]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
ext4: refactor punch hole code
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
137static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
64769240 140
ac27a0ec
DK
141/*
142 * Test whether an inode is a fast symlink.
143 */
617ba13b 144static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 145{
617ba13b 146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
147 (inode->i_sb->s_blocksize >> 9) : 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
ac27a0ec
DK
152/*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
fa5d1113 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 158 int nblocks)
ac27a0ec 159{
487caeef
JK
160 int ret;
161
162 /*
e35fd660 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
0390131b 168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 169 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 170 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 171 ret = ext4_journal_restart(handle, nblocks);
487caeef 172 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 173 ext4_discard_preallocations(inode);
487caeef
JK
174
175 return ret;
ac27a0ec
DK
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
0930fcc1 181void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
182{
183 handle_t *handle;
bc965ab3 184 int err;
ac27a0ec 185
7ff9c073 186 trace_ext4_evict_inode(inode);
2581fdc8 187
0930fcc1 188 if (inode->i_nlink) {
2d859db3
JK
189 /*
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
203 *
204 * Note that directories do not have this problem because they
205 * don't use page cache.
206 */
207 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213 jbd2_log_start_commit(journal, commit_tid);
214 jbd2_log_wait_commit(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 218 ext4_ioend_shutdown(inode);
0930fcc1
AV
219 goto no_delete;
220 }
221
907f4554 222 if (!is_bad_inode(inode))
871a2931 223 dquot_initialize(inode);
907f4554 224
678aaf48
JK
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 227 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 228 ext4_ioend_shutdown(inode);
ac27a0ec
DK
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
12219aea
AK
322/*
323 * Calculate the number of metadata blocks need to reserve
9d0be502 324 * to allocate a block located at @lblock
12219aea 325 */
01f49d0b 326static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 327{
12e9b892 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 329 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 330
8bb2b247 331 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
332}
333
0637c6f4
TT
334/*
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
337 */
5f634d06
AK
338void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
12219aea
AK
340{
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 342 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
343
344 spin_lock(&ei->i_block_reservation_lock);
d8990240 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 346 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 348 "with only %d reserved data blocks",
0637c6f4
TT
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
353 }
12219aea 354
97795d2a 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
356 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 "with only %d reserved metadata blocks "
358 "(releasing %d blocks with reserved %d data blocks)",
359 inode->i_ino, ei->i_allocated_meta_blocks,
360 ei->i_reserved_meta_blocks, used,
361 ei->i_reserved_data_blocks);
97795d2a
BF
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
921f266b
DM
486#ifdef ES_AGGRESSIVE_TEST
487static void ext4_map_blocks_es_recheck(handle_t *handle,
488 struct inode *inode,
489 struct ext4_map_blocks *es_map,
490 struct ext4_map_blocks *map,
491 int flags)
492{
493 int retval;
494
495 map->m_flags = 0;
496 /*
497 * There is a race window that the result is not the same.
498 * e.g. xfstests #223 when dioread_nolock enables. The reason
499 * is that we lookup a block mapping in extent status tree with
500 * out taking i_data_sem. So at the time the unwritten extent
501 * could be converted.
502 */
503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 down_read((&EXT4_I(inode)->i_data_sem));
505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 EXT4_GET_BLOCKS_KEEP_SIZE);
508 } else {
509 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 EXT4_GET_BLOCKS_KEEP_SIZE);
511 }
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 up_read((&EXT4_I(inode)->i_data_sem));
514 /*
515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 * because it shouldn't be marked in es_map->m_flags.
517 */
518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520 /*
521 * We don't check m_len because extent will be collpased in status
522 * tree. So the m_len might not equal.
523 */
524 if (es_map->m_lblk != map->m_lblk ||
525 es_map->m_flags != map->m_flags ||
526 es_map->m_pblk != map->m_pblk) {
527 printk("ES cache assertation failed for inode: %lu "
528 "es_cached ex [%d/%d/%llu/%x] != "
529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 inode->i_ino, es_map->m_lblk, es_map->m_len,
531 es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 map->m_len, map->m_pblk, map->m_flags,
533 retval, flags);
534 }
535}
536#endif /* ES_AGGRESSIVE_TEST */
537
f5ab0d1f 538/*
e35fd660 539 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 540 * and returns if the blocks are already mapped.
f5ab0d1f 541 *
f5ab0d1f
MC
542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543 * and store the allocated blocks in the result buffer head and mark it
544 * mapped.
545 *
e35fd660
TT
546 * If file type is extents based, it will call ext4_ext_map_blocks(),
547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
548 * based files
549 *
550 * On success, it returns the number of blocks being mapped or allocate.
551 * if create==0 and the blocks are pre-allocated and uninitialized block,
552 * the result buffer head is unmapped. If the create ==1, it will make sure
553 * the buffer head is mapped.
554 *
555 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 556 * that case, buffer head is unmapped
f5ab0d1f
MC
557 *
558 * It returns the error in case of allocation failure.
559 */
e35fd660
TT
560int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 struct ext4_map_blocks *map, int flags)
0e855ac8 562{
d100eef2 563 struct extent_status es;
0e855ac8 564 int retval;
921f266b
DM
565#ifdef ES_AGGRESSIVE_TEST
566 struct ext4_map_blocks orig_map;
567
568 memcpy(&orig_map, map, sizeof(*map));
569#endif
f5ab0d1f 570
e35fd660
TT
571 map->m_flags = 0;
572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 (unsigned long) map->m_lblk);
d100eef2
ZL
575
576 /* Lookup extent status tree firstly */
577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 map->m_pblk = ext4_es_pblock(&es) +
580 map->m_lblk - es.es_lblk;
581 map->m_flags |= ext4_es_is_written(&es) ?
582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 retval = es.es_len - (map->m_lblk - es.es_lblk);
584 if (retval > map->m_len)
585 retval = map->m_len;
586 map->m_len = retval;
587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 retval = 0;
589 } else {
590 BUG_ON(1);
591 }
921f266b
DM
592#ifdef ES_AGGRESSIVE_TEST
593 ext4_map_blocks_es_recheck(handle, inode, map,
594 &orig_map, flags);
595#endif
d100eef2
ZL
596 goto found;
597 }
598
4df3d265 599 /*
b920c755
TT
600 * Try to see if we can get the block without requesting a new
601 * file system block.
4df3d265 602 */
729f52c6
ZL
603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
606 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 608 } else {
a4e5d88b
DM
609 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 611 }
f7fec032
ZL
612 if (retval > 0) {
613 int ret;
614 unsigned long long status;
615
921f266b
DM
616#ifdef ES_AGGRESSIVE_TEST
617 if (retval != map->m_len) {
618 printk("ES len assertation failed for inode: %lu "
619 "retval %d != map->m_len %d "
620 "in %s (lookup)\n", inode->i_ino, retval,
621 map->m_len, __func__);
622 }
623#endif
624
f7fec032
ZL
625 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 ext4_find_delalloc_range(inode, map->m_lblk,
629 map->m_lblk + map->m_len - 1))
630 status |= EXTENT_STATUS_DELAYED;
631 ret = ext4_es_insert_extent(inode, map->m_lblk,
632 map->m_len, map->m_pblk, status);
633 if (ret < 0)
634 retval = ret;
635 }
729f52c6
ZL
636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 638
d100eef2 639found:
e35fd660 640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 641 int ret = check_block_validity(inode, map);
6fd058f7
TT
642 if (ret != 0)
643 return ret;
644 }
645
f5ab0d1f 646 /* If it is only a block(s) look up */
c2177057 647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
648 return retval;
649
650 /*
651 * Returns if the blocks have already allocated
652 *
653 * Note that if blocks have been preallocated
df3ab170 654 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
655 * with buffer head unmapped.
656 */
e35fd660 657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
658 return retval;
659
2a8964d6 660 /*
a25a4e1a
ZL
661 * Here we clear m_flags because after allocating an new extent,
662 * it will be set again.
2a8964d6 663 */
a25a4e1a 664 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 665
4df3d265 666 /*
f5ab0d1f
MC
667 * New blocks allocate and/or writing to uninitialized extent
668 * will possibly result in updating i_data, so we take
669 * the write lock of i_data_sem, and call get_blocks()
670 * with create == 1 flag.
4df3d265
AK
671 */
672 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
673
674 /*
675 * if the caller is from delayed allocation writeout path
676 * we have already reserved fs blocks for allocation
677 * let the underlying get_block() function know to
678 * avoid double accounting
679 */
c2177057 680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
682 /*
683 * We need to check for EXT4 here because migrate
684 * could have changed the inode type in between
685 */
12e9b892 686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 687 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 688 } else {
e35fd660 689 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 690
e35fd660 691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
692 /*
693 * We allocated new blocks which will result in
694 * i_data's format changing. Force the migrate
695 * to fail by clearing migrate flags
696 */
19f5fb7a 697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 698 }
d2a17637 699
5f634d06
AK
700 /*
701 * Update reserved blocks/metadata blocks after successful
702 * block allocation which had been deferred till now. We don't
703 * support fallocate for non extent files. So we can update
704 * reserve space here.
705 */
706 if ((retval > 0) &&
1296cc85 707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
708 ext4_da_update_reserve_space(inode, retval, 1);
709 }
f7fec032 710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 712
f7fec032
ZL
713 if (retval > 0) {
714 int ret;
715 unsigned long long status;
716
921f266b
DM
717#ifdef ES_AGGRESSIVE_TEST
718 if (retval != map->m_len) {
719 printk("ES len assertation failed for inode: %lu "
720 "retval %d != map->m_len %d "
721 "in %s (allocation)\n", inode->i_ino, retval,
722 map->m_len, __func__);
723 }
724#endif
725
adb23551
ZL
726 /*
727 * If the extent has been zeroed out, we don't need to update
728 * extent status tree.
729 */
730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 if (ext4_es_is_written(&es))
733 goto has_zeroout;
734 }
f7fec032
ZL
735 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 ext4_find_delalloc_range(inode, map->m_lblk,
739 map->m_lblk + map->m_len - 1))
740 status |= EXTENT_STATUS_DELAYED;
741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 map->m_pblk, status);
743 if (ret < 0)
744 retval = ret;
5356f261
AK
745 }
746
adb23551 747has_zeroout:
4df3d265 748 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 750 int ret = check_block_validity(inode, map);
6fd058f7
TT
751 if (ret != 0)
752 return ret;
753 }
0e855ac8
AK
754 return retval;
755}
756
f3bd1f3f
MC
757/* Maximum number of blocks we map for direct IO at once. */
758#define DIO_MAX_BLOCKS 4096
759
2ed88685
TT
760static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
ac27a0ec 762{
3e4fdaf8 763 handle_t *handle = ext4_journal_current_handle();
2ed88685 764 struct ext4_map_blocks map;
7fb5409d 765 int ret = 0, started = 0;
f3bd1f3f 766 int dio_credits;
ac27a0ec 767
46c7f254
TM
768 if (ext4_has_inline_data(inode))
769 return -ERANGE;
770
2ed88685
TT
771 map.m_lblk = iblock;
772 map.m_len = bh->b_size >> inode->i_blkbits;
773
8b0f165f 774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 775 /* Direct IO write... */
2ed88685
TT
776 if (map.m_len > DIO_MAX_BLOCKS)
777 map.m_len = DIO_MAX_BLOCKS;
778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 dio_credits);
7fb5409d 781 if (IS_ERR(handle)) {
ac27a0ec 782 ret = PTR_ERR(handle);
2ed88685 783 return ret;
ac27a0ec 784 }
7fb5409d 785 started = 1;
ac27a0ec
DK
786 }
787
2ed88685 788 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 789 if (ret > 0) {
2ed88685
TT
790 map_bh(bh, inode->i_sb, map.m_pblk);
791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 793 ret = 0;
ac27a0ec 794 }
7fb5409d
JK
795 if (started)
796 ext4_journal_stop(handle);
ac27a0ec
DK
797 return ret;
798}
799
2ed88685
TT
800int ext4_get_block(struct inode *inode, sector_t iblock,
801 struct buffer_head *bh, int create)
802{
803 return _ext4_get_block(inode, iblock, bh,
804 create ? EXT4_GET_BLOCKS_CREATE : 0);
805}
806
ac27a0ec
DK
807/*
808 * `handle' can be NULL if create is zero
809 */
617ba13b 810struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 811 ext4_lblk_t block, int create, int *errp)
ac27a0ec 812{
2ed88685
TT
813 struct ext4_map_blocks map;
814 struct buffer_head *bh;
ac27a0ec
DK
815 int fatal = 0, err;
816
817 J_ASSERT(handle != NULL || create == 0);
818
2ed88685
TT
819 map.m_lblk = block;
820 map.m_len = 1;
821 err = ext4_map_blocks(handle, inode, &map,
822 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 823
90b0a973
CM
824 /* ensure we send some value back into *errp */
825 *errp = 0;
826
0f70b406
TT
827 if (create && err == 0)
828 err = -ENOSPC; /* should never happen */
2ed88685
TT
829 if (err < 0)
830 *errp = err;
831 if (err <= 0)
832 return NULL;
2ed88685
TT
833
834 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 835 if (unlikely(!bh)) {
860d21e2 836 *errp = -ENOMEM;
2ed88685 837 return NULL;
ac27a0ec 838 }
2ed88685
TT
839 if (map.m_flags & EXT4_MAP_NEW) {
840 J_ASSERT(create != 0);
841 J_ASSERT(handle != NULL);
ac27a0ec 842
2ed88685
TT
843 /*
844 * Now that we do not always journal data, we should
845 * keep in mind whether this should always journal the
846 * new buffer as metadata. For now, regular file
847 * writes use ext4_get_block instead, so it's not a
848 * problem.
849 */
850 lock_buffer(bh);
851 BUFFER_TRACE(bh, "call get_create_access");
852 fatal = ext4_journal_get_create_access(handle, bh);
853 if (!fatal && !buffer_uptodate(bh)) {
854 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 set_buffer_uptodate(bh);
ac27a0ec 856 }
2ed88685
TT
857 unlock_buffer(bh);
858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 err = ext4_handle_dirty_metadata(handle, inode, bh);
860 if (!fatal)
861 fatal = err;
862 } else {
863 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 864 }
2ed88685
TT
865 if (fatal) {
866 *errp = fatal;
867 brelse(bh);
868 bh = NULL;
869 }
870 return bh;
ac27a0ec
DK
871}
872
617ba13b 873struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 874 ext4_lblk_t block, int create, int *err)
ac27a0ec 875{
af5bc92d 876 struct buffer_head *bh;
ac27a0ec 877
617ba13b 878 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
879 if (!bh)
880 return bh;
881 if (buffer_uptodate(bh))
882 return bh;
65299a3b 883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
884 wait_on_buffer(bh);
885 if (buffer_uptodate(bh))
886 return bh;
887 put_bh(bh);
888 *err = -EIO;
889 return NULL;
890}
891
f19d5870
TM
892int ext4_walk_page_buffers(handle_t *handle,
893 struct buffer_head *head,
894 unsigned from,
895 unsigned to,
896 int *partial,
897 int (*fn)(handle_t *handle,
898 struct buffer_head *bh))
ac27a0ec
DK
899{
900 struct buffer_head *bh;
901 unsigned block_start, block_end;
902 unsigned blocksize = head->b_size;
903 int err, ret = 0;
904 struct buffer_head *next;
905
af5bc92d
TT
906 for (bh = head, block_start = 0;
907 ret == 0 && (bh != head || !block_start);
de9a55b8 908 block_start = block_end, bh = next) {
ac27a0ec
DK
909 next = bh->b_this_page;
910 block_end = block_start + blocksize;
911 if (block_end <= from || block_start >= to) {
912 if (partial && !buffer_uptodate(bh))
913 *partial = 1;
914 continue;
915 }
916 err = (*fn)(handle, bh);
917 if (!ret)
918 ret = err;
919 }
920 return ret;
921}
922
923/*
924 * To preserve ordering, it is essential that the hole instantiation and
925 * the data write be encapsulated in a single transaction. We cannot
617ba13b 926 * close off a transaction and start a new one between the ext4_get_block()
dab291af 927 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
928 * prepare_write() is the right place.
929 *
36ade451
JK
930 * Also, this function can nest inside ext4_writepage(). In that case, we
931 * *know* that ext4_writepage() has generated enough buffer credits to do the
932 * whole page. So we won't block on the journal in that case, which is good,
933 * because the caller may be PF_MEMALLOC.
ac27a0ec 934 *
617ba13b 935 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
936 * quota file writes. If we were to commit the transaction while thus
937 * reentered, there can be a deadlock - we would be holding a quota
938 * lock, and the commit would never complete if another thread had a
939 * transaction open and was blocking on the quota lock - a ranking
940 * violation.
941 *
dab291af 942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
943 * will _not_ run commit under these circumstances because handle->h_ref
944 * is elevated. We'll still have enough credits for the tiny quotafile
945 * write.
946 */
f19d5870
TM
947int do_journal_get_write_access(handle_t *handle,
948 struct buffer_head *bh)
ac27a0ec 949{
56d35a4c
JK
950 int dirty = buffer_dirty(bh);
951 int ret;
952
ac27a0ec
DK
953 if (!buffer_mapped(bh) || buffer_freed(bh))
954 return 0;
56d35a4c 955 /*
ebdec241 956 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
957 * the dirty bit as jbd2_journal_get_write_access() could complain
958 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 959 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
960 * the bit before releasing a page lock and thus writeback cannot
961 * ever write the buffer.
962 */
963 if (dirty)
964 clear_buffer_dirty(bh);
965 ret = ext4_journal_get_write_access(handle, bh);
966 if (!ret && dirty)
967 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 return ret;
ac27a0ec
DK
969}
970
8b0f165f
AP
971static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 struct buffer_head *bh_result, int create);
bfc1af65 973static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
ac27a0ec 976{
af5bc92d 977 struct inode *inode = mapping->host;
1938a150 978 int ret, needed_blocks;
ac27a0ec
DK
979 handle_t *handle;
980 int retries = 0;
af5bc92d 981 struct page *page;
de9a55b8 982 pgoff_t index;
af5bc92d 983 unsigned from, to;
bfc1af65 984
9bffad1e 985 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
986 /*
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
989 */
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 991 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
992 from = pos & (PAGE_CACHE_SIZE - 1);
993 to = from + len;
ac27a0ec 994
f19d5870
TM
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 flags, pagep);
998 if (ret < 0)
47564bfb
TT
999 return ret;
1000 if (ret == 1)
1001 return 0;
f19d5870
TM
1002 }
1003
47564bfb
TT
1004 /*
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1010 */
1011retry_grab:
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1013 if (!page)
1014 return -ENOMEM;
1015 unlock_page(page);
1016
1017retry_journal:
9924a92a 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1019 if (IS_ERR(handle)) {
47564bfb
TT
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
7479d2b9 1022 }
ac27a0ec 1023
47564bfb
TT
1024 lock_page(page);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1027 unlock_page(page);
1028 page_cache_release(page);
cf108bca 1029 ext4_journal_stop(handle);
47564bfb 1030 goto retry_grab;
cf108bca 1031 }
47564bfb 1032 wait_on_page_writeback(page);
cf108bca 1033
744692dc 1034 if (ext4_should_dioread_nolock(inode))
6e1db88d 1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1036 else
6e1db88d 1037 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1038
1039 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1040 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 from, to, NULL,
1042 do_journal_get_write_access);
ac27a0ec 1043 }
bfc1af65
NP
1044
1045 if (ret) {
af5bc92d 1046 unlock_page(page);
ae4d5372 1047 /*
6e1db88d 1048 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1049 * outside i_size. Trim these off again. Don't need
1050 * i_size_read because we hold i_mutex.
1938a150
AK
1051 *
1052 * Add inode to orphan list in case we crash before
1053 * truncate finishes
ae4d5372 1054 */
ffacfa7a 1055 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1056 ext4_orphan_add(handle, inode);
1057
1058 ext4_journal_stop(handle);
1059 if (pos + len > inode->i_size) {
b9a4207d 1060 ext4_truncate_failed_write(inode);
de9a55b8 1061 /*
ffacfa7a 1062 * If truncate failed early the inode might
1938a150
AK
1063 * still be on the orphan list; we need to
1064 * make sure the inode is removed from the
1065 * orphan list in that case.
1066 */
1067 if (inode->i_nlink)
1068 ext4_orphan_del(NULL, inode);
1069 }
bfc1af65 1070
47564bfb
TT
1071 if (ret == -ENOSPC &&
1072 ext4_should_retry_alloc(inode->i_sb, &retries))
1073 goto retry_journal;
1074 page_cache_release(page);
1075 return ret;
1076 }
1077 *pagep = page;
ac27a0ec
DK
1078 return ret;
1079}
1080
bfc1af65
NP
1081/* For write_end() in data=journal mode */
1082static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1083{
1084 if (!buffer_mapped(bh) || buffer_freed(bh))
1085 return 0;
1086 set_buffer_uptodate(bh);
0390131b 1087 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1088}
1089
eed4333f
ZL
1090/*
1091 * We need to pick up the new inode size which generic_commit_write gave us
1092 * `file' can be NULL - eg, when called from page_symlink().
1093 *
1094 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1095 * buffers are managed internally.
1096 */
1097static int ext4_write_end(struct file *file,
1098 struct address_space *mapping,
1099 loff_t pos, unsigned len, unsigned copied,
1100 struct page *page, void *fsdata)
f8514083 1101{
f8514083 1102 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1103 struct inode *inode = mapping->host;
1104 int ret = 0, ret2;
1105 int i_size_changed = 0;
1106
1107 trace_ext4_write_end(inode, pos, len, copied);
1108 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1109 ret = ext4_jbd2_file_inode(handle, inode);
1110 if (ret) {
1111 unlock_page(page);
1112 page_cache_release(page);
1113 goto errout;
1114 }
1115 }
f8514083 1116
f19d5870
TM
1117 if (ext4_has_inline_data(inode))
1118 copied = ext4_write_inline_data_end(inode, pos, len,
1119 copied, page);
1120 else
1121 copied = block_write_end(file, mapping, pos,
1122 len, copied, page, fsdata);
f8514083
AK
1123
1124 /*
1125 * No need to use i_size_read() here, the i_size
eed4333f 1126 * cannot change under us because we hole i_mutex.
f8514083
AK
1127 *
1128 * But it's important to update i_size while still holding page lock:
1129 * page writeout could otherwise come in and zero beyond i_size.
1130 */
1131 if (pos + copied > inode->i_size) {
1132 i_size_write(inode, pos + copied);
1133 i_size_changed = 1;
1134 }
1135
eed4333f 1136 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1137 /* We need to mark inode dirty even if
1138 * new_i_size is less that inode->i_size
eed4333f 1139 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1140 */
1141 ext4_update_i_disksize(inode, (pos + copied));
1142 i_size_changed = 1;
1143 }
1144 unlock_page(page);
1145 page_cache_release(page);
1146
1147 /*
1148 * Don't mark the inode dirty under page lock. First, it unnecessarily
1149 * makes the holding time of page lock longer. Second, it forces lock
1150 * ordering of page lock and transaction start for journaling
1151 * filesystems.
1152 */
1153 if (i_size_changed)
1154 ext4_mark_inode_dirty(handle, inode);
1155
74d553aa
TT
1156 if (copied < 0)
1157 ret = copied;
ffacfa7a 1158 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1159 /* if we have allocated more blocks and copied
1160 * less. We will have blocks allocated outside
1161 * inode->i_size. So truncate them
1162 */
1163 ext4_orphan_add(handle, inode);
74d553aa 1164errout:
617ba13b 1165 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1166 if (!ret)
1167 ret = ret2;
bfc1af65 1168
f8514083 1169 if (pos + len > inode->i_size) {
b9a4207d 1170 ext4_truncate_failed_write(inode);
de9a55b8 1171 /*
ffacfa7a 1172 * If truncate failed early the inode might still be
f8514083
AK
1173 * on the orphan list; we need to make sure the inode
1174 * is removed from the orphan list in that case.
1175 */
1176 if (inode->i_nlink)
1177 ext4_orphan_del(NULL, inode);
1178 }
1179
bfc1af65 1180 return ret ? ret : copied;
ac27a0ec
DK
1181}
1182
bfc1af65 1183static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1184 struct address_space *mapping,
1185 loff_t pos, unsigned len, unsigned copied,
1186 struct page *page, void *fsdata)
ac27a0ec 1187{
617ba13b 1188 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1189 struct inode *inode = mapping->host;
ac27a0ec
DK
1190 int ret = 0, ret2;
1191 int partial = 0;
bfc1af65 1192 unsigned from, to;
cf17fea6 1193 loff_t new_i_size;
ac27a0ec 1194
9bffad1e 1195 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1196 from = pos & (PAGE_CACHE_SIZE - 1);
1197 to = from + len;
1198
441c8508
CW
1199 BUG_ON(!ext4_handle_valid(handle));
1200
3fdcfb66
TM
1201 if (ext4_has_inline_data(inode))
1202 copied = ext4_write_inline_data_end(inode, pos, len,
1203 copied, page);
1204 else {
1205 if (copied < len) {
1206 if (!PageUptodate(page))
1207 copied = 0;
1208 page_zero_new_buffers(page, from+copied, to);
1209 }
ac27a0ec 1210
3fdcfb66
TM
1211 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1212 to, &partial, write_end_fn);
1213 if (!partial)
1214 SetPageUptodate(page);
1215 }
cf17fea6
AK
1216 new_i_size = pos + copied;
1217 if (new_i_size > inode->i_size)
bfc1af65 1218 i_size_write(inode, pos+copied);
19f5fb7a 1219 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1220 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1221 if (new_i_size > EXT4_I(inode)->i_disksize) {
1222 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1223 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1224 if (!ret)
1225 ret = ret2;
1226 }
bfc1af65 1227
cf108bca 1228 unlock_page(page);
f8514083 1229 page_cache_release(page);
ffacfa7a 1230 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1231 /* if we have allocated more blocks and copied
1232 * less. We will have blocks allocated outside
1233 * inode->i_size. So truncate them
1234 */
1235 ext4_orphan_add(handle, inode);
1236
617ba13b 1237 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1238 if (!ret)
1239 ret = ret2;
f8514083 1240 if (pos + len > inode->i_size) {
b9a4207d 1241 ext4_truncate_failed_write(inode);
de9a55b8 1242 /*
ffacfa7a 1243 * If truncate failed early the inode might still be
f8514083
AK
1244 * on the orphan list; we need to make sure the inode
1245 * is removed from the orphan list in that case.
1246 */
1247 if (inode->i_nlink)
1248 ext4_orphan_del(NULL, inode);
1249 }
bfc1af65
NP
1250
1251 return ret ? ret : copied;
ac27a0ec 1252}
d2a17637 1253
386ad67c
LC
1254/*
1255 * Reserve a metadata for a single block located at lblock
1256 */
1257static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1258{
1259 int retries = 0;
1260 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1261 struct ext4_inode_info *ei = EXT4_I(inode);
1262 unsigned int md_needed;
1263 ext4_lblk_t save_last_lblock;
1264 int save_len;
1265
1266 /*
1267 * recalculate the amount of metadata blocks to reserve
1268 * in order to allocate nrblocks
1269 * worse case is one extent per block
1270 */
1271repeat:
1272 spin_lock(&ei->i_block_reservation_lock);
1273 /*
1274 * ext4_calc_metadata_amount() has side effects, which we have
1275 * to be prepared undo if we fail to claim space.
1276 */
1277 save_len = ei->i_da_metadata_calc_len;
1278 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1279 md_needed = EXT4_NUM_B2C(sbi,
1280 ext4_calc_metadata_amount(inode, lblock));
1281 trace_ext4_da_reserve_space(inode, md_needed);
1282
1283 /*
1284 * We do still charge estimated metadata to the sb though;
1285 * we cannot afford to run out of free blocks.
1286 */
1287 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1288 ei->i_da_metadata_calc_len = save_len;
1289 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1290 spin_unlock(&ei->i_block_reservation_lock);
1291 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1292 cond_resched();
1293 goto repeat;
1294 }
1295 return -ENOSPC;
1296 }
1297 ei->i_reserved_meta_blocks += md_needed;
1298 spin_unlock(&ei->i_block_reservation_lock);
1299
1300 return 0; /* success */
1301}
1302
9d0be502 1303/*
7b415bf6 1304 * Reserve a single cluster located at lblock
9d0be502 1305 */
01f49d0b 1306static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1307{
030ba6bc 1308 int retries = 0;
60e58e0f 1309 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1310 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1311 unsigned int md_needed;
5dd4056d 1312 int ret;
03179fe9
TT
1313 ext4_lblk_t save_last_lblock;
1314 int save_len;
1315
1316 /*
1317 * We will charge metadata quota at writeout time; this saves
1318 * us from metadata over-estimation, though we may go over by
1319 * a small amount in the end. Here we just reserve for data.
1320 */
1321 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1322 if (ret)
1323 return ret;
d2a17637
MC
1324
1325 /*
1326 * recalculate the amount of metadata blocks to reserve
1327 * in order to allocate nrblocks
1328 * worse case is one extent per block
1329 */
030ba6bc 1330repeat:
0637c6f4 1331 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1332 /*
1333 * ext4_calc_metadata_amount() has side effects, which we have
1334 * to be prepared undo if we fail to claim space.
1335 */
1336 save_len = ei->i_da_metadata_calc_len;
1337 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1338 md_needed = EXT4_NUM_B2C(sbi,
1339 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1340 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1341
72b8ab9d
ES
1342 /*
1343 * We do still charge estimated metadata to the sb though;
1344 * we cannot afford to run out of free blocks.
1345 */
e7d5f315 1346 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1347 ei->i_da_metadata_calc_len = save_len;
1348 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1349 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1350 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1351 cond_resched();
030ba6bc
AK
1352 goto repeat;
1353 }
03179fe9 1354 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1355 return -ENOSPC;
1356 }
9d0be502 1357 ei->i_reserved_data_blocks++;
0637c6f4
TT
1358 ei->i_reserved_meta_blocks += md_needed;
1359 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1360
d2a17637
MC
1361 return 0; /* success */
1362}
1363
12219aea 1364static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1365{
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1367 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1368
cd213226
MC
1369 if (!to_free)
1370 return; /* Nothing to release, exit */
1371
d2a17637 1372 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1373
5a58ec87 1374 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1375 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1376 /*
0637c6f4
TT
1377 * if there aren't enough reserved blocks, then the
1378 * counter is messed up somewhere. Since this
1379 * function is called from invalidate page, it's
1380 * harmless to return without any action.
cd213226 1381 */
8de5c325 1382 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1383 "ino %lu, to_free %d with only %d reserved "
1084f252 1384 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1385 ei->i_reserved_data_blocks);
1386 WARN_ON(1);
1387 to_free = ei->i_reserved_data_blocks;
cd213226 1388 }
0637c6f4 1389 ei->i_reserved_data_blocks -= to_free;
cd213226 1390
0637c6f4
TT
1391 if (ei->i_reserved_data_blocks == 0) {
1392 /*
1393 * We can release all of the reserved metadata blocks
1394 * only when we have written all of the delayed
1395 * allocation blocks.
7b415bf6
AK
1396 * Note that in case of bigalloc, i_reserved_meta_blocks,
1397 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1398 */
57042651 1399 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1400 ei->i_reserved_meta_blocks);
ee5f4d9c 1401 ei->i_reserved_meta_blocks = 0;
9d0be502 1402 ei->i_da_metadata_calc_len = 0;
0637c6f4 1403 }
d2a17637 1404
72b8ab9d 1405 /* update fs dirty data blocks counter */
57042651 1406 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1407
d2a17637 1408 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1409
7b415bf6 1410 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1411}
1412
1413static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1414 unsigned long offset)
d2a17637
MC
1415{
1416 int to_release = 0;
1417 struct buffer_head *head, *bh;
1418 unsigned int curr_off = 0;
7b415bf6
AK
1419 struct inode *inode = page->mapping->host;
1420 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1421 int num_clusters;
51865fda 1422 ext4_fsblk_t lblk;
d2a17637
MC
1423
1424 head = page_buffers(page);
1425 bh = head;
1426 do {
1427 unsigned int next_off = curr_off + bh->b_size;
1428
1429 if ((offset <= curr_off) && (buffer_delay(bh))) {
1430 to_release++;
1431 clear_buffer_delay(bh);
1432 }
1433 curr_off = next_off;
1434 } while ((bh = bh->b_this_page) != head);
7b415bf6 1435
51865fda
ZL
1436 if (to_release) {
1437 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438 ext4_es_remove_extent(inode, lblk, to_release);
1439 }
1440
7b415bf6
AK
1441 /* If we have released all the blocks belonging to a cluster, then we
1442 * need to release the reserved space for that cluster. */
1443 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1444 while (num_clusters > 0) {
7b415bf6
AK
1445 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1446 ((num_clusters - 1) << sbi->s_cluster_bits);
1447 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1448 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1449 ext4_da_release_space(inode, 1);
1450
1451 num_clusters--;
1452 }
d2a17637 1453}
ac27a0ec 1454
64769240
AT
1455/*
1456 * Delayed allocation stuff
1457 */
1458
64769240
AT
1459/*
1460 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1461 * them with writepage() call back
64769240
AT
1462 *
1463 * @mpd->inode: inode
1464 * @mpd->first_page: first page of the extent
1465 * @mpd->next_page: page after the last page of the extent
64769240
AT
1466 *
1467 * By the time mpage_da_submit_io() is called we expect all blocks
1468 * to be allocated. this may be wrong if allocation failed.
1469 *
1470 * As pages are already locked by write_cache_pages(), we can't use it
1471 */
1de3e3df
TT
1472static int mpage_da_submit_io(struct mpage_da_data *mpd,
1473 struct ext4_map_blocks *map)
64769240 1474{
791b7f08
AK
1475 struct pagevec pvec;
1476 unsigned long index, end;
1477 int ret = 0, err, nr_pages, i;
1478 struct inode *inode = mpd->inode;
1479 struct address_space *mapping = inode->i_mapping;
cb20d518 1480 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1481 unsigned int len, block_start;
1482 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1483 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1484 struct ext4_io_submit io_submit;
64769240
AT
1485
1486 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1487 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1488 /*
1489 * We need to start from the first_page to the next_page - 1
1490 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1491 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1492 * at the currently mapped buffer_heads.
1493 */
64769240
AT
1494 index = mpd->first_page;
1495 end = mpd->next_page - 1;
1496
791b7f08 1497 pagevec_init(&pvec, 0);
64769240 1498 while (index <= end) {
791b7f08 1499 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1500 if (nr_pages == 0)
1501 break;
1502 for (i = 0; i < nr_pages; i++) {
f8bec370 1503 int skip_page = 0;
64769240
AT
1504 struct page *page = pvec.pages[i];
1505
791b7f08
AK
1506 index = page->index;
1507 if (index > end)
1508 break;
cb20d518
TT
1509
1510 if (index == size >> PAGE_CACHE_SHIFT)
1511 len = size & ~PAGE_CACHE_MASK;
1512 else
1513 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1514 if (map) {
1515 cur_logical = index << (PAGE_CACHE_SHIFT -
1516 inode->i_blkbits);
1517 pblock = map->m_pblk + (cur_logical -
1518 map->m_lblk);
1519 }
791b7f08
AK
1520 index++;
1521
1522 BUG_ON(!PageLocked(page));
1523 BUG_ON(PageWriteback(page));
1524
3ecdb3a1
TT
1525 bh = page_bufs = page_buffers(page);
1526 block_start = 0;
64769240 1527 do {
1de3e3df
TT
1528 if (map && (cur_logical >= map->m_lblk) &&
1529 (cur_logical <= (map->m_lblk +
1530 (map->m_len - 1)))) {
29fa89d0
AK
1531 if (buffer_delay(bh)) {
1532 clear_buffer_delay(bh);
1533 bh->b_blocknr = pblock;
29fa89d0 1534 }
1de3e3df
TT
1535 if (buffer_unwritten(bh) ||
1536 buffer_mapped(bh))
1537 BUG_ON(bh->b_blocknr != pblock);
1538 if (map->m_flags & EXT4_MAP_UNINIT)
1539 set_buffer_uninit(bh);
1540 clear_buffer_unwritten(bh);
1541 }
29fa89d0 1542
13a79a47
YY
1543 /*
1544 * skip page if block allocation undone and
1545 * block is dirty
1546 */
1547 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1548 skip_page = 1;
3ecdb3a1
TT
1549 bh = bh->b_this_page;
1550 block_start += bh->b_size;
64769240
AT
1551 cur_logical++;
1552 pblock++;
1de3e3df
TT
1553 } while (bh != page_bufs);
1554
f8bec370
JK
1555 if (skip_page) {
1556 unlock_page(page);
1557 continue;
1558 }
cb20d518 1559
97498956 1560 clear_page_dirty_for_io(page);
fe089c77
JK
1561 err = ext4_bio_write_page(&io_submit, page, len,
1562 mpd->wbc);
cb20d518 1563 if (!err)
a1d6cc56 1564 mpd->pages_written++;
64769240
AT
1565 /*
1566 * In error case, we have to continue because
1567 * remaining pages are still locked
64769240
AT
1568 */
1569 if (ret == 0)
1570 ret = err;
64769240
AT
1571 }
1572 pagevec_release(&pvec);
1573 }
bd2d0210 1574 ext4_io_submit(&io_submit);
64769240 1575 return ret;
64769240
AT
1576}
1577
c7f5938a 1578static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1579{
1580 int nr_pages, i;
1581 pgoff_t index, end;
1582 struct pagevec pvec;
1583 struct inode *inode = mpd->inode;
1584 struct address_space *mapping = inode->i_mapping;
51865fda 1585 ext4_lblk_t start, last;
c4a0c46e 1586
c7f5938a
CW
1587 index = mpd->first_page;
1588 end = mpd->next_page - 1;
51865fda
ZL
1589
1590 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1591 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1592 ext4_es_remove_extent(inode, start, last - start + 1);
1593
66bea92c 1594 pagevec_init(&pvec, 0);
c4a0c46e
AK
1595 while (index <= end) {
1596 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1597 if (nr_pages == 0)
1598 break;
1599 for (i = 0; i < nr_pages; i++) {
1600 struct page *page = pvec.pages[i];
9b1d0998 1601 if (page->index > end)
c4a0c46e 1602 break;
c4a0c46e
AK
1603 BUG_ON(!PageLocked(page));
1604 BUG_ON(PageWriteback(page));
1605 block_invalidatepage(page, 0);
1606 ClearPageUptodate(page);
1607 unlock_page(page);
1608 }
9b1d0998
JK
1609 index = pvec.pages[nr_pages - 1]->index + 1;
1610 pagevec_release(&pvec);
c4a0c46e
AK
1611 }
1612 return;
1613}
1614
df22291f
AK
1615static void ext4_print_free_blocks(struct inode *inode)
1616{
1617 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1618 struct super_block *sb = inode->i_sb;
1619
1620 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1621 EXT4_C2B(EXT4_SB(inode->i_sb),
1622 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1623 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1624 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1625 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1626 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1627 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1628 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1629 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1630 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1631 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1632 EXT4_I(inode)->i_reserved_data_blocks);
1633 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1634 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1635 return;
1636}
1637
64769240 1638/*
5a87b7a5
TT
1639 * mpage_da_map_and_submit - go through given space, map them
1640 * if necessary, and then submit them for I/O
64769240 1641 *
8dc207c0 1642 * @mpd - bh describing space
64769240
AT
1643 *
1644 * The function skips space we know is already mapped to disk blocks.
1645 *
64769240 1646 */
5a87b7a5 1647static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1648{
2ac3b6e0 1649 int err, blks, get_blocks_flags;
1de3e3df 1650 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1651 sector_t next = mpd->b_blocknr;
1652 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1653 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1654 handle_t *handle = NULL;
64769240
AT
1655
1656 /*
5a87b7a5
TT
1657 * If the blocks are mapped already, or we couldn't accumulate
1658 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1659 */
5a87b7a5
TT
1660 if ((mpd->b_size == 0) ||
1661 ((mpd->b_state & (1 << BH_Mapped)) &&
1662 !(mpd->b_state & (1 << BH_Delay)) &&
1663 !(mpd->b_state & (1 << BH_Unwritten))))
1664 goto submit_io;
2fa3cdfb
TT
1665
1666 handle = ext4_journal_current_handle();
1667 BUG_ON(!handle);
1668
79ffab34 1669 /*
79e83036 1670 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1671 * blocks, or to convert an uninitialized extent to be
1672 * initialized (in the case where we have written into
1673 * one or more preallocated blocks).
1674 *
1675 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1676 * indicate that we are on the delayed allocation path. This
1677 * affects functions in many different parts of the allocation
1678 * call path. This flag exists primarily because we don't
79e83036 1679 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1680 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1681 * inode's allocation semaphore is taken.
1682 *
1683 * If the blocks in questions were delalloc blocks, set
1684 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1685 * variables are updated after the blocks have been allocated.
79ffab34 1686 */
2ed88685
TT
1687 map.m_lblk = next;
1688 map.m_len = max_blocks;
1296cc85 1689 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1690 if (ext4_should_dioread_nolock(mpd->inode))
1691 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1692 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1693 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1694
2ed88685 1695 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1696 if (blks < 0) {
e3570639
ES
1697 struct super_block *sb = mpd->inode->i_sb;
1698
2fa3cdfb 1699 err = blks;
ed5bde0b 1700 /*
5a87b7a5 1701 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1702 * appears to be free blocks we will just let
1703 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1704 */
1705 if (err == -EAGAIN)
5a87b7a5 1706 goto submit_io;
df22291f 1707
5dee5437 1708 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1709 mpd->retval = err;
5a87b7a5 1710 goto submit_io;
df22291f
AK
1711 }
1712
c4a0c46e 1713 /*
ed5bde0b
TT
1714 * get block failure will cause us to loop in
1715 * writepages, because a_ops->writepage won't be able
1716 * to make progress. The page will be redirtied by
1717 * writepage and writepages will again try to write
1718 * the same.
c4a0c46e 1719 */
e3570639
ES
1720 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1721 ext4_msg(sb, KERN_CRIT,
1722 "delayed block allocation failed for inode %lu "
1723 "at logical offset %llu with max blocks %zd "
1724 "with error %d", mpd->inode->i_ino,
1725 (unsigned long long) next,
1726 mpd->b_size >> mpd->inode->i_blkbits, err);
1727 ext4_msg(sb, KERN_CRIT,
01a523eb 1728 "This should not happen!! Data will be lost");
e3570639
ES
1729 if (err == -ENOSPC)
1730 ext4_print_free_blocks(mpd->inode);
030ba6bc 1731 }
2fa3cdfb 1732 /* invalidate all the pages */
c7f5938a 1733 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1734
1735 /* Mark this page range as having been completed */
1736 mpd->io_done = 1;
5a87b7a5 1737 return;
c4a0c46e 1738 }
2fa3cdfb
TT
1739 BUG_ON(blks == 0);
1740
1de3e3df 1741 mapp = &map;
2ed88685
TT
1742 if (map.m_flags & EXT4_MAP_NEW) {
1743 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1744 int i;
64769240 1745
2ed88685
TT
1746 for (i = 0; i < map.m_len; i++)
1747 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1748 }
1749
1750 /*
03f5d8bc 1751 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1752 */
1753 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1754 if (disksize > i_size_read(mpd->inode))
1755 disksize = i_size_read(mpd->inode);
1756 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1757 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1758 err = ext4_mark_inode_dirty(handle, mpd->inode);
1759 if (err)
1760 ext4_error(mpd->inode->i_sb,
1761 "Failed to mark inode %lu dirty",
1762 mpd->inode->i_ino);
2fa3cdfb
TT
1763 }
1764
5a87b7a5 1765submit_io:
1de3e3df 1766 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1767 mpd->io_done = 1;
64769240
AT
1768}
1769
bf068ee2
AK
1770#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1771 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1772
1773/*
1774 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1775 *
1776 * @mpd->lbh - extent of blocks
1777 * @logical - logical number of the block in the file
b6a8e62f 1778 * @b_state - b_state of the buffer head added
64769240
AT
1779 *
1780 * the function is used to collect contig. blocks in same state
1781 */
b6a8e62f 1782static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1783 unsigned long b_state)
64769240 1784{
64769240 1785 sector_t next;
b6a8e62f
JK
1786 int blkbits = mpd->inode->i_blkbits;
1787 int nrblocks = mpd->b_size >> blkbits;
64769240 1788
c445e3e0
ES
1789 /*
1790 * XXX Don't go larger than mballoc is willing to allocate
1791 * This is a stopgap solution. We eventually need to fold
1792 * mpage_da_submit_io() into this function and then call
79e83036 1793 * ext4_map_blocks() multiple times in a loop
c445e3e0 1794 */
b6a8e62f 1795 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1796 goto flush_it;
1797
b6a8e62f
JK
1798 /* check if the reserved journal credits might overflow */
1799 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1800 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1801 /*
1802 * With non-extent format we are limited by the journal
1803 * credit available. Total credit needed to insert
1804 * nrblocks contiguous blocks is dependent on the
1805 * nrblocks. So limit nrblocks.
1806 */
1807 goto flush_it;
525f4ed8
MC
1808 }
1809 }
64769240
AT
1810 /*
1811 * First block in the extent
1812 */
8dc207c0
TT
1813 if (mpd->b_size == 0) {
1814 mpd->b_blocknr = logical;
b6a8e62f 1815 mpd->b_size = 1 << blkbits;
8dc207c0 1816 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1817 return;
1818 }
1819
8dc207c0 1820 next = mpd->b_blocknr + nrblocks;
64769240
AT
1821 /*
1822 * Can we merge the block to our big extent?
1823 */
8dc207c0 1824 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1825 mpd->b_size += 1 << blkbits;
64769240
AT
1826 return;
1827 }
1828
525f4ed8 1829flush_it:
64769240
AT
1830 /*
1831 * We couldn't merge the block to our extent, so we
1832 * need to flush current extent and start new one
1833 */
5a87b7a5 1834 mpage_da_map_and_submit(mpd);
a1d6cc56 1835 return;
64769240
AT
1836}
1837
c364b22c 1838static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1839{
c364b22c 1840 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1841}
1842
5356f261
AK
1843/*
1844 * This function is grabs code from the very beginning of
1845 * ext4_map_blocks, but assumes that the caller is from delayed write
1846 * time. This function looks up the requested blocks and sets the
1847 * buffer delay bit under the protection of i_data_sem.
1848 */
1849static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1850 struct ext4_map_blocks *map,
1851 struct buffer_head *bh)
1852{
d100eef2 1853 struct extent_status es;
5356f261
AK
1854 int retval;
1855 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1856#ifdef ES_AGGRESSIVE_TEST
1857 struct ext4_map_blocks orig_map;
1858
1859 memcpy(&orig_map, map, sizeof(*map));
1860#endif
5356f261
AK
1861
1862 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863 invalid_block = ~0;
1864
1865 map->m_flags = 0;
1866 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1867 "logical block %lu\n", inode->i_ino, map->m_len,
1868 (unsigned long) map->m_lblk);
d100eef2
ZL
1869
1870 /* Lookup extent status tree firstly */
1871 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1872
1873 if (ext4_es_is_hole(&es)) {
1874 retval = 0;
1875 down_read((&EXT4_I(inode)->i_data_sem));
1876 goto add_delayed;
1877 }
1878
1879 /*
1880 * Delayed extent could be allocated by fallocate.
1881 * So we need to check it.
1882 */
1883 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1884 map_bh(bh, inode->i_sb, invalid_block);
1885 set_buffer_new(bh);
1886 set_buffer_delay(bh);
1887 return 0;
1888 }
1889
1890 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1891 retval = es.es_len - (iblock - es.es_lblk);
1892 if (retval > map->m_len)
1893 retval = map->m_len;
1894 map->m_len = retval;
1895 if (ext4_es_is_written(&es))
1896 map->m_flags |= EXT4_MAP_MAPPED;
1897 else if (ext4_es_is_unwritten(&es))
1898 map->m_flags |= EXT4_MAP_UNWRITTEN;
1899 else
1900 BUG_ON(1);
1901
921f266b
DM
1902#ifdef ES_AGGRESSIVE_TEST
1903 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1904#endif
d100eef2
ZL
1905 return retval;
1906 }
1907
5356f261
AK
1908 /*
1909 * Try to see if we can get the block without requesting a new
1910 * file system block.
1911 */
1912 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1913 if (ext4_has_inline_data(inode)) {
1914 /*
1915 * We will soon create blocks for this page, and let
1916 * us pretend as if the blocks aren't allocated yet.
1917 * In case of clusters, we have to handle the work
1918 * of mapping from cluster so that the reserved space
1919 * is calculated properly.
1920 */
1921 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1922 ext4_find_delalloc_cluster(inode, map->m_lblk))
1923 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1924 retval = 0;
1925 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1926 retval = ext4_ext_map_blocks(NULL, inode, map,
1927 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1928 else
d100eef2
ZL
1929 retval = ext4_ind_map_blocks(NULL, inode, map,
1930 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1931
d100eef2 1932add_delayed:
5356f261 1933 if (retval == 0) {
f7fec032 1934 int ret;
5356f261
AK
1935 /*
1936 * XXX: __block_prepare_write() unmaps passed block,
1937 * is it OK?
1938 */
386ad67c
LC
1939 /*
1940 * If the block was allocated from previously allocated cluster,
1941 * then we don't need to reserve it again. However we still need
1942 * to reserve metadata for every block we're going to write.
1943 */
5356f261 1944 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1945 ret = ext4_da_reserve_space(inode, iblock);
1946 if (ret) {
5356f261 1947 /* not enough space to reserve */
f7fec032 1948 retval = ret;
5356f261 1949 goto out_unlock;
f7fec032 1950 }
386ad67c
LC
1951 } else {
1952 ret = ext4_da_reserve_metadata(inode, iblock);
1953 if (ret) {
1954 /* not enough space to reserve */
1955 retval = ret;
1956 goto out_unlock;
1957 }
5356f261
AK
1958 }
1959
f7fec032
ZL
1960 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1961 ~0, EXTENT_STATUS_DELAYED);
1962 if (ret) {
1963 retval = ret;
51865fda 1964 goto out_unlock;
f7fec032 1965 }
51865fda 1966
5356f261
AK
1967 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1968 * and it should not appear on the bh->b_state.
1969 */
1970 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1971
1972 map_bh(bh, inode->i_sb, invalid_block);
1973 set_buffer_new(bh);
1974 set_buffer_delay(bh);
f7fec032
ZL
1975 } else if (retval > 0) {
1976 int ret;
1977 unsigned long long status;
1978
921f266b
DM
1979#ifdef ES_AGGRESSIVE_TEST
1980 if (retval != map->m_len) {
1981 printk("ES len assertation failed for inode: %lu "
1982 "retval %d != map->m_len %d "
1983 "in %s (lookup)\n", inode->i_ino, retval,
1984 map->m_len, __func__);
1985 }
1986#endif
1987
f7fec032
ZL
1988 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1989 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1990 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1991 map->m_pblk, status);
1992 if (ret != 0)
1993 retval = ret;
5356f261
AK
1994 }
1995
1996out_unlock:
1997 up_read((&EXT4_I(inode)->i_data_sem));
1998
1999 return retval;
2000}
2001
64769240 2002/*
b920c755
TT
2003 * This is a special get_blocks_t callback which is used by
2004 * ext4_da_write_begin(). It will either return mapped block or
2005 * reserve space for a single block.
29fa89d0
AK
2006 *
2007 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2008 * We also have b_blocknr = -1 and b_bdev initialized properly
2009 *
2010 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2011 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2012 * initialized properly.
64769240 2013 */
9c3569b5
TM
2014int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2015 struct buffer_head *bh, int create)
64769240 2016{
2ed88685 2017 struct ext4_map_blocks map;
64769240
AT
2018 int ret = 0;
2019
2020 BUG_ON(create == 0);
2ed88685
TT
2021 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2022
2023 map.m_lblk = iblock;
2024 map.m_len = 1;
64769240
AT
2025
2026 /*
2027 * first, we need to know whether the block is allocated already
2028 * preallocated blocks are unmapped but should treated
2029 * the same as allocated blocks.
2030 */
5356f261
AK
2031 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2032 if (ret <= 0)
2ed88685 2033 return ret;
64769240 2034
2ed88685
TT
2035 map_bh(bh, inode->i_sb, map.m_pblk);
2036 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2037
2038 if (buffer_unwritten(bh)) {
2039 /* A delayed write to unwritten bh should be marked
2040 * new and mapped. Mapped ensures that we don't do
2041 * get_block multiple times when we write to the same
2042 * offset and new ensures that we do proper zero out
2043 * for partial write.
2044 */
2045 set_buffer_new(bh);
c8205636 2046 set_buffer_mapped(bh);
2ed88685
TT
2047 }
2048 return 0;
64769240 2049}
61628a3f 2050
62e086be
AK
2051static int bget_one(handle_t *handle, struct buffer_head *bh)
2052{
2053 get_bh(bh);
2054 return 0;
2055}
2056
2057static int bput_one(handle_t *handle, struct buffer_head *bh)
2058{
2059 put_bh(bh);
2060 return 0;
2061}
2062
2063static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2064 unsigned int len)
2065{
2066 struct address_space *mapping = page->mapping;
2067 struct inode *inode = mapping->host;
3fdcfb66 2068 struct buffer_head *page_bufs = NULL;
62e086be 2069 handle_t *handle = NULL;
3fdcfb66
TM
2070 int ret = 0, err = 0;
2071 int inline_data = ext4_has_inline_data(inode);
2072 struct buffer_head *inode_bh = NULL;
62e086be 2073
cb20d518 2074 ClearPageChecked(page);
3fdcfb66
TM
2075
2076 if (inline_data) {
2077 BUG_ON(page->index != 0);
2078 BUG_ON(len > ext4_get_max_inline_size(inode));
2079 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2080 if (inode_bh == NULL)
2081 goto out;
2082 } else {
2083 page_bufs = page_buffers(page);
2084 if (!page_bufs) {
2085 BUG();
2086 goto out;
2087 }
2088 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2089 NULL, bget_one);
2090 }
62e086be
AK
2091 /* As soon as we unlock the page, it can go away, but we have
2092 * references to buffers so we are safe */
2093 unlock_page(page);
2094
9924a92a
TT
2095 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2096 ext4_writepage_trans_blocks(inode));
62e086be
AK
2097 if (IS_ERR(handle)) {
2098 ret = PTR_ERR(handle);
2099 goto out;
2100 }
2101
441c8508
CW
2102 BUG_ON(!ext4_handle_valid(handle));
2103
3fdcfb66
TM
2104 if (inline_data) {
2105 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2106
3fdcfb66
TM
2107 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2108
2109 } else {
2110 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2111 do_journal_get_write_access);
2112
2113 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2114 write_end_fn);
2115 }
62e086be
AK
2116 if (ret == 0)
2117 ret = err;
2d859db3 2118 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2119 err = ext4_journal_stop(handle);
2120 if (!ret)
2121 ret = err;
2122
3fdcfb66
TM
2123 if (!ext4_has_inline_data(inode))
2124 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2125 NULL, bput_one);
19f5fb7a 2126 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2127out:
3fdcfb66 2128 brelse(inode_bh);
62e086be
AK
2129 return ret;
2130}
2131
61628a3f 2132/*
43ce1d23
AK
2133 * Note that we don't need to start a transaction unless we're journaling data
2134 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2135 * need to file the inode to the transaction's list in ordered mode because if
2136 * we are writing back data added by write(), the inode is already there and if
25985edc 2137 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2138 * transaction the data will hit the disk. In case we are journaling data, we
2139 * cannot start transaction directly because transaction start ranks above page
2140 * lock so we have to do some magic.
2141 *
b920c755
TT
2142 * This function can get called via...
2143 * - ext4_da_writepages after taking page lock (have journal handle)
2144 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2145 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2146 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2147 *
2148 * We don't do any block allocation in this function. If we have page with
2149 * multiple blocks we need to write those buffer_heads that are mapped. This
2150 * is important for mmaped based write. So if we do with blocksize 1K
2151 * truncate(f, 1024);
2152 * a = mmap(f, 0, 4096);
2153 * a[0] = 'a';
2154 * truncate(f, 4096);
2155 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2156 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2157 * do_wp_page). So writepage should write the first block. If we modify
2158 * the mmap area beyond 1024 we will again get a page_fault and the
2159 * page_mkwrite callback will do the block allocation and mark the
2160 * buffer_heads mapped.
2161 *
2162 * We redirty the page if we have any buffer_heads that is either delay or
2163 * unwritten in the page.
2164 *
2165 * We can get recursively called as show below.
2166 *
2167 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2168 * ext4_writepage()
2169 *
2170 * But since we don't do any block allocation we should not deadlock.
2171 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2172 */
43ce1d23 2173static int ext4_writepage(struct page *page,
62e086be 2174 struct writeback_control *wbc)
64769240 2175{
f8bec370 2176 int ret = 0;
61628a3f 2177 loff_t size;
498e5f24 2178 unsigned int len;
744692dc 2179 struct buffer_head *page_bufs = NULL;
61628a3f 2180 struct inode *inode = page->mapping->host;
36ade451 2181 struct ext4_io_submit io_submit;
61628a3f 2182
a9c667f8 2183 trace_ext4_writepage(page);
f0e6c985
AK
2184 size = i_size_read(inode);
2185 if (page->index == size >> PAGE_CACHE_SHIFT)
2186 len = size & ~PAGE_CACHE_MASK;
2187 else
2188 len = PAGE_CACHE_SIZE;
64769240 2189
a42afc5f 2190 page_bufs = page_buffers(page);
a42afc5f 2191 /*
fe386132
JK
2192 * We cannot do block allocation or other extent handling in this
2193 * function. If there are buffers needing that, we have to redirty
2194 * the page. But we may reach here when we do a journal commit via
2195 * journal_submit_inode_data_buffers() and in that case we must write
2196 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2197 */
f19d5870
TM
2198 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2199 ext4_bh_delay_or_unwritten)) {
f8bec370 2200 redirty_page_for_writepage(wbc, page);
fe386132
JK
2201 if (current->flags & PF_MEMALLOC) {
2202 /*
2203 * For memory cleaning there's no point in writing only
2204 * some buffers. So just bail out. Warn if we came here
2205 * from direct reclaim.
2206 */
2207 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2208 == PF_MEMALLOC);
f0e6c985
AK
2209 unlock_page(page);
2210 return 0;
2211 }
a42afc5f 2212 }
64769240 2213
cb20d518 2214 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2215 /*
2216 * It's mmapped pagecache. Add buffers and journal it. There
2217 * doesn't seem much point in redirtying the page here.
2218 */
3f0ca309 2219 return __ext4_journalled_writepage(page, len);
43ce1d23 2220
36ade451
JK
2221 memset(&io_submit, 0, sizeof(io_submit));
2222 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2223 ext4_io_submit(&io_submit);
64769240
AT
2224 return ret;
2225}
2226
61628a3f 2227/*
525f4ed8 2228 * This is called via ext4_da_writepages() to
25985edc 2229 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2230 * a single extent allocation into a single transaction,
2231 * ext4_da_writpeages() will loop calling this before
2232 * the block allocation.
61628a3f 2233 */
525f4ed8
MC
2234
2235static int ext4_da_writepages_trans_blocks(struct inode *inode)
2236{
2237 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2238
2239 /*
2240 * With non-extent format the journal credit needed to
2241 * insert nrblocks contiguous block is dependent on
2242 * number of contiguous block. So we will limit
2243 * number of contiguous block to a sane value
2244 */
12e9b892 2245 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2246 (max_blocks > EXT4_MAX_TRANS_DATA))
2247 max_blocks = EXT4_MAX_TRANS_DATA;
2248
2249 return ext4_chunk_trans_blocks(inode, max_blocks);
2250}
61628a3f 2251
8e48dcfb
TT
2252/*
2253 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2254 * address space and accumulate pages that need writing, and call
168fc022
TT
2255 * mpage_da_map_and_submit to map a single contiguous memory region
2256 * and then write them.
8e48dcfb 2257 */
9c3569b5
TM
2258static int write_cache_pages_da(handle_t *handle,
2259 struct address_space *mapping,
8e48dcfb 2260 struct writeback_control *wbc,
72f84e65
ES
2261 struct mpage_da_data *mpd,
2262 pgoff_t *done_index)
8e48dcfb 2263{
4f01b02c 2264 struct buffer_head *bh, *head;
168fc022 2265 struct inode *inode = mapping->host;
4f01b02c
TT
2266 struct pagevec pvec;
2267 unsigned int nr_pages;
2268 sector_t logical;
2269 pgoff_t index, end;
2270 long nr_to_write = wbc->nr_to_write;
2271 int i, tag, ret = 0;
8e48dcfb 2272
168fc022
TT
2273 memset(mpd, 0, sizeof(struct mpage_da_data));
2274 mpd->wbc = wbc;
2275 mpd->inode = inode;
8e48dcfb
TT
2276 pagevec_init(&pvec, 0);
2277 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2278 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2279
6e6938b6 2280 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2281 tag = PAGECACHE_TAG_TOWRITE;
2282 else
2283 tag = PAGECACHE_TAG_DIRTY;
2284
72f84e65 2285 *done_index = index;
4f01b02c 2286 while (index <= end) {
5b41d924 2287 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2289 if (nr_pages == 0)
4f01b02c 2290 return 0;
8e48dcfb
TT
2291
2292 for (i = 0; i < nr_pages; i++) {
2293 struct page *page = pvec.pages[i];
2294
2295 /*
2296 * At this point, the page may be truncated or
2297 * invalidated (changing page->mapping to NULL), or
2298 * even swizzled back from swapper_space to tmpfs file
2299 * mapping. However, page->index will not change
2300 * because we have a reference on the page.
2301 */
4f01b02c
TT
2302 if (page->index > end)
2303 goto out;
8e48dcfb 2304
72f84e65
ES
2305 *done_index = page->index + 1;
2306
78aaced3
TT
2307 /*
2308 * If we can't merge this page, and we have
2309 * accumulated an contiguous region, write it
2310 */
2311 if ((mpd->next_page != page->index) &&
2312 (mpd->next_page != mpd->first_page)) {
2313 mpage_da_map_and_submit(mpd);
2314 goto ret_extent_tail;
2315 }
2316
8e48dcfb
TT
2317 lock_page(page);
2318
2319 /*
4f01b02c
TT
2320 * If the page is no longer dirty, or its
2321 * mapping no longer corresponds to inode we
2322 * are writing (which means it has been
2323 * truncated or invalidated), or the page is
2324 * already under writeback and we are not
2325 * doing a data integrity writeback, skip the page
8e48dcfb 2326 */
4f01b02c
TT
2327 if (!PageDirty(page) ||
2328 (PageWriteback(page) &&
2329 (wbc->sync_mode == WB_SYNC_NONE)) ||
2330 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2331 unlock_page(page);
2332 continue;
2333 }
2334
7cb1a535 2335 wait_on_page_writeback(page);
8e48dcfb 2336 BUG_ON(PageWriteback(page));
8e48dcfb 2337
9c3569b5
TM
2338 /*
2339 * If we have inline data and arrive here, it means that
2340 * we will soon create the block for the 1st page, so
2341 * we'd better clear the inline data here.
2342 */
2343 if (ext4_has_inline_data(inode)) {
2344 BUG_ON(ext4_test_inode_state(inode,
2345 EXT4_STATE_MAY_INLINE_DATA));
2346 ext4_destroy_inline_data(handle, inode);
2347 }
2348
168fc022 2349 if (mpd->next_page != page->index)
8eb9e5ce 2350 mpd->first_page = page->index;
8eb9e5ce
TT
2351 mpd->next_page = page->index + 1;
2352 logical = (sector_t) page->index <<
2353 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2354
f8bec370
JK
2355 /* Add all dirty buffers to mpd */
2356 head = page_buffers(page);
2357 bh = head;
2358 do {
2359 BUG_ON(buffer_locked(bh));
8eb9e5ce 2360 /*
f8bec370
JK
2361 * We need to try to allocate unmapped blocks
2362 * in the same page. Otherwise we won't make
2363 * progress with the page in ext4_writepage
8eb9e5ce 2364 */
f8bec370
JK
2365 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2366 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2367 bh->b_state);
2368 if (mpd->io_done)
2369 goto ret_extent_tail;
2370 } else if (buffer_dirty(bh) &&
2371 buffer_mapped(bh)) {
8eb9e5ce 2372 /*
f8bec370
JK
2373 * mapped dirty buffer. We need to
2374 * update the b_state because we look
2375 * at b_state in mpage_da_map_blocks.
2376 * We don't update b_size because if we
2377 * find an unmapped buffer_head later
2378 * we need to use the b_state flag of
2379 * that buffer_head.
8eb9e5ce 2380 */
f8bec370
JK
2381 if (mpd->b_size == 0)
2382 mpd->b_state =
2383 bh->b_state & BH_FLAGS;
2384 }
2385 logical++;
2386 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2387
2388 if (nr_to_write > 0) {
2389 nr_to_write--;
2390 if (nr_to_write == 0 &&
4f01b02c 2391 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2392 /*
2393 * We stop writing back only if we are
2394 * not doing integrity sync. In case of
2395 * integrity sync we have to keep going
2396 * because someone may be concurrently
2397 * dirtying pages, and we might have
2398 * synced a lot of newly appeared dirty
2399 * pages, but have not synced all of the
2400 * old dirty pages.
2401 */
4f01b02c 2402 goto out;
8e48dcfb
TT
2403 }
2404 }
2405 pagevec_release(&pvec);
2406 cond_resched();
2407 }
4f01b02c
TT
2408 return 0;
2409ret_extent_tail:
2410 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2411out:
2412 pagevec_release(&pvec);
2413 cond_resched();
8e48dcfb
TT
2414 return ret;
2415}
2416
2417
64769240 2418static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2419 struct writeback_control *wbc)
64769240 2420{
22208ded
AK
2421 pgoff_t index;
2422 int range_whole = 0;
61628a3f 2423 handle_t *handle = NULL;
df22291f 2424 struct mpage_da_data mpd;
5e745b04 2425 struct inode *inode = mapping->host;
498e5f24 2426 int pages_written = 0;
55138e0b 2427 unsigned int max_pages;
2acf2c26 2428 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2429 int needed_blocks, ret = 0;
2430 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2431 loff_t range_start = wbc->range_start;
5e745b04 2432 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2433 pgoff_t done_index = 0;
5b41d924 2434 pgoff_t end;
1bce63d1 2435 struct blk_plug plug;
61628a3f 2436
9bffad1e 2437 trace_ext4_da_writepages(inode, wbc);
ba80b101 2438
61628a3f
MC
2439 /*
2440 * No pages to write? This is mainly a kludge to avoid starting
2441 * a transaction for special inodes like journal inode on last iput()
2442 * because that could violate lock ordering on umount
2443 */
a1d6cc56 2444 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2445 return 0;
2a21e37e
TT
2446
2447 /*
2448 * If the filesystem has aborted, it is read-only, so return
2449 * right away instead of dumping stack traces later on that
2450 * will obscure the real source of the problem. We test
4ab2f15b 2451 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2452 * the latter could be true if the filesystem is mounted
2453 * read-only, and in that case, ext4_da_writepages should
2454 * *never* be called, so if that ever happens, we would want
2455 * the stack trace.
2456 */
4ab2f15b 2457 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2458 return -EROFS;
2459
22208ded
AK
2460 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2461 range_whole = 1;
61628a3f 2462
2acf2c26
AK
2463 range_cyclic = wbc->range_cyclic;
2464 if (wbc->range_cyclic) {
22208ded 2465 index = mapping->writeback_index;
2acf2c26
AK
2466 if (index)
2467 cycled = 0;
2468 wbc->range_start = index << PAGE_CACHE_SHIFT;
2469 wbc->range_end = LLONG_MAX;
2470 wbc->range_cyclic = 0;
5b41d924
ES
2471 end = -1;
2472 } else {
22208ded 2473 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2474 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2475 }
a1d6cc56 2476
55138e0b
TT
2477 /*
2478 * This works around two forms of stupidity. The first is in
2479 * the writeback code, which caps the maximum number of pages
2480 * written to be 1024 pages. This is wrong on multiple
2481 * levels; different architectues have a different page size,
2482 * which changes the maximum amount of data which gets
2483 * written. Secondly, 4 megabytes is way too small. XFS
2484 * forces this value to be 16 megabytes by multiplying
2485 * nr_to_write parameter by four, and then relies on its
2486 * allocator to allocate larger extents to make them
2487 * contiguous. Unfortunately this brings us to the second
2488 * stupidity, which is that ext4's mballoc code only allocates
2489 * at most 2048 blocks. So we force contiguous writes up to
2490 * the number of dirty blocks in the inode, or
2491 * sbi->max_writeback_mb_bump whichever is smaller.
2492 */
2493 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2494 if (!range_cyclic && range_whole) {
2495 if (wbc->nr_to_write == LONG_MAX)
2496 desired_nr_to_write = wbc->nr_to_write;
2497 else
2498 desired_nr_to_write = wbc->nr_to_write * 8;
2499 } else
55138e0b
TT
2500 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2501 max_pages);
2502 if (desired_nr_to_write > max_pages)
2503 desired_nr_to_write = max_pages;
2504
2505 if (wbc->nr_to_write < desired_nr_to_write) {
2506 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2507 wbc->nr_to_write = desired_nr_to_write;
2508 }
2509
2acf2c26 2510retry:
6e6938b6 2511 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2512 tag_pages_for_writeback(mapping, index, end);
2513
1bce63d1 2514 blk_start_plug(&plug);
22208ded 2515 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2516
2517 /*
2518 * we insert one extent at a time. So we need
2519 * credit needed for single extent allocation.
2520 * journalled mode is currently not supported
2521 * by delalloc
2522 */
2523 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2524 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2525
61628a3f 2526 /* start a new transaction*/
9924a92a
TT
2527 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2528 needed_blocks);
61628a3f
MC
2529 if (IS_ERR(handle)) {
2530 ret = PTR_ERR(handle);
1693918e 2531 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2532 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2533 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2534 blk_finish_plug(&plug);
61628a3f
MC
2535 goto out_writepages;
2536 }
f63e6005
TT
2537
2538 /*
8eb9e5ce 2539 * Now call write_cache_pages_da() to find the next
f63e6005 2540 * contiguous region of logical blocks that need
8eb9e5ce 2541 * blocks to be allocated by ext4 and submit them.
f63e6005 2542 */
9c3569b5
TM
2543 ret = write_cache_pages_da(handle, mapping,
2544 wbc, &mpd, &done_index);
f63e6005 2545 /*
af901ca1 2546 * If we have a contiguous extent of pages and we
f63e6005
TT
2547 * haven't done the I/O yet, map the blocks and submit
2548 * them for I/O.
2549 */
2550 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2551 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2552 ret = MPAGE_DA_EXTENT_TAIL;
2553 }
b3a3ca8c 2554 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2555 wbc->nr_to_write -= mpd.pages_written;
df22291f 2556
61628a3f 2557 ext4_journal_stop(handle);
df22291f 2558
8f64b32e 2559 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2560 /* commit the transaction which would
2561 * free blocks released in the transaction
2562 * and try again
2563 */
df22291f 2564 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2565 ret = 0;
2566 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2567 /*
8de49e67
KM
2568 * Got one extent now try with rest of the pages.
2569 * If mpd.retval is set -EIO, journal is aborted.
2570 * So we don't need to write any more.
a1d6cc56 2571 */
22208ded 2572 pages_written += mpd.pages_written;
8de49e67 2573 ret = mpd.retval;
2acf2c26 2574 io_done = 1;
22208ded 2575 } else if (wbc->nr_to_write)
61628a3f
MC
2576 /*
2577 * There is no more writeout needed
2578 * or we requested for a noblocking writeout
2579 * and we found the device congested
2580 */
61628a3f 2581 break;
a1d6cc56 2582 }
1bce63d1 2583 blk_finish_plug(&plug);
2acf2c26
AK
2584 if (!io_done && !cycled) {
2585 cycled = 1;
2586 index = 0;
2587 wbc->range_start = index << PAGE_CACHE_SHIFT;
2588 wbc->range_end = mapping->writeback_index - 1;
2589 goto retry;
2590 }
22208ded
AK
2591
2592 /* Update index */
2acf2c26 2593 wbc->range_cyclic = range_cyclic;
22208ded
AK
2594 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2595 /*
2596 * set the writeback_index so that range_cyclic
2597 * mode will write it back later
2598 */
72f84e65 2599 mapping->writeback_index = done_index;
a1d6cc56 2600
61628a3f 2601out_writepages:
2faf2e19 2602 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2603 wbc->range_start = range_start;
9bffad1e 2604 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2605 return ret;
64769240
AT
2606}
2607
79f0be8d
AK
2608static int ext4_nonda_switch(struct super_block *sb)
2609{
2610 s64 free_blocks, dirty_blocks;
2611 struct ext4_sb_info *sbi = EXT4_SB(sb);
2612
2613 /*
2614 * switch to non delalloc mode if we are running low
2615 * on free block. The free block accounting via percpu
179f7ebf 2616 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2617 * accumulated on each CPU without updating global counters
2618 * Delalloc need an accurate free block accounting. So switch
2619 * to non delalloc when we are near to error range.
2620 */
57042651
TT
2621 free_blocks = EXT4_C2B(sbi,
2622 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2623 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2624 /*
2625 * Start pushing delalloc when 1/2 of free blocks are dirty.
2626 */
10ee27a0
MX
2627 if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2628 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2629
79f0be8d 2630 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2631 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2632 /*
c8afb446
ES
2633 * free block count is less than 150% of dirty blocks
2634 * or free blocks is less than watermark
79f0be8d
AK
2635 */
2636 return 1;
2637 }
2638 return 0;
2639}
2640
64769240 2641static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2642 loff_t pos, unsigned len, unsigned flags,
2643 struct page **pagep, void **fsdata)
64769240 2644{
72b8ab9d 2645 int ret, retries = 0;
64769240
AT
2646 struct page *page;
2647 pgoff_t index;
64769240
AT
2648 struct inode *inode = mapping->host;
2649 handle_t *handle;
2650
2651 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2652
2653 if (ext4_nonda_switch(inode->i_sb)) {
2654 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2655 return ext4_write_begin(file, mapping, pos,
2656 len, flags, pagep, fsdata);
2657 }
2658 *fsdata = (void *)0;
9bffad1e 2659 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2660
2661 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2662 ret = ext4_da_write_inline_data_begin(mapping, inode,
2663 pos, len, flags,
2664 pagep, fsdata);
2665 if (ret < 0)
47564bfb
TT
2666 return ret;
2667 if (ret == 1)
2668 return 0;
9c3569b5
TM
2669 }
2670
47564bfb
TT
2671 /*
2672 * grab_cache_page_write_begin() can take a long time if the
2673 * system is thrashing due to memory pressure, or if the page
2674 * is being written back. So grab it first before we start
2675 * the transaction handle. This also allows us to allocate
2676 * the page (if needed) without using GFP_NOFS.
2677 */
2678retry_grab:
2679 page = grab_cache_page_write_begin(mapping, index, flags);
2680 if (!page)
2681 return -ENOMEM;
2682 unlock_page(page);
2683
64769240
AT
2684 /*
2685 * With delayed allocation, we don't log the i_disksize update
2686 * if there is delayed block allocation. But we still need
2687 * to journalling the i_disksize update if writes to the end
2688 * of file which has an already mapped buffer.
2689 */
47564bfb 2690retry_journal:
9924a92a 2691 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2692 if (IS_ERR(handle)) {
47564bfb
TT
2693 page_cache_release(page);
2694 return PTR_ERR(handle);
64769240
AT
2695 }
2696
47564bfb
TT
2697 lock_page(page);
2698 if (page->mapping != mapping) {
2699 /* The page got truncated from under us */
2700 unlock_page(page);
2701 page_cache_release(page);
d5a0d4f7 2702 ext4_journal_stop(handle);
47564bfb 2703 goto retry_grab;
d5a0d4f7 2704 }
47564bfb
TT
2705 /* In case writeback began while the page was unlocked */
2706 wait_on_page_writeback(page);
64769240 2707
6e1db88d 2708 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2709 if (ret < 0) {
2710 unlock_page(page);
2711 ext4_journal_stop(handle);
ae4d5372
AK
2712 /*
2713 * block_write_begin may have instantiated a few blocks
2714 * outside i_size. Trim these off again. Don't need
2715 * i_size_read because we hold i_mutex.
2716 */
2717 if (pos + len > inode->i_size)
b9a4207d 2718 ext4_truncate_failed_write(inode);
47564bfb
TT
2719
2720 if (ret == -ENOSPC &&
2721 ext4_should_retry_alloc(inode->i_sb, &retries))
2722 goto retry_journal;
2723
2724 page_cache_release(page);
2725 return ret;
64769240
AT
2726 }
2727
47564bfb 2728 *pagep = page;
64769240
AT
2729 return ret;
2730}
2731
632eaeab
MC
2732/*
2733 * Check if we should update i_disksize
2734 * when write to the end of file but not require block allocation
2735 */
2736static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2737 unsigned long offset)
632eaeab
MC
2738{
2739 struct buffer_head *bh;
2740 struct inode *inode = page->mapping->host;
2741 unsigned int idx;
2742 int i;
2743
2744 bh = page_buffers(page);
2745 idx = offset >> inode->i_blkbits;
2746
af5bc92d 2747 for (i = 0; i < idx; i++)
632eaeab
MC
2748 bh = bh->b_this_page;
2749
29fa89d0 2750 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2751 return 0;
2752 return 1;
2753}
2754
64769240 2755static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2756 struct address_space *mapping,
2757 loff_t pos, unsigned len, unsigned copied,
2758 struct page *page, void *fsdata)
64769240
AT
2759{
2760 struct inode *inode = mapping->host;
2761 int ret = 0, ret2;
2762 handle_t *handle = ext4_journal_current_handle();
2763 loff_t new_i_size;
632eaeab 2764 unsigned long start, end;
79f0be8d
AK
2765 int write_mode = (int)(unsigned long)fsdata;
2766
74d553aa
TT
2767 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2768 return ext4_write_end(file, mapping, pos,
2769 len, copied, page, fsdata);
632eaeab 2770
9bffad1e 2771 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2772 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2773 end = start + copied - 1;
64769240
AT
2774
2775 /*
2776 * generic_write_end() will run mark_inode_dirty() if i_size
2777 * changes. So let's piggyback the i_disksize mark_inode_dirty
2778 * into that.
2779 */
64769240 2780 new_i_size = pos + copied;
ea51d132 2781 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2782 if (ext4_has_inline_data(inode) ||
2783 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2784 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2785 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2786 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2787 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2788 /* We need to mark inode dirty even if
2789 * new_i_size is less that inode->i_size
2790 * bu greater than i_disksize.(hint delalloc)
2791 */
2792 ext4_mark_inode_dirty(handle, inode);
64769240 2793 }
632eaeab 2794 }
9c3569b5
TM
2795
2796 if (write_mode != CONVERT_INLINE_DATA &&
2797 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2798 ext4_has_inline_data(inode))
2799 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2800 page);
2801 else
2802 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2803 page, fsdata);
9c3569b5 2804
64769240
AT
2805 copied = ret2;
2806 if (ret2 < 0)
2807 ret = ret2;
2808 ret2 = ext4_journal_stop(handle);
2809 if (!ret)
2810 ret = ret2;
2811
2812 return ret ? ret : copied;
2813}
2814
2815static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2816{
64769240
AT
2817 /*
2818 * Drop reserved blocks
2819 */
2820 BUG_ON(!PageLocked(page));
2821 if (!page_has_buffers(page))
2822 goto out;
2823
d2a17637 2824 ext4_da_page_release_reservation(page, offset);
64769240
AT
2825
2826out:
2827 ext4_invalidatepage(page, offset);
2828
2829 return;
2830}
2831
ccd2506b
TT
2832/*
2833 * Force all delayed allocation blocks to be allocated for a given inode.
2834 */
2835int ext4_alloc_da_blocks(struct inode *inode)
2836{
fb40ba0d
TT
2837 trace_ext4_alloc_da_blocks(inode);
2838
ccd2506b
TT
2839 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2840 !EXT4_I(inode)->i_reserved_meta_blocks)
2841 return 0;
2842
2843 /*
2844 * We do something simple for now. The filemap_flush() will
2845 * also start triggering a write of the data blocks, which is
2846 * not strictly speaking necessary (and for users of
2847 * laptop_mode, not even desirable). However, to do otherwise
2848 * would require replicating code paths in:
de9a55b8 2849 *
ccd2506b
TT
2850 * ext4_da_writepages() ->
2851 * write_cache_pages() ---> (via passed in callback function)
2852 * __mpage_da_writepage() -->
2853 * mpage_add_bh_to_extent()
2854 * mpage_da_map_blocks()
2855 *
2856 * The problem is that write_cache_pages(), located in
2857 * mm/page-writeback.c, marks pages clean in preparation for
2858 * doing I/O, which is not desirable if we're not planning on
2859 * doing I/O at all.
2860 *
2861 * We could call write_cache_pages(), and then redirty all of
380cf090 2862 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2863 * would be ugly in the extreme. So instead we would need to
2864 * replicate parts of the code in the above functions,
25985edc 2865 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2866 * write out the pages, but rather only collect contiguous
2867 * logical block extents, call the multi-block allocator, and
2868 * then update the buffer heads with the block allocations.
de9a55b8 2869 *
ccd2506b
TT
2870 * For now, though, we'll cheat by calling filemap_flush(),
2871 * which will map the blocks, and start the I/O, but not
2872 * actually wait for the I/O to complete.
2873 */
2874 return filemap_flush(inode->i_mapping);
2875}
64769240 2876
ac27a0ec
DK
2877/*
2878 * bmap() is special. It gets used by applications such as lilo and by
2879 * the swapper to find the on-disk block of a specific piece of data.
2880 *
2881 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2882 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2883 * filesystem and enables swap, then they may get a nasty shock when the
2884 * data getting swapped to that swapfile suddenly gets overwritten by
2885 * the original zero's written out previously to the journal and
2886 * awaiting writeback in the kernel's buffer cache.
2887 *
2888 * So, if we see any bmap calls here on a modified, data-journaled file,
2889 * take extra steps to flush any blocks which might be in the cache.
2890 */
617ba13b 2891static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2892{
2893 struct inode *inode = mapping->host;
2894 journal_t *journal;
2895 int err;
2896
46c7f254
TM
2897 /*
2898 * We can get here for an inline file via the FIBMAP ioctl
2899 */
2900 if (ext4_has_inline_data(inode))
2901 return 0;
2902
64769240
AT
2903 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2904 test_opt(inode->i_sb, DELALLOC)) {
2905 /*
2906 * With delalloc we want to sync the file
2907 * so that we can make sure we allocate
2908 * blocks for file
2909 */
2910 filemap_write_and_wait(mapping);
2911 }
2912
19f5fb7a
TT
2913 if (EXT4_JOURNAL(inode) &&
2914 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2915 /*
2916 * This is a REALLY heavyweight approach, but the use of
2917 * bmap on dirty files is expected to be extremely rare:
2918 * only if we run lilo or swapon on a freshly made file
2919 * do we expect this to happen.
2920 *
2921 * (bmap requires CAP_SYS_RAWIO so this does not
2922 * represent an unprivileged user DOS attack --- we'd be
2923 * in trouble if mortal users could trigger this path at
2924 * will.)
2925 *
617ba13b 2926 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2927 * regular files. If somebody wants to bmap a directory
2928 * or symlink and gets confused because the buffer
2929 * hasn't yet been flushed to disk, they deserve
2930 * everything they get.
2931 */
2932
19f5fb7a 2933 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2934 journal = EXT4_JOURNAL(inode);
dab291af
MC
2935 jbd2_journal_lock_updates(journal);
2936 err = jbd2_journal_flush(journal);
2937 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2938
2939 if (err)
2940 return 0;
2941 }
2942
af5bc92d 2943 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2944}
2945
617ba13b 2946static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2947{
46c7f254
TM
2948 int ret = -EAGAIN;
2949 struct inode *inode = page->mapping->host;
2950
0562e0ba 2951 trace_ext4_readpage(page);
46c7f254
TM
2952
2953 if (ext4_has_inline_data(inode))
2954 ret = ext4_readpage_inline(inode, page);
2955
2956 if (ret == -EAGAIN)
2957 return mpage_readpage(page, ext4_get_block);
2958
2959 return ret;
ac27a0ec
DK
2960}
2961
2962static int
617ba13b 2963ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2964 struct list_head *pages, unsigned nr_pages)
2965{
46c7f254
TM
2966 struct inode *inode = mapping->host;
2967
2968 /* If the file has inline data, no need to do readpages. */
2969 if (ext4_has_inline_data(inode))
2970 return 0;
2971
617ba13b 2972 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2973}
2974
617ba13b 2975static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2976{
0562e0ba
JZ
2977 trace_ext4_invalidatepage(page, offset);
2978
4520fb3c
JK
2979 /* No journalling happens on data buffers when this function is used */
2980 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2981
2982 block_invalidatepage(page, offset);
2983}
2984
53e87268
JK
2985static int __ext4_journalled_invalidatepage(struct page *page,
2986 unsigned long offset)
4520fb3c
JK
2987{
2988 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2989
2990 trace_ext4_journalled_invalidatepage(page, offset);
2991
ac27a0ec
DK
2992 /*
2993 * If it's a full truncate we just forget about the pending dirtying
2994 */
2995 if (offset == 0)
2996 ClearPageChecked(page);
2997
53e87268
JK
2998 return jbd2_journal_invalidatepage(journal, page, offset);
2999}
3000
3001/* Wrapper for aops... */
3002static void ext4_journalled_invalidatepage(struct page *page,
3003 unsigned long offset)
3004{
3005 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
3006}
3007
617ba13b 3008static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3009{
617ba13b 3010 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3011
0562e0ba
JZ
3012 trace_ext4_releasepage(page);
3013
e1c36595
JK
3014 /* Page has dirty journalled data -> cannot release */
3015 if (PageChecked(page))
ac27a0ec 3016 return 0;
0390131b
FM
3017 if (journal)
3018 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3019 else
3020 return try_to_free_buffers(page);
ac27a0ec
DK
3021}
3022
2ed88685
TT
3023/*
3024 * ext4_get_block used when preparing for a DIO write or buffer write.
3025 * We allocate an uinitialized extent if blocks haven't been allocated.
3026 * The extent will be converted to initialized after the IO is complete.
3027 */
f19d5870 3028int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3029 struct buffer_head *bh_result, int create)
3030{
c7064ef1 3031 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3032 inode->i_ino, create);
2ed88685
TT
3033 return _ext4_get_block(inode, iblock, bh_result,
3034 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3035}
3036
729f52c6 3037static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3038 struct buffer_head *bh_result, int create)
729f52c6 3039{
8b0f165f
AP
3040 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3041 inode->i_ino, create);
3042 return _ext4_get_block(inode, iblock, bh_result,
3043 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3044}
3045
4c0425ff 3046static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3047 ssize_t size, void *private, int ret,
3048 bool is_async)
4c0425ff 3049{
496ad9aa 3050 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 3051 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3052
4b70df18
M
3053 /* if not async direct IO or dio with 0 bytes write, just return */
3054 if (!io_end || !size)
552ef802 3055 goto out;
4b70df18 3056
88635ca2 3057 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3058 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3059 iocb->private, io_end->inode->i_ino, iocb, offset,
3060 size);
8d5d02e6 3061
b5a7e970
TT
3062 iocb->private = NULL;
3063
8d5d02e6 3064 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 3065 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 3066 ext4_free_io_end(io_end);
5b3ff237 3067out:
091e26df 3068 inode_dio_done(inode);
5b3ff237
JZ
3069 if (is_async)
3070 aio_complete(iocb, ret, 0);
3071 return;
8d5d02e6
MC
3072 }
3073
4c0425ff
MC
3074 io_end->offset = offset;
3075 io_end->size = size;
5b3ff237
JZ
3076 if (is_async) {
3077 io_end->iocb = iocb;
3078 io_end->result = ret;
3079 }
4c0425ff 3080
28a535f9 3081 ext4_add_complete_io(io_end);
4c0425ff 3082}
c7064ef1 3083
4c0425ff
MC
3084/*
3085 * For ext4 extent files, ext4 will do direct-io write to holes,
3086 * preallocated extents, and those write extend the file, no need to
3087 * fall back to buffered IO.
3088 *
b595076a 3089 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3090 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3091 * still keep the range to write as uninitialized.
4c0425ff 3092 *
69c499d1 3093 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3094 * For async direct IO, since the IO may still pending when return, we
25985edc 3095 * set up an end_io call back function, which will do the conversion
8d5d02e6 3096 * when async direct IO completed.
4c0425ff
MC
3097 *
3098 * If the O_DIRECT write will extend the file then add this inode to the
3099 * orphan list. So recovery will truncate it back to the original size
3100 * if the machine crashes during the write.
3101 *
3102 */
3103static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3104 const struct iovec *iov, loff_t offset,
3105 unsigned long nr_segs)
3106{
3107 struct file *file = iocb->ki_filp;
3108 struct inode *inode = file->f_mapping->host;
3109 ssize_t ret;
3110 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3111 int overwrite = 0;
3112 get_block_t *get_block_func = NULL;
3113 int dio_flags = 0;
4c0425ff 3114 loff_t final_size = offset + count;
729f52c6 3115
69c499d1
TT
3116 /* Use the old path for reads and writes beyond i_size. */
3117 if (rw != WRITE || final_size > inode->i_size)
3118 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3119
69c499d1 3120 BUG_ON(iocb->private == NULL);
4bd809db 3121
69c499d1
TT
3122 /* If we do a overwrite dio, i_mutex locking can be released */
3123 overwrite = *((int *)iocb->private);
4bd809db 3124
69c499d1
TT
3125 if (overwrite) {
3126 atomic_inc(&inode->i_dio_count);
3127 down_read(&EXT4_I(inode)->i_data_sem);
3128 mutex_unlock(&inode->i_mutex);
3129 }
8d5d02e6 3130
69c499d1
TT
3131 /*
3132 * We could direct write to holes and fallocate.
3133 *
3134 * Allocated blocks to fill the hole are marked as
3135 * uninitialized to prevent parallel buffered read to expose
3136 * the stale data before DIO complete the data IO.
3137 *
3138 * As to previously fallocated extents, ext4 get_block will
3139 * just simply mark the buffer mapped but still keep the
3140 * extents uninitialized.
3141 *
3142 * For non AIO case, we will convert those unwritten extents
3143 * to written after return back from blockdev_direct_IO.
3144 *
3145 * For async DIO, the conversion needs to be deferred when the
3146 * IO is completed. The ext4 end_io callback function will be
3147 * called to take care of the conversion work. Here for async
3148 * case, we allocate an io_end structure to hook to the iocb.
3149 */
3150 iocb->private = NULL;
3151 ext4_inode_aio_set(inode, NULL);
3152 if (!is_sync_kiocb(iocb)) {
3153 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3154 if (!io_end) {
3155 ret = -ENOMEM;
3156 goto retake_lock;
8b0f165f 3157 }
69c499d1
TT
3158 io_end->flag |= EXT4_IO_END_DIRECT;
3159 iocb->private = io_end;
8d5d02e6 3160 /*
69c499d1
TT
3161 * we save the io structure for current async direct
3162 * IO, so that later ext4_map_blocks() could flag the
3163 * io structure whether there is a unwritten extents
3164 * needs to be converted when IO is completed.
8d5d02e6 3165 */
69c499d1
TT
3166 ext4_inode_aio_set(inode, io_end);
3167 }
4bd809db 3168
69c499d1
TT
3169 if (overwrite) {
3170 get_block_func = ext4_get_block_write_nolock;
3171 } else {
3172 get_block_func = ext4_get_block_write;
3173 dio_flags = DIO_LOCKING;
3174 }
3175 ret = __blockdev_direct_IO(rw, iocb, inode,
3176 inode->i_sb->s_bdev, iov,
3177 offset, nr_segs,
3178 get_block_func,
3179 ext4_end_io_dio,
3180 NULL,
3181 dio_flags);
3182
3183 if (iocb->private)
3184 ext4_inode_aio_set(inode, NULL);
3185 /*
3186 * The io_end structure takes a reference to the inode, that
3187 * structure needs to be destroyed and the reference to the
3188 * inode need to be dropped, when IO is complete, even with 0
3189 * byte write, or failed.
3190 *
3191 * In the successful AIO DIO case, the io_end structure will
3192 * be destroyed and the reference to the inode will be dropped
3193 * after the end_io call back function is called.
3194 *
3195 * In the case there is 0 byte write, or error case, since VFS
3196 * direct IO won't invoke the end_io call back function, we
3197 * need to free the end_io structure here.
3198 */
3199 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3200 ext4_free_io_end(iocb->private);
3201 iocb->private = NULL;
3202 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3203 EXT4_STATE_DIO_UNWRITTEN)) {
3204 int err;
3205 /*
3206 * for non AIO case, since the IO is already
3207 * completed, we could do the conversion right here
3208 */
3209 err = ext4_convert_unwritten_extents(inode,
3210 offset, ret);
3211 if (err < 0)
3212 ret = err;
3213 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3214 }
4bd809db 3215
69c499d1
TT
3216retake_lock:
3217 /* take i_mutex locking again if we do a ovewrite dio */
3218 if (overwrite) {
3219 inode_dio_done(inode);
3220 up_read(&EXT4_I(inode)->i_data_sem);
3221 mutex_lock(&inode->i_mutex);
4c0425ff 3222 }
8d5d02e6 3223
69c499d1 3224 return ret;
4c0425ff
MC
3225}
3226
3227static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3228 const struct iovec *iov, loff_t offset,
3229 unsigned long nr_segs)
3230{
3231 struct file *file = iocb->ki_filp;
3232 struct inode *inode = file->f_mapping->host;
0562e0ba 3233 ssize_t ret;
4c0425ff 3234
84ebd795
TT
3235 /*
3236 * If we are doing data journalling we don't support O_DIRECT
3237 */
3238 if (ext4_should_journal_data(inode))
3239 return 0;
3240
46c7f254
TM
3241 /* Let buffer I/O handle the inline data case. */
3242 if (ext4_has_inline_data(inode))
3243 return 0;
3244
0562e0ba 3245 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3246 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3247 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3248 else
3249 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3250 trace_ext4_direct_IO_exit(inode, offset,
3251 iov_length(iov, nr_segs), rw, ret);
3252 return ret;
4c0425ff
MC
3253}
3254
ac27a0ec 3255/*
617ba13b 3256 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3257 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3258 * much here because ->set_page_dirty is called under VFS locks. The page is
3259 * not necessarily locked.
3260 *
3261 * We cannot just dirty the page and leave attached buffers clean, because the
3262 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3263 * or jbddirty because all the journalling code will explode.
3264 *
3265 * So what we do is to mark the page "pending dirty" and next time writepage
3266 * is called, propagate that into the buffers appropriately.
3267 */
617ba13b 3268static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3269{
3270 SetPageChecked(page);
3271 return __set_page_dirty_nobuffers(page);
3272}
3273
74d553aa 3274static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3275 .readpage = ext4_readpage,
3276 .readpages = ext4_readpages,
43ce1d23 3277 .writepage = ext4_writepage,
8ab22b9a 3278 .write_begin = ext4_write_begin,
74d553aa 3279 .write_end = ext4_write_end,
8ab22b9a
HH
3280 .bmap = ext4_bmap,
3281 .invalidatepage = ext4_invalidatepage,
3282 .releasepage = ext4_releasepage,
3283 .direct_IO = ext4_direct_IO,
3284 .migratepage = buffer_migrate_page,
3285 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3286 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3287};
3288
617ba13b 3289static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3290 .readpage = ext4_readpage,
3291 .readpages = ext4_readpages,
43ce1d23 3292 .writepage = ext4_writepage,
8ab22b9a
HH
3293 .write_begin = ext4_write_begin,
3294 .write_end = ext4_journalled_write_end,
3295 .set_page_dirty = ext4_journalled_set_page_dirty,
3296 .bmap = ext4_bmap,
4520fb3c 3297 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3298 .releasepage = ext4_releasepage,
84ebd795 3299 .direct_IO = ext4_direct_IO,
8ab22b9a 3300 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3301 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3302};
3303
64769240 3304static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3305 .readpage = ext4_readpage,
3306 .readpages = ext4_readpages,
43ce1d23 3307 .writepage = ext4_writepage,
8ab22b9a 3308 .writepages = ext4_da_writepages,
8ab22b9a
HH
3309 .write_begin = ext4_da_write_begin,
3310 .write_end = ext4_da_write_end,
3311 .bmap = ext4_bmap,
3312 .invalidatepage = ext4_da_invalidatepage,
3313 .releasepage = ext4_releasepage,
3314 .direct_IO = ext4_direct_IO,
3315 .migratepage = buffer_migrate_page,
3316 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3317 .error_remove_page = generic_error_remove_page,
64769240
AT
3318};
3319
617ba13b 3320void ext4_set_aops(struct inode *inode)
ac27a0ec 3321{
3d2b1582
LC
3322 switch (ext4_inode_journal_mode(inode)) {
3323 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3324 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3325 break;
3326 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3327 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3328 break;
3329 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3330 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3331 return;
3d2b1582
LC
3332 default:
3333 BUG();
3334 }
74d553aa
TT
3335 if (test_opt(inode->i_sb, DELALLOC))
3336 inode->i_mapping->a_ops = &ext4_da_aops;
3337 else
3338 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3339}
3340
4e96b2db
AH
3341
3342/*
3343 * ext4_discard_partial_page_buffers()
3344 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3345 * This function finds and locks the page containing the offset
3346 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3347 * Calling functions that already have the page locked should call
3348 * ext4_discard_partial_page_buffers_no_lock directly.
3349 */
3350int ext4_discard_partial_page_buffers(handle_t *handle,
3351 struct address_space *mapping, loff_t from,
3352 loff_t length, int flags)
3353{
3354 struct inode *inode = mapping->host;
3355 struct page *page;
3356 int err = 0;
3357
3358 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3359 mapping_gfp_mask(mapping) & ~__GFP_FS);
3360 if (!page)
5129d05f 3361 return -ENOMEM;
4e96b2db
AH
3362
3363 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3364 from, length, flags);
3365
3366 unlock_page(page);
3367 page_cache_release(page);
3368 return err;
3369}
3370
3371/*
3372 * ext4_discard_partial_page_buffers_no_lock()
3373 * Zeros a page range of length 'length' starting from offset 'from'.
3374 * Buffer heads that correspond to the block aligned regions of the
3375 * zeroed range will be unmapped. Unblock aligned regions
3376 * will have the corresponding buffer head mapped if needed so that
3377 * that region of the page can be updated with the partial zero out.
3378 *
3379 * This function assumes that the page has already been locked. The
3380 * The range to be discarded must be contained with in the given page.
3381 * If the specified range exceeds the end of the page it will be shortened
3382 * to the end of the page that corresponds to 'from'. This function is
3383 * appropriate for updating a page and it buffer heads to be unmapped and
3384 * zeroed for blocks that have been either released, or are going to be
3385 * released.
3386 *
3387 * handle: The journal handle
3388 * inode: The files inode
3389 * page: A locked page that contains the offset "from"
4907cb7b 3390 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3391 * to begin discarding
3392 * len: The length of bytes to discard
3393 * flags: Optional flags that may be used:
3394 *
3395 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3396 * Only zero the regions of the page whose buffer heads
3397 * have already been unmapped. This flag is appropriate
4907cb7b 3398 * for updating the contents of a page whose blocks may
4e96b2db
AH
3399 * have already been released, and we only want to zero
3400 * out the regions that correspond to those released blocks.
3401 *
4907cb7b 3402 * Returns zero on success or negative on failure.
4e96b2db 3403 */
5f163cc7 3404static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3405 struct inode *inode, struct page *page, loff_t from,
3406 loff_t length, int flags)
3407{
3408 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3409 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3410 unsigned int blocksize, max, pos;
4e96b2db
AH
3411 ext4_lblk_t iblock;
3412 struct buffer_head *bh;
3413 int err = 0;
3414
3415 blocksize = inode->i_sb->s_blocksize;
3416 max = PAGE_CACHE_SIZE - offset;
3417
3418 if (index != page->index)
3419 return -EINVAL;
3420
3421 /*
3422 * correct length if it does not fall between
3423 * 'from' and the end of the page
3424 */
3425 if (length > max || length < 0)
3426 length = max;
3427
3428 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3429
093e6e36
YY
3430 if (!page_has_buffers(page))
3431 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3432
3433 /* Find the buffer that contains "offset" */
3434 bh = page_buffers(page);
3435 pos = blocksize;
3436 while (offset >= pos) {
3437 bh = bh->b_this_page;
3438 iblock++;
3439 pos += blocksize;
3440 }
3441
3442 pos = offset;
3443 while (pos < offset + length) {
e260daf2
YY
3444 unsigned int end_of_block, range_to_discard;
3445
4e96b2db
AH
3446 err = 0;
3447
3448 /* The length of space left to zero and unmap */
3449 range_to_discard = offset + length - pos;
3450
3451 /* The length of space until the end of the block */
3452 end_of_block = blocksize - (pos & (blocksize-1));
3453
3454 /*
3455 * Do not unmap or zero past end of block
3456 * for this buffer head
3457 */
3458 if (range_to_discard > end_of_block)
3459 range_to_discard = end_of_block;
3460
3461
3462 /*
3463 * Skip this buffer head if we are only zeroing unampped
3464 * regions of the page
3465 */
3466 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3467 buffer_mapped(bh))
3468 goto next;
3469
3470 /* If the range is block aligned, unmap */
3471 if (range_to_discard == blocksize) {
3472 clear_buffer_dirty(bh);
3473 bh->b_bdev = NULL;
3474 clear_buffer_mapped(bh);
3475 clear_buffer_req(bh);
3476 clear_buffer_new(bh);
3477 clear_buffer_delay(bh);
3478 clear_buffer_unwritten(bh);
3479 clear_buffer_uptodate(bh);
3480 zero_user(page, pos, range_to_discard);
3481 BUFFER_TRACE(bh, "Buffer discarded");
3482 goto next;
3483 }
3484
3485 /*
3486 * If this block is not completely contained in the range
3487 * to be discarded, then it is not going to be released. Because
3488 * we need to keep this block, we need to make sure this part
3489 * of the page is uptodate before we modify it by writeing
3490 * partial zeros on it.
3491 */
3492 if (!buffer_mapped(bh)) {
3493 /*
3494 * Buffer head must be mapped before we can read
3495 * from the block
3496 */
3497 BUFFER_TRACE(bh, "unmapped");
3498 ext4_get_block(inode, iblock, bh, 0);
3499 /* unmapped? It's a hole - nothing to do */
3500 if (!buffer_mapped(bh)) {
3501 BUFFER_TRACE(bh, "still unmapped");
3502 goto next;
3503 }
3504 }
3505
3506 /* Ok, it's mapped. Make sure it's up-to-date */
3507 if (PageUptodate(page))
3508 set_buffer_uptodate(bh);
3509
3510 if (!buffer_uptodate(bh)) {
3511 err = -EIO;
3512 ll_rw_block(READ, 1, &bh);
3513 wait_on_buffer(bh);
3514 /* Uhhuh. Read error. Complain and punt.*/
3515 if (!buffer_uptodate(bh))
3516 goto next;
3517 }
3518
3519 if (ext4_should_journal_data(inode)) {
3520 BUFFER_TRACE(bh, "get write access");
3521 err = ext4_journal_get_write_access(handle, bh);
3522 if (err)
3523 goto next;
3524 }
3525
3526 zero_user(page, pos, range_to_discard);
3527
3528 err = 0;
3529 if (ext4_should_journal_data(inode)) {
3530 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3531 } else
4e96b2db 3532 mark_buffer_dirty(bh);
4e96b2db
AH
3533
3534 BUFFER_TRACE(bh, "Partial buffer zeroed");
3535next:
3536 bh = bh->b_this_page;
3537 iblock++;
3538 pos += range_to_discard;
3539 }
3540
3541 return err;
3542}
3543
91ef4caf
DG
3544int ext4_can_truncate(struct inode *inode)
3545{
91ef4caf
DG
3546 if (S_ISREG(inode->i_mode))
3547 return 1;
3548 if (S_ISDIR(inode->i_mode))
3549 return 1;
3550 if (S_ISLNK(inode->i_mode))
3551 return !ext4_inode_is_fast_symlink(inode);
3552 return 0;
3553}
3554
a4bb6b64
AH
3555/*
3556 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3557 * associated with the given offset and length
3558 *
3559 * @inode: File inode
3560 * @offset: The offset where the hole will begin
3561 * @len: The length of the hole
3562 *
4907cb7b 3563 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3564 */
3565
3566int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3567{
496ad9aa 3568 struct inode *inode = file_inode(file);
26a4c0c6
TT
3569 struct super_block *sb = inode->i_sb;
3570 ext4_lblk_t first_block, stop_block;
3571 struct address_space *mapping = inode->i_mapping;
3572 loff_t first_page, last_page, page_len;
3573 loff_t first_page_offset, last_page_offset;
3574 handle_t *handle;
3575 unsigned int credits;
3576 int ret = 0;
3577
a4bb6b64 3578 if (!S_ISREG(inode->i_mode))
73355192 3579 return -EOPNOTSUPP;
a4bb6b64 3580
26a4c0c6 3581 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3582 /* TODO: Add support for bigalloc file systems */
73355192 3583 return -EOPNOTSUPP;
bab08ab9
TT
3584 }
3585
aaddea81
ZL
3586 trace_ext4_punch_hole(inode, offset, length);
3587
26a4c0c6
TT
3588 /*
3589 * Write out all dirty pages to avoid race conditions
3590 * Then release them.
3591 */
3592 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3593 ret = filemap_write_and_wait_range(mapping, offset,
3594 offset + length - 1);
3595 if (ret)
3596 return ret;
3597 }
3598
3599 mutex_lock(&inode->i_mutex);
3600 /* It's not possible punch hole on append only file */
3601 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3602 ret = -EPERM;
3603 goto out_mutex;
3604 }
3605 if (IS_SWAPFILE(inode)) {
3606 ret = -ETXTBSY;
3607 goto out_mutex;
3608 }
3609
3610 /* No need to punch hole beyond i_size */
3611 if (offset >= inode->i_size)
3612 goto out_mutex;
3613
3614 /*
3615 * If the hole extends beyond i_size, set the hole
3616 * to end after the page that contains i_size
3617 */
3618 if (offset + length > inode->i_size) {
3619 length = inode->i_size +
3620 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3621 offset;
3622 }
3623
3624 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3625 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3626
3627 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3628 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3629
3630 /* Now release the pages */
3631 if (last_page_offset > first_page_offset) {
3632 truncate_pagecache_range(inode, first_page_offset,
3633 last_page_offset - 1);
3634 }
3635
3636 /* Wait all existing dio workers, newcomers will block on i_mutex */
3637 ext4_inode_block_unlocked_dio(inode);
3638 ret = ext4_flush_unwritten_io(inode);
3639 if (ret)
3640 goto out_dio;
3641 inode_dio_wait(inode);
3642
3643 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3644 credits = ext4_writepage_trans_blocks(inode);
3645 else
3646 credits = ext4_blocks_for_truncate(inode);
3647 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3648 if (IS_ERR(handle)) {
3649 ret = PTR_ERR(handle);
3650 ext4_std_error(sb, ret);
3651 goto out_dio;
3652 }
3653
3654 /*
3655 * Now we need to zero out the non-page-aligned data in the
3656 * pages at the start and tail of the hole, and unmap the
3657 * buffer heads for the block aligned regions of the page that
3658 * were completely zeroed.
3659 */
3660 if (first_page > last_page) {
3661 /*
3662 * If the file space being truncated is contained
3663 * within a page just zero out and unmap the middle of
3664 * that page
3665 */
3666 ret = ext4_discard_partial_page_buffers(handle,
3667 mapping, offset, length, 0);
3668
3669 if (ret)
3670 goto out_stop;
3671 } else {
3672 /*
3673 * zero out and unmap the partial page that contains
3674 * the start of the hole
3675 */
3676 page_len = first_page_offset - offset;
3677 if (page_len > 0) {
3678 ret = ext4_discard_partial_page_buffers(handle, mapping,
3679 offset, page_len, 0);
3680 if (ret)
3681 goto out_stop;
3682 }
3683
3684 /*
3685 * zero out and unmap the partial page that contains
3686 * the end of the hole
3687 */
3688 page_len = offset + length - last_page_offset;
3689 if (page_len > 0) {
3690 ret = ext4_discard_partial_page_buffers(handle, mapping,
3691 last_page_offset, page_len, 0);
3692 if (ret)
3693 goto out_stop;
3694 }
3695 }
3696
3697 /*
3698 * If i_size is contained in the last page, we need to
3699 * unmap and zero the partial page after i_size
3700 */
3701 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3702 inode->i_size % PAGE_CACHE_SIZE != 0) {
3703 page_len = PAGE_CACHE_SIZE -
3704 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3705
3706 if (page_len > 0) {
3707 ret = ext4_discard_partial_page_buffers(handle,
3708 mapping, inode->i_size, page_len, 0);
3709
3710 if (ret)
3711 goto out_stop;
3712 }
3713 }
3714
3715 first_block = (offset + sb->s_blocksize - 1) >>
3716 EXT4_BLOCK_SIZE_BITS(sb);
3717 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3718
3719 /* If there are no blocks to remove, return now */
3720 if (first_block >= stop_block)
3721 goto out_stop;
3722
3723 down_write(&EXT4_I(inode)->i_data_sem);
3724 ext4_discard_preallocations(inode);
3725
3726 ret = ext4_es_remove_extent(inode, first_block,
3727 stop_block - first_block);
3728 if (ret) {
3729 up_write(&EXT4_I(inode)->i_data_sem);
3730 goto out_stop;
3731 }
3732
3733 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3734 ret = ext4_ext_remove_space(inode, first_block,
3735 stop_block - 1);
3736 else
3737 ret = ext4_free_hole_blocks(handle, inode, first_block,
3738 stop_block);
3739
3740 ext4_discard_preallocations(inode);
3741 if (IS_SYNC(inode))
3742 ext4_handle_sync(handle);
3743 up_write(&EXT4_I(inode)->i_data_sem);
3744 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3745 ext4_mark_inode_dirty(handle, inode);
3746out_stop:
3747 ext4_journal_stop(handle);
3748out_dio:
3749 ext4_inode_resume_unlocked_dio(inode);
3750out_mutex:
3751 mutex_unlock(&inode->i_mutex);
3752 return ret;
a4bb6b64
AH
3753}
3754
ac27a0ec 3755/*
617ba13b 3756 * ext4_truncate()
ac27a0ec 3757 *
617ba13b
MC
3758 * We block out ext4_get_block() block instantiations across the entire
3759 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3760 * simultaneously on behalf of the same inode.
3761 *
42b2aa86 3762 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3763 * is one core, guiding principle: the file's tree must always be consistent on
3764 * disk. We must be able to restart the truncate after a crash.
3765 *
3766 * The file's tree may be transiently inconsistent in memory (although it
3767 * probably isn't), but whenever we close off and commit a journal transaction,
3768 * the contents of (the filesystem + the journal) must be consistent and
3769 * restartable. It's pretty simple, really: bottom up, right to left (although
3770 * left-to-right works OK too).
3771 *
3772 * Note that at recovery time, journal replay occurs *before* the restart of
3773 * truncate against the orphan inode list.
3774 *
3775 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3776 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3777 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3778 * ext4_truncate() to have another go. So there will be instantiated blocks
3779 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3780 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3781 * ext4_truncate() run will find them and release them.
ac27a0ec 3782 */
617ba13b 3783void ext4_truncate(struct inode *inode)
ac27a0ec 3784{
0562e0ba
JZ
3785 trace_ext4_truncate_enter(inode);
3786
91ef4caf 3787 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3788 return;
3789
12e9b892 3790 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3791
5534fb5b 3792 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3793 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3794
aef1c851
TM
3795 if (ext4_has_inline_data(inode)) {
3796 int has_inline = 1;
3797
3798 ext4_inline_data_truncate(inode, &has_inline);
3799 if (has_inline)
3800 return;
3801 }
3802
ff9893dc 3803 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3804 ext4_ext_truncate(inode);
ff9893dc
AG
3805 else
3806 ext4_ind_truncate(inode);
ac27a0ec 3807
0562e0ba 3808 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3809}
3810
ac27a0ec 3811/*
617ba13b 3812 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3813 * underlying buffer_head on success. If 'in_mem' is true, we have all
3814 * data in memory that is needed to recreate the on-disk version of this
3815 * inode.
3816 */
617ba13b
MC
3817static int __ext4_get_inode_loc(struct inode *inode,
3818 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3819{
240799cd
TT
3820 struct ext4_group_desc *gdp;
3821 struct buffer_head *bh;
3822 struct super_block *sb = inode->i_sb;
3823 ext4_fsblk_t block;
3824 int inodes_per_block, inode_offset;
3825
3a06d778 3826 iloc->bh = NULL;
240799cd
TT
3827 if (!ext4_valid_inum(sb, inode->i_ino))
3828 return -EIO;
ac27a0ec 3829
240799cd
TT
3830 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3831 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3832 if (!gdp)
ac27a0ec
DK
3833 return -EIO;
3834
240799cd
TT
3835 /*
3836 * Figure out the offset within the block group inode table
3837 */
00d09882 3838 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3839 inode_offset = ((inode->i_ino - 1) %
3840 EXT4_INODES_PER_GROUP(sb));
3841 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3842 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3843
3844 bh = sb_getblk(sb, block);
aebf0243 3845 if (unlikely(!bh))
860d21e2 3846 return -ENOMEM;
ac27a0ec
DK
3847 if (!buffer_uptodate(bh)) {
3848 lock_buffer(bh);
9c83a923
HK
3849
3850 /*
3851 * If the buffer has the write error flag, we have failed
3852 * to write out another inode in the same block. In this
3853 * case, we don't have to read the block because we may
3854 * read the old inode data successfully.
3855 */
3856 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3857 set_buffer_uptodate(bh);
3858
ac27a0ec
DK
3859 if (buffer_uptodate(bh)) {
3860 /* someone brought it uptodate while we waited */
3861 unlock_buffer(bh);
3862 goto has_buffer;
3863 }
3864
3865 /*
3866 * If we have all information of the inode in memory and this
3867 * is the only valid inode in the block, we need not read the
3868 * block.
3869 */
3870 if (in_mem) {
3871 struct buffer_head *bitmap_bh;
240799cd 3872 int i, start;
ac27a0ec 3873
240799cd 3874 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3875
240799cd
TT
3876 /* Is the inode bitmap in cache? */
3877 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3878 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3879 goto make_io;
3880
3881 /*
3882 * If the inode bitmap isn't in cache then the
3883 * optimisation may end up performing two reads instead
3884 * of one, so skip it.
3885 */
3886 if (!buffer_uptodate(bitmap_bh)) {
3887 brelse(bitmap_bh);
3888 goto make_io;
3889 }
240799cd 3890 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3891 if (i == inode_offset)
3892 continue;
617ba13b 3893 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3894 break;
3895 }
3896 brelse(bitmap_bh);
240799cd 3897 if (i == start + inodes_per_block) {
ac27a0ec
DK
3898 /* all other inodes are free, so skip I/O */
3899 memset(bh->b_data, 0, bh->b_size);
3900 set_buffer_uptodate(bh);
3901 unlock_buffer(bh);
3902 goto has_buffer;
3903 }
3904 }
3905
3906make_io:
240799cd
TT
3907 /*
3908 * If we need to do any I/O, try to pre-readahead extra
3909 * blocks from the inode table.
3910 */
3911 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3912 ext4_fsblk_t b, end, table;
3913 unsigned num;
3914
3915 table = ext4_inode_table(sb, gdp);
b713a5ec 3916 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3917 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3918 if (table > b)
3919 b = table;
3920 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3921 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3922 if (ext4_has_group_desc_csum(sb))
560671a0 3923 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3924 table += num / inodes_per_block;
3925 if (end > table)
3926 end = table;
3927 while (b <= end)
3928 sb_breadahead(sb, b++);
3929 }
3930
ac27a0ec
DK
3931 /*
3932 * There are other valid inodes in the buffer, this inode
3933 * has in-inode xattrs, or we don't have this inode in memory.
3934 * Read the block from disk.
3935 */
0562e0ba 3936 trace_ext4_load_inode(inode);
ac27a0ec
DK
3937 get_bh(bh);
3938 bh->b_end_io = end_buffer_read_sync;
65299a3b 3939 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3940 wait_on_buffer(bh);
3941 if (!buffer_uptodate(bh)) {
c398eda0
TT
3942 EXT4_ERROR_INODE_BLOCK(inode, block,
3943 "unable to read itable block");
ac27a0ec
DK
3944 brelse(bh);
3945 return -EIO;
3946 }
3947 }
3948has_buffer:
3949 iloc->bh = bh;
3950 return 0;
3951}
3952
617ba13b 3953int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3954{
3955 /* We have all inode data except xattrs in memory here. */
617ba13b 3956 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3957 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3958}
3959
617ba13b 3960void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3961{
617ba13b 3962 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3963
3964 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3965 if (flags & EXT4_SYNC_FL)
ac27a0ec 3966 inode->i_flags |= S_SYNC;
617ba13b 3967 if (flags & EXT4_APPEND_FL)
ac27a0ec 3968 inode->i_flags |= S_APPEND;
617ba13b 3969 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3970 inode->i_flags |= S_IMMUTABLE;
617ba13b 3971 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3972 inode->i_flags |= S_NOATIME;
617ba13b 3973 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3974 inode->i_flags |= S_DIRSYNC;
3975}
3976
ff9ddf7e
JK
3977/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3978void ext4_get_inode_flags(struct ext4_inode_info *ei)
3979{
84a8dce2
DM
3980 unsigned int vfs_fl;
3981 unsigned long old_fl, new_fl;
3982
3983 do {
3984 vfs_fl = ei->vfs_inode.i_flags;
3985 old_fl = ei->i_flags;
3986 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3987 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3988 EXT4_DIRSYNC_FL);
3989 if (vfs_fl & S_SYNC)
3990 new_fl |= EXT4_SYNC_FL;
3991 if (vfs_fl & S_APPEND)
3992 new_fl |= EXT4_APPEND_FL;
3993 if (vfs_fl & S_IMMUTABLE)
3994 new_fl |= EXT4_IMMUTABLE_FL;
3995 if (vfs_fl & S_NOATIME)
3996 new_fl |= EXT4_NOATIME_FL;
3997 if (vfs_fl & S_DIRSYNC)
3998 new_fl |= EXT4_DIRSYNC_FL;
3999 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4000}
de9a55b8 4001
0fc1b451 4002static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4003 struct ext4_inode_info *ei)
0fc1b451
AK
4004{
4005 blkcnt_t i_blocks ;
8180a562
AK
4006 struct inode *inode = &(ei->vfs_inode);
4007 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4008
4009 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4010 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4011 /* we are using combined 48 bit field */
4012 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4013 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4014 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4015 /* i_blocks represent file system block size */
4016 return i_blocks << (inode->i_blkbits - 9);
4017 } else {
4018 return i_blocks;
4019 }
0fc1b451
AK
4020 } else {
4021 return le32_to_cpu(raw_inode->i_blocks_lo);
4022 }
4023}
ff9ddf7e 4024
152a7b0a
TM
4025static inline void ext4_iget_extra_inode(struct inode *inode,
4026 struct ext4_inode *raw_inode,
4027 struct ext4_inode_info *ei)
4028{
4029 __le32 *magic = (void *)raw_inode +
4030 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4031 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4032 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4033 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4034 } else
4035 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4036}
4037
1d1fe1ee 4038struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4039{
617ba13b
MC
4040 struct ext4_iloc iloc;
4041 struct ext4_inode *raw_inode;
1d1fe1ee 4042 struct ext4_inode_info *ei;
1d1fe1ee 4043 struct inode *inode;
b436b9be 4044 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4045 long ret;
ac27a0ec 4046 int block;
08cefc7a
EB
4047 uid_t i_uid;
4048 gid_t i_gid;
ac27a0ec 4049
1d1fe1ee
DH
4050 inode = iget_locked(sb, ino);
4051 if (!inode)
4052 return ERR_PTR(-ENOMEM);
4053 if (!(inode->i_state & I_NEW))
4054 return inode;
4055
4056 ei = EXT4_I(inode);
7dc57615 4057 iloc.bh = NULL;
ac27a0ec 4058
1d1fe1ee
DH
4059 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4060 if (ret < 0)
ac27a0ec 4061 goto bad_inode;
617ba13b 4062 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4063
4064 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4065 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4066 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4067 EXT4_INODE_SIZE(inode->i_sb)) {
4068 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4069 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4070 EXT4_INODE_SIZE(inode->i_sb));
4071 ret = -EIO;
4072 goto bad_inode;
4073 }
4074 } else
4075 ei->i_extra_isize = 0;
4076
4077 /* Precompute checksum seed for inode metadata */
4078 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4079 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4080 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4081 __u32 csum;
4082 __le32 inum = cpu_to_le32(inode->i_ino);
4083 __le32 gen = raw_inode->i_generation;
4084 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4085 sizeof(inum));
4086 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4087 sizeof(gen));
4088 }
4089
4090 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4091 EXT4_ERROR_INODE(inode, "checksum invalid");
4092 ret = -EIO;
4093 goto bad_inode;
4094 }
4095
ac27a0ec 4096 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4097 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4098 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4099 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4100 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4101 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4102 }
08cefc7a
EB
4103 i_uid_write(inode, i_uid);
4104 i_gid_write(inode, i_gid);
bfe86848 4105 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4106
353eb83c 4107 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4108 ei->i_inline_off = 0;
ac27a0ec
DK
4109 ei->i_dir_start_lookup = 0;
4110 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4111 /* We now have enough fields to check if the inode was active or not.
4112 * This is needed because nfsd might try to access dead inodes
4113 * the test is that same one that e2fsck uses
4114 * NeilBrown 1999oct15
4115 */
4116 if (inode->i_nlink == 0) {
4117 if (inode->i_mode == 0 ||
617ba13b 4118 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4119 /* this inode is deleted */
1d1fe1ee 4120 ret = -ESTALE;
ac27a0ec
DK
4121 goto bad_inode;
4122 }
4123 /* The only unlinked inodes we let through here have
4124 * valid i_mode and are being read by the orphan
4125 * recovery code: that's fine, we're about to complete
4126 * the process of deleting those. */
4127 }
ac27a0ec 4128 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4129 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4130 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4131 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4132 ei->i_file_acl |=
4133 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4134 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4135 ei->i_disksize = inode->i_size;
a9e7f447
DM
4136#ifdef CONFIG_QUOTA
4137 ei->i_reserved_quota = 0;
4138#endif
ac27a0ec
DK
4139 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4140 ei->i_block_group = iloc.block_group;
a4912123 4141 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4142 /*
4143 * NOTE! The in-memory inode i_data array is in little-endian order
4144 * even on big-endian machines: we do NOT byteswap the block numbers!
4145 */
617ba13b 4146 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4147 ei->i_data[block] = raw_inode->i_block[block];
4148 INIT_LIST_HEAD(&ei->i_orphan);
4149
b436b9be
JK
4150 /*
4151 * Set transaction id's of transactions that have to be committed
4152 * to finish f[data]sync. We set them to currently running transaction
4153 * as we cannot be sure that the inode or some of its metadata isn't
4154 * part of the transaction - the inode could have been reclaimed and
4155 * now it is reread from disk.
4156 */
4157 if (journal) {
4158 transaction_t *transaction;
4159 tid_t tid;
4160
a931da6a 4161 read_lock(&journal->j_state_lock);
b436b9be
JK
4162 if (journal->j_running_transaction)
4163 transaction = journal->j_running_transaction;
4164 else
4165 transaction = journal->j_committing_transaction;
4166 if (transaction)
4167 tid = transaction->t_tid;
4168 else
4169 tid = journal->j_commit_sequence;
a931da6a 4170 read_unlock(&journal->j_state_lock);
b436b9be
JK
4171 ei->i_sync_tid = tid;
4172 ei->i_datasync_tid = tid;
4173 }
4174
0040d987 4175 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4176 if (ei->i_extra_isize == 0) {
4177 /* The extra space is currently unused. Use it. */
617ba13b
MC
4178 ei->i_extra_isize = sizeof(struct ext4_inode) -
4179 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4180 } else {
152a7b0a 4181 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4182 }
814525f4 4183 }
ac27a0ec 4184
ef7f3835
KS
4185 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4186 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4187 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4188 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4189
25ec56b5
JNC
4190 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4191 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4192 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4193 inode->i_version |=
4194 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4195 }
4196
c4b5a614 4197 ret = 0;
485c26ec 4198 if (ei->i_file_acl &&
1032988c 4199 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4200 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4201 ei->i_file_acl);
485c26ec
TT
4202 ret = -EIO;
4203 goto bad_inode;
f19d5870
TM
4204 } else if (!ext4_has_inline_data(inode)) {
4205 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4206 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4207 (S_ISLNK(inode->i_mode) &&
4208 !ext4_inode_is_fast_symlink(inode))))
4209 /* Validate extent which is part of inode */
4210 ret = ext4_ext_check_inode(inode);
4211 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4212 (S_ISLNK(inode->i_mode) &&
4213 !ext4_inode_is_fast_symlink(inode))) {
4214 /* Validate block references which are part of inode */
4215 ret = ext4_ind_check_inode(inode);
4216 }
fe2c8191 4217 }
567f3e9a 4218 if (ret)
de9a55b8 4219 goto bad_inode;
7a262f7c 4220
ac27a0ec 4221 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4222 inode->i_op = &ext4_file_inode_operations;
4223 inode->i_fop = &ext4_file_operations;
4224 ext4_set_aops(inode);
ac27a0ec 4225 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4226 inode->i_op = &ext4_dir_inode_operations;
4227 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4228 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4229 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4230 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4231 nd_terminate_link(ei->i_data, inode->i_size,
4232 sizeof(ei->i_data) - 1);
4233 } else {
617ba13b
MC
4234 inode->i_op = &ext4_symlink_inode_operations;
4235 ext4_set_aops(inode);
ac27a0ec 4236 }
563bdd61
TT
4237 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4238 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4239 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4240 if (raw_inode->i_block[0])
4241 init_special_inode(inode, inode->i_mode,
4242 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4243 else
4244 init_special_inode(inode, inode->i_mode,
4245 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4246 } else {
563bdd61 4247 ret = -EIO;
24676da4 4248 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4249 goto bad_inode;
ac27a0ec 4250 }
af5bc92d 4251 brelse(iloc.bh);
617ba13b 4252 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4253 unlock_new_inode(inode);
4254 return inode;
ac27a0ec
DK
4255
4256bad_inode:
567f3e9a 4257 brelse(iloc.bh);
1d1fe1ee
DH
4258 iget_failed(inode);
4259 return ERR_PTR(ret);
ac27a0ec
DK
4260}
4261
0fc1b451
AK
4262static int ext4_inode_blocks_set(handle_t *handle,
4263 struct ext4_inode *raw_inode,
4264 struct ext4_inode_info *ei)
4265{
4266 struct inode *inode = &(ei->vfs_inode);
4267 u64 i_blocks = inode->i_blocks;
4268 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4269
4270 if (i_blocks <= ~0U) {
4271 /*
4907cb7b 4272 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4273 * as multiple of 512 bytes
4274 */
8180a562 4275 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4276 raw_inode->i_blocks_high = 0;
84a8dce2 4277 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4278 return 0;
4279 }
4280 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4281 return -EFBIG;
4282
4283 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4284 /*
4285 * i_blocks can be represented in a 48 bit variable
4286 * as multiple of 512 bytes
4287 */
8180a562 4288 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4289 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4290 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4291 } else {
84a8dce2 4292 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4293 /* i_block is stored in file system block size */
4294 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4295 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4296 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4297 }
f287a1a5 4298 return 0;
0fc1b451
AK
4299}
4300
ac27a0ec
DK
4301/*
4302 * Post the struct inode info into an on-disk inode location in the
4303 * buffer-cache. This gobbles the caller's reference to the
4304 * buffer_head in the inode location struct.
4305 *
4306 * The caller must have write access to iloc->bh.
4307 */
617ba13b 4308static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4309 struct inode *inode,
830156c7 4310 struct ext4_iloc *iloc)
ac27a0ec 4311{
617ba13b
MC
4312 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4313 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4314 struct buffer_head *bh = iloc->bh;
4315 int err = 0, rc, block;
b71fc079 4316 int need_datasync = 0;
08cefc7a
EB
4317 uid_t i_uid;
4318 gid_t i_gid;
ac27a0ec
DK
4319
4320 /* For fields not not tracking in the in-memory inode,
4321 * initialise them to zero for new inodes. */
19f5fb7a 4322 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4323 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4324
ff9ddf7e 4325 ext4_get_inode_flags(ei);
ac27a0ec 4326 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4327 i_uid = i_uid_read(inode);
4328 i_gid = i_gid_read(inode);
af5bc92d 4329 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4330 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4331 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4332/*
4333 * Fix up interoperability with old kernels. Otherwise, old inodes get
4334 * re-used with the upper 16 bits of the uid/gid intact
4335 */
af5bc92d 4336 if (!ei->i_dtime) {
ac27a0ec 4337 raw_inode->i_uid_high =
08cefc7a 4338 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4339 raw_inode->i_gid_high =
08cefc7a 4340 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4341 } else {
4342 raw_inode->i_uid_high = 0;
4343 raw_inode->i_gid_high = 0;
4344 }
4345 } else {
08cefc7a
EB
4346 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4347 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4348 raw_inode->i_uid_high = 0;
4349 raw_inode->i_gid_high = 0;
4350 }
4351 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4352
4353 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4354 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4355 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4356 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4357
0fc1b451
AK
4358 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4359 goto out_brelse;
ac27a0ec 4360 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4361 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4362 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4363 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4364 raw_inode->i_file_acl_high =
4365 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4366 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4367 if (ei->i_disksize != ext4_isize(raw_inode)) {
4368 ext4_isize_set(raw_inode, ei->i_disksize);
4369 need_datasync = 1;
4370 }
a48380f7
AK
4371 if (ei->i_disksize > 0x7fffffffULL) {
4372 struct super_block *sb = inode->i_sb;
4373 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4374 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4375 EXT4_SB(sb)->s_es->s_rev_level ==
4376 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4377 /* If this is the first large file
4378 * created, add a flag to the superblock.
4379 */
4380 err = ext4_journal_get_write_access(handle,
4381 EXT4_SB(sb)->s_sbh);
4382 if (err)
4383 goto out_brelse;
4384 ext4_update_dynamic_rev(sb);
4385 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4386 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4387 ext4_handle_sync(handle);
b50924c2 4388 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4389 }
4390 }
4391 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4392 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4393 if (old_valid_dev(inode->i_rdev)) {
4394 raw_inode->i_block[0] =
4395 cpu_to_le32(old_encode_dev(inode->i_rdev));
4396 raw_inode->i_block[1] = 0;
4397 } else {
4398 raw_inode->i_block[0] = 0;
4399 raw_inode->i_block[1] =
4400 cpu_to_le32(new_encode_dev(inode->i_rdev));
4401 raw_inode->i_block[2] = 0;
4402 }
f19d5870 4403 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4404 for (block = 0; block < EXT4_N_BLOCKS; block++)
4405 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4406 }
ac27a0ec 4407
25ec56b5
JNC
4408 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4409 if (ei->i_extra_isize) {
4410 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4411 raw_inode->i_version_hi =
4412 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4413 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4414 }
4415
814525f4
DW
4416 ext4_inode_csum_set(inode, raw_inode, ei);
4417
830156c7 4418 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4419 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4420 if (!err)
4421 err = rc;
19f5fb7a 4422 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4423
b71fc079 4424 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4425out_brelse:
af5bc92d 4426 brelse(bh);
617ba13b 4427 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4428 return err;
4429}
4430
4431/*
617ba13b 4432 * ext4_write_inode()
ac27a0ec
DK
4433 *
4434 * We are called from a few places:
4435 *
4436 * - Within generic_file_write() for O_SYNC files.
4437 * Here, there will be no transaction running. We wait for any running
4907cb7b 4438 * transaction to commit.
ac27a0ec
DK
4439 *
4440 * - Within sys_sync(), kupdate and such.
4441 * We wait on commit, if tol to.
4442 *
4443 * - Within prune_icache() (PF_MEMALLOC == true)
4444 * Here we simply return. We can't afford to block kswapd on the
4445 * journal commit.
4446 *
4447 * In all cases it is actually safe for us to return without doing anything,
4448 * because the inode has been copied into a raw inode buffer in
617ba13b 4449 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4450 * knfsd.
4451 *
4452 * Note that we are absolutely dependent upon all inode dirtiers doing the
4453 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4454 * which we are interested.
4455 *
4456 * It would be a bug for them to not do this. The code:
4457 *
4458 * mark_inode_dirty(inode)
4459 * stuff();
4460 * inode->i_size = expr;
4461 *
4462 * is in error because a kswapd-driven write_inode() could occur while
4463 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4464 * will no longer be on the superblock's dirty inode list.
4465 */
a9185b41 4466int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4467{
91ac6f43
FM
4468 int err;
4469
ac27a0ec
DK
4470 if (current->flags & PF_MEMALLOC)
4471 return 0;
4472
91ac6f43
FM
4473 if (EXT4_SB(inode->i_sb)->s_journal) {
4474 if (ext4_journal_current_handle()) {
4475 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4476 dump_stack();
4477 return -EIO;
4478 }
ac27a0ec 4479
a9185b41 4480 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4481 return 0;
4482
4483 err = ext4_force_commit(inode->i_sb);
4484 } else {
4485 struct ext4_iloc iloc;
ac27a0ec 4486
8b472d73 4487 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4488 if (err)
4489 return err;
a9185b41 4490 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4491 sync_dirty_buffer(iloc.bh);
4492 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4493 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4494 "IO error syncing inode");
830156c7
FM
4495 err = -EIO;
4496 }
fd2dd9fb 4497 brelse(iloc.bh);
91ac6f43
FM
4498 }
4499 return err;
ac27a0ec
DK
4500}
4501
53e87268
JK
4502/*
4503 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4504 * buffers that are attached to a page stradding i_size and are undergoing
4505 * commit. In that case we have to wait for commit to finish and try again.
4506 */
4507static void ext4_wait_for_tail_page_commit(struct inode *inode)
4508{
4509 struct page *page;
4510 unsigned offset;
4511 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4512 tid_t commit_tid = 0;
4513 int ret;
4514
4515 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4516 /*
4517 * All buffers in the last page remain valid? Then there's nothing to
4518 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4519 * blocksize case
4520 */
4521 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4522 return;
4523 while (1) {
4524 page = find_lock_page(inode->i_mapping,
4525 inode->i_size >> PAGE_CACHE_SHIFT);
4526 if (!page)
4527 return;
4528 ret = __ext4_journalled_invalidatepage(page, offset);
4529 unlock_page(page);
4530 page_cache_release(page);
4531 if (ret != -EBUSY)
4532 return;
4533 commit_tid = 0;
4534 read_lock(&journal->j_state_lock);
4535 if (journal->j_committing_transaction)
4536 commit_tid = journal->j_committing_transaction->t_tid;
4537 read_unlock(&journal->j_state_lock);
4538 if (commit_tid)
4539 jbd2_log_wait_commit(journal, commit_tid);
4540 }
4541}
4542
ac27a0ec 4543/*
617ba13b 4544 * ext4_setattr()
ac27a0ec
DK
4545 *
4546 * Called from notify_change.
4547 *
4548 * We want to trap VFS attempts to truncate the file as soon as
4549 * possible. In particular, we want to make sure that when the VFS
4550 * shrinks i_size, we put the inode on the orphan list and modify
4551 * i_disksize immediately, so that during the subsequent flushing of
4552 * dirty pages and freeing of disk blocks, we can guarantee that any
4553 * commit will leave the blocks being flushed in an unused state on
4554 * disk. (On recovery, the inode will get truncated and the blocks will
4555 * be freed, so we have a strong guarantee that no future commit will
4556 * leave these blocks visible to the user.)
4557 *
678aaf48
JK
4558 * Another thing we have to assure is that if we are in ordered mode
4559 * and inode is still attached to the committing transaction, we must
4560 * we start writeout of all the dirty pages which are being truncated.
4561 * This way we are sure that all the data written in the previous
4562 * transaction are already on disk (truncate waits for pages under
4563 * writeback).
4564 *
4565 * Called with inode->i_mutex down.
ac27a0ec 4566 */
617ba13b 4567int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4568{
4569 struct inode *inode = dentry->d_inode;
4570 int error, rc = 0;
3d287de3 4571 int orphan = 0;
ac27a0ec
DK
4572 const unsigned int ia_valid = attr->ia_valid;
4573
4574 error = inode_change_ok(inode, attr);
4575 if (error)
4576 return error;
4577
12755627 4578 if (is_quota_modification(inode, attr))
871a2931 4579 dquot_initialize(inode);
08cefc7a
EB
4580 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4581 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4582 handle_t *handle;
4583
4584 /* (user+group)*(old+new) structure, inode write (sb,
4585 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4586 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4587 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4588 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4589 if (IS_ERR(handle)) {
4590 error = PTR_ERR(handle);
4591 goto err_out;
4592 }
b43fa828 4593 error = dquot_transfer(inode, attr);
ac27a0ec 4594 if (error) {
617ba13b 4595 ext4_journal_stop(handle);
ac27a0ec
DK
4596 return error;
4597 }
4598 /* Update corresponding info in inode so that everything is in
4599 * one transaction */
4600 if (attr->ia_valid & ATTR_UID)
4601 inode->i_uid = attr->ia_uid;
4602 if (attr->ia_valid & ATTR_GID)
4603 inode->i_gid = attr->ia_gid;
617ba13b
MC
4604 error = ext4_mark_inode_dirty(handle, inode);
4605 ext4_journal_stop(handle);
ac27a0ec
DK
4606 }
4607
e2b46574 4608 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4609
12e9b892 4610 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4611 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4612
0c095c7f
TT
4613 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4614 return -EFBIG;
e2b46574
ES
4615 }
4616 }
4617
ac27a0ec 4618 if (S_ISREG(inode->i_mode) &&
c8d46e41 4619 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4620 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4621 handle_t *handle;
4622
9924a92a 4623 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4624 if (IS_ERR(handle)) {
4625 error = PTR_ERR(handle);
4626 goto err_out;
4627 }
3d287de3
DM
4628 if (ext4_handle_valid(handle)) {
4629 error = ext4_orphan_add(handle, inode);
4630 orphan = 1;
4631 }
617ba13b
MC
4632 EXT4_I(inode)->i_disksize = attr->ia_size;
4633 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4634 if (!error)
4635 error = rc;
617ba13b 4636 ext4_journal_stop(handle);
678aaf48
JK
4637
4638 if (ext4_should_order_data(inode)) {
4639 error = ext4_begin_ordered_truncate(inode,
4640 attr->ia_size);
4641 if (error) {
4642 /* Do as much error cleanup as possible */
9924a92a
TT
4643 handle = ext4_journal_start(inode,
4644 EXT4_HT_INODE, 3);
678aaf48
JK
4645 if (IS_ERR(handle)) {
4646 ext4_orphan_del(NULL, inode);
4647 goto err_out;
4648 }
4649 ext4_orphan_del(handle, inode);
3d287de3 4650 orphan = 0;
678aaf48
JK
4651 ext4_journal_stop(handle);
4652 goto err_out;
4653 }
4654 }
ac27a0ec
DK
4655 }
4656
072bd7ea 4657 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4658 if (attr->ia_size != inode->i_size) {
4659 loff_t oldsize = inode->i_size;
4660
4661 i_size_write(inode, attr->ia_size);
4662 /*
4663 * Blocks are going to be removed from the inode. Wait
4664 * for dio in flight. Temporarily disable
4665 * dioread_nolock to prevent livelock.
4666 */
1b65007e 4667 if (orphan) {
53e87268
JK
4668 if (!ext4_should_journal_data(inode)) {
4669 ext4_inode_block_unlocked_dio(inode);
4670 inode_dio_wait(inode);
4671 ext4_inode_resume_unlocked_dio(inode);
4672 } else
4673 ext4_wait_for_tail_page_commit(inode);
1b65007e 4674 }
53e87268
JK
4675 /*
4676 * Truncate pagecache after we've waited for commit
4677 * in data=journal mode to make pages freeable.
4678 */
4679 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4680 }
afcff5d8 4681 ext4_truncate(inode);
072bd7ea 4682 }
ac27a0ec 4683
1025774c
CH
4684 if (!rc) {
4685 setattr_copy(inode, attr);
4686 mark_inode_dirty(inode);
4687 }
4688
4689 /*
4690 * If the call to ext4_truncate failed to get a transaction handle at
4691 * all, we need to clean up the in-core orphan list manually.
4692 */
3d287de3 4693 if (orphan && inode->i_nlink)
617ba13b 4694 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4695
4696 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4697 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4698
4699err_out:
617ba13b 4700 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4701 if (!error)
4702 error = rc;
4703 return error;
4704}
4705
3e3398a0
MC
4706int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4707 struct kstat *stat)
4708{
4709 struct inode *inode;
4710 unsigned long delalloc_blocks;
4711
4712 inode = dentry->d_inode;
4713 generic_fillattr(inode, stat);
4714
4715 /*
4716 * We can't update i_blocks if the block allocation is delayed
4717 * otherwise in the case of system crash before the real block
4718 * allocation is done, we will have i_blocks inconsistent with
4719 * on-disk file blocks.
4720 * We always keep i_blocks updated together with real
4721 * allocation. But to not confuse with user, stat
4722 * will return the blocks that include the delayed allocation
4723 * blocks for this file.
4724 */
96607551
TM
4725 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4726 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4727
4728 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4729 return 0;
4730}
ac27a0ec 4731
a02908f1
MC
4732static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4733{
12e9b892 4734 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4735 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4736 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4737}
ac51d837 4738
ac27a0ec 4739/*
a02908f1
MC
4740 * Account for index blocks, block groups bitmaps and block group
4741 * descriptor blocks if modify datablocks and index blocks
4742 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4743 *
a02908f1 4744 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4745 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4746 * they could still across block group boundary.
ac27a0ec 4747 *
a02908f1
MC
4748 * Also account for superblock, inode, quota and xattr blocks
4749 */
1f109d5a 4750static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4751{
8df9675f
TT
4752 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4753 int gdpblocks;
a02908f1
MC
4754 int idxblocks;
4755 int ret = 0;
4756
4757 /*
4758 * How many index blocks need to touch to modify nrblocks?
4759 * The "Chunk" flag indicating whether the nrblocks is
4760 * physically contiguous on disk
4761 *
4762 * For Direct IO and fallocate, they calls get_block to allocate
4763 * one single extent at a time, so they could set the "Chunk" flag
4764 */
4765 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4766
4767 ret = idxblocks;
4768
4769 /*
4770 * Now let's see how many group bitmaps and group descriptors need
4771 * to account
4772 */
4773 groups = idxblocks;
4774 if (chunk)
4775 groups += 1;
4776 else
4777 groups += nrblocks;
4778
4779 gdpblocks = groups;
8df9675f
TT
4780 if (groups > ngroups)
4781 groups = ngroups;
a02908f1
MC
4782 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4783 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4784
4785 /* bitmaps and block group descriptor blocks */
4786 ret += groups + gdpblocks;
4787
4788 /* Blocks for super block, inode, quota and xattr blocks */
4789 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4790
4791 return ret;
4792}
4793
4794/*
25985edc 4795 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4796 * the modification of a single pages into a single transaction,
4797 * which may include multiple chunks of block allocations.
ac27a0ec 4798 *
525f4ed8 4799 * This could be called via ext4_write_begin()
ac27a0ec 4800 *
525f4ed8 4801 * We need to consider the worse case, when
a02908f1 4802 * one new block per extent.
ac27a0ec 4803 */
a86c6181 4804int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4805{
617ba13b 4806 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4807 int ret;
4808
a02908f1 4809 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4810
a02908f1 4811 /* Account for data blocks for journalled mode */
617ba13b 4812 if (ext4_should_journal_data(inode))
a02908f1 4813 ret += bpp;
ac27a0ec
DK
4814 return ret;
4815}
f3bd1f3f
MC
4816
4817/*
4818 * Calculate the journal credits for a chunk of data modification.
4819 *
4820 * This is called from DIO, fallocate or whoever calling
79e83036 4821 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4822 *
4823 * journal buffers for data blocks are not included here, as DIO
4824 * and fallocate do no need to journal data buffers.
4825 */
4826int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4827{
4828 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4829}
4830
ac27a0ec 4831/*
617ba13b 4832 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4833 * Give this, we know that the caller already has write access to iloc->bh.
4834 */
617ba13b 4835int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4836 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4837{
4838 int err = 0;
4839
c64db50e 4840 if (IS_I_VERSION(inode))
25ec56b5
JNC
4841 inode_inc_iversion(inode);
4842
ac27a0ec
DK
4843 /* the do_update_inode consumes one bh->b_count */
4844 get_bh(iloc->bh);
4845
dab291af 4846 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4847 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4848 put_bh(iloc->bh);
4849 return err;
4850}
4851
4852/*
4853 * On success, We end up with an outstanding reference count against
4854 * iloc->bh. This _must_ be cleaned up later.
4855 */
4856
4857int
617ba13b
MC
4858ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4859 struct ext4_iloc *iloc)
ac27a0ec 4860{
0390131b
FM
4861 int err;
4862
4863 err = ext4_get_inode_loc(inode, iloc);
4864 if (!err) {
4865 BUFFER_TRACE(iloc->bh, "get_write_access");
4866 err = ext4_journal_get_write_access(handle, iloc->bh);
4867 if (err) {
4868 brelse(iloc->bh);
4869 iloc->bh = NULL;
ac27a0ec
DK
4870 }
4871 }
617ba13b 4872 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4873 return err;
4874}
4875
6dd4ee7c
KS
4876/*
4877 * Expand an inode by new_extra_isize bytes.
4878 * Returns 0 on success or negative error number on failure.
4879 */
1d03ec98
AK
4880static int ext4_expand_extra_isize(struct inode *inode,
4881 unsigned int new_extra_isize,
4882 struct ext4_iloc iloc,
4883 handle_t *handle)
6dd4ee7c
KS
4884{
4885 struct ext4_inode *raw_inode;
4886 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4887
4888 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4889 return 0;
4890
4891 raw_inode = ext4_raw_inode(&iloc);
4892
4893 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4894
4895 /* No extended attributes present */
19f5fb7a
TT
4896 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4897 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4898 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4899 new_extra_isize);
4900 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4901 return 0;
4902 }
4903
4904 /* try to expand with EAs present */
4905 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4906 raw_inode, handle);
4907}
4908
ac27a0ec
DK
4909/*
4910 * What we do here is to mark the in-core inode as clean with respect to inode
4911 * dirtiness (it may still be data-dirty).
4912 * This means that the in-core inode may be reaped by prune_icache
4913 * without having to perform any I/O. This is a very good thing,
4914 * because *any* task may call prune_icache - even ones which
4915 * have a transaction open against a different journal.
4916 *
4917 * Is this cheating? Not really. Sure, we haven't written the
4918 * inode out, but prune_icache isn't a user-visible syncing function.
4919 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4920 * we start and wait on commits.
ac27a0ec 4921 */
617ba13b 4922int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4923{
617ba13b 4924 struct ext4_iloc iloc;
6dd4ee7c
KS
4925 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4926 static unsigned int mnt_count;
4927 int err, ret;
ac27a0ec
DK
4928
4929 might_sleep();
7ff9c073 4930 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4931 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4932 if (ext4_handle_valid(handle) &&
4933 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4934 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4935 /*
4936 * We need extra buffer credits since we may write into EA block
4937 * with this same handle. If journal_extend fails, then it will
4938 * only result in a minor loss of functionality for that inode.
4939 * If this is felt to be critical, then e2fsck should be run to
4940 * force a large enough s_min_extra_isize.
4941 */
4942 if ((jbd2_journal_extend(handle,
4943 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4944 ret = ext4_expand_extra_isize(inode,
4945 sbi->s_want_extra_isize,
4946 iloc, handle);
4947 if (ret) {
19f5fb7a
TT
4948 ext4_set_inode_state(inode,
4949 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4950 if (mnt_count !=
4951 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4952 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4953 "Unable to expand inode %lu. Delete"
4954 " some EAs or run e2fsck.",
4955 inode->i_ino);
c1bddad9
AK
4956 mnt_count =
4957 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4958 }
4959 }
4960 }
4961 }
ac27a0ec 4962 if (!err)
617ba13b 4963 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4964 return err;
4965}
4966
4967/*
617ba13b 4968 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4969 *
4970 * We're really interested in the case where a file is being extended.
4971 * i_size has been changed by generic_commit_write() and we thus need
4972 * to include the updated inode in the current transaction.
4973 *
5dd4056d 4974 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4975 * are allocated to the file.
4976 *
4977 * If the inode is marked synchronous, we don't honour that here - doing
4978 * so would cause a commit on atime updates, which we don't bother doing.
4979 * We handle synchronous inodes at the highest possible level.
4980 */
aa385729 4981void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4982{
ac27a0ec
DK
4983 handle_t *handle;
4984
9924a92a 4985 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4986 if (IS_ERR(handle))
4987 goto out;
f3dc272f 4988
f3dc272f
CW
4989 ext4_mark_inode_dirty(handle, inode);
4990
617ba13b 4991 ext4_journal_stop(handle);
ac27a0ec
DK
4992out:
4993 return;
4994}
4995
4996#if 0
4997/*
4998 * Bind an inode's backing buffer_head into this transaction, to prevent
4999 * it from being flushed to disk early. Unlike
617ba13b 5000 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5001 * returns no iloc structure, so the caller needs to repeat the iloc
5002 * lookup to mark the inode dirty later.
5003 */
617ba13b 5004static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5005{
617ba13b 5006 struct ext4_iloc iloc;
ac27a0ec
DK
5007
5008 int err = 0;
5009 if (handle) {
617ba13b 5010 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5011 if (!err) {
5012 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5013 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5014 if (!err)
0390131b 5015 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5016 NULL,
0390131b 5017 iloc.bh);
ac27a0ec
DK
5018 brelse(iloc.bh);
5019 }
5020 }
617ba13b 5021 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5022 return err;
5023}
5024#endif
5025
617ba13b 5026int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5027{
5028 journal_t *journal;
5029 handle_t *handle;
5030 int err;
5031
5032 /*
5033 * We have to be very careful here: changing a data block's
5034 * journaling status dynamically is dangerous. If we write a
5035 * data block to the journal, change the status and then delete
5036 * that block, we risk forgetting to revoke the old log record
5037 * from the journal and so a subsequent replay can corrupt data.
5038 * So, first we make sure that the journal is empty and that
5039 * nobody is changing anything.
5040 */
5041
617ba13b 5042 journal = EXT4_JOURNAL(inode);
0390131b
FM
5043 if (!journal)
5044 return 0;
d699594d 5045 if (is_journal_aborted(journal))
ac27a0ec 5046 return -EROFS;
2aff57b0
YY
5047 /* We have to allocate physical blocks for delalloc blocks
5048 * before flushing journal. otherwise delalloc blocks can not
5049 * be allocated any more. even more truncate on delalloc blocks
5050 * could trigger BUG by flushing delalloc blocks in journal.
5051 * There is no delalloc block in non-journal data mode.
5052 */
5053 if (val && test_opt(inode->i_sb, DELALLOC)) {
5054 err = ext4_alloc_da_blocks(inode);
5055 if (err < 0)
5056 return err;
5057 }
ac27a0ec 5058
17335dcc
DM
5059 /* Wait for all existing dio workers */
5060 ext4_inode_block_unlocked_dio(inode);
5061 inode_dio_wait(inode);
5062
dab291af 5063 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5064
5065 /*
5066 * OK, there are no updates running now, and all cached data is
5067 * synced to disk. We are now in a completely consistent state
5068 * which doesn't have anything in the journal, and we know that
5069 * no filesystem updates are running, so it is safe to modify
5070 * the inode's in-core data-journaling state flag now.
5071 */
5072
5073 if (val)
12e9b892 5074 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5075 else {
5076 jbd2_journal_flush(journal);
12e9b892 5077 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5078 }
617ba13b 5079 ext4_set_aops(inode);
ac27a0ec 5080
dab291af 5081 jbd2_journal_unlock_updates(journal);
17335dcc 5082 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5083
5084 /* Finally we can mark the inode as dirty. */
5085
9924a92a 5086 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5087 if (IS_ERR(handle))
5088 return PTR_ERR(handle);
5089
617ba13b 5090 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5091 ext4_handle_sync(handle);
617ba13b
MC
5092 ext4_journal_stop(handle);
5093 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5094
5095 return err;
5096}
2e9ee850
AK
5097
5098static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5099{
5100 return !buffer_mapped(bh);
5101}
5102
c2ec175c 5103int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5104{
c2ec175c 5105 struct page *page = vmf->page;
2e9ee850
AK
5106 loff_t size;
5107 unsigned long len;
9ea7df53 5108 int ret;
2e9ee850 5109 struct file *file = vma->vm_file;
496ad9aa 5110 struct inode *inode = file_inode(file);
2e9ee850 5111 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5112 handle_t *handle;
5113 get_block_t *get_block;
5114 int retries = 0;
2e9ee850 5115
8e8ad8a5 5116 sb_start_pagefault(inode->i_sb);
041bbb6d 5117 file_update_time(vma->vm_file);
9ea7df53
JK
5118 /* Delalloc case is easy... */
5119 if (test_opt(inode->i_sb, DELALLOC) &&
5120 !ext4_should_journal_data(inode) &&
5121 !ext4_nonda_switch(inode->i_sb)) {
5122 do {
5123 ret = __block_page_mkwrite(vma, vmf,
5124 ext4_da_get_block_prep);
5125 } while (ret == -ENOSPC &&
5126 ext4_should_retry_alloc(inode->i_sb, &retries));
5127 goto out_ret;
2e9ee850 5128 }
0e499890
DW
5129
5130 lock_page(page);
9ea7df53
JK
5131 size = i_size_read(inode);
5132 /* Page got truncated from under us? */
5133 if (page->mapping != mapping || page_offset(page) > size) {
5134 unlock_page(page);
5135 ret = VM_FAULT_NOPAGE;
5136 goto out;
0e499890 5137 }
2e9ee850
AK
5138
5139 if (page->index == size >> PAGE_CACHE_SHIFT)
5140 len = size & ~PAGE_CACHE_MASK;
5141 else
5142 len = PAGE_CACHE_SIZE;
a827eaff 5143 /*
9ea7df53
JK
5144 * Return if we have all the buffers mapped. This avoids the need to do
5145 * journal_start/journal_stop which can block and take a long time
a827eaff 5146 */
2e9ee850 5147 if (page_has_buffers(page)) {
f19d5870
TM
5148 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5149 0, len, NULL,
5150 ext4_bh_unmapped)) {
9ea7df53 5151 /* Wait so that we don't change page under IO */
1d1d1a76 5152 wait_for_stable_page(page);
9ea7df53
JK
5153 ret = VM_FAULT_LOCKED;
5154 goto out;
a827eaff 5155 }
2e9ee850 5156 }
a827eaff 5157 unlock_page(page);
9ea7df53
JK
5158 /* OK, we need to fill the hole... */
5159 if (ext4_should_dioread_nolock(inode))
5160 get_block = ext4_get_block_write;
5161 else
5162 get_block = ext4_get_block;
5163retry_alloc:
9924a92a
TT
5164 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5165 ext4_writepage_trans_blocks(inode));
9ea7df53 5166 if (IS_ERR(handle)) {
c2ec175c 5167 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5168 goto out;
5169 }
5170 ret = __block_page_mkwrite(vma, vmf, get_block);
5171 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5172 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5173 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5174 unlock_page(page);
5175 ret = VM_FAULT_SIGBUS;
fcbb5515 5176 ext4_journal_stop(handle);
9ea7df53
JK
5177 goto out;
5178 }
5179 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5180 }
5181 ext4_journal_stop(handle);
5182 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5183 goto retry_alloc;
5184out_ret:
5185 ret = block_page_mkwrite_return(ret);
5186out:
8e8ad8a5 5187 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5188 return ret;
5189}