]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: move __ext4_check_blockref to block_validity.c
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
6db26ffc 42#include <linux/printk.h>
5a0e3ad6 43#include <linux/slab.h>
a8901d34 44#include <linux/ratelimit.h>
9bffad1e 45
3dcf5451 46#include "ext4_jbd2.h"
ac27a0ec
DK
47#include "xattr.h"
48#include "acl.h"
d2a17637 49#include "ext4_extents.h"
ac27a0ec 50
9bffad1e
TT
51#include <trace/events/ext4.h>
52
a1d6cc56
AK
53#define MPAGE_DA_EXTENT_TAIL 0x01
54
678aaf48
JK
55static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 loff_t new_size)
57{
7ff9c073 58 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
59 /*
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
64 */
65 if (!EXT4_I(inode)->jinode)
66 return 0;
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 EXT4_I(inode)->jinode,
69 new_size);
678aaf48
JK
70}
71
64769240 72static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
73static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 struct buffer_head *bh_result, int create);
75static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 79
ac27a0ec
DK
80/*
81 * Test whether an inode is a fast symlink.
82 */
617ba13b 83static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 84{
617ba13b 85 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
86 (inode->i_sb->s_blocksize >> 9) : 0;
87
88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89}
90
ac27a0ec
DK
91/*
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
94 */
95static unsigned long blocks_for_truncate(struct inode *inode)
96{
725d26d3 97 ext4_lblk_t needed;
ac27a0ec
DK
98
99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
617ba13b 104 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
107 if (needed < 2)
108 needed = 2;
109
110 /* But we need to bound the transaction so we don't overflow the
111 * journal. */
617ba13b
MC
112 if (needed > EXT4_MAX_TRANS_DATA)
113 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 114
617ba13b 115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
116}
117
118/*
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
122 *
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
127 */
128static handle_t *start_transaction(struct inode *inode)
129{
130 handle_t *result;
131
617ba13b 132 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
133 if (!IS_ERR(result))
134 return result;
135
617ba13b 136 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
137 return result;
138}
139
140/*
141 * Try to extend this transaction for the purposes of truncation.
142 *
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
145 */
146static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147{
0390131b
FM
148 if (!ext4_handle_valid(handle))
149 return 0;
150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 151 return 0;
617ba13b 152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
153 return 0;
154 return 1;
155}
156
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 175 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 176 ret = ext4_journal_restart(handle, nblocks);
487caeef 177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
0930fcc1
AV
192 if (inode->i_nlink) {
193 truncate_inode_pages(&inode->i_data, 0);
194 goto no_delete;
195 }
196
907f4554 197 if (!is_bad_inode(inode))
871a2931 198 dquot_initialize(inode);
907f4554 199
678aaf48
JK
200 if (ext4_should_order_data(inode))
201 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
202 truncate_inode_pages(&inode->i_data, 0);
203
204 if (is_bad_inode(inode))
205 goto no_delete;
206
bc965ab3 207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 208 if (IS_ERR(handle)) {
bc965ab3 209 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
210 /*
211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly
213 * cleaned up.
214 */
617ba13b 215 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
216 goto no_delete;
217 }
218
219 if (IS_SYNC(inode))
0390131b 220 ext4_handle_sync(handle);
ac27a0ec 221 inode->i_size = 0;
bc965ab3
TT
222 err = ext4_mark_inode_dirty(handle, inode);
223 if (err) {
12062ddd 224 ext4_warning(inode->i_sb,
bc965ab3
TT
225 "couldn't mark inode dirty (err %d)", err);
226 goto stop_handle;
227 }
ac27a0ec 228 if (inode->i_blocks)
617ba13b 229 ext4_truncate(inode);
bc965ab3
TT
230
231 /*
232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field.
236 */
0390131b 237 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
238 err = ext4_journal_extend(handle, 3);
239 if (err > 0)
240 err = ext4_journal_restart(handle, 3);
241 if (err != 0) {
12062ddd 242 ext4_warning(inode->i_sb,
bc965ab3
TT
243 "couldn't extend journal (err %d)", err);
244 stop_handle:
245 ext4_journal_stop(handle);
45388219 246 ext4_orphan_del(NULL, inode);
bc965ab3
TT
247 goto no_delete;
248 }
249 }
250
ac27a0ec 251 /*
617ba13b 252 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 253 * AKPM: I think this can be inside the above `if'.
617ba13b 254 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 255 * deletion of a non-existent orphan - this is because we don't
617ba13b 256 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
257 * (Well, we could do this if we need to, but heck - it works)
258 */
617ba13b
MC
259 ext4_orphan_del(handle, inode);
260 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
261
262 /*
263 * One subtle ordering requirement: if anything has gone wrong
264 * (transaction abort, IO errors, whatever), then we can still
265 * do these next steps (the fs will already have been marked as
266 * having errors), but we can't free the inode if the mark_dirty
267 * fails.
268 */
617ba13b 269 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 270 /* If that failed, just do the required in-core inode clear. */
0930fcc1 271 ext4_clear_inode(inode);
ac27a0ec 272 else
617ba13b
MC
273 ext4_free_inode(handle, inode);
274 ext4_journal_stop(handle);
ac27a0ec
DK
275 return;
276no_delete:
0930fcc1 277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
278}
279
280typedef struct {
281 __le32 *p;
282 __le32 key;
283 struct buffer_head *bh;
284} Indirect;
285
286static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287{
288 p->key = *(p->p = v);
289 p->bh = bh;
290}
291
ac27a0ec 292/**
617ba13b 293 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
294 * @inode: inode in question (we are only interested in its superblock)
295 * @i_block: block number to be parsed
296 * @offsets: array to store the offsets in
8c55e204
DK
297 * @boundary: set this non-zero if the referred-to block is likely to be
298 * followed (on disk) by an indirect block.
ac27a0ec 299 *
617ba13b 300 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
301 * for UNIX filesystems - tree of pointers anchored in the inode, with
302 * data blocks at leaves and indirect blocks in intermediate nodes.
303 * This function translates the block number into path in that tree -
304 * return value is the path length and @offsets[n] is the offset of
305 * pointer to (n+1)th node in the nth one. If @block is out of range
306 * (negative or too large) warning is printed and zero returned.
307 *
308 * Note: function doesn't find node addresses, so no IO is needed. All
309 * we need to know is the capacity of indirect blocks (taken from the
310 * inode->i_sb).
311 */
312
313/*
314 * Portability note: the last comparison (check that we fit into triple
315 * indirect block) is spelled differently, because otherwise on an
316 * architecture with 32-bit longs and 8Kb pages we might get into trouble
317 * if our filesystem had 8Kb blocks. We might use long long, but that would
318 * kill us on x86. Oh, well, at least the sign propagation does not matter -
319 * i_block would have to be negative in the very beginning, so we would not
320 * get there at all.
321 */
322
617ba13b 323static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
324 ext4_lblk_t i_block,
325 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 326{
617ba13b
MC
327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
330 indirect_blocks = ptrs,
331 double_blocks = (1 << (ptrs_bits * 2));
332 int n = 0;
333 int final = 0;
334
c333e073 335 if (i_block < direct_blocks) {
ac27a0ec
DK
336 offsets[n++] = i_block;
337 final = direct_blocks;
af5bc92d 338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 339 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 343 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 348 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
12062ddd 354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361}
362
363/**
617ba13b 364 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
ac27a0ec
DK
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
389 *
390 * Need to be called with
0e855ac8 391 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 392 */
725d26d3
AK
393static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
ac27a0ec
DK
395 Indirect chain[4], int *err)
396{
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
af5bc92d 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
fe2c8191
TN
407 bh = sb_getblk(sb, le32_to_cpu(p->key));
408 if (unlikely(!bh))
ac27a0ec 409 goto failure;
de9a55b8 410
fe2c8191
TN
411 if (!bh_uptodate_or_lock(bh)) {
412 if (bh_submit_read(bh) < 0) {
413 put_bh(bh);
414 goto failure;
415 }
416 /* validate block references */
417 if (ext4_check_indirect_blockref(inode, bh)) {
418 put_bh(bh);
419 goto failure;
420 }
421 }
de9a55b8 422
af5bc92d 423 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
424 /* Reader: end */
425 if (!p->key)
426 goto no_block;
427 }
428 return NULL;
429
ac27a0ec
DK
430failure:
431 *err = -EIO;
432no_block:
433 return p;
434}
435
436/**
617ba13b 437 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
438 * @inode: owner
439 * @ind: descriptor of indirect block.
440 *
1cc8dcf5 441 * This function returns the preferred place for block allocation.
ac27a0ec
DK
442 * It is used when heuristic for sequential allocation fails.
443 * Rules are:
444 * + if there is a block to the left of our position - allocate near it.
445 * + if pointer will live in indirect block - allocate near that block.
446 * + if pointer will live in inode - allocate in the same
447 * cylinder group.
448 *
449 * In the latter case we colour the starting block by the callers PID to
450 * prevent it from clashing with concurrent allocations for a different inode
451 * in the same block group. The PID is used here so that functionally related
452 * files will be close-by on-disk.
453 *
454 * Caller must make sure that @ind is valid and will stay that way.
455 */
617ba13b 456static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 457{
617ba13b 458 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 459 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 460 __le32 *p;
617ba13b 461 ext4_fsblk_t bg_start;
74d3487f 462 ext4_fsblk_t last_block;
617ba13b 463 ext4_grpblk_t colour;
a4912123
TT
464 ext4_group_t block_group;
465 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
466
467 /* Try to find previous block */
468 for (p = ind->p - 1; p >= start; p--) {
469 if (*p)
470 return le32_to_cpu(*p);
471 }
472
473 /* No such thing, so let's try location of indirect block */
474 if (ind->bh)
475 return ind->bh->b_blocknr;
476
477 /*
478 * It is going to be referred to from the inode itself? OK, just put it
479 * into the same cylinder group then.
480 */
a4912123
TT
481 block_group = ei->i_block_group;
482 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
483 block_group &= ~(flex_size-1);
484 if (S_ISREG(inode->i_mode))
485 block_group++;
486 }
487 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
488 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
489
a4912123
TT
490 /*
491 * If we are doing delayed allocation, we don't need take
492 * colour into account.
493 */
494 if (test_opt(inode->i_sb, DELALLOC))
495 return bg_start;
496
74d3487f
VC
497 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
498 colour = (current->pid % 16) *
617ba13b 499 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
500 else
501 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
502 return bg_start + colour;
503}
504
505/**
1cc8dcf5 506 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
507 * @inode: owner
508 * @block: block we want
ac27a0ec 509 * @partial: pointer to the last triple within a chain
ac27a0ec 510 *
1cc8dcf5 511 * Normally this function find the preferred place for block allocation,
fb01bfda 512 * returns it.
fb0a387d
ES
513 * Because this is only used for non-extent files, we limit the block nr
514 * to 32 bits.
ac27a0ec 515 */
725d26d3 516static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 517 Indirect *partial)
ac27a0ec 518{
fb0a387d
ES
519 ext4_fsblk_t goal;
520
ac27a0ec 521 /*
c2ea3fde 522 * XXX need to get goal block from mballoc's data structures
ac27a0ec 523 */
ac27a0ec 524
fb0a387d
ES
525 goal = ext4_find_near(inode, partial);
526 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
527 return goal;
ac27a0ec
DK
528}
529
530/**
225db7d3 531 * ext4_blks_to_allocate - Look up the block map and count the number
ac27a0ec
DK
532 * of direct blocks need to be allocated for the given branch.
533 *
534 * @branch: chain of indirect blocks
535 * @k: number of blocks need for indirect blocks
536 * @blks: number of data blocks to be mapped.
537 * @blocks_to_boundary: the offset in the indirect block
538 *
539 * return the total number of blocks to be allocate, including the
540 * direct and indirect blocks.
541 */
498e5f24 542static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 543 int blocks_to_boundary)
ac27a0ec 544{
498e5f24 545 unsigned int count = 0;
ac27a0ec
DK
546
547 /*
548 * Simple case, [t,d]Indirect block(s) has not allocated yet
549 * then it's clear blocks on that path have not allocated
550 */
551 if (k > 0) {
552 /* right now we don't handle cross boundary allocation */
553 if (blks < blocks_to_boundary + 1)
554 count += blks;
555 else
556 count += blocks_to_boundary + 1;
557 return count;
558 }
559
560 count++;
561 while (count < blks && count <= blocks_to_boundary &&
562 le32_to_cpu(*(branch[0].p + count)) == 0) {
563 count++;
564 }
565 return count;
566}
567
568/**
617ba13b 569 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
225db7d3
TT
570 * @handle: handle for this transaction
571 * @inode: inode which needs allocated blocks
572 * @iblock: the logical block to start allocated at
573 * @goal: preferred physical block of allocation
ac27a0ec
DK
574 * @indirect_blks: the number of blocks need to allocate for indirect
575 * blocks
225db7d3 576 * @blks: number of desired blocks
ac27a0ec
DK
577 * @new_blocks: on return it will store the new block numbers for
578 * the indirect blocks(if needed) and the first direct block,
225db7d3
TT
579 * @err: on return it will store the error code
580 *
581 * This function will return the number of blocks allocated as
582 * requested by the passed-in parameters.
ac27a0ec 583 */
617ba13b 584static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
585 ext4_lblk_t iblock, ext4_fsblk_t goal,
586 int indirect_blks, int blks,
587 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 588{
815a1130 589 struct ext4_allocation_request ar;
ac27a0ec 590 int target, i;
7061eba7 591 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 592 int index = 0;
617ba13b 593 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
594 int ret = 0;
595
596 /*
597 * Here we try to allocate the requested multiple blocks at once,
598 * on a best-effort basis.
599 * To build a branch, we should allocate blocks for
600 * the indirect blocks(if not allocated yet), and at least
601 * the first direct block of this branch. That's the
602 * minimum number of blocks need to allocate(required)
603 */
7061eba7
AK
604 /* first we try to allocate the indirect blocks */
605 target = indirect_blks;
606 while (target > 0) {
ac27a0ec
DK
607 count = target;
608 /* allocating blocks for indirect blocks and direct blocks */
55f020db
AH
609 current_block = ext4_new_meta_blocks(handle, inode, goal,
610 0, &count, err);
ac27a0ec
DK
611 if (*err)
612 goto failed_out;
613
273df556
FM
614 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 EXT4_ERROR_INODE(inode,
616 "current_block %llu + count %lu > %d!",
617 current_block, count,
618 EXT4_MAX_BLOCK_FILE_PHYS);
619 *err = -EIO;
620 goto failed_out;
621 }
fb0a387d 622
ac27a0ec
DK
623 target -= count;
624 /* allocate blocks for indirect blocks */
625 while (index < indirect_blks && count) {
626 new_blocks[index++] = current_block++;
627 count--;
628 }
7061eba7
AK
629 if (count > 0) {
630 /*
631 * save the new block number
632 * for the first direct block
633 */
634 new_blocks[index] = current_block;
635 printk(KERN_INFO "%s returned more blocks than "
636 "requested\n", __func__);
637 WARN_ON(1);
ac27a0ec 638 break;
7061eba7 639 }
ac27a0ec
DK
640 }
641
7061eba7
AK
642 target = blks - count ;
643 blk_allocated = count;
644 if (!target)
645 goto allocated;
646 /* Now allocate data blocks */
815a1130
TT
647 memset(&ar, 0, sizeof(ar));
648 ar.inode = inode;
649 ar.goal = goal;
650 ar.len = target;
651 ar.logical = iblock;
652 if (S_ISREG(inode->i_mode))
653 /* enable in-core preallocation only for regular files */
654 ar.flags = EXT4_MB_HINT_DATA;
655
656 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
657 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 EXT4_ERROR_INODE(inode,
659 "current_block %llu + ar.len %d > %d!",
660 current_block, ar.len,
661 EXT4_MAX_BLOCK_FILE_PHYS);
662 *err = -EIO;
663 goto failed_out;
664 }
815a1130 665
7061eba7
AK
666 if (*err && (target == blks)) {
667 /*
668 * if the allocation failed and we didn't allocate
669 * any blocks before
670 */
671 goto failed_out;
672 }
673 if (!*err) {
674 if (target == blks) {
de9a55b8
TT
675 /*
676 * save the new block number
677 * for the first direct block
678 */
7061eba7
AK
679 new_blocks[index] = current_block;
680 }
815a1130 681 blk_allocated += ar.len;
7061eba7
AK
682 }
683allocated:
ac27a0ec 684 /* total number of blocks allocated for direct blocks */
7061eba7 685 ret = blk_allocated;
ac27a0ec
DK
686 *err = 0;
687 return ret;
688failed_out:
af5bc92d 689 for (i = 0; i < index; i++)
7dc57615 690 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
ac27a0ec
DK
691 return ret;
692}
693
694/**
617ba13b 695 * ext4_alloc_branch - allocate and set up a chain of blocks.
225db7d3 696 * @handle: handle for this transaction
ac27a0ec
DK
697 * @inode: owner
698 * @indirect_blks: number of allocated indirect blocks
699 * @blks: number of allocated direct blocks
225db7d3 700 * @goal: preferred place for allocation
ac27a0ec
DK
701 * @offsets: offsets (in the blocks) to store the pointers to next.
702 * @branch: place to store the chain in.
703 *
704 * This function allocates blocks, zeroes out all but the last one,
705 * links them into chain and (if we are synchronous) writes them to disk.
706 * In other words, it prepares a branch that can be spliced onto the
707 * inode. It stores the information about that chain in the branch[], in
617ba13b 708 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
709 * we had read the existing part of chain and partial points to the last
710 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 711 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
712 * place chain is disconnected - *branch->p is still zero (we did not
713 * set the last link), but branch->key contains the number that should
714 * be placed into *branch->p to fill that gap.
715 *
716 * If allocation fails we free all blocks we've allocated (and forget
717 * their buffer_heads) and return the error value the from failed
617ba13b 718 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
719 * as described above and return 0.
720 */
617ba13b 721static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
722 ext4_lblk_t iblock, int indirect_blks,
723 int *blks, ext4_fsblk_t goal,
724 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
725{
726 int blocksize = inode->i_sb->s_blocksize;
727 int i, n = 0;
728 int err = 0;
729 struct buffer_head *bh;
730 int num;
617ba13b
MC
731 ext4_fsblk_t new_blocks[4];
732 ext4_fsblk_t current_block;
ac27a0ec 733
7061eba7 734 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
735 *blks, new_blocks, &err);
736 if (err)
737 return err;
738
739 branch[0].key = cpu_to_le32(new_blocks[0]);
740 /*
741 * metadata blocks and data blocks are allocated.
742 */
743 for (n = 1; n <= indirect_blks; n++) {
744 /*
745 * Get buffer_head for parent block, zero it out
746 * and set the pointer to new one, then send
747 * parent to disk.
748 */
749 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
87783690
NK
750 if (unlikely(!bh)) {
751 err = -EIO;
752 goto failed;
753 }
754
ac27a0ec
DK
755 branch[n].bh = bh;
756 lock_buffer(bh);
757 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 758 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 759 if (err) {
6487a9d3
CW
760 /* Don't brelse(bh) here; it's done in
761 * ext4_journal_forget() below */
ac27a0ec 762 unlock_buffer(bh);
ac27a0ec
DK
763 goto failed;
764 }
765
766 memset(bh->b_data, 0, blocksize);
767 branch[n].p = (__le32 *) bh->b_data + offsets[n];
768 branch[n].key = cpu_to_le32(new_blocks[n]);
769 *branch[n].p = branch[n].key;
af5bc92d 770 if (n == indirect_blks) {
ac27a0ec
DK
771 current_block = new_blocks[n];
772 /*
773 * End of chain, update the last new metablock of
774 * the chain to point to the new allocated
775 * data blocks numbers
776 */
de9a55b8 777 for (i = 1; i < num; i++)
ac27a0ec
DK
778 *(branch[n].p + i) = cpu_to_le32(++current_block);
779 }
780 BUFFER_TRACE(bh, "marking uptodate");
781 set_buffer_uptodate(bh);
782 unlock_buffer(bh);
783
0390131b
FM
784 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
786 if (err)
787 goto failed;
788 }
789 *blks = num;
790 return err;
791failed:
792 /* Allocation failed, free what we already allocated */
7dc57615 793 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
ac27a0ec 794 for (i = 1; i <= n ; i++) {
60e6679e 795 /*
e6362609
TT
796 * branch[i].bh is newly allocated, so there is no
797 * need to revoke the block, which is why we don't
798 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 799 */
7dc57615 800 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
e6362609 801 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 802 }
e6362609 803 for (i = n+1; i < indirect_blks; i++)
7dc57615 804 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
ac27a0ec 805
7dc57615 806 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
ac27a0ec
DK
807
808 return err;
809}
810
811/**
617ba13b 812 * ext4_splice_branch - splice the allocated branch onto inode.
225db7d3 813 * @handle: handle for this transaction
ac27a0ec
DK
814 * @inode: owner
815 * @block: (logical) number of block we are adding
816 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 817 * ext4_alloc_branch)
ac27a0ec
DK
818 * @where: location of missing link
819 * @num: number of indirect blocks we are adding
820 * @blks: number of direct blocks we are adding
821 *
822 * This function fills the missing link and does all housekeeping needed in
823 * inode (->i_blocks, etc.). In case of success we end up with the full
824 * chain to new block and return 0.
825 */
617ba13b 826static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
827 ext4_lblk_t block, Indirect *where, int num,
828 int blks)
ac27a0ec
DK
829{
830 int i;
831 int err = 0;
617ba13b 832 ext4_fsblk_t current_block;
ac27a0ec 833
ac27a0ec
DK
834 /*
835 * If we're splicing into a [td]indirect block (as opposed to the
836 * inode) then we need to get write access to the [td]indirect block
837 * before the splice.
838 */
839 if (where->bh) {
840 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 841 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
842 if (err)
843 goto err_out;
844 }
845 /* That's it */
846
847 *where->p = where->key;
848
849 /*
850 * Update the host buffer_head or inode to point to more just allocated
851 * direct blocks blocks
852 */
853 if (num == 0 && blks > 1) {
854 current_block = le32_to_cpu(where->key) + 1;
855 for (i = 1; i < blks; i++)
af5bc92d 856 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
857 }
858
ac27a0ec 859 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
860 /* had we spliced it onto indirect block? */
861 if (where->bh) {
862 /*
863 * If we spliced it onto an indirect block, we haven't
864 * altered the inode. Note however that if it is being spliced
865 * onto an indirect block at the very end of the file (the
866 * file is growing) then we *will* alter the inode to reflect
867 * the new i_size. But that is not done here - it is done in
617ba13b 868 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
869 */
870 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
871 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
872 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
873 if (err)
874 goto err_out;
875 } else {
876 /*
877 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 878 */
41591750 879 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
880 jbd_debug(5, "splicing direct\n");
881 }
882 return err;
883
884err_out:
885 for (i = 1; i <= num; i++) {
60e6679e 886 /*
e6362609
TT
887 * branch[i].bh is newly allocated, so there is no
888 * need to revoke the block, which is why we don't
889 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 890 */
e6362609
TT
891 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
892 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 893 }
7dc57615 894 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
e6362609 895 blks, 0);
ac27a0ec
DK
896
897 return err;
898}
899
900/*
e35fd660 901 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 902 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 903 * scheme) for ext4_map_blocks().
b920c755 904 *
ac27a0ec
DK
905 * Allocation strategy is simple: if we have to allocate something, we will
906 * have to go the whole way to leaf. So let's do it before attaching anything
907 * to tree, set linkage between the newborn blocks, write them if sync is
908 * required, recheck the path, free and repeat if check fails, otherwise
909 * set the last missing link (that will protect us from any truncate-generated
910 * removals - all blocks on the path are immune now) and possibly force the
911 * write on the parent block.
912 * That has a nice additional property: no special recovery from the failed
913 * allocations is needed - we simply release blocks and do not touch anything
914 * reachable from inode.
915 *
916 * `handle' can be NULL if create == 0.
917 *
ac27a0ec
DK
918 * return > 0, # of blocks mapped or allocated.
919 * return = 0, if plain lookup failed.
920 * return < 0, error case.
c278bfec 921 *
b920c755
TT
922 * The ext4_ind_get_blocks() function should be called with
923 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
924 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
925 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
926 * blocks.
ac27a0ec 927 */
e35fd660
TT
928static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
929 struct ext4_map_blocks *map,
de9a55b8 930 int flags)
ac27a0ec
DK
931{
932 int err = -EIO;
725d26d3 933 ext4_lblk_t offsets[4];
ac27a0ec
DK
934 Indirect chain[4];
935 Indirect *partial;
617ba13b 936 ext4_fsblk_t goal;
ac27a0ec
DK
937 int indirect_blks;
938 int blocks_to_boundary = 0;
939 int depth;
ac27a0ec 940 int count = 0;
617ba13b 941 ext4_fsblk_t first_block = 0;
ac27a0ec 942
0562e0ba 943 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
12e9b892 944 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 945 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 946 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 947 &blocks_to_boundary);
ac27a0ec
DK
948
949 if (depth == 0)
950 goto out;
951
617ba13b 952 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
953
954 /* Simplest case - block found, no allocation needed */
955 if (!partial) {
956 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
957 count++;
958 /*map more blocks*/
e35fd660 959 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 960 ext4_fsblk_t blk;
ac27a0ec 961
ac27a0ec
DK
962 blk = le32_to_cpu(*(chain[depth-1].p + count));
963
964 if (blk == first_block + count)
965 count++;
966 else
967 break;
968 }
c278bfec 969 goto got_it;
ac27a0ec
DK
970 }
971
972 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 973 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
974 goto cleanup;
975
ac27a0ec 976 /*
c2ea3fde 977 * Okay, we need to do block allocation.
ac27a0ec 978 */
e35fd660 979 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
980
981 /* the number of blocks need to allocate for [d,t]indirect blocks */
982 indirect_blks = (chain + depth) - partial - 1;
983
984 /*
985 * Next look up the indirect map to count the totoal number of
986 * direct blocks to allocate for this branch.
987 */
617ba13b 988 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 989 map->m_len, blocks_to_boundary);
ac27a0ec 990 /*
617ba13b 991 * Block out ext4_truncate while we alter the tree
ac27a0ec 992 */
e35fd660 993 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
994 &count, goal,
995 offsets + (partial - chain), partial);
ac27a0ec
DK
996
997 /*
617ba13b 998 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
999 * on the new chain if there is a failure, but that risks using
1000 * up transaction credits, especially for bitmaps where the
1001 * credits cannot be returned. Can we handle this somehow? We
1002 * may need to return -EAGAIN upwards in the worst case. --sct
1003 */
1004 if (!err)
e35fd660 1005 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1006 partial, indirect_blks, count);
2bba702d 1007 if (err)
ac27a0ec
DK
1008 goto cleanup;
1009
e35fd660 1010 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1011
1012 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1013got_it:
e35fd660
TT
1014 map->m_flags |= EXT4_MAP_MAPPED;
1015 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1016 map->m_len = count;
ac27a0ec 1017 if (count > blocks_to_boundary)
e35fd660 1018 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1019 err = count;
1020 /* Clean up and exit */
1021 partial = chain + depth - 1; /* the whole chain */
1022cleanup:
1023 while (partial > chain) {
1024 BUFFER_TRACE(partial->bh, "call brelse");
1025 brelse(partial->bh);
1026 partial--;
1027 }
ac27a0ec 1028out:
0562e0ba
JZ
1029 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1030 map->m_pblk, map->m_len, err);
ac27a0ec
DK
1031 return err;
1032}
1033
a9e7f447
DM
1034#ifdef CONFIG_QUOTA
1035qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1036{
a9e7f447 1037 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1038}
a9e7f447 1039#endif
9d0be502 1040
12219aea
AK
1041/*
1042 * Calculate the number of metadata blocks need to reserve
9d0be502 1043 * to allocate a new block at @lblocks for non extent file based file
12219aea 1044 */
8bb2b247 1045static int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1046{
9d0be502 1047 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1048 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1049 int blk_bits;
12219aea 1050
9d0be502
TT
1051 if (lblock < EXT4_NDIR_BLOCKS)
1052 return 0;
12219aea 1053
9d0be502 1054 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1055
9d0be502
TT
1056 if (ei->i_da_metadata_calc_len &&
1057 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1058 ei->i_da_metadata_calc_len++;
1059 return 0;
1060 }
1061 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1062 ei->i_da_metadata_calc_len = 1;
d330a5be 1063 blk_bits = order_base_2(lblock);
9d0be502 1064 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1065}
1066
1067/*
1068 * Calculate the number of metadata blocks need to reserve
9d0be502 1069 * to allocate a block located at @lblock
12219aea 1070 */
01f49d0b 1071static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 1072{
12e9b892 1073 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1074 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1075
8bb2b247 1076 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
1077}
1078
0637c6f4
TT
1079/*
1080 * Called with i_data_sem down, which is important since we can call
1081 * ext4_discard_preallocations() from here.
1082 */
5f634d06
AK
1083void ext4_da_update_reserve_space(struct inode *inode,
1084 int used, int quota_claim)
12219aea
AK
1085{
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1087 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1088
1089 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1090 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1091 if (unlikely(used > ei->i_reserved_data_blocks)) {
1092 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1093 "with only %d reserved data blocks\n",
1094 __func__, inode->i_ino, used,
1095 ei->i_reserved_data_blocks);
1096 WARN_ON(1);
1097 used = ei->i_reserved_data_blocks;
1098 }
12219aea 1099
0637c6f4
TT
1100 /* Update per-inode reservations */
1101 ei->i_reserved_data_blocks -= used;
0637c6f4 1102 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104 used + ei->i_allocated_meta_blocks);
0637c6f4 1105 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1106
0637c6f4
TT
1107 if (ei->i_reserved_data_blocks == 0) {
1108 /*
1109 * We can release all of the reserved metadata blocks
1110 * only when we have written all of the delayed
1111 * allocation blocks.
1112 */
72b8ab9d
ES
1113 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1114 ei->i_reserved_meta_blocks);
ee5f4d9c 1115 ei->i_reserved_meta_blocks = 0;
9d0be502 1116 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1117 }
12219aea 1118 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1119
72b8ab9d
ES
1120 /* Update quota subsystem for data blocks */
1121 if (quota_claim)
5dd4056d 1122 dquot_claim_block(inode, used);
72b8ab9d 1123 else {
5f634d06
AK
1124 /*
1125 * We did fallocate with an offset that is already delayed
1126 * allocated. So on delayed allocated writeback we should
72b8ab9d 1127 * not re-claim the quota for fallocated blocks.
5f634d06 1128 */
72b8ab9d 1129 dquot_release_reservation_block(inode, used);
5f634d06 1130 }
d6014301
AK
1131
1132 /*
1133 * If we have done all the pending block allocations and if
1134 * there aren't any writers on the inode, we can discard the
1135 * inode's preallocations.
1136 */
0637c6f4
TT
1137 if ((ei->i_reserved_data_blocks == 0) &&
1138 (atomic_read(&inode->i_writecount) == 0))
d6014301 1139 ext4_discard_preallocations(inode);
12219aea
AK
1140}
1141
e29136f8 1142static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1143 unsigned int line,
1144 struct ext4_map_blocks *map)
6fd058f7 1145{
24676da4
TT
1146 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1147 map->m_len)) {
c398eda0
TT
1148 ext4_error_inode(inode, func, line, map->m_pblk,
1149 "lblock %lu mapped to illegal pblock "
1150 "(length %d)", (unsigned long) map->m_lblk,
1151 map->m_len);
6fd058f7
TT
1152 return -EIO;
1153 }
1154 return 0;
1155}
1156
e29136f8 1157#define check_block_validity(inode, map) \
c398eda0 1158 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1159
55138e0b 1160/*
1f94533d
TT
1161 * Return the number of contiguous dirty pages in a given inode
1162 * starting at page frame idx.
55138e0b
TT
1163 */
1164static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1165 unsigned int max_pages)
1166{
1167 struct address_space *mapping = inode->i_mapping;
1168 pgoff_t index;
1169 struct pagevec pvec;
1170 pgoff_t num = 0;
1171 int i, nr_pages, done = 0;
1172
1173 if (max_pages == 0)
1174 return 0;
1175 pagevec_init(&pvec, 0);
1176 while (!done) {
1177 index = idx;
1178 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1179 PAGECACHE_TAG_DIRTY,
1180 (pgoff_t)PAGEVEC_SIZE);
1181 if (nr_pages == 0)
1182 break;
1183 for (i = 0; i < nr_pages; i++) {
1184 struct page *page = pvec.pages[i];
1185 struct buffer_head *bh, *head;
1186
1187 lock_page(page);
1188 if (unlikely(page->mapping != mapping) ||
1189 !PageDirty(page) ||
1190 PageWriteback(page) ||
1191 page->index != idx) {
1192 done = 1;
1193 unlock_page(page);
1194 break;
1195 }
1f94533d
TT
1196 if (page_has_buffers(page)) {
1197 bh = head = page_buffers(page);
1198 do {
1199 if (!buffer_delay(bh) &&
1200 !buffer_unwritten(bh))
1201 done = 1;
1202 bh = bh->b_this_page;
1203 } while (!done && (bh != head));
1204 }
55138e0b
TT
1205 unlock_page(page);
1206 if (done)
1207 break;
1208 idx++;
1209 num++;
659c6009
ES
1210 if (num >= max_pages) {
1211 done = 1;
55138e0b 1212 break;
659c6009 1213 }
55138e0b
TT
1214 }
1215 pagevec_release(&pvec);
1216 }
1217 return num;
1218}
1219
f5ab0d1f 1220/*
e35fd660 1221 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1222 * and returns if the blocks are already mapped.
f5ab0d1f 1223 *
f5ab0d1f
MC
1224 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1225 * and store the allocated blocks in the result buffer head and mark it
1226 * mapped.
1227 *
e35fd660
TT
1228 * If file type is extents based, it will call ext4_ext_map_blocks(),
1229 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1230 * based files
1231 *
1232 * On success, it returns the number of blocks being mapped or allocate.
1233 * if create==0 and the blocks are pre-allocated and uninitialized block,
1234 * the result buffer head is unmapped. If the create ==1, it will make sure
1235 * the buffer head is mapped.
1236 *
1237 * It returns 0 if plain look up failed (blocks have not been allocated), in
1238 * that casem, buffer head is unmapped
1239 *
1240 * It returns the error in case of allocation failure.
1241 */
e35fd660
TT
1242int ext4_map_blocks(handle_t *handle, struct inode *inode,
1243 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1244{
1245 int retval;
f5ab0d1f 1246
e35fd660
TT
1247 map->m_flags = 0;
1248 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1249 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1250 (unsigned long) map->m_lblk);
4df3d265 1251 /*
b920c755
TT
1252 * Try to see if we can get the block without requesting a new
1253 * file system block.
4df3d265
AK
1254 */
1255 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1256 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1257 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1258 } else {
e35fd660 1259 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1260 }
4df3d265 1261 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1262
e35fd660 1263 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1264 int ret = check_block_validity(inode, map);
6fd058f7
TT
1265 if (ret != 0)
1266 return ret;
1267 }
1268
f5ab0d1f 1269 /* If it is only a block(s) look up */
c2177057 1270 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1271 return retval;
1272
1273 /*
1274 * Returns if the blocks have already allocated
1275 *
1276 * Note that if blocks have been preallocated
1277 * ext4_ext_get_block() returns th create = 0
1278 * with buffer head unmapped.
1279 */
e35fd660 1280 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1281 return retval;
1282
2a8964d6
AK
1283 /*
1284 * When we call get_blocks without the create flag, the
1285 * BH_Unwritten flag could have gotten set if the blocks
1286 * requested were part of a uninitialized extent. We need to
1287 * clear this flag now that we are committed to convert all or
1288 * part of the uninitialized extent to be an initialized
1289 * extent. This is because we need to avoid the combination
1290 * of BH_Unwritten and BH_Mapped flags being simultaneously
1291 * set on the buffer_head.
1292 */
e35fd660 1293 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1294
4df3d265 1295 /*
f5ab0d1f
MC
1296 * New blocks allocate and/or writing to uninitialized extent
1297 * will possibly result in updating i_data, so we take
1298 * the write lock of i_data_sem, and call get_blocks()
1299 * with create == 1 flag.
4df3d265
AK
1300 */
1301 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1302
1303 /*
1304 * if the caller is from delayed allocation writeout path
1305 * we have already reserved fs blocks for allocation
1306 * let the underlying get_block() function know to
1307 * avoid double accounting
1308 */
c2177057 1309 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 1310 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
1311 /*
1312 * We need to check for EXT4 here because migrate
1313 * could have changed the inode type in between
1314 */
12e9b892 1315 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1316 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1317 } else {
e35fd660 1318 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1319
e35fd660 1320 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1321 /*
1322 * We allocated new blocks which will result in
1323 * i_data's format changing. Force the migrate
1324 * to fail by clearing migrate flags
1325 */
19f5fb7a 1326 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1327 }
d2a17637 1328
5f634d06
AK
1329 /*
1330 * Update reserved blocks/metadata blocks after successful
1331 * block allocation which had been deferred till now. We don't
1332 * support fallocate for non extent files. So we can update
1333 * reserve space here.
1334 */
1335 if ((retval > 0) &&
1296cc85 1336 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1337 ext4_da_update_reserve_space(inode, retval, 1);
1338 }
2ac3b6e0 1339 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 1340 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 1341
4df3d265 1342 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1343 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1344 int ret = check_block_validity(inode, map);
6fd058f7
TT
1345 if (ret != 0)
1346 return ret;
1347 }
0e855ac8
AK
1348 return retval;
1349}
1350
f3bd1f3f
MC
1351/* Maximum number of blocks we map for direct IO at once. */
1352#define DIO_MAX_BLOCKS 4096
1353
2ed88685
TT
1354static int _ext4_get_block(struct inode *inode, sector_t iblock,
1355 struct buffer_head *bh, int flags)
ac27a0ec 1356{
3e4fdaf8 1357 handle_t *handle = ext4_journal_current_handle();
2ed88685 1358 struct ext4_map_blocks map;
7fb5409d 1359 int ret = 0, started = 0;
f3bd1f3f 1360 int dio_credits;
ac27a0ec 1361
2ed88685
TT
1362 map.m_lblk = iblock;
1363 map.m_len = bh->b_size >> inode->i_blkbits;
1364
1365 if (flags && !handle) {
7fb5409d 1366 /* Direct IO write... */
2ed88685
TT
1367 if (map.m_len > DIO_MAX_BLOCKS)
1368 map.m_len = DIO_MAX_BLOCKS;
1369 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1370 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1371 if (IS_ERR(handle)) {
ac27a0ec 1372 ret = PTR_ERR(handle);
2ed88685 1373 return ret;
ac27a0ec 1374 }
7fb5409d 1375 started = 1;
ac27a0ec
DK
1376 }
1377
2ed88685 1378 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1379 if (ret > 0) {
2ed88685
TT
1380 map_bh(bh, inode->i_sb, map.m_pblk);
1381 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1382 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1383 ret = 0;
ac27a0ec 1384 }
7fb5409d
JK
1385 if (started)
1386 ext4_journal_stop(handle);
ac27a0ec
DK
1387 return ret;
1388}
1389
2ed88685
TT
1390int ext4_get_block(struct inode *inode, sector_t iblock,
1391 struct buffer_head *bh, int create)
1392{
1393 return _ext4_get_block(inode, iblock, bh,
1394 create ? EXT4_GET_BLOCKS_CREATE : 0);
1395}
1396
ac27a0ec
DK
1397/*
1398 * `handle' can be NULL if create is zero
1399 */
617ba13b 1400struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1401 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1402{
2ed88685
TT
1403 struct ext4_map_blocks map;
1404 struct buffer_head *bh;
ac27a0ec
DK
1405 int fatal = 0, err;
1406
1407 J_ASSERT(handle != NULL || create == 0);
1408
2ed88685
TT
1409 map.m_lblk = block;
1410 map.m_len = 1;
1411 err = ext4_map_blocks(handle, inode, &map,
1412 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1413
2ed88685
TT
1414 if (err < 0)
1415 *errp = err;
1416 if (err <= 0)
1417 return NULL;
1418 *errp = 0;
1419
1420 bh = sb_getblk(inode->i_sb, map.m_pblk);
1421 if (!bh) {
1422 *errp = -EIO;
1423 return NULL;
ac27a0ec 1424 }
2ed88685
TT
1425 if (map.m_flags & EXT4_MAP_NEW) {
1426 J_ASSERT(create != 0);
1427 J_ASSERT(handle != NULL);
ac27a0ec 1428
2ed88685
TT
1429 /*
1430 * Now that we do not always journal data, we should
1431 * keep in mind whether this should always journal the
1432 * new buffer as metadata. For now, regular file
1433 * writes use ext4_get_block instead, so it's not a
1434 * problem.
1435 */
1436 lock_buffer(bh);
1437 BUFFER_TRACE(bh, "call get_create_access");
1438 fatal = ext4_journal_get_create_access(handle, bh);
1439 if (!fatal && !buffer_uptodate(bh)) {
1440 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1441 set_buffer_uptodate(bh);
ac27a0ec 1442 }
2ed88685
TT
1443 unlock_buffer(bh);
1444 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1445 err = ext4_handle_dirty_metadata(handle, inode, bh);
1446 if (!fatal)
1447 fatal = err;
1448 } else {
1449 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1450 }
2ed88685
TT
1451 if (fatal) {
1452 *errp = fatal;
1453 brelse(bh);
1454 bh = NULL;
1455 }
1456 return bh;
ac27a0ec
DK
1457}
1458
617ba13b 1459struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1460 ext4_lblk_t block, int create, int *err)
ac27a0ec 1461{
af5bc92d 1462 struct buffer_head *bh;
ac27a0ec 1463
617ba13b 1464 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1465 if (!bh)
1466 return bh;
1467 if (buffer_uptodate(bh))
1468 return bh;
1469 ll_rw_block(READ_META, 1, &bh);
1470 wait_on_buffer(bh);
1471 if (buffer_uptodate(bh))
1472 return bh;
1473 put_bh(bh);
1474 *err = -EIO;
1475 return NULL;
1476}
1477
af5bc92d
TT
1478static int walk_page_buffers(handle_t *handle,
1479 struct buffer_head *head,
1480 unsigned from,
1481 unsigned to,
1482 int *partial,
1483 int (*fn)(handle_t *handle,
1484 struct buffer_head *bh))
ac27a0ec
DK
1485{
1486 struct buffer_head *bh;
1487 unsigned block_start, block_end;
1488 unsigned blocksize = head->b_size;
1489 int err, ret = 0;
1490 struct buffer_head *next;
1491
af5bc92d
TT
1492 for (bh = head, block_start = 0;
1493 ret == 0 && (bh != head || !block_start);
de9a55b8 1494 block_start = block_end, bh = next) {
ac27a0ec
DK
1495 next = bh->b_this_page;
1496 block_end = block_start + blocksize;
1497 if (block_end <= from || block_start >= to) {
1498 if (partial && !buffer_uptodate(bh))
1499 *partial = 1;
1500 continue;
1501 }
1502 err = (*fn)(handle, bh);
1503 if (!ret)
1504 ret = err;
1505 }
1506 return ret;
1507}
1508
1509/*
1510 * To preserve ordering, it is essential that the hole instantiation and
1511 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1512 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1513 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1514 * prepare_write() is the right place.
1515 *
617ba13b
MC
1516 * Also, this function can nest inside ext4_writepage() ->
1517 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1518 * has generated enough buffer credits to do the whole page. So we won't
1519 * block on the journal in that case, which is good, because the caller may
1520 * be PF_MEMALLOC.
1521 *
617ba13b 1522 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1523 * quota file writes. If we were to commit the transaction while thus
1524 * reentered, there can be a deadlock - we would be holding a quota
1525 * lock, and the commit would never complete if another thread had a
1526 * transaction open and was blocking on the quota lock - a ranking
1527 * violation.
1528 *
dab291af 1529 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1530 * will _not_ run commit under these circumstances because handle->h_ref
1531 * is elevated. We'll still have enough credits for the tiny quotafile
1532 * write.
1533 */
1534static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1535 struct buffer_head *bh)
ac27a0ec 1536{
56d35a4c
JK
1537 int dirty = buffer_dirty(bh);
1538 int ret;
1539
ac27a0ec
DK
1540 if (!buffer_mapped(bh) || buffer_freed(bh))
1541 return 0;
56d35a4c 1542 /*
ebdec241 1543 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1544 * the dirty bit as jbd2_journal_get_write_access() could complain
1545 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1546 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1547 * the bit before releasing a page lock and thus writeback cannot
1548 * ever write the buffer.
1549 */
1550 if (dirty)
1551 clear_buffer_dirty(bh);
1552 ret = ext4_journal_get_write_access(handle, bh);
1553 if (!ret && dirty)
1554 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1555 return ret;
ac27a0ec
DK
1556}
1557
b9a4207d
JK
1558/*
1559 * Truncate blocks that were not used by write. We have to truncate the
1560 * pagecache as well so that corresponding buffers get properly unmapped.
1561 */
1562static void ext4_truncate_failed_write(struct inode *inode)
1563{
1564 truncate_inode_pages(inode->i_mapping, inode->i_size);
1565 ext4_truncate(inode);
1566}
1567
744692dc
JZ
1568static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1569 struct buffer_head *bh_result, int create);
bfc1af65 1570static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1571 loff_t pos, unsigned len, unsigned flags,
1572 struct page **pagep, void **fsdata)
ac27a0ec 1573{
af5bc92d 1574 struct inode *inode = mapping->host;
1938a150 1575 int ret, needed_blocks;
ac27a0ec
DK
1576 handle_t *handle;
1577 int retries = 0;
af5bc92d 1578 struct page *page;
de9a55b8 1579 pgoff_t index;
af5bc92d 1580 unsigned from, to;
bfc1af65 1581
9bffad1e 1582 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1583 /*
1584 * Reserve one block more for addition to orphan list in case
1585 * we allocate blocks but write fails for some reason
1586 */
1587 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1588 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1589 from = pos & (PAGE_CACHE_SIZE - 1);
1590 to = from + len;
ac27a0ec
DK
1591
1592retry:
af5bc92d
TT
1593 handle = ext4_journal_start(inode, needed_blocks);
1594 if (IS_ERR(handle)) {
1595 ret = PTR_ERR(handle);
1596 goto out;
7479d2b9 1597 }
ac27a0ec 1598
ebd3610b
JK
1599 /* We cannot recurse into the filesystem as the transaction is already
1600 * started */
1601 flags |= AOP_FLAG_NOFS;
1602
54566b2c 1603 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1604 if (!page) {
1605 ext4_journal_stop(handle);
1606 ret = -ENOMEM;
1607 goto out;
1608 }
1609 *pagep = page;
1610
744692dc 1611 if (ext4_should_dioread_nolock(inode))
6e1db88d 1612 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1613 else
6e1db88d 1614 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1615
1616 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1617 ret = walk_page_buffers(handle, page_buffers(page),
1618 from, to, NULL, do_journal_get_write_access);
1619 }
bfc1af65
NP
1620
1621 if (ret) {
af5bc92d 1622 unlock_page(page);
af5bc92d 1623 page_cache_release(page);
ae4d5372 1624 /*
6e1db88d 1625 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1626 * outside i_size. Trim these off again. Don't need
1627 * i_size_read because we hold i_mutex.
1938a150
AK
1628 *
1629 * Add inode to orphan list in case we crash before
1630 * truncate finishes
ae4d5372 1631 */
ffacfa7a 1632 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1633 ext4_orphan_add(handle, inode);
1634
1635 ext4_journal_stop(handle);
1636 if (pos + len > inode->i_size) {
b9a4207d 1637 ext4_truncate_failed_write(inode);
de9a55b8 1638 /*
ffacfa7a 1639 * If truncate failed early the inode might
1938a150
AK
1640 * still be on the orphan list; we need to
1641 * make sure the inode is removed from the
1642 * orphan list in that case.
1643 */
1644 if (inode->i_nlink)
1645 ext4_orphan_del(NULL, inode);
1646 }
bfc1af65
NP
1647 }
1648
617ba13b 1649 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1650 goto retry;
7479d2b9 1651out:
ac27a0ec
DK
1652 return ret;
1653}
1654
bfc1af65
NP
1655/* For write_end() in data=journal mode */
1656static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1657{
1658 if (!buffer_mapped(bh) || buffer_freed(bh))
1659 return 0;
1660 set_buffer_uptodate(bh);
0390131b 1661 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1662}
1663
f8514083 1664static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1665 struct address_space *mapping,
1666 loff_t pos, unsigned len, unsigned copied,
1667 struct page *page, void *fsdata)
f8514083
AK
1668{
1669 int i_size_changed = 0;
1670 struct inode *inode = mapping->host;
1671 handle_t *handle = ext4_journal_current_handle();
1672
1673 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1674
1675 /*
1676 * No need to use i_size_read() here, the i_size
1677 * cannot change under us because we hold i_mutex.
1678 *
1679 * But it's important to update i_size while still holding page lock:
1680 * page writeout could otherwise come in and zero beyond i_size.
1681 */
1682 if (pos + copied > inode->i_size) {
1683 i_size_write(inode, pos + copied);
1684 i_size_changed = 1;
1685 }
1686
1687 if (pos + copied > EXT4_I(inode)->i_disksize) {
1688 /* We need to mark inode dirty even if
1689 * new_i_size is less that inode->i_size
1690 * bu greater than i_disksize.(hint delalloc)
1691 */
1692 ext4_update_i_disksize(inode, (pos + copied));
1693 i_size_changed = 1;
1694 }
1695 unlock_page(page);
1696 page_cache_release(page);
1697
1698 /*
1699 * Don't mark the inode dirty under page lock. First, it unnecessarily
1700 * makes the holding time of page lock longer. Second, it forces lock
1701 * ordering of page lock and transaction start for journaling
1702 * filesystems.
1703 */
1704 if (i_size_changed)
1705 ext4_mark_inode_dirty(handle, inode);
1706
1707 return copied;
1708}
1709
ac27a0ec
DK
1710/*
1711 * We need to pick up the new inode size which generic_commit_write gave us
1712 * `file' can be NULL - eg, when called from page_symlink().
1713 *
617ba13b 1714 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1715 * buffers are managed internally.
1716 */
bfc1af65 1717static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1718 struct address_space *mapping,
1719 loff_t pos, unsigned len, unsigned copied,
1720 struct page *page, void *fsdata)
ac27a0ec 1721{
617ba13b 1722 handle_t *handle = ext4_journal_current_handle();
cf108bca 1723 struct inode *inode = mapping->host;
ac27a0ec
DK
1724 int ret = 0, ret2;
1725
9bffad1e 1726 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1727 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1728
1729 if (ret == 0) {
f8514083 1730 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1731 page, fsdata);
f8a87d89 1732 copied = ret2;
ffacfa7a 1733 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1734 /* if we have allocated more blocks and copied
1735 * less. We will have blocks allocated outside
1736 * inode->i_size. So truncate them
1737 */
1738 ext4_orphan_add(handle, inode);
f8a87d89
RK
1739 if (ret2 < 0)
1740 ret = ret2;
ac27a0ec 1741 }
617ba13b 1742 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1743 if (!ret)
1744 ret = ret2;
bfc1af65 1745
f8514083 1746 if (pos + len > inode->i_size) {
b9a4207d 1747 ext4_truncate_failed_write(inode);
de9a55b8 1748 /*
ffacfa7a 1749 * If truncate failed early the inode might still be
f8514083
AK
1750 * on the orphan list; we need to make sure the inode
1751 * is removed from the orphan list in that case.
1752 */
1753 if (inode->i_nlink)
1754 ext4_orphan_del(NULL, inode);
1755 }
1756
1757
bfc1af65 1758 return ret ? ret : copied;
ac27a0ec
DK
1759}
1760
bfc1af65 1761static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1762 struct address_space *mapping,
1763 loff_t pos, unsigned len, unsigned copied,
1764 struct page *page, void *fsdata)
ac27a0ec 1765{
617ba13b 1766 handle_t *handle = ext4_journal_current_handle();
cf108bca 1767 struct inode *inode = mapping->host;
ac27a0ec 1768 int ret = 0, ret2;
ac27a0ec 1769
9bffad1e 1770 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1771 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1772 page, fsdata);
f8a87d89 1773 copied = ret2;
ffacfa7a 1774 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1775 /* if we have allocated more blocks and copied
1776 * less. We will have blocks allocated outside
1777 * inode->i_size. So truncate them
1778 */
1779 ext4_orphan_add(handle, inode);
1780
f8a87d89
RK
1781 if (ret2 < 0)
1782 ret = ret2;
ac27a0ec 1783
617ba13b 1784 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1785 if (!ret)
1786 ret = ret2;
bfc1af65 1787
f8514083 1788 if (pos + len > inode->i_size) {
b9a4207d 1789 ext4_truncate_failed_write(inode);
de9a55b8 1790 /*
ffacfa7a 1791 * If truncate failed early the inode might still be
f8514083
AK
1792 * on the orphan list; we need to make sure the inode
1793 * is removed from the orphan list in that case.
1794 */
1795 if (inode->i_nlink)
1796 ext4_orphan_del(NULL, inode);
1797 }
1798
bfc1af65 1799 return ret ? ret : copied;
ac27a0ec
DK
1800}
1801
bfc1af65 1802static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1803 struct address_space *mapping,
1804 loff_t pos, unsigned len, unsigned copied,
1805 struct page *page, void *fsdata)
ac27a0ec 1806{
617ba13b 1807 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1808 struct inode *inode = mapping->host;
ac27a0ec
DK
1809 int ret = 0, ret2;
1810 int partial = 0;
bfc1af65 1811 unsigned from, to;
cf17fea6 1812 loff_t new_i_size;
ac27a0ec 1813
9bffad1e 1814 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1815 from = pos & (PAGE_CACHE_SIZE - 1);
1816 to = from + len;
1817
1818 if (copied < len) {
1819 if (!PageUptodate(page))
1820 copied = 0;
1821 page_zero_new_buffers(page, from+copied, to);
1822 }
ac27a0ec
DK
1823
1824 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1825 to, &partial, write_end_fn);
ac27a0ec
DK
1826 if (!partial)
1827 SetPageUptodate(page);
cf17fea6
AK
1828 new_i_size = pos + copied;
1829 if (new_i_size > inode->i_size)
bfc1af65 1830 i_size_write(inode, pos+copied);
19f5fb7a 1831 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1832 if (new_i_size > EXT4_I(inode)->i_disksize) {
1833 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1834 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1835 if (!ret)
1836 ret = ret2;
1837 }
bfc1af65 1838
cf108bca 1839 unlock_page(page);
f8514083 1840 page_cache_release(page);
ffacfa7a 1841 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1842 /* if we have allocated more blocks and copied
1843 * less. We will have blocks allocated outside
1844 * inode->i_size. So truncate them
1845 */
1846 ext4_orphan_add(handle, inode);
1847
617ba13b 1848 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1849 if (!ret)
1850 ret = ret2;
f8514083 1851 if (pos + len > inode->i_size) {
b9a4207d 1852 ext4_truncate_failed_write(inode);
de9a55b8 1853 /*
ffacfa7a 1854 * If truncate failed early the inode might still be
f8514083
AK
1855 * on the orphan list; we need to make sure the inode
1856 * is removed from the orphan list in that case.
1857 */
1858 if (inode->i_nlink)
1859 ext4_orphan_del(NULL, inode);
1860 }
bfc1af65
NP
1861
1862 return ret ? ret : copied;
ac27a0ec 1863}
d2a17637 1864
9d0be502
TT
1865/*
1866 * Reserve a single block located at lblock
1867 */
01f49d0b 1868static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1869{
030ba6bc 1870 int retries = 0;
60e58e0f 1871 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1872 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1873 unsigned long md_needed;
5dd4056d 1874 int ret;
d2a17637
MC
1875
1876 /*
1877 * recalculate the amount of metadata blocks to reserve
1878 * in order to allocate nrblocks
1879 * worse case is one extent per block
1880 */
030ba6bc 1881repeat:
0637c6f4 1882 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1883 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1884 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1885 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1886
60e58e0f 1887 /*
72b8ab9d
ES
1888 * We will charge metadata quota at writeout time; this saves
1889 * us from metadata over-estimation, though we may go over by
1890 * a small amount in the end. Here we just reserve for data.
60e58e0f 1891 */
72b8ab9d 1892 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1893 if (ret)
1894 return ret;
72b8ab9d
ES
1895 /*
1896 * We do still charge estimated metadata to the sb though;
1897 * we cannot afford to run out of free blocks.
1898 */
55f020db 1899 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
72b8ab9d 1900 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1901 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1902 yield();
1903 goto repeat;
1904 }
d2a17637
MC
1905 return -ENOSPC;
1906 }
0637c6f4 1907 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1908 ei->i_reserved_data_blocks++;
0637c6f4
TT
1909 ei->i_reserved_meta_blocks += md_needed;
1910 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1911
d2a17637
MC
1912 return 0; /* success */
1913}
1914
12219aea 1915static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1916{
1917 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1918 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1919
cd213226
MC
1920 if (!to_free)
1921 return; /* Nothing to release, exit */
1922
d2a17637 1923 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1924
5a58ec87 1925 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1926 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1927 /*
0637c6f4
TT
1928 * if there aren't enough reserved blocks, then the
1929 * counter is messed up somewhere. Since this
1930 * function is called from invalidate page, it's
1931 * harmless to return without any action.
cd213226 1932 */
0637c6f4
TT
1933 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1934 "ino %lu, to_free %d with only %d reserved "
1935 "data blocks\n", inode->i_ino, to_free,
1936 ei->i_reserved_data_blocks);
1937 WARN_ON(1);
1938 to_free = ei->i_reserved_data_blocks;
cd213226 1939 }
0637c6f4 1940 ei->i_reserved_data_blocks -= to_free;
cd213226 1941
0637c6f4
TT
1942 if (ei->i_reserved_data_blocks == 0) {
1943 /*
1944 * We can release all of the reserved metadata blocks
1945 * only when we have written all of the delayed
1946 * allocation blocks.
1947 */
72b8ab9d
ES
1948 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1949 ei->i_reserved_meta_blocks);
ee5f4d9c 1950 ei->i_reserved_meta_blocks = 0;
9d0be502 1951 ei->i_da_metadata_calc_len = 0;
0637c6f4 1952 }
d2a17637 1953
72b8ab9d 1954 /* update fs dirty data blocks counter */
0637c6f4 1955 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1956
d2a17637 1957 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1958
5dd4056d 1959 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1960}
1961
1962static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1963 unsigned long offset)
d2a17637
MC
1964{
1965 int to_release = 0;
1966 struct buffer_head *head, *bh;
1967 unsigned int curr_off = 0;
1968
1969 head = page_buffers(page);
1970 bh = head;
1971 do {
1972 unsigned int next_off = curr_off + bh->b_size;
1973
1974 if ((offset <= curr_off) && (buffer_delay(bh))) {
1975 to_release++;
1976 clear_buffer_delay(bh);
1977 }
1978 curr_off = next_off;
1979 } while ((bh = bh->b_this_page) != head);
12219aea 1980 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1981}
ac27a0ec 1982
64769240
AT
1983/*
1984 * Delayed allocation stuff
1985 */
1986
64769240
AT
1987/*
1988 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1989 * them with writepage() call back
64769240
AT
1990 *
1991 * @mpd->inode: inode
1992 * @mpd->first_page: first page of the extent
1993 * @mpd->next_page: page after the last page of the extent
64769240
AT
1994 *
1995 * By the time mpage_da_submit_io() is called we expect all blocks
1996 * to be allocated. this may be wrong if allocation failed.
1997 *
1998 * As pages are already locked by write_cache_pages(), we can't use it
1999 */
1de3e3df
TT
2000static int mpage_da_submit_io(struct mpage_da_data *mpd,
2001 struct ext4_map_blocks *map)
64769240 2002{
791b7f08
AK
2003 struct pagevec pvec;
2004 unsigned long index, end;
2005 int ret = 0, err, nr_pages, i;
2006 struct inode *inode = mpd->inode;
2007 struct address_space *mapping = inode->i_mapping;
cb20d518 2008 loff_t size = i_size_read(inode);
3ecdb3a1
TT
2009 unsigned int len, block_start;
2010 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 2011 int journal_data = ext4_should_journal_data(inode);
1de3e3df 2012 sector_t pblock = 0, cur_logical = 0;
bd2d0210 2013 struct ext4_io_submit io_submit;
64769240
AT
2014
2015 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 2016 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
2017 /*
2018 * We need to start from the first_page to the next_page - 1
2019 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2020 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2021 * at the currently mapped buffer_heads.
2022 */
64769240
AT
2023 index = mpd->first_page;
2024 end = mpd->next_page - 1;
2025
791b7f08 2026 pagevec_init(&pvec, 0);
64769240 2027 while (index <= end) {
791b7f08 2028 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2029 if (nr_pages == 0)
2030 break;
2031 for (i = 0; i < nr_pages; i++) {
97498956 2032 int commit_write = 0, skip_page = 0;
64769240
AT
2033 struct page *page = pvec.pages[i];
2034
791b7f08
AK
2035 index = page->index;
2036 if (index > end)
2037 break;
cb20d518
TT
2038
2039 if (index == size >> PAGE_CACHE_SHIFT)
2040 len = size & ~PAGE_CACHE_MASK;
2041 else
2042 len = PAGE_CACHE_SIZE;
1de3e3df
TT
2043 if (map) {
2044 cur_logical = index << (PAGE_CACHE_SHIFT -
2045 inode->i_blkbits);
2046 pblock = map->m_pblk + (cur_logical -
2047 map->m_lblk);
2048 }
791b7f08
AK
2049 index++;
2050
2051 BUG_ON(!PageLocked(page));
2052 BUG_ON(PageWriteback(page));
2053
64769240 2054 /*
cb20d518
TT
2055 * If the page does not have buffers (for
2056 * whatever reason), try to create them using
a107e5a3 2057 * __block_write_begin. If this fails,
97498956 2058 * skip the page and move on.
64769240 2059 */
cb20d518 2060 if (!page_has_buffers(page)) {
a107e5a3 2061 if (__block_write_begin(page, 0, len,
cb20d518 2062 noalloc_get_block_write)) {
97498956 2063 skip_page:
cb20d518
TT
2064 unlock_page(page);
2065 continue;
2066 }
2067 commit_write = 1;
2068 }
64769240 2069
3ecdb3a1
TT
2070 bh = page_bufs = page_buffers(page);
2071 block_start = 0;
64769240 2072 do {
1de3e3df 2073 if (!bh)
97498956 2074 goto skip_page;
1de3e3df
TT
2075 if (map && (cur_logical >= map->m_lblk) &&
2076 (cur_logical <= (map->m_lblk +
2077 (map->m_len - 1)))) {
29fa89d0
AK
2078 if (buffer_delay(bh)) {
2079 clear_buffer_delay(bh);
2080 bh->b_blocknr = pblock;
29fa89d0 2081 }
1de3e3df
TT
2082 if (buffer_unwritten(bh) ||
2083 buffer_mapped(bh))
2084 BUG_ON(bh->b_blocknr != pblock);
2085 if (map->m_flags & EXT4_MAP_UNINIT)
2086 set_buffer_uninit(bh);
2087 clear_buffer_unwritten(bh);
2088 }
29fa89d0 2089
97498956 2090 /* skip page if block allocation undone */
1de3e3df 2091 if (buffer_delay(bh) || buffer_unwritten(bh))
97498956 2092 skip_page = 1;
3ecdb3a1
TT
2093 bh = bh->b_this_page;
2094 block_start += bh->b_size;
64769240
AT
2095 cur_logical++;
2096 pblock++;
1de3e3df
TT
2097 } while (bh != page_bufs);
2098
97498956
TT
2099 if (skip_page)
2100 goto skip_page;
cb20d518
TT
2101
2102 if (commit_write)
2103 /* mark the buffer_heads as dirty & uptodate */
2104 block_commit_write(page, 0, len);
2105
97498956 2106 clear_page_dirty_for_io(page);
bd2d0210
TT
2107 /*
2108 * Delalloc doesn't support data journalling,
2109 * but eventually maybe we'll lift this
2110 * restriction.
2111 */
2112 if (unlikely(journal_data && PageChecked(page)))
cb20d518 2113 err = __ext4_journalled_writepage(page, len);
1449032b 2114 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
2115 err = ext4_bio_write_page(&io_submit, page,
2116 len, mpd->wbc);
1449032b
TT
2117 else
2118 err = block_write_full_page(page,
2119 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
2120
2121 if (!err)
a1d6cc56 2122 mpd->pages_written++;
64769240
AT
2123 /*
2124 * In error case, we have to continue because
2125 * remaining pages are still locked
64769240
AT
2126 */
2127 if (ret == 0)
2128 ret = err;
64769240
AT
2129 }
2130 pagevec_release(&pvec);
2131 }
bd2d0210 2132 ext4_io_submit(&io_submit);
64769240 2133 return ret;
64769240
AT
2134}
2135
c7f5938a 2136static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
2137{
2138 int nr_pages, i;
2139 pgoff_t index, end;
2140 struct pagevec pvec;
2141 struct inode *inode = mpd->inode;
2142 struct address_space *mapping = inode->i_mapping;
2143
c7f5938a
CW
2144 index = mpd->first_page;
2145 end = mpd->next_page - 1;
c4a0c46e
AK
2146 while (index <= end) {
2147 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2148 if (nr_pages == 0)
2149 break;
2150 for (i = 0; i < nr_pages; i++) {
2151 struct page *page = pvec.pages[i];
9b1d0998 2152 if (page->index > end)
c4a0c46e 2153 break;
c4a0c46e
AK
2154 BUG_ON(!PageLocked(page));
2155 BUG_ON(PageWriteback(page));
2156 block_invalidatepage(page, 0);
2157 ClearPageUptodate(page);
2158 unlock_page(page);
2159 }
9b1d0998
JK
2160 index = pvec.pages[nr_pages - 1]->index + 1;
2161 pagevec_release(&pvec);
c4a0c46e
AK
2162 }
2163 return;
2164}
2165
df22291f
AK
2166static void ext4_print_free_blocks(struct inode *inode)
2167{
2168 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2169 printk(KERN_CRIT "Total free blocks count %lld\n",
2170 ext4_count_free_blocks(inode->i_sb));
2171 printk(KERN_CRIT "Free/Dirty block details\n");
2172 printk(KERN_CRIT "free_blocks=%lld\n",
2173 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2174 printk(KERN_CRIT "dirty_blocks=%lld\n",
2175 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2176 printk(KERN_CRIT "Block reservation details\n");
2177 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2178 EXT4_I(inode)->i_reserved_data_blocks);
2179 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2180 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2181 return;
2182}
2183
64769240 2184/*
5a87b7a5
TT
2185 * mpage_da_map_and_submit - go through given space, map them
2186 * if necessary, and then submit them for I/O
64769240 2187 *
8dc207c0 2188 * @mpd - bh describing space
64769240
AT
2189 *
2190 * The function skips space we know is already mapped to disk blocks.
2191 *
64769240 2192 */
5a87b7a5 2193static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 2194{
2ac3b6e0 2195 int err, blks, get_blocks_flags;
1de3e3df 2196 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
2197 sector_t next = mpd->b_blocknr;
2198 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2199 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2200 handle_t *handle = NULL;
64769240
AT
2201
2202 /*
5a87b7a5
TT
2203 * If the blocks are mapped already, or we couldn't accumulate
2204 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 2205 */
5a87b7a5
TT
2206 if ((mpd->b_size == 0) ||
2207 ((mpd->b_state & (1 << BH_Mapped)) &&
2208 !(mpd->b_state & (1 << BH_Delay)) &&
2209 !(mpd->b_state & (1 << BH_Unwritten))))
2210 goto submit_io;
2fa3cdfb
TT
2211
2212 handle = ext4_journal_current_handle();
2213 BUG_ON(!handle);
2214
79ffab34 2215 /*
79e83036 2216 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2217 * blocks, or to convert an uninitialized extent to be
2218 * initialized (in the case where we have written into
2219 * one or more preallocated blocks).
2220 *
2221 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2222 * indicate that we are on the delayed allocation path. This
2223 * affects functions in many different parts of the allocation
2224 * call path. This flag exists primarily because we don't
79e83036 2225 * want to change *many* call functions, so ext4_map_blocks()
f2321097 2226 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
2227 * inode's allocation semaphore is taken.
2228 *
2229 * If the blocks in questions were delalloc blocks, set
2230 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2231 * variables are updated after the blocks have been allocated.
79ffab34 2232 */
2ed88685
TT
2233 map.m_lblk = next;
2234 map.m_len = max_blocks;
1296cc85 2235 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2236 if (ext4_should_dioread_nolock(mpd->inode))
2237 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2238 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2239 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2240
2ed88685 2241 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2242 if (blks < 0) {
e3570639
ES
2243 struct super_block *sb = mpd->inode->i_sb;
2244
2fa3cdfb 2245 err = blks;
ed5bde0b 2246 /*
5a87b7a5 2247 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
2248 * appears to be free blocks we will just let
2249 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
2250 */
2251 if (err == -EAGAIN)
5a87b7a5 2252 goto submit_io;
df22291f
AK
2253
2254 if (err == -ENOSPC &&
e3570639 2255 ext4_count_free_blocks(sb)) {
df22291f 2256 mpd->retval = err;
5a87b7a5 2257 goto submit_io;
df22291f
AK
2258 }
2259
c4a0c46e 2260 /*
ed5bde0b
TT
2261 * get block failure will cause us to loop in
2262 * writepages, because a_ops->writepage won't be able
2263 * to make progress. The page will be redirtied by
2264 * writepage and writepages will again try to write
2265 * the same.
c4a0c46e 2266 */
e3570639
ES
2267 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2268 ext4_msg(sb, KERN_CRIT,
2269 "delayed block allocation failed for inode %lu "
2270 "at logical offset %llu with max blocks %zd "
2271 "with error %d", mpd->inode->i_ino,
2272 (unsigned long long) next,
2273 mpd->b_size >> mpd->inode->i_blkbits, err);
2274 ext4_msg(sb, KERN_CRIT,
2275 "This should not happen!! Data will be lost\n");
2276 if (err == -ENOSPC)
2277 ext4_print_free_blocks(mpd->inode);
030ba6bc 2278 }
2fa3cdfb 2279 /* invalidate all the pages */
c7f5938a 2280 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
2281
2282 /* Mark this page range as having been completed */
2283 mpd->io_done = 1;
5a87b7a5 2284 return;
c4a0c46e 2285 }
2fa3cdfb
TT
2286 BUG_ON(blks == 0);
2287
1de3e3df 2288 mapp = &map;
2ed88685
TT
2289 if (map.m_flags & EXT4_MAP_NEW) {
2290 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2291 int i;
64769240 2292
2ed88685
TT
2293 for (i = 0; i < map.m_len; i++)
2294 unmap_underlying_metadata(bdev, map.m_pblk + i);
2295 }
64769240 2296
2fa3cdfb
TT
2297 if (ext4_should_order_data(mpd->inode)) {
2298 err = ext4_jbd2_file_inode(handle, mpd->inode);
2299 if (err)
5a87b7a5
TT
2300 /* This only happens if the journal is aborted */
2301 return;
2fa3cdfb
TT
2302 }
2303
2304 /*
03f5d8bc 2305 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2306 */
2307 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2308 if (disksize > i_size_read(mpd->inode))
2309 disksize = i_size_read(mpd->inode);
2310 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2311 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
2312 err = ext4_mark_inode_dirty(handle, mpd->inode);
2313 if (err)
2314 ext4_error(mpd->inode->i_sb,
2315 "Failed to mark inode %lu dirty",
2316 mpd->inode->i_ino);
2fa3cdfb
TT
2317 }
2318
5a87b7a5 2319submit_io:
1de3e3df 2320 mpage_da_submit_io(mpd, mapp);
5a87b7a5 2321 mpd->io_done = 1;
64769240
AT
2322}
2323
bf068ee2
AK
2324#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2325 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2326
2327/*
2328 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2329 *
2330 * @mpd->lbh - extent of blocks
2331 * @logical - logical number of the block in the file
2332 * @bh - bh of the block (used to access block's state)
2333 *
2334 * the function is used to collect contig. blocks in same state
2335 */
2336static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2337 sector_t logical, size_t b_size,
2338 unsigned long b_state)
64769240 2339{
64769240 2340 sector_t next;
8dc207c0 2341 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2342
c445e3e0
ES
2343 /*
2344 * XXX Don't go larger than mballoc is willing to allocate
2345 * This is a stopgap solution. We eventually need to fold
2346 * mpage_da_submit_io() into this function and then call
79e83036 2347 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2348 */
2349 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2350 goto flush_it;
2351
525f4ed8 2352 /* check if thereserved journal credits might overflow */
12e9b892 2353 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2354 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2355 /*
2356 * With non-extent format we are limited by the journal
2357 * credit available. Total credit needed to insert
2358 * nrblocks contiguous blocks is dependent on the
2359 * nrblocks. So limit nrblocks.
2360 */
2361 goto flush_it;
2362 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2363 EXT4_MAX_TRANS_DATA) {
2364 /*
2365 * Adding the new buffer_head would make it cross the
2366 * allowed limit for which we have journal credit
2367 * reserved. So limit the new bh->b_size
2368 */
2369 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2370 mpd->inode->i_blkbits;
2371 /* we will do mpage_da_submit_io in the next loop */
2372 }
2373 }
64769240
AT
2374 /*
2375 * First block in the extent
2376 */
8dc207c0
TT
2377 if (mpd->b_size == 0) {
2378 mpd->b_blocknr = logical;
2379 mpd->b_size = b_size;
2380 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2381 return;
2382 }
2383
8dc207c0 2384 next = mpd->b_blocknr + nrblocks;
64769240
AT
2385 /*
2386 * Can we merge the block to our big extent?
2387 */
8dc207c0
TT
2388 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2389 mpd->b_size += b_size;
64769240
AT
2390 return;
2391 }
2392
525f4ed8 2393flush_it:
64769240
AT
2394 /*
2395 * We couldn't merge the block to our extent, so we
2396 * need to flush current extent and start new one
2397 */
5a87b7a5 2398 mpage_da_map_and_submit(mpd);
a1d6cc56 2399 return;
64769240
AT
2400}
2401
c364b22c 2402static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2403{
c364b22c 2404 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2405}
2406
64769240 2407/*
b920c755
TT
2408 * This is a special get_blocks_t callback which is used by
2409 * ext4_da_write_begin(). It will either return mapped block or
2410 * reserve space for a single block.
29fa89d0
AK
2411 *
2412 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2413 * We also have b_blocknr = -1 and b_bdev initialized properly
2414 *
2415 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2416 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2417 * initialized properly.
64769240
AT
2418 */
2419static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2420 struct buffer_head *bh, int create)
64769240 2421{
2ed88685 2422 struct ext4_map_blocks map;
64769240 2423 int ret = 0;
33b9817e
AK
2424 sector_t invalid_block = ~((sector_t) 0xffff);
2425
2426 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2427 invalid_block = ~0;
64769240
AT
2428
2429 BUG_ON(create == 0);
2ed88685
TT
2430 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2431
2432 map.m_lblk = iblock;
2433 map.m_len = 1;
64769240
AT
2434
2435 /*
2436 * first, we need to know whether the block is allocated already
2437 * preallocated blocks are unmapped but should treated
2438 * the same as allocated blocks.
2439 */
2ed88685
TT
2440 ret = ext4_map_blocks(NULL, inode, &map, 0);
2441 if (ret < 0)
2442 return ret;
2443 if (ret == 0) {
2444 if (buffer_delay(bh))
2445 return 0; /* Not sure this could or should happen */
64769240 2446 /*
ebdec241 2447 * XXX: __block_write_begin() unmaps passed block, is it OK?
64769240 2448 */
9d0be502 2449 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2450 if (ret)
2451 /* not enough space to reserve */
2452 return ret;
2453
2ed88685
TT
2454 map_bh(bh, inode->i_sb, invalid_block);
2455 set_buffer_new(bh);
2456 set_buffer_delay(bh);
2457 return 0;
64769240
AT
2458 }
2459
2ed88685
TT
2460 map_bh(bh, inode->i_sb, map.m_pblk);
2461 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2462
2463 if (buffer_unwritten(bh)) {
2464 /* A delayed write to unwritten bh should be marked
2465 * new and mapped. Mapped ensures that we don't do
2466 * get_block multiple times when we write to the same
2467 * offset and new ensures that we do proper zero out
2468 * for partial write.
2469 */
2470 set_buffer_new(bh);
c8205636 2471 set_buffer_mapped(bh);
2ed88685
TT
2472 }
2473 return 0;
64769240 2474}
61628a3f 2475
b920c755
TT
2476/*
2477 * This function is used as a standard get_block_t calback function
2478 * when there is no desire to allocate any blocks. It is used as a
ebdec241 2479 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 2480 * These functions should only try to map a single block at a time.
b920c755
TT
2481 *
2482 * Since this function doesn't do block allocations even if the caller
2483 * requests it by passing in create=1, it is critically important that
2484 * any caller checks to make sure that any buffer heads are returned
2485 * by this function are either all already mapped or marked for
206f7ab4
CH
2486 * delayed allocation before calling block_write_full_page(). Otherwise,
2487 * b_blocknr could be left unitialized, and the page write functions will
2488 * be taken by surprise.
b920c755
TT
2489 */
2490static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2491 struct buffer_head *bh_result, int create)
2492{
a2dc52b5 2493 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2494 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2495}
2496
62e086be
AK
2497static int bget_one(handle_t *handle, struct buffer_head *bh)
2498{
2499 get_bh(bh);
2500 return 0;
2501}
2502
2503static int bput_one(handle_t *handle, struct buffer_head *bh)
2504{
2505 put_bh(bh);
2506 return 0;
2507}
2508
2509static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2510 unsigned int len)
2511{
2512 struct address_space *mapping = page->mapping;
2513 struct inode *inode = mapping->host;
2514 struct buffer_head *page_bufs;
2515 handle_t *handle = NULL;
2516 int ret = 0;
2517 int err;
2518
cb20d518 2519 ClearPageChecked(page);
62e086be
AK
2520 page_bufs = page_buffers(page);
2521 BUG_ON(!page_bufs);
2522 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2523 /* As soon as we unlock the page, it can go away, but we have
2524 * references to buffers so we are safe */
2525 unlock_page(page);
2526
2527 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2528 if (IS_ERR(handle)) {
2529 ret = PTR_ERR(handle);
2530 goto out;
2531 }
2532
2533 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2534 do_journal_get_write_access);
2535
2536 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2537 write_end_fn);
2538 if (ret == 0)
2539 ret = err;
2540 err = ext4_journal_stop(handle);
2541 if (!ret)
2542 ret = err;
2543
2544 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2545 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2546out:
2547 return ret;
2548}
2549
744692dc
JZ
2550static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2551static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2552
61628a3f 2553/*
43ce1d23
AK
2554 * Note that we don't need to start a transaction unless we're journaling data
2555 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2556 * need to file the inode to the transaction's list in ordered mode because if
2557 * we are writing back data added by write(), the inode is already there and if
25985edc 2558 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2559 * transaction the data will hit the disk. In case we are journaling data, we
2560 * cannot start transaction directly because transaction start ranks above page
2561 * lock so we have to do some magic.
2562 *
b920c755
TT
2563 * This function can get called via...
2564 * - ext4_da_writepages after taking page lock (have journal handle)
2565 * - journal_submit_inode_data_buffers (no journal handle)
2566 * - shrink_page_list via pdflush (no journal handle)
2567 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2568 *
2569 * We don't do any block allocation in this function. If we have page with
2570 * multiple blocks we need to write those buffer_heads that are mapped. This
2571 * is important for mmaped based write. So if we do with blocksize 1K
2572 * truncate(f, 1024);
2573 * a = mmap(f, 0, 4096);
2574 * a[0] = 'a';
2575 * truncate(f, 4096);
2576 * we have in the page first buffer_head mapped via page_mkwrite call back
2577 * but other bufer_heads would be unmapped but dirty(dirty done via the
2578 * do_wp_page). So writepage should write the first block. If we modify
2579 * the mmap area beyond 1024 we will again get a page_fault and the
2580 * page_mkwrite callback will do the block allocation and mark the
2581 * buffer_heads mapped.
2582 *
2583 * We redirty the page if we have any buffer_heads that is either delay or
2584 * unwritten in the page.
2585 *
2586 * We can get recursively called as show below.
2587 *
2588 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2589 * ext4_writepage()
2590 *
2591 * But since we don't do any block allocation we should not deadlock.
2592 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2593 */
43ce1d23 2594static int ext4_writepage(struct page *page,
62e086be 2595 struct writeback_control *wbc)
64769240 2596{
a42afc5f 2597 int ret = 0, commit_write = 0;
61628a3f 2598 loff_t size;
498e5f24 2599 unsigned int len;
744692dc 2600 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2601 struct inode *inode = page->mapping->host;
2602
a9c667f8 2603 trace_ext4_writepage(page);
f0e6c985
AK
2604 size = i_size_read(inode);
2605 if (page->index == size >> PAGE_CACHE_SHIFT)
2606 len = size & ~PAGE_CACHE_MASK;
2607 else
2608 len = PAGE_CACHE_SIZE;
64769240 2609
a42afc5f
TT
2610 /*
2611 * If the page does not have buffers (for whatever reason),
a107e5a3 2612 * try to create them using __block_write_begin. If this
a42afc5f
TT
2613 * fails, redirty the page and move on.
2614 */
b1142e8f 2615 if (!page_has_buffers(page)) {
a107e5a3 2616 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2617 noalloc_get_block_write)) {
2618 redirty_page:
f0e6c985
AK
2619 redirty_page_for_writepage(wbc, page);
2620 unlock_page(page);
2621 return 0;
2622 }
a42afc5f
TT
2623 commit_write = 1;
2624 }
2625 page_bufs = page_buffers(page);
2626 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2627 ext4_bh_delay_or_unwritten)) {
f0e6c985 2628 /*
b1142e8f
TT
2629 * We don't want to do block allocation, so redirty
2630 * the page and return. We may reach here when we do
2631 * a journal commit via journal_submit_inode_data_buffers.
2632 * We can also reach here via shrink_page_list
f0e6c985 2633 */
a42afc5f
TT
2634 goto redirty_page;
2635 }
2636 if (commit_write)
ed9b3e33 2637 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2638 block_commit_write(page, 0, len);
64769240 2639
cb20d518 2640 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2641 /*
2642 * It's mmapped pagecache. Add buffers and journal it. There
2643 * doesn't seem much point in redirtying the page here.
2644 */
3f0ca309 2645 return __ext4_journalled_writepage(page, len);
43ce1d23 2646
a42afc5f 2647 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2648 ext4_set_bh_endio(page_bufs, inode);
2649 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2650 wbc, ext4_end_io_buffer_write);
2651 } else
b920c755
TT
2652 ret = block_write_full_page(page, noalloc_get_block_write,
2653 wbc);
64769240 2654
64769240
AT
2655 return ret;
2656}
2657
61628a3f 2658/*
525f4ed8 2659 * This is called via ext4_da_writepages() to
25985edc 2660 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2661 * a single extent allocation into a single transaction,
2662 * ext4_da_writpeages() will loop calling this before
2663 * the block allocation.
61628a3f 2664 */
525f4ed8
MC
2665
2666static int ext4_da_writepages_trans_blocks(struct inode *inode)
2667{
2668 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2669
2670 /*
2671 * With non-extent format the journal credit needed to
2672 * insert nrblocks contiguous block is dependent on
2673 * number of contiguous block. So we will limit
2674 * number of contiguous block to a sane value
2675 */
12e9b892 2676 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2677 (max_blocks > EXT4_MAX_TRANS_DATA))
2678 max_blocks = EXT4_MAX_TRANS_DATA;
2679
2680 return ext4_chunk_trans_blocks(inode, max_blocks);
2681}
61628a3f 2682
8e48dcfb
TT
2683/*
2684 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2685 * address space and accumulate pages that need writing, and call
168fc022
TT
2686 * mpage_da_map_and_submit to map a single contiguous memory region
2687 * and then write them.
8e48dcfb
TT
2688 */
2689static int write_cache_pages_da(struct address_space *mapping,
2690 struct writeback_control *wbc,
72f84e65
ES
2691 struct mpage_da_data *mpd,
2692 pgoff_t *done_index)
8e48dcfb 2693{
4f01b02c 2694 struct buffer_head *bh, *head;
168fc022 2695 struct inode *inode = mapping->host;
4f01b02c
TT
2696 struct pagevec pvec;
2697 unsigned int nr_pages;
2698 sector_t logical;
2699 pgoff_t index, end;
2700 long nr_to_write = wbc->nr_to_write;
2701 int i, tag, ret = 0;
8e48dcfb 2702
168fc022
TT
2703 memset(mpd, 0, sizeof(struct mpage_da_data));
2704 mpd->wbc = wbc;
2705 mpd->inode = inode;
8e48dcfb
TT
2706 pagevec_init(&pvec, 0);
2707 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2708 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2709
5b41d924
ES
2710 if (wbc->sync_mode == WB_SYNC_ALL)
2711 tag = PAGECACHE_TAG_TOWRITE;
2712 else
2713 tag = PAGECACHE_TAG_DIRTY;
2714
72f84e65 2715 *done_index = index;
4f01b02c 2716 while (index <= end) {
5b41d924 2717 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2718 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2719 if (nr_pages == 0)
4f01b02c 2720 return 0;
8e48dcfb
TT
2721
2722 for (i = 0; i < nr_pages; i++) {
2723 struct page *page = pvec.pages[i];
2724
2725 /*
2726 * At this point, the page may be truncated or
2727 * invalidated (changing page->mapping to NULL), or
2728 * even swizzled back from swapper_space to tmpfs file
2729 * mapping. However, page->index will not change
2730 * because we have a reference on the page.
2731 */
4f01b02c
TT
2732 if (page->index > end)
2733 goto out;
8e48dcfb 2734
72f84e65
ES
2735 *done_index = page->index + 1;
2736
78aaced3
TT
2737 /*
2738 * If we can't merge this page, and we have
2739 * accumulated an contiguous region, write it
2740 */
2741 if ((mpd->next_page != page->index) &&
2742 (mpd->next_page != mpd->first_page)) {
2743 mpage_da_map_and_submit(mpd);
2744 goto ret_extent_tail;
2745 }
2746
8e48dcfb
TT
2747 lock_page(page);
2748
2749 /*
4f01b02c
TT
2750 * If the page is no longer dirty, or its
2751 * mapping no longer corresponds to inode we
2752 * are writing (which means it has been
2753 * truncated or invalidated), or the page is
2754 * already under writeback and we are not
2755 * doing a data integrity writeback, skip the page
8e48dcfb 2756 */
4f01b02c
TT
2757 if (!PageDirty(page) ||
2758 (PageWriteback(page) &&
2759 (wbc->sync_mode == WB_SYNC_NONE)) ||
2760 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2761 unlock_page(page);
2762 continue;
2763 }
2764
7cb1a535 2765 wait_on_page_writeback(page);
8e48dcfb 2766 BUG_ON(PageWriteback(page));
8e48dcfb 2767
168fc022 2768 if (mpd->next_page != page->index)
8eb9e5ce 2769 mpd->first_page = page->index;
8eb9e5ce
TT
2770 mpd->next_page = page->index + 1;
2771 logical = (sector_t) page->index <<
2772 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2773
2774 if (!page_has_buffers(page)) {
4f01b02c
TT
2775 mpage_add_bh_to_extent(mpd, logical,
2776 PAGE_CACHE_SIZE,
8eb9e5ce 2777 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2778 if (mpd->io_done)
2779 goto ret_extent_tail;
8eb9e5ce
TT
2780 } else {
2781 /*
4f01b02c
TT
2782 * Page with regular buffer heads,
2783 * just add all dirty ones
8eb9e5ce
TT
2784 */
2785 head = page_buffers(page);
2786 bh = head;
2787 do {
2788 BUG_ON(buffer_locked(bh));
2789 /*
2790 * We need to try to allocate
2791 * unmapped blocks in the same page.
2792 * Otherwise we won't make progress
2793 * with the page in ext4_writepage
2794 */
2795 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2796 mpage_add_bh_to_extent(mpd, logical,
2797 bh->b_size,
2798 bh->b_state);
4f01b02c
TT
2799 if (mpd->io_done)
2800 goto ret_extent_tail;
8eb9e5ce
TT
2801 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2802 /*
4f01b02c
TT
2803 * mapped dirty buffer. We need
2804 * to update the b_state
2805 * because we look at b_state
2806 * in mpage_da_map_blocks. We
2807 * don't update b_size because
2808 * if we find an unmapped
2809 * buffer_head later we need to
2810 * use the b_state flag of that
2811 * buffer_head.
8eb9e5ce
TT
2812 */
2813 if (mpd->b_size == 0)
2814 mpd->b_state = bh->b_state & BH_FLAGS;
2815 }
2816 logical++;
2817 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2818 }
2819
2820 if (nr_to_write > 0) {
2821 nr_to_write--;
2822 if (nr_to_write == 0 &&
4f01b02c 2823 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2824 /*
2825 * We stop writing back only if we are
2826 * not doing integrity sync. In case of
2827 * integrity sync we have to keep going
2828 * because someone may be concurrently
2829 * dirtying pages, and we might have
2830 * synced a lot of newly appeared dirty
2831 * pages, but have not synced all of the
2832 * old dirty pages.
2833 */
4f01b02c 2834 goto out;
8e48dcfb
TT
2835 }
2836 }
2837 pagevec_release(&pvec);
2838 cond_resched();
2839 }
4f01b02c
TT
2840 return 0;
2841ret_extent_tail:
2842 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2843out:
2844 pagevec_release(&pvec);
2845 cond_resched();
8e48dcfb
TT
2846 return ret;
2847}
2848
2849
64769240 2850static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2851 struct writeback_control *wbc)
64769240 2852{
22208ded
AK
2853 pgoff_t index;
2854 int range_whole = 0;
61628a3f 2855 handle_t *handle = NULL;
df22291f 2856 struct mpage_da_data mpd;
5e745b04 2857 struct inode *inode = mapping->host;
498e5f24 2858 int pages_written = 0;
55138e0b 2859 unsigned int max_pages;
2acf2c26 2860 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2861 int needed_blocks, ret = 0;
2862 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2863 loff_t range_start = wbc->range_start;
5e745b04 2864 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2865 pgoff_t done_index = 0;
5b41d924 2866 pgoff_t end;
61628a3f 2867
9bffad1e 2868 trace_ext4_da_writepages(inode, wbc);
ba80b101 2869
61628a3f
MC
2870 /*
2871 * No pages to write? This is mainly a kludge to avoid starting
2872 * a transaction for special inodes like journal inode on last iput()
2873 * because that could violate lock ordering on umount
2874 */
a1d6cc56 2875 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2876 return 0;
2a21e37e
TT
2877
2878 /*
2879 * If the filesystem has aborted, it is read-only, so return
2880 * right away instead of dumping stack traces later on that
2881 * will obscure the real source of the problem. We test
4ab2f15b 2882 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2883 * the latter could be true if the filesystem is mounted
2884 * read-only, and in that case, ext4_da_writepages should
2885 * *never* be called, so if that ever happens, we would want
2886 * the stack trace.
2887 */
4ab2f15b 2888 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2889 return -EROFS;
2890
22208ded
AK
2891 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2892 range_whole = 1;
61628a3f 2893
2acf2c26
AK
2894 range_cyclic = wbc->range_cyclic;
2895 if (wbc->range_cyclic) {
22208ded 2896 index = mapping->writeback_index;
2acf2c26
AK
2897 if (index)
2898 cycled = 0;
2899 wbc->range_start = index << PAGE_CACHE_SHIFT;
2900 wbc->range_end = LLONG_MAX;
2901 wbc->range_cyclic = 0;
5b41d924
ES
2902 end = -1;
2903 } else {
22208ded 2904 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2905 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2906 }
a1d6cc56 2907
55138e0b
TT
2908 /*
2909 * This works around two forms of stupidity. The first is in
2910 * the writeback code, which caps the maximum number of pages
2911 * written to be 1024 pages. This is wrong on multiple
2912 * levels; different architectues have a different page size,
2913 * which changes the maximum amount of data which gets
2914 * written. Secondly, 4 megabytes is way too small. XFS
2915 * forces this value to be 16 megabytes by multiplying
2916 * nr_to_write parameter by four, and then relies on its
2917 * allocator to allocate larger extents to make them
2918 * contiguous. Unfortunately this brings us to the second
2919 * stupidity, which is that ext4's mballoc code only allocates
2920 * at most 2048 blocks. So we force contiguous writes up to
2921 * the number of dirty blocks in the inode, or
2922 * sbi->max_writeback_mb_bump whichever is smaller.
2923 */
2924 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2925 if (!range_cyclic && range_whole) {
2926 if (wbc->nr_to_write == LONG_MAX)
2927 desired_nr_to_write = wbc->nr_to_write;
2928 else
2929 desired_nr_to_write = wbc->nr_to_write * 8;
2930 } else
55138e0b
TT
2931 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2932 max_pages);
2933 if (desired_nr_to_write > max_pages)
2934 desired_nr_to_write = max_pages;
2935
2936 if (wbc->nr_to_write < desired_nr_to_write) {
2937 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2938 wbc->nr_to_write = desired_nr_to_write;
2939 }
2940
2acf2c26 2941retry:
5b41d924
ES
2942 if (wbc->sync_mode == WB_SYNC_ALL)
2943 tag_pages_for_writeback(mapping, index, end);
2944
22208ded 2945 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2946
2947 /*
2948 * we insert one extent at a time. So we need
2949 * credit needed for single extent allocation.
2950 * journalled mode is currently not supported
2951 * by delalloc
2952 */
2953 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2954 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2955
61628a3f
MC
2956 /* start a new transaction*/
2957 handle = ext4_journal_start(inode, needed_blocks);
2958 if (IS_ERR(handle)) {
2959 ret = PTR_ERR(handle);
1693918e 2960 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2961 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2962 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2963 goto out_writepages;
2964 }
f63e6005
TT
2965
2966 /*
8eb9e5ce 2967 * Now call write_cache_pages_da() to find the next
f63e6005 2968 * contiguous region of logical blocks that need
8eb9e5ce 2969 * blocks to be allocated by ext4 and submit them.
f63e6005 2970 */
72f84e65 2971 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2972 /*
af901ca1 2973 * If we have a contiguous extent of pages and we
f63e6005
TT
2974 * haven't done the I/O yet, map the blocks and submit
2975 * them for I/O.
2976 */
2977 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2978 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2979 ret = MPAGE_DA_EXTENT_TAIL;
2980 }
b3a3ca8c 2981 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2982 wbc->nr_to_write -= mpd.pages_written;
df22291f 2983
61628a3f 2984 ext4_journal_stop(handle);
df22291f 2985
8f64b32e 2986 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2987 /* commit the transaction which would
2988 * free blocks released in the transaction
2989 * and try again
2990 */
df22291f 2991 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2992 ret = 0;
2993 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2994 /*
2995 * got one extent now try with
2996 * rest of the pages
2997 */
22208ded 2998 pages_written += mpd.pages_written;
a1d6cc56 2999 ret = 0;
2acf2c26 3000 io_done = 1;
22208ded 3001 } else if (wbc->nr_to_write)
61628a3f
MC
3002 /*
3003 * There is no more writeout needed
3004 * or we requested for a noblocking writeout
3005 * and we found the device congested
3006 */
61628a3f 3007 break;
a1d6cc56 3008 }
2acf2c26
AK
3009 if (!io_done && !cycled) {
3010 cycled = 1;
3011 index = 0;
3012 wbc->range_start = index << PAGE_CACHE_SHIFT;
3013 wbc->range_end = mapping->writeback_index - 1;
3014 goto retry;
3015 }
22208ded
AK
3016
3017 /* Update index */
2acf2c26 3018 wbc->range_cyclic = range_cyclic;
22208ded
AK
3019 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3020 /*
3021 * set the writeback_index so that range_cyclic
3022 * mode will write it back later
3023 */
72f84e65 3024 mapping->writeback_index = done_index;
a1d6cc56 3025
61628a3f 3026out_writepages:
2faf2e19 3027 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3028 wbc->range_start = range_start;
9bffad1e 3029 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3030 return ret;
64769240
AT
3031}
3032
79f0be8d
AK
3033#define FALL_BACK_TO_NONDELALLOC 1
3034static int ext4_nonda_switch(struct super_block *sb)
3035{
3036 s64 free_blocks, dirty_blocks;
3037 struct ext4_sb_info *sbi = EXT4_SB(sb);
3038
3039 /*
3040 * switch to non delalloc mode if we are running low
3041 * on free block. The free block accounting via percpu
179f7ebf 3042 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3043 * accumulated on each CPU without updating global counters
3044 * Delalloc need an accurate free block accounting. So switch
3045 * to non delalloc when we are near to error range.
3046 */
3047 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3048 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3049 if (2 * free_blocks < 3 * dirty_blocks ||
3050 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3051 /*
c8afb446
ES
3052 * free block count is less than 150% of dirty blocks
3053 * or free blocks is less than watermark
79f0be8d
AK
3054 */
3055 return 1;
3056 }
c8afb446
ES
3057 /*
3058 * Even if we don't switch but are nearing capacity,
3059 * start pushing delalloc when 1/2 of free blocks are dirty.
3060 */
3061 if (free_blocks < 2 * dirty_blocks)
3062 writeback_inodes_sb_if_idle(sb);
3063
79f0be8d
AK
3064 return 0;
3065}
3066
64769240 3067static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3068 loff_t pos, unsigned len, unsigned flags,
3069 struct page **pagep, void **fsdata)
64769240 3070{
72b8ab9d 3071 int ret, retries = 0;
64769240
AT
3072 struct page *page;
3073 pgoff_t index;
64769240
AT
3074 struct inode *inode = mapping->host;
3075 handle_t *handle;
3076
3077 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3078
3079 if (ext4_nonda_switch(inode->i_sb)) {
3080 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3081 return ext4_write_begin(file, mapping, pos,
3082 len, flags, pagep, fsdata);
3083 }
3084 *fsdata = (void *)0;
9bffad1e 3085 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3086retry:
64769240
AT
3087 /*
3088 * With delayed allocation, we don't log the i_disksize update
3089 * if there is delayed block allocation. But we still need
3090 * to journalling the i_disksize update if writes to the end
3091 * of file which has an already mapped buffer.
3092 */
3093 handle = ext4_journal_start(inode, 1);
3094 if (IS_ERR(handle)) {
3095 ret = PTR_ERR(handle);
3096 goto out;
3097 }
ebd3610b
JK
3098 /* We cannot recurse into the filesystem as the transaction is already
3099 * started */
3100 flags |= AOP_FLAG_NOFS;
64769240 3101
54566b2c 3102 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3103 if (!page) {
3104 ext4_journal_stop(handle);
3105 ret = -ENOMEM;
3106 goto out;
3107 }
64769240
AT
3108 *pagep = page;
3109
6e1db88d 3110 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3111 if (ret < 0) {
3112 unlock_page(page);
3113 ext4_journal_stop(handle);
3114 page_cache_release(page);
ae4d5372
AK
3115 /*
3116 * block_write_begin may have instantiated a few blocks
3117 * outside i_size. Trim these off again. Don't need
3118 * i_size_read because we hold i_mutex.
3119 */
3120 if (pos + len > inode->i_size)
b9a4207d 3121 ext4_truncate_failed_write(inode);
64769240
AT
3122 }
3123
d2a17637
MC
3124 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3125 goto retry;
64769240
AT
3126out:
3127 return ret;
3128}
3129
632eaeab
MC
3130/*
3131 * Check if we should update i_disksize
3132 * when write to the end of file but not require block allocation
3133 */
3134static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3135 unsigned long offset)
632eaeab
MC
3136{
3137 struct buffer_head *bh;
3138 struct inode *inode = page->mapping->host;
3139 unsigned int idx;
3140 int i;
3141
3142 bh = page_buffers(page);
3143 idx = offset >> inode->i_blkbits;
3144
af5bc92d 3145 for (i = 0; i < idx; i++)
632eaeab
MC
3146 bh = bh->b_this_page;
3147
29fa89d0 3148 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3149 return 0;
3150 return 1;
3151}
3152
64769240 3153static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3154 struct address_space *mapping,
3155 loff_t pos, unsigned len, unsigned copied,
3156 struct page *page, void *fsdata)
64769240
AT
3157{
3158 struct inode *inode = mapping->host;
3159 int ret = 0, ret2;
3160 handle_t *handle = ext4_journal_current_handle();
3161 loff_t new_i_size;
632eaeab 3162 unsigned long start, end;
79f0be8d
AK
3163 int write_mode = (int)(unsigned long)fsdata;
3164
3165 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3166 if (ext4_should_order_data(inode)) {
3167 return ext4_ordered_write_end(file, mapping, pos,
3168 len, copied, page, fsdata);
3169 } else if (ext4_should_writeback_data(inode)) {
3170 return ext4_writeback_write_end(file, mapping, pos,
3171 len, copied, page, fsdata);
3172 } else {
3173 BUG();
3174 }
3175 }
632eaeab 3176
9bffad1e 3177 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3178 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3179 end = start + copied - 1;
64769240
AT
3180
3181 /*
3182 * generic_write_end() will run mark_inode_dirty() if i_size
3183 * changes. So let's piggyback the i_disksize mark_inode_dirty
3184 * into that.
3185 */
3186
3187 new_i_size = pos + copied;
632eaeab
MC
3188 if (new_i_size > EXT4_I(inode)->i_disksize) {
3189 if (ext4_da_should_update_i_disksize(page, end)) {
3190 down_write(&EXT4_I(inode)->i_data_sem);
3191 if (new_i_size > EXT4_I(inode)->i_disksize) {
3192 /*
3193 * Updating i_disksize when extending file
3194 * without needing block allocation
3195 */
3196 if (ext4_should_order_data(inode))
3197 ret = ext4_jbd2_file_inode(handle,
3198 inode);
64769240 3199
632eaeab
MC
3200 EXT4_I(inode)->i_disksize = new_i_size;
3201 }
3202 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3203 /* We need to mark inode dirty even if
3204 * new_i_size is less that inode->i_size
3205 * bu greater than i_disksize.(hint delalloc)
3206 */
3207 ext4_mark_inode_dirty(handle, inode);
64769240 3208 }
632eaeab 3209 }
64769240
AT
3210 ret2 = generic_write_end(file, mapping, pos, len, copied,
3211 page, fsdata);
3212 copied = ret2;
3213 if (ret2 < 0)
3214 ret = ret2;
3215 ret2 = ext4_journal_stop(handle);
3216 if (!ret)
3217 ret = ret2;
3218
3219 return ret ? ret : copied;
3220}
3221
3222static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3223{
64769240
AT
3224 /*
3225 * Drop reserved blocks
3226 */
3227 BUG_ON(!PageLocked(page));
3228 if (!page_has_buffers(page))
3229 goto out;
3230
d2a17637 3231 ext4_da_page_release_reservation(page, offset);
64769240
AT
3232
3233out:
3234 ext4_invalidatepage(page, offset);
3235
3236 return;
3237}
3238
ccd2506b
TT
3239/*
3240 * Force all delayed allocation blocks to be allocated for a given inode.
3241 */
3242int ext4_alloc_da_blocks(struct inode *inode)
3243{
fb40ba0d
TT
3244 trace_ext4_alloc_da_blocks(inode);
3245
ccd2506b
TT
3246 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3247 !EXT4_I(inode)->i_reserved_meta_blocks)
3248 return 0;
3249
3250 /*
3251 * We do something simple for now. The filemap_flush() will
3252 * also start triggering a write of the data blocks, which is
3253 * not strictly speaking necessary (and for users of
3254 * laptop_mode, not even desirable). However, to do otherwise
3255 * would require replicating code paths in:
de9a55b8 3256 *
ccd2506b
TT
3257 * ext4_da_writepages() ->
3258 * write_cache_pages() ---> (via passed in callback function)
3259 * __mpage_da_writepage() -->
3260 * mpage_add_bh_to_extent()
3261 * mpage_da_map_blocks()
3262 *
3263 * The problem is that write_cache_pages(), located in
3264 * mm/page-writeback.c, marks pages clean in preparation for
3265 * doing I/O, which is not desirable if we're not planning on
3266 * doing I/O at all.
3267 *
3268 * We could call write_cache_pages(), and then redirty all of
380cf090 3269 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3270 * would be ugly in the extreme. So instead we would need to
3271 * replicate parts of the code in the above functions,
25985edc 3272 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3273 * write out the pages, but rather only collect contiguous
3274 * logical block extents, call the multi-block allocator, and
3275 * then update the buffer heads with the block allocations.
de9a55b8 3276 *
ccd2506b
TT
3277 * For now, though, we'll cheat by calling filemap_flush(),
3278 * which will map the blocks, and start the I/O, but not
3279 * actually wait for the I/O to complete.
3280 */
3281 return filemap_flush(inode->i_mapping);
3282}
64769240 3283
ac27a0ec
DK
3284/*
3285 * bmap() is special. It gets used by applications such as lilo and by
3286 * the swapper to find the on-disk block of a specific piece of data.
3287 *
3288 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3289 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3290 * filesystem and enables swap, then they may get a nasty shock when the
3291 * data getting swapped to that swapfile suddenly gets overwritten by
3292 * the original zero's written out previously to the journal and
3293 * awaiting writeback in the kernel's buffer cache.
3294 *
3295 * So, if we see any bmap calls here on a modified, data-journaled file,
3296 * take extra steps to flush any blocks which might be in the cache.
3297 */
617ba13b 3298static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3299{
3300 struct inode *inode = mapping->host;
3301 journal_t *journal;
3302 int err;
3303
64769240
AT
3304 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3305 test_opt(inode->i_sb, DELALLOC)) {
3306 /*
3307 * With delalloc we want to sync the file
3308 * so that we can make sure we allocate
3309 * blocks for file
3310 */
3311 filemap_write_and_wait(mapping);
3312 }
3313
19f5fb7a
TT
3314 if (EXT4_JOURNAL(inode) &&
3315 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3316 /*
3317 * This is a REALLY heavyweight approach, but the use of
3318 * bmap on dirty files is expected to be extremely rare:
3319 * only if we run lilo or swapon on a freshly made file
3320 * do we expect this to happen.
3321 *
3322 * (bmap requires CAP_SYS_RAWIO so this does not
3323 * represent an unprivileged user DOS attack --- we'd be
3324 * in trouble if mortal users could trigger this path at
3325 * will.)
3326 *
617ba13b 3327 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3328 * regular files. If somebody wants to bmap a directory
3329 * or symlink and gets confused because the buffer
3330 * hasn't yet been flushed to disk, they deserve
3331 * everything they get.
3332 */
3333
19f5fb7a 3334 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3335 journal = EXT4_JOURNAL(inode);
dab291af
MC
3336 jbd2_journal_lock_updates(journal);
3337 err = jbd2_journal_flush(journal);
3338 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3339
3340 if (err)
3341 return 0;
3342 }
3343
af5bc92d 3344 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3345}
3346
617ba13b 3347static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3348{
0562e0ba 3349 trace_ext4_readpage(page);
617ba13b 3350 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3351}
3352
3353static int
617ba13b 3354ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3355 struct list_head *pages, unsigned nr_pages)
3356{
617ba13b 3357 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3358}
3359
744692dc
JZ
3360static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3361{
3362 struct buffer_head *head, *bh;
3363 unsigned int curr_off = 0;
3364
3365 if (!page_has_buffers(page))
3366 return;
3367 head = bh = page_buffers(page);
3368 do {
3369 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3370 && bh->b_private) {
3371 ext4_free_io_end(bh->b_private);
3372 bh->b_private = NULL;
3373 bh->b_end_io = NULL;
3374 }
3375 curr_off = curr_off + bh->b_size;
3376 bh = bh->b_this_page;
3377 } while (bh != head);
3378}
3379
617ba13b 3380static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3381{
617ba13b 3382 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3383
0562e0ba
JZ
3384 trace_ext4_invalidatepage(page, offset);
3385
744692dc
JZ
3386 /*
3387 * free any io_end structure allocated for buffers to be discarded
3388 */
3389 if (ext4_should_dioread_nolock(page->mapping->host))
3390 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3391 /*
3392 * If it's a full truncate we just forget about the pending dirtying
3393 */
3394 if (offset == 0)
3395 ClearPageChecked(page);
3396
0390131b
FM
3397 if (journal)
3398 jbd2_journal_invalidatepage(journal, page, offset);
3399 else
3400 block_invalidatepage(page, offset);
ac27a0ec
DK
3401}
3402
617ba13b 3403static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3404{
617ba13b 3405 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3406
0562e0ba
JZ
3407 trace_ext4_releasepage(page);
3408
ac27a0ec
DK
3409 WARN_ON(PageChecked(page));
3410 if (!page_has_buffers(page))
3411 return 0;
0390131b
FM
3412 if (journal)
3413 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3414 else
3415 return try_to_free_buffers(page);
ac27a0ec
DK
3416}
3417
3418/*
4c0425ff
MC
3419 * O_DIRECT for ext3 (or indirect map) based files
3420 *
ac27a0ec
DK
3421 * If the O_DIRECT write will extend the file then add this inode to the
3422 * orphan list. So recovery will truncate it back to the original size
3423 * if the machine crashes during the write.
3424 *
3425 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3426 * crashes then stale disk data _may_ be exposed inside the file. But current
3427 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3428 */
4c0425ff 3429static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3430 const struct iovec *iov, loff_t offset,
3431 unsigned long nr_segs)
ac27a0ec
DK
3432{
3433 struct file *file = iocb->ki_filp;
3434 struct inode *inode = file->f_mapping->host;
617ba13b 3435 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3436 handle_t *handle;
ac27a0ec
DK
3437 ssize_t ret;
3438 int orphan = 0;
3439 size_t count = iov_length(iov, nr_segs);
fbbf6945 3440 int retries = 0;
ac27a0ec
DK
3441
3442 if (rw == WRITE) {
3443 loff_t final_size = offset + count;
3444
ac27a0ec 3445 if (final_size > inode->i_size) {
7fb5409d
JK
3446 /* Credits for sb + inode write */
3447 handle = ext4_journal_start(inode, 2);
3448 if (IS_ERR(handle)) {
3449 ret = PTR_ERR(handle);
3450 goto out;
3451 }
617ba13b 3452 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3453 if (ret) {
3454 ext4_journal_stop(handle);
3455 goto out;
3456 }
ac27a0ec
DK
3457 orphan = 1;
3458 ei->i_disksize = inode->i_size;
7fb5409d 3459 ext4_journal_stop(handle);
ac27a0ec
DK
3460 }
3461 }
3462
fbbf6945 3463retry:
b7adc1f3 3464 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3465 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3466 inode->i_sb->s_bdev, iov,
3467 offset, nr_segs,
eafdc7d1
CH
3468 ext4_get_block, NULL, NULL, 0);
3469 else {
b7adc1f3
JZ
3470 ret = blockdev_direct_IO(rw, iocb, inode,
3471 inode->i_sb->s_bdev, iov,
ac27a0ec 3472 offset, nr_segs,
617ba13b 3473 ext4_get_block, NULL);
eafdc7d1
CH
3474
3475 if (unlikely((rw & WRITE) && ret < 0)) {
3476 loff_t isize = i_size_read(inode);
3477 loff_t end = offset + iov_length(iov, nr_segs);
3478
3479 if (end > isize)
ae24f28d 3480 ext4_truncate_failed_write(inode);
eafdc7d1
CH
3481 }
3482 }
fbbf6945
ES
3483 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3484 goto retry;
ac27a0ec 3485
7fb5409d 3486 if (orphan) {
ac27a0ec
DK
3487 int err;
3488
7fb5409d
JK
3489 /* Credits for sb + inode write */
3490 handle = ext4_journal_start(inode, 2);
3491 if (IS_ERR(handle)) {
3492 /* This is really bad luck. We've written the data
3493 * but cannot extend i_size. Bail out and pretend
3494 * the write failed... */
3495 ret = PTR_ERR(handle);
da1dafca
DM
3496 if (inode->i_nlink)
3497 ext4_orphan_del(NULL, inode);
3498
7fb5409d
JK
3499 goto out;
3500 }
3501 if (inode->i_nlink)
617ba13b 3502 ext4_orphan_del(handle, inode);
7fb5409d 3503 if (ret > 0) {
ac27a0ec
DK
3504 loff_t end = offset + ret;
3505 if (end > inode->i_size) {
3506 ei->i_disksize = end;
3507 i_size_write(inode, end);
3508 /*
3509 * We're going to return a positive `ret'
3510 * here due to non-zero-length I/O, so there's
3511 * no way of reporting error returns from
617ba13b 3512 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3513 * ignore it.
3514 */
617ba13b 3515 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3516 }
3517 }
617ba13b 3518 err = ext4_journal_stop(handle);
ac27a0ec
DK
3519 if (ret == 0)
3520 ret = err;
3521 }
3522out:
3523 return ret;
3524}
3525
2ed88685
TT
3526/*
3527 * ext4_get_block used when preparing for a DIO write or buffer write.
3528 * We allocate an uinitialized extent if blocks haven't been allocated.
3529 * The extent will be converted to initialized after the IO is complete.
3530 */
c7064ef1 3531static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3532 struct buffer_head *bh_result, int create)
3533{
c7064ef1 3534 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3535 inode->i_ino, create);
2ed88685
TT
3536 return _ext4_get_block(inode, iblock, bh_result,
3537 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3538}
3539
4c0425ff 3540static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3541 ssize_t size, void *private, int ret,
3542 bool is_async)
4c0425ff
MC
3543{
3544 ext4_io_end_t *io_end = iocb->private;
3545 struct workqueue_struct *wq;
744692dc
JZ
3546 unsigned long flags;
3547 struct ext4_inode_info *ei;
4c0425ff 3548
4b70df18
M
3549 /* if not async direct IO or dio with 0 bytes write, just return */
3550 if (!io_end || !size)
552ef802 3551 goto out;
4b70df18 3552
8d5d02e6
MC
3553 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3554 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3555 iocb->private, io_end->inode->i_ino, iocb, offset,
3556 size);
8d5d02e6
MC
3557
3558 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 3559 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
3560 ext4_free_io_end(io_end);
3561 iocb->private = NULL;
5b3ff237
JZ
3562out:
3563 if (is_async)
3564 aio_complete(iocb, ret, 0);
3565 return;
8d5d02e6
MC
3566 }
3567
4c0425ff
MC
3568 io_end->offset = offset;
3569 io_end->size = size;
5b3ff237
JZ
3570 if (is_async) {
3571 io_end->iocb = iocb;
3572 io_end->result = ret;
3573 }
4c0425ff
MC
3574 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3575
8d5d02e6 3576 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3577 ei = EXT4_I(io_end->inode);
3578 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3579 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3580 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
3581
3582 /* queue the work to convert unwritten extents to written */
3583 queue_work(wq, &io_end->work);
4c0425ff
MC
3584 iocb->private = NULL;
3585}
c7064ef1 3586
744692dc
JZ
3587static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3588{
3589 ext4_io_end_t *io_end = bh->b_private;
3590 struct workqueue_struct *wq;
3591 struct inode *inode;
3592 unsigned long flags;
3593
3594 if (!test_clear_buffer_uninit(bh) || !io_end)
3595 goto out;
3596
3597 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3598 printk("sb umounted, discard end_io request for inode %lu\n",
3599 io_end->inode->i_ino);
3600 ext4_free_io_end(io_end);
3601 goto out;
3602 }
3603
bd2d0210 3604 io_end->flag = EXT4_IO_END_UNWRITTEN;
744692dc
JZ
3605 inode = io_end->inode;
3606
3607 /* Add the io_end to per-inode completed io list*/
3608 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3609 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3610 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3611
3612 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3613 /* queue the work to convert unwritten extents to written */
3614 queue_work(wq, &io_end->work);
3615out:
3616 bh->b_private = NULL;
3617 bh->b_end_io = NULL;
3618 clear_buffer_uninit(bh);
3619 end_buffer_async_write(bh, uptodate);
3620}
3621
3622static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3623{
3624 ext4_io_end_t *io_end;
3625 struct page *page = bh->b_page;
3626 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3627 size_t size = bh->b_size;
3628
3629retry:
3630 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3631 if (!io_end) {
6db26ffc 3632 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
3633 schedule();
3634 goto retry;
3635 }
3636 io_end->offset = offset;
3637 io_end->size = size;
3638 /*
3639 * We need to hold a reference to the page to make sure it
3640 * doesn't get evicted before ext4_end_io_work() has a chance
3641 * to convert the extent from written to unwritten.
3642 */
3643 io_end->page = page;
3644 get_page(io_end->page);
3645
3646 bh->b_private = io_end;
3647 bh->b_end_io = ext4_end_io_buffer_write;
3648 return 0;
3649}
3650
4c0425ff
MC
3651/*
3652 * For ext4 extent files, ext4 will do direct-io write to holes,
3653 * preallocated extents, and those write extend the file, no need to
3654 * fall back to buffered IO.
3655 *
b595076a 3656 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 3657 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 3658 * still keep the range to write as uninitialized.
4c0425ff 3659 *
8d5d02e6
MC
3660 * The unwrritten extents will be converted to written when DIO is completed.
3661 * For async direct IO, since the IO may still pending when return, we
25985edc 3662 * set up an end_io call back function, which will do the conversion
8d5d02e6 3663 * when async direct IO completed.
4c0425ff
MC
3664 *
3665 * If the O_DIRECT write will extend the file then add this inode to the
3666 * orphan list. So recovery will truncate it back to the original size
3667 * if the machine crashes during the write.
3668 *
3669 */
3670static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3671 const struct iovec *iov, loff_t offset,
3672 unsigned long nr_segs)
3673{
3674 struct file *file = iocb->ki_filp;
3675 struct inode *inode = file->f_mapping->host;
3676 ssize_t ret;
3677 size_t count = iov_length(iov, nr_segs);
3678
3679 loff_t final_size = offset + count;
3680 if (rw == WRITE && final_size <= inode->i_size) {
3681 /*
8d5d02e6
MC
3682 * We could direct write to holes and fallocate.
3683 *
3684 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 3685 * to prevent parallel buffered read to expose the stale data
4c0425ff 3686 * before DIO complete the data IO.
8d5d02e6
MC
3687 *
3688 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3689 * will just simply mark the buffer mapped but still
3690 * keep the extents uninitialized.
3691 *
8d5d02e6
MC
3692 * for non AIO case, we will convert those unwritten extents
3693 * to written after return back from blockdev_direct_IO.
3694 *
3695 * for async DIO, the conversion needs to be defered when
3696 * the IO is completed. The ext4 end_io callback function
3697 * will be called to take care of the conversion work.
3698 * Here for async case, we allocate an io_end structure to
3699 * hook to the iocb.
4c0425ff 3700 */
8d5d02e6
MC
3701 iocb->private = NULL;
3702 EXT4_I(inode)->cur_aio_dio = NULL;
3703 if (!is_sync_kiocb(iocb)) {
744692dc 3704 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3705 if (!iocb->private)
3706 return -ENOMEM;
3707 /*
3708 * we save the io structure for current async
79e83036 3709 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3710 * could flag the io structure whether there
3711 * is a unwritten extents needs to be converted
3712 * when IO is completed.
3713 */
3714 EXT4_I(inode)->cur_aio_dio = iocb->private;
3715 }
3716
4c0425ff
MC
3717 ret = blockdev_direct_IO(rw, iocb, inode,
3718 inode->i_sb->s_bdev, iov,
3719 offset, nr_segs,
c7064ef1 3720 ext4_get_block_write,
4c0425ff 3721 ext4_end_io_dio);
8d5d02e6
MC
3722 if (iocb->private)
3723 EXT4_I(inode)->cur_aio_dio = NULL;
3724 /*
3725 * The io_end structure takes a reference to the inode,
3726 * that structure needs to be destroyed and the
3727 * reference to the inode need to be dropped, when IO is
3728 * complete, even with 0 byte write, or failed.
3729 *
3730 * In the successful AIO DIO case, the io_end structure will be
3731 * desctroyed and the reference to the inode will be dropped
3732 * after the end_io call back function is called.
3733 *
3734 * In the case there is 0 byte write, or error case, since
3735 * VFS direct IO won't invoke the end_io call back function,
3736 * we need to free the end_io structure here.
3737 */
3738 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3739 ext4_free_io_end(iocb->private);
3740 iocb->private = NULL;
19f5fb7a
TT
3741 } else if (ret > 0 && ext4_test_inode_state(inode,
3742 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3743 int err;
8d5d02e6
MC
3744 /*
3745 * for non AIO case, since the IO is already
25985edc 3746 * completed, we could do the conversion right here
8d5d02e6 3747 */
109f5565
M
3748 err = ext4_convert_unwritten_extents(inode,
3749 offset, ret);
3750 if (err < 0)
3751 ret = err;
19f5fb7a 3752 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3753 }
4c0425ff
MC
3754 return ret;
3755 }
8d5d02e6
MC
3756
3757 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3758 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3759}
3760
3761static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3762 const struct iovec *iov, loff_t offset,
3763 unsigned long nr_segs)
3764{
3765 struct file *file = iocb->ki_filp;
3766 struct inode *inode = file->f_mapping->host;
0562e0ba 3767 ssize_t ret;
4c0425ff 3768
0562e0ba 3769 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3770 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3771 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3772 else
3773 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3774 trace_ext4_direct_IO_exit(inode, offset,
3775 iov_length(iov, nr_segs), rw, ret);
3776 return ret;
4c0425ff
MC
3777}
3778
ac27a0ec 3779/*
617ba13b 3780 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3781 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3782 * much here because ->set_page_dirty is called under VFS locks. The page is
3783 * not necessarily locked.
3784 *
3785 * We cannot just dirty the page and leave attached buffers clean, because the
3786 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3787 * or jbddirty because all the journalling code will explode.
3788 *
3789 * So what we do is to mark the page "pending dirty" and next time writepage
3790 * is called, propagate that into the buffers appropriately.
3791 */
617ba13b 3792static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3793{
3794 SetPageChecked(page);
3795 return __set_page_dirty_nobuffers(page);
3796}
3797
617ba13b 3798static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3799 .readpage = ext4_readpage,
3800 .readpages = ext4_readpages,
43ce1d23 3801 .writepage = ext4_writepage,
8ab22b9a
HH
3802 .write_begin = ext4_write_begin,
3803 .write_end = ext4_ordered_write_end,
3804 .bmap = ext4_bmap,
3805 .invalidatepage = ext4_invalidatepage,
3806 .releasepage = ext4_releasepage,
3807 .direct_IO = ext4_direct_IO,
3808 .migratepage = buffer_migrate_page,
3809 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3810 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3811};
3812
617ba13b 3813static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3814 .readpage = ext4_readpage,
3815 .readpages = ext4_readpages,
43ce1d23 3816 .writepage = ext4_writepage,
8ab22b9a
HH
3817 .write_begin = ext4_write_begin,
3818 .write_end = ext4_writeback_write_end,
3819 .bmap = ext4_bmap,
3820 .invalidatepage = ext4_invalidatepage,
3821 .releasepage = ext4_releasepage,
3822 .direct_IO = ext4_direct_IO,
3823 .migratepage = buffer_migrate_page,
3824 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3825 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3826};
3827
617ba13b 3828static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3829 .readpage = ext4_readpage,
3830 .readpages = ext4_readpages,
43ce1d23 3831 .writepage = ext4_writepage,
8ab22b9a
HH
3832 .write_begin = ext4_write_begin,
3833 .write_end = ext4_journalled_write_end,
3834 .set_page_dirty = ext4_journalled_set_page_dirty,
3835 .bmap = ext4_bmap,
3836 .invalidatepage = ext4_invalidatepage,
3837 .releasepage = ext4_releasepage,
3838 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3839 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3840};
3841
64769240 3842static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3843 .readpage = ext4_readpage,
3844 .readpages = ext4_readpages,
43ce1d23 3845 .writepage = ext4_writepage,
8ab22b9a 3846 .writepages = ext4_da_writepages,
8ab22b9a
HH
3847 .write_begin = ext4_da_write_begin,
3848 .write_end = ext4_da_write_end,
3849 .bmap = ext4_bmap,
3850 .invalidatepage = ext4_da_invalidatepage,
3851 .releasepage = ext4_releasepage,
3852 .direct_IO = ext4_direct_IO,
3853 .migratepage = buffer_migrate_page,
3854 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3855 .error_remove_page = generic_error_remove_page,
64769240
AT
3856};
3857
617ba13b 3858void ext4_set_aops(struct inode *inode)
ac27a0ec 3859{
cd1aac32
AK
3860 if (ext4_should_order_data(inode) &&
3861 test_opt(inode->i_sb, DELALLOC))
3862 inode->i_mapping->a_ops = &ext4_da_aops;
3863 else if (ext4_should_order_data(inode))
617ba13b 3864 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3865 else if (ext4_should_writeback_data(inode) &&
3866 test_opt(inode->i_sb, DELALLOC))
3867 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3868 else if (ext4_should_writeback_data(inode))
3869 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3870 else
617ba13b 3871 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3872}
3873
3874/*
617ba13b 3875 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3876 * up to the end of the block which corresponds to `from'.
3877 * This required during truncate. We need to physically zero the tail end
3878 * of that block so it doesn't yield old data if the file is later grown.
3879 */
cf108bca 3880int ext4_block_truncate_page(handle_t *handle,
ac27a0ec 3881 struct address_space *mapping, loff_t from)
30848851
AH
3882{
3883 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3884 unsigned length;
3885 unsigned blocksize;
3886 struct inode *inode = mapping->host;
3887
3888 blocksize = inode->i_sb->s_blocksize;
3889 length = blocksize - (offset & (blocksize - 1));
3890
3891 return ext4_block_zero_page_range(handle, mapping, from, length);
3892}
3893
3894/*
3895 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3896 * starting from file offset 'from'. The range to be zero'd must
3897 * be contained with in one block. If the specified range exceeds
3898 * the end of the block it will be shortened to end of the block
3899 * that cooresponds to 'from'
3900 */
3901int ext4_block_zero_page_range(handle_t *handle,
3902 struct address_space *mapping, loff_t from, loff_t length)
ac27a0ec 3903{
617ba13b 3904 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3905 unsigned offset = from & (PAGE_CACHE_SIZE-1);
30848851 3906 unsigned blocksize, max, pos;
725d26d3 3907 ext4_lblk_t iblock;
ac27a0ec
DK
3908 struct inode *inode = mapping->host;
3909 struct buffer_head *bh;
cf108bca 3910 struct page *page;
ac27a0ec 3911 int err = 0;
ac27a0ec 3912
f4a01017
TT
3913 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3914 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3915 if (!page)
3916 return -EINVAL;
3917
ac27a0ec 3918 blocksize = inode->i_sb->s_blocksize;
30848851
AH
3919 max = blocksize - (offset & (blocksize - 1));
3920
3921 /*
3922 * correct length if it does not fall between
3923 * 'from' and the end of the block
3924 */
3925 if (length > max || length < 0)
3926 length = max;
3927
ac27a0ec
DK
3928 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3929
ac27a0ec
DK
3930 if (!page_has_buffers(page))
3931 create_empty_buffers(page, blocksize, 0);
3932
3933 /* Find the buffer that contains "offset" */
3934 bh = page_buffers(page);
3935 pos = blocksize;
3936 while (offset >= pos) {
3937 bh = bh->b_this_page;
3938 iblock++;
3939 pos += blocksize;
3940 }
3941
3942 err = 0;
3943 if (buffer_freed(bh)) {
3944 BUFFER_TRACE(bh, "freed: skip");
3945 goto unlock;
3946 }
3947
3948 if (!buffer_mapped(bh)) {
3949 BUFFER_TRACE(bh, "unmapped");
617ba13b 3950 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3951 /* unmapped? It's a hole - nothing to do */
3952 if (!buffer_mapped(bh)) {
3953 BUFFER_TRACE(bh, "still unmapped");
3954 goto unlock;
3955 }
3956 }
3957
3958 /* Ok, it's mapped. Make sure it's up-to-date */
3959 if (PageUptodate(page))
3960 set_buffer_uptodate(bh);
3961
3962 if (!buffer_uptodate(bh)) {
3963 err = -EIO;
3964 ll_rw_block(READ, 1, &bh);
3965 wait_on_buffer(bh);
3966 /* Uhhuh. Read error. Complain and punt. */
3967 if (!buffer_uptodate(bh))
3968 goto unlock;
3969 }
3970
617ba13b 3971 if (ext4_should_journal_data(inode)) {
ac27a0ec 3972 BUFFER_TRACE(bh, "get write access");
617ba13b 3973 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3974 if (err)
3975 goto unlock;
3976 }
3977
eebd2aa3 3978 zero_user(page, offset, length);
ac27a0ec
DK
3979
3980 BUFFER_TRACE(bh, "zeroed end of block");
3981
3982 err = 0;
617ba13b 3983 if (ext4_should_journal_data(inode)) {
0390131b 3984 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3985 } else {
8aefcd55 3986 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
678aaf48 3987 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3988 mark_buffer_dirty(bh);
3989 }
3990
3991unlock:
3992 unlock_page(page);
3993 page_cache_release(page);
3994 return err;
3995}
3996
3997/*
3998 * Probably it should be a library function... search for first non-zero word
3999 * or memcmp with zero_page, whatever is better for particular architecture.
4000 * Linus?
4001 */
4002static inline int all_zeroes(__le32 *p, __le32 *q)
4003{
4004 while (p < q)
4005 if (*p++)
4006 return 0;
4007 return 1;
4008}
4009
4010/**
617ba13b 4011 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4012 * @inode: inode in question
4013 * @depth: depth of the affected branch
617ba13b 4014 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4015 * @chain: place to store the pointers to partial indirect blocks
4016 * @top: place to the (detached) top of branch
4017 *
617ba13b 4018 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4019 *
4020 * When we do truncate() we may have to clean the ends of several
4021 * indirect blocks but leave the blocks themselves alive. Block is
25985edc 4022 * partially truncated if some data below the new i_size is referred
ac27a0ec
DK
4023 * from it (and it is on the path to the first completely truncated
4024 * data block, indeed). We have to free the top of that path along
4025 * with everything to the right of the path. Since no allocation
617ba13b 4026 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4027 * finishes, we may safely do the latter, but top of branch may
4028 * require special attention - pageout below the truncation point
4029 * might try to populate it.
4030 *
4031 * We atomically detach the top of branch from the tree, store the
4032 * block number of its root in *@top, pointers to buffer_heads of
4033 * partially truncated blocks - in @chain[].bh and pointers to
4034 * their last elements that should not be removed - in
4035 * @chain[].p. Return value is the pointer to last filled element
4036 * of @chain.
4037 *
4038 * The work left to caller to do the actual freeing of subtrees:
4039 * a) free the subtree starting from *@top
4040 * b) free the subtrees whose roots are stored in
4041 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4042 * c) free the subtrees growing from the inode past the @chain[0].
4043 * (no partially truncated stuff there). */
4044
617ba13b 4045static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4046 ext4_lblk_t offsets[4], Indirect chain[4],
4047 __le32 *top)
ac27a0ec
DK
4048{
4049 Indirect *partial, *p;
4050 int k, err;
4051
4052 *top = 0;
bf48aabb 4053 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4054 for (k = depth; k > 1 && !offsets[k-1]; k--)
4055 ;
617ba13b 4056 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4057 /* Writer: pointers */
4058 if (!partial)
4059 partial = chain + k-1;
4060 /*
4061 * If the branch acquired continuation since we've looked at it -
4062 * fine, it should all survive and (new) top doesn't belong to us.
4063 */
4064 if (!partial->key && *partial->p)
4065 /* Writer: end */
4066 goto no_top;
af5bc92d 4067 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4068 ;
4069 /*
4070 * OK, we've found the last block that must survive. The rest of our
4071 * branch should be detached before unlocking. However, if that rest
4072 * of branch is all ours and does not grow immediately from the inode
4073 * it's easier to cheat and just decrement partial->p.
4074 */
4075 if (p == chain + k - 1 && p > chain) {
4076 p->p--;
4077 } else {
4078 *top = *p->p;
617ba13b 4079 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4080#if 0
4081 *p->p = 0;
4082#endif
4083 }
4084 /* Writer: end */
4085
af5bc92d 4086 while (partial > p) {
ac27a0ec
DK
4087 brelse(partial->bh);
4088 partial--;
4089 }
4090no_top:
4091 return partial;
4092}
4093
4094/*
4095 * Zero a number of block pointers in either an inode or an indirect block.
4096 * If we restart the transaction we must again get write access to the
4097 * indirect block for further modification.
4098 *
4099 * We release `count' blocks on disk, but (last - first) may be greater
4100 * than `count' because there can be holes in there.
d67d1218
AG
4101 *
4102 * Return 0 on success, 1 on invalid block range
4103 * and < 0 on fatal error.
ac27a0ec 4104 */
1f2acb60
TT
4105static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4106 struct buffer_head *bh,
4107 ext4_fsblk_t block_to_free,
4108 unsigned long count, __le32 *first,
4109 __le32 *last)
ac27a0ec
DK
4110{
4111 __le32 *p;
1f2acb60 4112 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
b4097142 4113 int err;
e6362609
TT
4114
4115 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4116 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4117
1f2acb60
TT
4118 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4119 count)) {
24676da4
TT
4120 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4121 "blocks %llu len %lu",
4122 (unsigned long long) block_to_free, count);
1f2acb60
TT
4123 return 1;
4124 }
4125
ac27a0ec
DK
4126 if (try_to_extend_transaction(handle, inode)) {
4127 if (bh) {
0390131b 4128 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
b4097142 4129 err = ext4_handle_dirty_metadata(handle, inode, bh);
d67d1218
AG
4130 if (unlikely(err))
4131 goto out_err;
b4097142
TT
4132 }
4133 err = ext4_mark_inode_dirty(handle, inode);
d67d1218
AG
4134 if (unlikely(err))
4135 goto out_err;
b4097142
TT
4136 err = ext4_truncate_restart_trans(handle, inode,
4137 blocks_for_truncate(inode));
d67d1218
AG
4138 if (unlikely(err))
4139 goto out_err;
ac27a0ec
DK
4140 if (bh) {
4141 BUFFER_TRACE(bh, "retaking write access");
d67d1218
AG
4142 err = ext4_journal_get_write_access(handle, bh);
4143 if (unlikely(err))
4144 goto out_err;
ac27a0ec
DK
4145 }
4146 }
4147
e6362609
TT
4148 for (p = first; p < last; p++)
4149 *p = 0;
ac27a0ec 4150
7dc57615 4151 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1f2acb60 4152 return 0;
d67d1218
AG
4153out_err:
4154 ext4_std_error(inode->i_sb, err);
4155 return err;
ac27a0ec
DK
4156}
4157
4158/**
617ba13b 4159 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4160 * @handle: handle for this transaction
4161 * @inode: inode we are dealing with
4162 * @this_bh: indirect buffer_head which contains *@first and *@last
4163 * @first: array of block numbers
4164 * @last: points immediately past the end of array
4165 *
25985edc 4166 * We are freeing all blocks referred from that array (numbers are stored as
ac27a0ec
DK
4167 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4168 *
4169 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4170 * blocks are contiguous then releasing them at one time will only affect one
4171 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4172 * actually use a lot of journal space.
4173 *
4174 * @this_bh will be %NULL if @first and @last point into the inode's direct
4175 * block pointers.
4176 */
617ba13b 4177static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4178 struct buffer_head *this_bh,
4179 __le32 *first, __le32 *last)
4180{
617ba13b 4181 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4182 unsigned long count = 0; /* Number of blocks in the run */
4183 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4184 corresponding to
4185 block_to_free */
617ba13b 4186 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4187 __le32 *p; /* Pointer into inode/ind
4188 for current block */
d67d1218 4189 int err = 0;
ac27a0ec
DK
4190
4191 if (this_bh) { /* For indirect block */
4192 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4193 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4194 /* Important: if we can't update the indirect pointers
4195 * to the blocks, we can't free them. */
4196 if (err)
4197 return;
4198 }
4199
4200 for (p = first; p < last; p++) {
4201 nr = le32_to_cpu(*p);
4202 if (nr) {
4203 /* accumulate blocks to free if they're contiguous */
4204 if (count == 0) {
4205 block_to_free = nr;
4206 block_to_free_p = p;
4207 count = 1;
4208 } else if (nr == block_to_free + count) {
4209 count++;
4210 } else {
d67d1218
AG
4211 err = ext4_clear_blocks(handle, inode, this_bh,
4212 block_to_free, count,
4213 block_to_free_p, p);
4214 if (err)
1f2acb60 4215 break;
ac27a0ec
DK
4216 block_to_free = nr;
4217 block_to_free_p = p;
4218 count = 1;
4219 }
4220 }
4221 }
4222
d67d1218
AG
4223 if (!err && count > 0)
4224 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4225 count, block_to_free_p, p);
4226 if (err < 0)
4227 /* fatal error */
4228 return;
ac27a0ec
DK
4229
4230 if (this_bh) {
0390131b 4231 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4232
4233 /*
4234 * The buffer head should have an attached journal head at this
4235 * point. However, if the data is corrupted and an indirect
4236 * block pointed to itself, it would have been detached when
4237 * the block was cleared. Check for this instead of OOPSing.
4238 */
e7f07968 4239 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4240 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4241 else
24676da4
TT
4242 EXT4_ERROR_INODE(inode,
4243 "circular indirect block detected at "
4244 "block %llu",
4245 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4246 }
4247}
4248
4249/**
617ba13b 4250 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4251 * @handle: JBD handle for this transaction
4252 * @inode: inode we are dealing with
4253 * @parent_bh: the buffer_head which contains *@first and *@last
4254 * @first: array of block numbers
4255 * @last: pointer immediately past the end of array
4256 * @depth: depth of the branches to free
4257 *
25985edc 4258 * We are freeing all blocks referred from these branches (numbers are
ac27a0ec
DK
4259 * stored as little-endian 32-bit) and updating @inode->i_blocks
4260 * appropriately.
4261 */
617ba13b 4262static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4263 struct buffer_head *parent_bh,
4264 __le32 *first, __le32 *last, int depth)
4265{
617ba13b 4266 ext4_fsblk_t nr;
ac27a0ec
DK
4267 __le32 *p;
4268
0390131b 4269 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4270 return;
4271
4272 if (depth--) {
4273 struct buffer_head *bh;
617ba13b 4274 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4275 p = last;
4276 while (--p >= first) {
4277 nr = le32_to_cpu(*p);
4278 if (!nr)
4279 continue; /* A hole */
4280
1f2acb60
TT
4281 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4282 nr, 1)) {
24676da4
TT
4283 EXT4_ERROR_INODE(inode,
4284 "invalid indirect mapped "
4285 "block %lu (level %d)",
4286 (unsigned long) nr, depth);
1f2acb60
TT
4287 break;
4288 }
4289
ac27a0ec
DK
4290 /* Go read the buffer for the next level down */
4291 bh = sb_bread(inode->i_sb, nr);
4292
4293 /*
4294 * A read failure? Report error and clear slot
4295 * (should be rare).
4296 */
4297 if (!bh) {
c398eda0
TT
4298 EXT4_ERROR_INODE_BLOCK(inode, nr,
4299 "Read failure");
ac27a0ec
DK
4300 continue;
4301 }
4302
4303 /* This zaps the entire block. Bottom up. */
4304 BUFFER_TRACE(bh, "free child branches");
617ba13b 4305 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4306 (__le32 *) bh->b_data,
4307 (__le32 *) bh->b_data + addr_per_block,
4308 depth);
1c5b9e90 4309 brelse(bh);
ac27a0ec 4310
ac27a0ec
DK
4311 /*
4312 * Everything below this this pointer has been
4313 * released. Now let this top-of-subtree go.
4314 *
4315 * We want the freeing of this indirect block to be
4316 * atomic in the journal with the updating of the
4317 * bitmap block which owns it. So make some room in
4318 * the journal.
4319 *
4320 * We zero the parent pointer *after* freeing its
4321 * pointee in the bitmaps, so if extend_transaction()
4322 * for some reason fails to put the bitmap changes and
4323 * the release into the same transaction, recovery
4324 * will merely complain about releasing a free block,
4325 * rather than leaking blocks.
4326 */
0390131b 4327 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4328 return;
4329 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4330 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4331 ext4_truncate_restart_trans(handle, inode,
4332 blocks_for_truncate(inode));
ac27a0ec
DK
4333 }
4334
40389687
A
4335 /*
4336 * The forget flag here is critical because if
4337 * we are journaling (and not doing data
4338 * journaling), we have to make sure a revoke
4339 * record is written to prevent the journal
4340 * replay from overwriting the (former)
4341 * indirect block if it gets reallocated as a
4342 * data block. This must happen in the same
4343 * transaction where the data blocks are
4344 * actually freed.
4345 */
7dc57615 4346 ext4_free_blocks(handle, inode, NULL, nr, 1,
40389687
A
4347 EXT4_FREE_BLOCKS_METADATA|
4348 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4349
4350 if (parent_bh) {
4351 /*
4352 * The block which we have just freed is
4353 * pointed to by an indirect block: journal it
4354 */
4355 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4356 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4357 parent_bh)){
4358 *p = 0;
4359 BUFFER_TRACE(parent_bh,
0390131b
FM
4360 "call ext4_handle_dirty_metadata");
4361 ext4_handle_dirty_metadata(handle,
4362 inode,
4363 parent_bh);
ac27a0ec
DK
4364 }
4365 }
4366 }
4367 } else {
4368 /* We have reached the bottom of the tree. */
4369 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4370 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4371 }
4372}
4373
91ef4caf
DG
4374int ext4_can_truncate(struct inode *inode)
4375{
91ef4caf
DG
4376 if (S_ISREG(inode->i_mode))
4377 return 1;
4378 if (S_ISDIR(inode->i_mode))
4379 return 1;
4380 if (S_ISLNK(inode->i_mode))
4381 return !ext4_inode_is_fast_symlink(inode);
4382 return 0;
4383}
4384
a4bb6b64
AH
4385/*
4386 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4387 * associated with the given offset and length
4388 *
4389 * @inode: File inode
4390 * @offset: The offset where the hole will begin
4391 * @len: The length of the hole
4392 *
4393 * Returns: 0 on sucess or negative on failure
4394 */
4395
4396int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4397{
4398 struct inode *inode = file->f_path.dentry->d_inode;
4399 if (!S_ISREG(inode->i_mode))
4400 return -ENOTSUPP;
4401
4402 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4403 /* TODO: Add support for non extent hole punching */
4404 return -ENOTSUPP;
4405 }
4406
4407 return ext4_ext_punch_hole(file, offset, length);
4408}
4409
ac27a0ec 4410/*
617ba13b 4411 * ext4_truncate()
ac27a0ec 4412 *
617ba13b
MC
4413 * We block out ext4_get_block() block instantiations across the entire
4414 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4415 * simultaneously on behalf of the same inode.
4416 *
4417 * As we work through the truncate and commmit bits of it to the journal there
4418 * is one core, guiding principle: the file's tree must always be consistent on
4419 * disk. We must be able to restart the truncate after a crash.
4420 *
4421 * The file's tree may be transiently inconsistent in memory (although it
4422 * probably isn't), but whenever we close off and commit a journal transaction,
4423 * the contents of (the filesystem + the journal) must be consistent and
4424 * restartable. It's pretty simple, really: bottom up, right to left (although
4425 * left-to-right works OK too).
4426 *
4427 * Note that at recovery time, journal replay occurs *before* the restart of
4428 * truncate against the orphan inode list.
4429 *
4430 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4431 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4432 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4433 * ext4_truncate() to have another go. So there will be instantiated blocks
4434 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4435 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4436 * ext4_truncate() run will find them and release them.
ac27a0ec 4437 */
617ba13b 4438void ext4_truncate(struct inode *inode)
ff9893dc
AG
4439{
4440 trace_ext4_truncate_enter(inode);
4441
4442 if (!ext4_can_truncate(inode))
4443 return;
4444
4445 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4446
4447 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4448 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4449
4450 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4451 ext4_ext_truncate(inode);
4452 else
4453 ext4_ind_truncate(inode);
4454
4455 trace_ext4_truncate_exit(inode);
4456}
4457
4458void ext4_ind_truncate(struct inode *inode)
ac27a0ec
DK
4459{
4460 handle_t *handle;
617ba13b 4461 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4462 __le32 *i_data = ei->i_data;
617ba13b 4463 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4464 struct address_space *mapping = inode->i_mapping;
725d26d3 4465 ext4_lblk_t offsets[4];
ac27a0ec
DK
4466 Indirect chain[4];
4467 Indirect *partial;
4468 __le32 nr = 0;
f80da1e7
KM
4469 int n = 0;
4470 ext4_lblk_t last_block, max_block;
ac27a0ec 4471 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4472
ac27a0ec 4473 handle = start_transaction(inode);
cf108bca 4474 if (IS_ERR(handle))
ac27a0ec 4475 return; /* AKPM: return what? */
ac27a0ec
DK
4476
4477 last_block = (inode->i_size + blocksize-1)
617ba13b 4478 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
f80da1e7
KM
4479 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4480 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4481
cf108bca
JK
4482 if (inode->i_size & (blocksize - 1))
4483 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4484 goto out_stop;
ac27a0ec 4485
f80da1e7
KM
4486 if (last_block != max_block) {
4487 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4488 if (n == 0)
4489 goto out_stop; /* error */
4490 }
ac27a0ec
DK
4491
4492 /*
4493 * OK. This truncate is going to happen. We add the inode to the
4494 * orphan list, so that if this truncate spans multiple transactions,
4495 * and we crash, we will resume the truncate when the filesystem
4496 * recovers. It also marks the inode dirty, to catch the new size.
4497 *
4498 * Implication: the file must always be in a sane, consistent
4499 * truncatable state while each transaction commits.
4500 */
617ba13b 4501 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4502 goto out_stop;
4503
632eaeab
MC
4504 /*
4505 * From here we block out all ext4_get_block() callers who want to
4506 * modify the block allocation tree.
4507 */
4508 down_write(&ei->i_data_sem);
b4df2030 4509
c2ea3fde 4510 ext4_discard_preallocations(inode);
b4df2030 4511
ac27a0ec
DK
4512 /*
4513 * The orphan list entry will now protect us from any crash which
4514 * occurs before the truncate completes, so it is now safe to propagate
4515 * the new, shorter inode size (held for now in i_size) into the
4516 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4517 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4518 */
4519 ei->i_disksize = inode->i_size;
4520
f80da1e7
KM
4521 if (last_block == max_block) {
4522 /*
4523 * It is unnecessary to free any data blocks if last_block is
4524 * equal to the indirect block limit.
4525 */
4526 goto out_unlock;
4527 } else if (n == 1) { /* direct blocks */
617ba13b
MC
4528 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4529 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4530 goto do_indirects;
4531 }
4532
617ba13b 4533 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4534 /* Kill the top of shared branch (not detached) */
4535 if (nr) {
4536 if (partial == chain) {
4537 /* Shared branch grows from the inode */
617ba13b 4538 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4539 &nr, &nr+1, (chain+n-1) - partial);
4540 *partial->p = 0;
4541 /*
4542 * We mark the inode dirty prior to restart,
4543 * and prior to stop. No need for it here.
4544 */
4545 } else {
4546 /* Shared branch grows from an indirect block */
4547 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4548 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4549 partial->p,
4550 partial->p+1, (chain+n-1) - partial);
4551 }
4552 }
4553 /* Clear the ends of indirect blocks on the shared branch */
4554 while (partial > chain) {
617ba13b 4555 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4556 (__le32*)partial->bh->b_data+addr_per_block,
4557 (chain+n-1) - partial);
4558 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4559 brelse(partial->bh);
ac27a0ec
DK
4560 partial--;
4561 }
4562do_indirects:
4563 /* Kill the remaining (whole) subtrees */
4564 switch (offsets[0]) {
4565 default:
617ba13b 4566 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4567 if (nr) {
617ba13b
MC
4568 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4569 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4570 }
617ba13b
MC
4571 case EXT4_IND_BLOCK:
4572 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4573 if (nr) {
617ba13b
MC
4574 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4575 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4576 }
617ba13b
MC
4577 case EXT4_DIND_BLOCK:
4578 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4579 if (nr) {
617ba13b
MC
4580 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4581 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4582 }
617ba13b 4583 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4584 ;
4585 }
4586
f80da1e7 4587out_unlock:
0e855ac8 4588 up_write(&ei->i_data_sem);
ef7f3835 4589 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4590 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4591
4592 /*
4593 * In a multi-transaction truncate, we only make the final transaction
4594 * synchronous
4595 */
4596 if (IS_SYNC(inode))
0390131b 4597 ext4_handle_sync(handle);
ac27a0ec
DK
4598out_stop:
4599 /*
4600 * If this was a simple ftruncate(), and the file will remain alive
4601 * then we need to clear up the orphan record which we created above.
4602 * However, if this was a real unlink then we were called by
617ba13b 4603 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4604 * orphan info for us.
4605 */
4606 if (inode->i_nlink)
617ba13b 4607 ext4_orphan_del(handle, inode);
ac27a0ec 4608
617ba13b 4609 ext4_journal_stop(handle);
0562e0ba 4610 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
4611}
4612
ac27a0ec 4613/*
617ba13b 4614 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4615 * underlying buffer_head on success. If 'in_mem' is true, we have all
4616 * data in memory that is needed to recreate the on-disk version of this
4617 * inode.
4618 */
617ba13b
MC
4619static int __ext4_get_inode_loc(struct inode *inode,
4620 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4621{
240799cd
TT
4622 struct ext4_group_desc *gdp;
4623 struct buffer_head *bh;
4624 struct super_block *sb = inode->i_sb;
4625 ext4_fsblk_t block;
4626 int inodes_per_block, inode_offset;
4627
3a06d778 4628 iloc->bh = NULL;
240799cd
TT
4629 if (!ext4_valid_inum(sb, inode->i_ino))
4630 return -EIO;
ac27a0ec 4631
240799cd
TT
4632 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4633 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4634 if (!gdp)
ac27a0ec
DK
4635 return -EIO;
4636
240799cd
TT
4637 /*
4638 * Figure out the offset within the block group inode table
4639 */
00d09882 4640 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4641 inode_offset = ((inode->i_ino - 1) %
4642 EXT4_INODES_PER_GROUP(sb));
4643 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4644 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4645
4646 bh = sb_getblk(sb, block);
ac27a0ec 4647 if (!bh) {
c398eda0
TT
4648 EXT4_ERROR_INODE_BLOCK(inode, block,
4649 "unable to read itable block");
ac27a0ec
DK
4650 return -EIO;
4651 }
4652 if (!buffer_uptodate(bh)) {
4653 lock_buffer(bh);
9c83a923
HK
4654
4655 /*
4656 * If the buffer has the write error flag, we have failed
4657 * to write out another inode in the same block. In this
4658 * case, we don't have to read the block because we may
4659 * read the old inode data successfully.
4660 */
4661 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4662 set_buffer_uptodate(bh);
4663
ac27a0ec
DK
4664 if (buffer_uptodate(bh)) {
4665 /* someone brought it uptodate while we waited */
4666 unlock_buffer(bh);
4667 goto has_buffer;
4668 }
4669
4670 /*
4671 * If we have all information of the inode in memory and this
4672 * is the only valid inode in the block, we need not read the
4673 * block.
4674 */
4675 if (in_mem) {
4676 struct buffer_head *bitmap_bh;
240799cd 4677 int i, start;
ac27a0ec 4678
240799cd 4679 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4680
240799cd
TT
4681 /* Is the inode bitmap in cache? */
4682 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4683 if (!bitmap_bh)
4684 goto make_io;
4685
4686 /*
4687 * If the inode bitmap isn't in cache then the
4688 * optimisation may end up performing two reads instead
4689 * of one, so skip it.
4690 */
4691 if (!buffer_uptodate(bitmap_bh)) {
4692 brelse(bitmap_bh);
4693 goto make_io;
4694 }
240799cd 4695 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4696 if (i == inode_offset)
4697 continue;
617ba13b 4698 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4699 break;
4700 }
4701 brelse(bitmap_bh);
240799cd 4702 if (i == start + inodes_per_block) {
ac27a0ec
DK
4703 /* all other inodes are free, so skip I/O */
4704 memset(bh->b_data, 0, bh->b_size);
4705 set_buffer_uptodate(bh);
4706 unlock_buffer(bh);
4707 goto has_buffer;
4708 }
4709 }
4710
4711make_io:
240799cd
TT
4712 /*
4713 * If we need to do any I/O, try to pre-readahead extra
4714 * blocks from the inode table.
4715 */
4716 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4717 ext4_fsblk_t b, end, table;
4718 unsigned num;
4719
4720 table = ext4_inode_table(sb, gdp);
b713a5ec 4721 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4722 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4723 if (table > b)
4724 b = table;
4725 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4726 num = EXT4_INODES_PER_GROUP(sb);
4727 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4728 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4729 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4730 table += num / inodes_per_block;
4731 if (end > table)
4732 end = table;
4733 while (b <= end)
4734 sb_breadahead(sb, b++);
4735 }
4736
ac27a0ec
DK
4737 /*
4738 * There are other valid inodes in the buffer, this inode
4739 * has in-inode xattrs, or we don't have this inode in memory.
4740 * Read the block from disk.
4741 */
0562e0ba 4742 trace_ext4_load_inode(inode);
ac27a0ec
DK
4743 get_bh(bh);
4744 bh->b_end_io = end_buffer_read_sync;
4745 submit_bh(READ_META, bh);
4746 wait_on_buffer(bh);
4747 if (!buffer_uptodate(bh)) {
c398eda0
TT
4748 EXT4_ERROR_INODE_BLOCK(inode, block,
4749 "unable to read itable block");
ac27a0ec
DK
4750 brelse(bh);
4751 return -EIO;
4752 }
4753 }
4754has_buffer:
4755 iloc->bh = bh;
4756 return 0;
4757}
4758
617ba13b 4759int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4760{
4761 /* We have all inode data except xattrs in memory here. */
617ba13b 4762 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4763 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4764}
4765
617ba13b 4766void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4767{
617ba13b 4768 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4769
4770 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4771 if (flags & EXT4_SYNC_FL)
ac27a0ec 4772 inode->i_flags |= S_SYNC;
617ba13b 4773 if (flags & EXT4_APPEND_FL)
ac27a0ec 4774 inode->i_flags |= S_APPEND;
617ba13b 4775 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4776 inode->i_flags |= S_IMMUTABLE;
617ba13b 4777 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4778 inode->i_flags |= S_NOATIME;
617ba13b 4779 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4780 inode->i_flags |= S_DIRSYNC;
4781}
4782
ff9ddf7e
JK
4783/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4784void ext4_get_inode_flags(struct ext4_inode_info *ei)
4785{
84a8dce2
DM
4786 unsigned int vfs_fl;
4787 unsigned long old_fl, new_fl;
4788
4789 do {
4790 vfs_fl = ei->vfs_inode.i_flags;
4791 old_fl = ei->i_flags;
4792 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4793 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4794 EXT4_DIRSYNC_FL);
4795 if (vfs_fl & S_SYNC)
4796 new_fl |= EXT4_SYNC_FL;
4797 if (vfs_fl & S_APPEND)
4798 new_fl |= EXT4_APPEND_FL;
4799 if (vfs_fl & S_IMMUTABLE)
4800 new_fl |= EXT4_IMMUTABLE_FL;
4801 if (vfs_fl & S_NOATIME)
4802 new_fl |= EXT4_NOATIME_FL;
4803 if (vfs_fl & S_DIRSYNC)
4804 new_fl |= EXT4_DIRSYNC_FL;
4805 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4806}
de9a55b8 4807
0fc1b451 4808static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4809 struct ext4_inode_info *ei)
0fc1b451
AK
4810{
4811 blkcnt_t i_blocks ;
8180a562
AK
4812 struct inode *inode = &(ei->vfs_inode);
4813 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4814
4815 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4816 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4817 /* we are using combined 48 bit field */
4818 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4819 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4820 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4821 /* i_blocks represent file system block size */
4822 return i_blocks << (inode->i_blkbits - 9);
4823 } else {
4824 return i_blocks;
4825 }
0fc1b451
AK
4826 } else {
4827 return le32_to_cpu(raw_inode->i_blocks_lo);
4828 }
4829}
ff9ddf7e 4830
1d1fe1ee 4831struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4832{
617ba13b
MC
4833 struct ext4_iloc iloc;
4834 struct ext4_inode *raw_inode;
1d1fe1ee 4835 struct ext4_inode_info *ei;
1d1fe1ee 4836 struct inode *inode;
b436b9be 4837 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4838 long ret;
ac27a0ec
DK
4839 int block;
4840
1d1fe1ee
DH
4841 inode = iget_locked(sb, ino);
4842 if (!inode)
4843 return ERR_PTR(-ENOMEM);
4844 if (!(inode->i_state & I_NEW))
4845 return inode;
4846
4847 ei = EXT4_I(inode);
7dc57615 4848 iloc.bh = NULL;
ac27a0ec 4849
1d1fe1ee
DH
4850 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4851 if (ret < 0)
ac27a0ec 4852 goto bad_inode;
617ba13b 4853 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4854 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4855 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4856 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4857 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4858 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4859 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4860 }
4861 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 4862
353eb83c 4863 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
4864 ei->i_dir_start_lookup = 0;
4865 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4866 /* We now have enough fields to check if the inode was active or not.
4867 * This is needed because nfsd might try to access dead inodes
4868 * the test is that same one that e2fsck uses
4869 * NeilBrown 1999oct15
4870 */
4871 if (inode->i_nlink == 0) {
4872 if (inode->i_mode == 0 ||
617ba13b 4873 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4874 /* this inode is deleted */
1d1fe1ee 4875 ret = -ESTALE;
ac27a0ec
DK
4876 goto bad_inode;
4877 }
4878 /* The only unlinked inodes we let through here have
4879 * valid i_mode and are being read by the orphan
4880 * recovery code: that's fine, we're about to complete
4881 * the process of deleting those. */
4882 }
ac27a0ec 4883 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4884 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4885 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4886 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4887 ei->i_file_acl |=
4888 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4889 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4890 ei->i_disksize = inode->i_size;
a9e7f447
DM
4891#ifdef CONFIG_QUOTA
4892 ei->i_reserved_quota = 0;
4893#endif
ac27a0ec
DK
4894 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4895 ei->i_block_group = iloc.block_group;
a4912123 4896 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4897 /*
4898 * NOTE! The in-memory inode i_data array is in little-endian order
4899 * even on big-endian machines: we do NOT byteswap the block numbers!
4900 */
617ba13b 4901 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4902 ei->i_data[block] = raw_inode->i_block[block];
4903 INIT_LIST_HEAD(&ei->i_orphan);
4904
b436b9be
JK
4905 /*
4906 * Set transaction id's of transactions that have to be committed
4907 * to finish f[data]sync. We set them to currently running transaction
4908 * as we cannot be sure that the inode or some of its metadata isn't
4909 * part of the transaction - the inode could have been reclaimed and
4910 * now it is reread from disk.
4911 */
4912 if (journal) {
4913 transaction_t *transaction;
4914 tid_t tid;
4915
a931da6a 4916 read_lock(&journal->j_state_lock);
b436b9be
JK
4917 if (journal->j_running_transaction)
4918 transaction = journal->j_running_transaction;
4919 else
4920 transaction = journal->j_committing_transaction;
4921 if (transaction)
4922 tid = transaction->t_tid;
4923 else
4924 tid = journal->j_commit_sequence;
a931da6a 4925 read_unlock(&journal->j_state_lock);
b436b9be
JK
4926 ei->i_sync_tid = tid;
4927 ei->i_datasync_tid = tid;
4928 }
4929
0040d987 4930 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4931 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4932 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4933 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 4934 ret = -EIO;
ac27a0ec 4935 goto bad_inode;
e5d2861f 4936 }
ac27a0ec
DK
4937 if (ei->i_extra_isize == 0) {
4938 /* The extra space is currently unused. Use it. */
617ba13b
MC
4939 ei->i_extra_isize = sizeof(struct ext4_inode) -
4940 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4941 } else {
4942 __le32 *magic = (void *)raw_inode +
617ba13b 4943 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4944 ei->i_extra_isize;
617ba13b 4945 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 4946 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
4947 }
4948 } else
4949 ei->i_extra_isize = 0;
4950
ef7f3835
KS
4951 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4952 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4953 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4954 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
25ec56b5
JNC
4956 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4957 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4958 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4959 inode->i_version |=
4960 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4961 }
4962
c4b5a614 4963 ret = 0;
485c26ec 4964 if (ei->i_file_acl &&
1032988c 4965 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4966 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4967 ei->i_file_acl);
485c26ec
TT
4968 ret = -EIO;
4969 goto bad_inode;
07a03824 4970 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
4971 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4972 (S_ISLNK(inode->i_mode) &&
4973 !ext4_inode_is_fast_symlink(inode)))
4974 /* Validate extent which is part of inode */
4975 ret = ext4_ext_check_inode(inode);
de9a55b8 4976 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4977 (S_ISLNK(inode->i_mode) &&
4978 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4979 /* Validate block references which are part of inode */
1f7d1e77 4980 ret = ext4_ind_check_inode(inode);
fe2c8191 4981 }
567f3e9a 4982 if (ret)
de9a55b8 4983 goto bad_inode;
7a262f7c 4984
ac27a0ec 4985 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4986 inode->i_op = &ext4_file_inode_operations;
4987 inode->i_fop = &ext4_file_operations;
4988 ext4_set_aops(inode);
ac27a0ec 4989 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4990 inode->i_op = &ext4_dir_inode_operations;
4991 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4992 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4993 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4994 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4995 nd_terminate_link(ei->i_data, inode->i_size,
4996 sizeof(ei->i_data) - 1);
4997 } else {
617ba13b
MC
4998 inode->i_op = &ext4_symlink_inode_operations;
4999 ext4_set_aops(inode);
ac27a0ec 5000 }
563bdd61
TT
5001 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5002 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5003 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5004 if (raw_inode->i_block[0])
5005 init_special_inode(inode, inode->i_mode,
5006 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5007 else
5008 init_special_inode(inode, inode->i_mode,
5009 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5010 } else {
563bdd61 5011 ret = -EIO;
24676da4 5012 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5013 goto bad_inode;
ac27a0ec 5014 }
af5bc92d 5015 brelse(iloc.bh);
617ba13b 5016 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5017 unlock_new_inode(inode);
5018 return inode;
ac27a0ec
DK
5019
5020bad_inode:
567f3e9a 5021 brelse(iloc.bh);
1d1fe1ee
DH
5022 iget_failed(inode);
5023 return ERR_PTR(ret);
ac27a0ec
DK
5024}
5025
0fc1b451
AK
5026static int ext4_inode_blocks_set(handle_t *handle,
5027 struct ext4_inode *raw_inode,
5028 struct ext4_inode_info *ei)
5029{
5030 struct inode *inode = &(ei->vfs_inode);
5031 u64 i_blocks = inode->i_blocks;
5032 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5033
5034 if (i_blocks <= ~0U) {
5035 /*
5036 * i_blocks can be represnted in a 32 bit variable
5037 * as multiple of 512 bytes
5038 */
8180a562 5039 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5040 raw_inode->i_blocks_high = 0;
84a8dce2 5041 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5042 return 0;
5043 }
5044 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5045 return -EFBIG;
5046
5047 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5048 /*
5049 * i_blocks can be represented in a 48 bit variable
5050 * as multiple of 512 bytes
5051 */
8180a562 5052 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5053 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5054 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5055 } else {
84a8dce2 5056 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5057 /* i_block is stored in file system block size */
5058 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5059 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5060 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5061 }
f287a1a5 5062 return 0;
0fc1b451
AK
5063}
5064
ac27a0ec
DK
5065/*
5066 * Post the struct inode info into an on-disk inode location in the
5067 * buffer-cache. This gobbles the caller's reference to the
5068 * buffer_head in the inode location struct.
5069 *
5070 * The caller must have write access to iloc->bh.
5071 */
617ba13b 5072static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5073 struct inode *inode,
830156c7 5074 struct ext4_iloc *iloc)
ac27a0ec 5075{
617ba13b
MC
5076 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5077 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5078 struct buffer_head *bh = iloc->bh;
5079 int err = 0, rc, block;
5080
5081 /* For fields not not tracking in the in-memory inode,
5082 * initialise them to zero for new inodes. */
19f5fb7a 5083 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5084 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5085
ff9ddf7e 5086 ext4_get_inode_flags(ei);
ac27a0ec 5087 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5088 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5089 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5090 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5091/*
5092 * Fix up interoperability with old kernels. Otherwise, old inodes get
5093 * re-used with the upper 16 bits of the uid/gid intact
5094 */
af5bc92d 5095 if (!ei->i_dtime) {
ac27a0ec
DK
5096 raw_inode->i_uid_high =
5097 cpu_to_le16(high_16_bits(inode->i_uid));
5098 raw_inode->i_gid_high =
5099 cpu_to_le16(high_16_bits(inode->i_gid));
5100 } else {
5101 raw_inode->i_uid_high = 0;
5102 raw_inode->i_gid_high = 0;
5103 }
5104 } else {
5105 raw_inode->i_uid_low =
5106 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5107 raw_inode->i_gid_low =
5108 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5109 raw_inode->i_uid_high = 0;
5110 raw_inode->i_gid_high = 0;
5111 }
5112 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5113
5114 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5115 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5116 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5117 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5118
0fc1b451
AK
5119 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5120 goto out_brelse;
ac27a0ec 5121 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5122 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
5123 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5124 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5125 raw_inode->i_file_acl_high =
5126 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5127 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5128 ext4_isize_set(raw_inode, ei->i_disksize);
5129 if (ei->i_disksize > 0x7fffffffULL) {
5130 struct super_block *sb = inode->i_sb;
5131 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5132 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5133 EXT4_SB(sb)->s_es->s_rev_level ==
5134 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5135 /* If this is the first large file
5136 * created, add a flag to the superblock.
5137 */
5138 err = ext4_journal_get_write_access(handle,
5139 EXT4_SB(sb)->s_sbh);
5140 if (err)
5141 goto out_brelse;
5142 ext4_update_dynamic_rev(sb);
5143 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5144 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5145 sb->s_dirt = 1;
0390131b 5146 ext4_handle_sync(handle);
73b50c1c 5147 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5148 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5149 }
5150 }
5151 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5152 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5153 if (old_valid_dev(inode->i_rdev)) {
5154 raw_inode->i_block[0] =
5155 cpu_to_le32(old_encode_dev(inode->i_rdev));
5156 raw_inode->i_block[1] = 0;
5157 } else {
5158 raw_inode->i_block[0] = 0;
5159 raw_inode->i_block[1] =
5160 cpu_to_le32(new_encode_dev(inode->i_rdev));
5161 raw_inode->i_block[2] = 0;
5162 }
de9a55b8
TT
5163 } else
5164 for (block = 0; block < EXT4_N_BLOCKS; block++)
5165 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5166
25ec56b5
JNC
5167 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5168 if (ei->i_extra_isize) {
5169 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5170 raw_inode->i_version_hi =
5171 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5172 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5173 }
5174
830156c7 5175 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5176 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5177 if (!err)
5178 err = rc;
19f5fb7a 5179 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5180
b436b9be 5181 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5182out_brelse:
af5bc92d 5183 brelse(bh);
617ba13b 5184 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5185 return err;
5186}
5187
5188/*
617ba13b 5189 * ext4_write_inode()
ac27a0ec
DK
5190 *
5191 * We are called from a few places:
5192 *
5193 * - Within generic_file_write() for O_SYNC files.
5194 * Here, there will be no transaction running. We wait for any running
5195 * trasnaction to commit.
5196 *
5197 * - Within sys_sync(), kupdate and such.
5198 * We wait on commit, if tol to.
5199 *
5200 * - Within prune_icache() (PF_MEMALLOC == true)
5201 * Here we simply return. We can't afford to block kswapd on the
5202 * journal commit.
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
617ba13b 5206 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5207 * knfsd.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this. The code:
5214 *
5215 * mark_inode_dirty(inode)
5216 * stuff();
5217 * inode->i_size = expr;
5218 *
5219 * is in error because a kswapd-driven write_inode() could occur while
5220 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5221 * will no longer be on the superblock's dirty inode list.
5222 */
a9185b41 5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5224{
91ac6f43
FM
5225 int err;
5226
ac27a0ec
DK
5227 if (current->flags & PF_MEMALLOC)
5228 return 0;
5229
91ac6f43
FM
5230 if (EXT4_SB(inode->i_sb)->s_journal) {
5231 if (ext4_journal_current_handle()) {
5232 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5233 dump_stack();
5234 return -EIO;
5235 }
ac27a0ec 5236
a9185b41 5237 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5238 return 0;
5239
5240 err = ext4_force_commit(inode->i_sb);
5241 } else {
5242 struct ext4_iloc iloc;
ac27a0ec 5243
8b472d73 5244 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5245 if (err)
5246 return err;
a9185b41 5247 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5248 sync_dirty_buffer(iloc.bh);
5249 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5250 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5251 "IO error syncing inode");
830156c7
FM
5252 err = -EIO;
5253 }
fd2dd9fb 5254 brelse(iloc.bh);
91ac6f43
FM
5255 }
5256 return err;
ac27a0ec
DK
5257}
5258
5259/*
617ba13b 5260 * ext4_setattr()
ac27a0ec
DK
5261 *
5262 * Called from notify_change.
5263 *
5264 * We want to trap VFS attempts to truncate the file as soon as
5265 * possible. In particular, we want to make sure that when the VFS
5266 * shrinks i_size, we put the inode on the orphan list and modify
5267 * i_disksize immediately, so that during the subsequent flushing of
5268 * dirty pages and freeing of disk blocks, we can guarantee that any
5269 * commit will leave the blocks being flushed in an unused state on
5270 * disk. (On recovery, the inode will get truncated and the blocks will
5271 * be freed, so we have a strong guarantee that no future commit will
5272 * leave these blocks visible to the user.)
5273 *
678aaf48
JK
5274 * Another thing we have to assure is that if we are in ordered mode
5275 * and inode is still attached to the committing transaction, we must
5276 * we start writeout of all the dirty pages which are being truncated.
5277 * This way we are sure that all the data written in the previous
5278 * transaction are already on disk (truncate waits for pages under
5279 * writeback).
5280 *
5281 * Called with inode->i_mutex down.
ac27a0ec 5282 */
617ba13b 5283int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5284{
5285 struct inode *inode = dentry->d_inode;
5286 int error, rc = 0;
3d287de3 5287 int orphan = 0;
ac27a0ec
DK
5288 const unsigned int ia_valid = attr->ia_valid;
5289
5290 error = inode_change_ok(inode, attr);
5291 if (error)
5292 return error;
5293
12755627 5294 if (is_quota_modification(inode, attr))
871a2931 5295 dquot_initialize(inode);
ac27a0ec
DK
5296 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5297 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5298 handle_t *handle;
5299
5300 /* (user+group)*(old+new) structure, inode write (sb,
5301 * inode block, ? - but truncate inode update has it) */
5aca07eb 5302 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5303 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5304 if (IS_ERR(handle)) {
5305 error = PTR_ERR(handle);
5306 goto err_out;
5307 }
b43fa828 5308 error = dquot_transfer(inode, attr);
ac27a0ec 5309 if (error) {
617ba13b 5310 ext4_journal_stop(handle);
ac27a0ec
DK
5311 return error;
5312 }
5313 /* Update corresponding info in inode so that everything is in
5314 * one transaction */
5315 if (attr->ia_valid & ATTR_UID)
5316 inode->i_uid = attr->ia_uid;
5317 if (attr->ia_valid & ATTR_GID)
5318 inode->i_gid = attr->ia_gid;
617ba13b
MC
5319 error = ext4_mark_inode_dirty(handle, inode);
5320 ext4_journal_stop(handle);
ac27a0ec
DK
5321 }
5322
e2b46574 5323 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5324 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5326
0c095c7f
TT
5327 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5328 return -EFBIG;
e2b46574
ES
5329 }
5330 }
5331
ac27a0ec 5332 if (S_ISREG(inode->i_mode) &&
c8d46e41 5333 attr->ia_valid & ATTR_SIZE &&
072bd7ea 5334 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
5335 handle_t *handle;
5336
617ba13b 5337 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5338 if (IS_ERR(handle)) {
5339 error = PTR_ERR(handle);
5340 goto err_out;
5341 }
3d287de3
DM
5342 if (ext4_handle_valid(handle)) {
5343 error = ext4_orphan_add(handle, inode);
5344 orphan = 1;
5345 }
617ba13b
MC
5346 EXT4_I(inode)->i_disksize = attr->ia_size;
5347 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5348 if (!error)
5349 error = rc;
617ba13b 5350 ext4_journal_stop(handle);
678aaf48
JK
5351
5352 if (ext4_should_order_data(inode)) {
5353 error = ext4_begin_ordered_truncate(inode,
5354 attr->ia_size);
5355 if (error) {
5356 /* Do as much error cleanup as possible */
5357 handle = ext4_journal_start(inode, 3);
5358 if (IS_ERR(handle)) {
5359 ext4_orphan_del(NULL, inode);
5360 goto err_out;
5361 }
5362 ext4_orphan_del(handle, inode);
3d287de3 5363 orphan = 0;
678aaf48
JK
5364 ext4_journal_stop(handle);
5365 goto err_out;
5366 }
5367 }
ac27a0ec
DK
5368 }
5369
072bd7ea
TT
5370 if (attr->ia_valid & ATTR_SIZE) {
5371 if (attr->ia_size != i_size_read(inode)) {
5372 truncate_setsize(inode, attr->ia_size);
5373 ext4_truncate(inode);
5374 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
5375 ext4_truncate(inode);
5376 }
ac27a0ec 5377
1025774c
CH
5378 if (!rc) {
5379 setattr_copy(inode, attr);
5380 mark_inode_dirty(inode);
5381 }
5382
5383 /*
5384 * If the call to ext4_truncate failed to get a transaction handle at
5385 * all, we need to clean up the in-core orphan list manually.
5386 */
3d287de3 5387 if (orphan && inode->i_nlink)
617ba13b 5388 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5389
5390 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5391 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5392
5393err_out:
617ba13b 5394 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5395 if (!error)
5396 error = rc;
5397 return error;
5398}
5399
3e3398a0
MC
5400int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5401 struct kstat *stat)
5402{
5403 struct inode *inode;
5404 unsigned long delalloc_blocks;
5405
5406 inode = dentry->d_inode;
5407 generic_fillattr(inode, stat);
5408
5409 /*
5410 * We can't update i_blocks if the block allocation is delayed
5411 * otherwise in the case of system crash before the real block
5412 * allocation is done, we will have i_blocks inconsistent with
5413 * on-disk file blocks.
5414 * We always keep i_blocks updated together with real
5415 * allocation. But to not confuse with user, stat
5416 * will return the blocks that include the delayed allocation
5417 * blocks for this file.
5418 */
3e3398a0 5419 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
5420
5421 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5422 return 0;
5423}
ac27a0ec 5424
8bb2b247 5425static int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1
MC
5426{
5427 int indirects;
5428
5429 /* if nrblocks are contiguous */
5430 if (chunk) {
5431 /*
5b41395f
YY
5432 * With N contiguous data blocks, we need at most
5433 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5434 * 2 dindirect blocks, and 1 tindirect block
a02908f1 5435 */
5b41395f
YY
5436 return DIV_ROUND_UP(nrblocks,
5437 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
a02908f1
MC
5438 }
5439 /*
5440 * if nrblocks are not contiguous, worse case, each block touch
5441 * a indirect block, and each indirect block touch a double indirect
5442 * block, plus a triple indirect block
5443 */
5444 indirects = nrblocks * 2 + 1;
5445 return indirects;
5446}
5447
5448static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5449{
12e9b892 5450 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 5451 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 5452 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5453}
ac51d837 5454
ac27a0ec 5455/*
a02908f1
MC
5456 * Account for index blocks, block groups bitmaps and block group
5457 * descriptor blocks if modify datablocks and index blocks
5458 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5459 *
a02908f1 5460 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5461 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5462 * they could still across block group boundary.
ac27a0ec 5463 *
a02908f1
MC
5464 * Also account for superblock, inode, quota and xattr blocks
5465 */
1f109d5a 5466static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 5467{
8df9675f
TT
5468 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5469 int gdpblocks;
a02908f1
MC
5470 int idxblocks;
5471 int ret = 0;
5472
5473 /*
5474 * How many index blocks need to touch to modify nrblocks?
5475 * The "Chunk" flag indicating whether the nrblocks is
5476 * physically contiguous on disk
5477 *
5478 * For Direct IO and fallocate, they calls get_block to allocate
5479 * one single extent at a time, so they could set the "Chunk" flag
5480 */
5481 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5482
5483 ret = idxblocks;
5484
5485 /*
5486 * Now let's see how many group bitmaps and group descriptors need
5487 * to account
5488 */
5489 groups = idxblocks;
5490 if (chunk)
5491 groups += 1;
5492 else
5493 groups += nrblocks;
5494
5495 gdpblocks = groups;
8df9675f
TT
5496 if (groups > ngroups)
5497 groups = ngroups;
a02908f1
MC
5498 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5499 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5500
5501 /* bitmaps and block group descriptor blocks */
5502 ret += groups + gdpblocks;
5503
5504 /* Blocks for super block, inode, quota and xattr blocks */
5505 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5506
5507 return ret;
5508}
5509
5510/*
25985edc 5511 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5512 * the modification of a single pages into a single transaction,
5513 * which may include multiple chunks of block allocations.
ac27a0ec 5514 *
525f4ed8 5515 * This could be called via ext4_write_begin()
ac27a0ec 5516 *
525f4ed8 5517 * We need to consider the worse case, when
a02908f1 5518 * one new block per extent.
ac27a0ec 5519 */
a86c6181 5520int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5521{
617ba13b 5522 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5523 int ret;
5524
a02908f1 5525 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5526
a02908f1 5527 /* Account for data blocks for journalled mode */
617ba13b 5528 if (ext4_should_journal_data(inode))
a02908f1 5529 ret += bpp;
ac27a0ec
DK
5530 return ret;
5531}
f3bd1f3f
MC
5532
5533/*
5534 * Calculate the journal credits for a chunk of data modification.
5535 *
5536 * This is called from DIO, fallocate or whoever calling
79e83036 5537 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5538 *
5539 * journal buffers for data blocks are not included here, as DIO
5540 * and fallocate do no need to journal data buffers.
5541 */
5542int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5543{
5544 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5545}
5546
ac27a0ec 5547/*
617ba13b 5548 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5549 * Give this, we know that the caller already has write access to iloc->bh.
5550 */
617ba13b 5551int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5552 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5553{
5554 int err = 0;
5555
25ec56b5
JNC
5556 if (test_opt(inode->i_sb, I_VERSION))
5557 inode_inc_iversion(inode);
5558
ac27a0ec
DK
5559 /* the do_update_inode consumes one bh->b_count */
5560 get_bh(iloc->bh);
5561
dab291af 5562 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5563 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5564 put_bh(iloc->bh);
5565 return err;
5566}
5567
5568/*
5569 * On success, We end up with an outstanding reference count against
5570 * iloc->bh. This _must_ be cleaned up later.
5571 */
5572
5573int
617ba13b
MC
5574ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5575 struct ext4_iloc *iloc)
ac27a0ec 5576{
0390131b
FM
5577 int err;
5578
5579 err = ext4_get_inode_loc(inode, iloc);
5580 if (!err) {
5581 BUFFER_TRACE(iloc->bh, "get_write_access");
5582 err = ext4_journal_get_write_access(handle, iloc->bh);
5583 if (err) {
5584 brelse(iloc->bh);
5585 iloc->bh = NULL;
ac27a0ec
DK
5586 }
5587 }
617ba13b 5588 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5589 return err;
5590}
5591
6dd4ee7c
KS
5592/*
5593 * Expand an inode by new_extra_isize bytes.
5594 * Returns 0 on success or negative error number on failure.
5595 */
1d03ec98
AK
5596static int ext4_expand_extra_isize(struct inode *inode,
5597 unsigned int new_extra_isize,
5598 struct ext4_iloc iloc,
5599 handle_t *handle)
6dd4ee7c
KS
5600{
5601 struct ext4_inode *raw_inode;
5602 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5603
5604 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5605 return 0;
5606
5607 raw_inode = ext4_raw_inode(&iloc);
5608
5609 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5610
5611 /* No extended attributes present */
19f5fb7a
TT
5612 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5613 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5614 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5615 new_extra_isize);
5616 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5617 return 0;
5618 }
5619
5620 /* try to expand with EAs present */
5621 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5622 raw_inode, handle);
5623}
5624
ac27a0ec
DK
5625/*
5626 * What we do here is to mark the in-core inode as clean with respect to inode
5627 * dirtiness (it may still be data-dirty).
5628 * This means that the in-core inode may be reaped by prune_icache
5629 * without having to perform any I/O. This is a very good thing,
5630 * because *any* task may call prune_icache - even ones which
5631 * have a transaction open against a different journal.
5632 *
5633 * Is this cheating? Not really. Sure, we haven't written the
5634 * inode out, but prune_icache isn't a user-visible syncing function.
5635 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5636 * we start and wait on commits.
5637 *
5638 * Is this efficient/effective? Well, we're being nice to the system
5639 * by cleaning up our inodes proactively so they can be reaped
5640 * without I/O. But we are potentially leaving up to five seconds'
5641 * worth of inodes floating about which prune_icache wants us to
5642 * write out. One way to fix that would be to get prune_icache()
5643 * to do a write_super() to free up some memory. It has the desired
5644 * effect.
5645 */
617ba13b 5646int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5647{
617ba13b 5648 struct ext4_iloc iloc;
6dd4ee7c
KS
5649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5650 static unsigned int mnt_count;
5651 int err, ret;
ac27a0ec
DK
5652
5653 might_sleep();
7ff9c073 5654 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5655 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5656 if (ext4_handle_valid(handle) &&
5657 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5658 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5659 /*
5660 * We need extra buffer credits since we may write into EA block
5661 * with this same handle. If journal_extend fails, then it will
5662 * only result in a minor loss of functionality for that inode.
5663 * If this is felt to be critical, then e2fsck should be run to
5664 * force a large enough s_min_extra_isize.
5665 */
5666 if ((jbd2_journal_extend(handle,
5667 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5668 ret = ext4_expand_extra_isize(inode,
5669 sbi->s_want_extra_isize,
5670 iloc, handle);
5671 if (ret) {
19f5fb7a
TT
5672 ext4_set_inode_state(inode,
5673 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5674 if (mnt_count !=
5675 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5676 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5677 "Unable to expand inode %lu. Delete"
5678 " some EAs or run e2fsck.",
5679 inode->i_ino);
c1bddad9
AK
5680 mnt_count =
5681 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5682 }
5683 }
5684 }
5685 }
ac27a0ec 5686 if (!err)
617ba13b 5687 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5688 return err;
5689}
5690
5691/*
617ba13b 5692 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5693 *
5694 * We're really interested in the case where a file is being extended.
5695 * i_size has been changed by generic_commit_write() and we thus need
5696 * to include the updated inode in the current transaction.
5697 *
5dd4056d 5698 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5699 * are allocated to the file.
5700 *
5701 * If the inode is marked synchronous, we don't honour that here - doing
5702 * so would cause a commit on atime updates, which we don't bother doing.
5703 * We handle synchronous inodes at the highest possible level.
5704 */
aa385729 5705void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5706{
ac27a0ec
DK
5707 handle_t *handle;
5708
617ba13b 5709 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5710 if (IS_ERR(handle))
5711 goto out;
f3dc272f 5712
f3dc272f
CW
5713 ext4_mark_inode_dirty(handle, inode);
5714
617ba13b 5715 ext4_journal_stop(handle);
ac27a0ec
DK
5716out:
5717 return;
5718}
5719
5720#if 0
5721/*
5722 * Bind an inode's backing buffer_head into this transaction, to prevent
5723 * it from being flushed to disk early. Unlike
617ba13b 5724 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5725 * returns no iloc structure, so the caller needs to repeat the iloc
5726 * lookup to mark the inode dirty later.
5727 */
617ba13b 5728static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5729{
617ba13b 5730 struct ext4_iloc iloc;
ac27a0ec
DK
5731
5732 int err = 0;
5733 if (handle) {
617ba13b 5734 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5735 if (!err) {
5736 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5737 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5738 if (!err)
0390131b 5739 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5740 NULL,
0390131b 5741 iloc.bh);
ac27a0ec
DK
5742 brelse(iloc.bh);
5743 }
5744 }
617ba13b 5745 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5746 return err;
5747}
5748#endif
5749
617ba13b 5750int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5751{
5752 journal_t *journal;
5753 handle_t *handle;
5754 int err;
5755
5756 /*
5757 * We have to be very careful here: changing a data block's
5758 * journaling status dynamically is dangerous. If we write a
5759 * data block to the journal, change the status and then delete
5760 * that block, we risk forgetting to revoke the old log record
5761 * from the journal and so a subsequent replay can corrupt data.
5762 * So, first we make sure that the journal is empty and that
5763 * nobody is changing anything.
5764 */
5765
617ba13b 5766 journal = EXT4_JOURNAL(inode);
0390131b
FM
5767 if (!journal)
5768 return 0;
d699594d 5769 if (is_journal_aborted(journal))
ac27a0ec
DK
5770 return -EROFS;
5771
dab291af
MC
5772 jbd2_journal_lock_updates(journal);
5773 jbd2_journal_flush(journal);
ac27a0ec
DK
5774
5775 /*
5776 * OK, there are no updates running now, and all cached data is
5777 * synced to disk. We are now in a completely consistent state
5778 * which doesn't have anything in the journal, and we know that
5779 * no filesystem updates are running, so it is safe to modify
5780 * the inode's in-core data-journaling state flag now.
5781 */
5782
5783 if (val)
12e9b892 5784 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5785 else
12e9b892 5786 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5787 ext4_set_aops(inode);
ac27a0ec 5788
dab291af 5789 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5790
5791 /* Finally we can mark the inode as dirty. */
5792
617ba13b 5793 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5794 if (IS_ERR(handle))
5795 return PTR_ERR(handle);
5796
617ba13b 5797 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5798 ext4_handle_sync(handle);
617ba13b
MC
5799 ext4_journal_stop(handle);
5800 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5801
5802 return err;
5803}
2e9ee850
AK
5804
5805static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5806{
5807 return !buffer_mapped(bh);
5808}
5809
c2ec175c 5810int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5811{
c2ec175c 5812 struct page *page = vmf->page;
2e9ee850
AK
5813 loff_t size;
5814 unsigned long len;
5815 int ret = -EINVAL;
79f0be8d 5816 void *fsdata;
2e9ee850
AK
5817 struct file *file = vma->vm_file;
5818 struct inode *inode = file->f_path.dentry->d_inode;
5819 struct address_space *mapping = inode->i_mapping;
5820
5821 /*
5822 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5823 * get i_mutex because we are already holding mmap_sem.
5824 */
5825 down_read(&inode->i_alloc_sem);
5826 size = i_size_read(inode);
5827 if (page->mapping != mapping || size <= page_offset(page)
5828 || !PageUptodate(page)) {
5829 /* page got truncated from under us? */
5830 goto out_unlock;
5831 }
5832 ret = 0;
0e499890
DW
5833
5834 lock_page(page);
5835 wait_on_page_writeback(page);
5836 if (PageMappedToDisk(page)) {
5837 up_read(&inode->i_alloc_sem);
5838 return VM_FAULT_LOCKED;
5839 }
2e9ee850
AK
5840
5841 if (page->index == size >> PAGE_CACHE_SHIFT)
5842 len = size & ~PAGE_CACHE_MASK;
5843 else
5844 len = PAGE_CACHE_SIZE;
5845
a827eaff
AK
5846 /*
5847 * return if we have all the buffers mapped. This avoid
5848 * the need to call write_begin/write_end which does a
5849 * journal_start/journal_stop which can block and take
5850 * long time
5851 */
2e9ee850 5852 if (page_has_buffers(page)) {
2e9ee850 5853 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 5854 ext4_bh_unmapped)) {
0e499890
DW
5855 up_read(&inode->i_alloc_sem);
5856 return VM_FAULT_LOCKED;
a827eaff 5857 }
2e9ee850 5858 }
a827eaff 5859 unlock_page(page);
2e9ee850
AK
5860 /*
5861 * OK, we need to fill the hole... Do write_begin write_end
5862 * to do block allocation/reservation.We are not holding
5863 * inode.i__mutex here. That allow * parallel write_begin,
5864 * write_end call. lock_page prevent this from happening
5865 * on the same page though
5866 */
5867 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5868 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5869 if (ret < 0)
5870 goto out_unlock;
5871 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5872 len, len, page, fsdata);
2e9ee850
AK
5873 if (ret < 0)
5874 goto out_unlock;
5875 ret = 0;
0e499890
DW
5876
5877 /*
5878 * write_begin/end might have created a dirty page and someone
5879 * could wander in and start the IO. Make sure that hasn't
5880 * happened.
5881 */
5882 lock_page(page);
5883 wait_on_page_writeback(page);
5884 up_read(&inode->i_alloc_sem);
5885 return VM_FAULT_LOCKED;
2e9ee850 5886out_unlock:
c2ec175c
NP
5887 if (ret)
5888 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5889 up_read(&inode->i_alloc_sem);
5890 return ret;
5891}