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2564 do_journal_get_write_access);
2565
2566 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2567 write_end_fn);
2568 if (ret == 0)
2569 ret = err;
2570 err = ext4_journal_stop(handle);
2571 if (!ret)
2572 ret = err;
2573
2574 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2575 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2576out:
2577 return ret;
2578}
2579
61628a3f 2580/*
43ce1d23
AK
2581 * Note that we don't need to start a transaction unless we're journaling data
2582 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2583 * need to file the inode to the transaction's list in ordered mode because if
2584 * we are writing back data added by write(), the inode is already there and if
2585 * we are writing back data modified via mmap(), noone guarantees in which
2586 * transaction the data will hit the disk. In case we are journaling data, we
2587 * cannot start transaction directly because transaction start ranks above page
2588 * lock so we have to do some magic.
2589 *
b920c755
TT
2590 * This function can get called via...
2591 * - ext4_da_writepages after taking page lock (have journal handle)
2592 * - journal_submit_inode_data_buffers (no journal handle)
2593 * - shrink_page_list via pdflush (no journal handle)
2594 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2595 *
2596 * We don't do any block allocation in this function. If we have page with
2597 * multiple blocks we need to write those buffer_heads that are mapped. This
2598 * is important for mmaped based write. So if we do with blocksize 1K
2599 * truncate(f, 1024);
2600 * a = mmap(f, 0, 4096);
2601 * a[0] = 'a';
2602 * truncate(f, 4096);
2603 * we have in the page first buffer_head mapped via page_mkwrite call back
2604 * but other bufer_heads would be unmapped but dirty(dirty done via the
2605 * do_wp_page). So writepage should write the first block. If we modify
2606 * the mmap area beyond 1024 we will again get a page_fault and the
2607 * page_mkwrite callback will do the block allocation and mark the
2608 * buffer_heads mapped.
2609 *
2610 * We redirty the page if we have any buffer_heads that is either delay or
2611 * unwritten in the page.
2612 *
2613 * We can get recursively called as show below.
2614 *
2615 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2616 * ext4_writepage()
2617 *
2618 * But since we don't do any block allocation we should not deadlock.
2619 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2620 */
43ce1d23 2621static int ext4_writepage(struct page *page,
62e086be 2622 struct writeback_control *wbc)
64769240 2623{
64769240 2624 int ret = 0;
61628a3f 2625 loff_t size;
498e5f24 2626 unsigned int len;
61628a3f
MC
2627 struct buffer_head *page_bufs;
2628 struct inode *inode = page->mapping->host;
2629
43ce1d23 2630 trace_ext4_writepage(inode, page);
f0e6c985
AK
2631 size = i_size_read(inode);
2632 if (page->index == size >> PAGE_CACHE_SHIFT)
2633 len = size & ~PAGE_CACHE_MASK;
2634 else
2635 len = PAGE_CACHE_SIZE;
64769240 2636
f0e6c985 2637 if (page_has_buffers(page)) {
61628a3f 2638 page_bufs = page_buffers(page);
f0e6c985 2639 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2640 ext4_bh_delay_or_unwritten)) {
61628a3f 2641 /*
f0e6c985
AK
2642 * We don't want to do block allocation
2643 * So redirty the page and return
cd1aac32
AK
2644 * We may reach here when we do a journal commit
2645 * via journal_submit_inode_data_buffers.
2646 * If we don't have mapping block we just ignore
f0e6c985
AK
2647 * them. We can also reach here via shrink_page_list
2648 */
2649 redirty_page_for_writepage(wbc, page);
2650 unlock_page(page);
2651 return 0;
2652 }
2653 } else {
2654 /*
2655 * The test for page_has_buffers() is subtle:
2656 * We know the page is dirty but it lost buffers. That means
2657 * that at some moment in time after write_begin()/write_end()
2658 * has been called all buffers have been clean and thus they
2659 * must have been written at least once. So they are all
2660 * mapped and we can happily proceed with mapping them
2661 * and writing the page.
2662 *
2663 * Try to initialize the buffer_heads and check whether
2664 * all are mapped and non delay. We don't want to
2665 * do block allocation here.
2666 */
b767e78a 2667 ret = block_prepare_write(page, 0, len,
b920c755 2668 noalloc_get_block_write);
f0e6c985
AK
2669 if (!ret) {
2670 page_bufs = page_buffers(page);
2671 /* check whether all are mapped and non delay */
2672 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2673 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2674 redirty_page_for_writepage(wbc, page);
2675 unlock_page(page);
2676 return 0;
2677 }
2678 } else {
2679 /*
2680 * We can't do block allocation here
2681 * so just redity the page and unlock
2682 * and return
61628a3f 2683 */
61628a3f
MC
2684 redirty_page_for_writepage(wbc, page);
2685 unlock_page(page);
2686 return 0;
2687 }
ed9b3e33 2688 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2689 block_commit_write(page, 0, len);
64769240
AT
2690 }
2691
43ce1d23
AK
2692 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2693 /*
2694 * It's mmapped pagecache. Add buffers and journal it. There
2695 * doesn't seem much point in redirtying the page here.
2696 */
2697 ClearPageChecked(page);
2698 return __ext4_journalled_writepage(page, wbc, len);
2699 }
2700
64769240 2701 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2702 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2703 else
b920c755
TT
2704 ret = block_write_full_page(page, noalloc_get_block_write,
2705 wbc);
64769240 2706
64769240
AT
2707 return ret;
2708}
2709
61628a3f 2710/*
525f4ed8
MC
2711 * This is called via ext4_da_writepages() to
2712 * calulate the total number of credits to reserve to fit
2713 * a single extent allocation into a single transaction,
2714 * ext4_da_writpeages() will loop calling this before
2715 * the block allocation.
61628a3f 2716 */
525f4ed8
MC
2717
2718static int ext4_da_writepages_trans_blocks(struct inode *inode)
2719{
2720 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2721
2722 /*
2723 * With non-extent format the journal credit needed to
2724 * insert nrblocks contiguous block is dependent on
2725 * number of contiguous block. So we will limit
2726 * number of contiguous block to a sane value
2727 */
2728 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2729 (max_blocks > EXT4_MAX_TRANS_DATA))
2730 max_blocks = EXT4_MAX_TRANS_DATA;
2731
2732 return ext4_chunk_trans_blocks(inode, max_blocks);
2733}
61628a3f 2734
64769240 2735static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2736 struct writeback_control *wbc)
64769240 2737{
22208ded
AK
2738 pgoff_t index;
2739 int range_whole = 0;
61628a3f 2740 handle_t *handle = NULL;
df22291f 2741 struct mpage_da_data mpd;
5e745b04 2742 struct inode *inode = mapping->host;
22208ded 2743 int no_nrwrite_index_update;
498e5f24
TT
2744 int pages_written = 0;
2745 long pages_skipped;
2acf2c26 2746 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2747 int needed_blocks, ret = 0, nr_to_writebump = 0;
de89de6e 2748 loff_t range_start = wbc->range_start;
5e745b04 2749 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2750
9bffad1e 2751 trace_ext4_da_writepages(inode, wbc);
ba80b101 2752
61628a3f
MC
2753 /*
2754 * No pages to write? This is mainly a kludge to avoid starting
2755 * a transaction for special inodes like journal inode on last iput()
2756 * because that could violate lock ordering on umount
2757 */
a1d6cc56 2758 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2759 return 0;
2a21e37e
TT
2760
2761 /*
2762 * If the filesystem has aborted, it is read-only, so return
2763 * right away instead of dumping stack traces later on that
2764 * will obscure the real source of the problem. We test
4ab2f15b 2765 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2766 * the latter could be true if the filesystem is mounted
2767 * read-only, and in that case, ext4_da_writepages should
2768 * *never* be called, so if that ever happens, we would want
2769 * the stack trace.
2770 */
4ab2f15b 2771 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2772 return -EROFS;
2773
5e745b04
AK
2774 /*
2775 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2776 * This make sure small files blocks are allocated in
2777 * single attempt. This ensure that small files
2778 * get less fragmented.
2779 */
2780 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2781 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2782 wbc->nr_to_write = sbi->s_mb_stream_request;
2783 }
22208ded
AK
2784 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2785 range_whole = 1;
61628a3f 2786
2acf2c26
AK
2787 range_cyclic = wbc->range_cyclic;
2788 if (wbc->range_cyclic) {
22208ded 2789 index = mapping->writeback_index;
2acf2c26
AK
2790 if (index)
2791 cycled = 0;
2792 wbc->range_start = index << PAGE_CACHE_SHIFT;
2793 wbc->range_end = LLONG_MAX;
2794 wbc->range_cyclic = 0;
2795 } else
22208ded 2796 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2797
df22291f
AK
2798 mpd.wbc = wbc;
2799 mpd.inode = mapping->host;
2800
22208ded
AK
2801 /*
2802 * we don't want write_cache_pages to update
2803 * nr_to_write and writeback_index
2804 */
2805 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2806 wbc->no_nrwrite_index_update = 1;
2807 pages_skipped = wbc->pages_skipped;
2808
2acf2c26 2809retry:
22208ded 2810 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2811
2812 /*
2813 * we insert one extent at a time. So we need
2814 * credit needed for single extent allocation.
2815 * journalled mode is currently not supported
2816 * by delalloc
2817 */
2818 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2819 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2820
61628a3f
MC
2821 /* start a new transaction*/
2822 handle = ext4_journal_start(inode, needed_blocks);
2823 if (IS_ERR(handle)) {
2824 ret = PTR_ERR(handle);
2a21e37e 2825 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2826 "%ld pages, ino %lu; err %d\n", __func__,
2827 wbc->nr_to_write, inode->i_ino, ret);
2828 dump_stack();
61628a3f
MC
2829 goto out_writepages;
2830 }
f63e6005
TT
2831
2832 /*
2833 * Now call __mpage_da_writepage to find the next
2834 * contiguous region of logical blocks that need
2835 * blocks to be allocated by ext4. We don't actually
2836 * submit the blocks for I/O here, even though
2837 * write_cache_pages thinks it will, and will set the
2838 * pages as clean for write before calling
2839 * __mpage_da_writepage().
2840 */
2841 mpd.b_size = 0;
2842 mpd.b_state = 0;
2843 mpd.b_blocknr = 0;
2844 mpd.first_page = 0;
2845 mpd.next_page = 0;
2846 mpd.io_done = 0;
2847 mpd.pages_written = 0;
2848 mpd.retval = 0;
2849 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2850 &mpd);
2851 /*
2852 * If we have a contigous extent of pages and we
2853 * haven't done the I/O yet, map the blocks and submit
2854 * them for I/O.
2855 */
2856 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2857 if (mpage_da_map_blocks(&mpd) == 0)
2858 mpage_da_submit_io(&mpd);
2859 mpd.io_done = 1;
2860 ret = MPAGE_DA_EXTENT_TAIL;
2861 }
b3a3ca8c 2862 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2863 wbc->nr_to_write -= mpd.pages_written;
df22291f 2864
61628a3f 2865 ext4_journal_stop(handle);
df22291f 2866
8f64b32e 2867 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2868 /* commit the transaction which would
2869 * free blocks released in the transaction
2870 * and try again
2871 */
df22291f 2872 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2873 wbc->pages_skipped = pages_skipped;
2874 ret = 0;
2875 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2876 /*
2877 * got one extent now try with
2878 * rest of the pages
2879 */
22208ded
AK
2880 pages_written += mpd.pages_written;
2881 wbc->pages_skipped = pages_skipped;
a1d6cc56 2882 ret = 0;
2acf2c26 2883 io_done = 1;
22208ded 2884 } else if (wbc->nr_to_write)
61628a3f
MC
2885 /*
2886 * There is no more writeout needed
2887 * or we requested for a noblocking writeout
2888 * and we found the device congested
2889 */
61628a3f 2890 break;
a1d6cc56 2891 }
2acf2c26
AK
2892 if (!io_done && !cycled) {
2893 cycled = 1;
2894 index = 0;
2895 wbc->range_start = index << PAGE_CACHE_SHIFT;
2896 wbc->range_end = mapping->writeback_index - 1;
2897 goto retry;
2898 }
22208ded
AK
2899 if (pages_skipped != wbc->pages_skipped)
2900 printk(KERN_EMERG "This should not happen leaving %s "
2901 "with nr_to_write = %ld ret = %d\n",
2902 __func__, wbc->nr_to_write, ret);
2903
2904 /* Update index */
2905 index += pages_written;
2acf2c26 2906 wbc->range_cyclic = range_cyclic;
22208ded
AK
2907 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2908 /*
2909 * set the writeback_index so that range_cyclic
2910 * mode will write it back later
2911 */
2912 mapping->writeback_index = index;
a1d6cc56 2913
61628a3f 2914out_writepages:
22208ded
AK
2915 if (!no_nrwrite_index_update)
2916 wbc->no_nrwrite_index_update = 0;
2917 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2918 wbc->range_start = range_start;
9bffad1e 2919 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2920 return ret;
64769240
AT
2921}
2922
79f0be8d
AK
2923#define FALL_BACK_TO_NONDELALLOC 1
2924static int ext4_nonda_switch(struct super_block *sb)
2925{
2926 s64 free_blocks, dirty_blocks;
2927 struct ext4_sb_info *sbi = EXT4_SB(sb);
2928
2929 /*
2930 * switch to non delalloc mode if we are running low
2931 * on free block. The free block accounting via percpu
179f7ebf 2932 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2933 * accumulated on each CPU without updating global counters
2934 * Delalloc need an accurate free block accounting. So switch
2935 * to non delalloc when we are near to error range.
2936 */
2937 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2938 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2939 if (2 * free_blocks < 3 * dirty_blocks ||
2940 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2941 /*
2942 * free block count is less that 150% of dirty blocks
2943 * or free blocks is less that watermark
2944 */
2945 return 1;
2946 }
2947 return 0;
2948}
2949
64769240 2950static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2951 loff_t pos, unsigned len, unsigned flags,
2952 struct page **pagep, void **fsdata)
64769240 2953{
d2a17637 2954 int ret, retries = 0;
64769240
AT
2955 struct page *page;
2956 pgoff_t index;
2957 unsigned from, to;
2958 struct inode *inode = mapping->host;
2959 handle_t *handle;
2960
2961 index = pos >> PAGE_CACHE_SHIFT;
2962 from = pos & (PAGE_CACHE_SIZE - 1);
2963 to = from + len;
79f0be8d
AK
2964
2965 if (ext4_nonda_switch(inode->i_sb)) {
2966 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2967 return ext4_write_begin(file, mapping, pos,
2968 len, flags, pagep, fsdata);
2969 }
2970 *fsdata = (void *)0;
9bffad1e 2971 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2972retry:
64769240
AT
2973 /*
2974 * With delayed allocation, we don't log the i_disksize update
2975 * if there is delayed block allocation. But we still need
2976 * to journalling the i_disksize update if writes to the end
2977 * of file which has an already mapped buffer.
2978 */
2979 handle = ext4_journal_start(inode, 1);
2980 if (IS_ERR(handle)) {
2981 ret = PTR_ERR(handle);
2982 goto out;
2983 }
ebd3610b
JK
2984 /* We cannot recurse into the filesystem as the transaction is already
2985 * started */
2986 flags |= AOP_FLAG_NOFS;
64769240 2987
54566b2c 2988 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2989 if (!page) {
2990 ext4_journal_stop(handle);
2991 ret = -ENOMEM;
2992 goto out;
2993 }
64769240
AT
2994 *pagep = page;
2995
2996 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2997 ext4_da_get_block_prep);
64769240
AT
2998 if (ret < 0) {
2999 unlock_page(page);
3000 ext4_journal_stop(handle);
3001 page_cache_release(page);
ae4d5372
AK
3002 /*
3003 * block_write_begin may have instantiated a few blocks
3004 * outside i_size. Trim these off again. Don't need
3005 * i_size_read because we hold i_mutex.
3006 */
3007 if (pos + len > inode->i_size)
ffacfa7a 3008 ext4_truncate(inode);
64769240
AT
3009 }
3010
d2a17637
MC
3011 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3012 goto retry;
64769240
AT
3013out:
3014 return ret;
3015}
3016
632eaeab
MC
3017/*
3018 * Check if we should update i_disksize
3019 * when write to the end of file but not require block allocation
3020 */
3021static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3022 unsigned long offset)
632eaeab
MC
3023{
3024 struct buffer_head *bh;
3025 struct inode *inode = page->mapping->host;
3026 unsigned int idx;
3027 int i;
3028
3029 bh = page_buffers(page);
3030 idx = offset >> inode->i_blkbits;
3031
af5bc92d 3032 for (i = 0; i < idx; i++)
632eaeab
MC
3033 bh = bh->b_this_page;
3034
29fa89d0 3035 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3036 return 0;
3037 return 1;
3038}
3039
64769240 3040static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3041 struct address_space *mapping,
3042 loff_t pos, unsigned len, unsigned copied,
3043 struct page *page, void *fsdata)
64769240
AT
3044{
3045 struct inode *inode = mapping->host;
3046 int ret = 0, ret2;
3047 handle_t *handle = ext4_journal_current_handle();
3048 loff_t new_i_size;
632eaeab 3049 unsigned long start, end;
79f0be8d
AK
3050 int write_mode = (int)(unsigned long)fsdata;
3051
3052 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3053 if (ext4_should_order_data(inode)) {
3054 return ext4_ordered_write_end(file, mapping, pos,
3055 len, copied, page, fsdata);
3056 } else if (ext4_should_writeback_data(inode)) {
3057 return ext4_writeback_write_end(file, mapping, pos,
3058 len, copied, page, fsdata);
3059 } else {
3060 BUG();
3061 }
3062 }
632eaeab 3063
9bffad1e 3064 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3065 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3066 end = start + copied - 1;
64769240
AT
3067
3068 /*
3069 * generic_write_end() will run mark_inode_dirty() if i_size
3070 * changes. So let's piggyback the i_disksize mark_inode_dirty
3071 * into that.
3072 */
3073
3074 new_i_size = pos + copied;
632eaeab
MC
3075 if (new_i_size > EXT4_I(inode)->i_disksize) {
3076 if (ext4_da_should_update_i_disksize(page, end)) {
3077 down_write(&EXT4_I(inode)->i_data_sem);
3078 if (new_i_size > EXT4_I(inode)->i_disksize) {
3079 /*
3080 * Updating i_disksize when extending file
3081 * without needing block allocation
3082 */
3083 if (ext4_should_order_data(inode))
3084 ret = ext4_jbd2_file_inode(handle,
3085 inode);
64769240 3086
632eaeab
MC
3087 EXT4_I(inode)->i_disksize = new_i_size;
3088 }
3089 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3090 /* We need to mark inode dirty even if
3091 * new_i_size is less that inode->i_size
3092 * bu greater than i_disksize.(hint delalloc)
3093 */
3094 ext4_mark_inode_dirty(handle, inode);
64769240 3095 }
632eaeab 3096 }
64769240
AT
3097 ret2 = generic_write_end(file, mapping, pos, len, copied,
3098 page, fsdata);
3099 copied = ret2;
3100 if (ret2 < 0)
3101 ret = ret2;
3102 ret2 = ext4_journal_stop(handle);
3103 if (!ret)
3104 ret = ret2;
3105
3106 return ret ? ret : copied;
3107}
3108
3109static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3110{
64769240
AT
3111 /*
3112 * Drop reserved blocks
3113 */
3114 BUG_ON(!PageLocked(page));
3115 if (!page_has_buffers(page))
3116 goto out;
3117
d2a17637 3118 ext4_da_page_release_reservation(page, offset);
64769240
AT
3119
3120out:
3121 ext4_invalidatepage(page, offset);
3122
3123 return;
3124}
3125
ccd2506b
TT
3126/*
3127 * Force all delayed allocation blocks to be allocated for a given inode.
3128 */
3129int ext4_alloc_da_blocks(struct inode *inode)
3130{
3131 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3132 !EXT4_I(inode)->i_reserved_meta_blocks)
3133 return 0;
3134
3135 /*
3136 * We do something simple for now. The filemap_flush() will
3137 * also start triggering a write of the data blocks, which is
3138 * not strictly speaking necessary (and for users of
3139 * laptop_mode, not even desirable). However, to do otherwise
3140 * would require replicating code paths in:
de9a55b8 3141 *
ccd2506b
TT
3142 * ext4_da_writepages() ->
3143 * write_cache_pages() ---> (via passed in callback function)
3144 * __mpage_da_writepage() -->
3145 * mpage_add_bh_to_extent()
3146 * mpage_da_map_blocks()
3147 *
3148 * The problem is that write_cache_pages(), located in
3149 * mm/page-writeback.c, marks pages clean in preparation for
3150 * doing I/O, which is not desirable if we're not planning on
3151 * doing I/O at all.
3152 *
3153 * We could call write_cache_pages(), and then redirty all of
3154 * the pages by calling redirty_page_for_writeback() but that
3155 * would be ugly in the extreme. So instead we would need to
3156 * replicate parts of the code in the above functions,
3157 * simplifying them becuase we wouldn't actually intend to
3158 * write out the pages, but rather only collect contiguous
3159 * logical block extents, call the multi-block allocator, and
3160 * then update the buffer heads with the block allocations.
de9a55b8 3161 *
ccd2506b
TT
3162 * For now, though, we'll cheat by calling filemap_flush(),
3163 * which will map the blocks, and start the I/O, but not
3164 * actually wait for the I/O to complete.
3165 */
3166 return filemap_flush(inode->i_mapping);
3167}
64769240 3168
ac27a0ec
DK
3169/*
3170 * bmap() is special. It gets used by applications such as lilo and by
3171 * the swapper to find the on-disk block of a specific piece of data.
3172 *
3173 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3174 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3175 * filesystem and enables swap, then they may get a nasty shock when the
3176 * data getting swapped to that swapfile suddenly gets overwritten by
3177 * the original zero's written out previously to the journal and
3178 * awaiting writeback in the kernel's buffer cache.
3179 *
3180 * So, if we see any bmap calls here on a modified, data-journaled file,
3181 * take extra steps to flush any blocks which might be in the cache.
3182 */
617ba13b 3183static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3184{
3185 struct inode *inode = mapping->host;
3186 journal_t *journal;
3187 int err;
3188
64769240
AT
3189 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3190 test_opt(inode->i_sb, DELALLOC)) {
3191 /*
3192 * With delalloc we want to sync the file
3193 * so that we can make sure we allocate
3194 * blocks for file
3195 */
3196 filemap_write_and_wait(mapping);
3197 }
3198
0390131b 3199 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3200 /*
3201 * This is a REALLY heavyweight approach, but the use of
3202 * bmap on dirty files is expected to be extremely rare:
3203 * only if we run lilo or swapon on a freshly made file
3204 * do we expect this to happen.
3205 *
3206 * (bmap requires CAP_SYS_RAWIO so this does not
3207 * represent an unprivileged user DOS attack --- we'd be
3208 * in trouble if mortal users could trigger this path at
3209 * will.)
3210 *
617ba13b 3211 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3212 * regular files. If somebody wants to bmap a directory
3213 * or symlink and gets confused because the buffer
3214 * hasn't yet been flushed to disk, they deserve
3215 * everything they get.
3216 */
3217
617ba13b
MC
3218 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3219 journal = EXT4_JOURNAL(inode);
dab291af
MC
3220 jbd2_journal_lock_updates(journal);
3221 err = jbd2_journal_flush(journal);
3222 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3223
3224 if (err)
3225 return 0;
3226 }
3227
af5bc92d 3228 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3229}
3230
617ba13b 3231static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3232{
617ba13b 3233 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3234}
3235
3236static int
617ba13b 3237ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3238 struct list_head *pages, unsigned nr_pages)
3239{
617ba13b 3240 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3241}
3242
617ba13b 3243static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3244{
617ba13b 3245 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3246
3247 /*
3248 * If it's a full truncate we just forget about the pending dirtying
3249 */
3250 if (offset == 0)
3251 ClearPageChecked(page);
3252
0390131b
FM
3253 if (journal)
3254 jbd2_journal_invalidatepage(journal, page, offset);
3255 else
3256 block_invalidatepage(page, offset);
ac27a0ec
DK
3257}
3258
617ba13b 3259static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3260{
617ba13b 3261 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3262
3263 WARN_ON(PageChecked(page));
3264 if (!page_has_buffers(page))
3265 return 0;
0390131b
FM
3266 if (journal)
3267 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3268 else
3269 return try_to_free_buffers(page);
ac27a0ec
DK
3270}
3271
3272/*
3273 * If the O_DIRECT write will extend the file then add this inode to the
3274 * orphan list. So recovery will truncate it back to the original size
3275 * if the machine crashes during the write.
3276 *
3277 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3278 * crashes then stale disk data _may_ be exposed inside the file. But current
3279 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3280 */
617ba13b 3281static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3282 const struct iovec *iov, loff_t offset,
3283 unsigned long nr_segs)
ac27a0ec
DK
3284{
3285 struct file *file = iocb->ki_filp;
3286 struct inode *inode = file->f_mapping->host;
617ba13b 3287 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3288 handle_t *handle;
ac27a0ec
DK
3289 ssize_t ret;
3290 int orphan = 0;
3291 size_t count = iov_length(iov, nr_segs);
3292
3293 if (rw == WRITE) {
3294 loff_t final_size = offset + count;
3295
ac27a0ec 3296 if (final_size > inode->i_size) {
7fb5409d
JK
3297 /* Credits for sb + inode write */
3298 handle = ext4_journal_start(inode, 2);
3299 if (IS_ERR(handle)) {
3300 ret = PTR_ERR(handle);
3301 goto out;
3302 }
617ba13b 3303 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3304 if (ret) {
3305 ext4_journal_stop(handle);
3306 goto out;
3307 }
ac27a0ec
DK
3308 orphan = 1;
3309 ei->i_disksize = inode->i_size;
7fb5409d 3310 ext4_journal_stop(handle);
ac27a0ec
DK
3311 }
3312 }
3313
3314 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3315 offset, nr_segs,
617ba13b 3316 ext4_get_block, NULL);
ac27a0ec 3317
7fb5409d 3318 if (orphan) {
ac27a0ec
DK
3319 int err;
3320
7fb5409d
JK
3321 /* Credits for sb + inode write */
3322 handle = ext4_journal_start(inode, 2);
3323 if (IS_ERR(handle)) {
3324 /* This is really bad luck. We've written the data
3325 * but cannot extend i_size. Bail out and pretend
3326 * the write failed... */
3327 ret = PTR_ERR(handle);
3328 goto out;
3329 }
3330 if (inode->i_nlink)
617ba13b 3331 ext4_orphan_del(handle, inode);
7fb5409d 3332 if (ret > 0) {
ac27a0ec
DK
3333 loff_t end = offset + ret;
3334 if (end > inode->i_size) {
3335 ei->i_disksize = end;
3336 i_size_write(inode, end);
3337 /*
3338 * We're going to return a positive `ret'
3339 * here due to non-zero-length I/O, so there's
3340 * no way of reporting error returns from
617ba13b 3341 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3342 * ignore it.
3343 */
617ba13b 3344 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3345 }
3346 }
617ba13b 3347 err = ext4_journal_stop(handle);
ac27a0ec
DK
3348 if (ret == 0)
3349 ret = err;
3350 }
3351out:
3352 return ret;
3353}
3354
3355/*
617ba13b 3356 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3357 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3358 * much here because ->set_page_dirty is called under VFS locks. The page is
3359 * not necessarily locked.
3360 *
3361 * We cannot just dirty the page and leave attached buffers clean, because the
3362 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3363 * or jbddirty because all the journalling code will explode.
3364 *
3365 * So what we do is to mark the page "pending dirty" and next time writepage
3366 * is called, propagate that into the buffers appropriately.
3367 */
617ba13b 3368static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3369{
3370 SetPageChecked(page);
3371 return __set_page_dirty_nobuffers(page);
3372}
3373
617ba13b 3374static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3375 .readpage = ext4_readpage,
3376 .readpages = ext4_readpages,
43ce1d23 3377 .writepage = ext4_writepage,
8ab22b9a
HH
3378 .sync_page = block_sync_page,
3379 .write_begin = ext4_write_begin,
3380 .write_end = ext4_ordered_write_end,
3381 .bmap = ext4_bmap,
3382 .invalidatepage = ext4_invalidatepage,
3383 .releasepage = ext4_releasepage,
3384 .direct_IO = ext4_direct_IO,
3385 .migratepage = buffer_migrate_page,
3386 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3387};
3388
617ba13b 3389static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3390 .readpage = ext4_readpage,
3391 .readpages = ext4_readpages,
43ce1d23 3392 .writepage = ext4_writepage,
8ab22b9a
HH
3393 .sync_page = block_sync_page,
3394 .write_begin = ext4_write_begin,
3395 .write_end = ext4_writeback_write_end,
3396 .bmap = ext4_bmap,
3397 .invalidatepage = ext4_invalidatepage,
3398 .releasepage = ext4_releasepage,
3399 .direct_IO = ext4_direct_IO,
3400 .migratepage = buffer_migrate_page,
3401 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3402};
3403
617ba13b 3404static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3405 .readpage = ext4_readpage,
3406 .readpages = ext4_readpages,
43ce1d23 3407 .writepage = ext4_writepage,
8ab22b9a
HH
3408 .sync_page = block_sync_page,
3409 .write_begin = ext4_write_begin,
3410 .write_end = ext4_journalled_write_end,
3411 .set_page_dirty = ext4_journalled_set_page_dirty,
3412 .bmap = ext4_bmap,
3413 .invalidatepage = ext4_invalidatepage,
3414 .releasepage = ext4_releasepage,
3415 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3416};
3417
64769240 3418static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3419 .readpage = ext4_readpage,
3420 .readpages = ext4_readpages,
43ce1d23 3421 .writepage = ext4_writepage,
8ab22b9a
HH
3422 .writepages = ext4_da_writepages,
3423 .sync_page = block_sync_page,
3424 .write_begin = ext4_da_write_begin,
3425 .write_end = ext4_da_write_end,
3426 .bmap = ext4_bmap,
3427 .invalidatepage = ext4_da_invalidatepage,
3428 .releasepage = ext4_releasepage,
3429 .direct_IO = ext4_direct_IO,
3430 .migratepage = buffer_migrate_page,
3431 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3432};
3433
617ba13b 3434void ext4_set_aops(struct inode *inode)
ac27a0ec 3435{
cd1aac32
AK
3436 if (ext4_should_order_data(inode) &&
3437 test_opt(inode->i_sb, DELALLOC))
3438 inode->i_mapping->a_ops = &ext4_da_aops;
3439 else if (ext4_should_order_data(inode))
617ba13b 3440 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3441 else if (ext4_should_writeback_data(inode) &&
3442 test_opt(inode->i_sb, DELALLOC))
3443 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3444 else if (ext4_should_writeback_data(inode))
3445 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3446 else
617ba13b 3447 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3448}
3449
3450/*
617ba13b 3451 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3452 * up to the end of the block which corresponds to `from'.
3453 * This required during truncate. We need to physically zero the tail end
3454 * of that block so it doesn't yield old data if the file is later grown.
3455 */
cf108bca 3456int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3457 struct address_space *mapping, loff_t from)
3458{
617ba13b 3459 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3460 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3461 unsigned blocksize, length, pos;
3462 ext4_lblk_t iblock;
ac27a0ec
DK
3463 struct inode *inode = mapping->host;
3464 struct buffer_head *bh;
cf108bca 3465 struct page *page;
ac27a0ec 3466 int err = 0;
ac27a0ec 3467
f4a01017
TT
3468 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3469 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3470 if (!page)
3471 return -EINVAL;
3472
ac27a0ec
DK
3473 blocksize = inode->i_sb->s_blocksize;
3474 length = blocksize - (offset & (blocksize - 1));
3475 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3476
3477 /*
3478 * For "nobh" option, we can only work if we don't need to
3479 * read-in the page - otherwise we create buffers to do the IO.
3480 */
3481 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3482 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3483 zero_user(page, offset, length);
ac27a0ec
DK
3484 set_page_dirty(page);
3485 goto unlock;
3486 }
3487
3488 if (!page_has_buffers(page))
3489 create_empty_buffers(page, blocksize, 0);
3490
3491 /* Find the buffer that contains "offset" */
3492 bh = page_buffers(page);
3493 pos = blocksize;
3494 while (offset >= pos) {
3495 bh = bh->b_this_page;
3496 iblock++;
3497 pos += blocksize;
3498 }
3499
3500 err = 0;
3501 if (buffer_freed(bh)) {
3502 BUFFER_TRACE(bh, "freed: skip");
3503 goto unlock;
3504 }
3505
3506 if (!buffer_mapped(bh)) {
3507 BUFFER_TRACE(bh, "unmapped");
617ba13b 3508 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3509 /* unmapped? It's a hole - nothing to do */
3510 if (!buffer_mapped(bh)) {
3511 BUFFER_TRACE(bh, "still unmapped");
3512 goto unlock;
3513 }
3514 }
3515
3516 /* Ok, it's mapped. Make sure it's up-to-date */
3517 if (PageUptodate(page))
3518 set_buffer_uptodate(bh);
3519
3520 if (!buffer_uptodate(bh)) {
3521 err = -EIO;
3522 ll_rw_block(READ, 1, &bh);
3523 wait_on_buffer(bh);
3524 /* Uhhuh. Read error. Complain and punt. */
3525 if (!buffer_uptodate(bh))
3526 goto unlock;
3527 }
3528
617ba13b 3529 if (ext4_should_journal_data(inode)) {
ac27a0ec 3530 BUFFER_TRACE(bh, "get write access");
617ba13b 3531 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3532 if (err)
3533 goto unlock;
3534 }
3535
eebd2aa3 3536 zero_user(page, offset, length);
ac27a0ec
DK
3537
3538 BUFFER_TRACE(bh, "zeroed end of block");
3539
3540 err = 0;
617ba13b 3541 if (ext4_should_journal_data(inode)) {
0390131b 3542 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3543 } else {
617ba13b 3544 if (ext4_should_order_data(inode))
678aaf48 3545 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3546 mark_buffer_dirty(bh);
3547 }
3548
3549unlock:
3550 unlock_page(page);
3551 page_cache_release(page);
3552 return err;
3553}
3554
3555/*
3556 * Probably it should be a library function... search for first non-zero word
3557 * or memcmp with zero_page, whatever is better for particular architecture.
3558 * Linus?
3559 */
3560static inline int all_zeroes(__le32 *p, __le32 *q)
3561{
3562 while (p < q)
3563 if (*p++)
3564 return 0;
3565 return 1;
3566}
3567
3568/**
617ba13b 3569 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3570 * @inode: inode in question
3571 * @depth: depth of the affected branch
617ba13b 3572 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3573 * @chain: place to store the pointers to partial indirect blocks
3574 * @top: place to the (detached) top of branch
3575 *
617ba13b 3576 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3577 *
3578 * When we do truncate() we may have to clean the ends of several
3579 * indirect blocks but leave the blocks themselves alive. Block is
3580 * partially truncated if some data below the new i_size is refered
3581 * from it (and it is on the path to the first completely truncated
3582 * data block, indeed). We have to free the top of that path along
3583 * with everything to the right of the path. Since no allocation
617ba13b 3584 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3585 * finishes, we may safely do the latter, but top of branch may
3586 * require special attention - pageout below the truncation point
3587 * might try to populate it.
3588 *
3589 * We atomically detach the top of branch from the tree, store the
3590 * block number of its root in *@top, pointers to buffer_heads of
3591 * partially truncated blocks - in @chain[].bh and pointers to
3592 * their last elements that should not be removed - in
3593 * @chain[].p. Return value is the pointer to last filled element
3594 * of @chain.
3595 *
3596 * The work left to caller to do the actual freeing of subtrees:
3597 * a) free the subtree starting from *@top
3598 * b) free the subtrees whose roots are stored in
3599 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3600 * c) free the subtrees growing from the inode past the @chain[0].
3601 * (no partially truncated stuff there). */
3602
617ba13b 3603static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
3604 ext4_lblk_t offsets[4], Indirect chain[4],
3605 __le32 *top)
ac27a0ec
DK
3606{
3607 Indirect *partial, *p;
3608 int k, err;
3609
3610 *top = 0;
3611 /* Make k index the deepest non-null offest + 1 */
3612 for (k = depth; k > 1 && !offsets[k-1]; k--)
3613 ;
617ba13b 3614 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3615 /* Writer: pointers */
3616 if (!partial)
3617 partial = chain + k-1;
3618 /*
3619 * If the branch acquired continuation since we've looked at it -
3620 * fine, it should all survive and (new) top doesn't belong to us.
3621 */
3622 if (!partial->key && *partial->p)
3623 /* Writer: end */
3624 goto no_top;
af5bc92d 3625 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3626 ;
3627 /*
3628 * OK, we've found the last block that must survive. The rest of our
3629 * branch should be detached before unlocking. However, if that rest
3630 * of branch is all ours and does not grow immediately from the inode
3631 * it's easier to cheat and just decrement partial->p.
3632 */
3633 if (p == chain + k - 1 && p > chain) {
3634 p->p--;
3635 } else {
3636 *top = *p->p;
617ba13b 3637 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3638#if 0
3639 *p->p = 0;
3640#endif
3641 }
3642 /* Writer: end */
3643
af5bc92d 3644 while (partial > p) {
ac27a0ec
DK
3645 brelse(partial->bh);
3646 partial--;
3647 }
3648no_top:
3649 return partial;
3650}
3651
3652/*
3653 * Zero a number of block pointers in either an inode or an indirect block.
3654 * If we restart the transaction we must again get write access to the
3655 * indirect block for further modification.
3656 *
3657 * We release `count' blocks on disk, but (last - first) may be greater
3658 * than `count' because there can be holes in there.
3659 */
617ba13b 3660static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
3661 struct buffer_head *bh,
3662 ext4_fsblk_t block_to_free,
3663 unsigned long count, __le32 *first,
3664 __le32 *last)
ac27a0ec
DK
3665{
3666 __le32 *p;
3667 if (try_to_extend_transaction(handle, inode)) {
3668 if (bh) {
0390131b
FM
3669 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3670 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3671 }
617ba13b 3672 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
3673 ext4_truncate_restart_trans(handle, inode,
3674 blocks_for_truncate(inode));
ac27a0ec
DK
3675 if (bh) {
3676 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3677 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3678 }
3679 }
3680
3681 /*
de9a55b8
TT
3682 * Any buffers which are on the journal will be in memory. We
3683 * find them on the hash table so jbd2_journal_revoke() will
3684 * run jbd2_journal_forget() on them. We've already detached
3685 * each block from the file, so bforget() in
3686 * jbd2_journal_forget() should be safe.
ac27a0ec 3687 *
dab291af 3688 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3689 */
3690 for (p = first; p < last; p++) {
3691 u32 nr = le32_to_cpu(*p);
3692 if (nr) {
1d03ec98 3693 struct buffer_head *tbh;
ac27a0ec
DK
3694
3695 *p = 0;
1d03ec98
AK
3696 tbh = sb_find_get_block(inode->i_sb, nr);
3697 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3698 }
3699 }
3700
c9de560d 3701 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3702}
3703
3704/**
617ba13b 3705 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3706 * @handle: handle for this transaction
3707 * @inode: inode we are dealing with
3708 * @this_bh: indirect buffer_head which contains *@first and *@last
3709 * @first: array of block numbers
3710 * @last: points immediately past the end of array
3711 *
3712 * We are freeing all blocks refered from that array (numbers are stored as
3713 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3714 *
3715 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3716 * blocks are contiguous then releasing them at one time will only affect one
3717 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3718 * actually use a lot of journal space.
3719 *
3720 * @this_bh will be %NULL if @first and @last point into the inode's direct
3721 * block pointers.
3722 */
617ba13b 3723static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3724 struct buffer_head *this_bh,
3725 __le32 *first, __le32 *last)
3726{
617ba13b 3727 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3728 unsigned long count = 0; /* Number of blocks in the run */
3729 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3730 corresponding to
3731 block_to_free */
617ba13b 3732 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3733 __le32 *p; /* Pointer into inode/ind
3734 for current block */
3735 int err;
3736
3737 if (this_bh) { /* For indirect block */
3738 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3739 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3740 /* Important: if we can't update the indirect pointers
3741 * to the blocks, we can't free them. */
3742 if (err)
3743 return;
3744 }
3745
3746 for (p = first; p < last; p++) {
3747 nr = le32_to_cpu(*p);
3748 if (nr) {
3749 /* accumulate blocks to free if they're contiguous */
3750 if (count == 0) {
3751 block_to_free = nr;
3752 block_to_free_p = p;
3753 count = 1;
3754 } else if (nr == block_to_free + count) {
3755 count++;
3756 } else {
617ba13b 3757 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3758 block_to_free,
3759 count, block_to_free_p, p);
3760 block_to_free = nr;
3761 block_to_free_p = p;
3762 count = 1;
3763 }
3764 }
3765 }
3766
3767 if (count > 0)
617ba13b 3768 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3769 count, block_to_free_p, p);
3770
3771 if (this_bh) {
0390131b 3772 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3773
3774 /*
3775 * The buffer head should have an attached journal head at this
3776 * point. However, if the data is corrupted and an indirect
3777 * block pointed to itself, it would have been detached when
3778 * the block was cleared. Check for this instead of OOPSing.
3779 */
e7f07968 3780 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3781 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3782 else
3783 ext4_error(inode->i_sb, __func__,
3784 "circular indirect block detected, "
3785 "inode=%lu, block=%llu",
3786 inode->i_ino,
3787 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3788 }
3789}
3790
3791/**
617ba13b 3792 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3793 * @handle: JBD handle for this transaction
3794 * @inode: inode we are dealing with
3795 * @parent_bh: the buffer_head which contains *@first and *@last
3796 * @first: array of block numbers
3797 * @last: pointer immediately past the end of array
3798 * @depth: depth of the branches to free
3799 *
3800 * We are freeing all blocks refered from these branches (numbers are
3801 * stored as little-endian 32-bit) and updating @inode->i_blocks
3802 * appropriately.
3803 */
617ba13b 3804static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3805 struct buffer_head *parent_bh,
3806 __le32 *first, __le32 *last, int depth)
3807{
617ba13b 3808 ext4_fsblk_t nr;
ac27a0ec
DK
3809 __le32 *p;
3810
0390131b 3811 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3812 return;
3813
3814 if (depth--) {
3815 struct buffer_head *bh;
617ba13b 3816 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3817 p = last;
3818 while (--p >= first) {
3819 nr = le32_to_cpu(*p);
3820 if (!nr)
3821 continue; /* A hole */
3822
3823 /* Go read the buffer for the next level down */
3824 bh = sb_bread(inode->i_sb, nr);
3825
3826 /*
3827 * A read failure? Report error and clear slot
3828 * (should be rare).
3829 */
3830 if (!bh) {
617ba13b 3831 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3832 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3833 inode->i_ino, nr);
3834 continue;
3835 }
3836
3837 /* This zaps the entire block. Bottom up. */
3838 BUFFER_TRACE(bh, "free child branches");
617ba13b 3839 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3840 (__le32 *) bh->b_data,
3841 (__le32 *) bh->b_data + addr_per_block,
3842 depth);
ac27a0ec
DK
3843
3844 /*
3845 * We've probably journalled the indirect block several
3846 * times during the truncate. But it's no longer
3847 * needed and we now drop it from the transaction via
dab291af 3848 * jbd2_journal_revoke().
ac27a0ec
DK
3849 *
3850 * That's easy if it's exclusively part of this
3851 * transaction. But if it's part of the committing
dab291af 3852 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3853 * brelse() it. That means that if the underlying
617ba13b 3854 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3855 * unmap_underlying_metadata() will find this block
3856 * and will try to get rid of it. damn, damn.
3857 *
3858 * If this block has already been committed to the
3859 * journal, a revoke record will be written. And
3860 * revoke records must be emitted *before* clearing
3861 * this block's bit in the bitmaps.
3862 */
617ba13b 3863 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3864
3865 /*
3866 * Everything below this this pointer has been
3867 * released. Now let this top-of-subtree go.
3868 *
3869 * We want the freeing of this indirect block to be
3870 * atomic in the journal with the updating of the
3871 * bitmap block which owns it. So make some room in
3872 * the journal.
3873 *
3874 * We zero the parent pointer *after* freeing its
3875 * pointee in the bitmaps, so if extend_transaction()
3876 * for some reason fails to put the bitmap changes and
3877 * the release into the same transaction, recovery
3878 * will merely complain about releasing a free block,
3879 * rather than leaking blocks.
3880 */
0390131b 3881 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3882 return;
3883 if (try_to_extend_transaction(handle, inode)) {
617ba13b 3884 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
3885 ext4_truncate_restart_trans(handle, inode,
3886 blocks_for_truncate(inode));
ac27a0ec
DK
3887 }
3888
c9de560d 3889 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3890
3891 if (parent_bh) {
3892 /*
3893 * The block which we have just freed is
3894 * pointed to by an indirect block: journal it
3895 */
3896 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3897 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3898 parent_bh)){
3899 *p = 0;
3900 BUFFER_TRACE(parent_bh,
0390131b
FM
3901 "call ext4_handle_dirty_metadata");
3902 ext4_handle_dirty_metadata(handle,
3903 inode,
3904 parent_bh);
ac27a0ec
DK
3905 }
3906 }
3907 }
3908 } else {
3909 /* We have reached the bottom of the tree. */
3910 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3911 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3912 }
3913}
3914
91ef4caf
DG
3915int ext4_can_truncate(struct inode *inode)
3916{
3917 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3918 return 0;
3919 if (S_ISREG(inode->i_mode))
3920 return 1;
3921 if (S_ISDIR(inode->i_mode))
3922 return 1;
3923 if (S_ISLNK(inode->i_mode))
3924 return !ext4_inode_is_fast_symlink(inode);
3925 return 0;
3926}
3927
ac27a0ec 3928/*
617ba13b 3929 * ext4_truncate()
ac27a0ec 3930 *
617ba13b
MC
3931 * We block out ext4_get_block() block instantiations across the entire
3932 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3933 * simultaneously on behalf of the same inode.
3934 *
3935 * As we work through the truncate and commmit bits of it to the journal there
3936 * is one core, guiding principle: the file's tree must always be consistent on
3937 * disk. We must be able to restart the truncate after a crash.
3938 *
3939 * The file's tree may be transiently inconsistent in memory (although it
3940 * probably isn't), but whenever we close off and commit a journal transaction,
3941 * the contents of (the filesystem + the journal) must be consistent and
3942 * restartable. It's pretty simple, really: bottom up, right to left (although
3943 * left-to-right works OK too).
3944 *
3945 * Note that at recovery time, journal replay occurs *before* the restart of
3946 * truncate against the orphan inode list.
3947 *
3948 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3949 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3950 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3951 * ext4_truncate() to have another go. So there will be instantiated blocks
3952 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3953 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3954 * ext4_truncate() run will find them and release them.
ac27a0ec 3955 */
617ba13b 3956void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3957{
3958 handle_t *handle;
617ba13b 3959 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3960 __le32 *i_data = ei->i_data;
617ba13b 3961 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3962 struct address_space *mapping = inode->i_mapping;
725d26d3 3963 ext4_lblk_t offsets[4];
ac27a0ec
DK
3964 Indirect chain[4];
3965 Indirect *partial;
3966 __le32 nr = 0;
3967 int n;
725d26d3 3968 ext4_lblk_t last_block;
ac27a0ec 3969 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3970
91ef4caf 3971 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3972 return;
3973
0eab9282
TT
3974 if (ei->i_disksize && inode->i_size == 0 &&
3975 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
3976 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3977
1d03ec98 3978 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3979 ext4_ext_truncate(inode);
1d03ec98
AK
3980 return;
3981 }
a86c6181 3982
ac27a0ec 3983 handle = start_transaction(inode);
cf108bca 3984 if (IS_ERR(handle))
ac27a0ec 3985 return; /* AKPM: return what? */
ac27a0ec
DK
3986
3987 last_block = (inode->i_size + blocksize-1)
617ba13b 3988 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3989
cf108bca
JK
3990 if (inode->i_size & (blocksize - 1))
3991 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3992 goto out_stop;
ac27a0ec 3993
617ba13b 3994 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3995 if (n == 0)
3996 goto out_stop; /* error */
3997
3998 /*
3999 * OK. This truncate is going to happen. We add the inode to the
4000 * orphan list, so that if this truncate spans multiple transactions,
4001 * and we crash, we will resume the truncate when the filesystem
4002 * recovers. It also marks the inode dirty, to catch the new size.
4003 *
4004 * Implication: the file must always be in a sane, consistent
4005 * truncatable state while each transaction commits.
4006 */
617ba13b 4007 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4008 goto out_stop;
4009
632eaeab
MC
4010 /*
4011 * From here we block out all ext4_get_block() callers who want to
4012 * modify the block allocation tree.
4013 */
4014 down_write(&ei->i_data_sem);
b4df2030 4015
c2ea3fde 4016 ext4_discard_preallocations(inode);
b4df2030 4017
ac27a0ec
DK
4018 /*
4019 * The orphan list entry will now protect us from any crash which
4020 * occurs before the truncate completes, so it is now safe to propagate
4021 * the new, shorter inode size (held for now in i_size) into the
4022 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4023 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4024 */
4025 ei->i_disksize = inode->i_size;
4026
ac27a0ec 4027 if (n == 1) { /* direct blocks */
617ba13b
MC
4028 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4029 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4030 goto do_indirects;
4031 }
4032
617ba13b 4033 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4034 /* Kill the top of shared branch (not detached) */
4035 if (nr) {
4036 if (partial == chain) {
4037 /* Shared branch grows from the inode */
617ba13b 4038 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4039 &nr, &nr+1, (chain+n-1) - partial);
4040 *partial->p = 0;
4041 /*
4042 * We mark the inode dirty prior to restart,
4043 * and prior to stop. No need for it here.
4044 */
4045 } else {
4046 /* Shared branch grows from an indirect block */
4047 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4048 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4049 partial->p,
4050 partial->p+1, (chain+n-1) - partial);
4051 }
4052 }
4053 /* Clear the ends of indirect blocks on the shared branch */
4054 while (partial > chain) {
617ba13b 4055 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4056 (__le32*)partial->bh->b_data+addr_per_block,
4057 (chain+n-1) - partial);
4058 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4059 brelse(partial->bh);
ac27a0ec
DK
4060 partial--;
4061 }
4062do_indirects:
4063 /* Kill the remaining (whole) subtrees */
4064 switch (offsets[0]) {
4065 default:
617ba13b 4066 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4067 if (nr) {
617ba13b
MC
4068 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4069 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4070 }
617ba13b
MC
4071 case EXT4_IND_BLOCK:
4072 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4073 if (nr) {
617ba13b
MC
4074 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4075 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4076 }
617ba13b
MC
4077 case EXT4_DIND_BLOCK:
4078 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4079 if (nr) {
617ba13b
MC
4080 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4081 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4082 }
617ba13b 4083 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4084 ;
4085 }
4086
0e855ac8 4087 up_write(&ei->i_data_sem);
ef7f3835 4088 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4089 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4090
4091 /*
4092 * In a multi-transaction truncate, we only make the final transaction
4093 * synchronous
4094 */
4095 if (IS_SYNC(inode))
0390131b 4096 ext4_handle_sync(handle);
ac27a0ec
DK
4097out_stop:
4098 /*
4099 * If this was a simple ftruncate(), and the file will remain alive
4100 * then we need to clear up the orphan record which we created above.
4101 * However, if this was a real unlink then we were called by
617ba13b 4102 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4103 * orphan info for us.
4104 */
4105 if (inode->i_nlink)
617ba13b 4106 ext4_orphan_del(handle, inode);
ac27a0ec 4107
617ba13b 4108 ext4_journal_stop(handle);
ac27a0ec
DK
4109}
4110
ac27a0ec 4111/*
617ba13b 4112 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4113 * underlying buffer_head on success. If 'in_mem' is true, we have all
4114 * data in memory that is needed to recreate the on-disk version of this
4115 * inode.
4116 */
617ba13b
MC
4117static int __ext4_get_inode_loc(struct inode *inode,
4118 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4119{
240799cd
TT
4120 struct ext4_group_desc *gdp;
4121 struct buffer_head *bh;
4122 struct super_block *sb = inode->i_sb;
4123 ext4_fsblk_t block;
4124 int inodes_per_block, inode_offset;
4125
3a06d778 4126 iloc->bh = NULL;
240799cd
TT
4127 if (!ext4_valid_inum(sb, inode->i_ino))
4128 return -EIO;
ac27a0ec 4129
240799cd
TT
4130 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4131 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4132 if (!gdp)
ac27a0ec
DK
4133 return -EIO;
4134
240799cd
TT
4135 /*
4136 * Figure out the offset within the block group inode table
4137 */
4138 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4139 inode_offset = ((inode->i_ino - 1) %
4140 EXT4_INODES_PER_GROUP(sb));
4141 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4142 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4143
4144 bh = sb_getblk(sb, block);
ac27a0ec 4145 if (!bh) {
240799cd
TT
4146 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4147 "inode block - inode=%lu, block=%llu",
4148 inode->i_ino, block);
ac27a0ec
DK
4149 return -EIO;
4150 }
4151 if (!buffer_uptodate(bh)) {
4152 lock_buffer(bh);
9c83a923
HK
4153
4154 /*
4155 * If the buffer has the write error flag, we have failed
4156 * to write out another inode in the same block. In this
4157 * case, we don't have to read the block because we may
4158 * read the old inode data successfully.
4159 */
4160 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4161 set_buffer_uptodate(bh);
4162
ac27a0ec
DK
4163 if (buffer_uptodate(bh)) {
4164 /* someone brought it uptodate while we waited */
4165 unlock_buffer(bh);
4166 goto has_buffer;
4167 }
4168
4169 /*
4170 * If we have all information of the inode in memory and this
4171 * is the only valid inode in the block, we need not read the
4172 * block.
4173 */
4174 if (in_mem) {
4175 struct buffer_head *bitmap_bh;
240799cd 4176 int i, start;
ac27a0ec 4177
240799cd 4178 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4179
240799cd
TT
4180 /* Is the inode bitmap in cache? */
4181 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4182 if (!bitmap_bh)
4183 goto make_io;
4184
4185 /*
4186 * If the inode bitmap isn't in cache then the
4187 * optimisation may end up performing two reads instead
4188 * of one, so skip it.
4189 */
4190 if (!buffer_uptodate(bitmap_bh)) {
4191 brelse(bitmap_bh);
4192 goto make_io;
4193 }
240799cd 4194 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4195 if (i == inode_offset)
4196 continue;
617ba13b 4197 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4198 break;
4199 }
4200 brelse(bitmap_bh);
240799cd 4201 if (i == start + inodes_per_block) {
ac27a0ec
DK
4202 /* all other inodes are free, so skip I/O */
4203 memset(bh->b_data, 0, bh->b_size);
4204 set_buffer_uptodate(bh);
4205 unlock_buffer(bh);
4206 goto has_buffer;
4207 }
4208 }
4209
4210make_io:
240799cd
TT
4211 /*
4212 * If we need to do any I/O, try to pre-readahead extra
4213 * blocks from the inode table.
4214 */
4215 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4216 ext4_fsblk_t b, end, table;
4217 unsigned num;
4218
4219 table = ext4_inode_table(sb, gdp);
b713a5ec 4220 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4221 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4222 if (table > b)
4223 b = table;
4224 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4225 num = EXT4_INODES_PER_GROUP(sb);
4226 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4227 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4228 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4229 table += num / inodes_per_block;
4230 if (end > table)
4231 end = table;
4232 while (b <= end)
4233 sb_breadahead(sb, b++);
4234 }
4235
ac27a0ec
DK
4236 /*
4237 * There are other valid inodes in the buffer, this inode
4238 * has in-inode xattrs, or we don't have this inode in memory.
4239 * Read the block from disk.
4240 */
4241 get_bh(bh);
4242 bh->b_end_io = end_buffer_read_sync;
4243 submit_bh(READ_META, bh);
4244 wait_on_buffer(bh);
4245 if (!buffer_uptodate(bh)) {
240799cd
TT
4246 ext4_error(sb, __func__,
4247 "unable to read inode block - inode=%lu, "
4248 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4249 brelse(bh);
4250 return -EIO;
4251 }
4252 }
4253has_buffer:
4254 iloc->bh = bh;
4255 return 0;
4256}
4257
617ba13b 4258int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4259{
4260 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4261 return __ext4_get_inode_loc(inode, iloc,
4262 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4263}
4264
617ba13b 4265void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4266{
617ba13b 4267 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4268
4269 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4270 if (flags & EXT4_SYNC_FL)
ac27a0ec 4271 inode->i_flags |= S_SYNC;
617ba13b 4272 if (flags & EXT4_APPEND_FL)
ac27a0ec 4273 inode->i_flags |= S_APPEND;
617ba13b 4274 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4275 inode->i_flags |= S_IMMUTABLE;
617ba13b 4276 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4277 inode->i_flags |= S_NOATIME;
617ba13b 4278 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4279 inode->i_flags |= S_DIRSYNC;
4280}
4281
ff9ddf7e
JK
4282/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4283void ext4_get_inode_flags(struct ext4_inode_info *ei)
4284{
4285 unsigned int flags = ei->vfs_inode.i_flags;
4286
4287 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4288 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4289 if (flags & S_SYNC)
4290 ei->i_flags |= EXT4_SYNC_FL;
4291 if (flags & S_APPEND)
4292 ei->i_flags |= EXT4_APPEND_FL;
4293 if (flags & S_IMMUTABLE)
4294 ei->i_flags |= EXT4_IMMUTABLE_FL;
4295 if (flags & S_NOATIME)
4296 ei->i_flags |= EXT4_NOATIME_FL;
4297 if (flags & S_DIRSYNC)
4298 ei->i_flags |= EXT4_DIRSYNC_FL;
4299}
de9a55b8 4300
0fc1b451 4301static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4302 struct ext4_inode_info *ei)
0fc1b451
AK
4303{
4304 blkcnt_t i_blocks ;
8180a562
AK
4305 struct inode *inode = &(ei->vfs_inode);
4306 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4307
4308 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4309 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4310 /* we are using combined 48 bit field */
4311 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4312 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4313 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4314 /* i_blocks represent file system block size */
4315 return i_blocks << (inode->i_blkbits - 9);
4316 } else {
4317 return i_blocks;
4318 }
0fc1b451
AK
4319 } else {
4320 return le32_to_cpu(raw_inode->i_blocks_lo);
4321 }
4322}
ff9ddf7e 4323
1d1fe1ee 4324struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4325{
617ba13b
MC
4326 struct ext4_iloc iloc;
4327 struct ext4_inode *raw_inode;
1d1fe1ee 4328 struct ext4_inode_info *ei;
ac27a0ec 4329 struct buffer_head *bh;
1d1fe1ee
DH
4330 struct inode *inode;
4331 long ret;
ac27a0ec
DK
4332 int block;
4333
1d1fe1ee
DH
4334 inode = iget_locked(sb, ino);
4335 if (!inode)
4336 return ERR_PTR(-ENOMEM);
4337 if (!(inode->i_state & I_NEW))
4338 return inode;
4339
4340 ei = EXT4_I(inode);
ac27a0ec 4341
1d1fe1ee
DH
4342 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4343 if (ret < 0)
ac27a0ec
DK
4344 goto bad_inode;
4345 bh = iloc.bh;
617ba13b 4346 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4347 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4348 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4349 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4350 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4351 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4352 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4353 }
4354 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4355
4356 ei->i_state = 0;
4357 ei->i_dir_start_lookup = 0;
4358 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4359 /* We now have enough fields to check if the inode was active or not.
4360 * This is needed because nfsd might try to access dead inodes
4361 * the test is that same one that e2fsck uses
4362 * NeilBrown 1999oct15
4363 */
4364 if (inode->i_nlink == 0) {
4365 if (inode->i_mode == 0 ||
617ba13b 4366 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4367 /* this inode is deleted */
af5bc92d 4368 brelse(bh);
1d1fe1ee 4369 ret = -ESTALE;
ac27a0ec
DK
4370 goto bad_inode;
4371 }
4372 /* The only unlinked inodes we let through here have
4373 * valid i_mode and are being read by the orphan
4374 * recovery code: that's fine, we're about to complete
4375 * the process of deleting those. */
4376 }
ac27a0ec 4377 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4378 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4379 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4380 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4381 ei->i_file_acl |=
4382 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4383 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4384 ei->i_disksize = inode->i_size;
4385 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4386 ei->i_block_group = iloc.block_group;
a4912123 4387 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4388 /*
4389 * NOTE! The in-memory inode i_data array is in little-endian order
4390 * even on big-endian machines: we do NOT byteswap the block numbers!
4391 */
617ba13b 4392 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4393 ei->i_data[block] = raw_inode->i_block[block];
4394 INIT_LIST_HEAD(&ei->i_orphan);
4395
0040d987 4396 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4397 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4398 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4399 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4400 brelse(bh);
1d1fe1ee 4401 ret = -EIO;
ac27a0ec 4402 goto bad_inode;
e5d2861f 4403 }
ac27a0ec
DK
4404 if (ei->i_extra_isize == 0) {
4405 /* The extra space is currently unused. Use it. */
617ba13b
MC
4406 ei->i_extra_isize = sizeof(struct ext4_inode) -
4407 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4408 } else {
4409 __le32 *magic = (void *)raw_inode +
617ba13b 4410 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4411 ei->i_extra_isize;
617ba13b 4412 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4413 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4414 }
4415 } else
4416 ei->i_extra_isize = 0;
4417
ef7f3835
KS
4418 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4419 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4420 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4421 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4422
25ec56b5
JNC
4423 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4424 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4425 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4426 inode->i_version |=
4427 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4428 }
4429
c4b5a614 4430 ret = 0;
485c26ec 4431 if (ei->i_file_acl &&
de9a55b8 4432 ((ei->i_file_acl <
485c26ec
TT
4433 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4434 EXT4_SB(sb)->s_gdb_count)) ||
4435 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4436 ext4_error(sb, __func__,
4437 "bad extended attribute block %llu in inode #%lu",
4438 ei->i_file_acl, inode->i_ino);
4439 ret = -EIO;
4440 goto bad_inode;
4441 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4442 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4443 (S_ISLNK(inode->i_mode) &&
4444 !ext4_inode_is_fast_symlink(inode)))
4445 /* Validate extent which is part of inode */
4446 ret = ext4_ext_check_inode(inode);
de9a55b8 4447 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4448 (S_ISLNK(inode->i_mode) &&
4449 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4450 /* Validate block references which are part of inode */
fe2c8191
TN
4451 ret = ext4_check_inode_blockref(inode);
4452 }
4453 if (ret) {
de9a55b8
TT
4454 brelse(bh);
4455 goto bad_inode;
7a262f7c
AK
4456 }
4457
ac27a0ec 4458 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4459 inode->i_op = &ext4_file_inode_operations;
4460 inode->i_fop = &ext4_file_operations;
4461 ext4_set_aops(inode);
ac27a0ec 4462 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4463 inode->i_op = &ext4_dir_inode_operations;
4464 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4465 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4466 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4467 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4468 nd_terminate_link(ei->i_data, inode->i_size,
4469 sizeof(ei->i_data) - 1);
4470 } else {
617ba13b
MC
4471 inode->i_op = &ext4_symlink_inode_operations;
4472 ext4_set_aops(inode);
ac27a0ec 4473 }
563bdd61
TT
4474 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4475 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4476 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4477 if (raw_inode->i_block[0])
4478 init_special_inode(inode, inode->i_mode,
4479 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4480 else
4481 init_special_inode(inode, inode->i_mode,
4482 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4483 } else {
4484 brelse(bh);
4485 ret = -EIO;
de9a55b8 4486 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4487 "bogus i_mode (%o) for inode=%lu",
4488 inode->i_mode, inode->i_ino);
4489 goto bad_inode;
ac27a0ec 4490 }
af5bc92d 4491 brelse(iloc.bh);
617ba13b 4492 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4493 unlock_new_inode(inode);
4494 return inode;
ac27a0ec
DK
4495
4496bad_inode:
1d1fe1ee
DH
4497 iget_failed(inode);
4498 return ERR_PTR(ret);
ac27a0ec
DK
4499}
4500
0fc1b451
AK
4501static int ext4_inode_blocks_set(handle_t *handle,
4502 struct ext4_inode *raw_inode,
4503 struct ext4_inode_info *ei)
4504{
4505 struct inode *inode = &(ei->vfs_inode);
4506 u64 i_blocks = inode->i_blocks;
4507 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4508
4509 if (i_blocks <= ~0U) {
4510 /*
4511 * i_blocks can be represnted in a 32 bit variable
4512 * as multiple of 512 bytes
4513 */
8180a562 4514 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4515 raw_inode->i_blocks_high = 0;
8180a562 4516 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4517 return 0;
4518 }
4519 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4520 return -EFBIG;
4521
4522 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4523 /*
4524 * i_blocks can be represented in a 48 bit variable
4525 * as multiple of 512 bytes
4526 */
8180a562 4527 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4528 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4529 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4530 } else {
8180a562
AK
4531 ei->i_flags |= EXT4_HUGE_FILE_FL;
4532 /* i_block is stored in file system block size */
4533 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4534 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4535 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4536 }
f287a1a5 4537 return 0;
0fc1b451
AK
4538}
4539
ac27a0ec
DK
4540/*
4541 * Post the struct inode info into an on-disk inode location in the
4542 * buffer-cache. This gobbles the caller's reference to the
4543 * buffer_head in the inode location struct.
4544 *
4545 * The caller must have write access to iloc->bh.
4546 */
617ba13b 4547static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4548 struct inode *inode,
91ac6f43
FM
4549 struct ext4_iloc *iloc,
4550 int do_sync)
ac27a0ec 4551{
617ba13b
MC
4552 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4553 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4554 struct buffer_head *bh = iloc->bh;
4555 int err = 0, rc, block;
4556
4557 /* For fields not not tracking in the in-memory inode,
4558 * initialise them to zero for new inodes. */
617ba13b
MC
4559 if (ei->i_state & EXT4_STATE_NEW)
4560 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4561
ff9ddf7e 4562 ext4_get_inode_flags(ei);
ac27a0ec 4563 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4564 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4565 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4566 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4567/*
4568 * Fix up interoperability with old kernels. Otherwise, old inodes get
4569 * re-used with the upper 16 bits of the uid/gid intact
4570 */
af5bc92d 4571 if (!ei->i_dtime) {
ac27a0ec
DK
4572 raw_inode->i_uid_high =
4573 cpu_to_le16(high_16_bits(inode->i_uid));
4574 raw_inode->i_gid_high =
4575 cpu_to_le16(high_16_bits(inode->i_gid));
4576 } else {
4577 raw_inode->i_uid_high = 0;
4578 raw_inode->i_gid_high = 0;
4579 }
4580 } else {
4581 raw_inode->i_uid_low =
4582 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4583 raw_inode->i_gid_low =
4584 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4585 raw_inode->i_uid_high = 0;
4586 raw_inode->i_gid_high = 0;
4587 }
4588 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4589
4590 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4591 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4592 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4593 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4594
0fc1b451
AK
4595 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4596 goto out_brelse;
ac27a0ec 4597 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 4598 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
4599 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4600 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4601 raw_inode->i_file_acl_high =
4602 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4603 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4604 ext4_isize_set(raw_inode, ei->i_disksize);
4605 if (ei->i_disksize > 0x7fffffffULL) {
4606 struct super_block *sb = inode->i_sb;
4607 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4608 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4609 EXT4_SB(sb)->s_es->s_rev_level ==
4610 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4611 /* If this is the first large file
4612 * created, add a flag to the superblock.
4613 */
4614 err = ext4_journal_get_write_access(handle,
4615 EXT4_SB(sb)->s_sbh);
4616 if (err)
4617 goto out_brelse;
4618 ext4_update_dynamic_rev(sb);
4619 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4620 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4621 sb->s_dirt = 1;
0390131b
FM
4622 ext4_handle_sync(handle);
4623 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4624 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4625 }
4626 }
4627 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4628 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4629 if (old_valid_dev(inode->i_rdev)) {
4630 raw_inode->i_block[0] =
4631 cpu_to_le32(old_encode_dev(inode->i_rdev));
4632 raw_inode->i_block[1] = 0;
4633 } else {
4634 raw_inode->i_block[0] = 0;
4635 raw_inode->i_block[1] =
4636 cpu_to_le32(new_encode_dev(inode->i_rdev));
4637 raw_inode->i_block[2] = 0;
4638 }
de9a55b8
TT
4639 } else
4640 for (block = 0; block < EXT4_N_BLOCKS; block++)
4641 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4642
25ec56b5
JNC
4643 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4644 if (ei->i_extra_isize) {
4645 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4646 raw_inode->i_version_hi =
4647 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4648 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4649 }
4650
91ac6f43
FM
4651 /*
4652 * If we're not using a journal and we were called from
4653 * ext4_write_inode() to sync the inode (making do_sync true),
4654 * we can just use sync_dirty_buffer() directly to do our dirty
4655 * work. Testing s_journal here is a bit redundant but it's
4656 * worth it to avoid potential future trouble.
4657 */
4658 if (EXT4_SB(inode->i_sb)->s_journal == NULL && do_sync) {
4659 BUFFER_TRACE(bh, "call sync_dirty_buffer");
4660 sync_dirty_buffer(bh);
4661 } else {
4662 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4663 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4664 if (!err)
4665 err = rc;
4666 }
617ba13b 4667 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4668
4669out_brelse:
af5bc92d 4670 brelse(bh);
617ba13b 4671 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4672 return err;
4673}
4674
4675/*
617ba13b 4676 * ext4_write_inode()
ac27a0ec
DK
4677 *
4678 * We are called from a few places:
4679 *
4680 * - Within generic_file_write() for O_SYNC files.
4681 * Here, there will be no transaction running. We wait for any running
4682 * trasnaction to commit.
4683 *
4684 * - Within sys_sync(), kupdate and such.
4685 * We wait on commit, if tol to.
4686 *
4687 * - Within prune_icache() (PF_MEMALLOC == true)
4688 * Here we simply return. We can't afford to block kswapd on the
4689 * journal commit.
4690 *
4691 * In all cases it is actually safe for us to return without doing anything,
4692 * because the inode has been copied into a raw inode buffer in
617ba13b 4693 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4694 * knfsd.
4695 *
4696 * Note that we are absolutely dependent upon all inode dirtiers doing the
4697 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4698 * which we are interested.
4699 *
4700 * It would be a bug for them to not do this. The code:
4701 *
4702 * mark_inode_dirty(inode)
4703 * stuff();
4704 * inode->i_size = expr;
4705 *
4706 * is in error because a kswapd-driven write_inode() could occur while
4707 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4708 * will no longer be on the superblock's dirty inode list.
4709 */
617ba13b 4710int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 4711{
91ac6f43
FM
4712 int err;
4713
ac27a0ec
DK
4714 if (current->flags & PF_MEMALLOC)
4715 return 0;
4716
91ac6f43
FM
4717 if (EXT4_SB(inode->i_sb)->s_journal) {
4718 if (ext4_journal_current_handle()) {
4719 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4720 dump_stack();
4721 return -EIO;
4722 }
ac27a0ec 4723
91ac6f43
FM
4724 if (!wait)
4725 return 0;
4726
4727 err = ext4_force_commit(inode->i_sb);
4728 } else {
4729 struct ext4_iloc iloc;
ac27a0ec 4730
91ac6f43
FM
4731 err = ext4_get_inode_loc(inode, &iloc);
4732 if (err)
4733 return err;
4734 err = ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE,
4735 inode, &iloc, wait);
4736 }
4737 return err;
ac27a0ec
DK
4738}
4739
4740/*
617ba13b 4741 * ext4_setattr()
ac27a0ec
DK
4742 *
4743 * Called from notify_change.
4744 *
4745 * We want to trap VFS attempts to truncate the file as soon as
4746 * possible. In particular, we want to make sure that when the VFS
4747 * shrinks i_size, we put the inode on the orphan list and modify
4748 * i_disksize immediately, so that during the subsequent flushing of
4749 * dirty pages and freeing of disk blocks, we can guarantee that any
4750 * commit will leave the blocks being flushed in an unused state on
4751 * disk. (On recovery, the inode will get truncated and the blocks will
4752 * be freed, so we have a strong guarantee that no future commit will
4753 * leave these blocks visible to the user.)
4754 *
678aaf48
JK
4755 * Another thing we have to assure is that if we are in ordered mode
4756 * and inode is still attached to the committing transaction, we must
4757 * we start writeout of all the dirty pages which are being truncated.
4758 * This way we are sure that all the data written in the previous
4759 * transaction are already on disk (truncate waits for pages under
4760 * writeback).
4761 *
4762 * Called with inode->i_mutex down.
ac27a0ec 4763 */
617ba13b 4764int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4765{
4766 struct inode *inode = dentry->d_inode;
4767 int error, rc = 0;
4768 const unsigned int ia_valid = attr->ia_valid;
4769
4770 error = inode_change_ok(inode, attr);
4771 if (error)
4772 return error;
4773
4774 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4775 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4776 handle_t *handle;
4777
4778 /* (user+group)*(old+new) structure, inode write (sb,
4779 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4780 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4781 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4782 if (IS_ERR(handle)) {
4783 error = PTR_ERR(handle);
4784 goto err_out;
4785 }
a269eb18 4786 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4787 if (error) {
617ba13b 4788 ext4_journal_stop(handle);
ac27a0ec
DK
4789 return error;
4790 }
4791 /* Update corresponding info in inode so that everything is in
4792 * one transaction */
4793 if (attr->ia_valid & ATTR_UID)
4794 inode->i_uid = attr->ia_uid;
4795 if (attr->ia_valid & ATTR_GID)
4796 inode->i_gid = attr->ia_gid;
617ba13b
MC
4797 error = ext4_mark_inode_dirty(handle, inode);
4798 ext4_journal_stop(handle);
ac27a0ec
DK
4799 }
4800
e2b46574
ES
4801 if (attr->ia_valid & ATTR_SIZE) {
4802 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4803 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4804
4805 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4806 error = -EFBIG;
4807 goto err_out;
4808 }
4809 }
4810 }
4811
ac27a0ec
DK
4812 if (S_ISREG(inode->i_mode) &&
4813 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4814 handle_t *handle;
4815
617ba13b 4816 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4817 if (IS_ERR(handle)) {
4818 error = PTR_ERR(handle);
4819 goto err_out;
4820 }
4821
617ba13b
MC
4822 error = ext4_orphan_add(handle, inode);
4823 EXT4_I(inode)->i_disksize = attr->ia_size;
4824 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4825 if (!error)
4826 error = rc;
617ba13b 4827 ext4_journal_stop(handle);
678aaf48
JK
4828
4829 if (ext4_should_order_data(inode)) {
4830 error = ext4_begin_ordered_truncate(inode,
4831 attr->ia_size);
4832 if (error) {
4833 /* Do as much error cleanup as possible */
4834 handle = ext4_journal_start(inode, 3);
4835 if (IS_ERR(handle)) {
4836 ext4_orphan_del(NULL, inode);
4837 goto err_out;
4838 }
4839 ext4_orphan_del(handle, inode);
4840 ext4_journal_stop(handle);
4841 goto err_out;
4842 }
4843 }
ac27a0ec
DK
4844 }
4845
4846 rc = inode_setattr(inode, attr);
4847
617ba13b 4848 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4849 * transaction handle at all, we need to clean up the in-core
4850 * orphan list manually. */
4851 if (inode->i_nlink)
617ba13b 4852 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4853
4854 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4855 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4856
4857err_out:
617ba13b 4858 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4859 if (!error)
4860 error = rc;
4861 return error;
4862}
4863
3e3398a0
MC
4864int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4865 struct kstat *stat)
4866{
4867 struct inode *inode;
4868 unsigned long delalloc_blocks;
4869
4870 inode = dentry->d_inode;
4871 generic_fillattr(inode, stat);
4872
4873 /*
4874 * We can't update i_blocks if the block allocation is delayed
4875 * otherwise in the case of system crash before the real block
4876 * allocation is done, we will have i_blocks inconsistent with
4877 * on-disk file blocks.
4878 * We always keep i_blocks updated together with real
4879 * allocation. But to not confuse with user, stat
4880 * will return the blocks that include the delayed allocation
4881 * blocks for this file.
4882 */
4883 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4884 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4885 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4886
4887 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4888 return 0;
4889}
ac27a0ec 4890
a02908f1
MC
4891static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4892 int chunk)
4893{
4894 int indirects;
4895
4896 /* if nrblocks are contiguous */
4897 if (chunk) {
4898 /*
4899 * With N contiguous data blocks, it need at most
4900 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4901 * 2 dindirect blocks
4902 * 1 tindirect block
4903 */
4904 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4905 return indirects + 3;
4906 }
4907 /*
4908 * if nrblocks are not contiguous, worse case, each block touch
4909 * a indirect block, and each indirect block touch a double indirect
4910 * block, plus a triple indirect block
4911 */
4912 indirects = nrblocks * 2 + 1;
4913 return indirects;
4914}
4915
4916static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4917{
4918 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4919 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4920 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4921}
ac51d837 4922
ac27a0ec 4923/*
a02908f1
MC
4924 * Account for index blocks, block groups bitmaps and block group
4925 * descriptor blocks if modify datablocks and index blocks
4926 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4927 *
a02908f1
MC
4928 * If datablocks are discontiguous, they are possible to spread over
4929 * different block groups too. If they are contiugous, with flexbg,
4930 * they could still across block group boundary.
ac27a0ec 4931 *
a02908f1
MC
4932 * Also account for superblock, inode, quota and xattr blocks
4933 */
4934int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4935{
8df9675f
TT
4936 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4937 int gdpblocks;
a02908f1
MC
4938 int idxblocks;
4939 int ret = 0;
4940
4941 /*
4942 * How many index blocks need to touch to modify nrblocks?
4943 * The "Chunk" flag indicating whether the nrblocks is
4944 * physically contiguous on disk
4945 *
4946 * For Direct IO and fallocate, they calls get_block to allocate
4947 * one single extent at a time, so they could set the "Chunk" flag
4948 */
4949 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4950
4951 ret = idxblocks;
4952
4953 /*
4954 * Now let's see how many group bitmaps and group descriptors need
4955 * to account
4956 */
4957 groups = idxblocks;
4958 if (chunk)
4959 groups += 1;
4960 else
4961 groups += nrblocks;
4962
4963 gdpblocks = groups;
8df9675f
TT
4964 if (groups > ngroups)
4965 groups = ngroups;
a02908f1
MC
4966 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4967 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4968
4969 /* bitmaps and block group descriptor blocks */
4970 ret += groups + gdpblocks;
4971
4972 /* Blocks for super block, inode, quota and xattr blocks */
4973 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4974
4975 return ret;
4976}
4977
4978/*
4979 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4980 * the modification of a single pages into a single transaction,
4981 * which may include multiple chunks of block allocations.
ac27a0ec 4982 *
525f4ed8 4983 * This could be called via ext4_write_begin()
ac27a0ec 4984 *
525f4ed8 4985 * We need to consider the worse case, when
a02908f1 4986 * one new block per extent.
ac27a0ec 4987 */
a86c6181 4988int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4989{
617ba13b 4990 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4991 int ret;
4992
a02908f1 4993 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4994
a02908f1 4995 /* Account for data blocks for journalled mode */
617ba13b 4996 if (ext4_should_journal_data(inode))
a02908f1 4997 ret += bpp;
ac27a0ec
DK
4998 return ret;
4999}
f3bd1f3f
MC
5000
5001/*
5002 * Calculate the journal credits for a chunk of data modification.
5003 *
5004 * This is called from DIO, fallocate or whoever calling
12b7ac17 5005 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5006 *
5007 * journal buffers for data blocks are not included here, as DIO
5008 * and fallocate do no need to journal data buffers.
5009 */
5010int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5011{
5012 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5013}
5014
ac27a0ec 5015/*
617ba13b 5016 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5017 * Give this, we know that the caller already has write access to iloc->bh.
5018 */
617ba13b 5019int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5020 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5021{
5022 int err = 0;
5023
25ec56b5
JNC
5024 if (test_opt(inode->i_sb, I_VERSION))
5025 inode_inc_iversion(inode);
5026
ac27a0ec
DK
5027 /* the do_update_inode consumes one bh->b_count */
5028 get_bh(iloc->bh);
5029
dab291af 5030 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
91ac6f43 5031 err = ext4_do_update_inode(handle, inode, iloc, 0);
ac27a0ec
DK
5032 put_bh(iloc->bh);
5033 return err;
5034}
5035
5036/*
5037 * On success, We end up with an outstanding reference count against
5038 * iloc->bh. This _must_ be cleaned up later.
5039 */
5040
5041int
617ba13b
MC
5042ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5043 struct ext4_iloc *iloc)
ac27a0ec 5044{
0390131b
FM
5045 int err;
5046
5047 err = ext4_get_inode_loc(inode, iloc);
5048 if (!err) {
5049 BUFFER_TRACE(iloc->bh, "get_write_access");
5050 err = ext4_journal_get_write_access(handle, iloc->bh);
5051 if (err) {
5052 brelse(iloc->bh);
5053 iloc->bh = NULL;
ac27a0ec
DK
5054 }
5055 }
617ba13b 5056 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5057 return err;
5058}
5059
6dd4ee7c
KS
5060/*
5061 * Expand an inode by new_extra_isize bytes.
5062 * Returns 0 on success or negative error number on failure.
5063 */
1d03ec98
AK
5064static int ext4_expand_extra_isize(struct inode *inode,
5065 unsigned int new_extra_isize,
5066 struct ext4_iloc iloc,
5067 handle_t *handle)
6dd4ee7c
KS
5068{
5069 struct ext4_inode *raw_inode;
5070 struct ext4_xattr_ibody_header *header;
5071 struct ext4_xattr_entry *entry;
5072
5073 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5074 return 0;
5075
5076 raw_inode = ext4_raw_inode(&iloc);
5077
5078 header = IHDR(inode, raw_inode);
5079 entry = IFIRST(header);
5080
5081 /* No extended attributes present */
5082 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5083 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5084 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5085 new_extra_isize);
5086 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5087 return 0;
5088 }
5089
5090 /* try to expand with EAs present */
5091 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5092 raw_inode, handle);
5093}
5094
ac27a0ec
DK
5095/*
5096 * What we do here is to mark the in-core inode as clean with respect to inode
5097 * dirtiness (it may still be data-dirty).
5098 * This means that the in-core inode may be reaped by prune_icache
5099 * without having to perform any I/O. This is a very good thing,
5100 * because *any* task may call prune_icache - even ones which
5101 * have a transaction open against a different journal.
5102 *
5103 * Is this cheating? Not really. Sure, we haven't written the
5104 * inode out, but prune_icache isn't a user-visible syncing function.
5105 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5106 * we start and wait on commits.
5107 *
5108 * Is this efficient/effective? Well, we're being nice to the system
5109 * by cleaning up our inodes proactively so they can be reaped
5110 * without I/O. But we are potentially leaving up to five seconds'
5111 * worth of inodes floating about which prune_icache wants us to
5112 * write out. One way to fix that would be to get prune_icache()
5113 * to do a write_super() to free up some memory. It has the desired
5114 * effect.
5115 */
617ba13b 5116int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5117{
617ba13b 5118 struct ext4_iloc iloc;
6dd4ee7c
KS
5119 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5120 static unsigned int mnt_count;
5121 int err, ret;
ac27a0ec
DK
5122
5123 might_sleep();
617ba13b 5124 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5125 if (ext4_handle_valid(handle) &&
5126 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5127 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5128 /*
5129 * We need extra buffer credits since we may write into EA block
5130 * with this same handle. If journal_extend fails, then it will
5131 * only result in a minor loss of functionality for that inode.
5132 * If this is felt to be critical, then e2fsck should be run to
5133 * force a large enough s_min_extra_isize.
5134 */
5135 if ((jbd2_journal_extend(handle,
5136 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5137 ret = ext4_expand_extra_isize(inode,
5138 sbi->s_want_extra_isize,
5139 iloc, handle);
5140 if (ret) {
5141 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5142 if (mnt_count !=
5143 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5144 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5145 "Unable to expand inode %lu. Delete"
5146 " some EAs or run e2fsck.",
5147 inode->i_ino);
c1bddad9
AK
5148 mnt_count =
5149 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5150 }
5151 }
5152 }
5153 }
ac27a0ec 5154 if (!err)
617ba13b 5155 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5156 return err;
5157}
5158
5159/*
617ba13b 5160 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5161 *
5162 * We're really interested in the case where a file is being extended.
5163 * i_size has been changed by generic_commit_write() and we thus need
5164 * to include the updated inode in the current transaction.
5165 *
a269eb18 5166 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5167 * are allocated to the file.
5168 *
5169 * If the inode is marked synchronous, we don't honour that here - doing
5170 * so would cause a commit on atime updates, which we don't bother doing.
5171 * We handle synchronous inodes at the highest possible level.
5172 */
617ba13b 5173void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5174{
617ba13b 5175 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5176 handle_t *handle;
5177
0390131b
FM
5178 if (!ext4_handle_valid(current_handle)) {
5179 ext4_mark_inode_dirty(current_handle, inode);
5180 return;
5181 }
5182
617ba13b 5183 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5184 if (IS_ERR(handle))
5185 goto out;
5186 if (current_handle &&
5187 current_handle->h_transaction != handle->h_transaction) {
5188 /* This task has a transaction open against a different fs */
5189 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5190 __func__);
ac27a0ec
DK
5191 } else {
5192 jbd_debug(5, "marking dirty. outer handle=%p\n",
5193 current_handle);
617ba13b 5194 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5195 }
617ba13b 5196 ext4_journal_stop(handle);
ac27a0ec
DK
5197out:
5198 return;
5199}
5200
5201#if 0
5202/*
5203 * Bind an inode's backing buffer_head into this transaction, to prevent
5204 * it from being flushed to disk early. Unlike
617ba13b 5205 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5206 * returns no iloc structure, so the caller needs to repeat the iloc
5207 * lookup to mark the inode dirty later.
5208 */
617ba13b 5209static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5210{
617ba13b 5211 struct ext4_iloc iloc;
ac27a0ec
DK
5212
5213 int err = 0;
5214 if (handle) {
617ba13b 5215 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5216 if (!err) {
5217 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5218 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5219 if (!err)
0390131b
FM
5220 err = ext4_handle_dirty_metadata(handle,
5221 inode,
5222 iloc.bh);
ac27a0ec
DK
5223 brelse(iloc.bh);
5224 }
5225 }
617ba13b 5226 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5227 return err;
5228}
5229#endif
5230
617ba13b 5231int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5232{
5233 journal_t *journal;
5234 handle_t *handle;
5235 int err;
5236
5237 /*
5238 * We have to be very careful here: changing a data block's
5239 * journaling status dynamically is dangerous. If we write a
5240 * data block to the journal, change the status and then delete
5241 * that block, we risk forgetting to revoke the old log record
5242 * from the journal and so a subsequent replay can corrupt data.
5243 * So, first we make sure that the journal is empty and that
5244 * nobody is changing anything.
5245 */
5246
617ba13b 5247 journal = EXT4_JOURNAL(inode);
0390131b
FM
5248 if (!journal)
5249 return 0;
d699594d 5250 if (is_journal_aborted(journal))
ac27a0ec
DK
5251 return -EROFS;
5252
dab291af
MC
5253 jbd2_journal_lock_updates(journal);
5254 jbd2_journal_flush(journal);
ac27a0ec
DK
5255
5256 /*
5257 * OK, there are no updates running now, and all cached data is
5258 * synced to disk. We are now in a completely consistent state
5259 * which doesn't have anything in the journal, and we know that
5260 * no filesystem updates are running, so it is safe to modify
5261 * the inode's in-core data-journaling state flag now.
5262 */
5263
5264 if (val)
617ba13b 5265 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5266 else
617ba13b
MC
5267 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5268 ext4_set_aops(inode);
ac27a0ec 5269
dab291af 5270 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5271
5272 /* Finally we can mark the inode as dirty. */
5273
617ba13b 5274 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5275 if (IS_ERR(handle))
5276 return PTR_ERR(handle);
5277
617ba13b 5278 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5279 ext4_handle_sync(handle);
617ba13b
MC
5280 ext4_journal_stop(handle);
5281 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5282
5283 return err;
5284}
2e9ee850
AK
5285
5286static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5287{
5288 return !buffer_mapped(bh);
5289}
5290
c2ec175c 5291int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5292{
c2ec175c 5293 struct page *page = vmf->page;
2e9ee850
AK
5294 loff_t size;
5295 unsigned long len;
5296 int ret = -EINVAL;
79f0be8d 5297 void *fsdata;
2e9ee850
AK
5298 struct file *file = vma->vm_file;
5299 struct inode *inode = file->f_path.dentry->d_inode;
5300 struct address_space *mapping = inode->i_mapping;
5301
5302 /*
5303 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5304 * get i_mutex because we are already holding mmap_sem.
5305 */
5306 down_read(&inode->i_alloc_sem);
5307 size = i_size_read(inode);
5308 if (page->mapping != mapping || size <= page_offset(page)
5309 || !PageUptodate(page)) {
5310 /* page got truncated from under us? */
5311 goto out_unlock;
5312 }
5313 ret = 0;
5314 if (PageMappedToDisk(page))
5315 goto out_unlock;
5316
5317 if (page->index == size >> PAGE_CACHE_SHIFT)
5318 len = size & ~PAGE_CACHE_MASK;
5319 else
5320 len = PAGE_CACHE_SIZE;
5321
a827eaff
AK
5322 lock_page(page);
5323 /*
5324 * return if we have all the buffers mapped. This avoid
5325 * the need to call write_begin/write_end which does a
5326 * journal_start/journal_stop which can block and take
5327 * long time
5328 */
2e9ee850 5329 if (page_has_buffers(page)) {
2e9ee850 5330 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5331 ext4_bh_unmapped)) {
5332 unlock_page(page);
2e9ee850 5333 goto out_unlock;
a827eaff 5334 }
2e9ee850 5335 }
a827eaff 5336 unlock_page(page);
2e9ee850
AK
5337 /*
5338 * OK, we need to fill the hole... Do write_begin write_end
5339 * to do block allocation/reservation.We are not holding
5340 * inode.i__mutex here. That allow * parallel write_begin,
5341 * write_end call. lock_page prevent this from happening
5342 * on the same page though
5343 */
5344 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5345 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5346 if (ret < 0)
5347 goto out_unlock;
5348 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5349 len, len, page, fsdata);
2e9ee850
AK
5350 if (ret < 0)
5351 goto out_unlock;
5352 ret = 0;
5353out_unlock:
c2ec175c
NP
5354 if (ret)
5355 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5356 up_read(&inode->i_alloc_sem);
5357 return ret;
5358}