]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: Handle -EDQUOT error on write
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
d2a17637 45#include "ext4_extents.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7f5aa215
JK
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
678aaf48
JK
58}
59
64769240
AT
60static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
ac27a0ec
DK
62/*
63 * Test whether an inode is a fast symlink.
64 */
617ba13b 65static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 66{
617ba13b 67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71}
72
ac27a0ec
DK
73/*
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
76 */
77static unsigned long blocks_for_truncate(struct inode *inode)
78{
725d26d3 79 ext4_lblk_t needed;
ac27a0ec
DK
80
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
617ba13b 86 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
91
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
617ba13b
MC
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 96
617ba13b 97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
98}
99
100/*
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
104 *
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
109 */
110static handle_t *start_transaction(struct inode *inode)
111{
112 handle_t *result;
113
617ba13b 114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
115 if (!IS_ERR(result))
116 return result;
117
617ba13b 118 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
119 return result;
120}
121
122/*
123 * Try to extend this transaction for the purposes of truncation.
124 *
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
127 */
128static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129{
0390131b
FM
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 133 return 0;
617ba13b 134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
135 return 0;
136 return 1;
137}
138
139/*
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
143 */
fa5d1113 144int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 145 int nblocks)
ac27a0ec 146{
487caeef
JK
147 int ret;
148
149 /*
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
154 */
0390131b 155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 156 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 160 ext4_discard_preallocations(inode);
487caeef
JK
161
162 return ret;
ac27a0ec
DK
163}
164
165/*
166 * Called at the last iput() if i_nlink is zero.
167 */
af5bc92d 168void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
169{
170 handle_t *handle;
bc965ab3 171 int err;
ac27a0ec 172
678aaf48
JK
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
175 truncate_inode_pages(&inode->i_data, 0);
176
177 if (is_bad_inode(inode))
178 goto no_delete;
179
bc965ab3 180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 181 if (IS_ERR(handle)) {
bc965ab3 182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
183 /*
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
187 */
617ba13b 188 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
189 goto no_delete;
190 }
191
192 if (IS_SYNC(inode))
0390131b 193 ext4_handle_sync(handle);
ac27a0ec 194 inode->i_size = 0;
bc965ab3
TT
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb, __func__,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
200 }
ac27a0ec 201 if (inode->i_blocks)
617ba13b 202 ext4_truncate(inode);
bc965ab3
TT
203
204 /*
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
209 */
0390131b 210 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb, __func__,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
220 }
221 }
222
ac27a0ec 223 /*
617ba13b 224 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 225 * AKPM: I think this can be inside the above `if'.
617ba13b 226 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 227 * deletion of a non-existent orphan - this is because we don't
617ba13b 228 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
229 * (Well, we could do this if we need to, but heck - it works)
230 */
617ba13b
MC
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
233
234 /*
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
240 */
617ba13b 241 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
617ba13b
MC
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
ac27a0ec
DK
247 return;
248no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
250}
251
252typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256} Indirect;
257
258static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259{
260 p->key = *(p->p = v);
261 p->bh = bh;
262}
263
ac27a0ec 264/**
617ba13b 265 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
8c55e204
DK
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
ac27a0ec 271 *
617ba13b 272 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
279 *
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
283 */
284
285/*
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
293 */
294
617ba13b 295static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 298{
617ba13b
MC
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
306
c333e073 307 if (i_block < direct_blocks) {
ac27a0ec
DK
308 offsets[n++] = i_block;
309 final = direct_blocks;
af5bc92d 310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 311 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 315 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 320 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
e2b46574 326 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
327 "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
330 }
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
334}
335
fe2c8191 336static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
337 __le32 *p, unsigned int max)
338{
f73953c0 339 __le32 *bref = p;
6fd058f7
TT
340 unsigned int blk;
341
fe2c8191 342 while (bref < p+max) {
6fd058f7 343 blk = le32_to_cpu(*bref++);
de9a55b8
TT
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 346 blk, 1))) {
fe2c8191 347 ext4_error(inode->i_sb, function,
6fd058f7
TT
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
350 return -EIO;
351 }
352 }
353 return 0;
fe2c8191
TN
354}
355
356
357#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361#define ext4_check_inode_blockref(inode) \
de9a55b8 362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
363 EXT4_NDIR_BLOCKS)
364
ac27a0ec 365/**
617ba13b 366 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
372 *
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
384 *
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
ac27a0ec
DK
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
391 *
392 * Need to be called with
0e855ac8 393 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 394 */
725d26d3
AK
395static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
ac27a0ec
DK
397 Indirect chain[4], int *err)
398{
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
402
403 *err = 0;
404 /* i_data is not going away, no lock needed */
af5bc92d 405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
fe2c8191
TN
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
ac27a0ec 411 goto failure;
de9a55b8 412
fe2c8191
TN
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
417 }
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
422 }
423 }
de9a55b8 424
af5bc92d 425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
429 }
430 return NULL;
431
ac27a0ec
DK
432failure:
433 *err = -EIO;
434no_block:
435 return p;
436}
437
438/**
617ba13b 439 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
440 * @inode: owner
441 * @ind: descriptor of indirect block.
442 *
1cc8dcf5 443 * This function returns the preferred place for block allocation.
ac27a0ec
DK
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
450 *
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
455 *
456 * Caller must make sure that @ind is valid and will stay that way.
457 */
617ba13b 458static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 459{
617ba13b 460 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 462 __le32 *p;
617ba13b 463 ext4_fsblk_t bg_start;
74d3487f 464 ext4_fsblk_t last_block;
617ba13b 465 ext4_grpblk_t colour;
a4912123
TT
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
468
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
473 }
474
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
478
479 /*
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
482 */
a4912123
TT
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
488 }
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
a4912123
TT
492 /*
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
495 */
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
498
74d3487f
VC
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
617ba13b 501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
504 return bg_start + colour;
505}
506
507/**
1cc8dcf5 508 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
509 * @inode: owner
510 * @block: block we want
ac27a0ec 511 * @partial: pointer to the last triple within a chain
ac27a0ec 512 *
1cc8dcf5 513 * Normally this function find the preferred place for block allocation,
fb01bfda 514 * returns it.
fb0a387d
ES
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
ac27a0ec 517 */
725d26d3 518static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 519 Indirect *partial)
ac27a0ec 520{
fb0a387d
ES
521 ext4_fsblk_t goal;
522
ac27a0ec 523 /*
c2ea3fde 524 * XXX need to get goal block from mballoc's data structures
ac27a0ec 525 */
ac27a0ec 526
fb0a387d
ES
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
ac27a0ec
DK
530}
531
532/**
617ba13b 533 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
534 * of direct blocks need to be allocated for the given branch.
535 *
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
540 *
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
543 */
498e5f24 544static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 545 int blocks_to_boundary)
ac27a0ec 546{
498e5f24 547 unsigned int count = 0;
ac27a0ec
DK
548
549 /*
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
552 */
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
560 }
561
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
566 }
567 return count;
568}
569
570/**
617ba13b 571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
574 *
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
579 */
617ba13b 580static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 584{
815a1130 585 struct ext4_allocation_request ar;
ac27a0ec 586 int target, i;
7061eba7 587 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 588 int index = 0;
617ba13b 589 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
590 int ret = 0;
591
592 /*
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
599 */
7061eba7
AK
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
ac27a0ec
DK
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
ac27a0ec
DK
607 if (*err)
608 goto failed_out;
609
fb0a387d
ES
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
ac27a0ec
DK
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
617 }
7061eba7
AK
618 if (count > 0) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
ac27a0ec 627 break;
7061eba7 628 }
ac27a0ec
DK
629 }
630
7061eba7
AK
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
815a1130
TT
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
644
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
fb0a387d 646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
815a1130 647
7061eba7
AK
648 if (*err && (target == blks)) {
649 /*
650 * if the allocation failed and we didn't allocate
651 * any blocks before
652 */
653 goto failed_out;
654 }
655 if (!*err) {
656 if (target == blks) {
de9a55b8
TT
657 /*
658 * save the new block number
659 * for the first direct block
660 */
7061eba7
AK
661 new_blocks[index] = current_block;
662 }
815a1130 663 blk_allocated += ar.len;
7061eba7
AK
664 }
665allocated:
ac27a0ec 666 /* total number of blocks allocated for direct blocks */
7061eba7 667 ret = blk_allocated;
ac27a0ec
DK
668 *err = 0;
669 return ret;
670failed_out:
af5bc92d 671 for (i = 0; i < index; i++)
e6362609 672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
673 return ret;
674}
675
676/**
617ba13b 677 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
683 *
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
617ba13b 688 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 691 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
695 *
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
617ba13b 698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
699 * as described above and return 0.
700 */
617ba13b 701static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
705{
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
617ba13b
MC
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
ac27a0ec 713
7061eba7 714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
718
719 branch[0].key = cpu_to_le32(new_blocks[0]);
720 /*
721 * metadata blocks and data blocks are allocated.
722 */
723 for (n = 1; n <= indirect_blks; n++) {
724 /*
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
728 */
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 733 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 734 if (err) {
6487a9d3
CW
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
ac27a0ec 737 unlock_buffer(bh);
ac27a0ec
DK
738 goto failed;
739 }
740
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
af5bc92d 745 if (n == indirect_blks) {
ac27a0ec
DK
746 current_block = new_blocks[n];
747 /*
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
751 */
de9a55b8 752 for (i = 1; i < num; i++)
ac27a0ec
DK
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
754 }
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
758
0390131b
FM
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
761 if (err)
762 goto failed;
763 }
764 *blks = num;
765 return err;
766failed:
767 /* Allocation failed, free what we already allocated */
e6362609 768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 769 for (i = 1; i <= n ; i++) {
b7e57e7c 770 /*
e6362609
TT
771 * branch[i].bh is newly allocated, so there is no
772 * need to revoke the block, which is why we don't
773 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 774 */
e6362609
TT
775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 777 }
e6362609
TT
778 for (i = n+1; i < indirect_blks; i++)
779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 780
e6362609 781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
782
783 return err;
784}
785
786/**
617ba13b 787 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
788 * @inode: owner
789 * @block: (logical) number of block we are adding
790 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 791 * ext4_alloc_branch)
ac27a0ec
DK
792 * @where: location of missing link
793 * @num: number of indirect blocks we are adding
794 * @blks: number of direct blocks we are adding
795 *
796 * This function fills the missing link and does all housekeeping needed in
797 * inode (->i_blocks, etc.). In case of success we end up with the full
798 * chain to new block and return 0.
799 */
617ba13b 800static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
801 ext4_lblk_t block, Indirect *where, int num,
802 int blks)
ac27a0ec
DK
803{
804 int i;
805 int err = 0;
617ba13b 806 ext4_fsblk_t current_block;
ac27a0ec 807
ac27a0ec
DK
808 /*
809 * If we're splicing into a [td]indirect block (as opposed to the
810 * inode) then we need to get write access to the [td]indirect block
811 * before the splice.
812 */
813 if (where->bh) {
814 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 815 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
816 if (err)
817 goto err_out;
818 }
819 /* That's it */
820
821 *where->p = where->key;
822
823 /*
824 * Update the host buffer_head or inode to point to more just allocated
825 * direct blocks blocks
826 */
827 if (num == 0 && blks > 1) {
828 current_block = le32_to_cpu(where->key) + 1;
829 for (i = 1; i < blks; i++)
af5bc92d 830 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
831 }
832
ac27a0ec 833 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
834 /* had we spliced it onto indirect block? */
835 if (where->bh) {
836 /*
837 * If we spliced it onto an indirect block, we haven't
838 * altered the inode. Note however that if it is being spliced
839 * onto an indirect block at the very end of the file (the
840 * file is growing) then we *will* alter the inode to reflect
841 * the new i_size. But that is not done here - it is done in
617ba13b 842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
843 */
844 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
847 if (err)
848 goto err_out;
849 } else {
850 /*
851 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 852 */
41591750 853 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
854 jbd_debug(5, "splicing direct\n");
855 }
856 return err;
857
858err_out:
859 for (i = 1; i <= num; i++) {
b7e57e7c 860 /*
e6362609
TT
861 * branch[i].bh is newly allocated, so there is no
862 * need to revoke the block, which is why we don't
863 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 864 */
e6362609
TT
865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 867 }
e6362609
TT
868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 blks, 0);
ac27a0ec
DK
870
871 return err;
872}
873
874/*
b920c755
TT
875 * The ext4_ind_get_blocks() function handles non-extents inodes
876 * (i.e., using the traditional indirect/double-indirect i_blocks
877 * scheme) for ext4_get_blocks().
878 *
ac27a0ec
DK
879 * Allocation strategy is simple: if we have to allocate something, we will
880 * have to go the whole way to leaf. So let's do it before attaching anything
881 * to tree, set linkage between the newborn blocks, write them if sync is
882 * required, recheck the path, free and repeat if check fails, otherwise
883 * set the last missing link (that will protect us from any truncate-generated
884 * removals - all blocks on the path are immune now) and possibly force the
885 * write on the parent block.
886 * That has a nice additional property: no special recovery from the failed
887 * allocations is needed - we simply release blocks and do not touch anything
888 * reachable from inode.
889 *
890 * `handle' can be NULL if create == 0.
891 *
ac27a0ec
DK
892 * return > 0, # of blocks mapped or allocated.
893 * return = 0, if plain lookup failed.
894 * return < 0, error case.
c278bfec 895 *
b920c755
TT
896 * The ext4_ind_get_blocks() function should be called with
897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900 * blocks.
ac27a0ec 901 */
e4d996ca 902static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
903 ext4_lblk_t iblock, unsigned int maxblocks,
904 struct buffer_head *bh_result,
905 int flags)
ac27a0ec
DK
906{
907 int err = -EIO;
725d26d3 908 ext4_lblk_t offsets[4];
ac27a0ec
DK
909 Indirect chain[4];
910 Indirect *partial;
617ba13b 911 ext4_fsblk_t goal;
ac27a0ec
DK
912 int indirect_blks;
913 int blocks_to_boundary = 0;
914 int depth;
ac27a0ec 915 int count = 0;
617ba13b 916 ext4_fsblk_t first_block = 0;
ac27a0ec 917
a86c6181 918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 920 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 921 &blocks_to_boundary);
ac27a0ec
DK
922
923 if (depth == 0)
924 goto out;
925
617ba13b 926 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
927
928 /* Simplest case - block found, no allocation needed */
929 if (!partial) {
930 first_block = le32_to_cpu(chain[depth - 1].key);
931 clear_buffer_new(bh_result);
932 count++;
933 /*map more blocks*/
934 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 935 ext4_fsblk_t blk;
ac27a0ec 936
ac27a0ec
DK
937 blk = le32_to_cpu(*(chain[depth-1].p + count));
938
939 if (blk == first_block + count)
940 count++;
941 else
942 break;
943 }
c278bfec 944 goto got_it;
ac27a0ec
DK
945 }
946
947 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
949 goto cleanup;
950
ac27a0ec 951 /*
c2ea3fde 952 * Okay, we need to do block allocation.
ac27a0ec 953 */
fb01bfda 954 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
955
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks = (chain + depth) - partial - 1;
958
959 /*
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
962 */
617ba13b 963 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
964 maxblocks, blocks_to_boundary);
965 /*
617ba13b 966 * Block out ext4_truncate while we alter the tree
ac27a0ec 967 */
7061eba7 968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
969 &count, goal,
970 offsets + (partial - chain), partial);
ac27a0ec
DK
971
972 /*
617ba13b 973 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
978 */
979 if (!err)
617ba13b 980 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8 981 partial, indirect_blks, count);
2bba702d 982 if (err)
ac27a0ec
DK
983 goto cleanup;
984
985 set_buffer_new(bh_result);
b436b9be
JK
986
987 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec
DK
988got_it:
989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 if (count > blocks_to_boundary)
991 set_buffer_boundary(bh_result);
992 err = count;
993 /* Clean up and exit */
994 partial = chain + depth - 1; /* the whole chain */
995cleanup:
996 while (partial > chain) {
997 BUFFER_TRACE(partial->bh, "call brelse");
998 brelse(partial->bh);
999 partial--;
1000 }
1001 BUFFER_TRACE(bh_result, "returned");
1002out:
1003 return err;
1004}
1005
a9e7f447
DM
1006#ifdef CONFIG_QUOTA
1007qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1008{
a9e7f447 1009 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1010}
a9e7f447 1011#endif
9d0be502 1012
12219aea
AK
1013/*
1014 * Calculate the number of metadata blocks need to reserve
9d0be502 1015 * to allocate a new block at @lblocks for non extent file based file
12219aea 1016 */
9d0be502
TT
1017static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018 sector_t lblock)
12219aea 1019{
9d0be502
TT
1020 struct ext4_inode_info *ei = EXT4_I(inode);
1021 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022 int blk_bits;
12219aea 1023
9d0be502
TT
1024 if (lblock < EXT4_NDIR_BLOCKS)
1025 return 0;
12219aea 1026
9d0be502 1027 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1028
9d0be502
TT
1029 if (ei->i_da_metadata_calc_len &&
1030 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031 ei->i_da_metadata_calc_len++;
1032 return 0;
1033 }
1034 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035 ei->i_da_metadata_calc_len = 1;
1036 blk_bits = roundup_pow_of_two(lblock + 1);
1037 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1038}
1039
1040/*
1041 * Calculate the number of metadata blocks need to reserve
9d0be502 1042 * to allocate a block located at @lblock
12219aea 1043 */
9d0be502 1044static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea
AK
1045{
1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
9d0be502 1047 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1048
9d0be502 1049 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1050}
1051
0637c6f4
TT
1052/*
1053 * Called with i_data_sem down, which is important since we can call
1054 * ext4_discard_preallocations() from here.
1055 */
12219aea
AK
1056static void ext4_da_update_reserve_space(struct inode *inode, int used)
1057{
1058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4
TT
1059 struct ext4_inode_info *ei = EXT4_I(inode);
1060 int mdb_free = 0;
1061
1062 spin_lock(&ei->i_block_reservation_lock);
1063 if (unlikely(used > ei->i_reserved_data_blocks)) {
1064 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1065 "with only %d reserved data blocks\n",
1066 __func__, inode->i_ino, used,
1067 ei->i_reserved_data_blocks);
1068 WARN_ON(1);
1069 used = ei->i_reserved_data_blocks;
1070 }
12219aea 1071
0637c6f4
TT
1072 /* Update per-inode reservations */
1073 ei->i_reserved_data_blocks -= used;
1074 used += ei->i_allocated_meta_blocks;
1075 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1076 ei->i_allocated_meta_blocks = 0;
1077 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
6bc6e63f 1078
0637c6f4
TT
1079 if (ei->i_reserved_data_blocks == 0) {
1080 /*
1081 * We can release all of the reserved metadata blocks
1082 * only when we have written all of the delayed
1083 * allocation blocks.
1084 */
ee5f4d9c
TT
1085 mdb_free = ei->i_reserved_meta_blocks;
1086 ei->i_reserved_meta_blocks = 0;
9d0be502 1087 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1088 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
6bc6e63f 1089 }
12219aea 1090 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1091
0637c6f4
TT
1092 /* Update quota subsystem */
1093 vfs_dq_claim_block(inode, used);
60e58e0f
MC
1094 if (mdb_free)
1095 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1096
1097 /*
1098 * If we have done all the pending block allocations and if
1099 * there aren't any writers on the inode, we can discard the
1100 * inode's preallocations.
1101 */
0637c6f4
TT
1102 if ((ei->i_reserved_data_blocks == 0) &&
1103 (atomic_read(&inode->i_writecount) == 0))
d6014301 1104 ext4_discard_preallocations(inode);
12219aea
AK
1105}
1106
80e42468
TT
1107static int check_block_validity(struct inode *inode, const char *msg,
1108 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1109{
1110 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
80e42468 1111 ext4_error(inode->i_sb, msg,
6fd058f7
TT
1112 "inode #%lu logical block %llu mapped to %llu "
1113 "(size %d)", inode->i_ino,
1114 (unsigned long long) logical,
1115 (unsigned long long) phys, len);
6fd058f7
TT
1116 return -EIO;
1117 }
1118 return 0;
1119}
1120
55138e0b 1121/*
1f94533d
TT
1122 * Return the number of contiguous dirty pages in a given inode
1123 * starting at page frame idx.
55138e0b
TT
1124 */
1125static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1126 unsigned int max_pages)
1127{
1128 struct address_space *mapping = inode->i_mapping;
1129 pgoff_t index;
1130 struct pagevec pvec;
1131 pgoff_t num = 0;
1132 int i, nr_pages, done = 0;
1133
1134 if (max_pages == 0)
1135 return 0;
1136 pagevec_init(&pvec, 0);
1137 while (!done) {
1138 index = idx;
1139 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1140 PAGECACHE_TAG_DIRTY,
1141 (pgoff_t)PAGEVEC_SIZE);
1142 if (nr_pages == 0)
1143 break;
1144 for (i = 0; i < nr_pages; i++) {
1145 struct page *page = pvec.pages[i];
1146 struct buffer_head *bh, *head;
1147
1148 lock_page(page);
1149 if (unlikely(page->mapping != mapping) ||
1150 !PageDirty(page) ||
1151 PageWriteback(page) ||
1152 page->index != idx) {
1153 done = 1;
1154 unlock_page(page);
1155 break;
1156 }
1f94533d
TT
1157 if (page_has_buffers(page)) {
1158 bh = head = page_buffers(page);
1159 do {
1160 if (!buffer_delay(bh) &&
1161 !buffer_unwritten(bh))
1162 done = 1;
1163 bh = bh->b_this_page;
1164 } while (!done && (bh != head));
1165 }
55138e0b
TT
1166 unlock_page(page);
1167 if (done)
1168 break;
1169 idx++;
1170 num++;
1171 if (num >= max_pages)
1172 break;
1173 }
1174 pagevec_release(&pvec);
1175 }
1176 return num;
1177}
1178
f5ab0d1f 1179/*
12b7ac17 1180 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1181 * and returns if the blocks are already mapped.
f5ab0d1f 1182 *
f5ab0d1f
MC
1183 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1184 * and store the allocated blocks in the result buffer head and mark it
1185 * mapped.
1186 *
1187 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1188 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1189 * based files
1190 *
1191 * On success, it returns the number of blocks being mapped or allocate.
1192 * if create==0 and the blocks are pre-allocated and uninitialized block,
1193 * the result buffer head is unmapped. If the create ==1, it will make sure
1194 * the buffer head is mapped.
1195 *
1196 * It returns 0 if plain look up failed (blocks have not been allocated), in
1197 * that casem, buffer head is unmapped
1198 *
1199 * It returns the error in case of allocation failure.
1200 */
12b7ac17
TT
1201int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1202 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1203 int flags)
0e855ac8
AK
1204{
1205 int retval;
f5ab0d1f
MC
1206
1207 clear_buffer_mapped(bh);
2a8964d6 1208 clear_buffer_unwritten(bh);
f5ab0d1f 1209
0031462b
MC
1210 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1211 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1212 (unsigned long)block);
4df3d265 1213 /*
b920c755
TT
1214 * Try to see if we can get the block without requesting a new
1215 * file system block.
4df3d265
AK
1216 */
1217 down_read((&EXT4_I(inode)->i_data_sem));
1218 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1219 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1220 bh, 0);
0e855ac8 1221 } else {
e4d996ca 1222 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1223 bh, 0);
0e855ac8 1224 }
4df3d265 1225 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1226
6fd058f7 1227 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1228 int ret = check_block_validity(inode, "file system corruption",
1229 block, bh->b_blocknr, retval);
6fd058f7
TT
1230 if (ret != 0)
1231 return ret;
1232 }
1233
f5ab0d1f 1234 /* If it is only a block(s) look up */
c2177057 1235 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1236 return retval;
1237
1238 /*
1239 * Returns if the blocks have already allocated
1240 *
1241 * Note that if blocks have been preallocated
1242 * ext4_ext_get_block() returns th create = 0
1243 * with buffer head unmapped.
1244 */
1245 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1246 return retval;
1247
2a8964d6
AK
1248 /*
1249 * When we call get_blocks without the create flag, the
1250 * BH_Unwritten flag could have gotten set if the blocks
1251 * requested were part of a uninitialized extent. We need to
1252 * clear this flag now that we are committed to convert all or
1253 * part of the uninitialized extent to be an initialized
1254 * extent. This is because we need to avoid the combination
1255 * of BH_Unwritten and BH_Mapped flags being simultaneously
1256 * set on the buffer_head.
1257 */
1258 clear_buffer_unwritten(bh);
1259
4df3d265 1260 /*
f5ab0d1f
MC
1261 * New blocks allocate and/or writing to uninitialized extent
1262 * will possibly result in updating i_data, so we take
1263 * the write lock of i_data_sem, and call get_blocks()
1264 * with create == 1 flag.
4df3d265
AK
1265 */
1266 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1267
1268 /*
1269 * if the caller is from delayed allocation writeout path
1270 * we have already reserved fs blocks for allocation
1271 * let the underlying get_block() function know to
1272 * avoid double accounting
1273 */
c2177057 1274 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1275 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1276 /*
1277 * We need to check for EXT4 here because migrate
1278 * could have changed the inode type in between
1279 */
0e855ac8
AK
1280 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1281 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1282 bh, flags);
0e855ac8 1283 } else {
e4d996ca 1284 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1285 max_blocks, bh, flags);
267e4db9
AK
1286
1287 if (retval > 0 && buffer_new(bh)) {
1288 /*
1289 * We allocated new blocks which will result in
1290 * i_data's format changing. Force the migrate
1291 * to fail by clearing migrate flags
1292 */
1b9c12f4 1293 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
267e4db9 1294 }
0e855ac8 1295 }
d2a17637 1296
2ac3b6e0 1297 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1298 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1299
1300 /*
1301 * Update reserved blocks/metadata blocks after successful
1302 * block allocation which had been deferred till now.
1303 */
1304 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1305 ext4_da_update_reserve_space(inode, retval);
d2a17637 1306
4df3d265 1307 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1308 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1309 int ret = check_block_validity(inode, "file system "
1310 "corruption after allocation",
1311 block, bh->b_blocknr, retval);
6fd058f7
TT
1312 if (ret != 0)
1313 return ret;
1314 }
0e855ac8
AK
1315 return retval;
1316}
1317
f3bd1f3f
MC
1318/* Maximum number of blocks we map for direct IO at once. */
1319#define DIO_MAX_BLOCKS 4096
1320
6873fa0d
ES
1321int ext4_get_block(struct inode *inode, sector_t iblock,
1322 struct buffer_head *bh_result, int create)
ac27a0ec 1323{
3e4fdaf8 1324 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1325 int ret = 0, started = 0;
ac27a0ec 1326 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1327 int dio_credits;
ac27a0ec 1328
7fb5409d
JK
1329 if (create && !handle) {
1330 /* Direct IO write... */
1331 if (max_blocks > DIO_MAX_BLOCKS)
1332 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1333 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1334 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1335 if (IS_ERR(handle)) {
ac27a0ec 1336 ret = PTR_ERR(handle);
7fb5409d 1337 goto out;
ac27a0ec 1338 }
7fb5409d 1339 started = 1;
ac27a0ec
DK
1340 }
1341
12b7ac17 1342 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1343 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1344 if (ret > 0) {
1345 bh_result->b_size = (ret << inode->i_blkbits);
1346 ret = 0;
ac27a0ec 1347 }
7fb5409d
JK
1348 if (started)
1349 ext4_journal_stop(handle);
1350out:
ac27a0ec
DK
1351 return ret;
1352}
1353
1354/*
1355 * `handle' can be NULL if create is zero
1356 */
617ba13b 1357struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1358 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1359{
1360 struct buffer_head dummy;
1361 int fatal = 0, err;
03f5d8bc 1362 int flags = 0;
ac27a0ec
DK
1363
1364 J_ASSERT(handle != NULL || create == 0);
1365
1366 dummy.b_state = 0;
1367 dummy.b_blocknr = -1000;
1368 buffer_trace_init(&dummy.b_history);
c2177057
TT
1369 if (create)
1370 flags |= EXT4_GET_BLOCKS_CREATE;
1371 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1372 /*
c2177057
TT
1373 * ext4_get_blocks() returns number of blocks mapped. 0 in
1374 * case of a HOLE.
ac27a0ec
DK
1375 */
1376 if (err > 0) {
1377 if (err > 1)
1378 WARN_ON(1);
1379 err = 0;
1380 }
1381 *errp = err;
1382 if (!err && buffer_mapped(&dummy)) {
1383 struct buffer_head *bh;
1384 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1385 if (!bh) {
1386 *errp = -EIO;
1387 goto err;
1388 }
1389 if (buffer_new(&dummy)) {
1390 J_ASSERT(create != 0);
ac39849d 1391 J_ASSERT(handle != NULL);
ac27a0ec
DK
1392
1393 /*
1394 * Now that we do not always journal data, we should
1395 * keep in mind whether this should always journal the
1396 * new buffer as metadata. For now, regular file
617ba13b 1397 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1398 * problem.
1399 */
1400 lock_buffer(bh);
1401 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1402 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1403 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1404 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1405 set_buffer_uptodate(bh);
1406 }
1407 unlock_buffer(bh);
0390131b
FM
1408 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1409 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1410 if (!fatal)
1411 fatal = err;
1412 } else {
1413 BUFFER_TRACE(bh, "not a new buffer");
1414 }
1415 if (fatal) {
1416 *errp = fatal;
1417 brelse(bh);
1418 bh = NULL;
1419 }
1420 return bh;
1421 }
1422err:
1423 return NULL;
1424}
1425
617ba13b 1426struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1427 ext4_lblk_t block, int create, int *err)
ac27a0ec 1428{
af5bc92d 1429 struct buffer_head *bh;
ac27a0ec 1430
617ba13b 1431 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1432 if (!bh)
1433 return bh;
1434 if (buffer_uptodate(bh))
1435 return bh;
1436 ll_rw_block(READ_META, 1, &bh);
1437 wait_on_buffer(bh);
1438 if (buffer_uptodate(bh))
1439 return bh;
1440 put_bh(bh);
1441 *err = -EIO;
1442 return NULL;
1443}
1444
af5bc92d
TT
1445static int walk_page_buffers(handle_t *handle,
1446 struct buffer_head *head,
1447 unsigned from,
1448 unsigned to,
1449 int *partial,
1450 int (*fn)(handle_t *handle,
1451 struct buffer_head *bh))
ac27a0ec
DK
1452{
1453 struct buffer_head *bh;
1454 unsigned block_start, block_end;
1455 unsigned blocksize = head->b_size;
1456 int err, ret = 0;
1457 struct buffer_head *next;
1458
af5bc92d
TT
1459 for (bh = head, block_start = 0;
1460 ret == 0 && (bh != head || !block_start);
de9a55b8 1461 block_start = block_end, bh = next) {
ac27a0ec
DK
1462 next = bh->b_this_page;
1463 block_end = block_start + blocksize;
1464 if (block_end <= from || block_start >= to) {
1465 if (partial && !buffer_uptodate(bh))
1466 *partial = 1;
1467 continue;
1468 }
1469 err = (*fn)(handle, bh);
1470 if (!ret)
1471 ret = err;
1472 }
1473 return ret;
1474}
1475
1476/*
1477 * To preserve ordering, it is essential that the hole instantiation and
1478 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1479 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1480 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1481 * prepare_write() is the right place.
1482 *
617ba13b
MC
1483 * Also, this function can nest inside ext4_writepage() ->
1484 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1485 * has generated enough buffer credits to do the whole page. So we won't
1486 * block on the journal in that case, which is good, because the caller may
1487 * be PF_MEMALLOC.
1488 *
617ba13b 1489 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1490 * quota file writes. If we were to commit the transaction while thus
1491 * reentered, there can be a deadlock - we would be holding a quota
1492 * lock, and the commit would never complete if another thread had a
1493 * transaction open and was blocking on the quota lock - a ranking
1494 * violation.
1495 *
dab291af 1496 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1497 * will _not_ run commit under these circumstances because handle->h_ref
1498 * is elevated. We'll still have enough credits for the tiny quotafile
1499 * write.
1500 */
1501static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1502 struct buffer_head *bh)
ac27a0ec
DK
1503{
1504 if (!buffer_mapped(bh) || buffer_freed(bh))
1505 return 0;
617ba13b 1506 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1507}
1508
b9a4207d
JK
1509/*
1510 * Truncate blocks that were not used by write. We have to truncate the
1511 * pagecache as well so that corresponding buffers get properly unmapped.
1512 */
1513static void ext4_truncate_failed_write(struct inode *inode)
1514{
1515 truncate_inode_pages(inode->i_mapping, inode->i_size);
1516 ext4_truncate(inode);
1517}
1518
bfc1af65 1519static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1520 loff_t pos, unsigned len, unsigned flags,
1521 struct page **pagep, void **fsdata)
ac27a0ec 1522{
af5bc92d 1523 struct inode *inode = mapping->host;
1938a150 1524 int ret, needed_blocks;
ac27a0ec
DK
1525 handle_t *handle;
1526 int retries = 0;
af5bc92d 1527 struct page *page;
de9a55b8 1528 pgoff_t index;
af5bc92d 1529 unsigned from, to;
bfc1af65 1530
9bffad1e 1531 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1532 /*
1533 * Reserve one block more for addition to orphan list in case
1534 * we allocate blocks but write fails for some reason
1535 */
1536 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1537 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1538 from = pos & (PAGE_CACHE_SIZE - 1);
1539 to = from + len;
ac27a0ec
DK
1540
1541retry:
af5bc92d
TT
1542 handle = ext4_journal_start(inode, needed_blocks);
1543 if (IS_ERR(handle)) {
1544 ret = PTR_ERR(handle);
1545 goto out;
7479d2b9 1546 }
ac27a0ec 1547
ebd3610b
JK
1548 /* We cannot recurse into the filesystem as the transaction is already
1549 * started */
1550 flags |= AOP_FLAG_NOFS;
1551
54566b2c 1552 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1553 if (!page) {
1554 ext4_journal_stop(handle);
1555 ret = -ENOMEM;
1556 goto out;
1557 }
1558 *pagep = page;
1559
bfc1af65 1560 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1561 ext4_get_block);
bfc1af65
NP
1562
1563 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1564 ret = walk_page_buffers(handle, page_buffers(page),
1565 from, to, NULL, do_journal_get_write_access);
1566 }
bfc1af65
NP
1567
1568 if (ret) {
af5bc92d 1569 unlock_page(page);
af5bc92d 1570 page_cache_release(page);
ae4d5372
AK
1571 /*
1572 * block_write_begin may have instantiated a few blocks
1573 * outside i_size. Trim these off again. Don't need
1574 * i_size_read because we hold i_mutex.
1938a150
AK
1575 *
1576 * Add inode to orphan list in case we crash before
1577 * truncate finishes
ae4d5372 1578 */
ffacfa7a 1579 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1580 ext4_orphan_add(handle, inode);
1581
1582 ext4_journal_stop(handle);
1583 if (pos + len > inode->i_size) {
b9a4207d 1584 ext4_truncate_failed_write(inode);
de9a55b8 1585 /*
ffacfa7a 1586 * If truncate failed early the inode might
1938a150
AK
1587 * still be on the orphan list; we need to
1588 * make sure the inode is removed from the
1589 * orphan list in that case.
1590 */
1591 if (inode->i_nlink)
1592 ext4_orphan_del(NULL, inode);
1593 }
bfc1af65
NP
1594 }
1595
617ba13b 1596 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1597 goto retry;
7479d2b9 1598out:
ac27a0ec
DK
1599 return ret;
1600}
1601
bfc1af65
NP
1602/* For write_end() in data=journal mode */
1603static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1604{
1605 if (!buffer_mapped(bh) || buffer_freed(bh))
1606 return 0;
1607 set_buffer_uptodate(bh);
0390131b 1608 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1609}
1610
f8514083 1611static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1612 struct address_space *mapping,
1613 loff_t pos, unsigned len, unsigned copied,
1614 struct page *page, void *fsdata)
f8514083
AK
1615{
1616 int i_size_changed = 0;
1617 struct inode *inode = mapping->host;
1618 handle_t *handle = ext4_journal_current_handle();
1619
1620 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1621
1622 /*
1623 * No need to use i_size_read() here, the i_size
1624 * cannot change under us because we hold i_mutex.
1625 *
1626 * But it's important to update i_size while still holding page lock:
1627 * page writeout could otherwise come in and zero beyond i_size.
1628 */
1629 if (pos + copied > inode->i_size) {
1630 i_size_write(inode, pos + copied);
1631 i_size_changed = 1;
1632 }
1633
1634 if (pos + copied > EXT4_I(inode)->i_disksize) {
1635 /* We need to mark inode dirty even if
1636 * new_i_size is less that inode->i_size
1637 * bu greater than i_disksize.(hint delalloc)
1638 */
1639 ext4_update_i_disksize(inode, (pos + copied));
1640 i_size_changed = 1;
1641 }
1642 unlock_page(page);
1643 page_cache_release(page);
1644
1645 /*
1646 * Don't mark the inode dirty under page lock. First, it unnecessarily
1647 * makes the holding time of page lock longer. Second, it forces lock
1648 * ordering of page lock and transaction start for journaling
1649 * filesystems.
1650 */
1651 if (i_size_changed)
1652 ext4_mark_inode_dirty(handle, inode);
1653
1654 return copied;
1655}
1656
ac27a0ec
DK
1657/*
1658 * We need to pick up the new inode size which generic_commit_write gave us
1659 * `file' can be NULL - eg, when called from page_symlink().
1660 *
617ba13b 1661 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1662 * buffers are managed internally.
1663 */
bfc1af65 1664static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1665 struct address_space *mapping,
1666 loff_t pos, unsigned len, unsigned copied,
1667 struct page *page, void *fsdata)
ac27a0ec 1668{
617ba13b 1669 handle_t *handle = ext4_journal_current_handle();
cf108bca 1670 struct inode *inode = mapping->host;
ac27a0ec
DK
1671 int ret = 0, ret2;
1672
9bffad1e 1673 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1674 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1675
1676 if (ret == 0) {
f8514083 1677 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1678 page, fsdata);
f8a87d89 1679 copied = ret2;
ffacfa7a 1680 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1681 /* if we have allocated more blocks and copied
1682 * less. We will have blocks allocated outside
1683 * inode->i_size. So truncate them
1684 */
1685 ext4_orphan_add(handle, inode);
f8a87d89
RK
1686 if (ret2 < 0)
1687 ret = ret2;
ac27a0ec 1688 }
617ba13b 1689 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1690 if (!ret)
1691 ret = ret2;
bfc1af65 1692
f8514083 1693 if (pos + len > inode->i_size) {
b9a4207d 1694 ext4_truncate_failed_write(inode);
de9a55b8 1695 /*
ffacfa7a 1696 * If truncate failed early the inode might still be
f8514083
AK
1697 * on the orphan list; we need to make sure the inode
1698 * is removed from the orphan list in that case.
1699 */
1700 if (inode->i_nlink)
1701 ext4_orphan_del(NULL, inode);
1702 }
1703
1704
bfc1af65 1705 return ret ? ret : copied;
ac27a0ec
DK
1706}
1707
bfc1af65 1708static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1709 struct address_space *mapping,
1710 loff_t pos, unsigned len, unsigned copied,
1711 struct page *page, void *fsdata)
ac27a0ec 1712{
617ba13b 1713 handle_t *handle = ext4_journal_current_handle();
cf108bca 1714 struct inode *inode = mapping->host;
ac27a0ec 1715 int ret = 0, ret2;
ac27a0ec 1716
9bffad1e 1717 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1718 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1719 page, fsdata);
f8a87d89 1720 copied = ret2;
ffacfa7a 1721 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1722 /* if we have allocated more blocks and copied
1723 * less. We will have blocks allocated outside
1724 * inode->i_size. So truncate them
1725 */
1726 ext4_orphan_add(handle, inode);
1727
f8a87d89
RK
1728 if (ret2 < 0)
1729 ret = ret2;
ac27a0ec 1730
617ba13b 1731 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1732 if (!ret)
1733 ret = ret2;
bfc1af65 1734
f8514083 1735 if (pos + len > inode->i_size) {
b9a4207d 1736 ext4_truncate_failed_write(inode);
de9a55b8 1737 /*
ffacfa7a 1738 * If truncate failed early the inode might still be
f8514083
AK
1739 * on the orphan list; we need to make sure the inode
1740 * is removed from the orphan list in that case.
1741 */
1742 if (inode->i_nlink)
1743 ext4_orphan_del(NULL, inode);
1744 }
1745
bfc1af65 1746 return ret ? ret : copied;
ac27a0ec
DK
1747}
1748
bfc1af65 1749static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1750 struct address_space *mapping,
1751 loff_t pos, unsigned len, unsigned copied,
1752 struct page *page, void *fsdata)
ac27a0ec 1753{
617ba13b 1754 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1755 struct inode *inode = mapping->host;
ac27a0ec
DK
1756 int ret = 0, ret2;
1757 int partial = 0;
bfc1af65 1758 unsigned from, to;
cf17fea6 1759 loff_t new_i_size;
ac27a0ec 1760
9bffad1e 1761 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1762 from = pos & (PAGE_CACHE_SIZE - 1);
1763 to = from + len;
1764
1765 if (copied < len) {
1766 if (!PageUptodate(page))
1767 copied = 0;
1768 page_zero_new_buffers(page, from+copied, to);
1769 }
ac27a0ec
DK
1770
1771 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1772 to, &partial, write_end_fn);
ac27a0ec
DK
1773 if (!partial)
1774 SetPageUptodate(page);
cf17fea6
AK
1775 new_i_size = pos + copied;
1776 if (new_i_size > inode->i_size)
bfc1af65 1777 i_size_write(inode, pos+copied);
617ba13b 1778 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1779 if (new_i_size > EXT4_I(inode)->i_disksize) {
1780 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1781 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1782 if (!ret)
1783 ret = ret2;
1784 }
bfc1af65 1785
cf108bca 1786 unlock_page(page);
f8514083 1787 page_cache_release(page);
ffacfa7a 1788 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1789 /* if we have allocated more blocks and copied
1790 * less. We will have blocks allocated outside
1791 * inode->i_size. So truncate them
1792 */
1793 ext4_orphan_add(handle, inode);
1794
617ba13b 1795 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1796 if (!ret)
1797 ret = ret2;
f8514083 1798 if (pos + len > inode->i_size) {
b9a4207d 1799 ext4_truncate_failed_write(inode);
de9a55b8 1800 /*
ffacfa7a 1801 * If truncate failed early the inode might still be
f8514083
AK
1802 * on the orphan list; we need to make sure the inode
1803 * is removed from the orphan list in that case.
1804 */
1805 if (inode->i_nlink)
1806 ext4_orphan_del(NULL, inode);
1807 }
bfc1af65
NP
1808
1809 return ret ? ret : copied;
ac27a0ec 1810}
d2a17637 1811
9d0be502
TT
1812/*
1813 * Reserve a single block located at lblock
1814 */
1815static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1816{
030ba6bc 1817 int retries = 0;
60e58e0f 1818 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1819 struct ext4_inode_info *ei = EXT4_I(inode);
9d0be502 1820 unsigned long md_needed, md_reserved;
d2a17637
MC
1821
1822 /*
1823 * recalculate the amount of metadata blocks to reserve
1824 * in order to allocate nrblocks
1825 * worse case is one extent per block
1826 */
030ba6bc 1827repeat:
0637c6f4
TT
1828 spin_lock(&ei->i_block_reservation_lock);
1829 md_reserved = ei->i_reserved_meta_blocks;
9d0be502 1830 md_needed = ext4_calc_metadata_amount(inode, lblock);
0637c6f4 1831 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1832
60e58e0f
MC
1833 /*
1834 * Make quota reservation here to prevent quota overflow
1835 * later. Real quota accounting is done at pages writeout
1836 * time.
1837 */
1db91382 1838 if (vfs_dq_reserve_block(inode, md_needed + 1))
60e58e0f 1839 return -EDQUOT;
60e58e0f 1840
9d0be502
TT
1841 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1842 vfs_dq_release_reservation_block(inode, md_needed + 1);
030ba6bc
AK
1843 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1844 yield();
1845 goto repeat;
1846 }
d2a17637
MC
1847 return -ENOSPC;
1848 }
0637c6f4 1849 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1850 ei->i_reserved_data_blocks++;
0637c6f4
TT
1851 ei->i_reserved_meta_blocks += md_needed;
1852 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1853
d2a17637
MC
1854 return 0; /* success */
1855}
1856
12219aea 1857static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1858{
1859 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1860 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1861
cd213226
MC
1862 if (!to_free)
1863 return; /* Nothing to release, exit */
1864
d2a17637 1865 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1866
0637c6f4 1867 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1868 /*
0637c6f4
TT
1869 * if there aren't enough reserved blocks, then the
1870 * counter is messed up somewhere. Since this
1871 * function is called from invalidate page, it's
1872 * harmless to return without any action.
cd213226 1873 */
0637c6f4
TT
1874 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1875 "ino %lu, to_free %d with only %d reserved "
1876 "data blocks\n", inode->i_ino, to_free,
1877 ei->i_reserved_data_blocks);
1878 WARN_ON(1);
1879 to_free = ei->i_reserved_data_blocks;
cd213226 1880 }
0637c6f4 1881 ei->i_reserved_data_blocks -= to_free;
cd213226 1882
0637c6f4
TT
1883 if (ei->i_reserved_data_blocks == 0) {
1884 /*
1885 * We can release all of the reserved metadata blocks
1886 * only when we have written all of the delayed
1887 * allocation blocks.
1888 */
ee5f4d9c
TT
1889 to_free += ei->i_reserved_meta_blocks;
1890 ei->i_reserved_meta_blocks = 0;
9d0be502 1891 ei->i_da_metadata_calc_len = 0;
0637c6f4 1892 }
d2a17637 1893
0637c6f4
TT
1894 /* update fs dirty blocks counter */
1895 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1896
d2a17637 1897 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1898
0637c6f4 1899 vfs_dq_release_reservation_block(inode, to_free);
d2a17637
MC
1900}
1901
1902static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1903 unsigned long offset)
d2a17637
MC
1904{
1905 int to_release = 0;
1906 struct buffer_head *head, *bh;
1907 unsigned int curr_off = 0;
1908
1909 head = page_buffers(page);
1910 bh = head;
1911 do {
1912 unsigned int next_off = curr_off + bh->b_size;
1913
1914 if ((offset <= curr_off) && (buffer_delay(bh))) {
1915 to_release++;
1916 clear_buffer_delay(bh);
1917 }
1918 curr_off = next_off;
1919 } while ((bh = bh->b_this_page) != head);
12219aea 1920 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1921}
ac27a0ec 1922
64769240
AT
1923/*
1924 * Delayed allocation stuff
1925 */
1926
64769240
AT
1927/*
1928 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1929 * them with writepage() call back
64769240
AT
1930 *
1931 * @mpd->inode: inode
1932 * @mpd->first_page: first page of the extent
1933 * @mpd->next_page: page after the last page of the extent
64769240
AT
1934 *
1935 * By the time mpage_da_submit_io() is called we expect all blocks
1936 * to be allocated. this may be wrong if allocation failed.
1937 *
1938 * As pages are already locked by write_cache_pages(), we can't use it
1939 */
1940static int mpage_da_submit_io(struct mpage_da_data *mpd)
1941{
22208ded 1942 long pages_skipped;
791b7f08
AK
1943 struct pagevec pvec;
1944 unsigned long index, end;
1945 int ret = 0, err, nr_pages, i;
1946 struct inode *inode = mpd->inode;
1947 struct address_space *mapping = inode->i_mapping;
64769240
AT
1948
1949 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1950 /*
1951 * We need to start from the first_page to the next_page - 1
1952 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1953 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1954 * at the currently mapped buffer_heads.
1955 */
64769240
AT
1956 index = mpd->first_page;
1957 end = mpd->next_page - 1;
1958
791b7f08 1959 pagevec_init(&pvec, 0);
64769240 1960 while (index <= end) {
791b7f08 1961 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1962 if (nr_pages == 0)
1963 break;
1964 for (i = 0; i < nr_pages; i++) {
1965 struct page *page = pvec.pages[i];
1966
791b7f08
AK
1967 index = page->index;
1968 if (index > end)
1969 break;
1970 index++;
1971
1972 BUG_ON(!PageLocked(page));
1973 BUG_ON(PageWriteback(page));
1974
22208ded 1975 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1976 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1977 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1978 /*
1979 * have successfully written the page
1980 * without skipping the same
1981 */
a1d6cc56 1982 mpd->pages_written++;
64769240
AT
1983 /*
1984 * In error case, we have to continue because
1985 * remaining pages are still locked
1986 * XXX: unlock and re-dirty them?
1987 */
1988 if (ret == 0)
1989 ret = err;
1990 }
1991 pagevec_release(&pvec);
1992 }
64769240
AT
1993 return ret;
1994}
1995
1996/*
1997 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1998 *
1999 * @mpd->inode - inode to walk through
2000 * @exbh->b_blocknr - first block on a disk
2001 * @exbh->b_size - amount of space in bytes
2002 * @logical - first logical block to start assignment with
2003 *
2004 * the function goes through all passed space and put actual disk
29fa89d0 2005 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
2006 */
2007static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2008 struct buffer_head *exbh)
2009{
2010 struct inode *inode = mpd->inode;
2011 struct address_space *mapping = inode->i_mapping;
2012 int blocks = exbh->b_size >> inode->i_blkbits;
2013 sector_t pblock = exbh->b_blocknr, cur_logical;
2014 struct buffer_head *head, *bh;
a1d6cc56 2015 pgoff_t index, end;
64769240
AT
2016 struct pagevec pvec;
2017 int nr_pages, i;
2018
2019 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2020 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2021 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2022
2023 pagevec_init(&pvec, 0);
2024
2025 while (index <= end) {
2026 /* XXX: optimize tail */
2027 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2028 if (nr_pages == 0)
2029 break;
2030 for (i = 0; i < nr_pages; i++) {
2031 struct page *page = pvec.pages[i];
2032
2033 index = page->index;
2034 if (index > end)
2035 break;
2036 index++;
2037
2038 BUG_ON(!PageLocked(page));
2039 BUG_ON(PageWriteback(page));
2040 BUG_ON(!page_has_buffers(page));
2041
2042 bh = page_buffers(page);
2043 head = bh;
2044
2045 /* skip blocks out of the range */
2046 do {
2047 if (cur_logical >= logical)
2048 break;
2049 cur_logical++;
2050 } while ((bh = bh->b_this_page) != head);
2051
2052 do {
2053 if (cur_logical >= logical + blocks)
2054 break;
29fa89d0
AK
2055
2056 if (buffer_delay(bh) ||
2057 buffer_unwritten(bh)) {
2058
2059 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2060
2061 if (buffer_delay(bh)) {
2062 clear_buffer_delay(bh);
2063 bh->b_blocknr = pblock;
2064 } else {
2065 /*
2066 * unwritten already should have
2067 * blocknr assigned. Verify that
2068 */
2069 clear_buffer_unwritten(bh);
2070 BUG_ON(bh->b_blocknr != pblock);
2071 }
2072
61628a3f 2073 } else if (buffer_mapped(bh))
64769240 2074 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2075
2076 cur_logical++;
2077 pblock++;
2078 } while ((bh = bh->b_this_page) != head);
2079 }
2080 pagevec_release(&pvec);
2081 }
2082}
2083
2084
2085/*
2086 * __unmap_underlying_blocks - just a helper function to unmap
2087 * set of blocks described by @bh
2088 */
2089static inline void __unmap_underlying_blocks(struct inode *inode,
2090 struct buffer_head *bh)
2091{
2092 struct block_device *bdev = inode->i_sb->s_bdev;
2093 int blocks, i;
2094
2095 blocks = bh->b_size >> inode->i_blkbits;
2096 for (i = 0; i < blocks; i++)
2097 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2098}
2099
c4a0c46e
AK
2100static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2101 sector_t logical, long blk_cnt)
2102{
2103 int nr_pages, i;
2104 pgoff_t index, end;
2105 struct pagevec pvec;
2106 struct inode *inode = mpd->inode;
2107 struct address_space *mapping = inode->i_mapping;
2108
2109 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2110 end = (logical + blk_cnt - 1) >>
2111 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2112 while (index <= end) {
2113 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2114 if (nr_pages == 0)
2115 break;
2116 for (i = 0; i < nr_pages; i++) {
2117 struct page *page = pvec.pages[i];
2118 index = page->index;
2119 if (index > end)
2120 break;
2121 index++;
2122
2123 BUG_ON(!PageLocked(page));
2124 BUG_ON(PageWriteback(page));
2125 block_invalidatepage(page, 0);
2126 ClearPageUptodate(page);
2127 unlock_page(page);
2128 }
2129 }
2130 return;
2131}
2132
df22291f
AK
2133static void ext4_print_free_blocks(struct inode *inode)
2134{
2135 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2136 printk(KERN_CRIT "Total free blocks count %lld\n",
2137 ext4_count_free_blocks(inode->i_sb));
2138 printk(KERN_CRIT "Free/Dirty block details\n");
2139 printk(KERN_CRIT "free_blocks=%lld\n",
2140 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2141 printk(KERN_CRIT "dirty_blocks=%lld\n",
2142 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2143 printk(KERN_CRIT "Block reservation details\n");
2144 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2145 EXT4_I(inode)->i_reserved_data_blocks);
2146 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2147 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2148 return;
2149}
2150
64769240
AT
2151/*
2152 * mpage_da_map_blocks - go through given space
2153 *
8dc207c0 2154 * @mpd - bh describing space
64769240
AT
2155 *
2156 * The function skips space we know is already mapped to disk blocks.
2157 *
64769240 2158 */
ed5bde0b 2159static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2160{
2ac3b6e0 2161 int err, blks, get_blocks_flags;
030ba6bc 2162 struct buffer_head new;
2fa3cdfb
TT
2163 sector_t next = mpd->b_blocknr;
2164 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2165 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2166 handle_t *handle = NULL;
64769240
AT
2167
2168 /*
2169 * We consider only non-mapped and non-allocated blocks
2170 */
8dc207c0 2171 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2172 !(mpd->b_state & (1 << BH_Delay)) &&
2173 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2174 return 0;
2fa3cdfb
TT
2175
2176 /*
2177 * If we didn't accumulate anything to write simply return
2178 */
2179 if (!mpd->b_size)
2180 return 0;
2181
2182 handle = ext4_journal_current_handle();
2183 BUG_ON(!handle);
2184
79ffab34 2185 /*
2ac3b6e0
TT
2186 * Call ext4_get_blocks() to allocate any delayed allocation
2187 * blocks, or to convert an uninitialized extent to be
2188 * initialized (in the case where we have written into
2189 * one or more preallocated blocks).
2190 *
2191 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2192 * indicate that we are on the delayed allocation path. This
2193 * affects functions in many different parts of the allocation
2194 * call path. This flag exists primarily because we don't
2195 * want to change *many* call functions, so ext4_get_blocks()
2196 * will set the magic i_delalloc_reserved_flag once the
2197 * inode's allocation semaphore is taken.
2198 *
2199 * If the blocks in questions were delalloc blocks, set
2200 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2201 * variables are updated after the blocks have been allocated.
79ffab34 2202 */
2ac3b6e0
TT
2203 new.b_state = 0;
2204 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2205 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2206 if (mpd->b_state & (1 << BH_Delay))
2207 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2208 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2209 &new, get_blocks_flags);
2fa3cdfb
TT
2210 if (blks < 0) {
2211 err = blks;
ed5bde0b
TT
2212 /*
2213 * If get block returns with error we simply
2214 * return. Later writepage will redirty the page and
2215 * writepages will find the dirty page again
c4a0c46e
AK
2216 */
2217 if (err == -EAGAIN)
2218 return 0;
df22291f
AK
2219
2220 if (err == -ENOSPC &&
ed5bde0b 2221 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2222 mpd->retval = err;
2223 return 0;
2224 }
2225
c4a0c46e 2226 /*
ed5bde0b
TT
2227 * get block failure will cause us to loop in
2228 * writepages, because a_ops->writepage won't be able
2229 * to make progress. The page will be redirtied by
2230 * writepage and writepages will again try to write
2231 * the same.
c4a0c46e 2232 */
1693918e
TT
2233 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2234 "delayed block allocation failed for inode %lu at "
2235 "logical offset %llu with max blocks %zd with "
2236 "error %d\n", mpd->inode->i_ino,
2237 (unsigned long long) next,
2238 mpd->b_size >> mpd->inode->i_blkbits, err);
2239 printk(KERN_CRIT "This should not happen!! "
2240 "Data will be lost\n");
030ba6bc 2241 if (err == -ENOSPC) {
df22291f 2242 ext4_print_free_blocks(mpd->inode);
030ba6bc 2243 }
2fa3cdfb 2244 /* invalidate all the pages */
c4a0c46e 2245 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2246 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2247 return err;
2248 }
2fa3cdfb
TT
2249 BUG_ON(blks == 0);
2250
2251 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2252
a1d6cc56
AK
2253 if (buffer_new(&new))
2254 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2255
a1d6cc56
AK
2256 /*
2257 * If blocks are delayed marked, we need to
2258 * put actual blocknr and drop delayed bit
2259 */
8dc207c0
TT
2260 if ((mpd->b_state & (1 << BH_Delay)) ||
2261 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2262 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2263
2fa3cdfb
TT
2264 if (ext4_should_order_data(mpd->inode)) {
2265 err = ext4_jbd2_file_inode(handle, mpd->inode);
2266 if (err)
2267 return err;
2268 }
2269
2270 /*
03f5d8bc 2271 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2272 */
2273 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2274 if (disksize > i_size_read(mpd->inode))
2275 disksize = i_size_read(mpd->inode);
2276 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2277 ext4_update_i_disksize(mpd->inode, disksize);
2278 return ext4_mark_inode_dirty(handle, mpd->inode);
2279 }
2280
c4a0c46e 2281 return 0;
64769240
AT
2282}
2283
bf068ee2
AK
2284#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2285 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2286
2287/*
2288 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2289 *
2290 * @mpd->lbh - extent of blocks
2291 * @logical - logical number of the block in the file
2292 * @bh - bh of the block (used to access block's state)
2293 *
2294 * the function is used to collect contig. blocks in same state
2295 */
2296static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2297 sector_t logical, size_t b_size,
2298 unsigned long b_state)
64769240 2299{
64769240 2300 sector_t next;
8dc207c0 2301 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2302
525f4ed8
MC
2303 /* check if thereserved journal credits might overflow */
2304 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2305 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2306 /*
2307 * With non-extent format we are limited by the journal
2308 * credit available. Total credit needed to insert
2309 * nrblocks contiguous blocks is dependent on the
2310 * nrblocks. So limit nrblocks.
2311 */
2312 goto flush_it;
2313 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2314 EXT4_MAX_TRANS_DATA) {
2315 /*
2316 * Adding the new buffer_head would make it cross the
2317 * allowed limit for which we have journal credit
2318 * reserved. So limit the new bh->b_size
2319 */
2320 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2321 mpd->inode->i_blkbits;
2322 /* we will do mpage_da_submit_io in the next loop */
2323 }
2324 }
64769240
AT
2325 /*
2326 * First block in the extent
2327 */
8dc207c0
TT
2328 if (mpd->b_size == 0) {
2329 mpd->b_blocknr = logical;
2330 mpd->b_size = b_size;
2331 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2332 return;
2333 }
2334
8dc207c0 2335 next = mpd->b_blocknr + nrblocks;
64769240
AT
2336 /*
2337 * Can we merge the block to our big extent?
2338 */
8dc207c0
TT
2339 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2340 mpd->b_size += b_size;
64769240
AT
2341 return;
2342 }
2343
525f4ed8 2344flush_it:
64769240
AT
2345 /*
2346 * We couldn't merge the block to our extent, so we
2347 * need to flush current extent and start new one
2348 */
c4a0c46e
AK
2349 if (mpage_da_map_blocks(mpd) == 0)
2350 mpage_da_submit_io(mpd);
a1d6cc56
AK
2351 mpd->io_done = 1;
2352 return;
64769240
AT
2353}
2354
c364b22c 2355static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2356{
c364b22c 2357 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2358}
2359
64769240
AT
2360/*
2361 * __mpage_da_writepage - finds extent of pages and blocks
2362 *
2363 * @page: page to consider
2364 * @wbc: not used, we just follow rules
2365 * @data: context
2366 *
2367 * The function finds extents of pages and scan them for all blocks.
2368 */
2369static int __mpage_da_writepage(struct page *page,
2370 struct writeback_control *wbc, void *data)
2371{
2372 struct mpage_da_data *mpd = data;
2373 struct inode *inode = mpd->inode;
8dc207c0 2374 struct buffer_head *bh, *head;
64769240
AT
2375 sector_t logical;
2376
a1d6cc56
AK
2377 if (mpd->io_done) {
2378 /*
2379 * Rest of the page in the page_vec
2380 * redirty then and skip then. We will
fd589a8f 2381 * try to write them again after
a1d6cc56
AK
2382 * starting a new transaction
2383 */
2384 redirty_page_for_writepage(wbc, page);
2385 unlock_page(page);
2386 return MPAGE_DA_EXTENT_TAIL;
2387 }
64769240
AT
2388 /*
2389 * Can we merge this page to current extent?
2390 */
2391 if (mpd->next_page != page->index) {
2392 /*
2393 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2394 * and start IO on them using writepage()
64769240
AT
2395 */
2396 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2397 if (mpage_da_map_blocks(mpd) == 0)
2398 mpage_da_submit_io(mpd);
a1d6cc56
AK
2399 /*
2400 * skip rest of the page in the page_vec
2401 */
2402 mpd->io_done = 1;
2403 redirty_page_for_writepage(wbc, page);
2404 unlock_page(page);
2405 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2406 }
2407
2408 /*
2409 * Start next extent of pages ...
2410 */
2411 mpd->first_page = page->index;
2412
2413 /*
2414 * ... and blocks
2415 */
8dc207c0
TT
2416 mpd->b_size = 0;
2417 mpd->b_state = 0;
2418 mpd->b_blocknr = 0;
64769240
AT
2419 }
2420
2421 mpd->next_page = page->index + 1;
2422 logical = (sector_t) page->index <<
2423 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2424
2425 if (!page_has_buffers(page)) {
8dc207c0
TT
2426 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2427 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2428 if (mpd->io_done)
2429 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2430 } else {
2431 /*
2432 * Page with regular buffer heads, just add all dirty ones
2433 */
2434 head = page_buffers(page);
2435 bh = head;
2436 do {
2437 BUG_ON(buffer_locked(bh));
791b7f08
AK
2438 /*
2439 * We need to try to allocate
2440 * unmapped blocks in the same page.
2441 * Otherwise we won't make progress
43ce1d23 2442 * with the page in ext4_writepage
791b7f08 2443 */
c364b22c 2444 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2445 mpage_add_bh_to_extent(mpd, logical,
2446 bh->b_size,
2447 bh->b_state);
a1d6cc56
AK
2448 if (mpd->io_done)
2449 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2450 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2451 /*
2452 * mapped dirty buffer. We need to update
2453 * the b_state because we look at
2454 * b_state in mpage_da_map_blocks. We don't
2455 * update b_size because if we find an
2456 * unmapped buffer_head later we need to
2457 * use the b_state flag of that buffer_head.
2458 */
8dc207c0
TT
2459 if (mpd->b_size == 0)
2460 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2461 }
64769240
AT
2462 logical++;
2463 } while ((bh = bh->b_this_page) != head);
2464 }
2465
2466 return 0;
2467}
2468
64769240 2469/*
b920c755
TT
2470 * This is a special get_blocks_t callback which is used by
2471 * ext4_da_write_begin(). It will either return mapped block or
2472 * reserve space for a single block.
29fa89d0
AK
2473 *
2474 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2475 * We also have b_blocknr = -1 and b_bdev initialized properly
2476 *
2477 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2478 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2479 * initialized properly.
64769240
AT
2480 */
2481static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2482 struct buffer_head *bh_result, int create)
2483{
2484 int ret = 0;
33b9817e
AK
2485 sector_t invalid_block = ~((sector_t) 0xffff);
2486
2487 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2488 invalid_block = ~0;
64769240
AT
2489
2490 BUG_ON(create == 0);
2491 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2492
2493 /*
2494 * first, we need to know whether the block is allocated already
2495 * preallocated blocks are unmapped but should treated
2496 * the same as allocated blocks.
2497 */
c2177057 2498 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2499 if ((ret == 0) && !buffer_delay(bh_result)) {
2500 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2501 /*
2502 * XXX: __block_prepare_write() unmaps passed block,
2503 * is it OK?
2504 */
9d0be502 2505 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2506 if (ret)
2507 /* not enough space to reserve */
2508 return ret;
2509
33b9817e 2510 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2511 set_buffer_new(bh_result);
2512 set_buffer_delay(bh_result);
2513 } else if (ret > 0) {
2514 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2515 if (buffer_unwritten(bh_result)) {
2516 /* A delayed write to unwritten bh should
2517 * be marked new and mapped. Mapped ensures
2518 * that we don't do get_block multiple times
2519 * when we write to the same offset and new
2520 * ensures that we do proper zero out for
2521 * partial write.
2522 */
9c1ee184 2523 set_buffer_new(bh_result);
29fa89d0
AK
2524 set_buffer_mapped(bh_result);
2525 }
64769240
AT
2526 ret = 0;
2527 }
2528
2529 return ret;
2530}
61628a3f 2531
b920c755
TT
2532/*
2533 * This function is used as a standard get_block_t calback function
2534 * when there is no desire to allocate any blocks. It is used as a
2535 * callback function for block_prepare_write(), nobh_writepage(), and
2536 * block_write_full_page(). These functions should only try to map a
2537 * single block at a time.
2538 *
2539 * Since this function doesn't do block allocations even if the caller
2540 * requests it by passing in create=1, it is critically important that
2541 * any caller checks to make sure that any buffer heads are returned
2542 * by this function are either all already mapped or marked for
2543 * delayed allocation before calling nobh_writepage() or
2544 * block_write_full_page(). Otherwise, b_blocknr could be left
2545 * unitialized, and the page write functions will be taken by
2546 * surprise.
2547 */
2548static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2549 struct buffer_head *bh_result, int create)
2550{
2551 int ret = 0;
2552 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2553
a2dc52b5
TT
2554 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2555
f0e6c985
AK
2556 /*
2557 * we don't want to do block allocation in writepage
2558 * so call get_block_wrap with create = 0
2559 */
c2177057 2560 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2561 if (ret > 0) {
2562 bh_result->b_size = (ret << inode->i_blkbits);
2563 ret = 0;
2564 }
2565 return ret;
61628a3f
MC
2566}
2567
62e086be
AK
2568static int bget_one(handle_t *handle, struct buffer_head *bh)
2569{
2570 get_bh(bh);
2571 return 0;
2572}
2573
2574static int bput_one(handle_t *handle, struct buffer_head *bh)
2575{
2576 put_bh(bh);
2577 return 0;
2578}
2579
2580static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2581 unsigned int len)
2582{
2583 struct address_space *mapping = page->mapping;
2584 struct inode *inode = mapping->host;
2585 struct buffer_head *page_bufs;
2586 handle_t *handle = NULL;
2587 int ret = 0;
2588 int err;
2589
2590 page_bufs = page_buffers(page);
2591 BUG_ON(!page_bufs);
2592 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2593 /* As soon as we unlock the page, it can go away, but we have
2594 * references to buffers so we are safe */
2595 unlock_page(page);
2596
2597 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2598 if (IS_ERR(handle)) {
2599 ret = PTR_ERR(handle);
2600 goto out;
2601 }
2602
2603 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2604 do_journal_get_write_access);
2605
2606 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2607 write_end_fn);
2608 if (ret == 0)
2609 ret = err;
2610 err = ext4_journal_stop(handle);
2611 if (!ret)
2612 ret = err;
2613
2614 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2615 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2616out:
2617 return ret;
2618}
2619
61628a3f 2620/*
43ce1d23
AK
2621 * Note that we don't need to start a transaction unless we're journaling data
2622 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2623 * need to file the inode to the transaction's list in ordered mode because if
2624 * we are writing back data added by write(), the inode is already there and if
2625 * we are writing back data modified via mmap(), noone guarantees in which
2626 * transaction the data will hit the disk. In case we are journaling data, we
2627 * cannot start transaction directly because transaction start ranks above page
2628 * lock so we have to do some magic.
2629 *
b920c755
TT
2630 * This function can get called via...
2631 * - ext4_da_writepages after taking page lock (have journal handle)
2632 * - journal_submit_inode_data_buffers (no journal handle)
2633 * - shrink_page_list via pdflush (no journal handle)
2634 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2635 *
2636 * We don't do any block allocation in this function. If we have page with
2637 * multiple blocks we need to write those buffer_heads that are mapped. This
2638 * is important for mmaped based write. So if we do with blocksize 1K
2639 * truncate(f, 1024);
2640 * a = mmap(f, 0, 4096);
2641 * a[0] = 'a';
2642 * truncate(f, 4096);
2643 * we have in the page first buffer_head mapped via page_mkwrite call back
2644 * but other bufer_heads would be unmapped but dirty(dirty done via the
2645 * do_wp_page). So writepage should write the first block. If we modify
2646 * the mmap area beyond 1024 we will again get a page_fault and the
2647 * page_mkwrite callback will do the block allocation and mark the
2648 * buffer_heads mapped.
2649 *
2650 * We redirty the page if we have any buffer_heads that is either delay or
2651 * unwritten in the page.
2652 *
2653 * We can get recursively called as show below.
2654 *
2655 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2656 * ext4_writepage()
2657 *
2658 * But since we don't do any block allocation we should not deadlock.
2659 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2660 */
43ce1d23 2661static int ext4_writepage(struct page *page,
62e086be 2662 struct writeback_control *wbc)
64769240 2663{
64769240 2664 int ret = 0;
61628a3f 2665 loff_t size;
498e5f24 2666 unsigned int len;
61628a3f
MC
2667 struct buffer_head *page_bufs;
2668 struct inode *inode = page->mapping->host;
2669
43ce1d23 2670 trace_ext4_writepage(inode, page);
f0e6c985
AK
2671 size = i_size_read(inode);
2672 if (page->index == size >> PAGE_CACHE_SHIFT)
2673 len = size & ~PAGE_CACHE_MASK;
2674 else
2675 len = PAGE_CACHE_SIZE;
64769240 2676
f0e6c985 2677 if (page_has_buffers(page)) {
61628a3f 2678 page_bufs = page_buffers(page);
f0e6c985 2679 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2680 ext4_bh_delay_or_unwritten)) {
61628a3f 2681 /*
f0e6c985
AK
2682 * We don't want to do block allocation
2683 * So redirty the page and return
cd1aac32
AK
2684 * We may reach here when we do a journal commit
2685 * via journal_submit_inode_data_buffers.
2686 * If we don't have mapping block we just ignore
f0e6c985
AK
2687 * them. We can also reach here via shrink_page_list
2688 */
2689 redirty_page_for_writepage(wbc, page);
2690 unlock_page(page);
2691 return 0;
2692 }
2693 } else {
2694 /*
2695 * The test for page_has_buffers() is subtle:
2696 * We know the page is dirty but it lost buffers. That means
2697 * that at some moment in time after write_begin()/write_end()
2698 * has been called all buffers have been clean and thus they
2699 * must have been written at least once. So they are all
2700 * mapped and we can happily proceed with mapping them
2701 * and writing the page.
2702 *
2703 * Try to initialize the buffer_heads and check whether
2704 * all are mapped and non delay. We don't want to
2705 * do block allocation here.
2706 */
b767e78a 2707 ret = block_prepare_write(page, 0, len,
b920c755 2708 noalloc_get_block_write);
f0e6c985
AK
2709 if (!ret) {
2710 page_bufs = page_buffers(page);
2711 /* check whether all are mapped and non delay */
2712 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2713 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2714 redirty_page_for_writepage(wbc, page);
2715 unlock_page(page);
2716 return 0;
2717 }
2718 } else {
2719 /*
2720 * We can't do block allocation here
2721 * so just redity the page and unlock
2722 * and return
61628a3f 2723 */
61628a3f
MC
2724 redirty_page_for_writepage(wbc, page);
2725 unlock_page(page);
2726 return 0;
2727 }
ed9b3e33 2728 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2729 block_commit_write(page, 0, len);
64769240
AT
2730 }
2731
43ce1d23
AK
2732 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2733 /*
2734 * It's mmapped pagecache. Add buffers and journal it. There
2735 * doesn't seem much point in redirtying the page here.
2736 */
2737 ClearPageChecked(page);
3f0ca309 2738 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2739 }
2740
64769240 2741 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2742 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2743 else
b920c755
TT
2744 ret = block_write_full_page(page, noalloc_get_block_write,
2745 wbc);
64769240 2746
64769240
AT
2747 return ret;
2748}
2749
61628a3f 2750/*
525f4ed8
MC
2751 * This is called via ext4_da_writepages() to
2752 * calulate the total number of credits to reserve to fit
2753 * a single extent allocation into a single transaction,
2754 * ext4_da_writpeages() will loop calling this before
2755 * the block allocation.
61628a3f 2756 */
525f4ed8
MC
2757
2758static int ext4_da_writepages_trans_blocks(struct inode *inode)
2759{
2760 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2761
2762 /*
2763 * With non-extent format the journal credit needed to
2764 * insert nrblocks contiguous block is dependent on
2765 * number of contiguous block. So we will limit
2766 * number of contiguous block to a sane value
2767 */
30c6e07a 2768 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
525f4ed8
MC
2769 (max_blocks > EXT4_MAX_TRANS_DATA))
2770 max_blocks = EXT4_MAX_TRANS_DATA;
2771
2772 return ext4_chunk_trans_blocks(inode, max_blocks);
2773}
61628a3f 2774
64769240 2775static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2776 struct writeback_control *wbc)
64769240 2777{
22208ded
AK
2778 pgoff_t index;
2779 int range_whole = 0;
61628a3f 2780 handle_t *handle = NULL;
df22291f 2781 struct mpage_da_data mpd;
5e745b04 2782 struct inode *inode = mapping->host;
22208ded 2783 int no_nrwrite_index_update;
498e5f24
TT
2784 int pages_written = 0;
2785 long pages_skipped;
55138e0b 2786 unsigned int max_pages;
2acf2c26 2787 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2788 int needed_blocks, ret = 0;
2789 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2790 loff_t range_start = wbc->range_start;
5e745b04 2791 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2792
9bffad1e 2793 trace_ext4_da_writepages(inode, wbc);
ba80b101 2794
61628a3f
MC
2795 /*
2796 * No pages to write? This is mainly a kludge to avoid starting
2797 * a transaction for special inodes like journal inode on last iput()
2798 * because that could violate lock ordering on umount
2799 */
a1d6cc56 2800 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2801 return 0;
2a21e37e
TT
2802
2803 /*
2804 * If the filesystem has aborted, it is read-only, so return
2805 * right away instead of dumping stack traces later on that
2806 * will obscure the real source of the problem. We test
4ab2f15b 2807 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2808 * the latter could be true if the filesystem is mounted
2809 * read-only, and in that case, ext4_da_writepages should
2810 * *never* be called, so if that ever happens, we would want
2811 * the stack trace.
2812 */
4ab2f15b 2813 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2814 return -EROFS;
2815
22208ded
AK
2816 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2817 range_whole = 1;
61628a3f 2818
2acf2c26
AK
2819 range_cyclic = wbc->range_cyclic;
2820 if (wbc->range_cyclic) {
22208ded 2821 index = mapping->writeback_index;
2acf2c26
AK
2822 if (index)
2823 cycled = 0;
2824 wbc->range_start = index << PAGE_CACHE_SHIFT;
2825 wbc->range_end = LLONG_MAX;
2826 wbc->range_cyclic = 0;
2827 } else
22208ded 2828 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2829
55138e0b
TT
2830 /*
2831 * This works around two forms of stupidity. The first is in
2832 * the writeback code, which caps the maximum number of pages
2833 * written to be 1024 pages. This is wrong on multiple
2834 * levels; different architectues have a different page size,
2835 * which changes the maximum amount of data which gets
2836 * written. Secondly, 4 megabytes is way too small. XFS
2837 * forces this value to be 16 megabytes by multiplying
2838 * nr_to_write parameter by four, and then relies on its
2839 * allocator to allocate larger extents to make them
2840 * contiguous. Unfortunately this brings us to the second
2841 * stupidity, which is that ext4's mballoc code only allocates
2842 * at most 2048 blocks. So we force contiguous writes up to
2843 * the number of dirty blocks in the inode, or
2844 * sbi->max_writeback_mb_bump whichever is smaller.
2845 */
2846 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2847 if (!range_cyclic && range_whole)
2848 desired_nr_to_write = wbc->nr_to_write * 8;
2849 else
2850 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2851 max_pages);
2852 if (desired_nr_to_write > max_pages)
2853 desired_nr_to_write = max_pages;
2854
2855 if (wbc->nr_to_write < desired_nr_to_write) {
2856 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2857 wbc->nr_to_write = desired_nr_to_write;
2858 }
2859
df22291f
AK
2860 mpd.wbc = wbc;
2861 mpd.inode = mapping->host;
2862
22208ded
AK
2863 /*
2864 * we don't want write_cache_pages to update
2865 * nr_to_write and writeback_index
2866 */
2867 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2868 wbc->no_nrwrite_index_update = 1;
2869 pages_skipped = wbc->pages_skipped;
2870
2acf2c26 2871retry:
22208ded 2872 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2873
2874 /*
2875 * we insert one extent at a time. So we need
2876 * credit needed for single extent allocation.
2877 * journalled mode is currently not supported
2878 * by delalloc
2879 */
2880 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2881 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2882
61628a3f
MC
2883 /* start a new transaction*/
2884 handle = ext4_journal_start(inode, needed_blocks);
2885 if (IS_ERR(handle)) {
2886 ret = PTR_ERR(handle);
1693918e 2887 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
a1d6cc56
AK
2888 "%ld pages, ino %lu; err %d\n", __func__,
2889 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2890 goto out_writepages;
2891 }
f63e6005
TT
2892
2893 /*
2894 * Now call __mpage_da_writepage to find the next
2895 * contiguous region of logical blocks that need
2896 * blocks to be allocated by ext4. We don't actually
2897 * submit the blocks for I/O here, even though
2898 * write_cache_pages thinks it will, and will set the
2899 * pages as clean for write before calling
2900 * __mpage_da_writepage().
2901 */
2902 mpd.b_size = 0;
2903 mpd.b_state = 0;
2904 mpd.b_blocknr = 0;
2905 mpd.first_page = 0;
2906 mpd.next_page = 0;
2907 mpd.io_done = 0;
2908 mpd.pages_written = 0;
2909 mpd.retval = 0;
2910 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2911 &mpd);
2912 /*
af901ca1 2913 * If we have a contiguous extent of pages and we
f63e6005
TT
2914 * haven't done the I/O yet, map the blocks and submit
2915 * them for I/O.
2916 */
2917 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2918 if (mpage_da_map_blocks(&mpd) == 0)
2919 mpage_da_submit_io(&mpd);
2920 mpd.io_done = 1;
2921 ret = MPAGE_DA_EXTENT_TAIL;
2922 }
b3a3ca8c 2923 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2924 wbc->nr_to_write -= mpd.pages_written;
df22291f 2925
61628a3f 2926 ext4_journal_stop(handle);
df22291f 2927
8f64b32e 2928 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2929 /* commit the transaction which would
2930 * free blocks released in the transaction
2931 * and try again
2932 */
df22291f 2933 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2934 wbc->pages_skipped = pages_skipped;
2935 ret = 0;
2936 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2937 /*
2938 * got one extent now try with
2939 * rest of the pages
2940 */
22208ded
AK
2941 pages_written += mpd.pages_written;
2942 wbc->pages_skipped = pages_skipped;
a1d6cc56 2943 ret = 0;
2acf2c26 2944 io_done = 1;
22208ded 2945 } else if (wbc->nr_to_write)
61628a3f
MC
2946 /*
2947 * There is no more writeout needed
2948 * or we requested for a noblocking writeout
2949 * and we found the device congested
2950 */
61628a3f 2951 break;
a1d6cc56 2952 }
2acf2c26
AK
2953 if (!io_done && !cycled) {
2954 cycled = 1;
2955 index = 0;
2956 wbc->range_start = index << PAGE_CACHE_SHIFT;
2957 wbc->range_end = mapping->writeback_index - 1;
2958 goto retry;
2959 }
22208ded 2960 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
2961 ext4_msg(inode->i_sb, KERN_CRIT,
2962 "This should not happen leaving %s "
2963 "with nr_to_write = %ld ret = %d\n",
2964 __func__, wbc->nr_to_write, ret);
22208ded
AK
2965
2966 /* Update index */
2967 index += pages_written;
2acf2c26 2968 wbc->range_cyclic = range_cyclic;
22208ded
AK
2969 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2970 /*
2971 * set the writeback_index so that range_cyclic
2972 * mode will write it back later
2973 */
2974 mapping->writeback_index = index;
a1d6cc56 2975
61628a3f 2976out_writepages:
22208ded
AK
2977 if (!no_nrwrite_index_update)
2978 wbc->no_nrwrite_index_update = 0;
2faf2e19 2979 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2980 wbc->range_start = range_start;
9bffad1e 2981 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2982 return ret;
64769240
AT
2983}
2984
79f0be8d
AK
2985#define FALL_BACK_TO_NONDELALLOC 1
2986static int ext4_nonda_switch(struct super_block *sb)
2987{
2988 s64 free_blocks, dirty_blocks;
2989 struct ext4_sb_info *sbi = EXT4_SB(sb);
2990
2991 /*
2992 * switch to non delalloc mode if we are running low
2993 * on free block. The free block accounting via percpu
179f7ebf 2994 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2995 * accumulated on each CPU without updating global counters
2996 * Delalloc need an accurate free block accounting. So switch
2997 * to non delalloc when we are near to error range.
2998 */
2999 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3000 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3001 if (2 * free_blocks < 3 * dirty_blocks ||
3002 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3003 /*
c8afb446
ES
3004 * free block count is less than 150% of dirty blocks
3005 * or free blocks is less than watermark
79f0be8d
AK
3006 */
3007 return 1;
3008 }
c8afb446
ES
3009 /*
3010 * Even if we don't switch but are nearing capacity,
3011 * start pushing delalloc when 1/2 of free blocks are dirty.
3012 */
3013 if (free_blocks < 2 * dirty_blocks)
3014 writeback_inodes_sb_if_idle(sb);
3015
79f0be8d
AK
3016 return 0;
3017}
3018
64769240 3019static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3020 loff_t pos, unsigned len, unsigned flags,
3021 struct page **pagep, void **fsdata)
64769240 3022{
1db91382 3023 int ret, retries = 0, quota_retries = 0;
64769240
AT
3024 struct page *page;
3025 pgoff_t index;
3026 unsigned from, to;
3027 struct inode *inode = mapping->host;
3028 handle_t *handle;
3029
3030 index = pos >> PAGE_CACHE_SHIFT;
3031 from = pos & (PAGE_CACHE_SIZE - 1);
3032 to = from + len;
79f0be8d
AK
3033
3034 if (ext4_nonda_switch(inode->i_sb)) {
3035 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3036 return ext4_write_begin(file, mapping, pos,
3037 len, flags, pagep, fsdata);
3038 }
3039 *fsdata = (void *)0;
9bffad1e 3040 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3041retry:
64769240
AT
3042 /*
3043 * With delayed allocation, we don't log the i_disksize update
3044 * if there is delayed block allocation. But we still need
3045 * to journalling the i_disksize update if writes to the end
3046 * of file which has an already mapped buffer.
3047 */
3048 handle = ext4_journal_start(inode, 1);
3049 if (IS_ERR(handle)) {
3050 ret = PTR_ERR(handle);
3051 goto out;
3052 }
ebd3610b
JK
3053 /* We cannot recurse into the filesystem as the transaction is already
3054 * started */
3055 flags |= AOP_FLAG_NOFS;
64769240 3056
54566b2c 3057 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3058 if (!page) {
3059 ext4_journal_stop(handle);
3060 ret = -ENOMEM;
3061 goto out;
3062 }
64769240
AT
3063 *pagep = page;
3064
3065 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3066 ext4_da_get_block_prep);
64769240
AT
3067 if (ret < 0) {
3068 unlock_page(page);
3069 ext4_journal_stop(handle);
3070 page_cache_release(page);
ae4d5372
AK
3071 /*
3072 * block_write_begin may have instantiated a few blocks
3073 * outside i_size. Trim these off again. Don't need
3074 * i_size_read because we hold i_mutex.
3075 */
3076 if (pos + len > inode->i_size)
b9a4207d 3077 ext4_truncate_failed_write(inode);
64769240
AT
3078 }
3079
d2a17637
MC
3080 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3081 goto retry;
1db91382
AK
3082
3083 if ((ret == -EDQUOT) &&
3084 EXT4_I(inode)->i_reserved_meta_blocks &&
3085 (quota_retries++ < 3)) {
3086 /*
3087 * Since we often over-estimate the number of meta
3088 * data blocks required, we may sometimes get a
3089 * spurios out of quota error even though there would
3090 * be enough space once we write the data blocks and
3091 * find out how many meta data blocks were _really_
3092 * required. So try forcing the inode write to see if
3093 * that helps.
3094 */
3095 write_inode_now(inode, (quota_retries == 3));
3096 goto retry;
3097 }
64769240
AT
3098out:
3099 return ret;
3100}
3101
632eaeab
MC
3102/*
3103 * Check if we should update i_disksize
3104 * when write to the end of file but not require block allocation
3105 */
3106static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3107 unsigned long offset)
632eaeab
MC
3108{
3109 struct buffer_head *bh;
3110 struct inode *inode = page->mapping->host;
3111 unsigned int idx;
3112 int i;
3113
3114 bh = page_buffers(page);
3115 idx = offset >> inode->i_blkbits;
3116
af5bc92d 3117 for (i = 0; i < idx; i++)
632eaeab
MC
3118 bh = bh->b_this_page;
3119
29fa89d0 3120 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3121 return 0;
3122 return 1;
3123}
3124
64769240 3125static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3126 struct address_space *mapping,
3127 loff_t pos, unsigned len, unsigned copied,
3128 struct page *page, void *fsdata)
64769240
AT
3129{
3130 struct inode *inode = mapping->host;
3131 int ret = 0, ret2;
3132 handle_t *handle = ext4_journal_current_handle();
3133 loff_t new_i_size;
632eaeab 3134 unsigned long start, end;
79f0be8d
AK
3135 int write_mode = (int)(unsigned long)fsdata;
3136
3137 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3138 if (ext4_should_order_data(inode)) {
3139 return ext4_ordered_write_end(file, mapping, pos,
3140 len, copied, page, fsdata);
3141 } else if (ext4_should_writeback_data(inode)) {
3142 return ext4_writeback_write_end(file, mapping, pos,
3143 len, copied, page, fsdata);
3144 } else {
3145 BUG();
3146 }
3147 }
632eaeab 3148
9bffad1e 3149 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3150 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3151 end = start + copied - 1;
64769240
AT
3152
3153 /*
3154 * generic_write_end() will run mark_inode_dirty() if i_size
3155 * changes. So let's piggyback the i_disksize mark_inode_dirty
3156 * into that.
3157 */
3158
3159 new_i_size = pos + copied;
632eaeab
MC
3160 if (new_i_size > EXT4_I(inode)->i_disksize) {
3161 if (ext4_da_should_update_i_disksize(page, end)) {
3162 down_write(&EXT4_I(inode)->i_data_sem);
3163 if (new_i_size > EXT4_I(inode)->i_disksize) {
3164 /*
3165 * Updating i_disksize when extending file
3166 * without needing block allocation
3167 */
3168 if (ext4_should_order_data(inode))
3169 ret = ext4_jbd2_file_inode(handle,
3170 inode);
64769240 3171
632eaeab
MC
3172 EXT4_I(inode)->i_disksize = new_i_size;
3173 }
3174 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3175 /* We need to mark inode dirty even if
3176 * new_i_size is less that inode->i_size
3177 * bu greater than i_disksize.(hint delalloc)
3178 */
3179 ext4_mark_inode_dirty(handle, inode);
64769240 3180 }
632eaeab 3181 }
64769240
AT
3182 ret2 = generic_write_end(file, mapping, pos, len, copied,
3183 page, fsdata);
3184 copied = ret2;
3185 if (ret2 < 0)
3186 ret = ret2;
3187 ret2 = ext4_journal_stop(handle);
3188 if (!ret)
3189 ret = ret2;
3190
3191 return ret ? ret : copied;
3192}
3193
3194static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3195{
64769240
AT
3196 /*
3197 * Drop reserved blocks
3198 */
3199 BUG_ON(!PageLocked(page));
3200 if (!page_has_buffers(page))
3201 goto out;
3202
d2a17637 3203 ext4_da_page_release_reservation(page, offset);
64769240
AT
3204
3205out:
3206 ext4_invalidatepage(page, offset);
3207
3208 return;
3209}
3210
ccd2506b
TT
3211/*
3212 * Force all delayed allocation blocks to be allocated for a given inode.
3213 */
3214int ext4_alloc_da_blocks(struct inode *inode)
3215{
fb40ba0d
TT
3216 trace_ext4_alloc_da_blocks(inode);
3217
ccd2506b
TT
3218 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3219 !EXT4_I(inode)->i_reserved_meta_blocks)
3220 return 0;
3221
3222 /*
3223 * We do something simple for now. The filemap_flush() will
3224 * also start triggering a write of the data blocks, which is
3225 * not strictly speaking necessary (and for users of
3226 * laptop_mode, not even desirable). However, to do otherwise
3227 * would require replicating code paths in:
de9a55b8 3228 *
ccd2506b
TT
3229 * ext4_da_writepages() ->
3230 * write_cache_pages() ---> (via passed in callback function)
3231 * __mpage_da_writepage() -->
3232 * mpage_add_bh_to_extent()
3233 * mpage_da_map_blocks()
3234 *
3235 * The problem is that write_cache_pages(), located in
3236 * mm/page-writeback.c, marks pages clean in preparation for
3237 * doing I/O, which is not desirable if we're not planning on
3238 * doing I/O at all.
3239 *
3240 * We could call write_cache_pages(), and then redirty all of
3241 * the pages by calling redirty_page_for_writeback() but that
3242 * would be ugly in the extreme. So instead we would need to
3243 * replicate parts of the code in the above functions,
3244 * simplifying them becuase we wouldn't actually intend to
3245 * write out the pages, but rather only collect contiguous
3246 * logical block extents, call the multi-block allocator, and
3247 * then update the buffer heads with the block allocations.
de9a55b8 3248 *
ccd2506b
TT
3249 * For now, though, we'll cheat by calling filemap_flush(),
3250 * which will map the blocks, and start the I/O, but not
3251 * actually wait for the I/O to complete.
3252 */
3253 return filemap_flush(inode->i_mapping);
3254}
64769240 3255
ac27a0ec
DK
3256/*
3257 * bmap() is special. It gets used by applications such as lilo and by
3258 * the swapper to find the on-disk block of a specific piece of data.
3259 *
3260 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3261 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3262 * filesystem and enables swap, then they may get a nasty shock when the
3263 * data getting swapped to that swapfile suddenly gets overwritten by
3264 * the original zero's written out previously to the journal and
3265 * awaiting writeback in the kernel's buffer cache.
3266 *
3267 * So, if we see any bmap calls here on a modified, data-journaled file,
3268 * take extra steps to flush any blocks which might be in the cache.
3269 */
617ba13b 3270static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3271{
3272 struct inode *inode = mapping->host;
3273 journal_t *journal;
3274 int err;
3275
64769240
AT
3276 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277 test_opt(inode->i_sb, DELALLOC)) {
3278 /*
3279 * With delalloc we want to sync the file
3280 * so that we can make sure we allocate
3281 * blocks for file
3282 */
3283 filemap_write_and_wait(mapping);
3284 }
3285
0390131b 3286 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3287 /*
3288 * This is a REALLY heavyweight approach, but the use of
3289 * bmap on dirty files is expected to be extremely rare:
3290 * only if we run lilo or swapon on a freshly made file
3291 * do we expect this to happen.
3292 *
3293 * (bmap requires CAP_SYS_RAWIO so this does not
3294 * represent an unprivileged user DOS attack --- we'd be
3295 * in trouble if mortal users could trigger this path at
3296 * will.)
3297 *
617ba13b 3298 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3299 * regular files. If somebody wants to bmap a directory
3300 * or symlink and gets confused because the buffer
3301 * hasn't yet been flushed to disk, they deserve
3302 * everything they get.
3303 */
3304
617ba13b
MC
3305 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3306 journal = EXT4_JOURNAL(inode);
dab291af
MC
3307 jbd2_journal_lock_updates(journal);
3308 err = jbd2_journal_flush(journal);
3309 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3310
3311 if (err)
3312 return 0;
3313 }
3314
af5bc92d 3315 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3316}
3317
617ba13b 3318static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3319{
617ba13b 3320 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3321}
3322
3323static int
617ba13b 3324ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3325 struct list_head *pages, unsigned nr_pages)
3326{
617ba13b 3327 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3328}
3329
617ba13b 3330static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3331{
617ba13b 3332 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3333
3334 /*
3335 * If it's a full truncate we just forget about the pending dirtying
3336 */
3337 if (offset == 0)
3338 ClearPageChecked(page);
3339
0390131b
FM
3340 if (journal)
3341 jbd2_journal_invalidatepage(journal, page, offset);
3342 else
3343 block_invalidatepage(page, offset);
ac27a0ec
DK
3344}
3345
617ba13b 3346static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3347{
617ba13b 3348 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3349
3350 WARN_ON(PageChecked(page));
3351 if (!page_has_buffers(page))
3352 return 0;
0390131b
FM
3353 if (journal)
3354 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3355 else
3356 return try_to_free_buffers(page);
ac27a0ec
DK
3357}
3358
3359/*
4c0425ff
MC
3360 * O_DIRECT for ext3 (or indirect map) based files
3361 *
ac27a0ec
DK
3362 * If the O_DIRECT write will extend the file then add this inode to the
3363 * orphan list. So recovery will truncate it back to the original size
3364 * if the machine crashes during the write.
3365 *
3366 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3367 * crashes then stale disk data _may_ be exposed inside the file. But current
3368 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3369 */
4c0425ff 3370static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3371 const struct iovec *iov, loff_t offset,
3372 unsigned long nr_segs)
ac27a0ec
DK
3373{
3374 struct file *file = iocb->ki_filp;
3375 struct inode *inode = file->f_mapping->host;
617ba13b 3376 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3377 handle_t *handle;
ac27a0ec
DK
3378 ssize_t ret;
3379 int orphan = 0;
3380 size_t count = iov_length(iov, nr_segs);
fbbf6945 3381 int retries = 0;
ac27a0ec
DK
3382
3383 if (rw == WRITE) {
3384 loff_t final_size = offset + count;
3385
ac27a0ec 3386 if (final_size > inode->i_size) {
7fb5409d
JK
3387 /* Credits for sb + inode write */
3388 handle = ext4_journal_start(inode, 2);
3389 if (IS_ERR(handle)) {
3390 ret = PTR_ERR(handle);
3391 goto out;
3392 }
617ba13b 3393 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3394 if (ret) {
3395 ext4_journal_stop(handle);
3396 goto out;
3397 }
ac27a0ec
DK
3398 orphan = 1;
3399 ei->i_disksize = inode->i_size;
7fb5409d 3400 ext4_journal_stop(handle);
ac27a0ec
DK
3401 }
3402 }
3403
fbbf6945 3404retry:
ac27a0ec
DK
3405 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3406 offset, nr_segs,
617ba13b 3407 ext4_get_block, NULL);
fbbf6945
ES
3408 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3409 goto retry;
ac27a0ec 3410
7fb5409d 3411 if (orphan) {
ac27a0ec
DK
3412 int err;
3413
7fb5409d
JK
3414 /* Credits for sb + inode write */
3415 handle = ext4_journal_start(inode, 2);
3416 if (IS_ERR(handle)) {
3417 /* This is really bad luck. We've written the data
3418 * but cannot extend i_size. Bail out and pretend
3419 * the write failed... */
3420 ret = PTR_ERR(handle);
3421 goto out;
3422 }
3423 if (inode->i_nlink)
617ba13b 3424 ext4_orphan_del(handle, inode);
7fb5409d 3425 if (ret > 0) {
ac27a0ec
DK
3426 loff_t end = offset + ret;
3427 if (end > inode->i_size) {
3428 ei->i_disksize = end;
3429 i_size_write(inode, end);
3430 /*
3431 * We're going to return a positive `ret'
3432 * here due to non-zero-length I/O, so there's
3433 * no way of reporting error returns from
617ba13b 3434 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3435 * ignore it.
3436 */
617ba13b 3437 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3438 }
3439 }
617ba13b 3440 err = ext4_journal_stop(handle);
ac27a0ec
DK
3441 if (ret == 0)
3442 ret = err;
3443 }
3444out:
3445 return ret;
3446}
3447
4c0425ff
MC
3448static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3449 struct buffer_head *bh_result, int create)
3450{
3451 handle_t *handle = NULL;
3452 int ret = 0;
3453 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3454 int dio_credits;
3455
8d5d02e6
MC
3456 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3457 inode->i_ino, create);
4c0425ff
MC
3458 /*
3459 * DIO VFS code passes create = 0 flag for write to
3460 * the middle of file. It does this to avoid block
3461 * allocation for holes, to prevent expose stale data
3462 * out when there is parallel buffered read (which does
3463 * not hold the i_mutex lock) while direct IO write has
3464 * not completed. DIO request on holes finally falls back
3465 * to buffered IO for this reason.
3466 *
3467 * For ext4 extent based file, since we support fallocate,
3468 * new allocated extent as uninitialized, for holes, we
3469 * could fallocate blocks for holes, thus parallel
3470 * buffered IO read will zero out the page when read on
3471 * a hole while parallel DIO write to the hole has not completed.
3472 *
3473 * when we come here, we know it's a direct IO write to
3474 * to the middle of file (<i_size)
3475 * so it's safe to override the create flag from VFS.
3476 */
3477 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3478
3479 if (max_blocks > DIO_MAX_BLOCKS)
3480 max_blocks = DIO_MAX_BLOCKS;
3481 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3482 handle = ext4_journal_start(inode, dio_credits);
3483 if (IS_ERR(handle)) {
3484 ret = PTR_ERR(handle);
3485 goto out;
3486 }
3487 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3488 create);
3489 if (ret > 0) {
3490 bh_result->b_size = (ret << inode->i_blkbits);
3491 ret = 0;
3492 }
3493 ext4_journal_stop(handle);
3494out:
3495 return ret;
3496}
3497
4c0425ff
MC
3498static void ext4_free_io_end(ext4_io_end_t *io)
3499{
8d5d02e6
MC
3500 BUG_ON(!io);
3501 iput(io->inode);
4c0425ff
MC
3502 kfree(io);
3503}
8d5d02e6
MC
3504static void dump_aio_dio_list(struct inode * inode)
3505{
3506#ifdef EXT4_DEBUG
3507 struct list_head *cur, *before, *after;
3508 ext4_io_end_t *io, *io0, *io1;
3509
3510 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3511 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3512 return;
3513 }
3514
3515 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3516 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3517 cur = &io->list;
3518 before = cur->prev;
3519 io0 = container_of(before, ext4_io_end_t, list);
3520 after = cur->next;
3521 io1 = container_of(after, ext4_io_end_t, list);
3522
3523 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3524 io, inode->i_ino, io0, io1);
3525 }
3526#endif
3527}
4c0425ff
MC
3528
3529/*
4c0425ff
MC
3530 * check a range of space and convert unwritten extents to written.
3531 */
8d5d02e6 3532static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
4c0425ff 3533{
4c0425ff
MC
3534 struct inode *inode = io->inode;
3535 loff_t offset = io->offset;
3536 size_t size = io->size;
3537 int ret = 0;
4c0425ff 3538
8d5d02e6
MC
3539 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3540 "list->prev 0x%p\n",
3541 io, inode->i_ino, io->list.next, io->list.prev);
3542
3543 if (list_empty(&io->list))
3544 return ret;
3545
3546 if (io->flag != DIO_AIO_UNWRITTEN)
3547 return ret;
3548
4c0425ff
MC
3549 if (offset + size <= i_size_read(inode))
3550 ret = ext4_convert_unwritten_extents(inode, offset, size);
3551
8d5d02e6 3552 if (ret < 0) {
4c0425ff 3553 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3554 "extents to written extents, error is %d"
3555 " io is still on inode %lu aio dio list\n",
3556 __func__, ret, inode->i_ino);
3557 return ret;
3558 }
4c0425ff 3559
8d5d02e6
MC
3560 /* clear the DIO AIO unwritten flag */
3561 io->flag = 0;
3562 return ret;
4c0425ff 3563}
8d5d02e6
MC
3564/*
3565 * work on completed aio dio IO, to convert unwritten extents to extents
3566 */
3567static void ext4_end_aio_dio_work(struct work_struct *work)
3568{
3569 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3570 struct inode *inode = io->inode;
3571 int ret = 0;
4c0425ff 3572
8d5d02e6
MC
3573 mutex_lock(&inode->i_mutex);
3574 ret = ext4_end_aio_dio_nolock(io);
3575 if (ret >= 0) {
3576 if (!list_empty(&io->list))
3577 list_del_init(&io->list);
3578 ext4_free_io_end(io);
3579 }
3580 mutex_unlock(&inode->i_mutex);
3581}
3582/*
3583 * This function is called from ext4_sync_file().
3584 *
3585 * When AIO DIO IO is completed, the work to convert unwritten
3586 * extents to written is queued on workqueue but may not get immediately
3587 * scheduled. When fsync is called, we need to ensure the
3588 * conversion is complete before fsync returns.
3589 * The inode keeps track of a list of completed AIO from DIO path
3590 * that might needs to do the conversion. This function walks through
3591 * the list and convert the related unwritten extents to written.
3592 */
3593int flush_aio_dio_completed_IO(struct inode *inode)
3594{
3595 ext4_io_end_t *io;
3596 int ret = 0;
3597 int ret2 = 0;
3598
3599 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3600 return ret;
3601
3602 dump_aio_dio_list(inode);
3603 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3604 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3605 ext4_io_end_t, list);
3606 /*
3607 * Calling ext4_end_aio_dio_nolock() to convert completed
3608 * IO to written.
3609 *
3610 * When ext4_sync_file() is called, run_queue() may already
3611 * about to flush the work corresponding to this io structure.
3612 * It will be upset if it founds the io structure related
3613 * to the work-to-be schedule is freed.
3614 *
3615 * Thus we need to keep the io structure still valid here after
3616 * convertion finished. The io structure has a flag to
3617 * avoid double converting from both fsync and background work
3618 * queue work.
3619 */
3620 ret = ext4_end_aio_dio_nolock(io);
3621 if (ret < 0)
3622 ret2 = ret;
3623 else
3624 list_del_init(&io->list);
3625 }
3626 return (ret2 < 0) ? ret2 : 0;
3627}
3628
3629static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
4c0425ff
MC
3630{
3631 ext4_io_end_t *io = NULL;
3632
3633 io = kmalloc(sizeof(*io), GFP_NOFS);
3634
3635 if (io) {
8d5d02e6 3636 igrab(inode);
4c0425ff 3637 io->inode = inode;
8d5d02e6 3638 io->flag = 0;
4c0425ff
MC
3639 io->offset = 0;
3640 io->size = 0;
3641 io->error = 0;
8d5d02e6
MC
3642 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3643 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3644 }
3645
3646 return io;
3647}
3648
3649static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3650 ssize_t size, void *private)
3651{
3652 ext4_io_end_t *io_end = iocb->private;
3653 struct workqueue_struct *wq;
3654
4b70df18
M
3655 /* if not async direct IO or dio with 0 bytes write, just return */
3656 if (!io_end || !size)
3657 return;
3658
8d5d02e6
MC
3659 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3660 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3661 iocb->private, io_end->inode->i_ino, iocb, offset,
3662 size);
8d5d02e6
MC
3663
3664 /* if not aio dio with unwritten extents, just free io and return */
3665 if (io_end->flag != DIO_AIO_UNWRITTEN){
3666 ext4_free_io_end(io_end);
3667 iocb->private = NULL;
4c0425ff 3668 return;
8d5d02e6
MC
3669 }
3670
4c0425ff
MC
3671 io_end->offset = offset;
3672 io_end->size = size;
3673 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3674
8d5d02e6 3675 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3676 queue_work(wq, &io_end->work);
3677
8d5d02e6
MC
3678 /* Add the io_end to per-inode completed aio dio list*/
3679 list_add_tail(&io_end->list,
3680 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
4c0425ff
MC
3681 iocb->private = NULL;
3682}
3683/*
3684 * For ext4 extent files, ext4 will do direct-io write to holes,
3685 * preallocated extents, and those write extend the file, no need to
3686 * fall back to buffered IO.
3687 *
3688 * For holes, we fallocate those blocks, mark them as unintialized
3689 * If those blocks were preallocated, we mark sure they are splited, but
3690 * still keep the range to write as unintialized.
3691 *
8d5d02e6
MC
3692 * The unwrritten extents will be converted to written when DIO is completed.
3693 * For async direct IO, since the IO may still pending when return, we
3694 * set up an end_io call back function, which will do the convertion
3695 * when async direct IO completed.
4c0425ff
MC
3696 *
3697 * If the O_DIRECT write will extend the file then add this inode to the
3698 * orphan list. So recovery will truncate it back to the original size
3699 * if the machine crashes during the write.
3700 *
3701 */
3702static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3703 const struct iovec *iov, loff_t offset,
3704 unsigned long nr_segs)
3705{
3706 struct file *file = iocb->ki_filp;
3707 struct inode *inode = file->f_mapping->host;
3708 ssize_t ret;
3709 size_t count = iov_length(iov, nr_segs);
3710
3711 loff_t final_size = offset + count;
3712 if (rw == WRITE && final_size <= inode->i_size) {
3713 /*
8d5d02e6
MC
3714 * We could direct write to holes and fallocate.
3715 *
3716 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3717 * to prevent paralel buffered read to expose the stale data
3718 * before DIO complete the data IO.
8d5d02e6
MC
3719 *
3720 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3721 * will just simply mark the buffer mapped but still
3722 * keep the extents uninitialized.
3723 *
8d5d02e6
MC
3724 * for non AIO case, we will convert those unwritten extents
3725 * to written after return back from blockdev_direct_IO.
3726 *
3727 * for async DIO, the conversion needs to be defered when
3728 * the IO is completed. The ext4 end_io callback function
3729 * will be called to take care of the conversion work.
3730 * Here for async case, we allocate an io_end structure to
3731 * hook to the iocb.
4c0425ff 3732 */
8d5d02e6
MC
3733 iocb->private = NULL;
3734 EXT4_I(inode)->cur_aio_dio = NULL;
3735 if (!is_sync_kiocb(iocb)) {
3736 iocb->private = ext4_init_io_end(inode);
3737 if (!iocb->private)
3738 return -ENOMEM;
3739 /*
3740 * we save the io structure for current async
3741 * direct IO, so that later ext4_get_blocks()
3742 * could flag the io structure whether there
3743 * is a unwritten extents needs to be converted
3744 * when IO is completed.
3745 */
3746 EXT4_I(inode)->cur_aio_dio = iocb->private;
3747 }
3748
4c0425ff
MC
3749 ret = blockdev_direct_IO(rw, iocb, inode,
3750 inode->i_sb->s_bdev, iov,
3751 offset, nr_segs,
3752 ext4_get_block_dio_write,
3753 ext4_end_io_dio);
8d5d02e6
MC
3754 if (iocb->private)
3755 EXT4_I(inode)->cur_aio_dio = NULL;
3756 /*
3757 * The io_end structure takes a reference to the inode,
3758 * that structure needs to be destroyed and the
3759 * reference to the inode need to be dropped, when IO is
3760 * complete, even with 0 byte write, or failed.
3761 *
3762 * In the successful AIO DIO case, the io_end structure will be
3763 * desctroyed and the reference to the inode will be dropped
3764 * after the end_io call back function is called.
3765 *
3766 * In the case there is 0 byte write, or error case, since
3767 * VFS direct IO won't invoke the end_io call back function,
3768 * we need to free the end_io structure here.
3769 */
3770 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3771 ext4_free_io_end(iocb->private);
3772 iocb->private = NULL;
5f524950
M
3773 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3774 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3775 int err;
8d5d02e6
MC
3776 /*
3777 * for non AIO case, since the IO is already
3778 * completed, we could do the convertion right here
3779 */
109f5565
M
3780 err = ext4_convert_unwritten_extents(inode,
3781 offset, ret);
3782 if (err < 0)
3783 ret = err;
5f524950 3784 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
109f5565 3785 }
4c0425ff
MC
3786 return ret;
3787 }
8d5d02e6
MC
3788
3789 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3790 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3791}
3792
3793static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3794 const struct iovec *iov, loff_t offset,
3795 unsigned long nr_segs)
3796{
3797 struct file *file = iocb->ki_filp;
3798 struct inode *inode = file->f_mapping->host;
3799
3800 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3801 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3802
3803 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3804}
3805
ac27a0ec 3806/*
617ba13b 3807 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3808 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3809 * much here because ->set_page_dirty is called under VFS locks. The page is
3810 * not necessarily locked.
3811 *
3812 * We cannot just dirty the page and leave attached buffers clean, because the
3813 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3814 * or jbddirty because all the journalling code will explode.
3815 *
3816 * So what we do is to mark the page "pending dirty" and next time writepage
3817 * is called, propagate that into the buffers appropriately.
3818 */
617ba13b 3819static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3820{
3821 SetPageChecked(page);
3822 return __set_page_dirty_nobuffers(page);
3823}
3824
617ba13b 3825static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3826 .readpage = ext4_readpage,
3827 .readpages = ext4_readpages,
43ce1d23 3828 .writepage = ext4_writepage,
8ab22b9a
HH
3829 .sync_page = block_sync_page,
3830 .write_begin = ext4_write_begin,
3831 .write_end = ext4_ordered_write_end,
3832 .bmap = ext4_bmap,
3833 .invalidatepage = ext4_invalidatepage,
3834 .releasepage = ext4_releasepage,
3835 .direct_IO = ext4_direct_IO,
3836 .migratepage = buffer_migrate_page,
3837 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3838 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3839};
3840
617ba13b 3841static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3842 .readpage = ext4_readpage,
3843 .readpages = ext4_readpages,
43ce1d23 3844 .writepage = ext4_writepage,
8ab22b9a
HH
3845 .sync_page = block_sync_page,
3846 .write_begin = ext4_write_begin,
3847 .write_end = ext4_writeback_write_end,
3848 .bmap = ext4_bmap,
3849 .invalidatepage = ext4_invalidatepage,
3850 .releasepage = ext4_releasepage,
3851 .direct_IO = ext4_direct_IO,
3852 .migratepage = buffer_migrate_page,
3853 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3854 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3855};
3856
617ba13b 3857static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3858 .readpage = ext4_readpage,
3859 .readpages = ext4_readpages,
43ce1d23 3860 .writepage = ext4_writepage,
8ab22b9a
HH
3861 .sync_page = block_sync_page,
3862 .write_begin = ext4_write_begin,
3863 .write_end = ext4_journalled_write_end,
3864 .set_page_dirty = ext4_journalled_set_page_dirty,
3865 .bmap = ext4_bmap,
3866 .invalidatepage = ext4_invalidatepage,
3867 .releasepage = ext4_releasepage,
3868 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3869 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3870};
3871
64769240 3872static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3873 .readpage = ext4_readpage,
3874 .readpages = ext4_readpages,
43ce1d23 3875 .writepage = ext4_writepage,
8ab22b9a
HH
3876 .writepages = ext4_da_writepages,
3877 .sync_page = block_sync_page,
3878 .write_begin = ext4_da_write_begin,
3879 .write_end = ext4_da_write_end,
3880 .bmap = ext4_bmap,
3881 .invalidatepage = ext4_da_invalidatepage,
3882 .releasepage = ext4_releasepage,
3883 .direct_IO = ext4_direct_IO,
3884 .migratepage = buffer_migrate_page,
3885 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3886 .error_remove_page = generic_error_remove_page,
64769240
AT
3887};
3888
617ba13b 3889void ext4_set_aops(struct inode *inode)
ac27a0ec 3890{
cd1aac32
AK
3891 if (ext4_should_order_data(inode) &&
3892 test_opt(inode->i_sb, DELALLOC))
3893 inode->i_mapping->a_ops = &ext4_da_aops;
3894 else if (ext4_should_order_data(inode))
617ba13b 3895 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3896 else if (ext4_should_writeback_data(inode) &&
3897 test_opt(inode->i_sb, DELALLOC))
3898 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3899 else if (ext4_should_writeback_data(inode))
3900 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3901 else
617ba13b 3902 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3903}
3904
3905/*
617ba13b 3906 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3907 * up to the end of the block which corresponds to `from'.
3908 * This required during truncate. We need to physically zero the tail end
3909 * of that block so it doesn't yield old data if the file is later grown.
3910 */
cf108bca 3911int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3912 struct address_space *mapping, loff_t from)
3913{
617ba13b 3914 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3915 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3916 unsigned blocksize, length, pos;
3917 ext4_lblk_t iblock;
ac27a0ec
DK
3918 struct inode *inode = mapping->host;
3919 struct buffer_head *bh;
cf108bca 3920 struct page *page;
ac27a0ec 3921 int err = 0;
ac27a0ec 3922
f4a01017
TT
3923 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3924 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3925 if (!page)
3926 return -EINVAL;
3927
ac27a0ec
DK
3928 blocksize = inode->i_sb->s_blocksize;
3929 length = blocksize - (offset & (blocksize - 1));
3930 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3931
3932 /*
3933 * For "nobh" option, we can only work if we don't need to
3934 * read-in the page - otherwise we create buffers to do the IO.
3935 */
3936 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3937 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3938 zero_user(page, offset, length);
ac27a0ec
DK
3939 set_page_dirty(page);
3940 goto unlock;
3941 }
3942
3943 if (!page_has_buffers(page))
3944 create_empty_buffers(page, blocksize, 0);
3945
3946 /* Find the buffer that contains "offset" */
3947 bh = page_buffers(page);
3948 pos = blocksize;
3949 while (offset >= pos) {
3950 bh = bh->b_this_page;
3951 iblock++;
3952 pos += blocksize;
3953 }
3954
3955 err = 0;
3956 if (buffer_freed(bh)) {
3957 BUFFER_TRACE(bh, "freed: skip");
3958 goto unlock;
3959 }
3960
3961 if (!buffer_mapped(bh)) {
3962 BUFFER_TRACE(bh, "unmapped");
617ba13b 3963 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3964 /* unmapped? It's a hole - nothing to do */
3965 if (!buffer_mapped(bh)) {
3966 BUFFER_TRACE(bh, "still unmapped");
3967 goto unlock;
3968 }
3969 }
3970
3971 /* Ok, it's mapped. Make sure it's up-to-date */
3972 if (PageUptodate(page))
3973 set_buffer_uptodate(bh);
3974
3975 if (!buffer_uptodate(bh)) {
3976 err = -EIO;
3977 ll_rw_block(READ, 1, &bh);
3978 wait_on_buffer(bh);
3979 /* Uhhuh. Read error. Complain and punt. */
3980 if (!buffer_uptodate(bh))
3981 goto unlock;
3982 }
3983
617ba13b 3984 if (ext4_should_journal_data(inode)) {
ac27a0ec 3985 BUFFER_TRACE(bh, "get write access");
617ba13b 3986 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3987 if (err)
3988 goto unlock;
3989 }
3990
eebd2aa3 3991 zero_user(page, offset, length);
ac27a0ec
DK
3992
3993 BUFFER_TRACE(bh, "zeroed end of block");
3994
3995 err = 0;
617ba13b 3996 if (ext4_should_journal_data(inode)) {
0390131b 3997 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3998 } else {
617ba13b 3999 if (ext4_should_order_data(inode))
678aaf48 4000 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4001 mark_buffer_dirty(bh);
4002 }
4003
4004unlock:
4005 unlock_page(page);
4006 page_cache_release(page);
4007 return err;
4008}
4009
4010/*
4011 * Probably it should be a library function... search for first non-zero word
4012 * or memcmp with zero_page, whatever is better for particular architecture.
4013 * Linus?
4014 */
4015static inline int all_zeroes(__le32 *p, __le32 *q)
4016{
4017 while (p < q)
4018 if (*p++)
4019 return 0;
4020 return 1;
4021}
4022
4023/**
617ba13b 4024 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4025 * @inode: inode in question
4026 * @depth: depth of the affected branch
617ba13b 4027 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4028 * @chain: place to store the pointers to partial indirect blocks
4029 * @top: place to the (detached) top of branch
4030 *
617ba13b 4031 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4032 *
4033 * When we do truncate() we may have to clean the ends of several
4034 * indirect blocks but leave the blocks themselves alive. Block is
4035 * partially truncated if some data below the new i_size is refered
4036 * from it (and it is on the path to the first completely truncated
4037 * data block, indeed). We have to free the top of that path along
4038 * with everything to the right of the path. Since no allocation
617ba13b 4039 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4040 * finishes, we may safely do the latter, but top of branch may
4041 * require special attention - pageout below the truncation point
4042 * might try to populate it.
4043 *
4044 * We atomically detach the top of branch from the tree, store the
4045 * block number of its root in *@top, pointers to buffer_heads of
4046 * partially truncated blocks - in @chain[].bh and pointers to
4047 * their last elements that should not be removed - in
4048 * @chain[].p. Return value is the pointer to last filled element
4049 * of @chain.
4050 *
4051 * The work left to caller to do the actual freeing of subtrees:
4052 * a) free the subtree starting from *@top
4053 * b) free the subtrees whose roots are stored in
4054 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4055 * c) free the subtrees growing from the inode past the @chain[0].
4056 * (no partially truncated stuff there). */
4057
617ba13b 4058static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4059 ext4_lblk_t offsets[4], Indirect chain[4],
4060 __le32 *top)
ac27a0ec
DK
4061{
4062 Indirect *partial, *p;
4063 int k, err;
4064
4065 *top = 0;
bf48aabb 4066 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4067 for (k = depth; k > 1 && !offsets[k-1]; k--)
4068 ;
617ba13b 4069 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4070 /* Writer: pointers */
4071 if (!partial)
4072 partial = chain + k-1;
4073 /*
4074 * If the branch acquired continuation since we've looked at it -
4075 * fine, it should all survive and (new) top doesn't belong to us.
4076 */
4077 if (!partial->key && *partial->p)
4078 /* Writer: end */
4079 goto no_top;
af5bc92d 4080 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4081 ;
4082 /*
4083 * OK, we've found the last block that must survive. The rest of our
4084 * branch should be detached before unlocking. However, if that rest
4085 * of branch is all ours and does not grow immediately from the inode
4086 * it's easier to cheat and just decrement partial->p.
4087 */
4088 if (p == chain + k - 1 && p > chain) {
4089 p->p--;
4090 } else {
4091 *top = *p->p;
617ba13b 4092 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4093#if 0
4094 *p->p = 0;
4095#endif
4096 }
4097 /* Writer: end */
4098
af5bc92d 4099 while (partial > p) {
ac27a0ec
DK
4100 brelse(partial->bh);
4101 partial--;
4102 }
4103no_top:
4104 return partial;
4105}
4106
4107/*
4108 * Zero a number of block pointers in either an inode or an indirect block.
4109 * If we restart the transaction we must again get write access to the
4110 * indirect block for further modification.
4111 *
4112 * We release `count' blocks on disk, but (last - first) may be greater
4113 * than `count' because there can be holes in there.
4114 */
617ba13b 4115static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
4116 struct buffer_head *bh,
4117 ext4_fsblk_t block_to_free,
4118 unsigned long count, __le32 *first,
4119 __le32 *last)
ac27a0ec
DK
4120{
4121 __le32 *p;
e6362609
TT
4122 int flags = EXT4_FREE_BLOCKS_FORGET;
4123
4124 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4125 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4126
ac27a0ec
DK
4127 if (try_to_extend_transaction(handle, inode)) {
4128 if (bh) {
0390131b
FM
4129 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4130 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4131 }
617ba13b 4132 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4133 ext4_truncate_restart_trans(handle, inode,
4134 blocks_for_truncate(inode));
ac27a0ec
DK
4135 if (bh) {
4136 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4137 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4138 }
4139 }
4140
e6362609
TT
4141 for (p = first; p < last; p++)
4142 *p = 0;
ac27a0ec 4143
e6362609 4144 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
ac27a0ec
DK
4145}
4146
4147/**
617ba13b 4148 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4149 * @handle: handle for this transaction
4150 * @inode: inode we are dealing with
4151 * @this_bh: indirect buffer_head which contains *@first and *@last
4152 * @first: array of block numbers
4153 * @last: points immediately past the end of array
4154 *
4155 * We are freeing all blocks refered from that array (numbers are stored as
4156 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4157 *
4158 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4159 * blocks are contiguous then releasing them at one time will only affect one
4160 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4161 * actually use a lot of journal space.
4162 *
4163 * @this_bh will be %NULL if @first and @last point into the inode's direct
4164 * block pointers.
4165 */
617ba13b 4166static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4167 struct buffer_head *this_bh,
4168 __le32 *first, __le32 *last)
4169{
617ba13b 4170 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4171 unsigned long count = 0; /* Number of blocks in the run */
4172 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4173 corresponding to
4174 block_to_free */
617ba13b 4175 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4176 __le32 *p; /* Pointer into inode/ind
4177 for current block */
4178 int err;
4179
4180 if (this_bh) { /* For indirect block */
4181 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4182 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4183 /* Important: if we can't update the indirect pointers
4184 * to the blocks, we can't free them. */
4185 if (err)
4186 return;
4187 }
4188
4189 for (p = first; p < last; p++) {
4190 nr = le32_to_cpu(*p);
4191 if (nr) {
4192 /* accumulate blocks to free if they're contiguous */
4193 if (count == 0) {
4194 block_to_free = nr;
4195 block_to_free_p = p;
4196 count = 1;
4197 } else if (nr == block_to_free + count) {
4198 count++;
4199 } else {
617ba13b 4200 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
4201 block_to_free,
4202 count, block_to_free_p, p);
4203 block_to_free = nr;
4204 block_to_free_p = p;
4205 count = 1;
4206 }
4207 }
4208 }
4209
4210 if (count > 0)
617ba13b 4211 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4212 count, block_to_free_p, p);
4213
4214 if (this_bh) {
0390131b 4215 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4216
4217 /*
4218 * The buffer head should have an attached journal head at this
4219 * point. However, if the data is corrupted and an indirect
4220 * block pointed to itself, it would have been detached when
4221 * the block was cleared. Check for this instead of OOPSing.
4222 */
e7f07968 4223 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4224 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
4225 else
4226 ext4_error(inode->i_sb, __func__,
4227 "circular indirect block detected, "
4228 "inode=%lu, block=%llu",
4229 inode->i_ino,
4230 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4231 }
4232}
4233
4234/**
617ba13b 4235 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4236 * @handle: JBD handle for this transaction
4237 * @inode: inode we are dealing with
4238 * @parent_bh: the buffer_head which contains *@first and *@last
4239 * @first: array of block numbers
4240 * @last: pointer immediately past the end of array
4241 * @depth: depth of the branches to free
4242 *
4243 * We are freeing all blocks refered from these branches (numbers are
4244 * stored as little-endian 32-bit) and updating @inode->i_blocks
4245 * appropriately.
4246 */
617ba13b 4247static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4248 struct buffer_head *parent_bh,
4249 __le32 *first, __le32 *last, int depth)
4250{
617ba13b 4251 ext4_fsblk_t nr;
ac27a0ec
DK
4252 __le32 *p;
4253
0390131b 4254 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4255 return;
4256
4257 if (depth--) {
4258 struct buffer_head *bh;
617ba13b 4259 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4260 p = last;
4261 while (--p >= first) {
4262 nr = le32_to_cpu(*p);
4263 if (!nr)
4264 continue; /* A hole */
4265
4266 /* Go read the buffer for the next level down */
4267 bh = sb_bread(inode->i_sb, nr);
4268
4269 /*
4270 * A read failure? Report error and clear slot
4271 * (should be rare).
4272 */
4273 if (!bh) {
617ba13b 4274 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 4275 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
4276 inode->i_ino, nr);
4277 continue;
4278 }
4279
4280 /* This zaps the entire block. Bottom up. */
4281 BUFFER_TRACE(bh, "free child branches");
617ba13b 4282 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4283 (__le32 *) bh->b_data,
4284 (__le32 *) bh->b_data + addr_per_block,
4285 depth);
ac27a0ec
DK
4286
4287 /*
4288 * We've probably journalled the indirect block several
4289 * times during the truncate. But it's no longer
4290 * needed and we now drop it from the transaction via
dab291af 4291 * jbd2_journal_revoke().
ac27a0ec
DK
4292 *
4293 * That's easy if it's exclusively part of this
4294 * transaction. But if it's part of the committing
dab291af 4295 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4296 * brelse() it. That means that if the underlying
617ba13b 4297 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4298 * unmap_underlying_metadata() will find this block
4299 * and will try to get rid of it. damn, damn.
4300 *
4301 * If this block has already been committed to the
4302 * journal, a revoke record will be written. And
4303 * revoke records must be emitted *before* clearing
4304 * this block's bit in the bitmaps.
4305 */
617ba13b 4306 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4307
4308 /*
4309 * Everything below this this pointer has been
4310 * released. Now let this top-of-subtree go.
4311 *
4312 * We want the freeing of this indirect block to be
4313 * atomic in the journal with the updating of the
4314 * bitmap block which owns it. So make some room in
4315 * the journal.
4316 *
4317 * We zero the parent pointer *after* freeing its
4318 * pointee in the bitmaps, so if extend_transaction()
4319 * for some reason fails to put the bitmap changes and
4320 * the release into the same transaction, recovery
4321 * will merely complain about releasing a free block,
4322 * rather than leaking blocks.
4323 */
0390131b 4324 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4325 return;
4326 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4327 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4328 ext4_truncate_restart_trans(handle, inode,
4329 blocks_for_truncate(inode));
ac27a0ec
DK
4330 }
4331
e6362609
TT
4332 ext4_free_blocks(handle, inode, 0, nr, 1,
4333 EXT4_FREE_BLOCKS_METADATA);
ac27a0ec
DK
4334
4335 if (parent_bh) {
4336 /*
4337 * The block which we have just freed is
4338 * pointed to by an indirect block: journal it
4339 */
4340 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4341 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4342 parent_bh)){
4343 *p = 0;
4344 BUFFER_TRACE(parent_bh,
0390131b
FM
4345 "call ext4_handle_dirty_metadata");
4346 ext4_handle_dirty_metadata(handle,
4347 inode,
4348 parent_bh);
ac27a0ec
DK
4349 }
4350 }
4351 }
4352 } else {
4353 /* We have reached the bottom of the tree. */
4354 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4355 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4356 }
4357}
4358
91ef4caf
DG
4359int ext4_can_truncate(struct inode *inode)
4360{
4361 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4362 return 0;
4363 if (S_ISREG(inode->i_mode))
4364 return 1;
4365 if (S_ISDIR(inode->i_mode))
4366 return 1;
4367 if (S_ISLNK(inode->i_mode))
4368 return !ext4_inode_is_fast_symlink(inode);
4369 return 0;
4370}
4371
ac27a0ec 4372/*
617ba13b 4373 * ext4_truncate()
ac27a0ec 4374 *
617ba13b
MC
4375 * We block out ext4_get_block() block instantiations across the entire
4376 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4377 * simultaneously on behalf of the same inode.
4378 *
4379 * As we work through the truncate and commmit bits of it to the journal there
4380 * is one core, guiding principle: the file's tree must always be consistent on
4381 * disk. We must be able to restart the truncate after a crash.
4382 *
4383 * The file's tree may be transiently inconsistent in memory (although it
4384 * probably isn't), but whenever we close off and commit a journal transaction,
4385 * the contents of (the filesystem + the journal) must be consistent and
4386 * restartable. It's pretty simple, really: bottom up, right to left (although
4387 * left-to-right works OK too).
4388 *
4389 * Note that at recovery time, journal replay occurs *before* the restart of
4390 * truncate against the orphan inode list.
4391 *
4392 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4393 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4394 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4395 * ext4_truncate() to have another go. So there will be instantiated blocks
4396 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4397 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4398 * ext4_truncate() run will find them and release them.
ac27a0ec 4399 */
617ba13b 4400void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4401{
4402 handle_t *handle;
617ba13b 4403 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4404 __le32 *i_data = ei->i_data;
617ba13b 4405 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4406 struct address_space *mapping = inode->i_mapping;
725d26d3 4407 ext4_lblk_t offsets[4];
ac27a0ec
DK
4408 Indirect chain[4];
4409 Indirect *partial;
4410 __le32 nr = 0;
4411 int n;
725d26d3 4412 ext4_lblk_t last_block;
ac27a0ec 4413 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4414
91ef4caf 4415 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4416 return;
4417
5534fb5b 4418 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4419 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4420
1d03ec98 4421 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4422 ext4_ext_truncate(inode);
1d03ec98
AK
4423 return;
4424 }
a86c6181 4425
ac27a0ec 4426 handle = start_transaction(inode);
cf108bca 4427 if (IS_ERR(handle))
ac27a0ec 4428 return; /* AKPM: return what? */
ac27a0ec
DK
4429
4430 last_block = (inode->i_size + blocksize-1)
617ba13b 4431 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4432
cf108bca
JK
4433 if (inode->i_size & (blocksize - 1))
4434 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4435 goto out_stop;
ac27a0ec 4436
617ba13b 4437 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4438 if (n == 0)
4439 goto out_stop; /* error */
4440
4441 /*
4442 * OK. This truncate is going to happen. We add the inode to the
4443 * orphan list, so that if this truncate spans multiple transactions,
4444 * and we crash, we will resume the truncate when the filesystem
4445 * recovers. It also marks the inode dirty, to catch the new size.
4446 *
4447 * Implication: the file must always be in a sane, consistent
4448 * truncatable state while each transaction commits.
4449 */
617ba13b 4450 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4451 goto out_stop;
4452
632eaeab
MC
4453 /*
4454 * From here we block out all ext4_get_block() callers who want to
4455 * modify the block allocation tree.
4456 */
4457 down_write(&ei->i_data_sem);
b4df2030 4458
c2ea3fde 4459 ext4_discard_preallocations(inode);
b4df2030 4460
ac27a0ec
DK
4461 /*
4462 * The orphan list entry will now protect us from any crash which
4463 * occurs before the truncate completes, so it is now safe to propagate
4464 * the new, shorter inode size (held for now in i_size) into the
4465 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4466 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4467 */
4468 ei->i_disksize = inode->i_size;
4469
ac27a0ec 4470 if (n == 1) { /* direct blocks */
617ba13b
MC
4471 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4472 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4473 goto do_indirects;
4474 }
4475
617ba13b 4476 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4477 /* Kill the top of shared branch (not detached) */
4478 if (nr) {
4479 if (partial == chain) {
4480 /* Shared branch grows from the inode */
617ba13b 4481 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4482 &nr, &nr+1, (chain+n-1) - partial);
4483 *partial->p = 0;
4484 /*
4485 * We mark the inode dirty prior to restart,
4486 * and prior to stop. No need for it here.
4487 */
4488 } else {
4489 /* Shared branch grows from an indirect block */
4490 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4491 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4492 partial->p,
4493 partial->p+1, (chain+n-1) - partial);
4494 }
4495 }
4496 /* Clear the ends of indirect blocks on the shared branch */
4497 while (partial > chain) {
617ba13b 4498 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4499 (__le32*)partial->bh->b_data+addr_per_block,
4500 (chain+n-1) - partial);
4501 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4502 brelse(partial->bh);
ac27a0ec
DK
4503 partial--;
4504 }
4505do_indirects:
4506 /* Kill the remaining (whole) subtrees */
4507 switch (offsets[0]) {
4508 default:
617ba13b 4509 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4510 if (nr) {
617ba13b
MC
4511 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4512 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4513 }
617ba13b
MC
4514 case EXT4_IND_BLOCK:
4515 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4516 if (nr) {
617ba13b
MC
4517 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4518 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4519 }
617ba13b
MC
4520 case EXT4_DIND_BLOCK:
4521 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4522 if (nr) {
617ba13b
MC
4523 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4524 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4525 }
617ba13b 4526 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4527 ;
4528 }
4529
0e855ac8 4530 up_write(&ei->i_data_sem);
ef7f3835 4531 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4532 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4533
4534 /*
4535 * In a multi-transaction truncate, we only make the final transaction
4536 * synchronous
4537 */
4538 if (IS_SYNC(inode))
0390131b 4539 ext4_handle_sync(handle);
ac27a0ec
DK
4540out_stop:
4541 /*
4542 * If this was a simple ftruncate(), and the file will remain alive
4543 * then we need to clear up the orphan record which we created above.
4544 * However, if this was a real unlink then we were called by
617ba13b 4545 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4546 * orphan info for us.
4547 */
4548 if (inode->i_nlink)
617ba13b 4549 ext4_orphan_del(handle, inode);
ac27a0ec 4550
617ba13b 4551 ext4_journal_stop(handle);
ac27a0ec
DK
4552}
4553
ac27a0ec 4554/*
617ba13b 4555 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4556 * underlying buffer_head on success. If 'in_mem' is true, we have all
4557 * data in memory that is needed to recreate the on-disk version of this
4558 * inode.
4559 */
617ba13b
MC
4560static int __ext4_get_inode_loc(struct inode *inode,
4561 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4562{
240799cd
TT
4563 struct ext4_group_desc *gdp;
4564 struct buffer_head *bh;
4565 struct super_block *sb = inode->i_sb;
4566 ext4_fsblk_t block;
4567 int inodes_per_block, inode_offset;
4568
3a06d778 4569 iloc->bh = NULL;
240799cd
TT
4570 if (!ext4_valid_inum(sb, inode->i_ino))
4571 return -EIO;
ac27a0ec 4572
240799cd
TT
4573 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4574 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4575 if (!gdp)
ac27a0ec
DK
4576 return -EIO;
4577
240799cd
TT
4578 /*
4579 * Figure out the offset within the block group inode table
4580 */
4581 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4582 inode_offset = ((inode->i_ino - 1) %
4583 EXT4_INODES_PER_GROUP(sb));
4584 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4585 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4586
4587 bh = sb_getblk(sb, block);
ac27a0ec 4588 if (!bh) {
240799cd
TT
4589 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4590 "inode block - inode=%lu, block=%llu",
4591 inode->i_ino, block);
ac27a0ec
DK
4592 return -EIO;
4593 }
4594 if (!buffer_uptodate(bh)) {
4595 lock_buffer(bh);
9c83a923
HK
4596
4597 /*
4598 * If the buffer has the write error flag, we have failed
4599 * to write out another inode in the same block. In this
4600 * case, we don't have to read the block because we may
4601 * read the old inode data successfully.
4602 */
4603 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4604 set_buffer_uptodate(bh);
4605
ac27a0ec
DK
4606 if (buffer_uptodate(bh)) {
4607 /* someone brought it uptodate while we waited */
4608 unlock_buffer(bh);
4609 goto has_buffer;
4610 }
4611
4612 /*
4613 * If we have all information of the inode in memory and this
4614 * is the only valid inode in the block, we need not read the
4615 * block.
4616 */
4617 if (in_mem) {
4618 struct buffer_head *bitmap_bh;
240799cd 4619 int i, start;
ac27a0ec 4620
240799cd 4621 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4622
240799cd
TT
4623 /* Is the inode bitmap in cache? */
4624 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4625 if (!bitmap_bh)
4626 goto make_io;
4627
4628 /*
4629 * If the inode bitmap isn't in cache then the
4630 * optimisation may end up performing two reads instead
4631 * of one, so skip it.
4632 */
4633 if (!buffer_uptodate(bitmap_bh)) {
4634 brelse(bitmap_bh);
4635 goto make_io;
4636 }
240799cd 4637 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4638 if (i == inode_offset)
4639 continue;
617ba13b 4640 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4641 break;
4642 }
4643 brelse(bitmap_bh);
240799cd 4644 if (i == start + inodes_per_block) {
ac27a0ec
DK
4645 /* all other inodes are free, so skip I/O */
4646 memset(bh->b_data, 0, bh->b_size);
4647 set_buffer_uptodate(bh);
4648 unlock_buffer(bh);
4649 goto has_buffer;
4650 }
4651 }
4652
4653make_io:
240799cd
TT
4654 /*
4655 * If we need to do any I/O, try to pre-readahead extra
4656 * blocks from the inode table.
4657 */
4658 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4659 ext4_fsblk_t b, end, table;
4660 unsigned num;
4661
4662 table = ext4_inode_table(sb, gdp);
b713a5ec 4663 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4664 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4665 if (table > b)
4666 b = table;
4667 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4668 num = EXT4_INODES_PER_GROUP(sb);
4669 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4670 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4671 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4672 table += num / inodes_per_block;
4673 if (end > table)
4674 end = table;
4675 while (b <= end)
4676 sb_breadahead(sb, b++);
4677 }
4678
ac27a0ec
DK
4679 /*
4680 * There are other valid inodes in the buffer, this inode
4681 * has in-inode xattrs, or we don't have this inode in memory.
4682 * Read the block from disk.
4683 */
4684 get_bh(bh);
4685 bh->b_end_io = end_buffer_read_sync;
4686 submit_bh(READ_META, bh);
4687 wait_on_buffer(bh);
4688 if (!buffer_uptodate(bh)) {
240799cd
TT
4689 ext4_error(sb, __func__,
4690 "unable to read inode block - inode=%lu, "
4691 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4692 brelse(bh);
4693 return -EIO;
4694 }
4695 }
4696has_buffer:
4697 iloc->bh = bh;
4698 return 0;
4699}
4700
617ba13b 4701int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4702{
4703 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4704 return __ext4_get_inode_loc(inode, iloc,
4705 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4706}
4707
617ba13b 4708void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4709{
617ba13b 4710 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4711
4712 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4713 if (flags & EXT4_SYNC_FL)
ac27a0ec 4714 inode->i_flags |= S_SYNC;
617ba13b 4715 if (flags & EXT4_APPEND_FL)
ac27a0ec 4716 inode->i_flags |= S_APPEND;
617ba13b 4717 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4718 inode->i_flags |= S_IMMUTABLE;
617ba13b 4719 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4720 inode->i_flags |= S_NOATIME;
617ba13b 4721 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4722 inode->i_flags |= S_DIRSYNC;
4723}
4724
ff9ddf7e
JK
4725/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4726void ext4_get_inode_flags(struct ext4_inode_info *ei)
4727{
4728 unsigned int flags = ei->vfs_inode.i_flags;
4729
4730 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4731 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4732 if (flags & S_SYNC)
4733 ei->i_flags |= EXT4_SYNC_FL;
4734 if (flags & S_APPEND)
4735 ei->i_flags |= EXT4_APPEND_FL;
4736 if (flags & S_IMMUTABLE)
4737 ei->i_flags |= EXT4_IMMUTABLE_FL;
4738 if (flags & S_NOATIME)
4739 ei->i_flags |= EXT4_NOATIME_FL;
4740 if (flags & S_DIRSYNC)
4741 ei->i_flags |= EXT4_DIRSYNC_FL;
4742}
de9a55b8 4743
0fc1b451 4744static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4745 struct ext4_inode_info *ei)
0fc1b451
AK
4746{
4747 blkcnt_t i_blocks ;
8180a562
AK
4748 struct inode *inode = &(ei->vfs_inode);
4749 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4750
4751 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4752 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4753 /* we are using combined 48 bit field */
4754 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4755 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4756 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4757 /* i_blocks represent file system block size */
4758 return i_blocks << (inode->i_blkbits - 9);
4759 } else {
4760 return i_blocks;
4761 }
0fc1b451
AK
4762 } else {
4763 return le32_to_cpu(raw_inode->i_blocks_lo);
4764 }
4765}
ff9ddf7e 4766
1d1fe1ee 4767struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4768{
617ba13b
MC
4769 struct ext4_iloc iloc;
4770 struct ext4_inode *raw_inode;
1d1fe1ee 4771 struct ext4_inode_info *ei;
1d1fe1ee 4772 struct inode *inode;
b436b9be 4773 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4774 long ret;
ac27a0ec
DK
4775 int block;
4776
1d1fe1ee
DH
4777 inode = iget_locked(sb, ino);
4778 if (!inode)
4779 return ERR_PTR(-ENOMEM);
4780 if (!(inode->i_state & I_NEW))
4781 return inode;
4782
4783 ei = EXT4_I(inode);
567f3e9a 4784 iloc.bh = 0;
ac27a0ec 4785
1d1fe1ee
DH
4786 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4787 if (ret < 0)
ac27a0ec 4788 goto bad_inode;
617ba13b 4789 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4790 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4791 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4792 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4793 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4794 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4795 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4796 }
4797 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4798
4799 ei->i_state = 0;
4800 ei->i_dir_start_lookup = 0;
4801 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4802 /* We now have enough fields to check if the inode was active or not.
4803 * This is needed because nfsd might try to access dead inodes
4804 * the test is that same one that e2fsck uses
4805 * NeilBrown 1999oct15
4806 */
4807 if (inode->i_nlink == 0) {
4808 if (inode->i_mode == 0 ||
617ba13b 4809 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4810 /* this inode is deleted */
1d1fe1ee 4811 ret = -ESTALE;
ac27a0ec
DK
4812 goto bad_inode;
4813 }
4814 /* The only unlinked inodes we let through here have
4815 * valid i_mode and are being read by the orphan
4816 * recovery code: that's fine, we're about to complete
4817 * the process of deleting those. */
4818 }
ac27a0ec 4819 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4820 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4821 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4822 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4823 ei->i_file_acl |=
4824 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4825 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4826 ei->i_disksize = inode->i_size;
a9e7f447
DM
4827#ifdef CONFIG_QUOTA
4828 ei->i_reserved_quota = 0;
4829#endif
ac27a0ec
DK
4830 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4831 ei->i_block_group = iloc.block_group;
a4912123 4832 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4833 /*
4834 * NOTE! The in-memory inode i_data array is in little-endian order
4835 * even on big-endian machines: we do NOT byteswap the block numbers!
4836 */
617ba13b 4837 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4838 ei->i_data[block] = raw_inode->i_block[block];
4839 INIT_LIST_HEAD(&ei->i_orphan);
4840
b436b9be
JK
4841 /*
4842 * Set transaction id's of transactions that have to be committed
4843 * to finish f[data]sync. We set them to currently running transaction
4844 * as we cannot be sure that the inode or some of its metadata isn't
4845 * part of the transaction - the inode could have been reclaimed and
4846 * now it is reread from disk.
4847 */
4848 if (journal) {
4849 transaction_t *transaction;
4850 tid_t tid;
4851
4852 spin_lock(&journal->j_state_lock);
4853 if (journal->j_running_transaction)
4854 transaction = journal->j_running_transaction;
4855 else
4856 transaction = journal->j_committing_transaction;
4857 if (transaction)
4858 tid = transaction->t_tid;
4859 else
4860 tid = journal->j_commit_sequence;
4861 spin_unlock(&journal->j_state_lock);
4862 ei->i_sync_tid = tid;
4863 ei->i_datasync_tid = tid;
4864 }
4865
0040d987 4866 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4867 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4868 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4869 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 4870 ret = -EIO;
ac27a0ec 4871 goto bad_inode;
e5d2861f 4872 }
ac27a0ec
DK
4873 if (ei->i_extra_isize == 0) {
4874 /* The extra space is currently unused. Use it. */
617ba13b
MC
4875 ei->i_extra_isize = sizeof(struct ext4_inode) -
4876 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4877 } else {
4878 __le32 *magic = (void *)raw_inode +
617ba13b 4879 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4880 ei->i_extra_isize;
617ba13b 4881 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4882 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4883 }
4884 } else
4885 ei->i_extra_isize = 0;
4886
ef7f3835
KS
4887 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4888 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4889 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4890 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4891
25ec56b5
JNC
4892 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4893 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4894 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4895 inode->i_version |=
4896 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4897 }
4898
c4b5a614 4899 ret = 0;
485c26ec 4900 if (ei->i_file_acl &&
1032988c 4901 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
485c26ec
TT
4902 ext4_error(sb, __func__,
4903 "bad extended attribute block %llu in inode #%lu",
4904 ei->i_file_acl, inode->i_ino);
4905 ret = -EIO;
4906 goto bad_inode;
4907 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4908 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4909 (S_ISLNK(inode->i_mode) &&
4910 !ext4_inode_is_fast_symlink(inode)))
4911 /* Validate extent which is part of inode */
4912 ret = ext4_ext_check_inode(inode);
de9a55b8 4913 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4914 (S_ISLNK(inode->i_mode) &&
4915 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4916 /* Validate block references which are part of inode */
fe2c8191
TN
4917 ret = ext4_check_inode_blockref(inode);
4918 }
567f3e9a 4919 if (ret)
de9a55b8 4920 goto bad_inode;
7a262f7c 4921
ac27a0ec 4922 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4923 inode->i_op = &ext4_file_inode_operations;
4924 inode->i_fop = &ext4_file_operations;
4925 ext4_set_aops(inode);
ac27a0ec 4926 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4927 inode->i_op = &ext4_dir_inode_operations;
4928 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4929 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4930 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4931 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4932 nd_terminate_link(ei->i_data, inode->i_size,
4933 sizeof(ei->i_data) - 1);
4934 } else {
617ba13b
MC
4935 inode->i_op = &ext4_symlink_inode_operations;
4936 ext4_set_aops(inode);
ac27a0ec 4937 }
563bdd61
TT
4938 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4939 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4940 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4941 if (raw_inode->i_block[0])
4942 init_special_inode(inode, inode->i_mode,
4943 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4944 else
4945 init_special_inode(inode, inode->i_mode,
4946 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4947 } else {
563bdd61 4948 ret = -EIO;
de9a55b8 4949 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4950 "bogus i_mode (%o) for inode=%lu",
4951 inode->i_mode, inode->i_ino);
4952 goto bad_inode;
ac27a0ec 4953 }
af5bc92d 4954 brelse(iloc.bh);
617ba13b 4955 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4956 unlock_new_inode(inode);
4957 return inode;
ac27a0ec
DK
4958
4959bad_inode:
567f3e9a 4960 brelse(iloc.bh);
1d1fe1ee
DH
4961 iget_failed(inode);
4962 return ERR_PTR(ret);
ac27a0ec
DK
4963}
4964
0fc1b451
AK
4965static int ext4_inode_blocks_set(handle_t *handle,
4966 struct ext4_inode *raw_inode,
4967 struct ext4_inode_info *ei)
4968{
4969 struct inode *inode = &(ei->vfs_inode);
4970 u64 i_blocks = inode->i_blocks;
4971 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4972
4973 if (i_blocks <= ~0U) {
4974 /*
4975 * i_blocks can be represnted in a 32 bit variable
4976 * as multiple of 512 bytes
4977 */
8180a562 4978 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4979 raw_inode->i_blocks_high = 0;
8180a562 4980 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4981 return 0;
4982 }
4983 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4984 return -EFBIG;
4985
4986 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4987 /*
4988 * i_blocks can be represented in a 48 bit variable
4989 * as multiple of 512 bytes
4990 */
8180a562 4991 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4992 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4993 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4994 } else {
8180a562
AK
4995 ei->i_flags |= EXT4_HUGE_FILE_FL;
4996 /* i_block is stored in file system block size */
4997 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4998 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4999 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5000 }
f287a1a5 5001 return 0;
0fc1b451
AK
5002}
5003
ac27a0ec
DK
5004/*
5005 * Post the struct inode info into an on-disk inode location in the
5006 * buffer-cache. This gobbles the caller's reference to the
5007 * buffer_head in the inode location struct.
5008 *
5009 * The caller must have write access to iloc->bh.
5010 */
617ba13b 5011static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5012 struct inode *inode,
830156c7 5013 struct ext4_iloc *iloc)
ac27a0ec 5014{
617ba13b
MC
5015 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5016 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5017 struct buffer_head *bh = iloc->bh;
5018 int err = 0, rc, block;
5019
5020 /* For fields not not tracking in the in-memory inode,
5021 * initialise them to zero for new inodes. */
617ba13b
MC
5022 if (ei->i_state & EXT4_STATE_NEW)
5023 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5024
ff9ddf7e 5025 ext4_get_inode_flags(ei);
ac27a0ec 5026 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5027 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5028 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5029 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5030/*
5031 * Fix up interoperability with old kernels. Otherwise, old inodes get
5032 * re-used with the upper 16 bits of the uid/gid intact
5033 */
af5bc92d 5034 if (!ei->i_dtime) {
ac27a0ec
DK
5035 raw_inode->i_uid_high =
5036 cpu_to_le16(high_16_bits(inode->i_uid));
5037 raw_inode->i_gid_high =
5038 cpu_to_le16(high_16_bits(inode->i_gid));
5039 } else {
5040 raw_inode->i_uid_high = 0;
5041 raw_inode->i_gid_high = 0;
5042 }
5043 } else {
5044 raw_inode->i_uid_low =
5045 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5046 raw_inode->i_gid_low =
5047 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5048 raw_inode->i_uid_high = 0;
5049 raw_inode->i_gid_high = 0;
5050 }
5051 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5052
5053 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5054 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5055 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5056 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5057
0fc1b451
AK
5058 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5059 goto out_brelse;
ac27a0ec 5060 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5061 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5062 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5063 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5064 raw_inode->i_file_acl_high =
5065 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5066 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5067 ext4_isize_set(raw_inode, ei->i_disksize);
5068 if (ei->i_disksize > 0x7fffffffULL) {
5069 struct super_block *sb = inode->i_sb;
5070 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5071 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5072 EXT4_SB(sb)->s_es->s_rev_level ==
5073 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5074 /* If this is the first large file
5075 * created, add a flag to the superblock.
5076 */
5077 err = ext4_journal_get_write_access(handle,
5078 EXT4_SB(sb)->s_sbh);
5079 if (err)
5080 goto out_brelse;
5081 ext4_update_dynamic_rev(sb);
5082 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5083 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5084 sb->s_dirt = 1;
0390131b
FM
5085 ext4_handle_sync(handle);
5086 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 5087 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5088 }
5089 }
5090 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5091 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5092 if (old_valid_dev(inode->i_rdev)) {
5093 raw_inode->i_block[0] =
5094 cpu_to_le32(old_encode_dev(inode->i_rdev));
5095 raw_inode->i_block[1] = 0;
5096 } else {
5097 raw_inode->i_block[0] = 0;
5098 raw_inode->i_block[1] =
5099 cpu_to_le32(new_encode_dev(inode->i_rdev));
5100 raw_inode->i_block[2] = 0;
5101 }
de9a55b8
TT
5102 } else
5103 for (block = 0; block < EXT4_N_BLOCKS; block++)
5104 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5105
25ec56b5
JNC
5106 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5107 if (ei->i_extra_isize) {
5108 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5109 raw_inode->i_version_hi =
5110 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5111 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5112 }
5113
830156c7
FM
5114 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5115 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5116 if (!err)
5117 err = rc;
617ba13b 5118 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec 5119
b436b9be 5120 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5121out_brelse:
af5bc92d 5122 brelse(bh);
617ba13b 5123 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5124 return err;
5125}
5126
5127/*
617ba13b 5128 * ext4_write_inode()
ac27a0ec
DK
5129 *
5130 * We are called from a few places:
5131 *
5132 * - Within generic_file_write() for O_SYNC files.
5133 * Here, there will be no transaction running. We wait for any running
5134 * trasnaction to commit.
5135 *
5136 * - Within sys_sync(), kupdate and such.
5137 * We wait on commit, if tol to.
5138 *
5139 * - Within prune_icache() (PF_MEMALLOC == true)
5140 * Here we simply return. We can't afford to block kswapd on the
5141 * journal commit.
5142 *
5143 * In all cases it is actually safe for us to return without doing anything,
5144 * because the inode has been copied into a raw inode buffer in
617ba13b 5145 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5146 * knfsd.
5147 *
5148 * Note that we are absolutely dependent upon all inode dirtiers doing the
5149 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5150 * which we are interested.
5151 *
5152 * It would be a bug for them to not do this. The code:
5153 *
5154 * mark_inode_dirty(inode)
5155 * stuff();
5156 * inode->i_size = expr;
5157 *
5158 * is in error because a kswapd-driven write_inode() could occur while
5159 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5160 * will no longer be on the superblock's dirty inode list.
5161 */
617ba13b 5162int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 5163{
91ac6f43
FM
5164 int err;
5165
ac27a0ec
DK
5166 if (current->flags & PF_MEMALLOC)
5167 return 0;
5168
91ac6f43
FM
5169 if (EXT4_SB(inode->i_sb)->s_journal) {
5170 if (ext4_journal_current_handle()) {
5171 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5172 dump_stack();
5173 return -EIO;
5174 }
ac27a0ec 5175
91ac6f43
FM
5176 if (!wait)
5177 return 0;
5178
5179 err = ext4_force_commit(inode->i_sb);
5180 } else {
5181 struct ext4_iloc iloc;
ac27a0ec 5182
91ac6f43
FM
5183 err = ext4_get_inode_loc(inode, &iloc);
5184 if (err)
5185 return err;
830156c7
FM
5186 if (wait)
5187 sync_dirty_buffer(iloc.bh);
5188 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5189 ext4_error(inode->i_sb, __func__,
5190 "IO error syncing inode, "
5191 "inode=%lu, block=%llu",
5192 inode->i_ino,
5193 (unsigned long long)iloc.bh->b_blocknr);
5194 err = -EIO;
5195 }
91ac6f43
FM
5196 }
5197 return err;
ac27a0ec
DK
5198}
5199
5200/*
617ba13b 5201 * ext4_setattr()
ac27a0ec
DK
5202 *
5203 * Called from notify_change.
5204 *
5205 * We want to trap VFS attempts to truncate the file as soon as
5206 * possible. In particular, we want to make sure that when the VFS
5207 * shrinks i_size, we put the inode on the orphan list and modify
5208 * i_disksize immediately, so that during the subsequent flushing of
5209 * dirty pages and freeing of disk blocks, we can guarantee that any
5210 * commit will leave the blocks being flushed in an unused state on
5211 * disk. (On recovery, the inode will get truncated and the blocks will
5212 * be freed, so we have a strong guarantee that no future commit will
5213 * leave these blocks visible to the user.)
5214 *
678aaf48
JK
5215 * Another thing we have to assure is that if we are in ordered mode
5216 * and inode is still attached to the committing transaction, we must
5217 * we start writeout of all the dirty pages which are being truncated.
5218 * This way we are sure that all the data written in the previous
5219 * transaction are already on disk (truncate waits for pages under
5220 * writeback).
5221 *
5222 * Called with inode->i_mutex down.
ac27a0ec 5223 */
617ba13b 5224int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5225{
5226 struct inode *inode = dentry->d_inode;
5227 int error, rc = 0;
5228 const unsigned int ia_valid = attr->ia_valid;
5229
5230 error = inode_change_ok(inode, attr);
5231 if (error)
5232 return error;
5233
5234 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5235 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5236 handle_t *handle;
5237
5238 /* (user+group)*(old+new) structure, inode write (sb,
5239 * inode block, ? - but truncate inode update has it) */
5aca07eb 5240 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5241 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5242 if (IS_ERR(handle)) {
5243 error = PTR_ERR(handle);
5244 goto err_out;
5245 }
a269eb18 5246 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 5247 if (error) {
617ba13b 5248 ext4_journal_stop(handle);
ac27a0ec
DK
5249 return error;
5250 }
5251 /* Update corresponding info in inode so that everything is in
5252 * one transaction */
5253 if (attr->ia_valid & ATTR_UID)
5254 inode->i_uid = attr->ia_uid;
5255 if (attr->ia_valid & ATTR_GID)
5256 inode->i_gid = attr->ia_gid;
617ba13b
MC
5257 error = ext4_mark_inode_dirty(handle, inode);
5258 ext4_journal_stop(handle);
ac27a0ec
DK
5259 }
5260
e2b46574
ES
5261 if (attr->ia_valid & ATTR_SIZE) {
5262 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5263 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5264
5265 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5266 error = -EFBIG;
5267 goto err_out;
5268 }
5269 }
5270 }
5271
ac27a0ec
DK
5272 if (S_ISREG(inode->i_mode) &&
5273 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5274 handle_t *handle;
5275
617ba13b 5276 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5277 if (IS_ERR(handle)) {
5278 error = PTR_ERR(handle);
5279 goto err_out;
5280 }
5281
617ba13b
MC
5282 error = ext4_orphan_add(handle, inode);
5283 EXT4_I(inode)->i_disksize = attr->ia_size;
5284 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5285 if (!error)
5286 error = rc;
617ba13b 5287 ext4_journal_stop(handle);
678aaf48
JK
5288
5289 if (ext4_should_order_data(inode)) {
5290 error = ext4_begin_ordered_truncate(inode,
5291 attr->ia_size);
5292 if (error) {
5293 /* Do as much error cleanup as possible */
5294 handle = ext4_journal_start(inode, 3);
5295 if (IS_ERR(handle)) {
5296 ext4_orphan_del(NULL, inode);
5297 goto err_out;
5298 }
5299 ext4_orphan_del(handle, inode);
5300 ext4_journal_stop(handle);
5301 goto err_out;
5302 }
5303 }
ac27a0ec
DK
5304 }
5305
5306 rc = inode_setattr(inode, attr);
5307
617ba13b 5308 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5309 * transaction handle at all, we need to clean up the in-core
5310 * orphan list manually. */
5311 if (inode->i_nlink)
617ba13b 5312 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5313
5314 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5315 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5316
5317err_out:
617ba13b 5318 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5319 if (!error)
5320 error = rc;
5321 return error;
5322}
5323
3e3398a0
MC
5324int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5325 struct kstat *stat)
5326{
5327 struct inode *inode;
5328 unsigned long delalloc_blocks;
5329
5330 inode = dentry->d_inode;
5331 generic_fillattr(inode, stat);
5332
5333 /*
5334 * We can't update i_blocks if the block allocation is delayed
5335 * otherwise in the case of system crash before the real block
5336 * allocation is done, we will have i_blocks inconsistent with
5337 * on-disk file blocks.
5338 * We always keep i_blocks updated together with real
5339 * allocation. But to not confuse with user, stat
5340 * will return the blocks that include the delayed allocation
5341 * blocks for this file.
5342 */
5343 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5344 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5345 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5346
5347 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5348 return 0;
5349}
ac27a0ec 5350
a02908f1
MC
5351static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5352 int chunk)
5353{
5354 int indirects;
5355
5356 /* if nrblocks are contiguous */
5357 if (chunk) {
5358 /*
5359 * With N contiguous data blocks, it need at most
5360 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5361 * 2 dindirect blocks
5362 * 1 tindirect block
5363 */
5364 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5365 return indirects + 3;
5366 }
5367 /*
5368 * if nrblocks are not contiguous, worse case, each block touch
5369 * a indirect block, and each indirect block touch a double indirect
5370 * block, plus a triple indirect block
5371 */
5372 indirects = nrblocks * 2 + 1;
5373 return indirects;
5374}
5375
5376static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5377{
5378 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5379 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5380 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5381}
ac51d837 5382
ac27a0ec 5383/*
a02908f1
MC
5384 * Account for index blocks, block groups bitmaps and block group
5385 * descriptor blocks if modify datablocks and index blocks
5386 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5387 *
a02908f1 5388 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5389 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5390 * they could still across block group boundary.
ac27a0ec 5391 *
a02908f1
MC
5392 * Also account for superblock, inode, quota and xattr blocks
5393 */
5394int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5395{
8df9675f
TT
5396 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5397 int gdpblocks;
a02908f1
MC
5398 int idxblocks;
5399 int ret = 0;
5400
5401 /*
5402 * How many index blocks need to touch to modify nrblocks?
5403 * The "Chunk" flag indicating whether the nrblocks is
5404 * physically contiguous on disk
5405 *
5406 * For Direct IO and fallocate, they calls get_block to allocate
5407 * one single extent at a time, so they could set the "Chunk" flag
5408 */
5409 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5410
5411 ret = idxblocks;
5412
5413 /*
5414 * Now let's see how many group bitmaps and group descriptors need
5415 * to account
5416 */
5417 groups = idxblocks;
5418 if (chunk)
5419 groups += 1;
5420 else
5421 groups += nrblocks;
5422
5423 gdpblocks = groups;
8df9675f
TT
5424 if (groups > ngroups)
5425 groups = ngroups;
a02908f1
MC
5426 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5427 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5428
5429 /* bitmaps and block group descriptor blocks */
5430 ret += groups + gdpblocks;
5431
5432 /* Blocks for super block, inode, quota and xattr blocks */
5433 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5434
5435 return ret;
5436}
5437
5438/*
5439 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5440 * the modification of a single pages into a single transaction,
5441 * which may include multiple chunks of block allocations.
ac27a0ec 5442 *
525f4ed8 5443 * This could be called via ext4_write_begin()
ac27a0ec 5444 *
525f4ed8 5445 * We need to consider the worse case, when
a02908f1 5446 * one new block per extent.
ac27a0ec 5447 */
a86c6181 5448int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5449{
617ba13b 5450 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5451 int ret;
5452
a02908f1 5453 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5454
a02908f1 5455 /* Account for data blocks for journalled mode */
617ba13b 5456 if (ext4_should_journal_data(inode))
a02908f1 5457 ret += bpp;
ac27a0ec
DK
5458 return ret;
5459}
f3bd1f3f
MC
5460
5461/*
5462 * Calculate the journal credits for a chunk of data modification.
5463 *
5464 * This is called from DIO, fallocate or whoever calling
af901ca1 5465 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5466 *
5467 * journal buffers for data blocks are not included here, as DIO
5468 * and fallocate do no need to journal data buffers.
5469 */
5470int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5471{
5472 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5473}
5474
ac27a0ec 5475/*
617ba13b 5476 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5477 * Give this, we know that the caller already has write access to iloc->bh.
5478 */
617ba13b 5479int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5480 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5481{
5482 int err = 0;
5483
25ec56b5
JNC
5484 if (test_opt(inode->i_sb, I_VERSION))
5485 inode_inc_iversion(inode);
5486
ac27a0ec
DK
5487 /* the do_update_inode consumes one bh->b_count */
5488 get_bh(iloc->bh);
5489
dab291af 5490 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5491 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5492 put_bh(iloc->bh);
5493 return err;
5494}
5495
5496/*
5497 * On success, We end up with an outstanding reference count against
5498 * iloc->bh. This _must_ be cleaned up later.
5499 */
5500
5501int
617ba13b
MC
5502ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5503 struct ext4_iloc *iloc)
ac27a0ec 5504{
0390131b
FM
5505 int err;
5506
5507 err = ext4_get_inode_loc(inode, iloc);
5508 if (!err) {
5509 BUFFER_TRACE(iloc->bh, "get_write_access");
5510 err = ext4_journal_get_write_access(handle, iloc->bh);
5511 if (err) {
5512 brelse(iloc->bh);
5513 iloc->bh = NULL;
ac27a0ec
DK
5514 }
5515 }
617ba13b 5516 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5517 return err;
5518}
5519
6dd4ee7c
KS
5520/*
5521 * Expand an inode by new_extra_isize bytes.
5522 * Returns 0 on success or negative error number on failure.
5523 */
1d03ec98
AK
5524static int ext4_expand_extra_isize(struct inode *inode,
5525 unsigned int new_extra_isize,
5526 struct ext4_iloc iloc,
5527 handle_t *handle)
6dd4ee7c
KS
5528{
5529 struct ext4_inode *raw_inode;
5530 struct ext4_xattr_ibody_header *header;
5531 struct ext4_xattr_entry *entry;
5532
5533 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5534 return 0;
5535
5536 raw_inode = ext4_raw_inode(&iloc);
5537
5538 header = IHDR(inode, raw_inode);
5539 entry = IFIRST(header);
5540
5541 /* No extended attributes present */
5542 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5543 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5544 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5545 new_extra_isize);
5546 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5547 return 0;
5548 }
5549
5550 /* try to expand with EAs present */
5551 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5552 raw_inode, handle);
5553}
5554
ac27a0ec
DK
5555/*
5556 * What we do here is to mark the in-core inode as clean with respect to inode
5557 * dirtiness (it may still be data-dirty).
5558 * This means that the in-core inode may be reaped by prune_icache
5559 * without having to perform any I/O. This is a very good thing,
5560 * because *any* task may call prune_icache - even ones which
5561 * have a transaction open against a different journal.
5562 *
5563 * Is this cheating? Not really. Sure, we haven't written the
5564 * inode out, but prune_icache isn't a user-visible syncing function.
5565 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5566 * we start and wait on commits.
5567 *
5568 * Is this efficient/effective? Well, we're being nice to the system
5569 * by cleaning up our inodes proactively so they can be reaped
5570 * without I/O. But we are potentially leaving up to five seconds'
5571 * worth of inodes floating about which prune_icache wants us to
5572 * write out. One way to fix that would be to get prune_icache()
5573 * to do a write_super() to free up some memory. It has the desired
5574 * effect.
5575 */
617ba13b 5576int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5577{
617ba13b 5578 struct ext4_iloc iloc;
6dd4ee7c
KS
5579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5580 static unsigned int mnt_count;
5581 int err, ret;
ac27a0ec
DK
5582
5583 might_sleep();
617ba13b 5584 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5585 if (ext4_handle_valid(handle) &&
5586 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5587 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5588 /*
5589 * We need extra buffer credits since we may write into EA block
5590 * with this same handle. If journal_extend fails, then it will
5591 * only result in a minor loss of functionality for that inode.
5592 * If this is felt to be critical, then e2fsck should be run to
5593 * force a large enough s_min_extra_isize.
5594 */
5595 if ((jbd2_journal_extend(handle,
5596 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5597 ret = ext4_expand_extra_isize(inode,
5598 sbi->s_want_extra_isize,
5599 iloc, handle);
5600 if (ret) {
5601 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5602 if (mnt_count !=
5603 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5604 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5605 "Unable to expand inode %lu. Delete"
5606 " some EAs or run e2fsck.",
5607 inode->i_ino);
c1bddad9
AK
5608 mnt_count =
5609 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5610 }
5611 }
5612 }
5613 }
ac27a0ec 5614 if (!err)
617ba13b 5615 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5616 return err;
5617}
5618
5619/*
617ba13b 5620 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5621 *
5622 * We're really interested in the case where a file is being extended.
5623 * i_size has been changed by generic_commit_write() and we thus need
5624 * to include the updated inode in the current transaction.
5625 *
a269eb18 5626 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5627 * are allocated to the file.
5628 *
5629 * If the inode is marked synchronous, we don't honour that here - doing
5630 * so would cause a commit on atime updates, which we don't bother doing.
5631 * We handle synchronous inodes at the highest possible level.
5632 */
617ba13b 5633void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5634{
ac27a0ec
DK
5635 handle_t *handle;
5636
617ba13b 5637 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5638 if (IS_ERR(handle))
5639 goto out;
f3dc272f 5640
f3dc272f
CW
5641 ext4_mark_inode_dirty(handle, inode);
5642
617ba13b 5643 ext4_journal_stop(handle);
ac27a0ec
DK
5644out:
5645 return;
5646}
5647
5648#if 0
5649/*
5650 * Bind an inode's backing buffer_head into this transaction, to prevent
5651 * it from being flushed to disk early. Unlike
617ba13b 5652 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5653 * returns no iloc structure, so the caller needs to repeat the iloc
5654 * lookup to mark the inode dirty later.
5655 */
617ba13b 5656static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5657{
617ba13b 5658 struct ext4_iloc iloc;
ac27a0ec
DK
5659
5660 int err = 0;
5661 if (handle) {
617ba13b 5662 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5663 if (!err) {
5664 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5665 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5666 if (!err)
0390131b
FM
5667 err = ext4_handle_dirty_metadata(handle,
5668 inode,
5669 iloc.bh);
ac27a0ec
DK
5670 brelse(iloc.bh);
5671 }
5672 }
617ba13b 5673 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5674 return err;
5675}
5676#endif
5677
617ba13b 5678int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5679{
5680 journal_t *journal;
5681 handle_t *handle;
5682 int err;
5683
5684 /*
5685 * We have to be very careful here: changing a data block's
5686 * journaling status dynamically is dangerous. If we write a
5687 * data block to the journal, change the status and then delete
5688 * that block, we risk forgetting to revoke the old log record
5689 * from the journal and so a subsequent replay can corrupt data.
5690 * So, first we make sure that the journal is empty and that
5691 * nobody is changing anything.
5692 */
5693
617ba13b 5694 journal = EXT4_JOURNAL(inode);
0390131b
FM
5695 if (!journal)
5696 return 0;
d699594d 5697 if (is_journal_aborted(journal))
ac27a0ec
DK
5698 return -EROFS;
5699
dab291af
MC
5700 jbd2_journal_lock_updates(journal);
5701 jbd2_journal_flush(journal);
ac27a0ec
DK
5702
5703 /*
5704 * OK, there are no updates running now, and all cached data is
5705 * synced to disk. We are now in a completely consistent state
5706 * which doesn't have anything in the journal, and we know that
5707 * no filesystem updates are running, so it is safe to modify
5708 * the inode's in-core data-journaling state flag now.
5709 */
5710
5711 if (val)
617ba13b 5712 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5713 else
617ba13b
MC
5714 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5715 ext4_set_aops(inode);
ac27a0ec 5716
dab291af 5717 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5718
5719 /* Finally we can mark the inode as dirty. */
5720
617ba13b 5721 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5722 if (IS_ERR(handle))
5723 return PTR_ERR(handle);
5724
617ba13b 5725 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5726 ext4_handle_sync(handle);
617ba13b
MC
5727 ext4_journal_stop(handle);
5728 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5729
5730 return err;
5731}
2e9ee850
AK
5732
5733static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5734{
5735 return !buffer_mapped(bh);
5736}
5737
c2ec175c 5738int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5739{
c2ec175c 5740 struct page *page = vmf->page;
2e9ee850
AK
5741 loff_t size;
5742 unsigned long len;
5743 int ret = -EINVAL;
79f0be8d 5744 void *fsdata;
2e9ee850
AK
5745 struct file *file = vma->vm_file;
5746 struct inode *inode = file->f_path.dentry->d_inode;
5747 struct address_space *mapping = inode->i_mapping;
5748
5749 /*
5750 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5751 * get i_mutex because we are already holding mmap_sem.
5752 */
5753 down_read(&inode->i_alloc_sem);
5754 size = i_size_read(inode);
5755 if (page->mapping != mapping || size <= page_offset(page)
5756 || !PageUptodate(page)) {
5757 /* page got truncated from under us? */
5758 goto out_unlock;
5759 }
5760 ret = 0;
5761 if (PageMappedToDisk(page))
5762 goto out_unlock;
5763
5764 if (page->index == size >> PAGE_CACHE_SHIFT)
5765 len = size & ~PAGE_CACHE_MASK;
5766 else
5767 len = PAGE_CACHE_SIZE;
5768
a827eaff
AK
5769 lock_page(page);
5770 /*
5771 * return if we have all the buffers mapped. This avoid
5772 * the need to call write_begin/write_end which does a
5773 * journal_start/journal_stop which can block and take
5774 * long time
5775 */
2e9ee850 5776 if (page_has_buffers(page)) {
2e9ee850 5777 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5778 ext4_bh_unmapped)) {
5779 unlock_page(page);
2e9ee850 5780 goto out_unlock;
a827eaff 5781 }
2e9ee850 5782 }
a827eaff 5783 unlock_page(page);
2e9ee850
AK
5784 /*
5785 * OK, we need to fill the hole... Do write_begin write_end
5786 * to do block allocation/reservation.We are not holding
5787 * inode.i__mutex here. That allow * parallel write_begin,
5788 * write_end call. lock_page prevent this from happening
5789 * on the same page though
5790 */
5791 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5792 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5793 if (ret < 0)
5794 goto out_unlock;
5795 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5796 len, len, page, fsdata);
2e9ee850
AK
5797 if (ret < 0)
5798 goto out_unlock;
5799 ret = 0;
5800out_unlock:
c2ec175c
NP
5801 if (ret)
5802 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5803 up_read(&inode->i_alloc_sem);
5804 return ret;
5805}