]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
statx: Include a mask for stx_attributes in struct statx
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
364443cb 40#include <linux/iomap.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 55 __u32 csum;
b47820ed
DJ
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
814525f4 59
b47820ed
DJ
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 65
b47820ed
DJ
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
b47820ed 75 }
05ac5aa1
DJ
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
78 }
79
814525f4
DW
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 90 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 111 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
678aaf48
JK
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
7ff9c073 124 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
678aaf48
JK
136}
137
d47992f8
LC
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
cb20d518
TT
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
f348c252 148int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
65eddb56
YY
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 152
bd9db175
ZL
153 if (ext4_has_inline_data(inode))
154 return 0;
155
ac27a0ec
DK
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157}
158
ac27a0ec
DK
159/*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
fa5d1113 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 165 int nblocks)
ac27a0ec 166{
487caeef
JK
167 int ret;
168
169 /*
e35fd660 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
0390131b 175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 176 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 177 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 178 ret = ext4_journal_restart(handle, nblocks);
487caeef 179 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 180 ext4_discard_preallocations(inode);
487caeef
JK
181
182 return ret;
ac27a0ec
DK
183}
184
185/*
186 * Called at the last iput() if i_nlink is zero.
187 */
0930fcc1 188void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
189{
190 handle_t *handle;
bc965ab3 191 int err;
ac27a0ec 192
7ff9c073 193 trace_ext4_evict_inode(inode);
2581fdc8 194
0930fcc1 195 if (inode->i_nlink) {
2d859db3
JK
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
6a7fd522
VN
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
2d859db3
JK
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
d76a3a77 220 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
221 filemap_write_and_wait(&inode->i_data);
222 }
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 224
0930fcc1
AV
225 goto no_delete;
226 }
227
e2bfb088
TT
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
907f4554 231
678aaf48
JK
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 234 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9924a92a
TT
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 243 if (IS_ERR(handle)) {
bc965ab3 244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
617ba13b 250 ext4_orphan_del(NULL, inode);
8e8ad8a5 251 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
0390131b 256 ext4_handle_sync(handle);
ac27a0ec 257 inode->i_size = 0;
bc965ab3
TT
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
12062ddd 260 ext4_warning(inode->i_sb,
bc965ab3
TT
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
2c98eb5e
TT
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
bc965ab3
TT
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
0390131b 280 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
12062ddd 285 ext4_warning(inode->i_sb,
bc965ab3
TT
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
45388219 289 ext4_orphan_del(NULL, inode);
8e8ad8a5 290 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
291 goto no_delete;
292 }
293 }
294
ac27a0ec 295 /*
617ba13b 296 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 297 * AKPM: I think this can be inside the above `if'.
617ba13b 298 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 299 * deletion of a non-existent orphan - this is because we don't
617ba13b 300 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
301 * (Well, we could do this if we need to, but heck - it works)
302 */
617ba13b
MC
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
617ba13b 313 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 314 /* If that failed, just do the required in-core inode clear. */
0930fcc1 315 ext4_clear_inode(inode);
ac27a0ec 316 else
617ba13b
MC
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
8e8ad8a5 319 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
320 return;
321no_delete:
0930fcc1 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
323}
324
a9e7f447
DM
325#ifdef CONFIG_QUOTA
326qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 327{
a9e7f447 328 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 329}
a9e7f447 330#endif
9d0be502 331
0637c6f4
TT
332/*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
5f634d06
AK
336void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
12219aea
AK
338{
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 340 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
341
342 spin_lock(&ei->i_block_reservation_lock);
d8990240 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 344 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 346 "with only %d reserved data blocks",
0637c6f4
TT
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
12219aea 352
0637c6f4
TT
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
71d4f7d0 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 356
12219aea 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 358
72b8ab9d
ES
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
7b415bf6 361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 362 else {
5f634d06
AK
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
72b8ab9d 366 * not re-claim the quota for fallocated blocks.
5f634d06 367 */
7b415bf6 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 369 }
d6014301
AK
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
0637c6f4
TT
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
d6014301 378 ext4_discard_preallocations(inode);
12219aea
AK
379}
380
e29136f8 381static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
382 unsigned int line,
383 struct ext4_map_blocks *map)
6fd058f7 384{
24676da4
TT
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
c398eda0
TT
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
6a797d27 391 return -EFSCORRUPTED;
6fd058f7
TT
392 }
393 return 0;
394}
395
53085fac
JK
396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398{
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
a7550b30 402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409}
410
e29136f8 411#define check_block_validity(inode, map) \
c398eda0 412 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 413
921f266b
DM
414#ifdef ES_AGGRESSIVE_TEST
415static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420{
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
2dcba478 431 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
2dcba478 439 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
bdafe42a 448 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456}
457#endif /* ES_AGGRESSIVE_TEST */
458
f5ab0d1f 459/*
e35fd660 460 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 461 * and returns if the blocks are already mapped.
f5ab0d1f 462 *
f5ab0d1f
MC
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
e35fd660
TT
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
469 * based files
470 *
facab4d9
JK
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
478 *
479 * It returns the error in case of allocation failure.
480 */
e35fd660
TT
481int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
0e855ac8 483{
d100eef2 484 struct extent_status es;
0e855ac8 485 int retval;
b8a86845 486 int ret = 0;
921f266b
DM
487#ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491#endif
f5ab0d1f 492
e35fd660
TT
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
d100eef2 497
e861b5e9
TT
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
4adb6ab3
KM
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 506 return -EFSCORRUPTED;
4adb6ab3 507
d100eef2
ZL
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
d100eef2
ZL
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
921f266b
DM
529#ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532#endif
d100eef2
ZL
533 goto found;
534 }
535
4df3d265 536 /*
b920c755
TT
537 * Try to see if we can get the block without requesting a new
538 * file system block.
4df3d265 539 */
2dcba478 540 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 544 } else {
a4e5d88b
DM
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 547 }
f7fec032 548 if (retval > 0) {
3be78c73 549 unsigned int status;
f7fec032 550
44fb851d
ZL
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
921f266b 557 }
921f266b 558
f7fec032
ZL
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 562 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
2dcba478 571 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 572
d100eef2 573found:
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 575 ret = check_block_validity(inode, map);
6fd058f7
TT
576 if (ret != 0)
577 return ret;
578 }
579
f5ab0d1f 580 /* If it is only a block(s) look up */
c2177057 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
df3ab170 588 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
589 * with buffer head unmapped.
590 */
e35fd660 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
4df3d265 599
2a8964d6 600 /*
a25a4e1a
ZL
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
2a8964d6 603 */
a25a4e1a 604 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 605
4df3d265 606 /*
556615dc 607 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 608 * will possibly result in updating i_data, so we take
d91bd2c1 609 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 610 * with create == 1 flag.
4df3d265 611 */
c8b459f4 612 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 613
4df3d265
AK
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
12e9b892 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 620 } else {
e35fd660 621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 622
e35fd660 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
19f5fb7a 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 630 }
d2a17637 631
5f634d06
AK
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
1296cc85 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
2ac3b6e0 642
f7fec032 643 if (retval > 0) {
3be78c73 644 unsigned int status;
f7fec032 645
44fb851d
ZL
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
921f266b 652 }
921f266b 653
c86d8db3
JK
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
9b623df6
JK
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
c86d8db3
JK
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
c86d8db3
JK
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
adb23551
ZL
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
c86d8db3 681 goto out_sem;
adb23551 682 }
f7fec032
ZL
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 686 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
c86d8db3 692 if (ret < 0) {
f7fec032 693 retval = ret;
c86d8db3
JK
694 goto out_sem;
695 }
5356f261
AK
696 }
697
c86d8db3 698out_sem:
4df3d265 699 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 701 ret = check_block_validity(inode, map);
6fd058f7
TT
702 if (ret != 0)
703 return ret;
06bd3c36
JK
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
ee0876bc
JK
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
719 if (ret)
720 return ret;
721 }
6fd058f7 722 }
0e855ac8
AK
723 return retval;
724}
725
ed8ad838
JK
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752}
753
2ed88685
TT
754static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
ac27a0ec 756{
2ed88685 757 struct ext4_map_blocks map;
efe70c29 758 int ret = 0;
ac27a0ec 759
46c7f254
TM
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
2ed88685
TT
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
efe70c29
JK
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
7fb5409d 768 if (ret > 0) {
2ed88685 769 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 770 ext4_update_bh_state(bh, map.m_flags);
2ed88685 771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 772 ret = 0;
547edce3
RZ
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
776 }
777 return ret;
778}
779
2ed88685
TT
780int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782{
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785}
786
705965bd
JK
787/*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794{
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799}
800
efe70c29
JK
801/* Maximum number of blocks we map for direct IO at once. */
802#define DIO_MAX_BLOCKS 4096
803
e84dfbe2
JK
804/*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
efe70c29
JK
811{
812 int dio_credits;
e84dfbe2
JK
813 handle_t *handle;
814 int retries = 0;
815 int ret;
efe70c29
JK
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
822retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
efe70c29
JK
833}
834
705965bd
JK
835/* Get block function for DIO reads and writes to inodes without extents */
836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838{
efe70c29
JK
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
e84dfbe2
JK
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
845}
846
847/*
109811c2 848 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
109811c2
JK
852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 854{
efe70c29
JK
855 int ret;
856
efe70c29
JK
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
e84dfbe2
JK
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 862
109811c2
JK
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
efe70c29 880 set_buffer_defer_completion(bh_result);
efe70c29
JK
881 }
882
883 return ret;
705965bd
JK
884}
885
109811c2
JK
886/*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893{
109811c2
JK
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
e84dfbe2
JK
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911}
912
705965bd
JK
913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915{
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
efe70c29
JK
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
705965bd
JK
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
efe70c29 928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
929
930 return ret;
931}
932
933
ac27a0ec
DK
934/*
935 * `handle' can be NULL if create is zero
936 */
617ba13b 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 938 ext4_lblk_t block, int map_flags)
ac27a0ec 939{
2ed88685
TT
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
c5e298ae 942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 943 int err;
ac27a0ec
DK
944
945 J_ASSERT(handle != NULL || create == 0);
946
2ed88685
TT
947 map.m_lblk = block;
948 map.m_len = 1;
c5e298ae 949 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 950
10560082
TT
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 953 if (err < 0)
10560082 954 return ERR_PTR(err);
2ed88685
TT
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
2ed88685
TT
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
ac27a0ec 962
2ed88685
TT
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
2ed88685
TT
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
ac27a0ec 980 }
2ed88685
TT
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
984 if (unlikely(err))
985 goto errout;
986 } else
2ed88685 987 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 988 return bh;
10560082
TT
989errout:
990 brelse(bh);
991 return ERR_PTR(err);
ac27a0ec
DK
992}
993
617ba13b 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 995 ext4_lblk_t block, int map_flags)
ac27a0ec 996{
af5bc92d 997 struct buffer_head *bh;
ac27a0ec 998
c5e298ae 999 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1000 if (IS_ERR(bh))
ac27a0ec 1001 return bh;
1c215028 1002 if (!bh || buffer_uptodate(bh))
ac27a0ec 1003 return bh;
dfec8a14 1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1c215028 1009 return ERR_PTR(-EIO);
ac27a0ec
DK
1010}
1011
f19d5870
TM
1012int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
ac27a0ec
DK
1019{
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
af5bc92d
TT
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
de9a55b8 1028 block_start = block_end, bh = next) {
ac27a0ec
DK
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1046 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1048 * prepare_write() is the right place.
1049 *
36ade451
JK
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
ac27a0ec 1054 *
617ba13b 1055 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
dab291af 1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
f19d5870
TM
1067int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
ac27a0ec 1069{
56d35a4c
JK
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
ac27a0ec
DK
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
56d35a4c 1075 /*
ebdec241 1076 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1079 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
5d601255 1085 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
ac27a0ec
DK
1090}
1091
2058f83a
MH
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095{
09cbfeaf 1096 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
09cbfeaf 1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
e64855c6 1136 clean_bdev_bh_alias(bh);
2058f83a
MH
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
dfec8a14 1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
7821d4dd 1174 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1175 PAGE_SIZE, 0, page->index);
2058f83a
MH
1176 return err;
1177}
1178#endif
1179
bfc1af65 1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
ac27a0ec 1183{
af5bc92d 1184 struct inode *inode = mapping->host;
1938a150 1185 int ret, needed_blocks;
ac27a0ec
DK
1186 handle_t *handle;
1187 int retries = 0;
af5bc92d 1188 struct page *page;
de9a55b8 1189 pgoff_t index;
af5bc92d 1190 unsigned from, to;
bfc1af65 1191
0db1ff22
TT
1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 return -EIO;
1194
9bffad1e 1195 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1196 /*
1197 * Reserve one block more for addition to orphan list in case
1198 * we allocate blocks but write fails for some reason
1199 */
1200 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1201 index = pos >> PAGE_SHIFT;
1202 from = pos & (PAGE_SIZE - 1);
af5bc92d 1203 to = from + len;
ac27a0ec 1204
f19d5870
TM
1205 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 flags, pagep);
1208 if (ret < 0)
47564bfb
TT
1209 return ret;
1210 if (ret == 1)
1211 return 0;
f19d5870
TM
1212 }
1213
47564bfb
TT
1214 /*
1215 * grab_cache_page_write_begin() can take a long time if the
1216 * system is thrashing due to memory pressure, or if the page
1217 * is being written back. So grab it first before we start
1218 * the transaction handle. This also allows us to allocate
1219 * the page (if needed) without using GFP_NOFS.
1220 */
1221retry_grab:
1222 page = grab_cache_page_write_begin(mapping, index, flags);
1223 if (!page)
1224 return -ENOMEM;
1225 unlock_page(page);
1226
1227retry_journal:
9924a92a 1228 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1229 if (IS_ERR(handle)) {
09cbfeaf 1230 put_page(page);
47564bfb 1231 return PTR_ERR(handle);
7479d2b9 1232 }
ac27a0ec 1233
47564bfb
TT
1234 lock_page(page);
1235 if (page->mapping != mapping) {
1236 /* The page got truncated from under us */
1237 unlock_page(page);
09cbfeaf 1238 put_page(page);
cf108bca 1239 ext4_journal_stop(handle);
47564bfb 1240 goto retry_grab;
cf108bca 1241 }
7afe5aa5
DM
1242 /* In case writeback began while the page was unlocked */
1243 wait_for_stable_page(page);
cf108bca 1244
2058f83a
MH
1245#ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 if (ext4_should_dioread_nolock(inode))
1247 ret = ext4_block_write_begin(page, pos, len,
705965bd 1248 ext4_get_block_unwritten);
2058f83a
MH
1249 else
1250 ret = ext4_block_write_begin(page, pos, len,
1251 ext4_get_block);
1252#else
744692dc 1253 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1254 ret = __block_write_begin(page, pos, len,
1255 ext4_get_block_unwritten);
744692dc 1256 else
6e1db88d 1257 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1258#endif
bfc1af65 1259 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1260 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 from, to, NULL,
1262 do_journal_get_write_access);
ac27a0ec 1263 }
bfc1af65
NP
1264
1265 if (ret) {
af5bc92d 1266 unlock_page(page);
ae4d5372 1267 /*
6e1db88d 1268 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1269 * outside i_size. Trim these off again. Don't need
1270 * i_size_read because we hold i_mutex.
1938a150
AK
1271 *
1272 * Add inode to orphan list in case we crash before
1273 * truncate finishes
ae4d5372 1274 */
ffacfa7a 1275 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1276 ext4_orphan_add(handle, inode);
1277
1278 ext4_journal_stop(handle);
1279 if (pos + len > inode->i_size) {
b9a4207d 1280 ext4_truncate_failed_write(inode);
de9a55b8 1281 /*
ffacfa7a 1282 * If truncate failed early the inode might
1938a150
AK
1283 * still be on the orphan list; we need to
1284 * make sure the inode is removed from the
1285 * orphan list in that case.
1286 */
1287 if (inode->i_nlink)
1288 ext4_orphan_del(NULL, inode);
1289 }
bfc1af65 1290
47564bfb
TT
1291 if (ret == -ENOSPC &&
1292 ext4_should_retry_alloc(inode->i_sb, &retries))
1293 goto retry_journal;
09cbfeaf 1294 put_page(page);
47564bfb
TT
1295 return ret;
1296 }
1297 *pagep = page;
ac27a0ec
DK
1298 return ret;
1299}
1300
bfc1af65
NP
1301/* For write_end() in data=journal mode */
1302static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1303{
13fca323 1304 int ret;
ac27a0ec
DK
1305 if (!buffer_mapped(bh) || buffer_freed(bh))
1306 return 0;
1307 set_buffer_uptodate(bh);
13fca323
TT
1308 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 clear_buffer_meta(bh);
1310 clear_buffer_prio(bh);
1311 return ret;
ac27a0ec
DK
1312}
1313
eed4333f
ZL
1314/*
1315 * We need to pick up the new inode size which generic_commit_write gave us
1316 * `file' can be NULL - eg, when called from page_symlink().
1317 *
1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1319 * buffers are managed internally.
1320 */
1321static int ext4_write_end(struct file *file,
1322 struct address_space *mapping,
1323 loff_t pos, unsigned len, unsigned copied,
1324 struct page *page, void *fsdata)
f8514083 1325{
f8514083 1326 handle_t *handle = ext4_journal_current_handle();
eed4333f 1327 struct inode *inode = mapping->host;
0572639f 1328 loff_t old_size = inode->i_size;
eed4333f
ZL
1329 int ret = 0, ret2;
1330 int i_size_changed = 0;
1331
1332 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1333 if (ext4_has_inline_data(inode)) {
1334 ret = ext4_write_inline_data_end(inode, pos, len,
1335 copied, page);
eb5efbcb
TT
1336 if (ret < 0) {
1337 unlock_page(page);
1338 put_page(page);
42c832de 1339 goto errout;
eb5efbcb 1340 }
42c832de
TT
1341 copied = ret;
1342 } else
f19d5870
TM
1343 copied = block_write_end(file, mapping, pos,
1344 len, copied, page, fsdata);
f8514083 1345 /*
4631dbf6 1346 * it's important to update i_size while still holding page lock:
f8514083
AK
1347 * page writeout could otherwise come in and zero beyond i_size.
1348 */
4631dbf6 1349 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1350 unlock_page(page);
09cbfeaf 1351 put_page(page);
f8514083 1352
0572639f
XW
1353 if (old_size < pos)
1354 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1355 /*
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1359 * filesystems.
1360 */
1361 if (i_size_changed)
1362 ext4_mark_inode_dirty(handle, inode);
1363
ffacfa7a 1364 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1368 */
1369 ext4_orphan_add(handle, inode);
74d553aa 1370errout:
617ba13b 1371 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1372 if (!ret)
1373 ret = ret2;
bfc1af65 1374
f8514083 1375 if (pos + len > inode->i_size) {
b9a4207d 1376 ext4_truncate_failed_write(inode);
de9a55b8 1377 /*
ffacfa7a 1378 * If truncate failed early the inode might still be
f8514083
AK
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1381 */
1382 if (inode->i_nlink)
1383 ext4_orphan_del(NULL, inode);
1384 }
1385
bfc1af65 1386 return ret ? ret : copied;
ac27a0ec
DK
1387}
1388
b90197b6
TT
1389/*
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1393 */
3b136499
JK
1394static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 struct page *page,
1396 unsigned from, unsigned to)
b90197b6
TT
1397{
1398 unsigned int block_start = 0, block_end;
1399 struct buffer_head *head, *bh;
1400
1401 bh = head = page_buffers(page);
1402 do {
1403 block_end = block_start + bh->b_size;
1404 if (buffer_new(bh)) {
1405 if (block_end > from && block_start < to) {
1406 if (!PageUptodate(page)) {
1407 unsigned start, size;
1408
1409 start = max(from, block_start);
1410 size = min(to, block_end) - start;
1411
1412 zero_user(page, start, size);
3b136499 1413 write_end_fn(handle, bh);
b90197b6
TT
1414 }
1415 clear_buffer_new(bh);
1416 }
1417 }
1418 block_start = block_end;
1419 bh = bh->b_this_page;
1420 } while (bh != head);
1421}
1422
bfc1af65 1423static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1424 struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned copied,
1426 struct page *page, void *fsdata)
ac27a0ec 1427{
617ba13b 1428 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1429 struct inode *inode = mapping->host;
0572639f 1430 loff_t old_size = inode->i_size;
ac27a0ec
DK
1431 int ret = 0, ret2;
1432 int partial = 0;
bfc1af65 1433 unsigned from, to;
4631dbf6 1434 int size_changed = 0;
ac27a0ec 1435
9bffad1e 1436 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1437 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1438 to = from + len;
1439
441c8508
CW
1440 BUG_ON(!ext4_handle_valid(handle));
1441
eb5efbcb
TT
1442 if (ext4_has_inline_data(inode)) {
1443 ret = ext4_write_inline_data_end(inode, pos, len,
1444 copied, page);
1445 if (ret < 0) {
1446 unlock_page(page);
1447 put_page(page);
1448 goto errout;
1449 }
1450 copied = ret;
1451 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1452 copied = 0;
1453 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 } else {
1455 if (unlikely(copied < len))
1456 ext4_journalled_zero_new_buffers(handle, page,
1457 from + copied, to);
3fdcfb66 1458 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1459 from + copied, &partial,
1460 write_end_fn);
3fdcfb66
TM
1461 if (!partial)
1462 SetPageUptodate(page);
1463 }
4631dbf6 1464 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1465 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1466 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1467 unlock_page(page);
09cbfeaf 1468 put_page(page);
4631dbf6 1469
0572639f
XW
1470 if (old_size < pos)
1471 pagecache_isize_extended(inode, old_size, pos);
1472
4631dbf6 1473 if (size_changed) {
617ba13b 1474 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1475 if (!ret)
1476 ret = ret2;
1477 }
bfc1af65 1478
ffacfa7a 1479 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1480 /* if we have allocated more blocks and copied
1481 * less. We will have blocks allocated outside
1482 * inode->i_size. So truncate them
1483 */
1484 ext4_orphan_add(handle, inode);
1485
eb5efbcb 1486errout:
617ba13b 1487 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1488 if (!ret)
1489 ret = ret2;
f8514083 1490 if (pos + len > inode->i_size) {
b9a4207d 1491 ext4_truncate_failed_write(inode);
de9a55b8 1492 /*
ffacfa7a 1493 * If truncate failed early the inode might still be
f8514083
AK
1494 * on the orphan list; we need to make sure the inode
1495 * is removed from the orphan list in that case.
1496 */
1497 if (inode->i_nlink)
1498 ext4_orphan_del(NULL, inode);
1499 }
bfc1af65
NP
1500
1501 return ret ? ret : copied;
ac27a0ec 1502}
d2a17637 1503
9d0be502 1504/*
c27e43a1 1505 * Reserve space for a single cluster
9d0be502 1506 */
c27e43a1 1507static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1508{
60e58e0f 1509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1510 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1511 int ret;
03179fe9
TT
1512
1513 /*
1514 * We will charge metadata quota at writeout time; this saves
1515 * us from metadata over-estimation, though we may go over by
1516 * a small amount in the end. Here we just reserve for data.
1517 */
1518 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 if (ret)
1520 return ret;
d2a17637 1521
0637c6f4 1522 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1523 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1524 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1525 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1526 return -ENOSPC;
1527 }
9d0be502 1528 ei->i_reserved_data_blocks++;
c27e43a1 1529 trace_ext4_da_reserve_space(inode);
0637c6f4 1530 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1531
d2a17637
MC
1532 return 0; /* success */
1533}
1534
12219aea 1535static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1536{
1537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1538 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1539
cd213226
MC
1540 if (!to_free)
1541 return; /* Nothing to release, exit */
1542
d2a17637 1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1544
5a58ec87 1545 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1546 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1547 /*
0637c6f4
TT
1548 * if there aren't enough reserved blocks, then the
1549 * counter is messed up somewhere. Since this
1550 * function is called from invalidate page, it's
1551 * harmless to return without any action.
cd213226 1552 */
8de5c325 1553 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1554 "ino %lu, to_free %d with only %d reserved "
1084f252 1555 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1556 ei->i_reserved_data_blocks);
1557 WARN_ON(1);
1558 to_free = ei->i_reserved_data_blocks;
cd213226 1559 }
0637c6f4 1560 ei->i_reserved_data_blocks -= to_free;
cd213226 1561
72b8ab9d 1562 /* update fs dirty data blocks counter */
57042651 1563 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1564
d2a17637 1565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1566
7b415bf6 1567 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1568}
1569
1570static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1571 unsigned int offset,
1572 unsigned int length)
d2a17637 1573{
9705acd6 1574 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1575 struct buffer_head *head, *bh;
1576 unsigned int curr_off = 0;
7b415bf6
AK
1577 struct inode *inode = page->mapping->host;
1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1579 unsigned int stop = offset + length;
7b415bf6 1580 int num_clusters;
51865fda 1581 ext4_fsblk_t lblk;
d2a17637 1582
09cbfeaf 1583 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1584
d2a17637
MC
1585 head = page_buffers(page);
1586 bh = head;
1587 do {
1588 unsigned int next_off = curr_off + bh->b_size;
1589
ca99fdd2
LC
1590 if (next_off > stop)
1591 break;
1592
d2a17637
MC
1593 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 to_release++;
9705acd6 1595 contiguous_blks++;
d2a17637 1596 clear_buffer_delay(bh);
9705acd6
LC
1597 } else if (contiguous_blks) {
1598 lblk = page->index <<
09cbfeaf 1599 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1600 lblk += (curr_off >> inode->i_blkbits) -
1601 contiguous_blks;
1602 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 contiguous_blks = 0;
d2a17637
MC
1604 }
1605 curr_off = next_off;
1606 } while ((bh = bh->b_this_page) != head);
7b415bf6 1607
9705acd6 1608 if (contiguous_blks) {
09cbfeaf 1609 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1610 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1612 }
1613
7b415bf6
AK
1614 /* If we have released all the blocks belonging to a cluster, then we
1615 * need to release the reserved space for that cluster. */
1616 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 while (num_clusters > 0) {
09cbfeaf 1618 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1619 ((num_clusters - 1) << sbi->s_cluster_bits);
1620 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1621 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1622 ext4_da_release_space(inode, 1);
1623
1624 num_clusters--;
1625 }
d2a17637 1626}
ac27a0ec 1627
64769240
AT
1628/*
1629 * Delayed allocation stuff
1630 */
1631
4e7ea81d
JK
1632struct mpage_da_data {
1633 struct inode *inode;
1634 struct writeback_control *wbc;
6b523df4 1635
4e7ea81d
JK
1636 pgoff_t first_page; /* The first page to write */
1637 pgoff_t next_page; /* Current page to examine */
1638 pgoff_t last_page; /* Last page to examine */
791b7f08 1639 /*
4e7ea81d
JK
1640 * Extent to map - this can be after first_page because that can be
1641 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 * is delalloc or unwritten.
791b7f08 1643 */
4e7ea81d
JK
1644 struct ext4_map_blocks map;
1645 struct ext4_io_submit io_submit; /* IO submission data */
1646};
64769240 1647
4e7ea81d
JK
1648static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1649 bool invalidate)
c4a0c46e
AK
1650{
1651 int nr_pages, i;
1652 pgoff_t index, end;
1653 struct pagevec pvec;
1654 struct inode *inode = mpd->inode;
1655 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1656
1657 /* This is necessary when next_page == 0. */
1658 if (mpd->first_page >= mpd->next_page)
1659 return;
c4a0c46e 1660
c7f5938a
CW
1661 index = mpd->first_page;
1662 end = mpd->next_page - 1;
4e7ea81d
JK
1663 if (invalidate) {
1664 ext4_lblk_t start, last;
09cbfeaf
KS
1665 start = index << (PAGE_SHIFT - inode->i_blkbits);
1666 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1667 ext4_es_remove_extent(inode, start, last - start + 1);
1668 }
51865fda 1669
66bea92c 1670 pagevec_init(&pvec, 0);
c4a0c46e
AK
1671 while (index <= end) {
1672 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1673 if (nr_pages == 0)
1674 break;
1675 for (i = 0; i < nr_pages; i++) {
1676 struct page *page = pvec.pages[i];
9b1d0998 1677 if (page->index > end)
c4a0c46e 1678 break;
c4a0c46e
AK
1679 BUG_ON(!PageLocked(page));
1680 BUG_ON(PageWriteback(page));
4e7ea81d 1681 if (invalidate) {
4e800c03 1682 if (page_mapped(page))
1683 clear_page_dirty_for_io(page);
09cbfeaf 1684 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1685 ClearPageUptodate(page);
1686 }
c4a0c46e
AK
1687 unlock_page(page);
1688 }
9b1d0998
JK
1689 index = pvec.pages[nr_pages - 1]->index + 1;
1690 pagevec_release(&pvec);
c4a0c46e 1691 }
c4a0c46e
AK
1692}
1693
df22291f
AK
1694static void ext4_print_free_blocks(struct inode *inode)
1695{
1696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1697 struct super_block *sb = inode->i_sb;
f78ee70d 1698 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1699
1700 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1701 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1702 ext4_count_free_clusters(sb)));
92b97816
TT
1703 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1704 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1705 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1706 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1707 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1708 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1709 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1710 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1711 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1712 ei->i_reserved_data_blocks);
df22291f
AK
1713 return;
1714}
1715
c364b22c 1716static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1717{
c364b22c 1718 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1719}
1720
5356f261
AK
1721/*
1722 * This function is grabs code from the very beginning of
1723 * ext4_map_blocks, but assumes that the caller is from delayed write
1724 * time. This function looks up the requested blocks and sets the
1725 * buffer delay bit under the protection of i_data_sem.
1726 */
1727static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1728 struct ext4_map_blocks *map,
1729 struct buffer_head *bh)
1730{
d100eef2 1731 struct extent_status es;
5356f261
AK
1732 int retval;
1733 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1734#ifdef ES_AGGRESSIVE_TEST
1735 struct ext4_map_blocks orig_map;
1736
1737 memcpy(&orig_map, map, sizeof(*map));
1738#endif
5356f261
AK
1739
1740 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1741 invalid_block = ~0;
1742
1743 map->m_flags = 0;
1744 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1745 "logical block %lu\n", inode->i_ino, map->m_len,
1746 (unsigned long) map->m_lblk);
d100eef2
ZL
1747
1748 /* Lookup extent status tree firstly */
1749 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1750 if (ext4_es_is_hole(&es)) {
1751 retval = 0;
c8b459f4 1752 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1753 goto add_delayed;
1754 }
1755
1756 /*
1757 * Delayed extent could be allocated by fallocate.
1758 * So we need to check it.
1759 */
1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_new(bh);
1763 set_buffer_delay(bh);
1764 return 0;
1765 }
1766
1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 retval = es.es_len - (iblock - es.es_lblk);
1769 if (retval > map->m_len)
1770 retval = map->m_len;
1771 map->m_len = retval;
1772 if (ext4_es_is_written(&es))
1773 map->m_flags |= EXT4_MAP_MAPPED;
1774 else if (ext4_es_is_unwritten(&es))
1775 map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 else
1777 BUG_ON(1);
1778
921f266b
DM
1779#ifdef ES_AGGRESSIVE_TEST
1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781#endif
d100eef2
ZL
1782 return retval;
1783 }
1784
5356f261
AK
1785 /*
1786 * Try to see if we can get the block without requesting a new
1787 * file system block.
1788 */
c8b459f4 1789 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1790 if (ext4_has_inline_data(inode))
9c3569b5 1791 retval = 0;
cbd7584e 1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1794 else
2f8e0a7c 1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1796
d100eef2 1797add_delayed:
5356f261 1798 if (retval == 0) {
f7fec032 1799 int ret;
5356f261
AK
1800 /*
1801 * XXX: __block_prepare_write() unmaps passed block,
1802 * is it OK?
1803 */
386ad67c
LC
1804 /*
1805 * If the block was allocated from previously allocated cluster,
1806 * then we don't need to reserve it again. However we still need
1807 * to reserve metadata for every block we're going to write.
1808 */
c27e43a1 1809 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1810 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1811 ret = ext4_da_reserve_space(inode);
f7fec032 1812 if (ret) {
5356f261 1813 /* not enough space to reserve */
f7fec032 1814 retval = ret;
5356f261 1815 goto out_unlock;
f7fec032 1816 }
5356f261
AK
1817 }
1818
f7fec032
ZL
1819 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820 ~0, EXTENT_STATUS_DELAYED);
1821 if (ret) {
1822 retval = ret;
51865fda 1823 goto out_unlock;
f7fec032 1824 }
51865fda 1825
5356f261
AK
1826 map_bh(bh, inode->i_sb, invalid_block);
1827 set_buffer_new(bh);
1828 set_buffer_delay(bh);
f7fec032
ZL
1829 } else if (retval > 0) {
1830 int ret;
3be78c73 1831 unsigned int status;
f7fec032 1832
44fb851d
ZL
1833 if (unlikely(retval != map->m_len)) {
1834 ext4_warning(inode->i_sb,
1835 "ES len assertion failed for inode "
1836 "%lu: retval %d != map->m_len %d",
1837 inode->i_ino, retval, map->m_len);
1838 WARN_ON(1);
921f266b 1839 }
921f266b 1840
f7fec032
ZL
1841 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1842 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1843 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1844 map->m_pblk, status);
1845 if (ret != 0)
1846 retval = ret;
5356f261
AK
1847 }
1848
1849out_unlock:
1850 up_read((&EXT4_I(inode)->i_data_sem));
1851
1852 return retval;
1853}
1854
64769240 1855/*
d91bd2c1 1856 * This is a special get_block_t callback which is used by
b920c755
TT
1857 * ext4_da_write_begin(). It will either return mapped block or
1858 * reserve space for a single block.
29fa89d0
AK
1859 *
1860 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1861 * We also have b_blocknr = -1 and b_bdev initialized properly
1862 *
1863 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1864 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1865 * initialized properly.
64769240 1866 */
9c3569b5
TM
1867int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1868 struct buffer_head *bh, int create)
64769240 1869{
2ed88685 1870 struct ext4_map_blocks map;
64769240
AT
1871 int ret = 0;
1872
1873 BUG_ON(create == 0);
2ed88685
TT
1874 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1875
1876 map.m_lblk = iblock;
1877 map.m_len = 1;
64769240
AT
1878
1879 /*
1880 * first, we need to know whether the block is allocated already
1881 * preallocated blocks are unmapped but should treated
1882 * the same as allocated blocks.
1883 */
5356f261
AK
1884 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1885 if (ret <= 0)
2ed88685 1886 return ret;
64769240 1887
2ed88685 1888 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1889 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1890
1891 if (buffer_unwritten(bh)) {
1892 /* A delayed write to unwritten bh should be marked
1893 * new and mapped. Mapped ensures that we don't do
1894 * get_block multiple times when we write to the same
1895 * offset and new ensures that we do proper zero out
1896 * for partial write.
1897 */
1898 set_buffer_new(bh);
c8205636 1899 set_buffer_mapped(bh);
2ed88685
TT
1900 }
1901 return 0;
64769240 1902}
61628a3f 1903
62e086be
AK
1904static int bget_one(handle_t *handle, struct buffer_head *bh)
1905{
1906 get_bh(bh);
1907 return 0;
1908}
1909
1910static int bput_one(handle_t *handle, struct buffer_head *bh)
1911{
1912 put_bh(bh);
1913 return 0;
1914}
1915
1916static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1917 unsigned int len)
1918{
1919 struct address_space *mapping = page->mapping;
1920 struct inode *inode = mapping->host;
3fdcfb66 1921 struct buffer_head *page_bufs = NULL;
62e086be 1922 handle_t *handle = NULL;
3fdcfb66
TM
1923 int ret = 0, err = 0;
1924 int inline_data = ext4_has_inline_data(inode);
1925 struct buffer_head *inode_bh = NULL;
62e086be 1926
cb20d518 1927 ClearPageChecked(page);
3fdcfb66
TM
1928
1929 if (inline_data) {
1930 BUG_ON(page->index != 0);
1931 BUG_ON(len > ext4_get_max_inline_size(inode));
1932 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1933 if (inode_bh == NULL)
1934 goto out;
1935 } else {
1936 page_bufs = page_buffers(page);
1937 if (!page_bufs) {
1938 BUG();
1939 goto out;
1940 }
1941 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1942 NULL, bget_one);
1943 }
bdf96838
TT
1944 /*
1945 * We need to release the page lock before we start the
1946 * journal, so grab a reference so the page won't disappear
1947 * out from under us.
1948 */
1949 get_page(page);
62e086be
AK
1950 unlock_page(page);
1951
9924a92a
TT
1952 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1953 ext4_writepage_trans_blocks(inode));
62e086be
AK
1954 if (IS_ERR(handle)) {
1955 ret = PTR_ERR(handle);
bdf96838
TT
1956 put_page(page);
1957 goto out_no_pagelock;
62e086be 1958 }
441c8508
CW
1959 BUG_ON(!ext4_handle_valid(handle));
1960
bdf96838
TT
1961 lock_page(page);
1962 put_page(page);
1963 if (page->mapping != mapping) {
1964 /* The page got truncated from under us */
1965 ext4_journal_stop(handle);
1966 ret = 0;
1967 goto out;
1968 }
1969
3fdcfb66 1970 if (inline_data) {
5d601255 1971 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1972 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1973
3fdcfb66
TM
1974 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1975
1976 } else {
1977 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978 do_journal_get_write_access);
1979
1980 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1981 write_end_fn);
1982 }
62e086be
AK
1983 if (ret == 0)
1984 ret = err;
2d859db3 1985 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1986 err = ext4_journal_stop(handle);
1987 if (!ret)
1988 ret = err;
1989
3fdcfb66 1990 if (!ext4_has_inline_data(inode))
8c9367fd 1991 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1992 NULL, bput_one);
19f5fb7a 1993 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1994out:
bdf96838
TT
1995 unlock_page(page);
1996out_no_pagelock:
3fdcfb66 1997 brelse(inode_bh);
62e086be
AK
1998 return ret;
1999}
2000
61628a3f 2001/*
43ce1d23
AK
2002 * Note that we don't need to start a transaction unless we're journaling data
2003 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2004 * need to file the inode to the transaction's list in ordered mode because if
2005 * we are writing back data added by write(), the inode is already there and if
25985edc 2006 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2007 * transaction the data will hit the disk. In case we are journaling data, we
2008 * cannot start transaction directly because transaction start ranks above page
2009 * lock so we have to do some magic.
2010 *
b920c755 2011 * This function can get called via...
20970ba6 2012 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2013 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2014 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2015 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2016 *
2017 * We don't do any block allocation in this function. If we have page with
2018 * multiple blocks we need to write those buffer_heads that are mapped. This
2019 * is important for mmaped based write. So if we do with blocksize 1K
2020 * truncate(f, 1024);
2021 * a = mmap(f, 0, 4096);
2022 * a[0] = 'a';
2023 * truncate(f, 4096);
2024 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2025 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2026 * do_wp_page). So writepage should write the first block. If we modify
2027 * the mmap area beyond 1024 we will again get a page_fault and the
2028 * page_mkwrite callback will do the block allocation and mark the
2029 * buffer_heads mapped.
2030 *
2031 * We redirty the page if we have any buffer_heads that is either delay or
2032 * unwritten in the page.
2033 *
2034 * We can get recursively called as show below.
2035 *
2036 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2037 * ext4_writepage()
2038 *
2039 * But since we don't do any block allocation we should not deadlock.
2040 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2041 */
43ce1d23 2042static int ext4_writepage(struct page *page,
62e086be 2043 struct writeback_control *wbc)
64769240 2044{
f8bec370 2045 int ret = 0;
61628a3f 2046 loff_t size;
498e5f24 2047 unsigned int len;
744692dc 2048 struct buffer_head *page_bufs = NULL;
61628a3f 2049 struct inode *inode = page->mapping->host;
36ade451 2050 struct ext4_io_submit io_submit;
1c8349a1 2051 bool keep_towrite = false;
61628a3f 2052
0db1ff22
TT
2053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2054 ext4_invalidatepage(page, 0, PAGE_SIZE);
2055 unlock_page(page);
2056 return -EIO;
2057 }
2058
a9c667f8 2059 trace_ext4_writepage(page);
f0e6c985 2060 size = i_size_read(inode);
09cbfeaf
KS
2061 if (page->index == size >> PAGE_SHIFT)
2062 len = size & ~PAGE_MASK;
f0e6c985 2063 else
09cbfeaf 2064 len = PAGE_SIZE;
64769240 2065
a42afc5f 2066 page_bufs = page_buffers(page);
a42afc5f 2067 /*
fe386132
JK
2068 * We cannot do block allocation or other extent handling in this
2069 * function. If there are buffers needing that, we have to redirty
2070 * the page. But we may reach here when we do a journal commit via
2071 * journal_submit_inode_data_buffers() and in that case we must write
2072 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2073 *
2074 * Also, if there is only one buffer per page (the fs block
2075 * size == the page size), if one buffer needs block
2076 * allocation or needs to modify the extent tree to clear the
2077 * unwritten flag, we know that the page can't be written at
2078 * all, so we might as well refuse the write immediately.
2079 * Unfortunately if the block size != page size, we can't as
2080 * easily detect this case using ext4_walk_page_buffers(), but
2081 * for the extremely common case, this is an optimization that
2082 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2083 */
f19d5870
TM
2084 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2085 ext4_bh_delay_or_unwritten)) {
f8bec370 2086 redirty_page_for_writepage(wbc, page);
cccd147a 2087 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2088 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2089 /*
2090 * For memory cleaning there's no point in writing only
2091 * some buffers. So just bail out. Warn if we came here
2092 * from direct reclaim.
2093 */
2094 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2095 == PF_MEMALLOC);
f0e6c985
AK
2096 unlock_page(page);
2097 return 0;
2098 }
1c8349a1 2099 keep_towrite = true;
a42afc5f 2100 }
64769240 2101
cb20d518 2102 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2103 /*
2104 * It's mmapped pagecache. Add buffers and journal it. There
2105 * doesn't seem much point in redirtying the page here.
2106 */
3f0ca309 2107 return __ext4_journalled_writepage(page, len);
43ce1d23 2108
97a851ed
JK
2109 ext4_io_submit_init(&io_submit, wbc);
2110 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2111 if (!io_submit.io_end) {
2112 redirty_page_for_writepage(wbc, page);
2113 unlock_page(page);
2114 return -ENOMEM;
2115 }
1c8349a1 2116 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2117 ext4_io_submit(&io_submit);
97a851ed
JK
2118 /* Drop io_end reference we got from init */
2119 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2120 return ret;
2121}
2122
5f1132b2
JK
2123static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2124{
2125 int len;
2126 loff_t size = i_size_read(mpd->inode);
2127 int err;
2128
2129 BUG_ON(page->index != mpd->first_page);
09cbfeaf
KS
2130 if (page->index == size >> PAGE_SHIFT)
2131 len = size & ~PAGE_MASK;
5f1132b2 2132 else
09cbfeaf 2133 len = PAGE_SIZE;
5f1132b2 2134 clear_page_dirty_for_io(page);
1c8349a1 2135 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2136 if (!err)
2137 mpd->wbc->nr_to_write--;
2138 mpd->first_page++;
2139
2140 return err;
2141}
2142
4e7ea81d
JK
2143#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2144
61628a3f 2145/*
fffb2739
JK
2146 * mballoc gives us at most this number of blocks...
2147 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2148 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2149 */
fffb2739 2150#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2151
4e7ea81d
JK
2152/*
2153 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2154 *
2155 * @mpd - extent of blocks
2156 * @lblk - logical number of the block in the file
09930042 2157 * @bh - buffer head we want to add to the extent
4e7ea81d 2158 *
09930042
JK
2159 * The function is used to collect contig. blocks in the same state. If the
2160 * buffer doesn't require mapping for writeback and we haven't started the
2161 * extent of buffers to map yet, the function returns 'true' immediately - the
2162 * caller can write the buffer right away. Otherwise the function returns true
2163 * if the block has been added to the extent, false if the block couldn't be
2164 * added.
4e7ea81d 2165 */
09930042
JK
2166static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2167 struct buffer_head *bh)
4e7ea81d
JK
2168{
2169 struct ext4_map_blocks *map = &mpd->map;
2170
09930042
JK
2171 /* Buffer that doesn't need mapping for writeback? */
2172 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2173 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2174 /* So far no extent to map => we write the buffer right away */
2175 if (map->m_len == 0)
2176 return true;
2177 return false;
2178 }
4e7ea81d
JK
2179
2180 /* First block in the extent? */
2181 if (map->m_len == 0) {
2182 map->m_lblk = lblk;
2183 map->m_len = 1;
09930042
JK
2184 map->m_flags = bh->b_state & BH_FLAGS;
2185 return true;
4e7ea81d
JK
2186 }
2187
09930042
JK
2188 /* Don't go larger than mballoc is willing to allocate */
2189 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2190 return false;
2191
4e7ea81d
JK
2192 /* Can we merge the block to our big extent? */
2193 if (lblk == map->m_lblk + map->m_len &&
09930042 2194 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2195 map->m_len++;
09930042 2196 return true;
4e7ea81d 2197 }
09930042 2198 return false;
4e7ea81d
JK
2199}
2200
5f1132b2
JK
2201/*
2202 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2203 *
2204 * @mpd - extent of blocks for mapping
2205 * @head - the first buffer in the page
2206 * @bh - buffer we should start processing from
2207 * @lblk - logical number of the block in the file corresponding to @bh
2208 *
2209 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2210 * the page for IO if all buffers in this page were mapped and there's no
2211 * accumulated extent of buffers to map or add buffers in the page to the
2212 * extent of buffers to map. The function returns 1 if the caller can continue
2213 * by processing the next page, 0 if it should stop adding buffers to the
2214 * extent to map because we cannot extend it anymore. It can also return value
2215 * < 0 in case of error during IO submission.
2216 */
2217static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2218 struct buffer_head *head,
2219 struct buffer_head *bh,
2220 ext4_lblk_t lblk)
4e7ea81d
JK
2221{
2222 struct inode *inode = mpd->inode;
5f1132b2 2223 int err;
93407472 2224 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2225 >> inode->i_blkbits;
2226
2227 do {
2228 BUG_ON(buffer_locked(bh));
2229
09930042 2230 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2231 /* Found extent to map? */
2232 if (mpd->map.m_len)
5f1132b2 2233 return 0;
09930042 2234 /* Everything mapped so far and we hit EOF */
5f1132b2 2235 break;
4e7ea81d 2236 }
4e7ea81d 2237 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2238 /* So far everything mapped? Submit the page for IO. */
2239 if (mpd->map.m_len == 0) {
2240 err = mpage_submit_page(mpd, head->b_page);
2241 if (err < 0)
2242 return err;
2243 }
2244 return lblk < blocks;
4e7ea81d
JK
2245}
2246
2247/*
2248 * mpage_map_buffers - update buffers corresponding to changed extent and
2249 * submit fully mapped pages for IO
2250 *
2251 * @mpd - description of extent to map, on return next extent to map
2252 *
2253 * Scan buffers corresponding to changed extent (we expect corresponding pages
2254 * to be already locked) and update buffer state according to new extent state.
2255 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2256 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2257 * and do extent conversion after IO is finished. If the last page is not fully
2258 * mapped, we update @map to the next extent in the last page that needs
2259 * mapping. Otherwise we submit the page for IO.
2260 */
2261static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2262{
2263 struct pagevec pvec;
2264 int nr_pages, i;
2265 struct inode *inode = mpd->inode;
2266 struct buffer_head *head, *bh;
09cbfeaf 2267 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2268 pgoff_t start, end;
2269 ext4_lblk_t lblk;
2270 sector_t pblock;
2271 int err;
2272
2273 start = mpd->map.m_lblk >> bpp_bits;
2274 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2275 lblk = start << bpp_bits;
2276 pblock = mpd->map.m_pblk;
2277
2278 pagevec_init(&pvec, 0);
2279 while (start <= end) {
2280 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2281 PAGEVEC_SIZE);
2282 if (nr_pages == 0)
2283 break;
2284 for (i = 0; i < nr_pages; i++) {
2285 struct page *page = pvec.pages[i];
2286
2287 if (page->index > end)
2288 break;
70261f56 2289 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2290 BUG_ON(page->index != start);
2291 bh = head = page_buffers(page);
2292 do {
2293 if (lblk < mpd->map.m_lblk)
2294 continue;
2295 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2296 /*
2297 * Buffer after end of mapped extent.
2298 * Find next buffer in the page to map.
2299 */
2300 mpd->map.m_len = 0;
2301 mpd->map.m_flags = 0;
5f1132b2
JK
2302 /*
2303 * FIXME: If dioread_nolock supports
2304 * blocksize < pagesize, we need to make
2305 * sure we add size mapped so far to
2306 * io_end->size as the following call
2307 * can submit the page for IO.
2308 */
2309 err = mpage_process_page_bufs(mpd, head,
2310 bh, lblk);
4e7ea81d 2311 pagevec_release(&pvec);
5f1132b2
JK
2312 if (err > 0)
2313 err = 0;
2314 return err;
4e7ea81d
JK
2315 }
2316 if (buffer_delay(bh)) {
2317 clear_buffer_delay(bh);
2318 bh->b_blocknr = pblock++;
2319 }
4e7ea81d 2320 clear_buffer_unwritten(bh);
5f1132b2 2321 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2322
2323 /*
2324 * FIXME: This is going to break if dioread_nolock
2325 * supports blocksize < pagesize as we will try to
2326 * convert potentially unmapped parts of inode.
2327 */
09cbfeaf 2328 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2329 /* Page fully mapped - let IO run! */
2330 err = mpage_submit_page(mpd, page);
2331 if (err < 0) {
2332 pagevec_release(&pvec);
2333 return err;
2334 }
2335 start++;
2336 }
2337 pagevec_release(&pvec);
2338 }
2339 /* Extent fully mapped and matches with page boundary. We are done. */
2340 mpd->map.m_len = 0;
2341 mpd->map.m_flags = 0;
2342 return 0;
2343}
2344
2345static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2346{
2347 struct inode *inode = mpd->inode;
2348 struct ext4_map_blocks *map = &mpd->map;
2349 int get_blocks_flags;
090f32ee 2350 int err, dioread_nolock;
4e7ea81d
JK
2351
2352 trace_ext4_da_write_pages_extent(inode, map);
2353 /*
2354 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2355 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2356 * where we have written into one or more preallocated blocks). It is
2357 * possible that we're going to need more metadata blocks than
2358 * previously reserved. However we must not fail because we're in
2359 * writeback and there is nothing we can do about it so it might result
2360 * in data loss. So use reserved blocks to allocate metadata if
2361 * possible.
2362 *
754cfed6
TT
2363 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364 * the blocks in question are delalloc blocks. This indicates
2365 * that the blocks and quotas has already been checked when
2366 * the data was copied into the page cache.
4e7ea81d
JK
2367 */
2368 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2369 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2370 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2371 dioread_nolock = ext4_should_dioread_nolock(inode);
2372 if (dioread_nolock)
4e7ea81d
JK
2373 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2374 if (map->m_flags & (1 << BH_Delay))
2375 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2376
2377 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2378 if (err < 0)
2379 return err;
090f32ee 2380 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2381 if (!mpd->io_submit.io_end->handle &&
2382 ext4_handle_valid(handle)) {
2383 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2384 handle->h_rsv_handle = NULL;
2385 }
3613d228 2386 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2387 }
4e7ea81d
JK
2388
2389 BUG_ON(map->m_len == 0);
2390 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2391 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2392 map->m_len);
4e7ea81d
JK
2393 }
2394 return 0;
2395}
2396
2397/*
2398 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2399 * mpd->len and submit pages underlying it for IO
2400 *
2401 * @handle - handle for journal operations
2402 * @mpd - extent to map
7534e854
JK
2403 * @give_up_on_write - we set this to true iff there is a fatal error and there
2404 * is no hope of writing the data. The caller should discard
2405 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2406 *
2407 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2408 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2409 * them to initialized or split the described range from larger unwritten
2410 * extent. Note that we need not map all the described range since allocation
2411 * can return less blocks or the range is covered by more unwritten extents. We
2412 * cannot map more because we are limited by reserved transaction credits. On
2413 * the other hand we always make sure that the last touched page is fully
2414 * mapped so that it can be written out (and thus forward progress is
2415 * guaranteed). After mapping we submit all mapped pages for IO.
2416 */
2417static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2418 struct mpage_da_data *mpd,
2419 bool *give_up_on_write)
4e7ea81d
JK
2420{
2421 struct inode *inode = mpd->inode;
2422 struct ext4_map_blocks *map = &mpd->map;
2423 int err;
2424 loff_t disksize;
6603120e 2425 int progress = 0;
4e7ea81d
JK
2426
2427 mpd->io_submit.io_end->offset =
2428 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2429 do {
4e7ea81d
JK
2430 err = mpage_map_one_extent(handle, mpd);
2431 if (err < 0) {
2432 struct super_block *sb = inode->i_sb;
2433
0db1ff22
TT
2434 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2435 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2436 goto invalidate_dirty_pages;
4e7ea81d 2437 /*
cb530541
TT
2438 * Let the uper layers retry transient errors.
2439 * In the case of ENOSPC, if ext4_count_free_blocks()
2440 * is non-zero, a commit should free up blocks.
4e7ea81d 2441 */
cb530541 2442 if ((err == -ENOMEM) ||
6603120e
DM
2443 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2444 if (progress)
2445 goto update_disksize;
cb530541 2446 return err;
6603120e 2447 }
cb530541
TT
2448 ext4_msg(sb, KERN_CRIT,
2449 "Delayed block allocation failed for "
2450 "inode %lu at logical offset %llu with"
2451 " max blocks %u with error %d",
2452 inode->i_ino,
2453 (unsigned long long)map->m_lblk,
2454 (unsigned)map->m_len, -err);
2455 ext4_msg(sb, KERN_CRIT,
2456 "This should not happen!! Data will "
2457 "be lost\n");
2458 if (err == -ENOSPC)
2459 ext4_print_free_blocks(inode);
2460 invalidate_dirty_pages:
2461 *give_up_on_write = true;
4e7ea81d
JK
2462 return err;
2463 }
6603120e 2464 progress = 1;
4e7ea81d
JK
2465 /*
2466 * Update buffer state, submit mapped pages, and get us new
2467 * extent to map
2468 */
2469 err = mpage_map_and_submit_buffers(mpd);
2470 if (err < 0)
6603120e 2471 goto update_disksize;
27d7c4ed 2472 } while (map->m_len);
4e7ea81d 2473
6603120e 2474update_disksize:
622cad13
TT
2475 /*
2476 * Update on-disk size after IO is submitted. Races with
2477 * truncate are avoided by checking i_size under i_data_sem.
2478 */
09cbfeaf 2479 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2480 if (disksize > EXT4_I(inode)->i_disksize) {
2481 int err2;
622cad13
TT
2482 loff_t i_size;
2483
2484 down_write(&EXT4_I(inode)->i_data_sem);
2485 i_size = i_size_read(inode);
2486 if (disksize > i_size)
2487 disksize = i_size;
2488 if (disksize > EXT4_I(inode)->i_disksize)
2489 EXT4_I(inode)->i_disksize = disksize;
622cad13 2490 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2491 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2492 if (err2)
2493 ext4_error(inode->i_sb,
2494 "Failed to mark inode %lu dirty",
2495 inode->i_ino);
2496 if (!err)
2497 err = err2;
2498 }
2499 return err;
2500}
2501
fffb2739
JK
2502/*
2503 * Calculate the total number of credits to reserve for one writepages
20970ba6 2504 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2505 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2506 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507 * bpp - 1 blocks in bpp different extents.
2508 */
525f4ed8
MC
2509static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510{
fffb2739 2511 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2512
fffb2739
JK
2513 return ext4_meta_trans_blocks(inode,
2514 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2515}
61628a3f 2516
8e48dcfb 2517/*
4e7ea81d
JK
2518 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519 * and underlying extent to map
2520 *
2521 * @mpd - where to look for pages
2522 *
2523 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524 * IO immediately. When we find a page which isn't mapped we start accumulating
2525 * extent of buffers underlying these pages that needs mapping (formed by
2526 * either delayed or unwritten buffers). We also lock the pages containing
2527 * these buffers. The extent found is returned in @mpd structure (starting at
2528 * mpd->lblk with length mpd->len blocks).
2529 *
2530 * Note that this function can attach bios to one io_end structure which are
2531 * neither logically nor physically contiguous. Although it may seem as an
2532 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2534 */
4e7ea81d 2535static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2536{
4e7ea81d
JK
2537 struct address_space *mapping = mpd->inode->i_mapping;
2538 struct pagevec pvec;
2539 unsigned int nr_pages;
aeac589a 2540 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2541 pgoff_t index = mpd->first_page;
2542 pgoff_t end = mpd->last_page;
2543 int tag;
2544 int i, err = 0;
2545 int blkbits = mpd->inode->i_blkbits;
2546 ext4_lblk_t lblk;
2547 struct buffer_head *head;
8e48dcfb 2548
4e7ea81d 2549 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2550 tag = PAGECACHE_TAG_TOWRITE;
2551 else
2552 tag = PAGECACHE_TAG_DIRTY;
2553
4e7ea81d
JK
2554 pagevec_init(&pvec, 0);
2555 mpd->map.m_len = 0;
2556 mpd->next_page = index;
4f01b02c 2557 while (index <= end) {
5b41d924 2558 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2559 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2560 if (nr_pages == 0)
4e7ea81d 2561 goto out;
8e48dcfb
TT
2562
2563 for (i = 0; i < nr_pages; i++) {
2564 struct page *page = pvec.pages[i];
2565
2566 /*
2567 * At this point, the page may be truncated or
2568 * invalidated (changing page->mapping to NULL), or
2569 * even swizzled back from swapper_space to tmpfs file
2570 * mapping. However, page->index will not change
2571 * because we have a reference on the page.
2572 */
4f01b02c
TT
2573 if (page->index > end)
2574 goto out;
8e48dcfb 2575
aeac589a
ML
2576 /*
2577 * Accumulated enough dirty pages? This doesn't apply
2578 * to WB_SYNC_ALL mode. For integrity sync we have to
2579 * keep going because someone may be concurrently
2580 * dirtying pages, and we might have synced a lot of
2581 * newly appeared dirty pages, but have not synced all
2582 * of the old dirty pages.
2583 */
2584 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2585 goto out;
2586
4e7ea81d
JK
2587 /* If we can't merge this page, we are done. */
2588 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2589 goto out;
78aaced3 2590
8e48dcfb 2591 lock_page(page);
8e48dcfb 2592 /*
4e7ea81d
JK
2593 * If the page is no longer dirty, or its mapping no
2594 * longer corresponds to inode we are writing (which
2595 * means it has been truncated or invalidated), or the
2596 * page is already under writeback and we are not doing
2597 * a data integrity writeback, skip the page
8e48dcfb 2598 */
4f01b02c
TT
2599 if (!PageDirty(page) ||
2600 (PageWriteback(page) &&
4e7ea81d 2601 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2602 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2603 unlock_page(page);
2604 continue;
2605 }
2606
7cb1a535 2607 wait_on_page_writeback(page);
8e48dcfb 2608 BUG_ON(PageWriteback(page));
8e48dcfb 2609
4e7ea81d 2610 if (mpd->map.m_len == 0)
8eb9e5ce 2611 mpd->first_page = page->index;
8eb9e5ce 2612 mpd->next_page = page->index + 1;
f8bec370 2613 /* Add all dirty buffers to mpd */
4e7ea81d 2614 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2615 (PAGE_SHIFT - blkbits);
f8bec370 2616 head = page_buffers(page);
5f1132b2
JK
2617 err = mpage_process_page_bufs(mpd, head, head, lblk);
2618 if (err <= 0)
4e7ea81d 2619 goto out;
5f1132b2 2620 err = 0;
aeac589a 2621 left--;
8e48dcfb
TT
2622 }
2623 pagevec_release(&pvec);
2624 cond_resched();
2625 }
4f01b02c 2626 return 0;
8eb9e5ce
TT
2627out:
2628 pagevec_release(&pvec);
4e7ea81d 2629 return err;
8e48dcfb
TT
2630}
2631
20970ba6
TT
2632static int __writepage(struct page *page, struct writeback_control *wbc,
2633 void *data)
2634{
2635 struct address_space *mapping = data;
2636 int ret = ext4_writepage(page, wbc);
2637 mapping_set_error(mapping, ret);
2638 return ret;
2639}
2640
2641static int ext4_writepages(struct address_space *mapping,
2642 struct writeback_control *wbc)
64769240 2643{
4e7ea81d
JK
2644 pgoff_t writeback_index = 0;
2645 long nr_to_write = wbc->nr_to_write;
22208ded 2646 int range_whole = 0;
4e7ea81d 2647 int cycled = 1;
61628a3f 2648 handle_t *handle = NULL;
df22291f 2649 struct mpage_da_data mpd;
5e745b04 2650 struct inode *inode = mapping->host;
6b523df4 2651 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2652 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2653 bool done;
1bce63d1 2654 struct blk_plug plug;
cb530541 2655 bool give_up_on_write = false;
61628a3f 2656
0db1ff22
TT
2657 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2658 return -EIO;
2659
c8585c6f 2660 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2661 trace_ext4_writepages(inode, wbc);
ba80b101 2662
c8585c6f
DJ
2663 if (dax_mapping(mapping)) {
2664 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2665 wbc);
2666 goto out_writepages;
2667 }
7f6d5b52 2668
61628a3f
MC
2669 /*
2670 * No pages to write? This is mainly a kludge to avoid starting
2671 * a transaction for special inodes like journal inode on last iput()
2672 * because that could violate lock ordering on umount
2673 */
a1d6cc56 2674 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2675 goto out_writepages;
2a21e37e 2676
20970ba6
TT
2677 if (ext4_should_journal_data(inode)) {
2678 struct blk_plug plug;
20970ba6
TT
2679
2680 blk_start_plug(&plug);
2681 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2682 blk_finish_plug(&plug);
bbf023c7 2683 goto out_writepages;
20970ba6
TT
2684 }
2685
2a21e37e
TT
2686 /*
2687 * If the filesystem has aborted, it is read-only, so return
2688 * right away instead of dumping stack traces later on that
2689 * will obscure the real source of the problem. We test
4ab2f15b 2690 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2691 * the latter could be true if the filesystem is mounted
20970ba6 2692 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2693 * *never* be called, so if that ever happens, we would want
2694 * the stack trace.
2695 */
0db1ff22
TT
2696 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2697 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2698 ret = -EROFS;
2699 goto out_writepages;
2700 }
2a21e37e 2701
6b523df4
JK
2702 if (ext4_should_dioread_nolock(inode)) {
2703 /*
70261f56 2704 * We may need to convert up to one extent per block in
6b523df4
JK
2705 * the page and we may dirty the inode.
2706 */
09cbfeaf 2707 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2708 }
2709
4e7ea81d
JK
2710 /*
2711 * If we have inline data and arrive here, it means that
2712 * we will soon create the block for the 1st page, so
2713 * we'd better clear the inline data here.
2714 */
2715 if (ext4_has_inline_data(inode)) {
2716 /* Just inode will be modified... */
2717 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2718 if (IS_ERR(handle)) {
2719 ret = PTR_ERR(handle);
2720 goto out_writepages;
2721 }
2722 BUG_ON(ext4_test_inode_state(inode,
2723 EXT4_STATE_MAY_INLINE_DATA));
2724 ext4_destroy_inline_data(handle, inode);
2725 ext4_journal_stop(handle);
2726 }
2727
22208ded
AK
2728 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2729 range_whole = 1;
61628a3f 2730
2acf2c26 2731 if (wbc->range_cyclic) {
4e7ea81d
JK
2732 writeback_index = mapping->writeback_index;
2733 if (writeback_index)
2acf2c26 2734 cycled = 0;
4e7ea81d
JK
2735 mpd.first_page = writeback_index;
2736 mpd.last_page = -1;
5b41d924 2737 } else {
09cbfeaf
KS
2738 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2739 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2740 }
a1d6cc56 2741
4e7ea81d
JK
2742 mpd.inode = inode;
2743 mpd.wbc = wbc;
2744 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2745retry:
6e6938b6 2746 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2747 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2748 done = false;
1bce63d1 2749 blk_start_plug(&plug);
4e7ea81d
JK
2750 while (!done && mpd.first_page <= mpd.last_page) {
2751 /* For each extent of pages we use new io_end */
2752 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2753 if (!mpd.io_submit.io_end) {
2754 ret = -ENOMEM;
2755 break;
2756 }
a1d6cc56
AK
2757
2758 /*
4e7ea81d
JK
2759 * We have two constraints: We find one extent to map and we
2760 * must always write out whole page (makes a difference when
2761 * blocksize < pagesize) so that we don't block on IO when we
2762 * try to write out the rest of the page. Journalled mode is
2763 * not supported by delalloc.
a1d6cc56
AK
2764 */
2765 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2766 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2767
4e7ea81d 2768 /* start a new transaction */
6b523df4
JK
2769 handle = ext4_journal_start_with_reserve(inode,
2770 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2771 if (IS_ERR(handle)) {
2772 ret = PTR_ERR(handle);
1693918e 2773 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2774 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2775 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2776 /* Release allocated io_end */
2777 ext4_put_io_end(mpd.io_submit.io_end);
2778 break;
61628a3f 2779 }
f63e6005 2780
4e7ea81d
JK
2781 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2782 ret = mpage_prepare_extent_to_map(&mpd);
2783 if (!ret) {
2784 if (mpd.map.m_len)
cb530541
TT
2785 ret = mpage_map_and_submit_extent(handle, &mpd,
2786 &give_up_on_write);
4e7ea81d
JK
2787 else {
2788 /*
2789 * We scanned the whole range (or exhausted
2790 * nr_to_write), submitted what was mapped and
2791 * didn't find anything needing mapping. We are
2792 * done.
2793 */
2794 done = true;
2795 }
f63e6005 2796 }
646caa9c
JK
2797 /*
2798 * Caution: If the handle is synchronous,
2799 * ext4_journal_stop() can wait for transaction commit
2800 * to finish which may depend on writeback of pages to
2801 * complete or on page lock to be released. In that
2802 * case, we have to wait until after after we have
2803 * submitted all the IO, released page locks we hold,
2804 * and dropped io_end reference (for extent conversion
2805 * to be able to complete) before stopping the handle.
2806 */
2807 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2808 ext4_journal_stop(handle);
2809 handle = NULL;
2810 }
4e7ea81d
JK
2811 /* Submit prepared bio */
2812 ext4_io_submit(&mpd.io_submit);
2813 /* Unlock pages we didn't use */
cb530541 2814 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2815 /*
2816 * Drop our io_end reference we got from init. We have
2817 * to be careful and use deferred io_end finishing if
2818 * we are still holding the transaction as we can
2819 * release the last reference to io_end which may end
2820 * up doing unwritten extent conversion.
2821 */
2822 if (handle) {
2823 ext4_put_io_end_defer(mpd.io_submit.io_end);
2824 ext4_journal_stop(handle);
2825 } else
2826 ext4_put_io_end(mpd.io_submit.io_end);
4e7ea81d
JK
2827
2828 if (ret == -ENOSPC && sbi->s_journal) {
2829 /*
2830 * Commit the transaction which would
22208ded
AK
2831 * free blocks released in the transaction
2832 * and try again
2833 */
df22291f 2834 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2835 ret = 0;
4e7ea81d
JK
2836 continue;
2837 }
2838 /* Fatal error - ENOMEM, EIO... */
2839 if (ret)
61628a3f 2840 break;
a1d6cc56 2841 }
1bce63d1 2842 blk_finish_plug(&plug);
9c12a831 2843 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2844 cycled = 1;
4e7ea81d
JK
2845 mpd.last_page = writeback_index - 1;
2846 mpd.first_page = 0;
2acf2c26
AK
2847 goto retry;
2848 }
22208ded
AK
2849
2850 /* Update index */
22208ded
AK
2851 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2852 /*
4e7ea81d 2853 * Set the writeback_index so that range_cyclic
22208ded
AK
2854 * mode will write it back later
2855 */
4e7ea81d 2856 mapping->writeback_index = mpd.first_page;
a1d6cc56 2857
61628a3f 2858out_writepages:
20970ba6
TT
2859 trace_ext4_writepages_result(inode, wbc, ret,
2860 nr_to_write - wbc->nr_to_write);
c8585c6f 2861 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2862 return ret;
64769240
AT
2863}
2864
79f0be8d
AK
2865static int ext4_nonda_switch(struct super_block *sb)
2866{
5c1ff336 2867 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2868 struct ext4_sb_info *sbi = EXT4_SB(sb);
2869
2870 /*
2871 * switch to non delalloc mode if we are running low
2872 * on free block. The free block accounting via percpu
179f7ebf 2873 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2874 * accumulated on each CPU without updating global counters
2875 * Delalloc need an accurate free block accounting. So switch
2876 * to non delalloc when we are near to error range.
2877 */
5c1ff336
EW
2878 free_clusters =
2879 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2880 dirty_clusters =
2881 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2882 /*
2883 * Start pushing delalloc when 1/2 of free blocks are dirty.
2884 */
5c1ff336 2885 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2886 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2887
5c1ff336
EW
2888 if (2 * free_clusters < 3 * dirty_clusters ||
2889 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2890 /*
c8afb446
ES
2891 * free block count is less than 150% of dirty blocks
2892 * or free blocks is less than watermark
79f0be8d
AK
2893 */
2894 return 1;
2895 }
2896 return 0;
2897}
2898
0ff8947f
ES
2899/* We always reserve for an inode update; the superblock could be there too */
2900static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2901{
e2b911c5 2902 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2903 return 1;
2904
2905 if (pos + len <= 0x7fffffffULL)
2906 return 1;
2907
2908 /* We might need to update the superblock to set LARGE_FILE */
2909 return 2;
2910}
2911
64769240 2912static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2913 loff_t pos, unsigned len, unsigned flags,
2914 struct page **pagep, void **fsdata)
64769240 2915{
72b8ab9d 2916 int ret, retries = 0;
64769240
AT
2917 struct page *page;
2918 pgoff_t index;
64769240
AT
2919 struct inode *inode = mapping->host;
2920 handle_t *handle;
2921
0db1ff22
TT
2922 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2923 return -EIO;
2924
09cbfeaf 2925 index = pos >> PAGE_SHIFT;
79f0be8d 2926
4db0d88e
TT
2927 if (ext4_nonda_switch(inode->i_sb) ||
2928 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
2929 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2930 return ext4_write_begin(file, mapping, pos,
2931 len, flags, pagep, fsdata);
2932 }
2933 *fsdata = (void *)0;
9bffad1e 2934 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2935
2936 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2937 ret = ext4_da_write_inline_data_begin(mapping, inode,
2938 pos, len, flags,
2939 pagep, fsdata);
2940 if (ret < 0)
47564bfb
TT
2941 return ret;
2942 if (ret == 1)
2943 return 0;
9c3569b5
TM
2944 }
2945
47564bfb
TT
2946 /*
2947 * grab_cache_page_write_begin() can take a long time if the
2948 * system is thrashing due to memory pressure, or if the page
2949 * is being written back. So grab it first before we start
2950 * the transaction handle. This also allows us to allocate
2951 * the page (if needed) without using GFP_NOFS.
2952 */
2953retry_grab:
2954 page = grab_cache_page_write_begin(mapping, index, flags);
2955 if (!page)
2956 return -ENOMEM;
2957 unlock_page(page);
2958
64769240
AT
2959 /*
2960 * With delayed allocation, we don't log the i_disksize update
2961 * if there is delayed block allocation. But we still need
2962 * to journalling the i_disksize update if writes to the end
2963 * of file which has an already mapped buffer.
2964 */
47564bfb 2965retry_journal:
0ff8947f
ES
2966 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2967 ext4_da_write_credits(inode, pos, len));
64769240 2968 if (IS_ERR(handle)) {
09cbfeaf 2969 put_page(page);
47564bfb 2970 return PTR_ERR(handle);
64769240
AT
2971 }
2972
47564bfb
TT
2973 lock_page(page);
2974 if (page->mapping != mapping) {
2975 /* The page got truncated from under us */
2976 unlock_page(page);
09cbfeaf 2977 put_page(page);
d5a0d4f7 2978 ext4_journal_stop(handle);
47564bfb 2979 goto retry_grab;
d5a0d4f7 2980 }
47564bfb 2981 /* In case writeback began while the page was unlocked */
7afe5aa5 2982 wait_for_stable_page(page);
64769240 2983
2058f83a
MH
2984#ifdef CONFIG_EXT4_FS_ENCRYPTION
2985 ret = ext4_block_write_begin(page, pos, len,
2986 ext4_da_get_block_prep);
2987#else
6e1db88d 2988 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2989#endif
64769240
AT
2990 if (ret < 0) {
2991 unlock_page(page);
2992 ext4_journal_stop(handle);
ae4d5372
AK
2993 /*
2994 * block_write_begin may have instantiated a few blocks
2995 * outside i_size. Trim these off again. Don't need
2996 * i_size_read because we hold i_mutex.
2997 */
2998 if (pos + len > inode->i_size)
b9a4207d 2999 ext4_truncate_failed_write(inode);
47564bfb
TT
3000
3001 if (ret == -ENOSPC &&
3002 ext4_should_retry_alloc(inode->i_sb, &retries))
3003 goto retry_journal;
3004
09cbfeaf 3005 put_page(page);
47564bfb 3006 return ret;
64769240
AT
3007 }
3008
47564bfb 3009 *pagep = page;
64769240
AT
3010 return ret;
3011}
3012
632eaeab
MC
3013/*
3014 * Check if we should update i_disksize
3015 * when write to the end of file but not require block allocation
3016 */
3017static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3018 unsigned long offset)
632eaeab
MC
3019{
3020 struct buffer_head *bh;
3021 struct inode *inode = page->mapping->host;
3022 unsigned int idx;
3023 int i;
3024
3025 bh = page_buffers(page);
3026 idx = offset >> inode->i_blkbits;
3027
af5bc92d 3028 for (i = 0; i < idx; i++)
632eaeab
MC
3029 bh = bh->b_this_page;
3030
29fa89d0 3031 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3032 return 0;
3033 return 1;
3034}
3035
64769240 3036static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3037 struct address_space *mapping,
3038 loff_t pos, unsigned len, unsigned copied,
3039 struct page *page, void *fsdata)
64769240
AT
3040{
3041 struct inode *inode = mapping->host;
3042 int ret = 0, ret2;
3043 handle_t *handle = ext4_journal_current_handle();
3044 loff_t new_i_size;
632eaeab 3045 unsigned long start, end;
79f0be8d
AK
3046 int write_mode = (int)(unsigned long)fsdata;
3047
74d553aa
TT
3048 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3049 return ext4_write_end(file, mapping, pos,
3050 len, copied, page, fsdata);
632eaeab 3051
9bffad1e 3052 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3053 start = pos & (PAGE_SIZE - 1);
af5bc92d 3054 end = start + copied - 1;
64769240
AT
3055
3056 /*
3057 * generic_write_end() will run mark_inode_dirty() if i_size
3058 * changes. So let's piggyback the i_disksize mark_inode_dirty
3059 * into that.
3060 */
64769240 3061 new_i_size = pos + copied;
ea51d132 3062 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3063 if (ext4_has_inline_data(inode) ||
3064 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3065 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3066 /* We need to mark inode dirty even if
3067 * new_i_size is less that inode->i_size
3068 * bu greater than i_disksize.(hint delalloc)
3069 */
3070 ext4_mark_inode_dirty(handle, inode);
64769240 3071 }
632eaeab 3072 }
9c3569b5
TM
3073
3074 if (write_mode != CONVERT_INLINE_DATA &&
3075 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3076 ext4_has_inline_data(inode))
3077 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3078 page);
3079 else
3080 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3081 page, fsdata);
9c3569b5 3082
64769240
AT
3083 copied = ret2;
3084 if (ret2 < 0)
3085 ret = ret2;
3086 ret2 = ext4_journal_stop(handle);
3087 if (!ret)
3088 ret = ret2;
3089
3090 return ret ? ret : copied;
3091}
3092
d47992f8
LC
3093static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3094 unsigned int length)
64769240 3095{
64769240
AT
3096 /*
3097 * Drop reserved blocks
3098 */
3099 BUG_ON(!PageLocked(page));
3100 if (!page_has_buffers(page))
3101 goto out;
3102
ca99fdd2 3103 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3104
3105out:
d47992f8 3106 ext4_invalidatepage(page, offset, length);
64769240
AT
3107
3108 return;
3109}
3110
ccd2506b
TT
3111/*
3112 * Force all delayed allocation blocks to be allocated for a given inode.
3113 */
3114int ext4_alloc_da_blocks(struct inode *inode)
3115{
fb40ba0d
TT
3116 trace_ext4_alloc_da_blocks(inode);
3117
71d4f7d0 3118 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3119 return 0;
3120
3121 /*
3122 * We do something simple for now. The filemap_flush() will
3123 * also start triggering a write of the data blocks, which is
3124 * not strictly speaking necessary (and for users of
3125 * laptop_mode, not even desirable). However, to do otherwise
3126 * would require replicating code paths in:
de9a55b8 3127 *
20970ba6 3128 * ext4_writepages() ->
ccd2506b
TT
3129 * write_cache_pages() ---> (via passed in callback function)
3130 * __mpage_da_writepage() -->
3131 * mpage_add_bh_to_extent()
3132 * mpage_da_map_blocks()
3133 *
3134 * The problem is that write_cache_pages(), located in
3135 * mm/page-writeback.c, marks pages clean in preparation for
3136 * doing I/O, which is not desirable if we're not planning on
3137 * doing I/O at all.
3138 *
3139 * We could call write_cache_pages(), and then redirty all of
380cf090 3140 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3141 * would be ugly in the extreme. So instead we would need to
3142 * replicate parts of the code in the above functions,
25985edc 3143 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3144 * write out the pages, but rather only collect contiguous
3145 * logical block extents, call the multi-block allocator, and
3146 * then update the buffer heads with the block allocations.
de9a55b8 3147 *
ccd2506b
TT
3148 * For now, though, we'll cheat by calling filemap_flush(),
3149 * which will map the blocks, and start the I/O, but not
3150 * actually wait for the I/O to complete.
3151 */
3152 return filemap_flush(inode->i_mapping);
3153}
64769240 3154
ac27a0ec
DK
3155/*
3156 * bmap() is special. It gets used by applications such as lilo and by
3157 * the swapper to find the on-disk block of a specific piece of data.
3158 *
3159 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3160 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3161 * filesystem and enables swap, then they may get a nasty shock when the
3162 * data getting swapped to that swapfile suddenly gets overwritten by
3163 * the original zero's written out previously to the journal and
3164 * awaiting writeback in the kernel's buffer cache.
3165 *
3166 * So, if we see any bmap calls here on a modified, data-journaled file,
3167 * take extra steps to flush any blocks which might be in the cache.
3168 */
617ba13b 3169static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3170{
3171 struct inode *inode = mapping->host;
3172 journal_t *journal;
3173 int err;
3174
46c7f254
TM
3175 /*
3176 * We can get here for an inline file via the FIBMAP ioctl
3177 */
3178 if (ext4_has_inline_data(inode))
3179 return 0;
3180
64769240
AT
3181 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3182 test_opt(inode->i_sb, DELALLOC)) {
3183 /*
3184 * With delalloc we want to sync the file
3185 * so that we can make sure we allocate
3186 * blocks for file
3187 */
3188 filemap_write_and_wait(mapping);
3189 }
3190
19f5fb7a
TT
3191 if (EXT4_JOURNAL(inode) &&
3192 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3193 /*
3194 * This is a REALLY heavyweight approach, but the use of
3195 * bmap on dirty files is expected to be extremely rare:
3196 * only if we run lilo or swapon on a freshly made file
3197 * do we expect this to happen.
3198 *
3199 * (bmap requires CAP_SYS_RAWIO so this does not
3200 * represent an unprivileged user DOS attack --- we'd be
3201 * in trouble if mortal users could trigger this path at
3202 * will.)
3203 *
617ba13b 3204 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3205 * regular files. If somebody wants to bmap a directory
3206 * or symlink and gets confused because the buffer
3207 * hasn't yet been flushed to disk, they deserve
3208 * everything they get.
3209 */
3210
19f5fb7a 3211 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3212 journal = EXT4_JOURNAL(inode);
dab291af
MC
3213 jbd2_journal_lock_updates(journal);
3214 err = jbd2_journal_flush(journal);
3215 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3216
3217 if (err)
3218 return 0;
3219 }
3220
af5bc92d 3221 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3222}
3223
617ba13b 3224static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3225{
46c7f254
TM
3226 int ret = -EAGAIN;
3227 struct inode *inode = page->mapping->host;
3228
0562e0ba 3229 trace_ext4_readpage(page);
46c7f254
TM
3230
3231 if (ext4_has_inline_data(inode))
3232 ret = ext4_readpage_inline(inode, page);
3233
3234 if (ret == -EAGAIN)
f64e02fe 3235 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3236
3237 return ret;
ac27a0ec
DK
3238}
3239
3240static int
617ba13b 3241ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3242 struct list_head *pages, unsigned nr_pages)
3243{
46c7f254
TM
3244 struct inode *inode = mapping->host;
3245
3246 /* If the file has inline data, no need to do readpages. */
3247 if (ext4_has_inline_data(inode))
3248 return 0;
3249
f64e02fe 3250 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3251}
3252
d47992f8
LC
3253static void ext4_invalidatepage(struct page *page, unsigned int offset,
3254 unsigned int length)
ac27a0ec 3255{
ca99fdd2 3256 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3257
4520fb3c
JK
3258 /* No journalling happens on data buffers when this function is used */
3259 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3260
ca99fdd2 3261 block_invalidatepage(page, offset, length);
4520fb3c
JK
3262}
3263
53e87268 3264static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3265 unsigned int offset,
3266 unsigned int length)
4520fb3c
JK
3267{
3268 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3269
ca99fdd2 3270 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3271
ac27a0ec
DK
3272 /*
3273 * If it's a full truncate we just forget about the pending dirtying
3274 */
09cbfeaf 3275 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3276 ClearPageChecked(page);
3277
ca99fdd2 3278 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3279}
3280
3281/* Wrapper for aops... */
3282static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3283 unsigned int offset,
3284 unsigned int length)
53e87268 3285{
ca99fdd2 3286 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3287}
3288
617ba13b 3289static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3290{
617ba13b 3291 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3292
0562e0ba
JZ
3293 trace_ext4_releasepage(page);
3294
e1c36595
JK
3295 /* Page has dirty journalled data -> cannot release */
3296 if (PageChecked(page))
ac27a0ec 3297 return 0;
0390131b
FM
3298 if (journal)
3299 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3300 else
3301 return try_to_free_buffers(page);
ac27a0ec
DK
3302}
3303
ba5843f5 3304#ifdef CONFIG_FS_DAX
364443cb
JK
3305static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3306 unsigned flags, struct iomap *iomap)
3307{
3308 unsigned int blkbits = inode->i_blkbits;
3309 unsigned long first_block = offset >> blkbits;
3310 unsigned long last_block = (offset + length - 1) >> blkbits;
3311 struct ext4_map_blocks map;
3312 int ret;
3313
364443cb
JK
3314 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3315 return -ERANGE;
3316
3317 map.m_lblk = first_block;
3318 map.m_len = last_block - first_block + 1;
3319
776722e8
JK
3320 if (!(flags & IOMAP_WRITE)) {
3321 ret = ext4_map_blocks(NULL, inode, &map, 0);
3322 } else {
3323 int dio_credits;
3324 handle_t *handle;
3325 int retries = 0;
3326
3327 /* Trim mapping request to maximum we can map at once for DIO */
3328 if (map.m_len > DIO_MAX_BLOCKS)
3329 map.m_len = DIO_MAX_BLOCKS;
3330 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3331retry:
3332 /*
3333 * Either we allocate blocks and then we don't get unwritten
3334 * extent so we have reserved enough credits, or the blocks
3335 * are already allocated and unwritten and in that case
3336 * extent conversion fits in the credits as well.
3337 */
3338 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3339 dio_credits);
3340 if (IS_ERR(handle))
3341 return PTR_ERR(handle);
3342
3343 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3344 EXT4_GET_BLOCKS_CREATE_ZERO);
3345 if (ret < 0) {
3346 ext4_journal_stop(handle);
3347 if (ret == -ENOSPC &&
3348 ext4_should_retry_alloc(inode->i_sb, &retries))
3349 goto retry;
3350 return ret;
3351 }
776722e8
JK
3352
3353 /*
e2ae766c 3354 * If we added blocks beyond i_size, we need to make sure they
776722e8 3355 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3356 * ext4_iomap_end(). For faults we don't need to do that (and
3357 * even cannot because for orphan list operations inode_lock is
3358 * required) - if we happen to instantiate block beyond i_size,
3359 * it is because we race with truncate which has already added
3360 * the inode to the orphan list.
776722e8 3361 */
e2ae766c
JK
3362 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3363 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3364 int err;
3365
3366 err = ext4_orphan_add(handle, inode);
3367 if (err < 0) {
3368 ext4_journal_stop(handle);
3369 return err;
3370 }
3371 }
3372 ext4_journal_stop(handle);
3373 }
364443cb
JK
3374
3375 iomap->flags = 0;
3376 iomap->bdev = inode->i_sb->s_bdev;
3377 iomap->offset = first_block << blkbits;
3378
3379 if (ret == 0) {
3380 iomap->type = IOMAP_HOLE;
3381 iomap->blkno = IOMAP_NULL_BLOCK;
3382 iomap->length = (u64)map.m_len << blkbits;
3383 } else {
3384 if (map.m_flags & EXT4_MAP_MAPPED) {
3385 iomap->type = IOMAP_MAPPED;
3386 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3387 iomap->type = IOMAP_UNWRITTEN;
3388 } else {
3389 WARN_ON_ONCE(1);
3390 return -EIO;
3391 }
3392 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3393 iomap->length = (u64)map.m_len << blkbits;
3394 }
3395
3396 if (map.m_flags & EXT4_MAP_NEW)
3397 iomap->flags |= IOMAP_F_NEW;
3398 return 0;
3399}
3400
776722e8
JK
3401static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402 ssize_t written, unsigned flags, struct iomap *iomap)
3403{
3404 int ret = 0;
3405 handle_t *handle;
3406 int blkbits = inode->i_blkbits;
3407 bool truncate = false;
3408
e2ae766c 3409 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3410 return 0;
3411
3412 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3413 if (IS_ERR(handle)) {
3414 ret = PTR_ERR(handle);
3415 goto orphan_del;
3416 }
3417 if (ext4_update_inode_size(inode, offset + written))
3418 ext4_mark_inode_dirty(handle, inode);
3419 /*
3420 * We may need to truncate allocated but not written blocks beyond EOF.
3421 */
3422 if (iomap->offset + iomap->length >
3423 ALIGN(inode->i_size, 1 << blkbits)) {
3424 ext4_lblk_t written_blk, end_blk;
3425
3426 written_blk = (offset + written) >> blkbits;
3427 end_blk = (offset + length) >> blkbits;
3428 if (written_blk < end_blk && ext4_can_truncate(inode))
3429 truncate = true;
3430 }
3431 /*
3432 * Remove inode from orphan list if we were extending a inode and
3433 * everything went fine.
3434 */
3435 if (!truncate && inode->i_nlink &&
3436 !list_empty(&EXT4_I(inode)->i_orphan))
3437 ext4_orphan_del(handle, inode);
3438 ext4_journal_stop(handle);
3439 if (truncate) {
3440 ext4_truncate_failed_write(inode);
3441orphan_del:
3442 /*
3443 * If truncate failed early the inode might still be on the
3444 * orphan list; we need to make sure the inode is removed from
3445 * the orphan list in that case.
3446 */
3447 if (inode->i_nlink)
3448 ext4_orphan_del(NULL, inode);
3449 }
3450 return ret;
3451}
3452
8ff6daa1 3453const struct iomap_ops ext4_iomap_ops = {
364443cb 3454 .iomap_begin = ext4_iomap_begin,
776722e8 3455 .iomap_end = ext4_iomap_end,
364443cb
JK
3456};
3457
ba5843f5 3458#endif
ed923b57 3459
187372a3 3460static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3461 ssize_t size, void *private)
4c0425ff 3462{
109811c2 3463 ext4_io_end_t *io_end = private;
4c0425ff 3464
97a851ed 3465 /* if not async direct IO just return */
7b7a8665 3466 if (!io_end)
187372a3 3467 return 0;
4b70df18 3468
88635ca2 3469 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3470 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3471 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3472
74c66bcb
JK
3473 /*
3474 * Error during AIO DIO. We cannot convert unwritten extents as the
3475 * data was not written. Just clear the unwritten flag and drop io_end.
3476 */
3477 if (size <= 0) {
3478 ext4_clear_io_unwritten_flag(io_end);
3479 size = 0;
3480 }
4c0425ff
MC
3481 io_end->offset = offset;
3482 io_end->size = size;
7b7a8665 3483 ext4_put_io_end(io_end);
187372a3
CH
3484
3485 return 0;
4c0425ff 3486}
c7064ef1 3487
4c0425ff 3488/*
914f82a3
JK
3489 * Handling of direct IO writes.
3490 *
3491 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3492 * preallocated extents, and those write extend the file, no need to
3493 * fall back to buffered IO.
3494 *
556615dc 3495 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3496 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3497 * still keep the range to write as unwritten.
4c0425ff 3498 *
69c499d1 3499 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3500 * For async direct IO, since the IO may still pending when return, we
25985edc 3501 * set up an end_io call back function, which will do the conversion
8d5d02e6 3502 * when async direct IO completed.
4c0425ff
MC
3503 *
3504 * If the O_DIRECT write will extend the file then add this inode to the
3505 * orphan list. So recovery will truncate it back to the original size
3506 * if the machine crashes during the write.
3507 *
3508 */
0e01df10 3509static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3510{
3511 struct file *file = iocb->ki_filp;
3512 struct inode *inode = file->f_mapping->host;
914f82a3 3513 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3514 ssize_t ret;
c8b8e32d 3515 loff_t offset = iocb->ki_pos;
a6cbcd4a 3516 size_t count = iov_iter_count(iter);
69c499d1
TT
3517 int overwrite = 0;
3518 get_block_t *get_block_func = NULL;
3519 int dio_flags = 0;
4c0425ff 3520 loff_t final_size = offset + count;
914f82a3
JK
3521 int orphan = 0;
3522 handle_t *handle;
729f52c6 3523
914f82a3
JK
3524 if (final_size > inode->i_size) {
3525 /* Credits for sb + inode write */
3526 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3527 if (IS_ERR(handle)) {
3528 ret = PTR_ERR(handle);
3529 goto out;
3530 }
3531 ret = ext4_orphan_add(handle, inode);
3532 if (ret) {
3533 ext4_journal_stop(handle);
3534 goto out;
3535 }
3536 orphan = 1;
3537 ei->i_disksize = inode->i_size;
3538 ext4_journal_stop(handle);
3539 }
4bd809db 3540
69c499d1 3541 BUG_ON(iocb->private == NULL);
4bd809db 3542
e8340395
JK
3543 /*
3544 * Make all waiters for direct IO properly wait also for extent
3545 * conversion. This also disallows race between truncate() and
3546 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3547 */
914f82a3 3548 inode_dio_begin(inode);
e8340395 3549
69c499d1
TT
3550 /* If we do a overwrite dio, i_mutex locking can be released */
3551 overwrite = *((int *)iocb->private);
4bd809db 3552
2dcba478 3553 if (overwrite)
5955102c 3554 inode_unlock(inode);
8d5d02e6 3555
69c499d1 3556 /*
914f82a3 3557 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3558 *
109811c2
JK
3559 * Allocated blocks to fill the hole are marked as unwritten to prevent
3560 * parallel buffered read to expose the stale data before DIO complete
3561 * the data IO.
69c499d1 3562 *
109811c2
JK
3563 * As to previously fallocated extents, ext4 get_block will just simply
3564 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3565 *
109811c2
JK
3566 * For non AIO case, we will convert those unwritten extents to written
3567 * after return back from blockdev_direct_IO. That way we save us from
3568 * allocating io_end structure and also the overhead of offloading
3569 * the extent convertion to a workqueue.
69c499d1
TT
3570 *
3571 * For async DIO, the conversion needs to be deferred when the
3572 * IO is completed. The ext4 end_io callback function will be
3573 * called to take care of the conversion work. Here for async
3574 * case, we allocate an io_end structure to hook to the iocb.
3575 */
3576 iocb->private = NULL;
109811c2 3577 if (overwrite)
705965bd 3578 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3579 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3580 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3581 get_block_func = ext4_dio_get_block;
3582 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3583 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3584 get_block_func = ext4_dio_get_block_unwritten_sync;
3585 dio_flags = DIO_LOCKING;
69c499d1 3586 } else {
109811c2 3587 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3588 dio_flags = DIO_LOCKING;
3589 }
2058f83a
MH
3590#ifdef CONFIG_EXT4_FS_ENCRYPTION
3591 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3592#endif
0bd2d5ec
JK
3593 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3594 get_block_func, ext4_end_io_dio, NULL,
3595 dio_flags);
69c499d1 3596
97a851ed 3597 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3598 EXT4_STATE_DIO_UNWRITTEN)) {
3599 int err;
3600 /*
3601 * for non AIO case, since the IO is already
3602 * completed, we could do the conversion right here
3603 */
6b523df4 3604 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3605 offset, ret);
3606 if (err < 0)
3607 ret = err;
3608 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3609 }
4bd809db 3610
914f82a3 3611 inode_dio_end(inode);
69c499d1 3612 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3613 if (overwrite)
5955102c 3614 inode_lock(inode);
8d5d02e6 3615
914f82a3
JK
3616 if (ret < 0 && final_size > inode->i_size)
3617 ext4_truncate_failed_write(inode);
3618
3619 /* Handle extending of i_size after direct IO write */
3620 if (orphan) {
3621 int err;
3622
3623 /* Credits for sb + inode write */
3624 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3625 if (IS_ERR(handle)) {
3626 /* This is really bad luck. We've written the data
3627 * but cannot extend i_size. Bail out and pretend
3628 * the write failed... */
3629 ret = PTR_ERR(handle);
3630 if (inode->i_nlink)
3631 ext4_orphan_del(NULL, inode);
3632
3633 goto out;
3634 }
3635 if (inode->i_nlink)
3636 ext4_orphan_del(handle, inode);
3637 if (ret > 0) {
3638 loff_t end = offset + ret;
3639 if (end > inode->i_size) {
3640 ei->i_disksize = end;
3641 i_size_write(inode, end);
3642 /*
3643 * We're going to return a positive `ret'
3644 * here due to non-zero-length I/O, so there's
3645 * no way of reporting error returns from
3646 * ext4_mark_inode_dirty() to userspace. So
3647 * ignore it.
3648 */
3649 ext4_mark_inode_dirty(handle, inode);
3650 }
3651 }
3652 err = ext4_journal_stop(handle);
3653 if (ret == 0)
3654 ret = err;
3655 }
3656out:
3657 return ret;
3658}
3659
0e01df10 3660static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3661{
16c54688
JK
3662 struct address_space *mapping = iocb->ki_filp->f_mapping;
3663 struct inode *inode = mapping->host;
0bd2d5ec 3664 size_t count = iov_iter_count(iter);
914f82a3
JK
3665 ssize_t ret;
3666
16c54688
JK
3667 /*
3668 * Shared inode_lock is enough for us - it protects against concurrent
3669 * writes & truncates and since we take care of writing back page cache,
3670 * we are protected against page writeback as well.
3671 */
3672 inode_lock_shared(inode);
0bd2d5ec
JK
3673 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3674 iocb->ki_pos + count);
3675 if (ret)
3676 goto out_unlock;
3677 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3678 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3679out_unlock:
3680 inode_unlock_shared(inode);
69c499d1 3681 return ret;
4c0425ff
MC
3682}
3683
c8b8e32d 3684static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3685{
3686 struct file *file = iocb->ki_filp;
3687 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3688 size_t count = iov_iter_count(iter);
c8b8e32d 3689 loff_t offset = iocb->ki_pos;
0562e0ba 3690 ssize_t ret;
4c0425ff 3691
2058f83a
MH
3692#ifdef CONFIG_EXT4_FS_ENCRYPTION
3693 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3694 return 0;
3695#endif
3696
84ebd795
TT
3697 /*
3698 * If we are doing data journalling we don't support O_DIRECT
3699 */
3700 if (ext4_should_journal_data(inode))
3701 return 0;
3702
46c7f254
TM
3703 /* Let buffer I/O handle the inline data case. */
3704 if (ext4_has_inline_data(inode))
3705 return 0;
3706
0bd2d5ec
JK
3707 /* DAX uses iomap path now */
3708 if (WARN_ON_ONCE(IS_DAX(inode)))
3709 return 0;
3710
6f673763 3711 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3712 if (iov_iter_rw(iter) == READ)
0e01df10 3713 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3714 else
0e01df10 3715 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3716 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3717 return ret;
4c0425ff
MC
3718}
3719
ac27a0ec 3720/*
617ba13b 3721 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3722 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3723 * much here because ->set_page_dirty is called under VFS locks. The page is
3724 * not necessarily locked.
3725 *
3726 * We cannot just dirty the page and leave attached buffers clean, because the
3727 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3728 * or jbddirty because all the journalling code will explode.
3729 *
3730 * So what we do is to mark the page "pending dirty" and next time writepage
3731 * is called, propagate that into the buffers appropriately.
3732 */
617ba13b 3733static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3734{
3735 SetPageChecked(page);
3736 return __set_page_dirty_nobuffers(page);
3737}
3738
6dcc693b
JK
3739static int ext4_set_page_dirty(struct page *page)
3740{
3741 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3742 WARN_ON_ONCE(!page_has_buffers(page));
3743 return __set_page_dirty_buffers(page);
3744}
3745
74d553aa 3746static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3747 .readpage = ext4_readpage,
3748 .readpages = ext4_readpages,
43ce1d23 3749 .writepage = ext4_writepage,
20970ba6 3750 .writepages = ext4_writepages,
8ab22b9a 3751 .write_begin = ext4_write_begin,
74d553aa 3752 .write_end = ext4_write_end,
6dcc693b 3753 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3754 .bmap = ext4_bmap,
3755 .invalidatepage = ext4_invalidatepage,
3756 .releasepage = ext4_releasepage,
3757 .direct_IO = ext4_direct_IO,
3758 .migratepage = buffer_migrate_page,
3759 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3760 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3761};
3762
617ba13b 3763static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3764 .readpage = ext4_readpage,
3765 .readpages = ext4_readpages,
43ce1d23 3766 .writepage = ext4_writepage,
20970ba6 3767 .writepages = ext4_writepages,
8ab22b9a
HH
3768 .write_begin = ext4_write_begin,
3769 .write_end = ext4_journalled_write_end,
3770 .set_page_dirty = ext4_journalled_set_page_dirty,
3771 .bmap = ext4_bmap,
4520fb3c 3772 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3773 .releasepage = ext4_releasepage,
84ebd795 3774 .direct_IO = ext4_direct_IO,
8ab22b9a 3775 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3776 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3777};
3778
64769240 3779static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3780 .readpage = ext4_readpage,
3781 .readpages = ext4_readpages,
43ce1d23 3782 .writepage = ext4_writepage,
20970ba6 3783 .writepages = ext4_writepages,
8ab22b9a
HH
3784 .write_begin = ext4_da_write_begin,
3785 .write_end = ext4_da_write_end,
6dcc693b 3786 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3787 .bmap = ext4_bmap,
3788 .invalidatepage = ext4_da_invalidatepage,
3789 .releasepage = ext4_releasepage,
3790 .direct_IO = ext4_direct_IO,
3791 .migratepage = buffer_migrate_page,
3792 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3793 .error_remove_page = generic_error_remove_page,
64769240
AT
3794};
3795
617ba13b 3796void ext4_set_aops(struct inode *inode)
ac27a0ec 3797{
3d2b1582
LC
3798 switch (ext4_inode_journal_mode(inode)) {
3799 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3800 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3801 break;
3802 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3803 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3804 return;
3d2b1582
LC
3805 default:
3806 BUG();
3807 }
74d553aa
TT
3808 if (test_opt(inode->i_sb, DELALLOC))
3809 inode->i_mapping->a_ops = &ext4_da_aops;
3810 else
3811 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3812}
3813
923ae0ff 3814static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3815 struct address_space *mapping, loff_t from, loff_t length)
3816{
09cbfeaf
KS
3817 ext4_fsblk_t index = from >> PAGE_SHIFT;
3818 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3819 unsigned blocksize, pos;
d863dc36
LC
3820 ext4_lblk_t iblock;
3821 struct inode *inode = mapping->host;
3822 struct buffer_head *bh;
3823 struct page *page;
3824 int err = 0;
3825
09cbfeaf 3826 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3827 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3828 if (!page)
3829 return -ENOMEM;
3830
3831 blocksize = inode->i_sb->s_blocksize;
d863dc36 3832
09cbfeaf 3833 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3834
3835 if (!page_has_buffers(page))
3836 create_empty_buffers(page, blocksize, 0);
3837
3838 /* Find the buffer that contains "offset" */
3839 bh = page_buffers(page);
3840 pos = blocksize;
3841 while (offset >= pos) {
3842 bh = bh->b_this_page;
3843 iblock++;
3844 pos += blocksize;
3845 }
d863dc36
LC
3846 if (buffer_freed(bh)) {
3847 BUFFER_TRACE(bh, "freed: skip");
3848 goto unlock;
3849 }
d863dc36
LC
3850 if (!buffer_mapped(bh)) {
3851 BUFFER_TRACE(bh, "unmapped");
3852 ext4_get_block(inode, iblock, bh, 0);
3853 /* unmapped? It's a hole - nothing to do */
3854 if (!buffer_mapped(bh)) {
3855 BUFFER_TRACE(bh, "still unmapped");
3856 goto unlock;
3857 }
3858 }
3859
3860 /* Ok, it's mapped. Make sure it's up-to-date */
3861 if (PageUptodate(page))
3862 set_buffer_uptodate(bh);
3863
3864 if (!buffer_uptodate(bh)) {
3865 err = -EIO;
dfec8a14 3866 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3867 wait_on_buffer(bh);
3868 /* Uhhuh. Read error. Complain and punt. */
3869 if (!buffer_uptodate(bh))
3870 goto unlock;
c9c7429c
MH
3871 if (S_ISREG(inode->i_mode) &&
3872 ext4_encrypted_inode(inode)) {
3873 /* We expect the key to be set. */
a7550b30 3874 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3875 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 3876 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3877 page, PAGE_SIZE, 0, page->index));
c9c7429c 3878 }
d863dc36 3879 }
d863dc36
LC
3880 if (ext4_should_journal_data(inode)) {
3881 BUFFER_TRACE(bh, "get write access");
3882 err = ext4_journal_get_write_access(handle, bh);
3883 if (err)
3884 goto unlock;
3885 }
d863dc36 3886 zero_user(page, offset, length);
d863dc36
LC
3887 BUFFER_TRACE(bh, "zeroed end of block");
3888
d863dc36
LC
3889 if (ext4_should_journal_data(inode)) {
3890 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3891 } else {
353eefd3 3892 err = 0;
d863dc36 3893 mark_buffer_dirty(bh);
3957ef53 3894 if (ext4_should_order_data(inode))
ee0876bc 3895 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3896 }
d863dc36
LC
3897
3898unlock:
3899 unlock_page(page);
09cbfeaf 3900 put_page(page);
d863dc36
LC
3901 return err;
3902}
3903
923ae0ff
RZ
3904/*
3905 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3906 * starting from file offset 'from'. The range to be zero'd must
3907 * be contained with in one block. If the specified range exceeds
3908 * the end of the block it will be shortened to end of the block
3909 * that cooresponds to 'from'
3910 */
3911static int ext4_block_zero_page_range(handle_t *handle,
3912 struct address_space *mapping, loff_t from, loff_t length)
3913{
3914 struct inode *inode = mapping->host;
09cbfeaf 3915 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3916 unsigned blocksize = inode->i_sb->s_blocksize;
3917 unsigned max = blocksize - (offset & (blocksize - 1));
3918
3919 /*
3920 * correct length if it does not fall between
3921 * 'from' and the end of the block
3922 */
3923 if (length > max || length < 0)
3924 length = max;
3925
47e69351
JK
3926 if (IS_DAX(inode)) {
3927 return iomap_zero_range(inode, from, length, NULL,
3928 &ext4_iomap_ops);
3929 }
923ae0ff
RZ
3930 return __ext4_block_zero_page_range(handle, mapping, from, length);
3931}
3932
94350ab5
MW
3933/*
3934 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3935 * up to the end of the block which corresponds to `from'.
3936 * This required during truncate. We need to physically zero the tail end
3937 * of that block so it doesn't yield old data if the file is later grown.
3938 */
c197855e 3939static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3940 struct address_space *mapping, loff_t from)
3941{
09cbfeaf 3942 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3943 unsigned length;
3944 unsigned blocksize;
3945 struct inode *inode = mapping->host;
3946
0d06863f
TT
3947 /* If we are processing an encrypted inode during orphan list handling */
3948 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3949 return 0;
3950
94350ab5
MW
3951 blocksize = inode->i_sb->s_blocksize;
3952 length = blocksize - (offset & (blocksize - 1));
3953
3954 return ext4_block_zero_page_range(handle, mapping, from, length);
3955}
3956
a87dd18c
LC
3957int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3958 loff_t lstart, loff_t length)
3959{
3960 struct super_block *sb = inode->i_sb;
3961 struct address_space *mapping = inode->i_mapping;
e1be3a92 3962 unsigned partial_start, partial_end;
a87dd18c
LC
3963 ext4_fsblk_t start, end;
3964 loff_t byte_end = (lstart + length - 1);
3965 int err = 0;
3966
e1be3a92
LC
3967 partial_start = lstart & (sb->s_blocksize - 1);
3968 partial_end = byte_end & (sb->s_blocksize - 1);
3969
a87dd18c
LC
3970 start = lstart >> sb->s_blocksize_bits;
3971 end = byte_end >> sb->s_blocksize_bits;
3972
3973 /* Handle partial zero within the single block */
e1be3a92
LC
3974 if (start == end &&
3975 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3976 err = ext4_block_zero_page_range(handle, mapping,
3977 lstart, length);
3978 return err;
3979 }
3980 /* Handle partial zero out on the start of the range */
e1be3a92 3981 if (partial_start) {
a87dd18c
LC
3982 err = ext4_block_zero_page_range(handle, mapping,
3983 lstart, sb->s_blocksize);
3984 if (err)
3985 return err;
3986 }
3987 /* Handle partial zero out on the end of the range */
e1be3a92 3988 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3989 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3990 byte_end - partial_end,
3991 partial_end + 1);
a87dd18c
LC
3992 return err;
3993}
3994
91ef4caf
DG
3995int ext4_can_truncate(struct inode *inode)
3996{
91ef4caf
DG
3997 if (S_ISREG(inode->i_mode))
3998 return 1;
3999 if (S_ISDIR(inode->i_mode))
4000 return 1;
4001 if (S_ISLNK(inode->i_mode))
4002 return !ext4_inode_is_fast_symlink(inode);
4003 return 0;
4004}
4005
01127848
JK
4006/*
4007 * We have to make sure i_disksize gets properly updated before we truncate
4008 * page cache due to hole punching or zero range. Otherwise i_disksize update
4009 * can get lost as it may have been postponed to submission of writeback but
4010 * that will never happen after we truncate page cache.
4011 */
4012int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4013 loff_t len)
4014{
4015 handle_t *handle;
4016 loff_t size = i_size_read(inode);
4017
5955102c 4018 WARN_ON(!inode_is_locked(inode));
01127848
JK
4019 if (offset > size || offset + len < size)
4020 return 0;
4021
4022 if (EXT4_I(inode)->i_disksize >= size)
4023 return 0;
4024
4025 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4026 if (IS_ERR(handle))
4027 return PTR_ERR(handle);
4028 ext4_update_i_disksize(inode, size);
4029 ext4_mark_inode_dirty(handle, inode);
4030 ext4_journal_stop(handle);
4031
4032 return 0;
4033}
4034
a4bb6b64 4035/*
cca32b7e 4036 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4037 * associated with the given offset and length
4038 *
4039 * @inode: File inode
4040 * @offset: The offset where the hole will begin
4041 * @len: The length of the hole
4042 *
4907cb7b 4043 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4044 */
4045
aeb2817a 4046int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4047{
26a4c0c6
TT
4048 struct super_block *sb = inode->i_sb;
4049 ext4_lblk_t first_block, stop_block;
4050 struct address_space *mapping = inode->i_mapping;
a87dd18c 4051 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4052 handle_t *handle;
4053 unsigned int credits;
4054 int ret = 0;
4055
a4bb6b64 4056 if (!S_ISREG(inode->i_mode))
73355192 4057 return -EOPNOTSUPP;
a4bb6b64 4058
b8a86845 4059 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4060
26a4c0c6
TT
4061 /*
4062 * Write out all dirty pages to avoid race conditions
4063 * Then release them.
4064 */
cca32b7e 4065 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4066 ret = filemap_write_and_wait_range(mapping, offset,
4067 offset + length - 1);
4068 if (ret)
4069 return ret;
4070 }
4071
5955102c 4072 inode_lock(inode);
9ef06cec 4073
26a4c0c6
TT
4074 /* No need to punch hole beyond i_size */
4075 if (offset >= inode->i_size)
4076 goto out_mutex;
4077
4078 /*
4079 * If the hole extends beyond i_size, set the hole
4080 * to end after the page that contains i_size
4081 */
4082 if (offset + length > inode->i_size) {
4083 length = inode->i_size +
09cbfeaf 4084 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4085 offset;
4086 }
4087
a361293f
JK
4088 if (offset & (sb->s_blocksize - 1) ||
4089 (offset + length) & (sb->s_blocksize - 1)) {
4090 /*
4091 * Attach jinode to inode for jbd2 if we do any zeroing of
4092 * partial block
4093 */
4094 ret = ext4_inode_attach_jinode(inode);
4095 if (ret < 0)
4096 goto out_mutex;
4097
4098 }
4099
ea3d7209
JK
4100 /* Wait all existing dio workers, newcomers will block on i_mutex */
4101 ext4_inode_block_unlocked_dio(inode);
4102 inode_dio_wait(inode);
4103
4104 /*
4105 * Prevent page faults from reinstantiating pages we have released from
4106 * page cache.
4107 */
4108 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4109 first_block_offset = round_up(offset, sb->s_blocksize);
4110 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4111
a87dd18c 4112 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4113 if (last_block_offset > first_block_offset) {
4114 ret = ext4_update_disksize_before_punch(inode, offset, length);
4115 if (ret)
4116 goto out_dio;
a87dd18c
LC
4117 truncate_pagecache_range(inode, first_block_offset,
4118 last_block_offset);
01127848 4119 }
26a4c0c6
TT
4120
4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 credits = ext4_writepage_trans_blocks(inode);
4123 else
4124 credits = ext4_blocks_for_truncate(inode);
4125 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4126 if (IS_ERR(handle)) {
4127 ret = PTR_ERR(handle);
4128 ext4_std_error(sb, ret);
4129 goto out_dio;
4130 }
4131
a87dd18c
LC
4132 ret = ext4_zero_partial_blocks(handle, inode, offset,
4133 length);
4134 if (ret)
4135 goto out_stop;
26a4c0c6
TT
4136
4137 first_block = (offset + sb->s_blocksize - 1) >>
4138 EXT4_BLOCK_SIZE_BITS(sb);
4139 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4140
4141 /* If there are no blocks to remove, return now */
4142 if (first_block >= stop_block)
4143 goto out_stop;
4144
4145 down_write(&EXT4_I(inode)->i_data_sem);
4146 ext4_discard_preallocations(inode);
4147
4148 ret = ext4_es_remove_extent(inode, first_block,
4149 stop_block - first_block);
4150 if (ret) {
4151 up_write(&EXT4_I(inode)->i_data_sem);
4152 goto out_stop;
4153 }
4154
4155 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4156 ret = ext4_ext_remove_space(inode, first_block,
4157 stop_block - 1);
4158 else
4f579ae7 4159 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4160 stop_block);
4161
819c4920 4162 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4163 if (IS_SYNC(inode))
4164 ext4_handle_sync(handle);
e251f9bc 4165
eeca7ea1 4166 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6
TT
4167 ext4_mark_inode_dirty(handle, inode);
4168out_stop:
4169 ext4_journal_stop(handle);
4170out_dio:
ea3d7209 4171 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4172 ext4_inode_resume_unlocked_dio(inode);
4173out_mutex:
5955102c 4174 inode_unlock(inode);
26a4c0c6 4175 return ret;
a4bb6b64
AH
4176}
4177
a361293f
JK
4178int ext4_inode_attach_jinode(struct inode *inode)
4179{
4180 struct ext4_inode_info *ei = EXT4_I(inode);
4181 struct jbd2_inode *jinode;
4182
4183 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4184 return 0;
4185
4186 jinode = jbd2_alloc_inode(GFP_KERNEL);
4187 spin_lock(&inode->i_lock);
4188 if (!ei->jinode) {
4189 if (!jinode) {
4190 spin_unlock(&inode->i_lock);
4191 return -ENOMEM;
4192 }
4193 ei->jinode = jinode;
4194 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4195 jinode = NULL;
4196 }
4197 spin_unlock(&inode->i_lock);
4198 if (unlikely(jinode != NULL))
4199 jbd2_free_inode(jinode);
4200 return 0;
4201}
4202
ac27a0ec 4203/*
617ba13b 4204 * ext4_truncate()
ac27a0ec 4205 *
617ba13b
MC
4206 * We block out ext4_get_block() block instantiations across the entire
4207 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4208 * simultaneously on behalf of the same inode.
4209 *
42b2aa86 4210 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4211 * is one core, guiding principle: the file's tree must always be consistent on
4212 * disk. We must be able to restart the truncate after a crash.
4213 *
4214 * The file's tree may be transiently inconsistent in memory (although it
4215 * probably isn't), but whenever we close off and commit a journal transaction,
4216 * the contents of (the filesystem + the journal) must be consistent and
4217 * restartable. It's pretty simple, really: bottom up, right to left (although
4218 * left-to-right works OK too).
4219 *
4220 * Note that at recovery time, journal replay occurs *before* the restart of
4221 * truncate against the orphan inode list.
4222 *
4223 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4224 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4225 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4226 * ext4_truncate() to have another go. So there will be instantiated blocks
4227 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4228 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4229 * ext4_truncate() run will find them and release them.
ac27a0ec 4230 */
2c98eb5e 4231int ext4_truncate(struct inode *inode)
ac27a0ec 4232{
819c4920
TT
4233 struct ext4_inode_info *ei = EXT4_I(inode);
4234 unsigned int credits;
2c98eb5e 4235 int err = 0;
819c4920
TT
4236 handle_t *handle;
4237 struct address_space *mapping = inode->i_mapping;
819c4920 4238
19b5ef61
TT
4239 /*
4240 * There is a possibility that we're either freeing the inode
e04027e8 4241 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4242 * have i_mutex locked because it's not necessary.
4243 */
4244 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4245 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4246 trace_ext4_truncate_enter(inode);
4247
91ef4caf 4248 if (!ext4_can_truncate(inode))
2c98eb5e 4249 return 0;
ac27a0ec 4250
12e9b892 4251 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4252
5534fb5b 4253 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4254 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4255
aef1c851
TM
4256 if (ext4_has_inline_data(inode)) {
4257 int has_inline = 1;
4258
01daf945
TT
4259 err = ext4_inline_data_truncate(inode, &has_inline);
4260 if (err)
4261 return err;
aef1c851 4262 if (has_inline)
2c98eb5e 4263 return 0;
aef1c851
TM
4264 }
4265
a361293f
JK
4266 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4267 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4268 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4269 return 0;
a361293f
JK
4270 }
4271
819c4920
TT
4272 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4273 credits = ext4_writepage_trans_blocks(inode);
4274 else
4275 credits = ext4_blocks_for_truncate(inode);
4276
4277 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4278 if (IS_ERR(handle))
4279 return PTR_ERR(handle);
819c4920 4280
eb3544c6
LC
4281 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4282 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4283
4284 /*
4285 * We add the inode to the orphan list, so that if this
4286 * truncate spans multiple transactions, and we crash, we will
4287 * resume the truncate when the filesystem recovers. It also
4288 * marks the inode dirty, to catch the new size.
4289 *
4290 * Implication: the file must always be in a sane, consistent
4291 * truncatable state while each transaction commits.
4292 */
2c98eb5e
TT
4293 err = ext4_orphan_add(handle, inode);
4294 if (err)
819c4920
TT
4295 goto out_stop;
4296
4297 down_write(&EXT4_I(inode)->i_data_sem);
4298
4299 ext4_discard_preallocations(inode);
4300
ff9893dc 4301 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4302 err = ext4_ext_truncate(handle, inode);
ff9893dc 4303 else
819c4920
TT
4304 ext4_ind_truncate(handle, inode);
4305
4306 up_write(&ei->i_data_sem);
d0abb36d
TT
4307 if (err)
4308 goto out_stop;
819c4920
TT
4309
4310 if (IS_SYNC(inode))
4311 ext4_handle_sync(handle);
4312
4313out_stop:
4314 /*
4315 * If this was a simple ftruncate() and the file will remain alive,
4316 * then we need to clear up the orphan record which we created above.
4317 * However, if this was a real unlink then we were called by
58d86a50 4318 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4319 * orphan info for us.
4320 */
4321 if (inode->i_nlink)
4322 ext4_orphan_del(handle, inode);
4323
eeca7ea1 4324 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4325 ext4_mark_inode_dirty(handle, inode);
4326 ext4_journal_stop(handle);
ac27a0ec 4327
0562e0ba 4328 trace_ext4_truncate_exit(inode);
2c98eb5e 4329 return err;
ac27a0ec
DK
4330}
4331
ac27a0ec 4332/*
617ba13b 4333 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4334 * underlying buffer_head on success. If 'in_mem' is true, we have all
4335 * data in memory that is needed to recreate the on-disk version of this
4336 * inode.
4337 */
617ba13b
MC
4338static int __ext4_get_inode_loc(struct inode *inode,
4339 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4340{
240799cd
TT
4341 struct ext4_group_desc *gdp;
4342 struct buffer_head *bh;
4343 struct super_block *sb = inode->i_sb;
4344 ext4_fsblk_t block;
4345 int inodes_per_block, inode_offset;
4346
3a06d778 4347 iloc->bh = NULL;
240799cd 4348 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4349 return -EFSCORRUPTED;
ac27a0ec 4350
240799cd
TT
4351 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4352 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4353 if (!gdp)
ac27a0ec
DK
4354 return -EIO;
4355
240799cd
TT
4356 /*
4357 * Figure out the offset within the block group inode table
4358 */
00d09882 4359 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4360 inode_offset = ((inode->i_ino - 1) %
4361 EXT4_INODES_PER_GROUP(sb));
4362 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4363 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4364
4365 bh = sb_getblk(sb, block);
aebf0243 4366 if (unlikely(!bh))
860d21e2 4367 return -ENOMEM;
ac27a0ec
DK
4368 if (!buffer_uptodate(bh)) {
4369 lock_buffer(bh);
9c83a923
HK
4370
4371 /*
4372 * If the buffer has the write error flag, we have failed
4373 * to write out another inode in the same block. In this
4374 * case, we don't have to read the block because we may
4375 * read the old inode data successfully.
4376 */
4377 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4378 set_buffer_uptodate(bh);
4379
ac27a0ec
DK
4380 if (buffer_uptodate(bh)) {
4381 /* someone brought it uptodate while we waited */
4382 unlock_buffer(bh);
4383 goto has_buffer;
4384 }
4385
4386 /*
4387 * If we have all information of the inode in memory and this
4388 * is the only valid inode in the block, we need not read the
4389 * block.
4390 */
4391 if (in_mem) {
4392 struct buffer_head *bitmap_bh;
240799cd 4393 int i, start;
ac27a0ec 4394
240799cd 4395 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4396
240799cd
TT
4397 /* Is the inode bitmap in cache? */
4398 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4399 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4400 goto make_io;
4401
4402 /*
4403 * If the inode bitmap isn't in cache then the
4404 * optimisation may end up performing two reads instead
4405 * of one, so skip it.
4406 */
4407 if (!buffer_uptodate(bitmap_bh)) {
4408 brelse(bitmap_bh);
4409 goto make_io;
4410 }
240799cd 4411 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4412 if (i == inode_offset)
4413 continue;
617ba13b 4414 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4415 break;
4416 }
4417 brelse(bitmap_bh);
240799cd 4418 if (i == start + inodes_per_block) {
ac27a0ec
DK
4419 /* all other inodes are free, so skip I/O */
4420 memset(bh->b_data, 0, bh->b_size);
4421 set_buffer_uptodate(bh);
4422 unlock_buffer(bh);
4423 goto has_buffer;
4424 }
4425 }
4426
4427make_io:
240799cd
TT
4428 /*
4429 * If we need to do any I/O, try to pre-readahead extra
4430 * blocks from the inode table.
4431 */
4432 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4433 ext4_fsblk_t b, end, table;
4434 unsigned num;
0d606e2c 4435 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4436
4437 table = ext4_inode_table(sb, gdp);
b713a5ec 4438 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4439 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4440 if (table > b)
4441 b = table;
0d606e2c 4442 end = b + ra_blks;
240799cd 4443 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4444 if (ext4_has_group_desc_csum(sb))
560671a0 4445 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4446 table += num / inodes_per_block;
4447 if (end > table)
4448 end = table;
4449 while (b <= end)
4450 sb_breadahead(sb, b++);
4451 }
4452
ac27a0ec
DK
4453 /*
4454 * There are other valid inodes in the buffer, this inode
4455 * has in-inode xattrs, or we don't have this inode in memory.
4456 * Read the block from disk.
4457 */
0562e0ba 4458 trace_ext4_load_inode(inode);
ac27a0ec
DK
4459 get_bh(bh);
4460 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4461 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4462 wait_on_buffer(bh);
4463 if (!buffer_uptodate(bh)) {
c398eda0
TT
4464 EXT4_ERROR_INODE_BLOCK(inode, block,
4465 "unable to read itable block");
ac27a0ec
DK
4466 brelse(bh);
4467 return -EIO;
4468 }
4469 }
4470has_buffer:
4471 iloc->bh = bh;
4472 return 0;
4473}
4474
617ba13b 4475int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4476{
4477 /* We have all inode data except xattrs in memory here. */
617ba13b 4478 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4479 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4480}
4481
617ba13b 4482void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4483{
617ba13b 4484 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4485 unsigned int new_fl = 0;
ac27a0ec 4486
617ba13b 4487 if (flags & EXT4_SYNC_FL)
00a1a053 4488 new_fl |= S_SYNC;
617ba13b 4489 if (flags & EXT4_APPEND_FL)
00a1a053 4490 new_fl |= S_APPEND;
617ba13b 4491 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4492 new_fl |= S_IMMUTABLE;
617ba13b 4493 if (flags & EXT4_NOATIME_FL)
00a1a053 4494 new_fl |= S_NOATIME;
617ba13b 4495 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4496 new_fl |= S_DIRSYNC;
a3caa24b
JK
4497 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4498 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4499 !ext4_encrypted_inode(inode))
923ae0ff 4500 new_fl |= S_DAX;
5f16f322 4501 inode_set_flags(inode, new_fl,
923ae0ff 4502 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4503}
4504
ff9ddf7e
JK
4505/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4506void ext4_get_inode_flags(struct ext4_inode_info *ei)
4507{
84a8dce2
DM
4508 unsigned int vfs_fl;
4509 unsigned long old_fl, new_fl;
4510
4511 do {
4512 vfs_fl = ei->vfs_inode.i_flags;
4513 old_fl = ei->i_flags;
4514 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4515 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4516 EXT4_DIRSYNC_FL);
4517 if (vfs_fl & S_SYNC)
4518 new_fl |= EXT4_SYNC_FL;
4519 if (vfs_fl & S_APPEND)
4520 new_fl |= EXT4_APPEND_FL;
4521 if (vfs_fl & S_IMMUTABLE)
4522 new_fl |= EXT4_IMMUTABLE_FL;
4523 if (vfs_fl & S_NOATIME)
4524 new_fl |= EXT4_NOATIME_FL;
4525 if (vfs_fl & S_DIRSYNC)
4526 new_fl |= EXT4_DIRSYNC_FL;
4527 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4528}
de9a55b8 4529
0fc1b451 4530static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4531 struct ext4_inode_info *ei)
0fc1b451
AK
4532{
4533 blkcnt_t i_blocks ;
8180a562
AK
4534 struct inode *inode = &(ei->vfs_inode);
4535 struct super_block *sb = inode->i_sb;
0fc1b451 4536
e2b911c5 4537 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4538 /* we are using combined 48 bit field */
4539 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4540 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4541 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4542 /* i_blocks represent file system block size */
4543 return i_blocks << (inode->i_blkbits - 9);
4544 } else {
4545 return i_blocks;
4546 }
0fc1b451
AK
4547 } else {
4548 return le32_to_cpu(raw_inode->i_blocks_lo);
4549 }
4550}
ff9ddf7e 4551
152a7b0a
TM
4552static inline void ext4_iget_extra_inode(struct inode *inode,
4553 struct ext4_inode *raw_inode,
4554 struct ext4_inode_info *ei)
4555{
4556 __le32 *magic = (void *)raw_inode +
4557 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4558 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4559 EXT4_INODE_SIZE(inode->i_sb) &&
4560 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4561 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4562 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4563 } else
4564 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4565}
4566
040cb378
LX
4567int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4568{
0b7b7779 4569 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4570 return -EOPNOTSUPP;
4571 *projid = EXT4_I(inode)->i_projid;
4572 return 0;
4573}
4574
1d1fe1ee 4575struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4576{
617ba13b
MC
4577 struct ext4_iloc iloc;
4578 struct ext4_inode *raw_inode;
1d1fe1ee 4579 struct ext4_inode_info *ei;
1d1fe1ee 4580 struct inode *inode;
b436b9be 4581 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4582 long ret;
7e6e1ef4 4583 loff_t size;
ac27a0ec 4584 int block;
08cefc7a
EB
4585 uid_t i_uid;
4586 gid_t i_gid;
040cb378 4587 projid_t i_projid;
ac27a0ec 4588
1d1fe1ee
DH
4589 inode = iget_locked(sb, ino);
4590 if (!inode)
4591 return ERR_PTR(-ENOMEM);
4592 if (!(inode->i_state & I_NEW))
4593 return inode;
4594
4595 ei = EXT4_I(inode);
7dc57615 4596 iloc.bh = NULL;
ac27a0ec 4597
1d1fe1ee
DH
4598 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4599 if (ret < 0)
ac27a0ec 4600 goto bad_inode;
617ba13b 4601 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4602
4603 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4604 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4605 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4606 EXT4_INODE_SIZE(inode->i_sb) ||
4607 (ei->i_extra_isize & 3)) {
4608 EXT4_ERROR_INODE(inode,
4609 "bad extra_isize %u (inode size %u)",
4610 ei->i_extra_isize,
4611 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4612 ret = -EFSCORRUPTED;
814525f4
DW
4613 goto bad_inode;
4614 }
4615 } else
4616 ei->i_extra_isize = 0;
4617
4618 /* Precompute checksum seed for inode metadata */
9aa5d32b 4619 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4620 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4621 __u32 csum;
4622 __le32 inum = cpu_to_le32(inode->i_ino);
4623 __le32 gen = raw_inode->i_generation;
4624 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4625 sizeof(inum));
4626 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4627 sizeof(gen));
4628 }
4629
4630 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4631 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4632 ret = -EFSBADCRC;
814525f4
DW
4633 goto bad_inode;
4634 }
4635
ac27a0ec 4636 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4637 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4638 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4639 if (ext4_has_feature_project(sb) &&
040cb378
LX
4640 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4641 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4642 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4643 else
4644 i_projid = EXT4_DEF_PROJID;
4645
af5bc92d 4646 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4647 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4648 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4649 }
08cefc7a
EB
4650 i_uid_write(inode, i_uid);
4651 i_gid_write(inode, i_gid);
040cb378 4652 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4653 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4654
353eb83c 4655 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4656 ei->i_inline_off = 0;
ac27a0ec
DK
4657 ei->i_dir_start_lookup = 0;
4658 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4659 /* We now have enough fields to check if the inode was active or not.
4660 * This is needed because nfsd might try to access dead inodes
4661 * the test is that same one that e2fsck uses
4662 * NeilBrown 1999oct15
4663 */
4664 if (inode->i_nlink == 0) {
393d1d1d
DTB
4665 if ((inode->i_mode == 0 ||
4666 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4667 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4668 /* this inode is deleted */
1d1fe1ee 4669 ret = -ESTALE;
ac27a0ec
DK
4670 goto bad_inode;
4671 }
4672 /* The only unlinked inodes we let through here have
4673 * valid i_mode and are being read by the orphan
4674 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4675 * the process of deleting those.
4676 * OR it is the EXT4_BOOT_LOADER_INO which is
4677 * not initialized on a new filesystem. */
ac27a0ec 4678 }
ac27a0ec 4679 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4680 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4681 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4682 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4683 ei->i_file_acl |=
4684 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4685 inode->i_size = ext4_isize(raw_inode);
7e6e1ef4
DW
4686 if ((size = i_size_read(inode)) < 0) {
4687 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4688 ret = -EFSCORRUPTED;
4689 goto bad_inode;
4690 }
ac27a0ec 4691 ei->i_disksize = inode->i_size;
a9e7f447
DM
4692#ifdef CONFIG_QUOTA
4693 ei->i_reserved_quota = 0;
4694#endif
ac27a0ec
DK
4695 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4696 ei->i_block_group = iloc.block_group;
a4912123 4697 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4698 /*
4699 * NOTE! The in-memory inode i_data array is in little-endian order
4700 * even on big-endian machines: we do NOT byteswap the block numbers!
4701 */
617ba13b 4702 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4703 ei->i_data[block] = raw_inode->i_block[block];
4704 INIT_LIST_HEAD(&ei->i_orphan);
4705
b436b9be
JK
4706 /*
4707 * Set transaction id's of transactions that have to be committed
4708 * to finish f[data]sync. We set them to currently running transaction
4709 * as we cannot be sure that the inode or some of its metadata isn't
4710 * part of the transaction - the inode could have been reclaimed and
4711 * now it is reread from disk.
4712 */
4713 if (journal) {
4714 transaction_t *transaction;
4715 tid_t tid;
4716
a931da6a 4717 read_lock(&journal->j_state_lock);
b436b9be
JK
4718 if (journal->j_running_transaction)
4719 transaction = journal->j_running_transaction;
4720 else
4721 transaction = journal->j_committing_transaction;
4722 if (transaction)
4723 tid = transaction->t_tid;
4724 else
4725 tid = journal->j_commit_sequence;
a931da6a 4726 read_unlock(&journal->j_state_lock);
b436b9be
JK
4727 ei->i_sync_tid = tid;
4728 ei->i_datasync_tid = tid;
4729 }
4730
0040d987 4731 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4732 if (ei->i_extra_isize == 0) {
4733 /* The extra space is currently unused. Use it. */
2dc8d9e1 4734 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4735 ei->i_extra_isize = sizeof(struct ext4_inode) -
4736 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4737 } else {
152a7b0a 4738 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4739 }
814525f4 4740 }
ac27a0ec 4741
ef7f3835
KS
4742 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4743 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4744 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4745 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4746
ed3654eb 4747 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4748 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4749 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4750 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4751 inode->i_version |=
4752 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4753 }
25ec56b5
JNC
4754 }
4755
c4b5a614 4756 ret = 0;
485c26ec 4757 if (ei->i_file_acl &&
1032988c 4758 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4759 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4760 ei->i_file_acl);
6a797d27 4761 ret = -EFSCORRUPTED;
485c26ec 4762 goto bad_inode;
f19d5870
TM
4763 } else if (!ext4_has_inline_data(inode)) {
4764 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4765 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4766 (S_ISLNK(inode->i_mode) &&
4767 !ext4_inode_is_fast_symlink(inode))))
4768 /* Validate extent which is part of inode */
4769 ret = ext4_ext_check_inode(inode);
4770 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4771 (S_ISLNK(inode->i_mode) &&
4772 !ext4_inode_is_fast_symlink(inode))) {
4773 /* Validate block references which are part of inode */
4774 ret = ext4_ind_check_inode(inode);
4775 }
fe2c8191 4776 }
567f3e9a 4777 if (ret)
de9a55b8 4778 goto bad_inode;
7a262f7c 4779
ac27a0ec 4780 if (S_ISREG(inode->i_mode)) {
617ba13b 4781 inode->i_op = &ext4_file_inode_operations;
be64f884 4782 inode->i_fop = &ext4_file_operations;
617ba13b 4783 ext4_set_aops(inode);
ac27a0ec 4784 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4785 inode->i_op = &ext4_dir_inode_operations;
4786 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4787 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4788 if (ext4_encrypted_inode(inode)) {
4789 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4790 ext4_set_aops(inode);
4791 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4792 inode->i_link = (char *)ei->i_data;
617ba13b 4793 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4794 nd_terminate_link(ei->i_data, inode->i_size,
4795 sizeof(ei->i_data) - 1);
4796 } else {
617ba13b
MC
4797 inode->i_op = &ext4_symlink_inode_operations;
4798 ext4_set_aops(inode);
ac27a0ec 4799 }
21fc61c7 4800 inode_nohighmem(inode);
563bdd61
TT
4801 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4802 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4803 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4804 if (raw_inode->i_block[0])
4805 init_special_inode(inode, inode->i_mode,
4806 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4807 else
4808 init_special_inode(inode, inode->i_mode,
4809 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4810 } else if (ino == EXT4_BOOT_LOADER_INO) {
4811 make_bad_inode(inode);
563bdd61 4812 } else {
6a797d27 4813 ret = -EFSCORRUPTED;
24676da4 4814 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4815 goto bad_inode;
ac27a0ec 4816 }
af5bc92d 4817 brelse(iloc.bh);
617ba13b 4818 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4819 unlock_new_inode(inode);
4820 return inode;
ac27a0ec
DK
4821
4822bad_inode:
567f3e9a 4823 brelse(iloc.bh);
1d1fe1ee
DH
4824 iget_failed(inode);
4825 return ERR_PTR(ret);
ac27a0ec
DK
4826}
4827
f4bb2981
TT
4828struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4829{
4830 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4831 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4832 return ext4_iget(sb, ino);
4833}
4834
0fc1b451
AK
4835static int ext4_inode_blocks_set(handle_t *handle,
4836 struct ext4_inode *raw_inode,
4837 struct ext4_inode_info *ei)
4838{
4839 struct inode *inode = &(ei->vfs_inode);
4840 u64 i_blocks = inode->i_blocks;
4841 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4842
4843 if (i_blocks <= ~0U) {
4844 /*
4907cb7b 4845 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4846 * as multiple of 512 bytes
4847 */
8180a562 4848 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4849 raw_inode->i_blocks_high = 0;
84a8dce2 4850 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4851 return 0;
4852 }
e2b911c5 4853 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4854 return -EFBIG;
4855
4856 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4857 /*
4858 * i_blocks can be represented in a 48 bit variable
4859 * as multiple of 512 bytes
4860 */
8180a562 4861 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4862 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4863 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4864 } else {
84a8dce2 4865 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4866 /* i_block is stored in file system block size */
4867 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4868 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4869 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4870 }
f287a1a5 4871 return 0;
0fc1b451
AK
4872}
4873
a26f4992
TT
4874struct other_inode {
4875 unsigned long orig_ino;
4876 struct ext4_inode *raw_inode;
4877};
4878
4879static int other_inode_match(struct inode * inode, unsigned long ino,
4880 void *data)
4881{
4882 struct other_inode *oi = (struct other_inode *) data;
4883
4884 if ((inode->i_ino != ino) ||
4885 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4886 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4887 ((inode->i_state & I_DIRTY_TIME) == 0))
4888 return 0;
4889 spin_lock(&inode->i_lock);
4890 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4891 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4892 (inode->i_state & I_DIRTY_TIME)) {
4893 struct ext4_inode_info *ei = EXT4_I(inode);
4894
4895 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4896 spin_unlock(&inode->i_lock);
4897
4898 spin_lock(&ei->i_raw_lock);
4899 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4900 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4901 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4902 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4903 spin_unlock(&ei->i_raw_lock);
4904 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4905 return -1;
4906 }
4907 spin_unlock(&inode->i_lock);
4908 return -1;
4909}
4910
4911/*
4912 * Opportunistically update the other time fields for other inodes in
4913 * the same inode table block.
4914 */
4915static void ext4_update_other_inodes_time(struct super_block *sb,
4916 unsigned long orig_ino, char *buf)
4917{
4918 struct other_inode oi;
4919 unsigned long ino;
4920 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4921 int inode_size = EXT4_INODE_SIZE(sb);
4922
4923 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4924 /*
4925 * Calculate the first inode in the inode table block. Inode
4926 * numbers are one-based. That is, the first inode in a block
4927 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4928 */
4929 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4930 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4931 if (ino == orig_ino)
4932 continue;
4933 oi.raw_inode = (struct ext4_inode *) buf;
4934 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4935 }
4936}
4937
ac27a0ec
DK
4938/*
4939 * Post the struct inode info into an on-disk inode location in the
4940 * buffer-cache. This gobbles the caller's reference to the
4941 * buffer_head in the inode location struct.
4942 *
4943 * The caller must have write access to iloc->bh.
4944 */
617ba13b 4945static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4946 struct inode *inode,
830156c7 4947 struct ext4_iloc *iloc)
ac27a0ec 4948{
617ba13b
MC
4949 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4950 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4951 struct buffer_head *bh = iloc->bh;
202ee5df 4952 struct super_block *sb = inode->i_sb;
ac27a0ec 4953 int err = 0, rc, block;
202ee5df 4954 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4955 uid_t i_uid;
4956 gid_t i_gid;
040cb378 4957 projid_t i_projid;
ac27a0ec 4958
202ee5df
TT
4959 spin_lock(&ei->i_raw_lock);
4960
4961 /* For fields not tracked in the in-memory inode,
ac27a0ec 4962 * initialise them to zero for new inodes. */
19f5fb7a 4963 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4964 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4965
ff9ddf7e 4966 ext4_get_inode_flags(ei);
ac27a0ec 4967 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4968 i_uid = i_uid_read(inode);
4969 i_gid = i_gid_read(inode);
040cb378 4970 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4971 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4972 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4973 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4974/*
4975 * Fix up interoperability with old kernels. Otherwise, old inodes get
4976 * re-used with the upper 16 bits of the uid/gid intact
4977 */
93e3b4e6
DJ
4978 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4979 raw_inode->i_uid_high = 0;
4980 raw_inode->i_gid_high = 0;
4981 } else {
ac27a0ec 4982 raw_inode->i_uid_high =
08cefc7a 4983 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4984 raw_inode->i_gid_high =
08cefc7a 4985 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4986 }
4987 } else {
08cefc7a
EB
4988 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4989 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4990 raw_inode->i_uid_high = 0;
4991 raw_inode->i_gid_high = 0;
4992 }
4993 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4994
4995 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4996 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4997 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4998 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4999
bce92d56
LX
5000 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5001 if (err) {
202ee5df 5002 spin_unlock(&ei->i_raw_lock);
0fc1b451 5003 goto out_brelse;
202ee5df 5004 }
ac27a0ec 5005 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5006 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5007 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5008 raw_inode->i_file_acl_high =
5009 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5010 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
5011 if (ei->i_disksize != ext4_isize(raw_inode)) {
5012 ext4_isize_set(raw_inode, ei->i_disksize);
5013 need_datasync = 1;
5014 }
a48380f7 5015 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5016 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5017 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5018 cpu_to_le32(EXT4_GOOD_OLD_REV))
5019 set_large_file = 1;
ac27a0ec
DK
5020 }
5021 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5022 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5023 if (old_valid_dev(inode->i_rdev)) {
5024 raw_inode->i_block[0] =
5025 cpu_to_le32(old_encode_dev(inode->i_rdev));
5026 raw_inode->i_block[1] = 0;
5027 } else {
5028 raw_inode->i_block[0] = 0;
5029 raw_inode->i_block[1] =
5030 cpu_to_le32(new_encode_dev(inode->i_rdev));
5031 raw_inode->i_block[2] = 0;
5032 }
f19d5870 5033 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5034 for (block = 0; block < EXT4_N_BLOCKS; block++)
5035 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5036 }
ac27a0ec 5037
ed3654eb 5038 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5039 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5040 if (ei->i_extra_isize) {
5041 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5042 raw_inode->i_version_hi =
5043 cpu_to_le32(inode->i_version >> 32);
5044 raw_inode->i_extra_isize =
5045 cpu_to_le16(ei->i_extra_isize);
5046 }
25ec56b5 5047 }
040cb378 5048
0b7b7779 5049 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5050 i_projid != EXT4_DEF_PROJID);
5051
5052 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5053 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5054 raw_inode->i_projid = cpu_to_le32(i_projid);
5055
814525f4 5056 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5057 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
5058 if (inode->i_sb->s_flags & MS_LAZYTIME)
5059 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5060 bh->b_data);
202ee5df 5061
830156c7 5062 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5063 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5064 if (!err)
5065 err = rc;
19f5fb7a 5066 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5067 if (set_large_file) {
5d601255 5068 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5069 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5070 if (err)
5071 goto out_brelse;
5072 ext4_update_dynamic_rev(sb);
e2b911c5 5073 ext4_set_feature_large_file(sb);
202ee5df
TT
5074 ext4_handle_sync(handle);
5075 err = ext4_handle_dirty_super(handle, sb);
5076 }
b71fc079 5077 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5078out_brelse:
af5bc92d 5079 brelse(bh);
617ba13b 5080 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5081 return err;
5082}
5083
5084/*
617ba13b 5085 * ext4_write_inode()
ac27a0ec
DK
5086 *
5087 * We are called from a few places:
5088 *
87f7e416 5089 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5090 * Here, there will be no transaction running. We wait for any running
4907cb7b 5091 * transaction to commit.
ac27a0ec 5092 *
87f7e416
TT
5093 * - Within flush work (sys_sync(), kupdate and such).
5094 * We wait on commit, if told to.
ac27a0ec 5095 *
87f7e416
TT
5096 * - Within iput_final() -> write_inode_now()
5097 * We wait on commit, if told to.
ac27a0ec
DK
5098 *
5099 * In all cases it is actually safe for us to return without doing anything,
5100 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5101 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5102 * writeback.
ac27a0ec
DK
5103 *
5104 * Note that we are absolutely dependent upon all inode dirtiers doing the
5105 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5106 * which we are interested.
5107 *
5108 * It would be a bug for them to not do this. The code:
5109 *
5110 * mark_inode_dirty(inode)
5111 * stuff();
5112 * inode->i_size = expr;
5113 *
87f7e416
TT
5114 * is in error because write_inode() could occur while `stuff()' is running,
5115 * and the new i_size will be lost. Plus the inode will no longer be on the
5116 * superblock's dirty inode list.
ac27a0ec 5117 */
a9185b41 5118int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5119{
91ac6f43
FM
5120 int err;
5121
87f7e416 5122 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5123 return 0;
5124
91ac6f43
FM
5125 if (EXT4_SB(inode->i_sb)->s_journal) {
5126 if (ext4_journal_current_handle()) {
5127 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5128 dump_stack();
5129 return -EIO;
5130 }
ac27a0ec 5131
10542c22
JK
5132 /*
5133 * No need to force transaction in WB_SYNC_NONE mode. Also
5134 * ext4_sync_fs() will force the commit after everything is
5135 * written.
5136 */
5137 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5138 return 0;
5139
5140 err = ext4_force_commit(inode->i_sb);
5141 } else {
5142 struct ext4_iloc iloc;
ac27a0ec 5143
8b472d73 5144 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5145 if (err)
5146 return err;
10542c22
JK
5147 /*
5148 * sync(2) will flush the whole buffer cache. No need to do
5149 * it here separately for each inode.
5150 */
5151 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5152 sync_dirty_buffer(iloc.bh);
5153 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5154 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5155 "IO error syncing inode");
830156c7
FM
5156 err = -EIO;
5157 }
fd2dd9fb 5158 brelse(iloc.bh);
91ac6f43
FM
5159 }
5160 return err;
ac27a0ec
DK
5161}
5162
53e87268
JK
5163/*
5164 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5165 * buffers that are attached to a page stradding i_size and are undergoing
5166 * commit. In that case we have to wait for commit to finish and try again.
5167 */
5168static void ext4_wait_for_tail_page_commit(struct inode *inode)
5169{
5170 struct page *page;
5171 unsigned offset;
5172 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5173 tid_t commit_tid = 0;
5174 int ret;
5175
09cbfeaf 5176 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5177 /*
5178 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5179 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5180 * blocksize case
5181 */
93407472 5182 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5183 return;
5184 while (1) {
5185 page = find_lock_page(inode->i_mapping,
09cbfeaf 5186 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5187 if (!page)
5188 return;
ca99fdd2 5189 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5190 PAGE_SIZE - offset);
53e87268 5191 unlock_page(page);
09cbfeaf 5192 put_page(page);
53e87268
JK
5193 if (ret != -EBUSY)
5194 return;
5195 commit_tid = 0;
5196 read_lock(&journal->j_state_lock);
5197 if (journal->j_committing_transaction)
5198 commit_tid = journal->j_committing_transaction->t_tid;
5199 read_unlock(&journal->j_state_lock);
5200 if (commit_tid)
5201 jbd2_log_wait_commit(journal, commit_tid);
5202 }
5203}
5204
ac27a0ec 5205/*
617ba13b 5206 * ext4_setattr()
ac27a0ec
DK
5207 *
5208 * Called from notify_change.
5209 *
5210 * We want to trap VFS attempts to truncate the file as soon as
5211 * possible. In particular, we want to make sure that when the VFS
5212 * shrinks i_size, we put the inode on the orphan list and modify
5213 * i_disksize immediately, so that during the subsequent flushing of
5214 * dirty pages and freeing of disk blocks, we can guarantee that any
5215 * commit will leave the blocks being flushed in an unused state on
5216 * disk. (On recovery, the inode will get truncated and the blocks will
5217 * be freed, so we have a strong guarantee that no future commit will
5218 * leave these blocks visible to the user.)
5219 *
678aaf48
JK
5220 * Another thing we have to assure is that if we are in ordered mode
5221 * and inode is still attached to the committing transaction, we must
5222 * we start writeout of all the dirty pages which are being truncated.
5223 * This way we are sure that all the data written in the previous
5224 * transaction are already on disk (truncate waits for pages under
5225 * writeback).
5226 *
5227 * Called with inode->i_mutex down.
ac27a0ec 5228 */
617ba13b 5229int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5230{
2b0143b5 5231 struct inode *inode = d_inode(dentry);
ac27a0ec 5232 int error, rc = 0;
3d287de3 5233 int orphan = 0;
ac27a0ec
DK
5234 const unsigned int ia_valid = attr->ia_valid;
5235
0db1ff22
TT
5236 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5237 return -EIO;
5238
31051c85 5239 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5240 if (error)
5241 return error;
5242
a7cdadee
JK
5243 if (is_quota_modification(inode, attr)) {
5244 error = dquot_initialize(inode);
5245 if (error)
5246 return error;
5247 }
08cefc7a
EB
5248 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5249 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5250 handle_t *handle;
5251
5252 /* (user+group)*(old+new) structure, inode write (sb,
5253 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5254 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5255 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5256 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5257 if (IS_ERR(handle)) {
5258 error = PTR_ERR(handle);
5259 goto err_out;
5260 }
b43fa828 5261 error = dquot_transfer(inode, attr);
ac27a0ec 5262 if (error) {
617ba13b 5263 ext4_journal_stop(handle);
ac27a0ec
DK
5264 return error;
5265 }
5266 /* Update corresponding info in inode so that everything is in
5267 * one transaction */
5268 if (attr->ia_valid & ATTR_UID)
5269 inode->i_uid = attr->ia_uid;
5270 if (attr->ia_valid & ATTR_GID)
5271 inode->i_gid = attr->ia_gid;
617ba13b
MC
5272 error = ext4_mark_inode_dirty(handle, inode);
5273 ext4_journal_stop(handle);
ac27a0ec
DK
5274 }
5275
3da40c7b 5276 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5277 handle_t *handle;
3da40c7b
JB
5278 loff_t oldsize = inode->i_size;
5279 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5280
12e9b892 5281 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5282 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5283
0c095c7f
TT
5284 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5285 return -EFBIG;
e2b46574 5286 }
3da40c7b
JB
5287 if (!S_ISREG(inode->i_mode))
5288 return -EINVAL;
dff6efc3
CH
5289
5290 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5291 inode_inc_iversion(inode);
5292
3da40c7b 5293 if (ext4_should_order_data(inode) &&
5208386c 5294 (attr->ia_size < inode->i_size)) {
3da40c7b 5295 error = ext4_begin_ordered_truncate(inode,
678aaf48 5296 attr->ia_size);
3da40c7b
JB
5297 if (error)
5298 goto err_out;
5299 }
5300 if (attr->ia_size != inode->i_size) {
5208386c
JK
5301 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5302 if (IS_ERR(handle)) {
5303 error = PTR_ERR(handle);
5304 goto err_out;
5305 }
3da40c7b 5306 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5307 error = ext4_orphan_add(handle, inode);
5308 orphan = 1;
5309 }
911af577
EG
5310 /*
5311 * Update c/mtime on truncate up, ext4_truncate() will
5312 * update c/mtime in shrink case below
5313 */
5314 if (!shrink) {
eeca7ea1 5315 inode->i_mtime = current_time(inode);
911af577
EG
5316 inode->i_ctime = inode->i_mtime;
5317 }
90e775b7 5318 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5319 EXT4_I(inode)->i_disksize = attr->ia_size;
5320 rc = ext4_mark_inode_dirty(handle, inode);
5321 if (!error)
5322 error = rc;
90e775b7
JK
5323 /*
5324 * We have to update i_size under i_data_sem together
5325 * with i_disksize to avoid races with writeback code
5326 * running ext4_wb_update_i_disksize().
5327 */
5328 if (!error)
5329 i_size_write(inode, attr->ia_size);
5330 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5331 ext4_journal_stop(handle);
5332 if (error) {
3da40c7b
JB
5333 if (orphan)
5334 ext4_orphan_del(NULL, inode);
678aaf48
JK
5335 goto err_out;
5336 }
d6320cbf 5337 }
3da40c7b
JB
5338 if (!shrink)
5339 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5340
5208386c
JK
5341 /*
5342 * Blocks are going to be removed from the inode. Wait
5343 * for dio in flight. Temporarily disable
5344 * dioread_nolock to prevent livelock.
5345 */
5346 if (orphan) {
5347 if (!ext4_should_journal_data(inode)) {
5348 ext4_inode_block_unlocked_dio(inode);
5349 inode_dio_wait(inode);
5350 ext4_inode_resume_unlocked_dio(inode);
5351 } else
5352 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5353 }
ea3d7209 5354 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5355 /*
5356 * Truncate pagecache after we've waited for commit
5357 * in data=journal mode to make pages freeable.
5358 */
923ae0ff 5359 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5360 if (shrink) {
5361 rc = ext4_truncate(inode);
5362 if (rc)
5363 error = rc;
5364 }
ea3d7209 5365 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5366 }
ac27a0ec 5367
2c98eb5e 5368 if (!error) {
1025774c
CH
5369 setattr_copy(inode, attr);
5370 mark_inode_dirty(inode);
5371 }
5372
5373 /*
5374 * If the call to ext4_truncate failed to get a transaction handle at
5375 * all, we need to clean up the in-core orphan list manually.
5376 */
3d287de3 5377 if (orphan && inode->i_nlink)
617ba13b 5378 ext4_orphan_del(NULL, inode);
ac27a0ec 5379
2c98eb5e 5380 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5381 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5382
5383err_out:
617ba13b 5384 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5385 if (!error)
5386 error = rc;
5387 return error;
5388}
5389
a528d35e
DH
5390int ext4_getattr(const struct path *path, struct kstat *stat,
5391 u32 request_mask, unsigned int query_flags)
3e3398a0 5392{
99652ea5
DH
5393 struct inode *inode = d_inode(path->dentry);
5394 struct ext4_inode *raw_inode;
5395 struct ext4_inode_info *ei = EXT4_I(inode);
5396 unsigned int flags;
5397
5398 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5399 stat->result_mask |= STATX_BTIME;
5400 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5401 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5402 }
5403
5404 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5405 if (flags & EXT4_APPEND_FL)
5406 stat->attributes |= STATX_ATTR_APPEND;
5407 if (flags & EXT4_COMPR_FL)
5408 stat->attributes |= STATX_ATTR_COMPRESSED;
5409 if (flags & EXT4_ENCRYPT_FL)
5410 stat->attributes |= STATX_ATTR_ENCRYPTED;
5411 if (flags & EXT4_IMMUTABLE_FL)
5412 stat->attributes |= STATX_ATTR_IMMUTABLE;
5413 if (flags & EXT4_NODUMP_FL)
5414 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5415
3209f68b
DH
5416 stat->attributes_mask |= (STATX_ATTR_APPEND |
5417 STATX_ATTR_COMPRESSED |
5418 STATX_ATTR_ENCRYPTED |
5419 STATX_ATTR_IMMUTABLE |
5420 STATX_ATTR_NODUMP);
5421
3e3398a0 5422 generic_fillattr(inode, stat);
99652ea5
DH
5423 return 0;
5424}
5425
5426int ext4_file_getattr(const struct path *path, struct kstat *stat,
5427 u32 request_mask, unsigned int query_flags)
5428{
5429 struct inode *inode = d_inode(path->dentry);
5430 u64 delalloc_blocks;
5431
5432 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5433
9206c561
AD
5434 /*
5435 * If there is inline data in the inode, the inode will normally not
5436 * have data blocks allocated (it may have an external xattr block).
5437 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5438 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5439 */
5440 if (unlikely(ext4_has_inline_data(inode)))
5441 stat->blocks += (stat->size + 511) >> 9;
5442
3e3398a0
MC
5443 /*
5444 * We can't update i_blocks if the block allocation is delayed
5445 * otherwise in the case of system crash before the real block
5446 * allocation is done, we will have i_blocks inconsistent with
5447 * on-disk file blocks.
5448 * We always keep i_blocks updated together with real
5449 * allocation. But to not confuse with user, stat
5450 * will return the blocks that include the delayed allocation
5451 * blocks for this file.
5452 */
96607551 5453 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5454 EXT4_I(inode)->i_reserved_data_blocks);
5455 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5456 return 0;
5457}
ac27a0ec 5458
fffb2739
JK
5459static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5460 int pextents)
a02908f1 5461{
12e9b892 5462 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5463 return ext4_ind_trans_blocks(inode, lblocks);
5464 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5465}
ac51d837 5466
ac27a0ec 5467/*
a02908f1
MC
5468 * Account for index blocks, block groups bitmaps and block group
5469 * descriptor blocks if modify datablocks and index blocks
5470 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5471 *
a02908f1 5472 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5473 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5474 * they could still across block group boundary.
ac27a0ec 5475 *
a02908f1
MC
5476 * Also account for superblock, inode, quota and xattr blocks
5477 */
fffb2739
JK
5478static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5479 int pextents)
a02908f1 5480{
8df9675f
TT
5481 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5482 int gdpblocks;
a02908f1
MC
5483 int idxblocks;
5484 int ret = 0;
5485
5486 /*
fffb2739
JK
5487 * How many index blocks need to touch to map @lblocks logical blocks
5488 * to @pextents physical extents?
a02908f1 5489 */
fffb2739 5490 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5491
5492 ret = idxblocks;
5493
5494 /*
5495 * Now let's see how many group bitmaps and group descriptors need
5496 * to account
5497 */
fffb2739 5498 groups = idxblocks + pextents;
a02908f1 5499 gdpblocks = groups;
8df9675f
TT
5500 if (groups > ngroups)
5501 groups = ngroups;
a02908f1
MC
5502 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5503 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5504
5505 /* bitmaps and block group descriptor blocks */
5506 ret += groups + gdpblocks;
5507
5508 /* Blocks for super block, inode, quota and xattr blocks */
5509 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5510
5511 return ret;
5512}
5513
5514/*
25985edc 5515 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5516 * the modification of a single pages into a single transaction,
5517 * which may include multiple chunks of block allocations.
ac27a0ec 5518 *
525f4ed8 5519 * This could be called via ext4_write_begin()
ac27a0ec 5520 *
525f4ed8 5521 * We need to consider the worse case, when
a02908f1 5522 * one new block per extent.
ac27a0ec 5523 */
a86c6181 5524int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5525{
617ba13b 5526 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5527 int ret;
5528
fffb2739 5529 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5530
a02908f1 5531 /* Account for data blocks for journalled mode */
617ba13b 5532 if (ext4_should_journal_data(inode))
a02908f1 5533 ret += bpp;
ac27a0ec
DK
5534 return ret;
5535}
f3bd1f3f
MC
5536
5537/*
5538 * Calculate the journal credits for a chunk of data modification.
5539 *
5540 * This is called from DIO, fallocate or whoever calling
79e83036 5541 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5542 *
5543 * journal buffers for data blocks are not included here, as DIO
5544 * and fallocate do no need to journal data buffers.
5545 */
5546int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5547{
5548 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5549}
5550
ac27a0ec 5551/*
617ba13b 5552 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5553 * Give this, we know that the caller already has write access to iloc->bh.
5554 */
617ba13b 5555int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5556 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5557{
5558 int err = 0;
5559
0db1ff22
TT
5560 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5561 return -EIO;
5562
c64db50e 5563 if (IS_I_VERSION(inode))
25ec56b5
JNC
5564 inode_inc_iversion(inode);
5565
ac27a0ec
DK
5566 /* the do_update_inode consumes one bh->b_count */
5567 get_bh(iloc->bh);
5568
dab291af 5569 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5570 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5571 put_bh(iloc->bh);
5572 return err;
5573}
5574
5575/*
5576 * On success, We end up with an outstanding reference count against
5577 * iloc->bh. This _must_ be cleaned up later.
5578 */
5579
5580int
617ba13b
MC
5581ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5582 struct ext4_iloc *iloc)
ac27a0ec 5583{
0390131b
FM
5584 int err;
5585
0db1ff22
TT
5586 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5587 return -EIO;
5588
0390131b
FM
5589 err = ext4_get_inode_loc(inode, iloc);
5590 if (!err) {
5591 BUFFER_TRACE(iloc->bh, "get_write_access");
5592 err = ext4_journal_get_write_access(handle, iloc->bh);
5593 if (err) {
5594 brelse(iloc->bh);
5595 iloc->bh = NULL;
ac27a0ec
DK
5596 }
5597 }
617ba13b 5598 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5599 return err;
5600}
5601
6dd4ee7c
KS
5602/*
5603 * Expand an inode by new_extra_isize bytes.
5604 * Returns 0 on success or negative error number on failure.
5605 */
1d03ec98
AK
5606static int ext4_expand_extra_isize(struct inode *inode,
5607 unsigned int new_extra_isize,
5608 struct ext4_iloc iloc,
5609 handle_t *handle)
6dd4ee7c
KS
5610{
5611 struct ext4_inode *raw_inode;
5612 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5613
5614 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5615 return 0;
5616
5617 raw_inode = ext4_raw_inode(&iloc);
5618
5619 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5620
5621 /* No extended attributes present */
19f5fb7a
TT
5622 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5623 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5624 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5625 new_extra_isize);
5626 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5627 return 0;
5628 }
5629
5630 /* try to expand with EAs present */
5631 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5632 raw_inode, handle);
5633}
5634
ac27a0ec
DK
5635/*
5636 * What we do here is to mark the in-core inode as clean with respect to inode
5637 * dirtiness (it may still be data-dirty).
5638 * This means that the in-core inode may be reaped by prune_icache
5639 * without having to perform any I/O. This is a very good thing,
5640 * because *any* task may call prune_icache - even ones which
5641 * have a transaction open against a different journal.
5642 *
5643 * Is this cheating? Not really. Sure, we haven't written the
5644 * inode out, but prune_icache isn't a user-visible syncing function.
5645 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5646 * we start and wait on commits.
ac27a0ec 5647 */
617ba13b 5648int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5649{
617ba13b 5650 struct ext4_iloc iloc;
6dd4ee7c
KS
5651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5652 static unsigned int mnt_count;
5653 int err, ret;
ac27a0ec
DK
5654
5655 might_sleep();
7ff9c073 5656 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5657 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5658 if (err)
5659 return err;
88e03877 5660 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5661 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c 5662 /*
88e03877
EW
5663 * In nojournal mode, we can immediately attempt to expand
5664 * the inode. When journaled, we first need to obtain extra
5665 * buffer credits since we may write into the EA block
6dd4ee7c
KS
5666 * with this same handle. If journal_extend fails, then it will
5667 * only result in a minor loss of functionality for that inode.
5668 * If this is felt to be critical, then e2fsck should be run to
5669 * force a large enough s_min_extra_isize.
5670 */
88e03877
EW
5671 if (!ext4_handle_valid(handle) ||
5672 jbd2_journal_extend(handle,
5673 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
6dd4ee7c
KS
5674 ret = ext4_expand_extra_isize(inode,
5675 sbi->s_want_extra_isize,
5676 iloc, handle);
5677 if (ret) {
c1bddad9
AK
5678 if (mnt_count !=
5679 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5680 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5681 "Unable to expand inode %lu. Delete"
5682 " some EAs or run e2fsck.",
5683 inode->i_ino);
c1bddad9
AK
5684 mnt_count =
5685 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5686 }
5687 }
5688 }
5689 }
5e1021f2 5690 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5691}
5692
5693/*
617ba13b 5694 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5695 *
5696 * We're really interested in the case where a file is being extended.
5697 * i_size has been changed by generic_commit_write() and we thus need
5698 * to include the updated inode in the current transaction.
5699 *
5dd4056d 5700 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5701 * are allocated to the file.
5702 *
5703 * If the inode is marked synchronous, we don't honour that here - doing
5704 * so would cause a commit on atime updates, which we don't bother doing.
5705 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5706 *
5707 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5708 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5709 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5710 */
aa385729 5711void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5712{
ac27a0ec
DK
5713 handle_t *handle;
5714
0ae45f63
TT
5715 if (flags == I_DIRTY_TIME)
5716 return;
9924a92a 5717 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5718 if (IS_ERR(handle))
5719 goto out;
f3dc272f 5720
f3dc272f
CW
5721 ext4_mark_inode_dirty(handle, inode);
5722
617ba13b 5723 ext4_journal_stop(handle);
ac27a0ec
DK
5724out:
5725 return;
5726}
5727
5728#if 0
5729/*
5730 * Bind an inode's backing buffer_head into this transaction, to prevent
5731 * it from being flushed to disk early. Unlike
617ba13b 5732 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5733 * returns no iloc structure, so the caller needs to repeat the iloc
5734 * lookup to mark the inode dirty later.
5735 */
617ba13b 5736static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5737{
617ba13b 5738 struct ext4_iloc iloc;
ac27a0ec
DK
5739
5740 int err = 0;
5741 if (handle) {
617ba13b 5742 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5743 if (!err) {
5744 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5745 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5746 if (!err)
0390131b 5747 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5748 NULL,
0390131b 5749 iloc.bh);
ac27a0ec
DK
5750 brelse(iloc.bh);
5751 }
5752 }
617ba13b 5753 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5754 return err;
5755}
5756#endif
5757
617ba13b 5758int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5759{
5760 journal_t *journal;
5761 handle_t *handle;
5762 int err;
c8585c6f 5763 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5764
5765 /*
5766 * We have to be very careful here: changing a data block's
5767 * journaling status dynamically is dangerous. If we write a
5768 * data block to the journal, change the status and then delete
5769 * that block, we risk forgetting to revoke the old log record
5770 * from the journal and so a subsequent replay can corrupt data.
5771 * So, first we make sure that the journal is empty and that
5772 * nobody is changing anything.
5773 */
5774
617ba13b 5775 journal = EXT4_JOURNAL(inode);
0390131b
FM
5776 if (!journal)
5777 return 0;
d699594d 5778 if (is_journal_aborted(journal))
ac27a0ec
DK
5779 return -EROFS;
5780
17335dcc
DM
5781 /* Wait for all existing dio workers */
5782 ext4_inode_block_unlocked_dio(inode);
5783 inode_dio_wait(inode);
5784
4c546592
DJ
5785 /*
5786 * Before flushing the journal and switching inode's aops, we have
5787 * to flush all dirty data the inode has. There can be outstanding
5788 * delayed allocations, there can be unwritten extents created by
5789 * fallocate or buffered writes in dioread_nolock mode covered by
5790 * dirty data which can be converted only after flushing the dirty
5791 * data (and journalled aops don't know how to handle these cases).
5792 */
5793 if (val) {
5794 down_write(&EXT4_I(inode)->i_mmap_sem);
5795 err = filemap_write_and_wait(inode->i_mapping);
5796 if (err < 0) {
5797 up_write(&EXT4_I(inode)->i_mmap_sem);
5798 ext4_inode_resume_unlocked_dio(inode);
5799 return err;
5800 }
5801 }
5802
c8585c6f 5803 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5804 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5805
5806 /*
5807 * OK, there are no updates running now, and all cached data is
5808 * synced to disk. We are now in a completely consistent state
5809 * which doesn't have anything in the journal, and we know that
5810 * no filesystem updates are running, so it is safe to modify
5811 * the inode's in-core data-journaling state flag now.
5812 */
5813
5814 if (val)
12e9b892 5815 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5816 else {
4f879ca6
JK
5817 err = jbd2_journal_flush(journal);
5818 if (err < 0) {
5819 jbd2_journal_unlock_updates(journal);
c8585c6f 5820 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5821 ext4_inode_resume_unlocked_dio(inode);
5822 return err;
5823 }
12e9b892 5824 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5825 }
617ba13b 5826 ext4_set_aops(inode);
a3caa24b
JK
5827 /*
5828 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5829 * E.g. S_DAX may get cleared / set.
5830 */
5831 ext4_set_inode_flags(inode);
ac27a0ec 5832
dab291af 5833 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5834 percpu_up_write(&sbi->s_journal_flag_rwsem);
5835
4c546592
DJ
5836 if (val)
5837 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5838 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5839
5840 /* Finally we can mark the inode as dirty. */
5841
9924a92a 5842 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5843 if (IS_ERR(handle))
5844 return PTR_ERR(handle);
5845
617ba13b 5846 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5847 ext4_handle_sync(handle);
617ba13b
MC
5848 ext4_journal_stop(handle);
5849 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5850
5851 return err;
5852}
2e9ee850
AK
5853
5854static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5855{
5856 return !buffer_mapped(bh);
5857}
5858
11bac800 5859int ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 5860{
11bac800 5861 struct vm_area_struct *vma = vmf->vma;
c2ec175c 5862 struct page *page = vmf->page;
2e9ee850
AK
5863 loff_t size;
5864 unsigned long len;
9ea7df53 5865 int ret;
2e9ee850 5866 struct file *file = vma->vm_file;
496ad9aa 5867 struct inode *inode = file_inode(file);
2e9ee850 5868 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5869 handle_t *handle;
5870 get_block_t *get_block;
5871 int retries = 0;
2e9ee850 5872
8e8ad8a5 5873 sb_start_pagefault(inode->i_sb);
041bbb6d 5874 file_update_time(vma->vm_file);
ea3d7209
JK
5875
5876 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5877 /* Delalloc case is easy... */
5878 if (test_opt(inode->i_sb, DELALLOC) &&
5879 !ext4_should_journal_data(inode) &&
5880 !ext4_nonda_switch(inode->i_sb)) {
5881 do {
5c500029 5882 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5883 ext4_da_get_block_prep);
5884 } while (ret == -ENOSPC &&
5885 ext4_should_retry_alloc(inode->i_sb, &retries));
5886 goto out_ret;
2e9ee850 5887 }
0e499890
DW
5888
5889 lock_page(page);
9ea7df53
JK
5890 size = i_size_read(inode);
5891 /* Page got truncated from under us? */
5892 if (page->mapping != mapping || page_offset(page) > size) {
5893 unlock_page(page);
5894 ret = VM_FAULT_NOPAGE;
5895 goto out;
0e499890 5896 }
2e9ee850 5897
09cbfeaf
KS
5898 if (page->index == size >> PAGE_SHIFT)
5899 len = size & ~PAGE_MASK;
2e9ee850 5900 else
09cbfeaf 5901 len = PAGE_SIZE;
a827eaff 5902 /*
9ea7df53
JK
5903 * Return if we have all the buffers mapped. This avoids the need to do
5904 * journal_start/journal_stop which can block and take a long time
a827eaff 5905 */
2e9ee850 5906 if (page_has_buffers(page)) {
f19d5870
TM
5907 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5908 0, len, NULL,
5909 ext4_bh_unmapped)) {
9ea7df53 5910 /* Wait so that we don't change page under IO */
1d1d1a76 5911 wait_for_stable_page(page);
9ea7df53
JK
5912 ret = VM_FAULT_LOCKED;
5913 goto out;
a827eaff 5914 }
2e9ee850 5915 }
a827eaff 5916 unlock_page(page);
9ea7df53
JK
5917 /* OK, we need to fill the hole... */
5918 if (ext4_should_dioread_nolock(inode))
705965bd 5919 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5920 else
5921 get_block = ext4_get_block;
5922retry_alloc:
9924a92a
TT
5923 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5924 ext4_writepage_trans_blocks(inode));
9ea7df53 5925 if (IS_ERR(handle)) {
c2ec175c 5926 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5927 goto out;
5928 }
5c500029 5929 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5930 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5931 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5932 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5933 unlock_page(page);
5934 ret = VM_FAULT_SIGBUS;
fcbb5515 5935 ext4_journal_stop(handle);
9ea7df53
JK
5936 goto out;
5937 }
5938 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5939 }
5940 ext4_journal_stop(handle);
5941 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5942 goto retry_alloc;
5943out_ret:
5944 ret = block_page_mkwrite_return(ret);
5945out:
ea3d7209 5946 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5947 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5948 return ret;
5949}
ea3d7209 5950
11bac800 5951int ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 5952{
11bac800 5953 struct inode *inode = file_inode(vmf->vma->vm_file);
ea3d7209
JK
5954 int err;
5955
5956 down_read(&EXT4_I(inode)->i_mmap_sem);
11bac800 5957 err = filemap_fault(vmf);
ea3d7209
JK
5958 up_read(&EXT4_I(inode)->i_mmap_sem);
5959
5960 return err;
5961}
2d90c160
JK
5962
5963/*
5964 * Find the first extent at or after @lblk in an inode that is not a hole.
5965 * Search for @map_len blocks at most. The extent is returned in @result.
5966 *
5967 * The function returns 1 if we found an extent. The function returns 0 in
5968 * case there is no extent at or after @lblk and in that case also sets
5969 * @result->es_len to 0. In case of error, the error code is returned.
5970 */
5971int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5972 unsigned int map_len, struct extent_status *result)
5973{
5974 struct ext4_map_blocks map;
5975 struct extent_status es = {};
5976 int ret;
5977
5978 map.m_lblk = lblk;
5979 map.m_len = map_len;
5980
5981 /*
5982 * For non-extent based files this loop may iterate several times since
5983 * we do not determine full hole size.
5984 */
5985 while (map.m_len > 0) {
5986 ret = ext4_map_blocks(NULL, inode, &map, 0);
5987 if (ret < 0)
5988 return ret;
5989 /* There's extent covering m_lblk? Just return it. */
5990 if (ret > 0) {
5991 int status;
5992
5993 ext4_es_store_pblock(result, map.m_pblk);
5994 result->es_lblk = map.m_lblk;
5995 result->es_len = map.m_len;
5996 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5997 status = EXTENT_STATUS_UNWRITTEN;
5998 else
5999 status = EXTENT_STATUS_WRITTEN;
6000 ext4_es_store_status(result, status);
6001 return 1;
6002 }
6003 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6004 map.m_lblk + map.m_len - 1,
6005 &es);
6006 /* Is delalloc data before next block in extent tree? */
6007 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6008 ext4_lblk_t offset = 0;
6009
6010 if (es.es_lblk < lblk)
6011 offset = lblk - es.es_lblk;
6012 result->es_lblk = es.es_lblk + offset;
6013 ext4_es_store_pblock(result,
6014 ext4_es_pblock(&es) + offset);
6015 result->es_len = es.es_len - offset;
6016 ext4_es_store_status(result, ext4_es_status(&es));
6017
6018 return 1;
6019 }
6020 /* There's a hole at m_lblk, advance us after it */
6021 map.m_lblk += map.m_len;
6022 map_len -= map.m_len;
6023 map.m_len = map_len;
6024 cond_resched();
6025 }
6026 result->es_len = 0;
6027 return 0;
6028}