]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
ext4: Use readahead when reading an inode from the inode table
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
d2a17637 42#include "ext4_extents.h"
ac27a0ec 43
a1d6cc56
AK
44#define MPAGE_DA_EXTENT_TAIL 0x01
45
678aaf48
JK
46static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
48{
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
51}
52
64769240
AT
53static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
ac27a0ec
DK
55/*
56 * Test whether an inode is a fast symlink.
57 */
617ba13b 58static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 59{
617ba13b 60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
61 (inode->i_sb->s_blocksize >> 9) : 0;
62
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64}
65
66/*
617ba13b 67 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
70 *
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
74 */
617ba13b
MC
75int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
77{
78 int err;
79
80 might_sleep();
81
82 BUFFER_TRACE(bh, "enter");
83
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
88
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
93
617ba13b
MC
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 96 if (bh) {
dab291af 97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 98 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
99 }
100 return 0;
101 }
102
103 /*
104 * data!=journal && (is_metadata || should_journal_data(inode))
105 */
617ba13b
MC
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 108 if (err)
46e665e9 109 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
113}
114
115/*
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
118 */
119static unsigned long blocks_for_truncate(struct inode *inode)
120{
725d26d3 121 ext4_lblk_t needed;
ac27a0ec
DK
122
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
617ba13b 128 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
133
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
617ba13b
MC
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 138
617ba13b 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
140}
141
142/*
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
146 *
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
151 */
152static handle_t *start_transaction(struct inode *inode)
153{
154 handle_t *result;
155
617ba13b 156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
157 if (!IS_ERR(result))
158 return result;
159
617ba13b 160 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
161 return result;
162}
163
164/*
165 * Try to extend this transaction for the purposes of truncation.
166 *
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
169 */
170static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171{
617ba13b 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 173 return 0;
617ba13b 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
175 return 0;
176 return 1;
177}
178
179/*
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
183 */
617ba13b 184static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
185{
186 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
188}
189
190/*
191 * Called at the last iput() if i_nlink is zero.
192 */
af5bc92d 193void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
194{
195 handle_t *handle;
bc965ab3 196 int err;
ac27a0ec 197
678aaf48
JK
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
200 truncate_inode_pages(&inode->i_data, 0);
201
202 if (is_bad_inode(inode))
203 goto no_delete;
204
bc965ab3 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 206 if (IS_ERR(handle)) {
bc965ab3 207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
208 /*
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
212 */
617ba13b 213 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
214 goto no_delete;
215 }
216
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
bc965ab3
TT
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
225 }
ac27a0ec 226 if (inode->i_blocks)
617ba13b 227 ext4_truncate(inode);
bc965ab3
TT
228
229 /*
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
234 */
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
245 }
246 }
247
ac27a0ec 248 /*
617ba13b 249 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 250 * AKPM: I think this can be inside the above `if'.
617ba13b 251 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 252 * deletion of a non-existent orphan - this is because we don't
617ba13b 253 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
254 * (Well, we could do this if we need to, but heck - it works)
255 */
617ba13b
MC
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
258
259 /*
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
265 */
617ba13b 266 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
617ba13b
MC
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
ac27a0ec
DK
272 return;
273no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
275}
276
277typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281} Indirect;
282
283static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284{
285 p->key = *(p->p = v);
286 p->bh = bh;
287}
288
ac27a0ec 289/**
617ba13b 290 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
8c55e204
DK
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
ac27a0ec 296 *
617ba13b 297 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
304 *
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
308 */
309
310/*
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
318 */
319
617ba13b 320static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 323{
617ba13b
MC
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
331
332 if (i_block < 0) {
af5bc92d 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
af5bc92d 337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 338 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 342 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 347 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
e2b46574 353 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 354 "block %lu > max",
e2b46574
ES
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
ac27a0ec
DK
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361}
362
363/**
617ba13b 364 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
ac27a0ec
DK
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
389 *
390 * Need to be called with
0e855ac8 391 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 392 */
725d26d3
AK
393static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
ac27a0ec
DK
395 Indirect chain[4], int *err)
396{
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
af5bc92d 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
af5bc92d 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
414 }
415 return NULL;
416
ac27a0ec
DK
417failure:
418 *err = -EIO;
419no_block:
420 return p;
421}
422
423/**
617ba13b 424 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
425 * @inode: owner
426 * @ind: descriptor of indirect block.
427 *
1cc8dcf5 428 * This function returns the preferred place for block allocation.
ac27a0ec
DK
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
435 *
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
440 *
441 * Caller must make sure that @ind is valid and will stay that way.
442 */
617ba13b 443static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 444{
617ba13b 445 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 447 __le32 *p;
617ba13b 448 ext4_fsblk_t bg_start;
74d3487f 449 ext4_fsblk_t last_block;
617ba13b 450 ext4_grpblk_t colour;
ac27a0ec
DK
451
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
456 }
457
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
461
462 /*
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
465 */
617ba13b 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
617ba13b 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
474 return bg_start + colour;
475}
476
477/**
1cc8dcf5 478 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
479 * @inode: owner
480 * @block: block we want
ac27a0ec 481 * @partial: pointer to the last triple within a chain
ac27a0ec 482 *
1cc8dcf5 483 * Normally this function find the preferred place for block allocation,
fb01bfda 484 * returns it.
ac27a0ec 485 */
725d26d3 486static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 487 Indirect *partial)
ac27a0ec 488{
617ba13b 489 struct ext4_block_alloc_info *block_i;
ac27a0ec 490
617ba13b 491 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
492
493 /*
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
496 */
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
500 }
501
617ba13b 502 return ext4_find_near(inode, partial);
ac27a0ec
DK
503}
504
505/**
617ba13b 506 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
507 * of direct blocks need to be allocated for the given branch.
508 *
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
513 *
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
516 */
617ba13b 517static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
518 int blocks_to_boundary)
519{
520 unsigned long count = 0;
521
522 /*
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
525 */
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
533 }
534
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
539 }
540 return count;
541}
542
543/**
617ba13b 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
547 *
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
552 */
617ba13b 553static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
557{
558 int target, i;
7061eba7 559 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 560 int index = 0;
617ba13b 561 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
562 int ret = 0;
563
564 /*
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
571 */
7061eba7
AK
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
ac27a0ec
DK
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
ac27a0ec
DK
579 if (*err)
580 goto failed_out;
581
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
587 }
7061eba7
AK
588 if (count > 0) {
589 /*
590 * save the new block number
591 * for the first direct block
592 */
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
ac27a0ec 597 break;
7061eba7 598 }
ac27a0ec
DK
599 }
600
7061eba7
AK
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
654b4908 607 /* allocating blocks for data blocks */
7061eba7
AK
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
611 /*
612 * if the allocation failed and we didn't allocate
613 * any blocks before
614 */
615 goto failed_out;
616 }
617 if (!*err) {
618 if (target == blks) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 }
625 blk_allocated += count;
626 }
627allocated:
ac27a0ec 628 /* total number of blocks allocated for direct blocks */
7061eba7 629 ret = blk_allocated;
ac27a0ec
DK
630 *err = 0;
631 return ret;
632failed_out:
af5bc92d 633 for (i = 0; i < index; i++)
c9de560d 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
635 return ret;
636}
637
638/**
617ba13b 639 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
645 *
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
617ba13b 650 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 653 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
657 *
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
617ba13b 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
661 * as described above and return 0.
662 */
617ba13b 663static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
667{
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
617ba13b
MC
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
ac27a0ec 675
7061eba7 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
680
681 branch[0].key = cpu_to_le32(new_blocks[0]);
682 /*
683 * metadata blocks and data blocks are allocated.
684 */
685 for (n = 1; n <= indirect_blks; n++) {
686 /*
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
690 */
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 695 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
700 }
701
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
af5bc92d 706 if (n == indirect_blks) {
ac27a0ec
DK
707 current_block = new_blocks[n];
708 /*
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
712 */
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
715 }
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
719
617ba13b
MC
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
722 if (err)
723 goto failed;
724 }
725 *blks = num;
726 return err;
727failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
dab291af 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 731 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 732 }
af5bc92d 733 for (i = 0; i < indirect_blks; i++)
c9de560d 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 735
c9de560d 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
737
738 return err;
739}
740
741/**
617ba13b 742 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 746 * ext4_alloc_branch)
ac27a0ec
DK
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
750 *
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
754 */
617ba13b 755static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 756 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
757{
758 int i;
759 int err = 0;
617ba13b
MC
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
ac27a0ec 762
617ba13b 763 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
764 /*
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
768 */
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 771 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
772 if (err)
773 goto err_out;
774 }
775 /* That's it */
776
777 *where->p = where->key;
778
779 /*
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
782 */
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
af5bc92d 786 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
787 }
788
789 /*
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
793 */
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
798 }
799
800 /* We are done with atomic stuff, now do the rest of housekeeping */
801
ef7f3835 802 inode->i_ctime = ext4_current_time(inode);
617ba13b 803 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
804
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
807 /*
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
617ba13b 813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
814 */
815 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
818 if (err)
819 goto err_out;
820 } else {
821 /*
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
824 */
825 jbd_debug(5, "splicing direct\n");
826 }
827 return err;
828
829err_out:
830 for (i = 1; i <= num; i++) {
dab291af 831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 832 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 835 }
c9de560d 836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
837
838 return err;
839}
840
841/*
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
852 *
853 * `handle' can be NULL if create == 0.
854 *
ac27a0ec
DK
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
c278bfec
AK
858 *
859 *
860 * Need to be called with
0e855ac8
AK
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 863 */
617ba13b 864int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 865 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
868{
869 int err = -EIO;
725d26d3 870 ext4_lblk_t offsets[4];
ac27a0ec
DK
871 Indirect chain[4];
872 Indirect *partial;
617ba13b 873 ext4_fsblk_t goal;
ac27a0ec
DK
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
617ba13b 877 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 878 int count = 0;
617ba13b 879 ext4_fsblk_t first_block = 0;
61628a3f 880 loff_t disksize;
ac27a0ec
DK
881
882
a86c6181 883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 884 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
ac27a0ec
DK
887
888 if (depth == 0)
889 goto out;
890
617ba13b 891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
892
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 900 ext4_fsblk_t blk;
ac27a0ec 901
ac27a0ec
DK
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
908 }
c278bfec 909 goto got_it;
ac27a0ec
DK
910 }
911
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
915
ac27a0ec
DK
916 /*
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
919 */
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 921 ext4_init_block_alloc_info(inode);
ac27a0ec 922
fb01bfda 923 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
924
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
927
928 /*
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
931 */
617ba13b 932 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
933 maxblocks, blocks_to_boundary);
934 /*
617ba13b 935 * Block out ext4_truncate while we alter the tree
ac27a0ec 936 */
7061eba7
AK
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
ac27a0ec
DK
940
941 /*
617ba13b 942 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
947 */
948 if (!err)
617ba13b 949 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
950 partial, indirect_blks, count);
951 /*
0e855ac8 952 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 953 * protect it if you're about to implement concurrent
617ba13b 954 * ext4_get_block() -bzzz
ac27a0ec 955 */
61628a3f
MC
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
962 }
ac27a0ec
DK
963 if (err)
964 goto cleanup;
965
966 set_buffer_new(bh_result);
967got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
979 }
980 BUFFER_TRACE(bh_result, "returned");
981out:
982 return err;
983}
984
12219aea
AK
985/*
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
988 */
989static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990{
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
993
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
996
997 dind_blks = (ind_blks + icap - 1) / icap;
998
999 tind_blks = 1;
1000
1001 return ind_blks + dind_blks + tind_blks;
1002}
1003
1004/*
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1007 */
1008static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009{
cd213226
MC
1010 if (!blocks)
1011 return 0;
1012
12219aea
AK
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1017}
1018
1019static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020{
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1023
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1028
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
6bc6e63f
AK
1033 if (mdb_free) {
1034 /* Account for allocated meta_blocks */
1035 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037 /* update fs dirty blocks counter */
1038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041 }
12219aea
AK
1042
1043 /* update per-inode reservations */
1044 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1045 EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
12219aea
AK
1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048}
1049
f5ab0d1f 1050/*
2b2d6d01
TT
1051 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052 * and returns if the blocks are already mapped.
f5ab0d1f 1053 *
f5ab0d1f
MC
1054 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055 * and store the allocated blocks in the result buffer head and mark it
1056 * mapped.
1057 *
1058 * If file type is extents based, it will call ext4_ext_get_blocks(),
1059 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060 * based files
1061 *
1062 * On success, it returns the number of blocks being mapped or allocate.
1063 * if create==0 and the blocks are pre-allocated and uninitialized block,
1064 * the result buffer head is unmapped. If the create ==1, it will make sure
1065 * the buffer head is mapped.
1066 *
1067 * It returns 0 if plain look up failed (blocks have not been allocated), in
1068 * that casem, buffer head is unmapped
1069 *
1070 * It returns the error in case of allocation failure.
1071 */
0e855ac8
AK
1072int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1074 int create, int extend_disksize, int flag)
0e855ac8
AK
1075{
1076 int retval;
f5ab0d1f
MC
1077
1078 clear_buffer_mapped(bh);
1079
4df3d265
AK
1080 /*
1081 * Try to see if we can get the block without requesting
1082 * for new file system block.
1083 */
1084 down_read((&EXT4_I(inode)->i_data_sem));
1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087 bh, 0, 0);
0e855ac8 1088 } else {
4df3d265
AK
1089 retval = ext4_get_blocks_handle(handle,
1090 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1091 }
4df3d265 1092 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1093
1094 /* If it is only a block(s) look up */
1095 if (!create)
1096 return retval;
1097
1098 /*
1099 * Returns if the blocks have already allocated
1100 *
1101 * Note that if blocks have been preallocated
1102 * ext4_ext_get_block() returns th create = 0
1103 * with buffer head unmapped.
1104 */
1105 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1106 return retval;
1107
1108 /*
f5ab0d1f
MC
1109 * New blocks allocate and/or writing to uninitialized extent
1110 * will possibly result in updating i_data, so we take
1111 * the write lock of i_data_sem, and call get_blocks()
1112 * with create == 1 flag.
4df3d265
AK
1113 */
1114 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1115
1116 /*
1117 * if the caller is from delayed allocation writeout path
1118 * we have already reserved fs blocks for allocation
1119 * let the underlying get_block() function know to
1120 * avoid double accounting
1121 */
1122 if (flag)
1123 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1124 /*
1125 * We need to check for EXT4 here because migrate
1126 * could have changed the inode type in between
1127 */
0e855ac8
AK
1128 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130 bh, create, extend_disksize);
1131 } else {
1132 retval = ext4_get_blocks_handle(handle, inode, block,
1133 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1134
1135 if (retval > 0 && buffer_new(bh)) {
1136 /*
1137 * We allocated new blocks which will result in
1138 * i_data's format changing. Force the migrate
1139 * to fail by clearing migrate flags
1140 */
1141 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142 ~EXT4_EXT_MIGRATE;
1143 }
0e855ac8 1144 }
d2a17637
MC
1145
1146 if (flag) {
1147 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148 /*
1149 * Update reserved blocks/metadata blocks
1150 * after successful block allocation
1151 * which were deferred till now
1152 */
1153 if ((retval > 0) && buffer_delay(bh))
12219aea 1154 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1155 }
1156
4df3d265 1157 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1158 return retval;
1159}
1160
f3bd1f3f
MC
1161/* Maximum number of blocks we map for direct IO at once. */
1162#define DIO_MAX_BLOCKS 4096
1163
617ba13b 1164static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1165 struct buffer_head *bh_result, int create)
1166{
3e4fdaf8 1167 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1168 int ret = 0, started = 0;
ac27a0ec 1169 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1170 int dio_credits;
ac27a0ec 1171
7fb5409d
JK
1172 if (create && !handle) {
1173 /* Direct IO write... */
1174 if (max_blocks > DIO_MAX_BLOCKS)
1175 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1176 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1178 if (IS_ERR(handle)) {
ac27a0ec 1179 ret = PTR_ERR(handle);
7fb5409d 1180 goto out;
ac27a0ec 1181 }
7fb5409d 1182 started = 1;
ac27a0ec
DK
1183 }
1184
7fb5409d 1185 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1186 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1187 if (ret > 0) {
1188 bh_result->b_size = (ret << inode->i_blkbits);
1189 ret = 0;
ac27a0ec 1190 }
7fb5409d
JK
1191 if (started)
1192 ext4_journal_stop(handle);
1193out:
ac27a0ec
DK
1194 return ret;
1195}
1196
1197/*
1198 * `handle' can be NULL if create is zero
1199 */
617ba13b 1200struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1201 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1202{
1203 struct buffer_head dummy;
1204 int fatal = 0, err;
1205
1206 J_ASSERT(handle != NULL || create == 0);
1207
1208 dummy.b_state = 0;
1209 dummy.b_blocknr = -1000;
1210 buffer_trace_init(&dummy.b_history);
a86c6181 1211 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1212 &dummy, create, 1, 0);
ac27a0ec 1213 /*
617ba13b 1214 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1215 * mapped. 0 in case of a HOLE.
1216 */
1217 if (err > 0) {
1218 if (err > 1)
1219 WARN_ON(1);
1220 err = 0;
1221 }
1222 *errp = err;
1223 if (!err && buffer_mapped(&dummy)) {
1224 struct buffer_head *bh;
1225 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226 if (!bh) {
1227 *errp = -EIO;
1228 goto err;
1229 }
1230 if (buffer_new(&dummy)) {
1231 J_ASSERT(create != 0);
ac39849d 1232 J_ASSERT(handle != NULL);
ac27a0ec
DK
1233
1234 /*
1235 * Now that we do not always journal data, we should
1236 * keep in mind whether this should always journal the
1237 * new buffer as metadata. For now, regular file
617ba13b 1238 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1239 * problem.
1240 */
1241 lock_buffer(bh);
1242 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1243 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1244 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1245 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1246 set_buffer_uptodate(bh);
1247 }
1248 unlock_buffer(bh);
617ba13b
MC
1249 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1251 if (!fatal)
1252 fatal = err;
1253 } else {
1254 BUFFER_TRACE(bh, "not a new buffer");
1255 }
1256 if (fatal) {
1257 *errp = fatal;
1258 brelse(bh);
1259 bh = NULL;
1260 }
1261 return bh;
1262 }
1263err:
1264 return NULL;
1265}
1266
617ba13b 1267struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1268 ext4_lblk_t block, int create, int *err)
ac27a0ec 1269{
af5bc92d 1270 struct buffer_head *bh;
ac27a0ec 1271
617ba13b 1272 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1273 if (!bh)
1274 return bh;
1275 if (buffer_uptodate(bh))
1276 return bh;
1277 ll_rw_block(READ_META, 1, &bh);
1278 wait_on_buffer(bh);
1279 if (buffer_uptodate(bh))
1280 return bh;
1281 put_bh(bh);
1282 *err = -EIO;
1283 return NULL;
1284}
1285
af5bc92d
TT
1286static int walk_page_buffers(handle_t *handle,
1287 struct buffer_head *head,
1288 unsigned from,
1289 unsigned to,
1290 int *partial,
1291 int (*fn)(handle_t *handle,
1292 struct buffer_head *bh))
ac27a0ec
DK
1293{
1294 struct buffer_head *bh;
1295 unsigned block_start, block_end;
1296 unsigned blocksize = head->b_size;
1297 int err, ret = 0;
1298 struct buffer_head *next;
1299
af5bc92d
TT
1300 for (bh = head, block_start = 0;
1301 ret == 0 && (bh != head || !block_start);
1302 block_start = block_end, bh = next)
ac27a0ec
DK
1303 {
1304 next = bh->b_this_page;
1305 block_end = block_start + blocksize;
1306 if (block_end <= from || block_start >= to) {
1307 if (partial && !buffer_uptodate(bh))
1308 *partial = 1;
1309 continue;
1310 }
1311 err = (*fn)(handle, bh);
1312 if (!ret)
1313 ret = err;
1314 }
1315 return ret;
1316}
1317
1318/*
1319 * To preserve ordering, it is essential that the hole instantiation and
1320 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1321 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1322 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1323 * prepare_write() is the right place.
1324 *
617ba13b
MC
1325 * Also, this function can nest inside ext4_writepage() ->
1326 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1327 * has generated enough buffer credits to do the whole page. So we won't
1328 * block on the journal in that case, which is good, because the caller may
1329 * be PF_MEMALLOC.
1330 *
617ba13b 1331 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1332 * quota file writes. If we were to commit the transaction while thus
1333 * reentered, there can be a deadlock - we would be holding a quota
1334 * lock, and the commit would never complete if another thread had a
1335 * transaction open and was blocking on the quota lock - a ranking
1336 * violation.
1337 *
dab291af 1338 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1339 * will _not_ run commit under these circumstances because handle->h_ref
1340 * is elevated. We'll still have enough credits for the tiny quotafile
1341 * write.
1342 */
1343static int do_journal_get_write_access(handle_t *handle,
1344 struct buffer_head *bh)
1345{
1346 if (!buffer_mapped(bh) || buffer_freed(bh))
1347 return 0;
617ba13b 1348 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1349}
1350
bfc1af65
NP
1351static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352 loff_t pos, unsigned len, unsigned flags,
1353 struct page **pagep, void **fsdata)
ac27a0ec 1354{
af5bc92d 1355 struct inode *inode = mapping->host;
7479d2b9 1356 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1357 handle_t *handle;
1358 int retries = 0;
af5bc92d 1359 struct page *page;
bfc1af65 1360 pgoff_t index;
af5bc92d 1361 unsigned from, to;
bfc1af65
NP
1362
1363 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1364 from = pos & (PAGE_CACHE_SIZE - 1);
1365 to = from + len;
ac27a0ec
DK
1366
1367retry:
af5bc92d
TT
1368 handle = ext4_journal_start(inode, needed_blocks);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 goto out;
7479d2b9 1372 }
ac27a0ec 1373
cf108bca
JK
1374 page = __grab_cache_page(mapping, index);
1375 if (!page) {
1376 ext4_journal_stop(handle);
1377 ret = -ENOMEM;
1378 goto out;
1379 }
1380 *pagep = page;
1381
bfc1af65
NP
1382 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383 ext4_get_block);
1384
1385 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1386 ret = walk_page_buffers(handle, page_buffers(page),
1387 from, to, NULL, do_journal_get_write_access);
1388 }
bfc1af65
NP
1389
1390 if (ret) {
af5bc92d 1391 unlock_page(page);
cf108bca 1392 ext4_journal_stop(handle);
af5bc92d 1393 page_cache_release(page);
ae4d5372
AK
1394 /*
1395 * block_write_begin may have instantiated a few blocks
1396 * outside i_size. Trim these off again. Don't need
1397 * i_size_read because we hold i_mutex.
1398 */
1399 if (pos + len > inode->i_size)
1400 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1401 }
1402
617ba13b 1403 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1404 goto retry;
7479d2b9 1405out:
ac27a0ec
DK
1406 return ret;
1407}
1408
bfc1af65
NP
1409/* For write_end() in data=journal mode */
1410static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1411{
1412 if (!buffer_mapped(bh) || buffer_freed(bh))
1413 return 0;
1414 set_buffer_uptodate(bh);
617ba13b 1415 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1416}
1417
1418/*
1419 * We need to pick up the new inode size which generic_commit_write gave us
1420 * `file' can be NULL - eg, when called from page_symlink().
1421 *
617ba13b 1422 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1423 * buffers are managed internally.
1424 */
bfc1af65
NP
1425static int ext4_ordered_write_end(struct file *file,
1426 struct address_space *mapping,
1427 loff_t pos, unsigned len, unsigned copied,
1428 struct page *page, void *fsdata)
ac27a0ec 1429{
617ba13b 1430 handle_t *handle = ext4_journal_current_handle();
cf108bca 1431 struct inode *inode = mapping->host;
ac27a0ec
DK
1432 int ret = 0, ret2;
1433
678aaf48 1434 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1435
1436 if (ret == 0) {
ac27a0ec
DK
1437 loff_t new_i_size;
1438
bfc1af65 1439 new_i_size = pos + copied;
cf17fea6
AK
1440 if (new_i_size > EXT4_I(inode)->i_disksize) {
1441 ext4_update_i_disksize(inode, new_i_size);
1442 /* We need to mark inode dirty even if
1443 * new_i_size is less that inode->i_size
1444 * bu greater than i_disksize.(hint delalloc)
1445 */
1446 ext4_mark_inode_dirty(handle, inode);
1447 }
1448
cf108bca 1449 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1450 page, fsdata);
f8a87d89
RK
1451 copied = ret2;
1452 if (ret2 < 0)
1453 ret = ret2;
ac27a0ec 1454 }
617ba13b 1455 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1456 if (!ret)
1457 ret = ret2;
bfc1af65
NP
1458
1459 return ret ? ret : copied;
ac27a0ec
DK
1460}
1461
bfc1af65
NP
1462static int ext4_writeback_write_end(struct file *file,
1463 struct address_space *mapping,
1464 loff_t pos, unsigned len, unsigned copied,
1465 struct page *page, void *fsdata)
ac27a0ec 1466{
617ba13b 1467 handle_t *handle = ext4_journal_current_handle();
cf108bca 1468 struct inode *inode = mapping->host;
ac27a0ec
DK
1469 int ret = 0, ret2;
1470 loff_t new_i_size;
1471
bfc1af65 1472 new_i_size = pos + copied;
cf17fea6
AK
1473 if (new_i_size > EXT4_I(inode)->i_disksize) {
1474 ext4_update_i_disksize(inode, new_i_size);
1475 /* We need to mark inode dirty even if
1476 * new_i_size is less that inode->i_size
1477 * bu greater than i_disksize.(hint delalloc)
1478 */
1479 ext4_mark_inode_dirty(handle, inode);
1480 }
ac27a0ec 1481
cf108bca 1482 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1483 page, fsdata);
f8a87d89
RK
1484 copied = ret2;
1485 if (ret2 < 0)
1486 ret = ret2;
ac27a0ec 1487
617ba13b 1488 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1489 if (!ret)
1490 ret = ret2;
bfc1af65
NP
1491
1492 return ret ? ret : copied;
ac27a0ec
DK
1493}
1494
bfc1af65
NP
1495static int ext4_journalled_write_end(struct file *file,
1496 struct address_space *mapping,
1497 loff_t pos, unsigned len, unsigned copied,
1498 struct page *page, void *fsdata)
ac27a0ec 1499{
617ba13b 1500 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1501 struct inode *inode = mapping->host;
ac27a0ec
DK
1502 int ret = 0, ret2;
1503 int partial = 0;
bfc1af65 1504 unsigned from, to;
cf17fea6 1505 loff_t new_i_size;
ac27a0ec 1506
bfc1af65
NP
1507 from = pos & (PAGE_CACHE_SIZE - 1);
1508 to = from + len;
1509
1510 if (copied < len) {
1511 if (!PageUptodate(page))
1512 copied = 0;
1513 page_zero_new_buffers(page, from+copied, to);
1514 }
ac27a0ec
DK
1515
1516 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1517 to, &partial, write_end_fn);
ac27a0ec
DK
1518 if (!partial)
1519 SetPageUptodate(page);
cf17fea6
AK
1520 new_i_size = pos + copied;
1521 if (new_i_size > inode->i_size)
bfc1af65 1522 i_size_write(inode, pos+copied);
617ba13b 1523 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1524 if (new_i_size > EXT4_I(inode)->i_disksize) {
1525 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1526 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1527 if (!ret)
1528 ret = ret2;
1529 }
bfc1af65 1530
cf108bca 1531 unlock_page(page);
617ba13b 1532 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1533 if (!ret)
1534 ret = ret2;
bfc1af65
NP
1535 page_cache_release(page);
1536
1537 return ret ? ret : copied;
ac27a0ec 1538}
d2a17637
MC
1539
1540static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1541{
030ba6bc 1542 int retries = 0;
d2a17637
MC
1543 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1544 unsigned long md_needed, mdblocks, total = 0;
1545
1546 /*
1547 * recalculate the amount of metadata blocks to reserve
1548 * in order to allocate nrblocks
1549 * worse case is one extent per block
1550 */
030ba6bc 1551repeat:
d2a17637
MC
1552 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1553 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1554 mdblocks = ext4_calc_metadata_amount(inode, total);
1555 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1556
1557 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1558 total = md_needed + nrblocks;
1559
a30d542a 1560 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1561 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1562 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1563 yield();
1564 goto repeat;
1565 }
d2a17637
MC
1566 return -ENOSPC;
1567 }
d2a17637
MC
1568 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1569 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1570
1571 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572 return 0; /* success */
1573}
1574
12219aea 1575static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1576{
1577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578 int total, mdb, mdb_free, release;
1579
cd213226
MC
1580 if (!to_free)
1581 return; /* Nothing to release, exit */
1582
d2a17637 1583 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1584
1585 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1586 /*
1587 * if there is no reserved blocks, but we try to free some
1588 * then the counter is messed up somewhere.
1589 * but since this function is called from invalidate
1590 * page, it's harmless to return without any action
1591 */
1592 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1593 "blocks for inode %lu, but there is no reserved "
1594 "data blocks\n", to_free, inode->i_ino);
1595 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1596 return;
1597 }
1598
d2a17637 1599 /* recalculate the number of metablocks still need to be reserved */
12219aea 1600 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1601 mdb = ext4_calc_metadata_amount(inode, total);
1602
1603 /* figure out how many metablocks to release */
1604 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1605 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1606
d2a17637
MC
1607 release = to_free + mdb_free;
1608
6bc6e63f
AK
1609 /* update fs dirty blocks counter for truncate case */
1610 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1611
1612 /* update per-inode reservations */
12219aea
AK
1613 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1614 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1615
1616 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1617 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1618 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1619}
1620
1621static void ext4_da_page_release_reservation(struct page *page,
1622 unsigned long offset)
1623{
1624 int to_release = 0;
1625 struct buffer_head *head, *bh;
1626 unsigned int curr_off = 0;
1627
1628 head = page_buffers(page);
1629 bh = head;
1630 do {
1631 unsigned int next_off = curr_off + bh->b_size;
1632
1633 if ((offset <= curr_off) && (buffer_delay(bh))) {
1634 to_release++;
1635 clear_buffer_delay(bh);
1636 }
1637 curr_off = next_off;
1638 } while ((bh = bh->b_this_page) != head);
12219aea 1639 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1640}
ac27a0ec 1641
64769240
AT
1642/*
1643 * Delayed allocation stuff
1644 */
1645
1646struct mpage_da_data {
1647 struct inode *inode;
1648 struct buffer_head lbh; /* extent of blocks */
1649 unsigned long first_page, next_page; /* extent of pages */
1650 get_block_t *get_block;
1651 struct writeback_control *wbc;
a1d6cc56
AK
1652 int io_done;
1653 long pages_written;
df22291f 1654 int retval;
64769240
AT
1655};
1656
1657/*
1658 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1659 * them with writepage() call back
64769240
AT
1660 *
1661 * @mpd->inode: inode
1662 * @mpd->first_page: first page of the extent
1663 * @mpd->next_page: page after the last page of the extent
1664 * @mpd->get_block: the filesystem's block mapper function
1665 *
1666 * By the time mpage_da_submit_io() is called we expect all blocks
1667 * to be allocated. this may be wrong if allocation failed.
1668 *
1669 * As pages are already locked by write_cache_pages(), we can't use it
1670 */
1671static int mpage_da_submit_io(struct mpage_da_data *mpd)
1672{
1673 struct address_space *mapping = mpd->inode->i_mapping;
64769240
AT
1674 int ret = 0, err, nr_pages, i;
1675 unsigned long index, end;
1676 struct pagevec pvec;
1677
1678 BUG_ON(mpd->next_page <= mpd->first_page);
64769240
AT
1679 pagevec_init(&pvec, 0);
1680 index = mpd->first_page;
1681 end = mpd->next_page - 1;
1682
1683 while (index <= end) {
1684 /* XXX: optimize tail */
1685 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1686 if (nr_pages == 0)
1687 break;
1688 for (i = 0; i < nr_pages; i++) {
1689 struct page *page = pvec.pages[i];
1690
1691 index = page->index;
1692 if (index > end)
1693 break;
1694 index++;
1695
a1d6cc56
AK
1696 err = mapping->a_ops->writepage(page, mpd->wbc);
1697 if (!err)
1698 mpd->pages_written++;
64769240
AT
1699 /*
1700 * In error case, we have to continue because
1701 * remaining pages are still locked
1702 * XXX: unlock and re-dirty them?
1703 */
1704 if (ret == 0)
1705 ret = err;
1706 }
1707 pagevec_release(&pvec);
1708 }
64769240
AT
1709 return ret;
1710}
1711
1712/*
1713 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1714 *
1715 * @mpd->inode - inode to walk through
1716 * @exbh->b_blocknr - first block on a disk
1717 * @exbh->b_size - amount of space in bytes
1718 * @logical - first logical block to start assignment with
1719 *
1720 * the function goes through all passed space and put actual disk
1721 * block numbers into buffer heads, dropping BH_Delay
1722 */
1723static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1724 struct buffer_head *exbh)
1725{
1726 struct inode *inode = mpd->inode;
1727 struct address_space *mapping = inode->i_mapping;
1728 int blocks = exbh->b_size >> inode->i_blkbits;
1729 sector_t pblock = exbh->b_blocknr, cur_logical;
1730 struct buffer_head *head, *bh;
a1d6cc56 1731 pgoff_t index, end;
64769240
AT
1732 struct pagevec pvec;
1733 int nr_pages, i;
1734
1735 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1736 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1737 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1738
1739 pagevec_init(&pvec, 0);
1740
1741 while (index <= end) {
1742 /* XXX: optimize tail */
1743 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1744 if (nr_pages == 0)
1745 break;
1746 for (i = 0; i < nr_pages; i++) {
1747 struct page *page = pvec.pages[i];
1748
1749 index = page->index;
1750 if (index > end)
1751 break;
1752 index++;
1753
1754 BUG_ON(!PageLocked(page));
1755 BUG_ON(PageWriteback(page));
1756 BUG_ON(!page_has_buffers(page));
1757
1758 bh = page_buffers(page);
1759 head = bh;
1760
1761 /* skip blocks out of the range */
1762 do {
1763 if (cur_logical >= logical)
1764 break;
1765 cur_logical++;
1766 } while ((bh = bh->b_this_page) != head);
1767
1768 do {
1769 if (cur_logical >= logical + blocks)
1770 break;
64769240
AT
1771 if (buffer_delay(bh)) {
1772 bh->b_blocknr = pblock;
1773 clear_buffer_delay(bh);
bf068ee2
AK
1774 bh->b_bdev = inode->i_sb->s_bdev;
1775 } else if (buffer_unwritten(bh)) {
1776 bh->b_blocknr = pblock;
1777 clear_buffer_unwritten(bh);
1778 set_buffer_mapped(bh);
1779 set_buffer_new(bh);
1780 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1781 } else if (buffer_mapped(bh))
64769240 1782 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1783
1784 cur_logical++;
1785 pblock++;
1786 } while ((bh = bh->b_this_page) != head);
1787 }
1788 pagevec_release(&pvec);
1789 }
1790}
1791
1792
1793/*
1794 * __unmap_underlying_blocks - just a helper function to unmap
1795 * set of blocks described by @bh
1796 */
1797static inline void __unmap_underlying_blocks(struct inode *inode,
1798 struct buffer_head *bh)
1799{
1800 struct block_device *bdev = inode->i_sb->s_bdev;
1801 int blocks, i;
1802
1803 blocks = bh->b_size >> inode->i_blkbits;
1804 for (i = 0; i < blocks; i++)
1805 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1806}
1807
c4a0c46e
AK
1808static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1809 sector_t logical, long blk_cnt)
1810{
1811 int nr_pages, i;
1812 pgoff_t index, end;
1813 struct pagevec pvec;
1814 struct inode *inode = mpd->inode;
1815 struct address_space *mapping = inode->i_mapping;
1816
1817 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1818 end = (logical + blk_cnt - 1) >>
1819 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1820 while (index <= end) {
1821 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1822 if (nr_pages == 0)
1823 break;
1824 for (i = 0; i < nr_pages; i++) {
1825 struct page *page = pvec.pages[i];
1826 index = page->index;
1827 if (index > end)
1828 break;
1829 index++;
1830
1831 BUG_ON(!PageLocked(page));
1832 BUG_ON(PageWriteback(page));
1833 block_invalidatepage(page, 0);
1834 ClearPageUptodate(page);
1835 unlock_page(page);
1836 }
1837 }
1838 return;
1839}
1840
df22291f
AK
1841static void ext4_print_free_blocks(struct inode *inode)
1842{
1843 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1844 printk(KERN_EMERG "Total free blocks count %lld\n",
1845 ext4_count_free_blocks(inode->i_sb));
1846 printk(KERN_EMERG "Free/Dirty block details\n");
1847 printk(KERN_EMERG "free_blocks=%lld\n",
1848 percpu_counter_sum(&sbi->s_freeblocks_counter));
1849 printk(KERN_EMERG "dirty_blocks=%lld\n",
1850 percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1851 printk(KERN_EMERG "Block reservation details\n");
1852 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1853 EXT4_I(inode)->i_reserved_data_blocks);
1854 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1855 EXT4_I(inode)->i_reserved_meta_blocks);
1856 return;
1857}
1858
64769240
AT
1859/*
1860 * mpage_da_map_blocks - go through given space
1861 *
1862 * @mpd->lbh - bh describing space
1863 * @mpd->get_block - the filesystem's block mapper function
1864 *
1865 * The function skips space we know is already mapped to disk blocks.
1866 *
64769240 1867 */
c4a0c46e 1868static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1869{
a1d6cc56 1870 int err = 0;
030ba6bc 1871 struct buffer_head new;
64769240 1872 struct buffer_head *lbh = &mpd->lbh;
df22291f 1873 sector_t next;
64769240
AT
1874
1875 /*
1876 * We consider only non-mapped and non-allocated blocks
1877 */
1878 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1879 return 0;
a1d6cc56
AK
1880 new.b_state = lbh->b_state;
1881 new.b_blocknr = 0;
1882 new.b_size = lbh->b_size;
df22291f 1883 next = lbh->b_blocknr;
a1d6cc56
AK
1884 /*
1885 * If we didn't accumulate anything
1886 * to write simply return
1887 */
1888 if (!new.b_size)
c4a0c46e 1889 return 0;
a1d6cc56 1890 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1891 if (err) {
1892
1893 /* If get block returns with error
1894 * we simply return. Later writepage
1895 * will redirty the page and writepages
1896 * will find the dirty page again
1897 */
1898 if (err == -EAGAIN)
1899 return 0;
df22291f
AK
1900
1901 if (err == -ENOSPC &&
1902 ext4_count_free_blocks(mpd->inode->i_sb)) {
1903 mpd->retval = err;
1904 return 0;
1905 }
1906
c4a0c46e
AK
1907 /*
1908 * get block failure will cause us
1909 * to loop in writepages. Because
1910 * a_ops->writepage won't be able to
1911 * make progress. The page will be redirtied
1912 * by writepage and writepages will again
1913 * try to write the same.
1914 */
1915 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1916 "at logical offset %llu with max blocks "
1917 "%zd with error %d\n",
1918 __func__, mpd->inode->i_ino,
1919 (unsigned long long)next,
1920 lbh->b_size >> mpd->inode->i_blkbits, err);
1921 printk(KERN_EMERG "This should not happen.!! "
1922 "Data will be lost\n");
030ba6bc 1923 if (err == -ENOSPC) {
df22291f 1924 ext4_print_free_blocks(mpd->inode);
030ba6bc 1925 }
c4a0c46e
AK
1926 /* invlaidate all the pages */
1927 ext4_da_block_invalidatepages(mpd, next,
1928 lbh->b_size >> mpd->inode->i_blkbits);
1929 return err;
1930 }
a1d6cc56 1931 BUG_ON(new.b_size == 0);
64769240 1932
a1d6cc56
AK
1933 if (buffer_new(&new))
1934 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1935
a1d6cc56
AK
1936 /*
1937 * If blocks are delayed marked, we need to
1938 * put actual blocknr and drop delayed bit
1939 */
1940 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1941 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1942
c4a0c46e 1943 return 0;
64769240
AT
1944}
1945
bf068ee2
AK
1946#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1947 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1948
1949/*
1950 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1951 *
1952 * @mpd->lbh - extent of blocks
1953 * @logical - logical number of the block in the file
1954 * @bh - bh of the block (used to access block's state)
1955 *
1956 * the function is used to collect contig. blocks in same state
1957 */
1958static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1959 sector_t logical, struct buffer_head *bh)
1960{
64769240 1961 sector_t next;
525f4ed8
MC
1962 size_t b_size = bh->b_size;
1963 struct buffer_head *lbh = &mpd->lbh;
1964 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 1965
525f4ed8
MC
1966 /* check if thereserved journal credits might overflow */
1967 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1968 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1969 /*
1970 * With non-extent format we are limited by the journal
1971 * credit available. Total credit needed to insert
1972 * nrblocks contiguous blocks is dependent on the
1973 * nrblocks. So limit nrblocks.
1974 */
1975 goto flush_it;
1976 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1977 EXT4_MAX_TRANS_DATA) {
1978 /*
1979 * Adding the new buffer_head would make it cross the
1980 * allowed limit for which we have journal credit
1981 * reserved. So limit the new bh->b_size
1982 */
1983 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1984 mpd->inode->i_blkbits;
1985 /* we will do mpage_da_submit_io in the next loop */
1986 }
1987 }
64769240
AT
1988 /*
1989 * First block in the extent
1990 */
1991 if (lbh->b_size == 0) {
1992 lbh->b_blocknr = logical;
525f4ed8 1993 lbh->b_size = b_size;
64769240
AT
1994 lbh->b_state = bh->b_state & BH_FLAGS;
1995 return;
1996 }
1997
525f4ed8 1998 next = lbh->b_blocknr + nrblocks;
64769240
AT
1999 /*
2000 * Can we merge the block to our big extent?
2001 */
2002 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 2003 lbh->b_size += b_size;
64769240
AT
2004 return;
2005 }
2006
525f4ed8 2007flush_it:
64769240
AT
2008 /*
2009 * We couldn't merge the block to our extent, so we
2010 * need to flush current extent and start new one
2011 */
c4a0c46e
AK
2012 if (mpage_da_map_blocks(mpd) == 0)
2013 mpage_da_submit_io(mpd);
a1d6cc56
AK
2014 mpd->io_done = 1;
2015 return;
64769240
AT
2016}
2017
2018/*
2019 * __mpage_da_writepage - finds extent of pages and blocks
2020 *
2021 * @page: page to consider
2022 * @wbc: not used, we just follow rules
2023 * @data: context
2024 *
2025 * The function finds extents of pages and scan them for all blocks.
2026 */
2027static int __mpage_da_writepage(struct page *page,
2028 struct writeback_control *wbc, void *data)
2029{
2030 struct mpage_da_data *mpd = data;
2031 struct inode *inode = mpd->inode;
2032 struct buffer_head *bh, *head, fake;
2033 sector_t logical;
2034
a1d6cc56
AK
2035 if (mpd->io_done) {
2036 /*
2037 * Rest of the page in the page_vec
2038 * redirty then and skip then. We will
2039 * try to to write them again after
2040 * starting a new transaction
2041 */
2042 redirty_page_for_writepage(wbc, page);
2043 unlock_page(page);
2044 return MPAGE_DA_EXTENT_TAIL;
2045 }
64769240
AT
2046 /*
2047 * Can we merge this page to current extent?
2048 */
2049 if (mpd->next_page != page->index) {
2050 /*
2051 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2052 * and start IO on them using writepage()
64769240
AT
2053 */
2054 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2055 if (mpage_da_map_blocks(mpd) == 0)
2056 mpage_da_submit_io(mpd);
a1d6cc56
AK
2057 /*
2058 * skip rest of the page in the page_vec
2059 */
2060 mpd->io_done = 1;
2061 redirty_page_for_writepage(wbc, page);
2062 unlock_page(page);
2063 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2064 }
2065
2066 /*
2067 * Start next extent of pages ...
2068 */
2069 mpd->first_page = page->index;
2070
2071 /*
2072 * ... and blocks
2073 */
2074 mpd->lbh.b_size = 0;
2075 mpd->lbh.b_state = 0;
2076 mpd->lbh.b_blocknr = 0;
2077 }
2078
2079 mpd->next_page = page->index + 1;
2080 logical = (sector_t) page->index <<
2081 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082
2083 if (!page_has_buffers(page)) {
2084 /*
2085 * There is no attached buffer heads yet (mmap?)
2086 * we treat the page asfull of dirty blocks
2087 */
2088 bh = &fake;
2089 bh->b_size = PAGE_CACHE_SIZE;
2090 bh->b_state = 0;
2091 set_buffer_dirty(bh);
2092 set_buffer_uptodate(bh);
2093 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2094 if (mpd->io_done)
2095 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2096 } else {
2097 /*
2098 * Page with regular buffer heads, just add all dirty ones
2099 */
2100 head = page_buffers(page);
2101 bh = head;
2102 do {
2103 BUG_ON(buffer_locked(bh));
a1d6cc56
AK
2104 if (buffer_dirty(bh) &&
2105 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2106 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2107 if (mpd->io_done)
2108 return MPAGE_DA_EXTENT_TAIL;
2109 }
64769240
AT
2110 logical++;
2111 } while ((bh = bh->b_this_page) != head);
2112 }
2113
2114 return 0;
2115}
2116
2117/*
2118 * mpage_da_writepages - walk the list of dirty pages of the given
2119 * address space, allocates non-allocated blocks, maps newly-allocated
2120 * blocks to existing bhs and issue IO them
2121 *
2122 * @mapping: address space structure to write
2123 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2124 * @get_block: the filesystem's block mapper function.
2125 *
2126 * This is a library function, which implements the writepages()
2127 * address_space_operation.
64769240
AT
2128 */
2129static int mpage_da_writepages(struct address_space *mapping,
2130 struct writeback_control *wbc,
df22291f 2131 struct mpage_da_data *mpd)
64769240 2132{
a1d6cc56 2133 long to_write;
64769240
AT
2134 int ret;
2135
df22291f 2136 if (!mpd->get_block)
64769240
AT
2137 return generic_writepages(mapping, wbc);
2138
df22291f
AK
2139 mpd->lbh.b_size = 0;
2140 mpd->lbh.b_state = 0;
2141 mpd->lbh.b_blocknr = 0;
2142 mpd->first_page = 0;
2143 mpd->next_page = 0;
2144 mpd->io_done = 0;
2145 mpd->pages_written = 0;
2146 mpd->retval = 0;
a1d6cc56
AK
2147
2148 to_write = wbc->nr_to_write;
64769240 2149
df22291f 2150 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
64769240
AT
2151
2152 /*
2153 * Handle last extent of pages
2154 */
df22291f
AK
2155 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2156 if (mpage_da_map_blocks(mpd) == 0)
2157 mpage_da_submit_io(mpd);
64769240
AT
2158 }
2159
df22291f 2160 wbc->nr_to_write = to_write - mpd->pages_written;
64769240
AT
2161 return ret;
2162}
2163
2164/*
2165 * this is a special callback for ->write_begin() only
2166 * it's intention is to return mapped block or reserve space
2167 */
2168static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2169 struct buffer_head *bh_result, int create)
2170{
2171 int ret = 0;
2172
2173 BUG_ON(create == 0);
2174 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2175
2176 /*
2177 * first, we need to know whether the block is allocated already
2178 * preallocated blocks are unmapped but should treated
2179 * the same as allocated blocks.
2180 */
d2a17637
MC
2181 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2182 if ((ret == 0) && !buffer_delay(bh_result)) {
2183 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2184 /*
2185 * XXX: __block_prepare_write() unmaps passed block,
2186 * is it OK?
2187 */
d2a17637
MC
2188 ret = ext4_da_reserve_space(inode, 1);
2189 if (ret)
2190 /* not enough space to reserve */
2191 return ret;
2192
64769240
AT
2193 map_bh(bh_result, inode->i_sb, 0);
2194 set_buffer_new(bh_result);
2195 set_buffer_delay(bh_result);
2196 } else if (ret > 0) {
2197 bh_result->b_size = (ret << inode->i_blkbits);
2198 ret = 0;
2199 }
2200
2201 return ret;
2202}
d2a17637 2203#define EXT4_DELALLOC_RSVED 1
64769240
AT
2204static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2205 struct buffer_head *bh_result, int create)
2206{
61628a3f 2207 int ret;
64769240
AT
2208 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2209 loff_t disksize = EXT4_I(inode)->i_disksize;
2210 handle_t *handle = NULL;
2211
61628a3f 2212 handle = ext4_journal_current_handle();
166348dd
AK
2213 BUG_ON(!handle);
2214 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2215 bh_result, create, 0, EXT4_DELALLOC_RSVED);
64769240 2216 if (ret > 0) {
166348dd 2217
64769240
AT
2218 bh_result->b_size = (ret << inode->i_blkbits);
2219
166348dd
AK
2220 if (ext4_should_order_data(inode)) {
2221 int retval;
2222 retval = ext4_jbd2_file_inode(handle, inode);
2223 if (retval)
2224 /*
2225 * Failed to add inode for ordered
2226 * mode. Don't update file size
2227 */
2228 return retval;
2229 }
2230
64769240
AT
2231 /*
2232 * Update on-disk size along with block allocation
2233 * we don't use 'extend_disksize' as size may change
2234 * within already allocated block -bzzz
2235 */
2236 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2237 if (disksize > i_size_read(inode))
2238 disksize = i_size_read(inode);
2239 if (disksize > EXT4_I(inode)->i_disksize) {
cf17fea6
AK
2240 ext4_update_i_disksize(inode, disksize);
2241 ret = ext4_mark_inode_dirty(handle, inode);
2242 return ret;
64769240 2243 }
64769240
AT
2244 ret = 0;
2245 }
64769240
AT
2246 return ret;
2247}
61628a3f
MC
2248
2249static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2250{
f0e6c985
AK
2251 /*
2252 * unmapped buffer is possible for holes.
2253 * delay buffer is possible with delayed allocation
2254 */
2255 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2256}
2257
2258static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2259 struct buffer_head *bh_result, int create)
2260{
2261 int ret = 0;
2262 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2263
2264 /*
2265 * we don't want to do block allocation in writepage
2266 * so call get_block_wrap with create = 0
2267 */
2268 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2269 bh_result, 0, 0, 0);
2270 if (ret > 0) {
2271 bh_result->b_size = (ret << inode->i_blkbits);
2272 ret = 0;
2273 }
2274 return ret;
61628a3f
MC
2275}
2276
61628a3f 2277/*
f0e6c985
AK
2278 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2279 * get called via journal_submit_inode_data_buffers (no journal handle)
2280 * get called via shrink_page_list via pdflush (no journal handle)
2281 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2282 */
64769240
AT
2283static int ext4_da_writepage(struct page *page,
2284 struct writeback_control *wbc)
2285{
64769240 2286 int ret = 0;
61628a3f
MC
2287 loff_t size;
2288 unsigned long len;
61628a3f
MC
2289 struct buffer_head *page_bufs;
2290 struct inode *inode = page->mapping->host;
2291
f0e6c985
AK
2292 size = i_size_read(inode);
2293 if (page->index == size >> PAGE_CACHE_SHIFT)
2294 len = size & ~PAGE_CACHE_MASK;
2295 else
2296 len = PAGE_CACHE_SIZE;
64769240 2297
f0e6c985 2298 if (page_has_buffers(page)) {
61628a3f 2299 page_bufs = page_buffers(page);
f0e6c985
AK
2300 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2301 ext4_bh_unmapped_or_delay)) {
61628a3f 2302 /*
f0e6c985
AK
2303 * We don't want to do block allocation
2304 * So redirty the page and return
cd1aac32
AK
2305 * We may reach here when we do a journal commit
2306 * via journal_submit_inode_data_buffers.
2307 * If we don't have mapping block we just ignore
f0e6c985
AK
2308 * them. We can also reach here via shrink_page_list
2309 */
2310 redirty_page_for_writepage(wbc, page);
2311 unlock_page(page);
2312 return 0;
2313 }
2314 } else {
2315 /*
2316 * The test for page_has_buffers() is subtle:
2317 * We know the page is dirty but it lost buffers. That means
2318 * that at some moment in time after write_begin()/write_end()
2319 * has been called all buffers have been clean and thus they
2320 * must have been written at least once. So they are all
2321 * mapped and we can happily proceed with mapping them
2322 * and writing the page.
2323 *
2324 * Try to initialize the buffer_heads and check whether
2325 * all are mapped and non delay. We don't want to
2326 * do block allocation here.
2327 */
2328 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2329 ext4_normal_get_block_write);
2330 if (!ret) {
2331 page_bufs = page_buffers(page);
2332 /* check whether all are mapped and non delay */
2333 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2334 ext4_bh_unmapped_or_delay)) {
2335 redirty_page_for_writepage(wbc, page);
2336 unlock_page(page);
2337 return 0;
2338 }
2339 } else {
2340 /*
2341 * We can't do block allocation here
2342 * so just redity the page and unlock
2343 * and return
61628a3f 2344 */
61628a3f
MC
2345 redirty_page_for_writepage(wbc, page);
2346 unlock_page(page);
2347 return 0;
2348 }
64769240
AT
2349 }
2350
2351 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2352 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2353 else
f0e6c985
AK
2354 ret = block_write_full_page(page,
2355 ext4_normal_get_block_write,
2356 wbc);
64769240 2357
64769240
AT
2358 return ret;
2359}
2360
61628a3f 2361/*
525f4ed8
MC
2362 * This is called via ext4_da_writepages() to
2363 * calulate the total number of credits to reserve to fit
2364 * a single extent allocation into a single transaction,
2365 * ext4_da_writpeages() will loop calling this before
2366 * the block allocation.
61628a3f 2367 */
525f4ed8
MC
2368
2369static int ext4_da_writepages_trans_blocks(struct inode *inode)
2370{
2371 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2372
2373 /*
2374 * With non-extent format the journal credit needed to
2375 * insert nrblocks contiguous block is dependent on
2376 * number of contiguous block. So we will limit
2377 * number of contiguous block to a sane value
2378 */
2379 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2380 (max_blocks > EXT4_MAX_TRANS_DATA))
2381 max_blocks = EXT4_MAX_TRANS_DATA;
2382
2383 return ext4_chunk_trans_blocks(inode, max_blocks);
2384}
61628a3f 2385
64769240 2386static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2387 struct writeback_control *wbc)
64769240 2388{
61628a3f 2389 handle_t *handle = NULL;
61628a3f 2390 loff_t range_start = 0;
df22291f 2391 struct mpage_da_data mpd;
5e745b04
AK
2392 struct inode *inode = mapping->host;
2393 int needed_blocks, ret = 0, nr_to_writebump = 0;
2394 long to_write, pages_skipped = 0;
2395 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f
MC
2396
2397 /*
2398 * No pages to write? This is mainly a kludge to avoid starting
2399 * a transaction for special inodes like journal inode on last iput()
2400 * because that could violate lock ordering on umount
2401 */
a1d6cc56 2402 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2403 return 0;
5e745b04
AK
2404 /*
2405 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2406 * This make sure small files blocks are allocated in
2407 * single attempt. This ensure that small files
2408 * get less fragmented.
2409 */
2410 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2411 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2412 wbc->nr_to_write = sbi->s_mb_stream_request;
2413 }
61628a3f 2414
a1d6cc56 2415 if (!wbc->range_cyclic)
61628a3f
MC
2416 /*
2417 * If range_cyclic is not set force range_cont
2418 * and save the old writeback_index
2419 */
2420 wbc->range_cont = 1;
61628a3f 2421
a1d6cc56
AK
2422 range_start = wbc->range_start;
2423 pages_skipped = wbc->pages_skipped;
2424
df22291f
AK
2425 mpd.wbc = wbc;
2426 mpd.inode = mapping->host;
2427
a1d6cc56
AK
2428restart_loop:
2429 to_write = wbc->nr_to_write;
2430 while (!ret && to_write > 0) {
2431
2432 /*
2433 * we insert one extent at a time. So we need
2434 * credit needed for single extent allocation.
2435 * journalled mode is currently not supported
2436 * by delalloc
2437 */
2438 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2439 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2440
61628a3f
MC
2441 /* start a new transaction*/
2442 handle = ext4_journal_start(inode, needed_blocks);
2443 if (IS_ERR(handle)) {
2444 ret = PTR_ERR(handle);
a1d6cc56
AK
2445 printk(KERN_EMERG "%s: jbd2_start: "
2446 "%ld pages, ino %lu; err %d\n", __func__,
2447 wbc->nr_to_write, inode->i_ino, ret);
2448 dump_stack();
61628a3f
MC
2449 goto out_writepages;
2450 }
61628a3f 2451 to_write -= wbc->nr_to_write;
df22291f
AK
2452
2453 mpd.get_block = ext4_da_get_block_write;
2454 ret = mpage_da_writepages(mapping, wbc, &mpd);
2455
61628a3f 2456 ext4_journal_stop(handle);
df22291f
AK
2457
2458 if (mpd.retval == -ENOSPC)
2459 jbd2_journal_force_commit_nested(sbi->s_journal);
2460
2461 /* reset the retry count */
a1d6cc56
AK
2462 if (ret == MPAGE_DA_EXTENT_TAIL) {
2463 /*
2464 * got one extent now try with
2465 * rest of the pages
2466 */
2467 to_write += wbc->nr_to_write;
2468 ret = 0;
2469 } else if (wbc->nr_to_write) {
61628a3f
MC
2470 /*
2471 * There is no more writeout needed
2472 * or we requested for a noblocking writeout
2473 * and we found the device congested
2474 */
2475 to_write += wbc->nr_to_write;
2476 break;
2477 }
2478 wbc->nr_to_write = to_write;
2479 }
2480
a1d6cc56
AK
2481 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2482 /* We skipped pages in this loop */
2483 wbc->range_start = range_start;
2484 wbc->nr_to_write = to_write +
2485 wbc->pages_skipped - pages_skipped;
2486 wbc->pages_skipped = pages_skipped;
2487 goto restart_loop;
2488 }
2489
61628a3f 2490out_writepages:
5e745b04 2491 wbc->nr_to_write = to_write - nr_to_writebump;
a1d6cc56 2492 wbc->range_start = range_start;
61628a3f 2493 return ret;
64769240
AT
2494}
2495
79f0be8d
AK
2496#define FALL_BACK_TO_NONDELALLOC 1
2497static int ext4_nonda_switch(struct super_block *sb)
2498{
2499 s64 free_blocks, dirty_blocks;
2500 struct ext4_sb_info *sbi = EXT4_SB(sb);
2501
2502 /*
2503 * switch to non delalloc mode if we are running low
2504 * on free block. The free block accounting via percpu
2505 * counters can get slightly wrong with FBC_BATCH getting
2506 * accumulated on each CPU without updating global counters
2507 * Delalloc need an accurate free block accounting. So switch
2508 * to non delalloc when we are near to error range.
2509 */
2510 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2511 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2512 if (2 * free_blocks < 3 * dirty_blocks ||
2513 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2514 /*
2515 * free block count is less that 150% of dirty blocks
2516 * or free blocks is less that watermark
2517 */
2518 return 1;
2519 }
2520 return 0;
2521}
2522
64769240
AT
2523static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2524 loff_t pos, unsigned len, unsigned flags,
2525 struct page **pagep, void **fsdata)
2526{
d2a17637 2527 int ret, retries = 0;
64769240
AT
2528 struct page *page;
2529 pgoff_t index;
2530 unsigned from, to;
2531 struct inode *inode = mapping->host;
2532 handle_t *handle;
2533
2534 index = pos >> PAGE_CACHE_SHIFT;
2535 from = pos & (PAGE_CACHE_SIZE - 1);
2536 to = from + len;
79f0be8d
AK
2537
2538 if (ext4_nonda_switch(inode->i_sb)) {
2539 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2540 return ext4_write_begin(file, mapping, pos,
2541 len, flags, pagep, fsdata);
2542 }
2543 *fsdata = (void *)0;
d2a17637 2544retry:
64769240
AT
2545 /*
2546 * With delayed allocation, we don't log the i_disksize update
2547 * if there is delayed block allocation. But we still need
2548 * to journalling the i_disksize update if writes to the end
2549 * of file which has an already mapped buffer.
2550 */
2551 handle = ext4_journal_start(inode, 1);
2552 if (IS_ERR(handle)) {
2553 ret = PTR_ERR(handle);
2554 goto out;
2555 }
2556
2557 page = __grab_cache_page(mapping, index);
d5a0d4f7
ES
2558 if (!page) {
2559 ext4_journal_stop(handle);
2560 ret = -ENOMEM;
2561 goto out;
2562 }
64769240
AT
2563 *pagep = page;
2564
2565 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2566 ext4_da_get_block_prep);
2567 if (ret < 0) {
2568 unlock_page(page);
2569 ext4_journal_stop(handle);
2570 page_cache_release(page);
ae4d5372
AK
2571 /*
2572 * block_write_begin may have instantiated a few blocks
2573 * outside i_size. Trim these off again. Don't need
2574 * i_size_read because we hold i_mutex.
2575 */
2576 if (pos + len > inode->i_size)
2577 vmtruncate(inode, inode->i_size);
64769240
AT
2578 }
2579
d2a17637
MC
2580 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2581 goto retry;
64769240
AT
2582out:
2583 return ret;
2584}
2585
632eaeab
MC
2586/*
2587 * Check if we should update i_disksize
2588 * when write to the end of file but not require block allocation
2589 */
2590static int ext4_da_should_update_i_disksize(struct page *page,
2591 unsigned long offset)
2592{
2593 struct buffer_head *bh;
2594 struct inode *inode = page->mapping->host;
2595 unsigned int idx;
2596 int i;
2597
2598 bh = page_buffers(page);
2599 idx = offset >> inode->i_blkbits;
2600
af5bc92d 2601 for (i = 0; i < idx; i++)
632eaeab
MC
2602 bh = bh->b_this_page;
2603
2604 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2605 return 0;
2606 return 1;
2607}
2608
64769240
AT
2609static int ext4_da_write_end(struct file *file,
2610 struct address_space *mapping,
2611 loff_t pos, unsigned len, unsigned copied,
2612 struct page *page, void *fsdata)
2613{
2614 struct inode *inode = mapping->host;
2615 int ret = 0, ret2;
2616 handle_t *handle = ext4_journal_current_handle();
2617 loff_t new_i_size;
632eaeab 2618 unsigned long start, end;
79f0be8d
AK
2619 int write_mode = (int)(unsigned long)fsdata;
2620
2621 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2622 if (ext4_should_order_data(inode)) {
2623 return ext4_ordered_write_end(file, mapping, pos,
2624 len, copied, page, fsdata);
2625 } else if (ext4_should_writeback_data(inode)) {
2626 return ext4_writeback_write_end(file, mapping, pos,
2627 len, copied, page, fsdata);
2628 } else {
2629 BUG();
2630 }
2631 }
632eaeab
MC
2632
2633 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2634 end = start + copied - 1;
64769240
AT
2635
2636 /*
2637 * generic_write_end() will run mark_inode_dirty() if i_size
2638 * changes. So let's piggyback the i_disksize mark_inode_dirty
2639 * into that.
2640 */
2641
2642 new_i_size = pos + copied;
632eaeab
MC
2643 if (new_i_size > EXT4_I(inode)->i_disksize) {
2644 if (ext4_da_should_update_i_disksize(page, end)) {
2645 down_write(&EXT4_I(inode)->i_data_sem);
2646 if (new_i_size > EXT4_I(inode)->i_disksize) {
2647 /*
2648 * Updating i_disksize when extending file
2649 * without needing block allocation
2650 */
2651 if (ext4_should_order_data(inode))
2652 ret = ext4_jbd2_file_inode(handle,
2653 inode);
64769240 2654
632eaeab
MC
2655 EXT4_I(inode)->i_disksize = new_i_size;
2656 }
2657 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2658 /* We need to mark inode dirty even if
2659 * new_i_size is less that inode->i_size
2660 * bu greater than i_disksize.(hint delalloc)
2661 */
2662 ext4_mark_inode_dirty(handle, inode);
64769240 2663 }
632eaeab 2664 }
64769240
AT
2665 ret2 = generic_write_end(file, mapping, pos, len, copied,
2666 page, fsdata);
2667 copied = ret2;
2668 if (ret2 < 0)
2669 ret = ret2;
2670 ret2 = ext4_journal_stop(handle);
2671 if (!ret)
2672 ret = ret2;
2673
2674 return ret ? ret : copied;
2675}
2676
2677static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2678{
64769240
AT
2679 /*
2680 * Drop reserved blocks
2681 */
2682 BUG_ON(!PageLocked(page));
2683 if (!page_has_buffers(page))
2684 goto out;
2685
d2a17637 2686 ext4_da_page_release_reservation(page, offset);
64769240
AT
2687
2688out:
2689 ext4_invalidatepage(page, offset);
2690
2691 return;
2692}
2693
2694
ac27a0ec
DK
2695/*
2696 * bmap() is special. It gets used by applications such as lilo and by
2697 * the swapper to find the on-disk block of a specific piece of data.
2698 *
2699 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2700 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2701 * filesystem and enables swap, then they may get a nasty shock when the
2702 * data getting swapped to that swapfile suddenly gets overwritten by
2703 * the original zero's written out previously to the journal and
2704 * awaiting writeback in the kernel's buffer cache.
2705 *
2706 * So, if we see any bmap calls here on a modified, data-journaled file,
2707 * take extra steps to flush any blocks which might be in the cache.
2708 */
617ba13b 2709static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2710{
2711 struct inode *inode = mapping->host;
2712 journal_t *journal;
2713 int err;
2714
64769240
AT
2715 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2716 test_opt(inode->i_sb, DELALLOC)) {
2717 /*
2718 * With delalloc we want to sync the file
2719 * so that we can make sure we allocate
2720 * blocks for file
2721 */
2722 filemap_write_and_wait(mapping);
2723 }
2724
617ba13b 2725 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2726 /*
2727 * This is a REALLY heavyweight approach, but the use of
2728 * bmap on dirty files is expected to be extremely rare:
2729 * only if we run lilo or swapon on a freshly made file
2730 * do we expect this to happen.
2731 *
2732 * (bmap requires CAP_SYS_RAWIO so this does not
2733 * represent an unprivileged user DOS attack --- we'd be
2734 * in trouble if mortal users could trigger this path at
2735 * will.)
2736 *
617ba13b 2737 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2738 * regular files. If somebody wants to bmap a directory
2739 * or symlink and gets confused because the buffer
2740 * hasn't yet been flushed to disk, they deserve
2741 * everything they get.
2742 */
2743
617ba13b
MC
2744 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2745 journal = EXT4_JOURNAL(inode);
dab291af
MC
2746 jbd2_journal_lock_updates(journal);
2747 err = jbd2_journal_flush(journal);
2748 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2749
2750 if (err)
2751 return 0;
2752 }
2753
af5bc92d 2754 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2755}
2756
2757static int bget_one(handle_t *handle, struct buffer_head *bh)
2758{
2759 get_bh(bh);
2760 return 0;
2761}
2762
2763static int bput_one(handle_t *handle, struct buffer_head *bh)
2764{
2765 put_bh(bh);
2766 return 0;
2767}
2768
ac27a0ec 2769/*
678aaf48
JK
2770 * Note that we don't need to start a transaction unless we're journaling data
2771 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2772 * need to file the inode to the transaction's list in ordered mode because if
2773 * we are writing back data added by write(), the inode is already there and if
2774 * we are writing back data modified via mmap(), noone guarantees in which
2775 * transaction the data will hit the disk. In case we are journaling data, we
2776 * cannot start transaction directly because transaction start ranks above page
2777 * lock so we have to do some magic.
ac27a0ec 2778 *
678aaf48 2779 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2780 *
2781 * Problem:
2782 *
617ba13b
MC
2783 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2784 * ext4_writepage()
ac27a0ec
DK
2785 *
2786 * Similar for:
2787 *
617ba13b 2788 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2789 *
617ba13b 2790 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2791 * lock_journal and i_data_sem
ac27a0ec
DK
2792 *
2793 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2794 * allocations fail.
2795 *
2796 * 16May01: If we're reentered then journal_current_handle() will be
2797 * non-zero. We simply *return*.
2798 *
2799 * 1 July 2001: @@@ FIXME:
2800 * In journalled data mode, a data buffer may be metadata against the
2801 * current transaction. But the same file is part of a shared mapping
2802 * and someone does a writepage() on it.
2803 *
2804 * We will move the buffer onto the async_data list, but *after* it has
2805 * been dirtied. So there's a small window where we have dirty data on
2806 * BJ_Metadata.
2807 *
2808 * Note that this only applies to the last partial page in the file. The
2809 * bit which block_write_full_page() uses prepare/commit for. (That's
2810 * broken code anyway: it's wrong for msync()).
2811 *
2812 * It's a rare case: affects the final partial page, for journalled data
2813 * where the file is subject to bith write() and writepage() in the same
2814 * transction. To fix it we'll need a custom block_write_full_page().
2815 * We'll probably need that anyway for journalling writepage() output.
2816 *
2817 * We don't honour synchronous mounts for writepage(). That would be
2818 * disastrous. Any write() or metadata operation will sync the fs for
2819 * us.
2820 *
ac27a0ec 2821 */
678aaf48 2822static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2823 struct writeback_control *wbc)
2824{
2825 struct inode *inode = page->mapping->host;
2826
2827 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2828 return nobh_writepage(page,
2829 ext4_normal_get_block_write, wbc);
cf108bca 2830 else
f0e6c985
AK
2831 return block_write_full_page(page,
2832 ext4_normal_get_block_write,
2833 wbc);
cf108bca
JK
2834}
2835
678aaf48 2836static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2837 struct writeback_control *wbc)
2838{
2839 struct inode *inode = page->mapping->host;
cf108bca
JK
2840 loff_t size = i_size_read(inode);
2841 loff_t len;
2842
2843 J_ASSERT(PageLocked(page));
cf108bca
JK
2844 if (page->index == size >> PAGE_CACHE_SHIFT)
2845 len = size & ~PAGE_CACHE_MASK;
2846 else
2847 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2848
2849 if (page_has_buffers(page)) {
2850 /* if page has buffers it should all be mapped
2851 * and allocated. If there are not buffers attached
2852 * to the page we know the page is dirty but it lost
2853 * buffers. That means that at some moment in time
2854 * after write_begin() / write_end() has been called
2855 * all buffers have been clean and thus they must have been
2856 * written at least once. So they are all mapped and we can
2857 * happily proceed with mapping them and writing the page.
2858 */
2859 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2860 ext4_bh_unmapped_or_delay));
2861 }
cf108bca
JK
2862
2863 if (!ext4_journal_current_handle())
678aaf48 2864 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2865
2866 redirty_page_for_writepage(wbc, page);
2867 unlock_page(page);
2868 return 0;
2869}
2870
2871static int __ext4_journalled_writepage(struct page *page,
2872 struct writeback_control *wbc)
2873{
2874 struct address_space *mapping = page->mapping;
2875 struct inode *inode = mapping->host;
2876 struct buffer_head *page_bufs;
ac27a0ec
DK
2877 handle_t *handle = NULL;
2878 int ret = 0;
2879 int err;
2880
f0e6c985
AK
2881 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2882 ext4_normal_get_block_write);
cf108bca
JK
2883 if (ret != 0)
2884 goto out_unlock;
2885
2886 page_bufs = page_buffers(page);
2887 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2888 bget_one);
2889 /* As soon as we unlock the page, it can go away, but we have
2890 * references to buffers so we are safe */
2891 unlock_page(page);
ac27a0ec 2892
617ba13b 2893 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2894 if (IS_ERR(handle)) {
2895 ret = PTR_ERR(handle);
cf108bca 2896 goto out;
ac27a0ec
DK
2897 }
2898
cf108bca
JK
2899 ret = walk_page_buffers(handle, page_bufs, 0,
2900 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2901
cf108bca
JK
2902 err = walk_page_buffers(handle, page_bufs, 0,
2903 PAGE_CACHE_SIZE, NULL, write_end_fn);
2904 if (ret == 0)
2905 ret = err;
617ba13b 2906 err = ext4_journal_stop(handle);
ac27a0ec
DK
2907 if (!ret)
2908 ret = err;
ac27a0ec 2909
cf108bca
JK
2910 walk_page_buffers(handle, page_bufs, 0,
2911 PAGE_CACHE_SIZE, NULL, bput_one);
2912 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2913 goto out;
2914
2915out_unlock:
ac27a0ec 2916 unlock_page(page);
cf108bca 2917out:
ac27a0ec
DK
2918 return ret;
2919}
2920
617ba13b 2921static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2922 struct writeback_control *wbc)
2923{
2924 struct inode *inode = page->mapping->host;
cf108bca
JK
2925 loff_t size = i_size_read(inode);
2926 loff_t len;
ac27a0ec 2927
cf108bca 2928 J_ASSERT(PageLocked(page));
cf108bca
JK
2929 if (page->index == size >> PAGE_CACHE_SHIFT)
2930 len = size & ~PAGE_CACHE_MASK;
2931 else
2932 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2933
2934 if (page_has_buffers(page)) {
2935 /* if page has buffers it should all be mapped
2936 * and allocated. If there are not buffers attached
2937 * to the page we know the page is dirty but it lost
2938 * buffers. That means that at some moment in time
2939 * after write_begin() / write_end() has been called
2940 * all buffers have been clean and thus they must have been
2941 * written at least once. So they are all mapped and we can
2942 * happily proceed with mapping them and writing the page.
2943 */
2944 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2945 ext4_bh_unmapped_or_delay));
2946 }
ac27a0ec 2947
cf108bca 2948 if (ext4_journal_current_handle())
ac27a0ec 2949 goto no_write;
ac27a0ec 2950
cf108bca 2951 if (PageChecked(page)) {
ac27a0ec
DK
2952 /*
2953 * It's mmapped pagecache. Add buffers and journal it. There
2954 * doesn't seem much point in redirtying the page here.
2955 */
2956 ClearPageChecked(page);
cf108bca 2957 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2958 } else {
2959 /*
2960 * It may be a page full of checkpoint-mode buffers. We don't
2961 * really know unless we go poke around in the buffer_heads.
2962 * But block_write_full_page will do the right thing.
2963 */
f0e6c985
AK
2964 return block_write_full_page(page,
2965 ext4_normal_get_block_write,
2966 wbc);
ac27a0ec 2967 }
ac27a0ec
DK
2968no_write:
2969 redirty_page_for_writepage(wbc, page);
ac27a0ec 2970 unlock_page(page);
cf108bca 2971 return 0;
ac27a0ec
DK
2972}
2973
617ba13b 2974static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2975{
617ba13b 2976 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2977}
2978
2979static int
617ba13b 2980ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2981 struct list_head *pages, unsigned nr_pages)
2982{
617ba13b 2983 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2984}
2985
617ba13b 2986static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2987{
617ba13b 2988 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2989
2990 /*
2991 * If it's a full truncate we just forget about the pending dirtying
2992 */
2993 if (offset == 0)
2994 ClearPageChecked(page);
2995
dab291af 2996 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2997}
2998
617ba13b 2999static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3000{
617ba13b 3001 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3002
3003 WARN_ON(PageChecked(page));
3004 if (!page_has_buffers(page))
3005 return 0;
dab291af 3006 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
3007}
3008
3009/*
3010 * If the O_DIRECT write will extend the file then add this inode to the
3011 * orphan list. So recovery will truncate it back to the original size
3012 * if the machine crashes during the write.
3013 *
3014 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3015 * crashes then stale disk data _may_ be exposed inside the file. But current
3016 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3017 */
617ba13b 3018static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3019 const struct iovec *iov, loff_t offset,
3020 unsigned long nr_segs)
3021{
3022 struct file *file = iocb->ki_filp;
3023 struct inode *inode = file->f_mapping->host;
617ba13b 3024 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3025 handle_t *handle;
ac27a0ec
DK
3026 ssize_t ret;
3027 int orphan = 0;
3028 size_t count = iov_length(iov, nr_segs);
3029
3030 if (rw == WRITE) {
3031 loff_t final_size = offset + count;
3032
ac27a0ec 3033 if (final_size > inode->i_size) {
7fb5409d
JK
3034 /* Credits for sb + inode write */
3035 handle = ext4_journal_start(inode, 2);
3036 if (IS_ERR(handle)) {
3037 ret = PTR_ERR(handle);
3038 goto out;
3039 }
617ba13b 3040 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3041 if (ret) {
3042 ext4_journal_stop(handle);
3043 goto out;
3044 }
ac27a0ec
DK
3045 orphan = 1;
3046 ei->i_disksize = inode->i_size;
7fb5409d 3047 ext4_journal_stop(handle);
ac27a0ec
DK
3048 }
3049 }
3050
3051 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3052 offset, nr_segs,
617ba13b 3053 ext4_get_block, NULL);
ac27a0ec 3054
7fb5409d 3055 if (orphan) {
ac27a0ec
DK
3056 int err;
3057
7fb5409d
JK
3058 /* Credits for sb + inode write */
3059 handle = ext4_journal_start(inode, 2);
3060 if (IS_ERR(handle)) {
3061 /* This is really bad luck. We've written the data
3062 * but cannot extend i_size. Bail out and pretend
3063 * the write failed... */
3064 ret = PTR_ERR(handle);
3065 goto out;
3066 }
3067 if (inode->i_nlink)
617ba13b 3068 ext4_orphan_del(handle, inode);
7fb5409d 3069 if (ret > 0) {
ac27a0ec
DK
3070 loff_t end = offset + ret;
3071 if (end > inode->i_size) {
3072 ei->i_disksize = end;
3073 i_size_write(inode, end);
3074 /*
3075 * We're going to return a positive `ret'
3076 * here due to non-zero-length I/O, so there's
3077 * no way of reporting error returns from
617ba13b 3078 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3079 * ignore it.
3080 */
617ba13b 3081 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3082 }
3083 }
617ba13b 3084 err = ext4_journal_stop(handle);
ac27a0ec
DK
3085 if (ret == 0)
3086 ret = err;
3087 }
3088out:
3089 return ret;
3090}
3091
3092/*
617ba13b 3093 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3094 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3095 * much here because ->set_page_dirty is called under VFS locks. The page is
3096 * not necessarily locked.
3097 *
3098 * We cannot just dirty the page and leave attached buffers clean, because the
3099 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3100 * or jbddirty because all the journalling code will explode.
3101 *
3102 * So what we do is to mark the page "pending dirty" and next time writepage
3103 * is called, propagate that into the buffers appropriately.
3104 */
617ba13b 3105static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3106{
3107 SetPageChecked(page);
3108 return __set_page_dirty_nobuffers(page);
3109}
3110
617ba13b 3111static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3112 .readpage = ext4_readpage,
3113 .readpages = ext4_readpages,
3114 .writepage = ext4_normal_writepage,
3115 .sync_page = block_sync_page,
3116 .write_begin = ext4_write_begin,
3117 .write_end = ext4_ordered_write_end,
3118 .bmap = ext4_bmap,
3119 .invalidatepage = ext4_invalidatepage,
3120 .releasepage = ext4_releasepage,
3121 .direct_IO = ext4_direct_IO,
3122 .migratepage = buffer_migrate_page,
3123 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3124};
3125
617ba13b 3126static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3127 .readpage = ext4_readpage,
3128 .readpages = ext4_readpages,
3129 .writepage = ext4_normal_writepage,
3130 .sync_page = block_sync_page,
3131 .write_begin = ext4_write_begin,
3132 .write_end = ext4_writeback_write_end,
3133 .bmap = ext4_bmap,
3134 .invalidatepage = ext4_invalidatepage,
3135 .releasepage = ext4_releasepage,
3136 .direct_IO = ext4_direct_IO,
3137 .migratepage = buffer_migrate_page,
3138 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3139};
3140
617ba13b 3141static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3142 .readpage = ext4_readpage,
3143 .readpages = ext4_readpages,
3144 .writepage = ext4_journalled_writepage,
3145 .sync_page = block_sync_page,
3146 .write_begin = ext4_write_begin,
3147 .write_end = ext4_journalled_write_end,
3148 .set_page_dirty = ext4_journalled_set_page_dirty,
3149 .bmap = ext4_bmap,
3150 .invalidatepage = ext4_invalidatepage,
3151 .releasepage = ext4_releasepage,
3152 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3153};
3154
64769240 3155static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3156 .readpage = ext4_readpage,
3157 .readpages = ext4_readpages,
3158 .writepage = ext4_da_writepage,
3159 .writepages = ext4_da_writepages,
3160 .sync_page = block_sync_page,
3161 .write_begin = ext4_da_write_begin,
3162 .write_end = ext4_da_write_end,
3163 .bmap = ext4_bmap,
3164 .invalidatepage = ext4_da_invalidatepage,
3165 .releasepage = ext4_releasepage,
3166 .direct_IO = ext4_direct_IO,
3167 .migratepage = buffer_migrate_page,
3168 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3169};
3170
617ba13b 3171void ext4_set_aops(struct inode *inode)
ac27a0ec 3172{
cd1aac32
AK
3173 if (ext4_should_order_data(inode) &&
3174 test_opt(inode->i_sb, DELALLOC))
3175 inode->i_mapping->a_ops = &ext4_da_aops;
3176 else if (ext4_should_order_data(inode))
617ba13b 3177 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3178 else if (ext4_should_writeback_data(inode) &&
3179 test_opt(inode->i_sb, DELALLOC))
3180 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3181 else if (ext4_should_writeback_data(inode))
3182 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3183 else
617ba13b 3184 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3185}
3186
3187/*
617ba13b 3188 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3189 * up to the end of the block which corresponds to `from'.
3190 * This required during truncate. We need to physically zero the tail end
3191 * of that block so it doesn't yield old data if the file is later grown.
3192 */
cf108bca 3193int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3194 struct address_space *mapping, loff_t from)
3195{
617ba13b 3196 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3197 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3198 unsigned blocksize, length, pos;
3199 ext4_lblk_t iblock;
ac27a0ec
DK
3200 struct inode *inode = mapping->host;
3201 struct buffer_head *bh;
cf108bca 3202 struct page *page;
ac27a0ec 3203 int err = 0;
ac27a0ec 3204
cf108bca
JK
3205 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3206 if (!page)
3207 return -EINVAL;
3208
ac27a0ec
DK
3209 blocksize = inode->i_sb->s_blocksize;
3210 length = blocksize - (offset & (blocksize - 1));
3211 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3212
3213 /*
3214 * For "nobh" option, we can only work if we don't need to
3215 * read-in the page - otherwise we create buffers to do the IO.
3216 */
3217 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3218 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3219 zero_user(page, offset, length);
ac27a0ec
DK
3220 set_page_dirty(page);
3221 goto unlock;
3222 }
3223
3224 if (!page_has_buffers(page))
3225 create_empty_buffers(page, blocksize, 0);
3226
3227 /* Find the buffer that contains "offset" */
3228 bh = page_buffers(page);
3229 pos = blocksize;
3230 while (offset >= pos) {
3231 bh = bh->b_this_page;
3232 iblock++;
3233 pos += blocksize;
3234 }
3235
3236 err = 0;
3237 if (buffer_freed(bh)) {
3238 BUFFER_TRACE(bh, "freed: skip");
3239 goto unlock;
3240 }
3241
3242 if (!buffer_mapped(bh)) {
3243 BUFFER_TRACE(bh, "unmapped");
617ba13b 3244 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3245 /* unmapped? It's a hole - nothing to do */
3246 if (!buffer_mapped(bh)) {
3247 BUFFER_TRACE(bh, "still unmapped");
3248 goto unlock;
3249 }
3250 }
3251
3252 /* Ok, it's mapped. Make sure it's up-to-date */
3253 if (PageUptodate(page))
3254 set_buffer_uptodate(bh);
3255
3256 if (!buffer_uptodate(bh)) {
3257 err = -EIO;
3258 ll_rw_block(READ, 1, &bh);
3259 wait_on_buffer(bh);
3260 /* Uhhuh. Read error. Complain and punt. */
3261 if (!buffer_uptodate(bh))
3262 goto unlock;
3263 }
3264
617ba13b 3265 if (ext4_should_journal_data(inode)) {
ac27a0ec 3266 BUFFER_TRACE(bh, "get write access");
617ba13b 3267 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3268 if (err)
3269 goto unlock;
3270 }
3271
eebd2aa3 3272 zero_user(page, offset, length);
ac27a0ec
DK
3273
3274 BUFFER_TRACE(bh, "zeroed end of block");
3275
3276 err = 0;
617ba13b
MC
3277 if (ext4_should_journal_data(inode)) {
3278 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3279 } else {
617ba13b 3280 if (ext4_should_order_data(inode))
678aaf48 3281 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3282 mark_buffer_dirty(bh);
3283 }
3284
3285unlock:
3286 unlock_page(page);
3287 page_cache_release(page);
3288 return err;
3289}
3290
3291/*
3292 * Probably it should be a library function... search for first non-zero word
3293 * or memcmp with zero_page, whatever is better for particular architecture.
3294 * Linus?
3295 */
3296static inline int all_zeroes(__le32 *p, __le32 *q)
3297{
3298 while (p < q)
3299 if (*p++)
3300 return 0;
3301 return 1;
3302}
3303
3304/**
617ba13b 3305 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3306 * @inode: inode in question
3307 * @depth: depth of the affected branch
617ba13b 3308 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3309 * @chain: place to store the pointers to partial indirect blocks
3310 * @top: place to the (detached) top of branch
3311 *
617ba13b 3312 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3313 *
3314 * When we do truncate() we may have to clean the ends of several
3315 * indirect blocks but leave the blocks themselves alive. Block is
3316 * partially truncated if some data below the new i_size is refered
3317 * from it (and it is on the path to the first completely truncated
3318 * data block, indeed). We have to free the top of that path along
3319 * with everything to the right of the path. Since no allocation
617ba13b 3320 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3321 * finishes, we may safely do the latter, but top of branch may
3322 * require special attention - pageout below the truncation point
3323 * might try to populate it.
3324 *
3325 * We atomically detach the top of branch from the tree, store the
3326 * block number of its root in *@top, pointers to buffer_heads of
3327 * partially truncated blocks - in @chain[].bh and pointers to
3328 * their last elements that should not be removed - in
3329 * @chain[].p. Return value is the pointer to last filled element
3330 * of @chain.
3331 *
3332 * The work left to caller to do the actual freeing of subtrees:
3333 * a) free the subtree starting from *@top
3334 * b) free the subtrees whose roots are stored in
3335 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3336 * c) free the subtrees growing from the inode past the @chain[0].
3337 * (no partially truncated stuff there). */
3338
617ba13b 3339static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3340 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3341{
3342 Indirect *partial, *p;
3343 int k, err;
3344
3345 *top = 0;
3346 /* Make k index the deepest non-null offest + 1 */
3347 for (k = depth; k > 1 && !offsets[k-1]; k--)
3348 ;
617ba13b 3349 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3350 /* Writer: pointers */
3351 if (!partial)
3352 partial = chain + k-1;
3353 /*
3354 * If the branch acquired continuation since we've looked at it -
3355 * fine, it should all survive and (new) top doesn't belong to us.
3356 */
3357 if (!partial->key && *partial->p)
3358 /* Writer: end */
3359 goto no_top;
af5bc92d 3360 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3361 ;
3362 /*
3363 * OK, we've found the last block that must survive. The rest of our
3364 * branch should be detached before unlocking. However, if that rest
3365 * of branch is all ours and does not grow immediately from the inode
3366 * it's easier to cheat and just decrement partial->p.
3367 */
3368 if (p == chain + k - 1 && p > chain) {
3369 p->p--;
3370 } else {
3371 *top = *p->p;
617ba13b 3372 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3373#if 0
3374 *p->p = 0;
3375#endif
3376 }
3377 /* Writer: end */
3378
af5bc92d 3379 while (partial > p) {
ac27a0ec
DK
3380 brelse(partial->bh);
3381 partial--;
3382 }
3383no_top:
3384 return partial;
3385}
3386
3387/*
3388 * Zero a number of block pointers in either an inode or an indirect block.
3389 * If we restart the transaction we must again get write access to the
3390 * indirect block for further modification.
3391 *
3392 * We release `count' blocks on disk, but (last - first) may be greater
3393 * than `count' because there can be holes in there.
3394 */
617ba13b
MC
3395static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3396 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3397 unsigned long count, __le32 *first, __le32 *last)
3398{
3399 __le32 *p;
3400 if (try_to_extend_transaction(handle, inode)) {
3401 if (bh) {
617ba13b
MC
3402 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3403 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3404 }
617ba13b
MC
3405 ext4_mark_inode_dirty(handle, inode);
3406 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3407 if (bh) {
3408 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3409 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3410 }
3411 }
3412
3413 /*
3414 * Any buffers which are on the journal will be in memory. We find
dab291af 3415 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3416 * on them. We've already detached each block from the file, so
dab291af 3417 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3418 *
dab291af 3419 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3420 */
3421 for (p = first; p < last; p++) {
3422 u32 nr = le32_to_cpu(*p);
3423 if (nr) {
1d03ec98 3424 struct buffer_head *tbh;
ac27a0ec
DK
3425
3426 *p = 0;
1d03ec98
AK
3427 tbh = sb_find_get_block(inode->i_sb, nr);
3428 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3429 }
3430 }
3431
c9de560d 3432 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3433}
3434
3435/**
617ba13b 3436 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3437 * @handle: handle for this transaction
3438 * @inode: inode we are dealing with
3439 * @this_bh: indirect buffer_head which contains *@first and *@last
3440 * @first: array of block numbers
3441 * @last: points immediately past the end of array
3442 *
3443 * We are freeing all blocks refered from that array (numbers are stored as
3444 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3445 *
3446 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3447 * blocks are contiguous then releasing them at one time will only affect one
3448 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3449 * actually use a lot of journal space.
3450 *
3451 * @this_bh will be %NULL if @first and @last point into the inode's direct
3452 * block pointers.
3453 */
617ba13b 3454static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3455 struct buffer_head *this_bh,
3456 __le32 *first, __le32 *last)
3457{
617ba13b 3458 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3459 unsigned long count = 0; /* Number of blocks in the run */
3460 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3461 corresponding to
3462 block_to_free */
617ba13b 3463 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3464 __le32 *p; /* Pointer into inode/ind
3465 for current block */
3466 int err;
3467
3468 if (this_bh) { /* For indirect block */
3469 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3470 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3471 /* Important: if we can't update the indirect pointers
3472 * to the blocks, we can't free them. */
3473 if (err)
3474 return;
3475 }
3476
3477 for (p = first; p < last; p++) {
3478 nr = le32_to_cpu(*p);
3479 if (nr) {
3480 /* accumulate blocks to free if they're contiguous */
3481 if (count == 0) {
3482 block_to_free = nr;
3483 block_to_free_p = p;
3484 count = 1;
3485 } else if (nr == block_to_free + count) {
3486 count++;
3487 } else {
617ba13b 3488 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3489 block_to_free,
3490 count, block_to_free_p, p);
3491 block_to_free = nr;
3492 block_to_free_p = p;
3493 count = 1;
3494 }
3495 }
3496 }
3497
3498 if (count > 0)
617ba13b 3499 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3500 count, block_to_free_p, p);
3501
3502 if (this_bh) {
617ba13b 3503 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3504
3505 /*
3506 * The buffer head should have an attached journal head at this
3507 * point. However, if the data is corrupted and an indirect
3508 * block pointed to itself, it would have been detached when
3509 * the block was cleared. Check for this instead of OOPSing.
3510 */
3511 if (bh2jh(this_bh))
3512 ext4_journal_dirty_metadata(handle, this_bh);
3513 else
3514 ext4_error(inode->i_sb, __func__,
3515 "circular indirect block detected, "
3516 "inode=%lu, block=%llu",
3517 inode->i_ino,
3518 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3519 }
3520}
3521
3522/**
617ba13b 3523 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3524 * @handle: JBD handle for this transaction
3525 * @inode: inode we are dealing with
3526 * @parent_bh: the buffer_head which contains *@first and *@last
3527 * @first: array of block numbers
3528 * @last: pointer immediately past the end of array
3529 * @depth: depth of the branches to free
3530 *
3531 * We are freeing all blocks refered from these branches (numbers are
3532 * stored as little-endian 32-bit) and updating @inode->i_blocks
3533 * appropriately.
3534 */
617ba13b 3535static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3536 struct buffer_head *parent_bh,
3537 __le32 *first, __le32 *last, int depth)
3538{
617ba13b 3539 ext4_fsblk_t nr;
ac27a0ec
DK
3540 __le32 *p;
3541
3542 if (is_handle_aborted(handle))
3543 return;
3544
3545 if (depth--) {
3546 struct buffer_head *bh;
617ba13b 3547 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3548 p = last;
3549 while (--p >= first) {
3550 nr = le32_to_cpu(*p);
3551 if (!nr)
3552 continue; /* A hole */
3553
3554 /* Go read the buffer for the next level down */
3555 bh = sb_bread(inode->i_sb, nr);
3556
3557 /*
3558 * A read failure? Report error and clear slot
3559 * (should be rare).
3560 */
3561 if (!bh) {
617ba13b 3562 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3563 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3564 inode->i_ino, nr);
3565 continue;
3566 }
3567
3568 /* This zaps the entire block. Bottom up. */
3569 BUFFER_TRACE(bh, "free child branches");
617ba13b 3570 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3571 (__le32 *) bh->b_data,
3572 (__le32 *) bh->b_data + addr_per_block,
3573 depth);
ac27a0ec
DK
3574
3575 /*
3576 * We've probably journalled the indirect block several
3577 * times during the truncate. But it's no longer
3578 * needed and we now drop it from the transaction via
dab291af 3579 * jbd2_journal_revoke().
ac27a0ec
DK
3580 *
3581 * That's easy if it's exclusively part of this
3582 * transaction. But if it's part of the committing
dab291af 3583 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3584 * brelse() it. That means that if the underlying
617ba13b 3585 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3586 * unmap_underlying_metadata() will find this block
3587 * and will try to get rid of it. damn, damn.
3588 *
3589 * If this block has already been committed to the
3590 * journal, a revoke record will be written. And
3591 * revoke records must be emitted *before* clearing
3592 * this block's bit in the bitmaps.
3593 */
617ba13b 3594 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3595
3596 /*
3597 * Everything below this this pointer has been
3598 * released. Now let this top-of-subtree go.
3599 *
3600 * We want the freeing of this indirect block to be
3601 * atomic in the journal with the updating of the
3602 * bitmap block which owns it. So make some room in
3603 * the journal.
3604 *
3605 * We zero the parent pointer *after* freeing its
3606 * pointee in the bitmaps, so if extend_transaction()
3607 * for some reason fails to put the bitmap changes and
3608 * the release into the same transaction, recovery
3609 * will merely complain about releasing a free block,
3610 * rather than leaking blocks.
3611 */
3612 if (is_handle_aborted(handle))
3613 return;
3614 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3615 ext4_mark_inode_dirty(handle, inode);
3616 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3617 }
3618
c9de560d 3619 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3620
3621 if (parent_bh) {
3622 /*
3623 * The block which we have just freed is
3624 * pointed to by an indirect block: journal it
3625 */
3626 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3627 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3628 parent_bh)){
3629 *p = 0;
3630 BUFFER_TRACE(parent_bh,
617ba13b
MC
3631 "call ext4_journal_dirty_metadata");
3632 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3633 parent_bh);
3634 }
3635 }
3636 }
3637 } else {
3638 /* We have reached the bottom of the tree. */
3639 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3640 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3641 }
3642}
3643
91ef4caf
DG
3644int ext4_can_truncate(struct inode *inode)
3645{
3646 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3647 return 0;
3648 if (S_ISREG(inode->i_mode))
3649 return 1;
3650 if (S_ISDIR(inode->i_mode))
3651 return 1;
3652 if (S_ISLNK(inode->i_mode))
3653 return !ext4_inode_is_fast_symlink(inode);
3654 return 0;
3655}
3656
ac27a0ec 3657/*
617ba13b 3658 * ext4_truncate()
ac27a0ec 3659 *
617ba13b
MC
3660 * We block out ext4_get_block() block instantiations across the entire
3661 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3662 * simultaneously on behalf of the same inode.
3663 *
3664 * As we work through the truncate and commmit bits of it to the journal there
3665 * is one core, guiding principle: the file's tree must always be consistent on
3666 * disk. We must be able to restart the truncate after a crash.
3667 *
3668 * The file's tree may be transiently inconsistent in memory (although it
3669 * probably isn't), but whenever we close off and commit a journal transaction,
3670 * the contents of (the filesystem + the journal) must be consistent and
3671 * restartable. It's pretty simple, really: bottom up, right to left (although
3672 * left-to-right works OK too).
3673 *
3674 * Note that at recovery time, journal replay occurs *before* the restart of
3675 * truncate against the orphan inode list.
3676 *
3677 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3678 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3679 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3680 * ext4_truncate() to have another go. So there will be instantiated blocks
3681 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3682 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3683 * ext4_truncate() run will find them and release them.
ac27a0ec 3684 */
617ba13b 3685void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3686{
3687 handle_t *handle;
617ba13b 3688 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3689 __le32 *i_data = ei->i_data;
617ba13b 3690 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3691 struct address_space *mapping = inode->i_mapping;
725d26d3 3692 ext4_lblk_t offsets[4];
ac27a0ec
DK
3693 Indirect chain[4];
3694 Indirect *partial;
3695 __le32 nr = 0;
3696 int n;
725d26d3 3697 ext4_lblk_t last_block;
ac27a0ec 3698 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3699
91ef4caf 3700 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3701 return;
3702
1d03ec98 3703 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3704 ext4_ext_truncate(inode);
1d03ec98
AK
3705 return;
3706 }
a86c6181 3707
ac27a0ec 3708 handle = start_transaction(inode);
cf108bca 3709 if (IS_ERR(handle))
ac27a0ec 3710 return; /* AKPM: return what? */
ac27a0ec
DK
3711
3712 last_block = (inode->i_size + blocksize-1)
617ba13b 3713 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3714
cf108bca
JK
3715 if (inode->i_size & (blocksize - 1))
3716 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3717 goto out_stop;
ac27a0ec 3718
617ba13b 3719 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3720 if (n == 0)
3721 goto out_stop; /* error */
3722
3723 /*
3724 * OK. This truncate is going to happen. We add the inode to the
3725 * orphan list, so that if this truncate spans multiple transactions,
3726 * and we crash, we will resume the truncate when the filesystem
3727 * recovers. It also marks the inode dirty, to catch the new size.
3728 *
3729 * Implication: the file must always be in a sane, consistent
3730 * truncatable state while each transaction commits.
3731 */
617ba13b 3732 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3733 goto out_stop;
3734
632eaeab
MC
3735 /*
3736 * From here we block out all ext4_get_block() callers who want to
3737 * modify the block allocation tree.
3738 */
3739 down_write(&ei->i_data_sem);
b4df2030
TT
3740
3741 ext4_discard_reservation(inode);
3742
ac27a0ec
DK
3743 /*
3744 * The orphan list entry will now protect us from any crash which
3745 * occurs before the truncate completes, so it is now safe to propagate
3746 * the new, shorter inode size (held for now in i_size) into the
3747 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3748 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3749 */
3750 ei->i_disksize = inode->i_size;
3751
ac27a0ec 3752 if (n == 1) { /* direct blocks */
617ba13b
MC
3753 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3754 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3755 goto do_indirects;
3756 }
3757
617ba13b 3758 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3759 /* Kill the top of shared branch (not detached) */
3760 if (nr) {
3761 if (partial == chain) {
3762 /* Shared branch grows from the inode */
617ba13b 3763 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3764 &nr, &nr+1, (chain+n-1) - partial);
3765 *partial->p = 0;
3766 /*
3767 * We mark the inode dirty prior to restart,
3768 * and prior to stop. No need for it here.
3769 */
3770 } else {
3771 /* Shared branch grows from an indirect block */
3772 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3773 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3774 partial->p,
3775 partial->p+1, (chain+n-1) - partial);
3776 }
3777 }
3778 /* Clear the ends of indirect blocks on the shared branch */
3779 while (partial > chain) {
617ba13b 3780 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3781 (__le32*)partial->bh->b_data+addr_per_block,
3782 (chain+n-1) - partial);
3783 BUFFER_TRACE(partial->bh, "call brelse");
3784 brelse (partial->bh);
3785 partial--;
3786 }
3787do_indirects:
3788 /* Kill the remaining (whole) subtrees */
3789 switch (offsets[0]) {
3790 default:
617ba13b 3791 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3792 if (nr) {
617ba13b
MC
3793 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3794 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3795 }
617ba13b
MC
3796 case EXT4_IND_BLOCK:
3797 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3798 if (nr) {
617ba13b
MC
3799 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3800 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3801 }
617ba13b
MC
3802 case EXT4_DIND_BLOCK:
3803 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3804 if (nr) {
617ba13b
MC
3805 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3806 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3807 }
617ba13b 3808 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3809 ;
3810 }
3811
0e855ac8 3812 up_write(&ei->i_data_sem);
ef7f3835 3813 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3814 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3815
3816 /*
3817 * In a multi-transaction truncate, we only make the final transaction
3818 * synchronous
3819 */
3820 if (IS_SYNC(inode))
3821 handle->h_sync = 1;
3822out_stop:
3823 /*
3824 * If this was a simple ftruncate(), and the file will remain alive
3825 * then we need to clear up the orphan record which we created above.
3826 * However, if this was a real unlink then we were called by
617ba13b 3827 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3828 * orphan info for us.
3829 */
3830 if (inode->i_nlink)
617ba13b 3831 ext4_orphan_del(handle, inode);
ac27a0ec 3832
617ba13b 3833 ext4_journal_stop(handle);
ac27a0ec
DK
3834}
3835
ac27a0ec 3836/*
617ba13b 3837 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3838 * underlying buffer_head on success. If 'in_mem' is true, we have all
3839 * data in memory that is needed to recreate the on-disk version of this
3840 * inode.
3841 */
617ba13b
MC
3842static int __ext4_get_inode_loc(struct inode *inode,
3843 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3844{
240799cd
TT
3845 struct ext4_group_desc *gdp;
3846 struct buffer_head *bh;
3847 struct super_block *sb = inode->i_sb;
3848 ext4_fsblk_t block;
3849 int inodes_per_block, inode_offset;
3850
3851 iloc->bh = 0;
3852 if (!ext4_valid_inum(sb, inode->i_ino))
3853 return -EIO;
ac27a0ec 3854
240799cd
TT
3855 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3856 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3857 if (!gdp)
ac27a0ec
DK
3858 return -EIO;
3859
240799cd
TT
3860 /*
3861 * Figure out the offset within the block group inode table
3862 */
3863 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3864 inode_offset = ((inode->i_ino - 1) %
3865 EXT4_INODES_PER_GROUP(sb));
3866 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3867 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3868
3869 bh = sb_getblk(sb, block);
ac27a0ec 3870 if (!bh) {
240799cd
TT
3871 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3872 "inode block - inode=%lu, block=%llu",
3873 inode->i_ino, block);
ac27a0ec
DK
3874 return -EIO;
3875 }
3876 if (!buffer_uptodate(bh)) {
3877 lock_buffer(bh);
9c83a923
HK
3878
3879 /*
3880 * If the buffer has the write error flag, we have failed
3881 * to write out another inode in the same block. In this
3882 * case, we don't have to read the block because we may
3883 * read the old inode data successfully.
3884 */
3885 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3886 set_buffer_uptodate(bh);
3887
ac27a0ec
DK
3888 if (buffer_uptodate(bh)) {
3889 /* someone brought it uptodate while we waited */
3890 unlock_buffer(bh);
3891 goto has_buffer;
3892 }
3893
3894 /*
3895 * If we have all information of the inode in memory and this
3896 * is the only valid inode in the block, we need not read the
3897 * block.
3898 */
3899 if (in_mem) {
3900 struct buffer_head *bitmap_bh;
240799cd 3901 int i, start;
ac27a0ec 3902
240799cd 3903 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3904
240799cd
TT
3905 /* Is the inode bitmap in cache? */
3906 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3907 if (!bitmap_bh)
3908 goto make_io;
3909
3910 /*
3911 * If the inode bitmap isn't in cache then the
3912 * optimisation may end up performing two reads instead
3913 * of one, so skip it.
3914 */
3915 if (!buffer_uptodate(bitmap_bh)) {
3916 brelse(bitmap_bh);
3917 goto make_io;
3918 }
240799cd 3919 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3920 if (i == inode_offset)
3921 continue;
617ba13b 3922 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3923 break;
3924 }
3925 brelse(bitmap_bh);
240799cd 3926 if (i == start + inodes_per_block) {
ac27a0ec
DK
3927 /* all other inodes are free, so skip I/O */
3928 memset(bh->b_data, 0, bh->b_size);
3929 set_buffer_uptodate(bh);
3930 unlock_buffer(bh);
3931 goto has_buffer;
3932 }
3933 }
3934
3935make_io:
240799cd
TT
3936 /*
3937 * If we need to do any I/O, try to pre-readahead extra
3938 * blocks from the inode table.
3939 */
3940 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3941 ext4_fsblk_t b, end, table;
3942 unsigned num;
3943
3944 table = ext4_inode_table(sb, gdp);
3945 /* Make sure s_inode_readahead_blks is a power of 2 */
3946 while (EXT4_SB(sb)->s_inode_readahead_blks &
3947 (EXT4_SB(sb)->s_inode_readahead_blks-1))
3948 EXT4_SB(sb)->s_inode_readahead_blks =
3949 (EXT4_SB(sb)->s_inode_readahead_blks &
3950 (EXT4_SB(sb)->s_inode_readahead_blks-1));
3951 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3952 if (table > b)
3953 b = table;
3954 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3955 num = EXT4_INODES_PER_GROUP(sb);
3956 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3957 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3958 num -= le16_to_cpu(gdp->bg_itable_unused);
3959 table += num / inodes_per_block;
3960 if (end > table)
3961 end = table;
3962 while (b <= end)
3963 sb_breadahead(sb, b++);
3964 }
3965
ac27a0ec
DK
3966 /*
3967 * There are other valid inodes in the buffer, this inode
3968 * has in-inode xattrs, or we don't have this inode in memory.
3969 * Read the block from disk.
3970 */
3971 get_bh(bh);
3972 bh->b_end_io = end_buffer_read_sync;
3973 submit_bh(READ_META, bh);
3974 wait_on_buffer(bh);
3975 if (!buffer_uptodate(bh)) {
240799cd
TT
3976 ext4_error(sb, __func__,
3977 "unable to read inode block - inode=%lu, "
3978 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
3979 brelse(bh);
3980 return -EIO;
3981 }
3982 }
3983has_buffer:
3984 iloc->bh = bh;
3985 return 0;
3986}
3987
617ba13b 3988int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3989{
3990 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3991 return __ext4_get_inode_loc(inode, iloc,
3992 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3993}
3994
617ba13b 3995void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3996{
617ba13b 3997 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3998
3999 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4000 if (flags & EXT4_SYNC_FL)
ac27a0ec 4001 inode->i_flags |= S_SYNC;
617ba13b 4002 if (flags & EXT4_APPEND_FL)
ac27a0ec 4003 inode->i_flags |= S_APPEND;
617ba13b 4004 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4005 inode->i_flags |= S_IMMUTABLE;
617ba13b 4006 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4007 inode->i_flags |= S_NOATIME;
617ba13b 4008 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4009 inode->i_flags |= S_DIRSYNC;
4010}
4011
ff9ddf7e
JK
4012/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4013void ext4_get_inode_flags(struct ext4_inode_info *ei)
4014{
4015 unsigned int flags = ei->vfs_inode.i_flags;
4016
4017 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4018 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4019 if (flags & S_SYNC)
4020 ei->i_flags |= EXT4_SYNC_FL;
4021 if (flags & S_APPEND)
4022 ei->i_flags |= EXT4_APPEND_FL;
4023 if (flags & S_IMMUTABLE)
4024 ei->i_flags |= EXT4_IMMUTABLE_FL;
4025 if (flags & S_NOATIME)
4026 ei->i_flags |= EXT4_NOATIME_FL;
4027 if (flags & S_DIRSYNC)
4028 ei->i_flags |= EXT4_DIRSYNC_FL;
4029}
0fc1b451
AK
4030static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4031 struct ext4_inode_info *ei)
4032{
4033 blkcnt_t i_blocks ;
8180a562
AK
4034 struct inode *inode = &(ei->vfs_inode);
4035 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4036
4037 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4038 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4039 /* we are using combined 48 bit field */
4040 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4041 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4042 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4043 /* i_blocks represent file system block size */
4044 return i_blocks << (inode->i_blkbits - 9);
4045 } else {
4046 return i_blocks;
4047 }
0fc1b451
AK
4048 } else {
4049 return le32_to_cpu(raw_inode->i_blocks_lo);
4050 }
4051}
ff9ddf7e 4052
1d1fe1ee 4053struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4054{
617ba13b
MC
4055 struct ext4_iloc iloc;
4056 struct ext4_inode *raw_inode;
1d1fe1ee 4057 struct ext4_inode_info *ei;
ac27a0ec 4058 struct buffer_head *bh;
1d1fe1ee
DH
4059 struct inode *inode;
4060 long ret;
ac27a0ec
DK
4061 int block;
4062
1d1fe1ee
DH
4063 inode = iget_locked(sb, ino);
4064 if (!inode)
4065 return ERR_PTR(-ENOMEM);
4066 if (!(inode->i_state & I_NEW))
4067 return inode;
4068
4069 ei = EXT4_I(inode);
617ba13b
MC
4070#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4071 ei->i_acl = EXT4_ACL_NOT_CACHED;
4072 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
4073#endif
4074 ei->i_block_alloc_info = NULL;
4075
1d1fe1ee
DH
4076 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4077 if (ret < 0)
ac27a0ec
DK
4078 goto bad_inode;
4079 bh = iloc.bh;
617ba13b 4080 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4081 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4084 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4085 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087 }
4088 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4089
4090 ei->i_state = 0;
4091 ei->i_dir_start_lookup = 0;
4092 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4093 /* We now have enough fields to check if the inode was active or not.
4094 * This is needed because nfsd might try to access dead inodes
4095 * the test is that same one that e2fsck uses
4096 * NeilBrown 1999oct15
4097 */
4098 if (inode->i_nlink == 0) {
4099 if (inode->i_mode == 0 ||
617ba13b 4100 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4101 /* this inode is deleted */
af5bc92d 4102 brelse(bh);
1d1fe1ee 4103 ret = -ESTALE;
ac27a0ec
DK
4104 goto bad_inode;
4105 }
4106 /* The only unlinked inodes we let through here have
4107 * valid i_mode and are being read by the orphan
4108 * recovery code: that's fine, we're about to complete
4109 * the process of deleting those. */
4110 }
ac27a0ec 4111 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4112 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4113 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4115 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4116 ei->i_file_acl |=
4117 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4118 }
a48380f7 4119 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4120 ei->i_disksize = inode->i_size;
4121 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4122 ei->i_block_group = iloc.block_group;
4123 /*
4124 * NOTE! The in-memory inode i_data array is in little-endian order
4125 * even on big-endian machines: we do NOT byteswap the block numbers!
4126 */
617ba13b 4127 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4128 ei->i_data[block] = raw_inode->i_block[block];
4129 INIT_LIST_HEAD(&ei->i_orphan);
4130
0040d987 4131 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4132 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4133 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4134 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4135 brelse(bh);
1d1fe1ee 4136 ret = -EIO;
ac27a0ec 4137 goto bad_inode;
e5d2861f 4138 }
ac27a0ec
DK
4139 if (ei->i_extra_isize == 0) {
4140 /* The extra space is currently unused. Use it. */
617ba13b
MC
4141 ei->i_extra_isize = sizeof(struct ext4_inode) -
4142 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4143 } else {
4144 __le32 *magic = (void *)raw_inode +
617ba13b 4145 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4146 ei->i_extra_isize;
617ba13b
MC
4147 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4148 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4149 }
4150 } else
4151 ei->i_extra_isize = 0;
4152
ef7f3835
KS
4153 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4154 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4155 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4156 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4157
25ec56b5
JNC
4158 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4159 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4160 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4161 inode->i_version |=
4162 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4163 }
4164
ac27a0ec 4165 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4166 inode->i_op = &ext4_file_inode_operations;
4167 inode->i_fop = &ext4_file_operations;
4168 ext4_set_aops(inode);
ac27a0ec 4169 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4170 inode->i_op = &ext4_dir_inode_operations;
4171 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4172 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
4173 if (ext4_inode_is_fast_symlink(inode))
4174 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 4175 else {
617ba13b
MC
4176 inode->i_op = &ext4_symlink_inode_operations;
4177 ext4_set_aops(inode);
ac27a0ec
DK
4178 }
4179 } else {
617ba13b 4180 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4181 if (raw_inode->i_block[0])
4182 init_special_inode(inode, inode->i_mode,
4183 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4184 else
4185 init_special_inode(inode, inode->i_mode,
4186 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4187 }
af5bc92d 4188 brelse(iloc.bh);
617ba13b 4189 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4190 unlock_new_inode(inode);
4191 return inode;
ac27a0ec
DK
4192
4193bad_inode:
1d1fe1ee
DH
4194 iget_failed(inode);
4195 return ERR_PTR(ret);
ac27a0ec
DK
4196}
4197
0fc1b451
AK
4198static int ext4_inode_blocks_set(handle_t *handle,
4199 struct ext4_inode *raw_inode,
4200 struct ext4_inode_info *ei)
4201{
4202 struct inode *inode = &(ei->vfs_inode);
4203 u64 i_blocks = inode->i_blocks;
4204 struct super_block *sb = inode->i_sb;
4205 int err = 0;
4206
4207 if (i_blocks <= ~0U) {
4208 /*
4209 * i_blocks can be represnted in a 32 bit variable
4210 * as multiple of 512 bytes
4211 */
8180a562 4212 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4213 raw_inode->i_blocks_high = 0;
8180a562 4214 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
4215 } else if (i_blocks <= 0xffffffffffffULL) {
4216 /*
4217 * i_blocks can be represented in a 48 bit variable
4218 * as multiple of 512 bytes
4219 */
4220 err = ext4_update_rocompat_feature(handle, sb,
4221 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4222 if (err)
4223 goto err_out;
4224 /* i_block is stored in the split 48 bit fields */
8180a562 4225 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4226 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4227 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4228 } else {
8180a562
AK
4229 /*
4230 * i_blocks should be represented in a 48 bit variable
4231 * as multiple of file system block size
4232 */
4233 err = ext4_update_rocompat_feature(handle, sb,
4234 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4235 if (err)
4236 goto err_out;
4237 ei->i_flags |= EXT4_HUGE_FILE_FL;
4238 /* i_block is stored in file system block size */
4239 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4240 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4241 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
4242 }
4243err_out:
4244 return err;
4245}
4246
ac27a0ec
DK
4247/*
4248 * Post the struct inode info into an on-disk inode location in the
4249 * buffer-cache. This gobbles the caller's reference to the
4250 * buffer_head in the inode location struct.
4251 *
4252 * The caller must have write access to iloc->bh.
4253 */
617ba13b 4254static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4255 struct inode *inode,
617ba13b 4256 struct ext4_iloc *iloc)
ac27a0ec 4257{
617ba13b
MC
4258 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4259 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4260 struct buffer_head *bh = iloc->bh;
4261 int err = 0, rc, block;
4262
4263 /* For fields not not tracking in the in-memory inode,
4264 * initialise them to zero for new inodes. */
617ba13b
MC
4265 if (ei->i_state & EXT4_STATE_NEW)
4266 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4267
ff9ddf7e 4268 ext4_get_inode_flags(ei);
ac27a0ec 4269 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4270 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4271 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4272 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4273/*
4274 * Fix up interoperability with old kernels. Otherwise, old inodes get
4275 * re-used with the upper 16 bits of the uid/gid intact
4276 */
af5bc92d 4277 if (!ei->i_dtime) {
ac27a0ec
DK
4278 raw_inode->i_uid_high =
4279 cpu_to_le16(high_16_bits(inode->i_uid));
4280 raw_inode->i_gid_high =
4281 cpu_to_le16(high_16_bits(inode->i_gid));
4282 } else {
4283 raw_inode->i_uid_high = 0;
4284 raw_inode->i_gid_high = 0;
4285 }
4286 } else {
4287 raw_inode->i_uid_low =
4288 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4289 raw_inode->i_gid_low =
4290 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4291 raw_inode->i_uid_high = 0;
4292 raw_inode->i_gid_high = 0;
4293 }
4294 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4295
4296 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4297 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4298 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4299 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4300
0fc1b451
AK
4301 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4302 goto out_brelse;
ac27a0ec 4303 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4304 /* clear the migrate flag in the raw_inode */
4305 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4306 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4307 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4308 raw_inode->i_file_acl_high =
4309 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4310 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4311 ext4_isize_set(raw_inode, ei->i_disksize);
4312 if (ei->i_disksize > 0x7fffffffULL) {
4313 struct super_block *sb = inode->i_sb;
4314 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4315 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4316 EXT4_SB(sb)->s_es->s_rev_level ==
4317 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4318 /* If this is the first large file
4319 * created, add a flag to the superblock.
4320 */
4321 err = ext4_journal_get_write_access(handle,
4322 EXT4_SB(sb)->s_sbh);
4323 if (err)
4324 goto out_brelse;
4325 ext4_update_dynamic_rev(sb);
4326 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4327 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4328 sb->s_dirt = 1;
4329 handle->h_sync = 1;
4330 err = ext4_journal_dirty_metadata(handle,
4331 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4332 }
4333 }
4334 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4335 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4336 if (old_valid_dev(inode->i_rdev)) {
4337 raw_inode->i_block[0] =
4338 cpu_to_le32(old_encode_dev(inode->i_rdev));
4339 raw_inode->i_block[1] = 0;
4340 } else {
4341 raw_inode->i_block[0] = 0;
4342 raw_inode->i_block[1] =
4343 cpu_to_le32(new_encode_dev(inode->i_rdev));
4344 raw_inode->i_block[2] = 0;
4345 }
617ba13b 4346 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4347 raw_inode->i_block[block] = ei->i_data[block];
4348
25ec56b5
JNC
4349 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4350 if (ei->i_extra_isize) {
4351 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4352 raw_inode->i_version_hi =
4353 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4354 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4355 }
4356
ac27a0ec 4357
617ba13b
MC
4358 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4359 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4360 if (!err)
4361 err = rc;
617ba13b 4362 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4363
4364out_brelse:
af5bc92d 4365 brelse(bh);
617ba13b 4366 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4367 return err;
4368}
4369
4370/*
617ba13b 4371 * ext4_write_inode()
ac27a0ec
DK
4372 *
4373 * We are called from a few places:
4374 *
4375 * - Within generic_file_write() for O_SYNC files.
4376 * Here, there will be no transaction running. We wait for any running
4377 * trasnaction to commit.
4378 *
4379 * - Within sys_sync(), kupdate and such.
4380 * We wait on commit, if tol to.
4381 *
4382 * - Within prune_icache() (PF_MEMALLOC == true)
4383 * Here we simply return. We can't afford to block kswapd on the
4384 * journal commit.
4385 *
4386 * In all cases it is actually safe for us to return without doing anything,
4387 * because the inode has been copied into a raw inode buffer in
617ba13b 4388 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4389 * knfsd.
4390 *
4391 * Note that we are absolutely dependent upon all inode dirtiers doing the
4392 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4393 * which we are interested.
4394 *
4395 * It would be a bug for them to not do this. The code:
4396 *
4397 * mark_inode_dirty(inode)
4398 * stuff();
4399 * inode->i_size = expr;
4400 *
4401 * is in error because a kswapd-driven write_inode() could occur while
4402 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4403 * will no longer be on the superblock's dirty inode list.
4404 */
617ba13b 4405int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4406{
4407 if (current->flags & PF_MEMALLOC)
4408 return 0;
4409
617ba13b 4410 if (ext4_journal_current_handle()) {
b38bd33a 4411 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4412 dump_stack();
4413 return -EIO;
4414 }
4415
4416 if (!wait)
4417 return 0;
4418
617ba13b 4419 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4420}
4421
4422/*
617ba13b 4423 * ext4_setattr()
ac27a0ec
DK
4424 *
4425 * Called from notify_change.
4426 *
4427 * We want to trap VFS attempts to truncate the file as soon as
4428 * possible. In particular, we want to make sure that when the VFS
4429 * shrinks i_size, we put the inode on the orphan list and modify
4430 * i_disksize immediately, so that during the subsequent flushing of
4431 * dirty pages and freeing of disk blocks, we can guarantee that any
4432 * commit will leave the blocks being flushed in an unused state on
4433 * disk. (On recovery, the inode will get truncated and the blocks will
4434 * be freed, so we have a strong guarantee that no future commit will
4435 * leave these blocks visible to the user.)
4436 *
678aaf48
JK
4437 * Another thing we have to assure is that if we are in ordered mode
4438 * and inode is still attached to the committing transaction, we must
4439 * we start writeout of all the dirty pages which are being truncated.
4440 * This way we are sure that all the data written in the previous
4441 * transaction are already on disk (truncate waits for pages under
4442 * writeback).
4443 *
4444 * Called with inode->i_mutex down.
ac27a0ec 4445 */
617ba13b 4446int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4447{
4448 struct inode *inode = dentry->d_inode;
4449 int error, rc = 0;
4450 const unsigned int ia_valid = attr->ia_valid;
4451
4452 error = inode_change_ok(inode, attr);
4453 if (error)
4454 return error;
4455
4456 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4457 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4458 handle_t *handle;
4459
4460 /* (user+group)*(old+new) structure, inode write (sb,
4461 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4462 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4463 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4464 if (IS_ERR(handle)) {
4465 error = PTR_ERR(handle);
4466 goto err_out;
4467 }
4468 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4469 if (error) {
617ba13b 4470 ext4_journal_stop(handle);
ac27a0ec
DK
4471 return error;
4472 }
4473 /* Update corresponding info in inode so that everything is in
4474 * one transaction */
4475 if (attr->ia_valid & ATTR_UID)
4476 inode->i_uid = attr->ia_uid;
4477 if (attr->ia_valid & ATTR_GID)
4478 inode->i_gid = attr->ia_gid;
617ba13b
MC
4479 error = ext4_mark_inode_dirty(handle, inode);
4480 ext4_journal_stop(handle);
ac27a0ec
DK
4481 }
4482
e2b46574
ES
4483 if (attr->ia_valid & ATTR_SIZE) {
4484 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4486
4487 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4488 error = -EFBIG;
4489 goto err_out;
4490 }
4491 }
4492 }
4493
ac27a0ec
DK
4494 if (S_ISREG(inode->i_mode) &&
4495 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4496 handle_t *handle;
4497
617ba13b 4498 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4499 if (IS_ERR(handle)) {
4500 error = PTR_ERR(handle);
4501 goto err_out;
4502 }
4503
617ba13b
MC
4504 error = ext4_orphan_add(handle, inode);
4505 EXT4_I(inode)->i_disksize = attr->ia_size;
4506 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4507 if (!error)
4508 error = rc;
617ba13b 4509 ext4_journal_stop(handle);
678aaf48
JK
4510
4511 if (ext4_should_order_data(inode)) {
4512 error = ext4_begin_ordered_truncate(inode,
4513 attr->ia_size);
4514 if (error) {
4515 /* Do as much error cleanup as possible */
4516 handle = ext4_journal_start(inode, 3);
4517 if (IS_ERR(handle)) {
4518 ext4_orphan_del(NULL, inode);
4519 goto err_out;
4520 }
4521 ext4_orphan_del(handle, inode);
4522 ext4_journal_stop(handle);
4523 goto err_out;
4524 }
4525 }
ac27a0ec
DK
4526 }
4527
4528 rc = inode_setattr(inode, attr);
4529
617ba13b 4530 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4531 * transaction handle at all, we need to clean up the in-core
4532 * orphan list manually. */
4533 if (inode->i_nlink)
617ba13b 4534 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4535
4536 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4537 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4538
4539err_out:
617ba13b 4540 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4541 if (!error)
4542 error = rc;
4543 return error;
4544}
4545
3e3398a0
MC
4546int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4547 struct kstat *stat)
4548{
4549 struct inode *inode;
4550 unsigned long delalloc_blocks;
4551
4552 inode = dentry->d_inode;
4553 generic_fillattr(inode, stat);
4554
4555 /*
4556 * We can't update i_blocks if the block allocation is delayed
4557 * otherwise in the case of system crash before the real block
4558 * allocation is done, we will have i_blocks inconsistent with
4559 * on-disk file blocks.
4560 * We always keep i_blocks updated together with real
4561 * allocation. But to not confuse with user, stat
4562 * will return the blocks that include the delayed allocation
4563 * blocks for this file.
4564 */
4565 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4566 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4567 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4568
4569 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4570 return 0;
4571}
ac27a0ec 4572
a02908f1
MC
4573static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4574 int chunk)
4575{
4576 int indirects;
4577
4578 /* if nrblocks are contiguous */
4579 if (chunk) {
4580 /*
4581 * With N contiguous data blocks, it need at most
4582 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4583 * 2 dindirect blocks
4584 * 1 tindirect block
4585 */
4586 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4587 return indirects + 3;
4588 }
4589 /*
4590 * if nrblocks are not contiguous, worse case, each block touch
4591 * a indirect block, and each indirect block touch a double indirect
4592 * block, plus a triple indirect block
4593 */
4594 indirects = nrblocks * 2 + 1;
4595 return indirects;
4596}
4597
4598static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4599{
4600 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4601 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4602 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4603}
ac27a0ec 4604/*
a02908f1
MC
4605 * Account for index blocks, block groups bitmaps and block group
4606 * descriptor blocks if modify datablocks and index blocks
4607 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4608 *
a02908f1
MC
4609 * If datablocks are discontiguous, they are possible to spread over
4610 * different block groups too. If they are contiugous, with flexbg,
4611 * they could still across block group boundary.
ac27a0ec 4612 *
a02908f1
MC
4613 * Also account for superblock, inode, quota and xattr blocks
4614 */
4615int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4616{
4617 int groups, gdpblocks;
4618 int idxblocks;
4619 int ret = 0;
4620
4621 /*
4622 * How many index blocks need to touch to modify nrblocks?
4623 * The "Chunk" flag indicating whether the nrblocks is
4624 * physically contiguous on disk
4625 *
4626 * For Direct IO and fallocate, they calls get_block to allocate
4627 * one single extent at a time, so they could set the "Chunk" flag
4628 */
4629 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4630
4631 ret = idxblocks;
4632
4633 /*
4634 * Now let's see how many group bitmaps and group descriptors need
4635 * to account
4636 */
4637 groups = idxblocks;
4638 if (chunk)
4639 groups += 1;
4640 else
4641 groups += nrblocks;
4642
4643 gdpblocks = groups;
4644 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4645 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4646 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4647 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4648
4649 /* bitmaps and block group descriptor blocks */
4650 ret += groups + gdpblocks;
4651
4652 /* Blocks for super block, inode, quota and xattr blocks */
4653 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4654
4655 return ret;
4656}
4657
4658/*
4659 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4660 * the modification of a single pages into a single transaction,
4661 * which may include multiple chunks of block allocations.
ac27a0ec 4662 *
525f4ed8 4663 * This could be called via ext4_write_begin()
ac27a0ec 4664 *
525f4ed8 4665 * We need to consider the worse case, when
a02908f1 4666 * one new block per extent.
ac27a0ec 4667 */
a86c6181 4668int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4669{
617ba13b 4670 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4671 int ret;
4672
a02908f1 4673 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4674
a02908f1 4675 /* Account for data blocks for journalled mode */
617ba13b 4676 if (ext4_should_journal_data(inode))
a02908f1 4677 ret += bpp;
ac27a0ec
DK
4678 return ret;
4679}
f3bd1f3f
MC
4680
4681/*
4682 * Calculate the journal credits for a chunk of data modification.
4683 *
4684 * This is called from DIO, fallocate or whoever calling
4685 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4686 *
4687 * journal buffers for data blocks are not included here, as DIO
4688 * and fallocate do no need to journal data buffers.
4689 */
4690int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4691{
4692 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4693}
4694
ac27a0ec 4695/*
617ba13b 4696 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4697 * Give this, we know that the caller already has write access to iloc->bh.
4698 */
617ba13b
MC
4699int ext4_mark_iloc_dirty(handle_t *handle,
4700 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4701{
4702 int err = 0;
4703
25ec56b5
JNC
4704 if (test_opt(inode->i_sb, I_VERSION))
4705 inode_inc_iversion(inode);
4706
ac27a0ec
DK
4707 /* the do_update_inode consumes one bh->b_count */
4708 get_bh(iloc->bh);
4709
dab291af 4710 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4711 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4712 put_bh(iloc->bh);
4713 return err;
4714}
4715
4716/*
4717 * On success, We end up with an outstanding reference count against
4718 * iloc->bh. This _must_ be cleaned up later.
4719 */
4720
4721int
617ba13b
MC
4722ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4723 struct ext4_iloc *iloc)
ac27a0ec
DK
4724{
4725 int err = 0;
4726 if (handle) {
617ba13b 4727 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4728 if (!err) {
4729 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4730 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4731 if (err) {
4732 brelse(iloc->bh);
4733 iloc->bh = NULL;
4734 }
4735 }
4736 }
617ba13b 4737 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4738 return err;
4739}
4740
6dd4ee7c
KS
4741/*
4742 * Expand an inode by new_extra_isize bytes.
4743 * Returns 0 on success or negative error number on failure.
4744 */
1d03ec98
AK
4745static int ext4_expand_extra_isize(struct inode *inode,
4746 unsigned int new_extra_isize,
4747 struct ext4_iloc iloc,
4748 handle_t *handle)
6dd4ee7c
KS
4749{
4750 struct ext4_inode *raw_inode;
4751 struct ext4_xattr_ibody_header *header;
4752 struct ext4_xattr_entry *entry;
4753
4754 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4755 return 0;
4756
4757 raw_inode = ext4_raw_inode(&iloc);
4758
4759 header = IHDR(inode, raw_inode);
4760 entry = IFIRST(header);
4761
4762 /* No extended attributes present */
4763 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4764 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4765 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4766 new_extra_isize);
4767 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4768 return 0;
4769 }
4770
4771 /* try to expand with EAs present */
4772 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4773 raw_inode, handle);
4774}
4775
ac27a0ec
DK
4776/*
4777 * What we do here is to mark the in-core inode as clean with respect to inode
4778 * dirtiness (it may still be data-dirty).
4779 * This means that the in-core inode may be reaped by prune_icache
4780 * without having to perform any I/O. This is a very good thing,
4781 * because *any* task may call prune_icache - even ones which
4782 * have a transaction open against a different journal.
4783 *
4784 * Is this cheating? Not really. Sure, we haven't written the
4785 * inode out, but prune_icache isn't a user-visible syncing function.
4786 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4787 * we start and wait on commits.
4788 *
4789 * Is this efficient/effective? Well, we're being nice to the system
4790 * by cleaning up our inodes proactively so they can be reaped
4791 * without I/O. But we are potentially leaving up to five seconds'
4792 * worth of inodes floating about which prune_icache wants us to
4793 * write out. One way to fix that would be to get prune_icache()
4794 * to do a write_super() to free up some memory. It has the desired
4795 * effect.
4796 */
617ba13b 4797int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4798{
617ba13b 4799 struct ext4_iloc iloc;
6dd4ee7c
KS
4800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4801 static unsigned int mnt_count;
4802 int err, ret;
ac27a0ec
DK
4803
4804 might_sleep();
617ba13b 4805 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4806 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4807 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4808 /*
4809 * We need extra buffer credits since we may write into EA block
4810 * with this same handle. If journal_extend fails, then it will
4811 * only result in a minor loss of functionality for that inode.
4812 * If this is felt to be critical, then e2fsck should be run to
4813 * force a large enough s_min_extra_isize.
4814 */
4815 if ((jbd2_journal_extend(handle,
4816 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4817 ret = ext4_expand_extra_isize(inode,
4818 sbi->s_want_extra_isize,
4819 iloc, handle);
4820 if (ret) {
4821 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4822 if (mnt_count !=
4823 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4824 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4825 "Unable to expand inode %lu. Delete"
4826 " some EAs or run e2fsck.",
4827 inode->i_ino);
c1bddad9
AK
4828 mnt_count =
4829 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4830 }
4831 }
4832 }
4833 }
ac27a0ec 4834 if (!err)
617ba13b 4835 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4836 return err;
4837}
4838
4839/*
617ba13b 4840 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4841 *
4842 * We're really interested in the case where a file is being extended.
4843 * i_size has been changed by generic_commit_write() and we thus need
4844 * to include the updated inode in the current transaction.
4845 *
4846 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4847 * are allocated to the file.
4848 *
4849 * If the inode is marked synchronous, we don't honour that here - doing
4850 * so would cause a commit on atime updates, which we don't bother doing.
4851 * We handle synchronous inodes at the highest possible level.
4852 */
617ba13b 4853void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4854{
617ba13b 4855 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4856 handle_t *handle;
4857
617ba13b 4858 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4859 if (IS_ERR(handle))
4860 goto out;
4861 if (current_handle &&
4862 current_handle->h_transaction != handle->h_transaction) {
4863 /* This task has a transaction open against a different fs */
4864 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4865 __func__);
ac27a0ec
DK
4866 } else {
4867 jbd_debug(5, "marking dirty. outer handle=%p\n",
4868 current_handle);
617ba13b 4869 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4870 }
617ba13b 4871 ext4_journal_stop(handle);
ac27a0ec
DK
4872out:
4873 return;
4874}
4875
4876#if 0
4877/*
4878 * Bind an inode's backing buffer_head into this transaction, to prevent
4879 * it from being flushed to disk early. Unlike
617ba13b 4880 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4881 * returns no iloc structure, so the caller needs to repeat the iloc
4882 * lookup to mark the inode dirty later.
4883 */
617ba13b 4884static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4885{
617ba13b 4886 struct ext4_iloc iloc;
ac27a0ec
DK
4887
4888 int err = 0;
4889 if (handle) {
617ba13b 4890 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4891 if (!err) {
4892 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4893 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4894 if (!err)
617ba13b 4895 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4896 iloc.bh);
4897 brelse(iloc.bh);
4898 }
4899 }
617ba13b 4900 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4901 return err;
4902}
4903#endif
4904
617ba13b 4905int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4906{
4907 journal_t *journal;
4908 handle_t *handle;
4909 int err;
4910
4911 /*
4912 * We have to be very careful here: changing a data block's
4913 * journaling status dynamically is dangerous. If we write a
4914 * data block to the journal, change the status and then delete
4915 * that block, we risk forgetting to revoke the old log record
4916 * from the journal and so a subsequent replay can corrupt data.
4917 * So, first we make sure that the journal is empty and that
4918 * nobody is changing anything.
4919 */
4920
617ba13b 4921 journal = EXT4_JOURNAL(inode);
d699594d 4922 if (is_journal_aborted(journal))
ac27a0ec
DK
4923 return -EROFS;
4924
dab291af
MC
4925 jbd2_journal_lock_updates(journal);
4926 jbd2_journal_flush(journal);
ac27a0ec
DK
4927
4928 /*
4929 * OK, there are no updates running now, and all cached data is
4930 * synced to disk. We are now in a completely consistent state
4931 * which doesn't have anything in the journal, and we know that
4932 * no filesystem updates are running, so it is safe to modify
4933 * the inode's in-core data-journaling state flag now.
4934 */
4935
4936 if (val)
617ba13b 4937 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4938 else
617ba13b
MC
4939 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4940 ext4_set_aops(inode);
ac27a0ec 4941
dab291af 4942 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4943
4944 /* Finally we can mark the inode as dirty. */
4945
617ba13b 4946 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4947 if (IS_ERR(handle))
4948 return PTR_ERR(handle);
4949
617ba13b 4950 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4951 handle->h_sync = 1;
617ba13b
MC
4952 ext4_journal_stop(handle);
4953 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4954
4955 return err;
4956}
2e9ee850
AK
4957
4958static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4959{
4960 return !buffer_mapped(bh);
4961}
4962
4963int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4964{
4965 loff_t size;
4966 unsigned long len;
4967 int ret = -EINVAL;
79f0be8d 4968 void *fsdata;
2e9ee850
AK
4969 struct file *file = vma->vm_file;
4970 struct inode *inode = file->f_path.dentry->d_inode;
4971 struct address_space *mapping = inode->i_mapping;
4972
4973 /*
4974 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4975 * get i_mutex because we are already holding mmap_sem.
4976 */
4977 down_read(&inode->i_alloc_sem);
4978 size = i_size_read(inode);
4979 if (page->mapping != mapping || size <= page_offset(page)
4980 || !PageUptodate(page)) {
4981 /* page got truncated from under us? */
4982 goto out_unlock;
4983 }
4984 ret = 0;
4985 if (PageMappedToDisk(page))
4986 goto out_unlock;
4987
4988 if (page->index == size >> PAGE_CACHE_SHIFT)
4989 len = size & ~PAGE_CACHE_MASK;
4990 else
4991 len = PAGE_CACHE_SIZE;
4992
4993 if (page_has_buffers(page)) {
4994 /* return if we have all the buffers mapped */
4995 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4996 ext4_bh_unmapped))
4997 goto out_unlock;
4998 }
4999 /*
5000 * OK, we need to fill the hole... Do write_begin write_end
5001 * to do block allocation/reservation.We are not holding
5002 * inode.i__mutex here. That allow * parallel write_begin,
5003 * write_end call. lock_page prevent this from happening
5004 * on the same page though
5005 */
5006 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5007 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5008 if (ret < 0)
5009 goto out_unlock;
5010 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5011 len, len, page, fsdata);
2e9ee850
AK
5012 if (ret < 0)
5013 goto out_unlock;
5014 ret = 0;
5015out_unlock:
5016 up_read(&inode->i_alloc_sem);
5017 return ret;
5018}