]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: convert DAX reads to iomap infrastructure
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
364443cb 40#include <linux/iomap.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 55 __u32 csum;
b47820ed
DJ
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
814525f4 59
b47820ed
DJ
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 65
b47820ed
DJ
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76 EXT4_INODE_SIZE(inode->i_sb) -
77 offset);
78 }
814525f4
DW
79 }
80
814525f4
DW
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 91 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 112 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
678aaf48
JK
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
7ff9c073 125 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
678aaf48
JK
137}
138
d47992f8
LC
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
cb20d518
TT
141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
64769240 145
ac27a0ec
DK
146/*
147 * Test whether an inode is a fast symlink.
148 */
f348c252 149int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 150{
65eddb56
YY
151 int ea_blocks = EXT4_I(inode)->i_file_acl ?
152 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 153
bd9db175
ZL
154 if (ext4_has_inline_data(inode))
155 return 0;
156
ac27a0ec
DK
157 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158}
159
ac27a0ec
DK
160/*
161 * Restart the transaction associated with *handle. This does a commit,
162 * so before we call here everything must be consistently dirtied against
163 * this transaction.
164 */
fa5d1113 165int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 166 int nblocks)
ac27a0ec 167{
487caeef
JK
168 int ret;
169
170 /*
e35fd660 171 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
172 * moment, get_block can be called only for blocks inside i_size since
173 * page cache has been already dropped and writes are blocked by
174 * i_mutex. So we can safely drop the i_data_sem here.
175 */
0390131b 176 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 177 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 178 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 179 ret = ext4_journal_restart(handle, nblocks);
487caeef 180 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 181 ext4_discard_preallocations(inode);
487caeef
JK
182
183 return ret;
ac27a0ec
DK
184}
185
186/*
187 * Called at the last iput() if i_nlink is zero.
188 */
0930fcc1 189void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
190{
191 handle_t *handle;
bc965ab3 192 int err;
ac27a0ec 193
7ff9c073 194 trace_ext4_evict_inode(inode);
2581fdc8 195
0930fcc1 196 if (inode->i_nlink) {
2d859db3
JK
197 /*
198 * When journalling data dirty buffers are tracked only in the
199 * journal. So although mm thinks everything is clean and
200 * ready for reaping the inode might still have some pages to
201 * write in the running transaction or waiting to be
202 * checkpointed. Thus calling jbd2_journal_invalidatepage()
203 * (via truncate_inode_pages()) to discard these buffers can
204 * cause data loss. Also even if we did not discard these
205 * buffers, we would have no way to find them after the inode
206 * is reaped and thus user could see stale data if he tries to
207 * read them before the transaction is checkpointed. So be
208 * careful and force everything to disk here... We use
209 * ei->i_datasync_tid to store the newest transaction
210 * containing inode's data.
211 *
212 * Note that directories do not have this problem because they
213 * don't use page cache.
214 */
6a7fd522
VN
215 if (inode->i_ino != EXT4_JOURNAL_INO &&
216 ext4_should_journal_data(inode) &&
217 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
2d859db3
JK
218 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
219 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
220
d76a3a77 221 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
222 filemap_write_and_wait(&inode->i_data);
223 }
91b0abe3 224 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 225
0930fcc1
AV
226 goto no_delete;
227 }
228
e2bfb088
TT
229 if (is_bad_inode(inode))
230 goto no_delete;
231 dquot_initialize(inode);
907f4554 232
678aaf48
JK
233 if (ext4_should_order_data(inode))
234 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 235 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 236
8e8ad8a5
JK
237 /*
238 * Protect us against freezing - iput() caller didn't have to have any
239 * protection against it
240 */
241 sb_start_intwrite(inode->i_sb);
9924a92a
TT
242 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
243 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 244 if (IS_ERR(handle)) {
bc965ab3 245 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
246 /*
247 * If we're going to skip the normal cleanup, we still need to
248 * make sure that the in-core orphan linked list is properly
249 * cleaned up.
250 */
617ba13b 251 ext4_orphan_del(NULL, inode);
8e8ad8a5 252 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
253 goto no_delete;
254 }
255
256 if (IS_SYNC(inode))
0390131b 257 ext4_handle_sync(handle);
ac27a0ec 258 inode->i_size = 0;
bc965ab3
TT
259 err = ext4_mark_inode_dirty(handle, inode);
260 if (err) {
12062ddd 261 ext4_warning(inode->i_sb,
bc965ab3
TT
262 "couldn't mark inode dirty (err %d)", err);
263 goto stop_handle;
264 }
2c98eb5e
TT
265 if (inode->i_blocks) {
266 err = ext4_truncate(inode);
267 if (err) {
268 ext4_error(inode->i_sb,
269 "couldn't truncate inode %lu (err %d)",
270 inode->i_ino, err);
271 goto stop_handle;
272 }
273 }
bc965ab3
TT
274
275 /*
276 * ext4_ext_truncate() doesn't reserve any slop when it
277 * restarts journal transactions; therefore there may not be
278 * enough credits left in the handle to remove the inode from
279 * the orphan list and set the dtime field.
280 */
0390131b 281 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
282 err = ext4_journal_extend(handle, 3);
283 if (err > 0)
284 err = ext4_journal_restart(handle, 3);
285 if (err != 0) {
12062ddd 286 ext4_warning(inode->i_sb,
bc965ab3
TT
287 "couldn't extend journal (err %d)", err);
288 stop_handle:
289 ext4_journal_stop(handle);
45388219 290 ext4_orphan_del(NULL, inode);
8e8ad8a5 291 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
292 goto no_delete;
293 }
294 }
295
ac27a0ec 296 /*
617ba13b 297 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 298 * AKPM: I think this can be inside the above `if'.
617ba13b 299 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 300 * deletion of a non-existent orphan - this is because we don't
617ba13b 301 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
302 * (Well, we could do this if we need to, but heck - it works)
303 */
617ba13b
MC
304 ext4_orphan_del(handle, inode);
305 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
306
307 /*
308 * One subtle ordering requirement: if anything has gone wrong
309 * (transaction abort, IO errors, whatever), then we can still
310 * do these next steps (the fs will already have been marked as
311 * having errors), but we can't free the inode if the mark_dirty
312 * fails.
313 */
617ba13b 314 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 315 /* If that failed, just do the required in-core inode clear. */
0930fcc1 316 ext4_clear_inode(inode);
ac27a0ec 317 else
617ba13b
MC
318 ext4_free_inode(handle, inode);
319 ext4_journal_stop(handle);
8e8ad8a5 320 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
321 return;
322no_delete:
0930fcc1 323 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
324}
325
a9e7f447
DM
326#ifdef CONFIG_QUOTA
327qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 328{
a9e7f447 329 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 330}
a9e7f447 331#endif
9d0be502 332
0637c6f4
TT
333/*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
5f634d06
AK
337void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
12219aea
AK
339{
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 341 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
342
343 spin_lock(&ei->i_block_reservation_lock);
d8990240 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 345 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 347 "with only %d reserved data blocks",
0637c6f4
TT
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
12219aea 353
0637c6f4
TT
354 /* Update per-inode reservations */
355 ei->i_reserved_data_blocks -= used;
71d4f7d0 356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 357
12219aea 358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 359
72b8ab9d
ES
360 /* Update quota subsystem for data blocks */
361 if (quota_claim)
7b415bf6 362 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 363 else {
5f634d06
AK
364 /*
365 * We did fallocate with an offset that is already delayed
366 * allocated. So on delayed allocated writeback we should
72b8ab9d 367 * not re-claim the quota for fallocated blocks.
5f634d06 368 */
7b415bf6 369 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 370 }
d6014301
AK
371
372 /*
373 * If we have done all the pending block allocations and if
374 * there aren't any writers on the inode, we can discard the
375 * inode's preallocations.
376 */
0637c6f4
TT
377 if ((ei->i_reserved_data_blocks == 0) &&
378 (atomic_read(&inode->i_writecount) == 0))
d6014301 379 ext4_discard_preallocations(inode);
12219aea
AK
380}
381
e29136f8 382static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
383 unsigned int line,
384 struct ext4_map_blocks *map)
6fd058f7 385{
24676da4
TT
386 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
387 map->m_len)) {
c398eda0
TT
388 ext4_error_inode(inode, func, line, map->m_pblk,
389 "lblock %lu mapped to illegal pblock "
390 "(length %d)", (unsigned long) map->m_lblk,
391 map->m_len);
6a797d27 392 return -EFSCORRUPTED;
6fd058f7
TT
393 }
394 return 0;
395}
396
53085fac
JK
397int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
398 ext4_lblk_t len)
399{
400 int ret;
401
402 if (ext4_encrypted_inode(inode))
a7550b30 403 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
404
405 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
406 if (ret > 0)
407 ret = 0;
408
409 return ret;
410}
411
e29136f8 412#define check_block_validity(inode, map) \
c398eda0 413 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 414
921f266b
DM
415#ifdef ES_AGGRESSIVE_TEST
416static void ext4_map_blocks_es_recheck(handle_t *handle,
417 struct inode *inode,
418 struct ext4_map_blocks *es_map,
419 struct ext4_map_blocks *map,
420 int flags)
421{
422 int retval;
423
424 map->m_flags = 0;
425 /*
426 * There is a race window that the result is not the same.
427 * e.g. xfstests #223 when dioread_nolock enables. The reason
428 * is that we lookup a block mapping in extent status tree with
429 * out taking i_data_sem. So at the time the unwritten extent
430 * could be converted.
431 */
2dcba478 432 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
433 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
434 retval = ext4_ext_map_blocks(handle, inode, map, flags &
435 EXT4_GET_BLOCKS_KEEP_SIZE);
436 } else {
437 retval = ext4_ind_map_blocks(handle, inode, map, flags &
438 EXT4_GET_BLOCKS_KEEP_SIZE);
439 }
2dcba478 440 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
441
442 /*
443 * We don't check m_len because extent will be collpased in status
444 * tree. So the m_len might not equal.
445 */
446 if (es_map->m_lblk != map->m_lblk ||
447 es_map->m_flags != map->m_flags ||
448 es_map->m_pblk != map->m_pblk) {
bdafe42a 449 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
450 "es_cached ex [%d/%d/%llu/%x] != "
451 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
452 inode->i_ino, es_map->m_lblk, es_map->m_len,
453 es_map->m_pblk, es_map->m_flags, map->m_lblk,
454 map->m_len, map->m_pblk, map->m_flags,
455 retval, flags);
456 }
457}
458#endif /* ES_AGGRESSIVE_TEST */
459
f5ab0d1f 460/*
e35fd660 461 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 462 * and returns if the blocks are already mapped.
f5ab0d1f 463 *
f5ab0d1f
MC
464 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
465 * and store the allocated blocks in the result buffer head and mark it
466 * mapped.
467 *
e35fd660
TT
468 * If file type is extents based, it will call ext4_ext_map_blocks(),
469 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
470 * based files
471 *
facab4d9
JK
472 * On success, it returns the number of blocks being mapped or allocated. if
473 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
474 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
475 *
476 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
477 * that case, @map is returned as unmapped but we still do fill map->m_len to
478 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
479 *
480 * It returns the error in case of allocation failure.
481 */
e35fd660
TT
482int ext4_map_blocks(handle_t *handle, struct inode *inode,
483 struct ext4_map_blocks *map, int flags)
0e855ac8 484{
d100eef2 485 struct extent_status es;
0e855ac8 486 int retval;
b8a86845 487 int ret = 0;
921f266b
DM
488#ifdef ES_AGGRESSIVE_TEST
489 struct ext4_map_blocks orig_map;
490
491 memcpy(&orig_map, map, sizeof(*map));
492#endif
f5ab0d1f 493
e35fd660
TT
494 map->m_flags = 0;
495 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
496 "logical block %lu\n", inode->i_ino, flags, map->m_len,
497 (unsigned long) map->m_lblk);
d100eef2 498
e861b5e9
TT
499 /*
500 * ext4_map_blocks returns an int, and m_len is an unsigned int
501 */
502 if (unlikely(map->m_len > INT_MAX))
503 map->m_len = INT_MAX;
504
4adb6ab3
KM
505 /* We can handle the block number less than EXT_MAX_BLOCKS */
506 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 507 return -EFSCORRUPTED;
4adb6ab3 508
d100eef2
ZL
509 /* Lookup extent status tree firstly */
510 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
511 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
512 map->m_pblk = ext4_es_pblock(&es) +
513 map->m_lblk - es.es_lblk;
514 map->m_flags |= ext4_es_is_written(&es) ?
515 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
516 retval = es.es_len - (map->m_lblk - es.es_lblk);
517 if (retval > map->m_len)
518 retval = map->m_len;
519 map->m_len = retval;
520 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
521 map->m_pblk = 0;
522 retval = es.es_len - (map->m_lblk - es.es_lblk);
523 if (retval > map->m_len)
524 retval = map->m_len;
525 map->m_len = retval;
d100eef2
ZL
526 retval = 0;
527 } else {
528 BUG_ON(1);
529 }
921f266b
DM
530#ifdef ES_AGGRESSIVE_TEST
531 ext4_map_blocks_es_recheck(handle, inode, map,
532 &orig_map, flags);
533#endif
d100eef2
ZL
534 goto found;
535 }
536
4df3d265 537 /*
b920c755
TT
538 * Try to see if we can get the block without requesting a new
539 * file system block.
4df3d265 540 */
2dcba478 541 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
543 retval = ext4_ext_map_blocks(handle, inode, map, flags &
544 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 545 } else {
a4e5d88b
DM
546 retval = ext4_ind_map_blocks(handle, inode, map, flags &
547 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 548 }
f7fec032 549 if (retval > 0) {
3be78c73 550 unsigned int status;
f7fec032 551
44fb851d
ZL
552 if (unlikely(retval != map->m_len)) {
553 ext4_warning(inode->i_sb,
554 "ES len assertion failed for inode "
555 "%lu: retval %d != map->m_len %d",
556 inode->i_ino, retval, map->m_len);
557 WARN_ON(1);
921f266b 558 }
921f266b 559
f7fec032
ZL
560 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
561 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
562 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 563 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
564 ext4_find_delalloc_range(inode, map->m_lblk,
565 map->m_lblk + map->m_len - 1))
566 status |= EXTENT_STATUS_DELAYED;
567 ret = ext4_es_insert_extent(inode, map->m_lblk,
568 map->m_len, map->m_pblk, status);
569 if (ret < 0)
570 retval = ret;
571 }
2dcba478 572 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 573
d100eef2 574found:
e35fd660 575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 576 ret = check_block_validity(inode, map);
6fd058f7
TT
577 if (ret != 0)
578 return ret;
579 }
580
f5ab0d1f 581 /* If it is only a block(s) look up */
c2177057 582 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
583 return retval;
584
585 /*
586 * Returns if the blocks have already allocated
587 *
588 * Note that if blocks have been preallocated
df3ab170 589 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
590 * with buffer head unmapped.
591 */
e35fd660 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
593 /*
594 * If we need to convert extent to unwritten
595 * we continue and do the actual work in
596 * ext4_ext_map_blocks()
597 */
598 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
599 return retval;
4df3d265 600
2a8964d6 601 /*
a25a4e1a
ZL
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
2a8964d6 604 */
a25a4e1a 605 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 606
4df3d265 607 /*
556615dc 608 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 609 * will possibly result in updating i_data, so we take
d91bd2c1 610 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 611 * with create == 1 flag.
4df3d265 612 */
c8b459f4 613 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 614
4df3d265
AK
615 /*
616 * We need to check for EXT4 here because migrate
617 * could have changed the inode type in between
618 */
12e9b892 619 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 620 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 621 } else {
e35fd660 622 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 623
e35fd660 624 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
625 /*
626 * We allocated new blocks which will result in
627 * i_data's format changing. Force the migrate
628 * to fail by clearing migrate flags
629 */
19f5fb7a 630 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 631 }
d2a17637 632
5f634d06
AK
633 /*
634 * Update reserved blocks/metadata blocks after successful
635 * block allocation which had been deferred till now. We don't
636 * support fallocate for non extent files. So we can update
637 * reserve space here.
638 */
639 if ((retval > 0) &&
1296cc85 640 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
641 ext4_da_update_reserve_space(inode, retval, 1);
642 }
2ac3b6e0 643
f7fec032 644 if (retval > 0) {
3be78c73 645 unsigned int status;
f7fec032 646
44fb851d
ZL
647 if (unlikely(retval != map->m_len)) {
648 ext4_warning(inode->i_sb,
649 "ES len assertion failed for inode "
650 "%lu: retval %d != map->m_len %d",
651 inode->i_ino, retval, map->m_len);
652 WARN_ON(1);
921f266b 653 }
921f266b 654
c86d8db3
JK
655 /*
656 * We have to zeroout blocks before inserting them into extent
657 * status tree. Otherwise someone could look them up there and
9b623df6
JK
658 * use them before they are really zeroed. We also have to
659 * unmap metadata before zeroing as otherwise writeback can
660 * overwrite zeros with stale data from block device.
c86d8db3
JK
661 */
662 if (flags & EXT4_GET_BLOCKS_ZERO &&
663 map->m_flags & EXT4_MAP_MAPPED &&
664 map->m_flags & EXT4_MAP_NEW) {
9b623df6
JK
665 ext4_lblk_t i;
666
667 for (i = 0; i < map->m_len; i++) {
668 unmap_underlying_metadata(inode->i_sb->s_bdev,
669 map->m_pblk + i);
670 }
c86d8db3
JK
671 ret = ext4_issue_zeroout(inode, map->m_lblk,
672 map->m_pblk, map->m_len);
673 if (ret) {
674 retval = ret;
675 goto out_sem;
676 }
677 }
678
adb23551
ZL
679 /*
680 * If the extent has been zeroed out, we don't need to update
681 * extent status tree.
682 */
683 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
684 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
685 if (ext4_es_is_written(&es))
c86d8db3 686 goto out_sem;
adb23551 687 }
f7fec032
ZL
688 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
689 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
690 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 691 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
692 ext4_find_delalloc_range(inode, map->m_lblk,
693 map->m_lblk + map->m_len - 1))
694 status |= EXTENT_STATUS_DELAYED;
695 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
696 map->m_pblk, status);
c86d8db3 697 if (ret < 0) {
f7fec032 698 retval = ret;
c86d8db3
JK
699 goto out_sem;
700 }
5356f261
AK
701 }
702
c86d8db3 703out_sem:
4df3d265 704 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 706 ret = check_block_validity(inode, map);
6fd058f7
TT
707 if (ret != 0)
708 return ret;
06bd3c36
JK
709
710 /*
711 * Inodes with freshly allocated blocks where contents will be
712 * visible after transaction commit must be on transaction's
713 * ordered data list.
714 */
715 if (map->m_flags & EXT4_MAP_NEW &&
716 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
717 !(flags & EXT4_GET_BLOCKS_ZERO) &&
718 !IS_NOQUOTA(inode) &&
719 ext4_should_order_data(inode)) {
ee0876bc
JK
720 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
721 ret = ext4_jbd2_inode_add_wait(handle, inode);
722 else
723 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
724 if (ret)
725 return ret;
726 }
6fd058f7 727 }
0e855ac8
AK
728 return retval;
729}
730
ed8ad838
JK
731/*
732 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
733 * we have to be careful as someone else may be manipulating b_state as well.
734 */
735static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
736{
737 unsigned long old_state;
738 unsigned long new_state;
739
740 flags &= EXT4_MAP_FLAGS;
741
742 /* Dummy buffer_head? Set non-atomically. */
743 if (!bh->b_page) {
744 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
745 return;
746 }
747 /*
748 * Someone else may be modifying b_state. Be careful! This is ugly but
749 * once we get rid of using bh as a container for mapping information
750 * to pass to / from get_block functions, this can go away.
751 */
752 do {
753 old_state = READ_ONCE(bh->b_state);
754 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
755 } while (unlikely(
756 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
757}
758
2ed88685
TT
759static int _ext4_get_block(struct inode *inode, sector_t iblock,
760 struct buffer_head *bh, int flags)
ac27a0ec 761{
2ed88685 762 struct ext4_map_blocks map;
efe70c29 763 int ret = 0;
ac27a0ec 764
46c7f254
TM
765 if (ext4_has_inline_data(inode))
766 return -ERANGE;
767
2ed88685
TT
768 map.m_lblk = iblock;
769 map.m_len = bh->b_size >> inode->i_blkbits;
770
efe70c29
JK
771 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
772 flags);
7fb5409d 773 if (ret > 0) {
2ed88685 774 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 775 ext4_update_bh_state(bh, map.m_flags);
2ed88685 776 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 777 ret = 0;
547edce3
RZ
778 } else if (ret == 0) {
779 /* hole case, need to fill in bh->b_size */
780 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
781 }
782 return ret;
783}
784
2ed88685
TT
785int ext4_get_block(struct inode *inode, sector_t iblock,
786 struct buffer_head *bh, int create)
787{
788 return _ext4_get_block(inode, iblock, bh,
789 create ? EXT4_GET_BLOCKS_CREATE : 0);
790}
791
705965bd
JK
792/*
793 * Get block function used when preparing for buffered write if we require
794 * creating an unwritten extent if blocks haven't been allocated. The extent
795 * will be converted to written after the IO is complete.
796 */
797int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh_result, int create)
799{
800 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
801 inode->i_ino, create);
802 return _ext4_get_block(inode, iblock, bh_result,
803 EXT4_GET_BLOCKS_IO_CREATE_EXT);
804}
805
efe70c29
JK
806/* Maximum number of blocks we map for direct IO at once. */
807#define DIO_MAX_BLOCKS 4096
808
e84dfbe2
JK
809/*
810 * Get blocks function for the cases that need to start a transaction -
811 * generally difference cases of direct IO and DAX IO. It also handles retries
812 * in case of ENOSPC.
813 */
814static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
815 struct buffer_head *bh_result, int flags)
efe70c29
JK
816{
817 int dio_credits;
e84dfbe2
JK
818 handle_t *handle;
819 int retries = 0;
820 int ret;
efe70c29
JK
821
822 /* Trim mapping request to maximum we can map at once for DIO */
823 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
824 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
825 dio_credits = ext4_chunk_trans_blocks(inode,
826 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
827retry:
828 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
829 if (IS_ERR(handle))
830 return PTR_ERR(handle);
831
832 ret = _ext4_get_block(inode, iblock, bh_result, flags);
833 ext4_journal_stop(handle);
834
835 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
836 goto retry;
837 return ret;
efe70c29
JK
838}
839
705965bd
JK
840/* Get block function for DIO reads and writes to inodes without extents */
841int ext4_dio_get_block(struct inode *inode, sector_t iblock,
842 struct buffer_head *bh, int create)
843{
efe70c29
JK
844 /* We don't expect handle for direct IO */
845 WARN_ON_ONCE(ext4_journal_current_handle());
846
e84dfbe2
JK
847 if (!create)
848 return _ext4_get_block(inode, iblock, bh, 0);
849 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
850}
851
852/*
109811c2 853 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
854 * blocks are not allocated yet. The extent will be converted to written
855 * after IO is complete.
856 */
109811c2
JK
857static int ext4_dio_get_block_unwritten_async(struct inode *inode,
858 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 859{
efe70c29
JK
860 int ret;
861
efe70c29
JK
862 /* We don't expect handle for direct IO */
863 WARN_ON_ONCE(ext4_journal_current_handle());
864
e84dfbe2
JK
865 ret = ext4_get_block_trans(inode, iblock, bh_result,
866 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 867
109811c2
JK
868 /*
869 * When doing DIO using unwritten extents, we need io_end to convert
870 * unwritten extents to written on IO completion. We allocate io_end
871 * once we spot unwritten extent and store it in b_private. Generic
872 * DIO code keeps b_private set and furthermore passes the value to
873 * our completion callback in 'private' argument.
874 */
875 if (!ret && buffer_unwritten(bh_result)) {
876 if (!bh_result->b_private) {
877 ext4_io_end_t *io_end;
878
879 io_end = ext4_init_io_end(inode, GFP_KERNEL);
880 if (!io_end)
881 return -ENOMEM;
882 bh_result->b_private = io_end;
883 ext4_set_io_unwritten_flag(inode, io_end);
884 }
efe70c29 885 set_buffer_defer_completion(bh_result);
efe70c29
JK
886 }
887
888 return ret;
705965bd
JK
889}
890
109811c2
JK
891/*
892 * Get block function for non-AIO DIO writes when we create unwritten extent if
893 * blocks are not allocated yet. The extent will be converted to written
894 * after IO is complete from ext4_ext_direct_IO() function.
895 */
896static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
897 sector_t iblock, struct buffer_head *bh_result, int create)
898{
109811c2
JK
899 int ret;
900
901 /* We don't expect handle for direct IO */
902 WARN_ON_ONCE(ext4_journal_current_handle());
903
e84dfbe2
JK
904 ret = ext4_get_block_trans(inode, iblock, bh_result,
905 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
906
907 /*
908 * Mark inode as having pending DIO writes to unwritten extents.
909 * ext4_ext_direct_IO() checks this flag and converts extents to
910 * written.
911 */
912 if (!ret && buffer_unwritten(bh_result))
913 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
914
915 return ret;
916}
917
705965bd
JK
918static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
919 struct buffer_head *bh_result, int create)
920{
921 int ret;
922
923 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
924 inode->i_ino, create);
efe70c29
JK
925 /* We don't expect handle for direct IO */
926 WARN_ON_ONCE(ext4_journal_current_handle());
927
705965bd
JK
928 ret = _ext4_get_block(inode, iblock, bh_result, 0);
929 /*
930 * Blocks should have been preallocated! ext4_file_write_iter() checks
931 * that.
932 */
efe70c29 933 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
934
935 return ret;
936}
937
938
ac27a0ec
DK
939/*
940 * `handle' can be NULL if create is zero
941 */
617ba13b 942struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 943 ext4_lblk_t block, int map_flags)
ac27a0ec 944{
2ed88685
TT
945 struct ext4_map_blocks map;
946 struct buffer_head *bh;
c5e298ae 947 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 948 int err;
ac27a0ec
DK
949
950 J_ASSERT(handle != NULL || create == 0);
951
2ed88685
TT
952 map.m_lblk = block;
953 map.m_len = 1;
c5e298ae 954 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 955
10560082
TT
956 if (err == 0)
957 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 958 if (err < 0)
10560082 959 return ERR_PTR(err);
2ed88685
TT
960
961 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
962 if (unlikely(!bh))
963 return ERR_PTR(-ENOMEM);
2ed88685
TT
964 if (map.m_flags & EXT4_MAP_NEW) {
965 J_ASSERT(create != 0);
966 J_ASSERT(handle != NULL);
ac27a0ec 967
2ed88685
TT
968 /*
969 * Now that we do not always journal data, we should
970 * keep in mind whether this should always journal the
971 * new buffer as metadata. For now, regular file
972 * writes use ext4_get_block instead, so it's not a
973 * problem.
974 */
975 lock_buffer(bh);
976 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
977 err = ext4_journal_get_create_access(handle, bh);
978 if (unlikely(err)) {
979 unlock_buffer(bh);
980 goto errout;
981 }
982 if (!buffer_uptodate(bh)) {
2ed88685
TT
983 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
984 set_buffer_uptodate(bh);
ac27a0ec 985 }
2ed88685
TT
986 unlock_buffer(bh);
987 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
988 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
989 if (unlikely(err))
990 goto errout;
991 } else
2ed88685 992 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 993 return bh;
10560082
TT
994errout:
995 brelse(bh);
996 return ERR_PTR(err);
ac27a0ec
DK
997}
998
617ba13b 999struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1000 ext4_lblk_t block, int map_flags)
ac27a0ec 1001{
af5bc92d 1002 struct buffer_head *bh;
ac27a0ec 1003
c5e298ae 1004 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1005 if (IS_ERR(bh))
ac27a0ec 1006 return bh;
1c215028 1007 if (!bh || buffer_uptodate(bh))
ac27a0ec 1008 return bh;
dfec8a14 1009 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1010 wait_on_buffer(bh);
1011 if (buffer_uptodate(bh))
1012 return bh;
1013 put_bh(bh);
1c215028 1014 return ERR_PTR(-EIO);
ac27a0ec
DK
1015}
1016
f19d5870
TM
1017int ext4_walk_page_buffers(handle_t *handle,
1018 struct buffer_head *head,
1019 unsigned from,
1020 unsigned to,
1021 int *partial,
1022 int (*fn)(handle_t *handle,
1023 struct buffer_head *bh))
ac27a0ec
DK
1024{
1025 struct buffer_head *bh;
1026 unsigned block_start, block_end;
1027 unsigned blocksize = head->b_size;
1028 int err, ret = 0;
1029 struct buffer_head *next;
1030
af5bc92d
TT
1031 for (bh = head, block_start = 0;
1032 ret == 0 && (bh != head || !block_start);
de9a55b8 1033 block_start = block_end, bh = next) {
ac27a0ec
DK
1034 next = bh->b_this_page;
1035 block_end = block_start + blocksize;
1036 if (block_end <= from || block_start >= to) {
1037 if (partial && !buffer_uptodate(bh))
1038 *partial = 1;
1039 continue;
1040 }
1041 err = (*fn)(handle, bh);
1042 if (!ret)
1043 ret = err;
1044 }
1045 return ret;
1046}
1047
1048/*
1049 * To preserve ordering, it is essential that the hole instantiation and
1050 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1051 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1052 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1053 * prepare_write() is the right place.
1054 *
36ade451
JK
1055 * Also, this function can nest inside ext4_writepage(). In that case, we
1056 * *know* that ext4_writepage() has generated enough buffer credits to do the
1057 * whole page. So we won't block on the journal in that case, which is good,
1058 * because the caller may be PF_MEMALLOC.
ac27a0ec 1059 *
617ba13b 1060 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1061 * quota file writes. If we were to commit the transaction while thus
1062 * reentered, there can be a deadlock - we would be holding a quota
1063 * lock, and the commit would never complete if another thread had a
1064 * transaction open and was blocking on the quota lock - a ranking
1065 * violation.
1066 *
dab291af 1067 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1068 * will _not_ run commit under these circumstances because handle->h_ref
1069 * is elevated. We'll still have enough credits for the tiny quotafile
1070 * write.
1071 */
f19d5870
TM
1072int do_journal_get_write_access(handle_t *handle,
1073 struct buffer_head *bh)
ac27a0ec 1074{
56d35a4c
JK
1075 int dirty = buffer_dirty(bh);
1076 int ret;
1077
ac27a0ec
DK
1078 if (!buffer_mapped(bh) || buffer_freed(bh))
1079 return 0;
56d35a4c 1080 /*
ebdec241 1081 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1082 * the dirty bit as jbd2_journal_get_write_access() could complain
1083 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1084 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1085 * the bit before releasing a page lock and thus writeback cannot
1086 * ever write the buffer.
1087 */
1088 if (dirty)
1089 clear_buffer_dirty(bh);
5d601255 1090 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1091 ret = ext4_journal_get_write_access(handle, bh);
1092 if (!ret && dirty)
1093 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1094 return ret;
ac27a0ec
DK
1095}
1096
2058f83a
MH
1097#ifdef CONFIG_EXT4_FS_ENCRYPTION
1098static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1099 get_block_t *get_block)
1100{
09cbfeaf 1101 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1102 unsigned to = from + len;
1103 struct inode *inode = page->mapping->host;
1104 unsigned block_start, block_end;
1105 sector_t block;
1106 int err = 0;
1107 unsigned blocksize = inode->i_sb->s_blocksize;
1108 unsigned bbits;
1109 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1110 bool decrypt = false;
1111
1112 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1113 BUG_ON(from > PAGE_SIZE);
1114 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1115 BUG_ON(from > to);
1116
1117 if (!page_has_buffers(page))
1118 create_empty_buffers(page, blocksize, 0);
1119 head = page_buffers(page);
1120 bbits = ilog2(blocksize);
09cbfeaf 1121 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1122
1123 for (bh = head, block_start = 0; bh != head || !block_start;
1124 block++, block_start = block_end, bh = bh->b_this_page) {
1125 block_end = block_start + blocksize;
1126 if (block_end <= from || block_start >= to) {
1127 if (PageUptodate(page)) {
1128 if (!buffer_uptodate(bh))
1129 set_buffer_uptodate(bh);
1130 }
1131 continue;
1132 }
1133 if (buffer_new(bh))
1134 clear_buffer_new(bh);
1135 if (!buffer_mapped(bh)) {
1136 WARN_ON(bh->b_size != blocksize);
1137 err = get_block(inode, block, bh, 1);
1138 if (err)
1139 break;
1140 if (buffer_new(bh)) {
1141 unmap_underlying_metadata(bh->b_bdev,
1142 bh->b_blocknr);
1143 if (PageUptodate(page)) {
1144 clear_buffer_new(bh);
1145 set_buffer_uptodate(bh);
1146 mark_buffer_dirty(bh);
1147 continue;
1148 }
1149 if (block_end > to || block_start < from)
1150 zero_user_segments(page, to, block_end,
1151 block_start, from);
1152 continue;
1153 }
1154 }
1155 if (PageUptodate(page)) {
1156 if (!buffer_uptodate(bh))
1157 set_buffer_uptodate(bh);
1158 continue;
1159 }
1160 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1161 !buffer_unwritten(bh) &&
1162 (block_start < from || block_end > to)) {
dfec8a14 1163 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1164 *wait_bh++ = bh;
1165 decrypt = ext4_encrypted_inode(inode) &&
1166 S_ISREG(inode->i_mode);
1167 }
1168 }
1169 /*
1170 * If we issued read requests, let them complete.
1171 */
1172 while (wait_bh > wait) {
1173 wait_on_buffer(*--wait_bh);
1174 if (!buffer_uptodate(*wait_bh))
1175 err = -EIO;
1176 }
1177 if (unlikely(err))
1178 page_zero_new_buffers(page, from, to);
1179 else if (decrypt)
7821d4dd 1180 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1181 PAGE_SIZE, 0, page->index);
2058f83a
MH
1182 return err;
1183}
1184#endif
1185
bfc1af65 1186static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1187 loff_t pos, unsigned len, unsigned flags,
1188 struct page **pagep, void **fsdata)
ac27a0ec 1189{
af5bc92d 1190 struct inode *inode = mapping->host;
1938a150 1191 int ret, needed_blocks;
ac27a0ec
DK
1192 handle_t *handle;
1193 int retries = 0;
af5bc92d 1194 struct page *page;
de9a55b8 1195 pgoff_t index;
af5bc92d 1196 unsigned from, to;
bfc1af65 1197
9bffad1e 1198 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1199 /*
1200 * Reserve one block more for addition to orphan list in case
1201 * we allocate blocks but write fails for some reason
1202 */
1203 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1204 index = pos >> PAGE_SHIFT;
1205 from = pos & (PAGE_SIZE - 1);
af5bc92d 1206 to = from + len;
ac27a0ec 1207
f19d5870
TM
1208 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1209 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1210 flags, pagep);
1211 if (ret < 0)
47564bfb
TT
1212 return ret;
1213 if (ret == 1)
1214 return 0;
f19d5870
TM
1215 }
1216
47564bfb
TT
1217 /*
1218 * grab_cache_page_write_begin() can take a long time if the
1219 * system is thrashing due to memory pressure, or if the page
1220 * is being written back. So grab it first before we start
1221 * the transaction handle. This also allows us to allocate
1222 * the page (if needed) without using GFP_NOFS.
1223 */
1224retry_grab:
1225 page = grab_cache_page_write_begin(mapping, index, flags);
1226 if (!page)
1227 return -ENOMEM;
1228 unlock_page(page);
1229
1230retry_journal:
9924a92a 1231 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1232 if (IS_ERR(handle)) {
09cbfeaf 1233 put_page(page);
47564bfb 1234 return PTR_ERR(handle);
7479d2b9 1235 }
ac27a0ec 1236
47564bfb
TT
1237 lock_page(page);
1238 if (page->mapping != mapping) {
1239 /* The page got truncated from under us */
1240 unlock_page(page);
09cbfeaf 1241 put_page(page);
cf108bca 1242 ext4_journal_stop(handle);
47564bfb 1243 goto retry_grab;
cf108bca 1244 }
7afe5aa5
DM
1245 /* In case writeback began while the page was unlocked */
1246 wait_for_stable_page(page);
cf108bca 1247
2058f83a
MH
1248#ifdef CONFIG_EXT4_FS_ENCRYPTION
1249 if (ext4_should_dioread_nolock(inode))
1250 ret = ext4_block_write_begin(page, pos, len,
705965bd 1251 ext4_get_block_unwritten);
2058f83a
MH
1252 else
1253 ret = ext4_block_write_begin(page, pos, len,
1254 ext4_get_block);
1255#else
744692dc 1256 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1257 ret = __block_write_begin(page, pos, len,
1258 ext4_get_block_unwritten);
744692dc 1259 else
6e1db88d 1260 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1261#endif
bfc1af65 1262 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1263 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1264 from, to, NULL,
1265 do_journal_get_write_access);
ac27a0ec 1266 }
bfc1af65
NP
1267
1268 if (ret) {
af5bc92d 1269 unlock_page(page);
ae4d5372 1270 /*
6e1db88d 1271 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1272 * outside i_size. Trim these off again. Don't need
1273 * i_size_read because we hold i_mutex.
1938a150
AK
1274 *
1275 * Add inode to orphan list in case we crash before
1276 * truncate finishes
ae4d5372 1277 */
ffacfa7a 1278 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1279 ext4_orphan_add(handle, inode);
1280
1281 ext4_journal_stop(handle);
1282 if (pos + len > inode->i_size) {
b9a4207d 1283 ext4_truncate_failed_write(inode);
de9a55b8 1284 /*
ffacfa7a 1285 * If truncate failed early the inode might
1938a150
AK
1286 * still be on the orphan list; we need to
1287 * make sure the inode is removed from the
1288 * orphan list in that case.
1289 */
1290 if (inode->i_nlink)
1291 ext4_orphan_del(NULL, inode);
1292 }
bfc1af65 1293
47564bfb
TT
1294 if (ret == -ENOSPC &&
1295 ext4_should_retry_alloc(inode->i_sb, &retries))
1296 goto retry_journal;
09cbfeaf 1297 put_page(page);
47564bfb
TT
1298 return ret;
1299 }
1300 *pagep = page;
ac27a0ec
DK
1301 return ret;
1302}
1303
bfc1af65
NP
1304/* For write_end() in data=journal mode */
1305static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1306{
13fca323 1307 int ret;
ac27a0ec
DK
1308 if (!buffer_mapped(bh) || buffer_freed(bh))
1309 return 0;
1310 set_buffer_uptodate(bh);
13fca323
TT
1311 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1312 clear_buffer_meta(bh);
1313 clear_buffer_prio(bh);
1314 return ret;
ac27a0ec
DK
1315}
1316
eed4333f
ZL
1317/*
1318 * We need to pick up the new inode size which generic_commit_write gave us
1319 * `file' can be NULL - eg, when called from page_symlink().
1320 *
1321 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1322 * buffers are managed internally.
1323 */
1324static int ext4_write_end(struct file *file,
1325 struct address_space *mapping,
1326 loff_t pos, unsigned len, unsigned copied,
1327 struct page *page, void *fsdata)
f8514083 1328{
f8514083 1329 handle_t *handle = ext4_journal_current_handle();
eed4333f 1330 struct inode *inode = mapping->host;
0572639f 1331 loff_t old_size = inode->i_size;
eed4333f
ZL
1332 int ret = 0, ret2;
1333 int i_size_changed = 0;
1334
1335 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1336 if (ext4_has_inline_data(inode)) {
1337 ret = ext4_write_inline_data_end(inode, pos, len,
1338 copied, page);
1339 if (ret < 0)
1340 goto errout;
1341 copied = ret;
1342 } else
f19d5870
TM
1343 copied = block_write_end(file, mapping, pos,
1344 len, copied, page, fsdata);
f8514083 1345 /*
4631dbf6 1346 * it's important to update i_size while still holding page lock:
f8514083
AK
1347 * page writeout could otherwise come in and zero beyond i_size.
1348 */
4631dbf6 1349 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1350 unlock_page(page);
09cbfeaf 1351 put_page(page);
f8514083 1352
0572639f
XW
1353 if (old_size < pos)
1354 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1355 /*
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1359 * filesystems.
1360 */
1361 if (i_size_changed)
1362 ext4_mark_inode_dirty(handle, inode);
1363
ffacfa7a 1364 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1368 */
1369 ext4_orphan_add(handle, inode);
74d553aa 1370errout:
617ba13b 1371 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1372 if (!ret)
1373 ret = ret2;
bfc1af65 1374
f8514083 1375 if (pos + len > inode->i_size) {
b9a4207d 1376 ext4_truncate_failed_write(inode);
de9a55b8 1377 /*
ffacfa7a 1378 * If truncate failed early the inode might still be
f8514083
AK
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1381 */
1382 if (inode->i_nlink)
1383 ext4_orphan_del(NULL, inode);
1384 }
1385
bfc1af65 1386 return ret ? ret : copied;
ac27a0ec
DK
1387}
1388
b90197b6
TT
1389/*
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1393 */
1394static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1395{
1396 unsigned int block_start = 0, block_end;
1397 struct buffer_head *head, *bh;
1398
1399 bh = head = page_buffers(page);
1400 do {
1401 block_end = block_start + bh->b_size;
1402 if (buffer_new(bh)) {
1403 if (block_end > from && block_start < to) {
1404 if (!PageUptodate(page)) {
1405 unsigned start, size;
1406
1407 start = max(from, block_start);
1408 size = min(to, block_end) - start;
1409
1410 zero_user(page, start, size);
1411 set_buffer_uptodate(bh);
1412 }
1413 clear_buffer_new(bh);
1414 }
1415 }
1416 block_start = block_end;
1417 bh = bh->b_this_page;
1418 } while (bh != head);
1419}
1420
bfc1af65 1421static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1422 struct address_space *mapping,
1423 loff_t pos, unsigned len, unsigned copied,
1424 struct page *page, void *fsdata)
ac27a0ec 1425{
617ba13b 1426 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1427 struct inode *inode = mapping->host;
0572639f 1428 loff_t old_size = inode->i_size;
ac27a0ec
DK
1429 int ret = 0, ret2;
1430 int partial = 0;
bfc1af65 1431 unsigned from, to;
4631dbf6 1432 int size_changed = 0;
ac27a0ec 1433
9bffad1e 1434 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1435 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1436 to = from + len;
1437
441c8508
CW
1438 BUG_ON(!ext4_handle_valid(handle));
1439
3fdcfb66
TM
1440 if (ext4_has_inline_data(inode))
1441 copied = ext4_write_inline_data_end(inode, pos, len,
1442 copied, page);
1443 else {
1444 if (copied < len) {
1445 if (!PageUptodate(page))
1446 copied = 0;
b90197b6 1447 zero_new_buffers(page, from+copied, to);
3fdcfb66 1448 }
ac27a0ec 1449
3fdcfb66
TM
1450 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1451 to, &partial, write_end_fn);
1452 if (!partial)
1453 SetPageUptodate(page);
1454 }
4631dbf6 1455 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1456 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1457 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1458 unlock_page(page);
09cbfeaf 1459 put_page(page);
4631dbf6 1460
0572639f
XW
1461 if (old_size < pos)
1462 pagecache_isize_extended(inode, old_size, pos);
1463
4631dbf6 1464 if (size_changed) {
617ba13b 1465 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1466 if (!ret)
1467 ret = ret2;
1468 }
bfc1af65 1469
ffacfa7a 1470 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1471 /* if we have allocated more blocks and copied
1472 * less. We will have blocks allocated outside
1473 * inode->i_size. So truncate them
1474 */
1475 ext4_orphan_add(handle, inode);
1476
617ba13b 1477 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1478 if (!ret)
1479 ret = ret2;
f8514083 1480 if (pos + len > inode->i_size) {
b9a4207d 1481 ext4_truncate_failed_write(inode);
de9a55b8 1482 /*
ffacfa7a 1483 * If truncate failed early the inode might still be
f8514083
AK
1484 * on the orphan list; we need to make sure the inode
1485 * is removed from the orphan list in that case.
1486 */
1487 if (inode->i_nlink)
1488 ext4_orphan_del(NULL, inode);
1489 }
bfc1af65
NP
1490
1491 return ret ? ret : copied;
ac27a0ec 1492}
d2a17637 1493
9d0be502 1494/*
c27e43a1 1495 * Reserve space for a single cluster
9d0be502 1496 */
c27e43a1 1497static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1498{
60e58e0f 1499 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1500 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1501 int ret;
03179fe9
TT
1502
1503 /*
1504 * We will charge metadata quota at writeout time; this saves
1505 * us from metadata over-estimation, though we may go over by
1506 * a small amount in the end. Here we just reserve for data.
1507 */
1508 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1509 if (ret)
1510 return ret;
d2a17637 1511
0637c6f4 1512 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1513 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1514 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1516 return -ENOSPC;
1517 }
9d0be502 1518 ei->i_reserved_data_blocks++;
c27e43a1 1519 trace_ext4_da_reserve_space(inode);
0637c6f4 1520 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1521
d2a17637
MC
1522 return 0; /* success */
1523}
1524
12219aea 1525static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1526{
1527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1528 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1529
cd213226
MC
1530 if (!to_free)
1531 return; /* Nothing to release, exit */
1532
d2a17637 1533 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1534
5a58ec87 1535 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1536 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1537 /*
0637c6f4
TT
1538 * if there aren't enough reserved blocks, then the
1539 * counter is messed up somewhere. Since this
1540 * function is called from invalidate page, it's
1541 * harmless to return without any action.
cd213226 1542 */
8de5c325 1543 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1544 "ino %lu, to_free %d with only %d reserved "
1084f252 1545 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1546 ei->i_reserved_data_blocks);
1547 WARN_ON(1);
1548 to_free = ei->i_reserved_data_blocks;
cd213226 1549 }
0637c6f4 1550 ei->i_reserved_data_blocks -= to_free;
cd213226 1551
72b8ab9d 1552 /* update fs dirty data blocks counter */
57042651 1553 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1554
d2a17637 1555 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1556
7b415bf6 1557 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1558}
1559
1560static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1561 unsigned int offset,
1562 unsigned int length)
d2a17637 1563{
9705acd6 1564 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1565 struct buffer_head *head, *bh;
1566 unsigned int curr_off = 0;
7b415bf6
AK
1567 struct inode *inode = page->mapping->host;
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1569 unsigned int stop = offset + length;
7b415bf6 1570 int num_clusters;
51865fda 1571 ext4_fsblk_t lblk;
d2a17637 1572
09cbfeaf 1573 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1574
d2a17637
MC
1575 head = page_buffers(page);
1576 bh = head;
1577 do {
1578 unsigned int next_off = curr_off + bh->b_size;
1579
ca99fdd2
LC
1580 if (next_off > stop)
1581 break;
1582
d2a17637
MC
1583 if ((offset <= curr_off) && (buffer_delay(bh))) {
1584 to_release++;
9705acd6 1585 contiguous_blks++;
d2a17637 1586 clear_buffer_delay(bh);
9705acd6
LC
1587 } else if (contiguous_blks) {
1588 lblk = page->index <<
09cbfeaf 1589 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1590 lblk += (curr_off >> inode->i_blkbits) -
1591 contiguous_blks;
1592 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1593 contiguous_blks = 0;
d2a17637
MC
1594 }
1595 curr_off = next_off;
1596 } while ((bh = bh->b_this_page) != head);
7b415bf6 1597
9705acd6 1598 if (contiguous_blks) {
09cbfeaf 1599 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1600 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1601 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1602 }
1603
7b415bf6
AK
1604 /* If we have released all the blocks belonging to a cluster, then we
1605 * need to release the reserved space for that cluster. */
1606 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1607 while (num_clusters > 0) {
09cbfeaf 1608 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1609 ((num_clusters - 1) << sbi->s_cluster_bits);
1610 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1611 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1612 ext4_da_release_space(inode, 1);
1613
1614 num_clusters--;
1615 }
d2a17637 1616}
ac27a0ec 1617
64769240
AT
1618/*
1619 * Delayed allocation stuff
1620 */
1621
4e7ea81d
JK
1622struct mpage_da_data {
1623 struct inode *inode;
1624 struct writeback_control *wbc;
6b523df4 1625
4e7ea81d
JK
1626 pgoff_t first_page; /* The first page to write */
1627 pgoff_t next_page; /* Current page to examine */
1628 pgoff_t last_page; /* Last page to examine */
791b7f08 1629 /*
4e7ea81d
JK
1630 * Extent to map - this can be after first_page because that can be
1631 * fully mapped. We somewhat abuse m_flags to store whether the extent
1632 * is delalloc or unwritten.
791b7f08 1633 */
4e7ea81d
JK
1634 struct ext4_map_blocks map;
1635 struct ext4_io_submit io_submit; /* IO submission data */
1636};
64769240 1637
4e7ea81d
JK
1638static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1639 bool invalidate)
c4a0c46e
AK
1640{
1641 int nr_pages, i;
1642 pgoff_t index, end;
1643 struct pagevec pvec;
1644 struct inode *inode = mpd->inode;
1645 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1646
1647 /* This is necessary when next_page == 0. */
1648 if (mpd->first_page >= mpd->next_page)
1649 return;
c4a0c46e 1650
c7f5938a
CW
1651 index = mpd->first_page;
1652 end = mpd->next_page - 1;
4e7ea81d
JK
1653 if (invalidate) {
1654 ext4_lblk_t start, last;
09cbfeaf
KS
1655 start = index << (PAGE_SHIFT - inode->i_blkbits);
1656 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1657 ext4_es_remove_extent(inode, start, last - start + 1);
1658 }
51865fda 1659
66bea92c 1660 pagevec_init(&pvec, 0);
c4a0c46e
AK
1661 while (index <= end) {
1662 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1663 if (nr_pages == 0)
1664 break;
1665 for (i = 0; i < nr_pages; i++) {
1666 struct page *page = pvec.pages[i];
9b1d0998 1667 if (page->index > end)
c4a0c46e 1668 break;
c4a0c46e
AK
1669 BUG_ON(!PageLocked(page));
1670 BUG_ON(PageWriteback(page));
4e7ea81d 1671 if (invalidate) {
4e800c03 1672 if (page_mapped(page))
1673 clear_page_dirty_for_io(page);
09cbfeaf 1674 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1675 ClearPageUptodate(page);
1676 }
c4a0c46e
AK
1677 unlock_page(page);
1678 }
9b1d0998
JK
1679 index = pvec.pages[nr_pages - 1]->index + 1;
1680 pagevec_release(&pvec);
c4a0c46e 1681 }
c4a0c46e
AK
1682}
1683
df22291f
AK
1684static void ext4_print_free_blocks(struct inode *inode)
1685{
1686 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1687 struct super_block *sb = inode->i_sb;
f78ee70d 1688 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1689
1690 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1691 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1692 ext4_count_free_clusters(sb)));
92b97816
TT
1693 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1694 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1695 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1696 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1697 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1698 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1699 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1700 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1701 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1702 ei->i_reserved_data_blocks);
df22291f
AK
1703 return;
1704}
1705
c364b22c 1706static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1707{
c364b22c 1708 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1709}
1710
5356f261
AK
1711/*
1712 * This function is grabs code from the very beginning of
1713 * ext4_map_blocks, but assumes that the caller is from delayed write
1714 * time. This function looks up the requested blocks and sets the
1715 * buffer delay bit under the protection of i_data_sem.
1716 */
1717static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1718 struct ext4_map_blocks *map,
1719 struct buffer_head *bh)
1720{
d100eef2 1721 struct extent_status es;
5356f261
AK
1722 int retval;
1723 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1724#ifdef ES_AGGRESSIVE_TEST
1725 struct ext4_map_blocks orig_map;
1726
1727 memcpy(&orig_map, map, sizeof(*map));
1728#endif
5356f261
AK
1729
1730 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1731 invalid_block = ~0;
1732
1733 map->m_flags = 0;
1734 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1735 "logical block %lu\n", inode->i_ino, map->m_len,
1736 (unsigned long) map->m_lblk);
d100eef2
ZL
1737
1738 /* Lookup extent status tree firstly */
1739 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1740 if (ext4_es_is_hole(&es)) {
1741 retval = 0;
c8b459f4 1742 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1743 goto add_delayed;
1744 }
1745
1746 /*
1747 * Delayed extent could be allocated by fallocate.
1748 * So we need to check it.
1749 */
1750 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1751 map_bh(bh, inode->i_sb, invalid_block);
1752 set_buffer_new(bh);
1753 set_buffer_delay(bh);
1754 return 0;
1755 }
1756
1757 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1758 retval = es.es_len - (iblock - es.es_lblk);
1759 if (retval > map->m_len)
1760 retval = map->m_len;
1761 map->m_len = retval;
1762 if (ext4_es_is_written(&es))
1763 map->m_flags |= EXT4_MAP_MAPPED;
1764 else if (ext4_es_is_unwritten(&es))
1765 map->m_flags |= EXT4_MAP_UNWRITTEN;
1766 else
1767 BUG_ON(1);
1768
921f266b
DM
1769#ifdef ES_AGGRESSIVE_TEST
1770 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1771#endif
d100eef2
ZL
1772 return retval;
1773 }
1774
5356f261
AK
1775 /*
1776 * Try to see if we can get the block without requesting a new
1777 * file system block.
1778 */
c8b459f4 1779 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1780 if (ext4_has_inline_data(inode))
9c3569b5 1781 retval = 0;
cbd7584e 1782 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1783 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1784 else
2f8e0a7c 1785 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1786
d100eef2 1787add_delayed:
5356f261 1788 if (retval == 0) {
f7fec032 1789 int ret;
5356f261
AK
1790 /*
1791 * XXX: __block_prepare_write() unmaps passed block,
1792 * is it OK?
1793 */
386ad67c
LC
1794 /*
1795 * If the block was allocated from previously allocated cluster,
1796 * then we don't need to reserve it again. However we still need
1797 * to reserve metadata for every block we're going to write.
1798 */
c27e43a1 1799 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1800 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1801 ret = ext4_da_reserve_space(inode);
f7fec032 1802 if (ret) {
5356f261 1803 /* not enough space to reserve */
f7fec032 1804 retval = ret;
5356f261 1805 goto out_unlock;
f7fec032 1806 }
5356f261
AK
1807 }
1808
f7fec032
ZL
1809 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1810 ~0, EXTENT_STATUS_DELAYED);
1811 if (ret) {
1812 retval = ret;
51865fda 1813 goto out_unlock;
f7fec032 1814 }
51865fda 1815
5356f261
AK
1816 map_bh(bh, inode->i_sb, invalid_block);
1817 set_buffer_new(bh);
1818 set_buffer_delay(bh);
f7fec032
ZL
1819 } else if (retval > 0) {
1820 int ret;
3be78c73 1821 unsigned int status;
f7fec032 1822
44fb851d
ZL
1823 if (unlikely(retval != map->m_len)) {
1824 ext4_warning(inode->i_sb,
1825 "ES len assertion failed for inode "
1826 "%lu: retval %d != map->m_len %d",
1827 inode->i_ino, retval, map->m_len);
1828 WARN_ON(1);
921f266b 1829 }
921f266b 1830
f7fec032
ZL
1831 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1832 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1833 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1834 map->m_pblk, status);
1835 if (ret != 0)
1836 retval = ret;
5356f261
AK
1837 }
1838
1839out_unlock:
1840 up_read((&EXT4_I(inode)->i_data_sem));
1841
1842 return retval;
1843}
1844
64769240 1845/*
d91bd2c1 1846 * This is a special get_block_t callback which is used by
b920c755
TT
1847 * ext4_da_write_begin(). It will either return mapped block or
1848 * reserve space for a single block.
29fa89d0
AK
1849 *
1850 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1851 * We also have b_blocknr = -1 and b_bdev initialized properly
1852 *
1853 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1854 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1855 * initialized properly.
64769240 1856 */
9c3569b5
TM
1857int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1858 struct buffer_head *bh, int create)
64769240 1859{
2ed88685 1860 struct ext4_map_blocks map;
64769240
AT
1861 int ret = 0;
1862
1863 BUG_ON(create == 0);
2ed88685
TT
1864 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1865
1866 map.m_lblk = iblock;
1867 map.m_len = 1;
64769240
AT
1868
1869 /*
1870 * first, we need to know whether the block is allocated already
1871 * preallocated blocks are unmapped but should treated
1872 * the same as allocated blocks.
1873 */
5356f261
AK
1874 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1875 if (ret <= 0)
2ed88685 1876 return ret;
64769240 1877
2ed88685 1878 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1879 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1880
1881 if (buffer_unwritten(bh)) {
1882 /* A delayed write to unwritten bh should be marked
1883 * new and mapped. Mapped ensures that we don't do
1884 * get_block multiple times when we write to the same
1885 * offset and new ensures that we do proper zero out
1886 * for partial write.
1887 */
1888 set_buffer_new(bh);
c8205636 1889 set_buffer_mapped(bh);
2ed88685
TT
1890 }
1891 return 0;
64769240 1892}
61628a3f 1893
62e086be
AK
1894static int bget_one(handle_t *handle, struct buffer_head *bh)
1895{
1896 get_bh(bh);
1897 return 0;
1898}
1899
1900static int bput_one(handle_t *handle, struct buffer_head *bh)
1901{
1902 put_bh(bh);
1903 return 0;
1904}
1905
1906static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1907 unsigned int len)
1908{
1909 struct address_space *mapping = page->mapping;
1910 struct inode *inode = mapping->host;
3fdcfb66 1911 struct buffer_head *page_bufs = NULL;
62e086be 1912 handle_t *handle = NULL;
3fdcfb66
TM
1913 int ret = 0, err = 0;
1914 int inline_data = ext4_has_inline_data(inode);
1915 struct buffer_head *inode_bh = NULL;
62e086be 1916
cb20d518 1917 ClearPageChecked(page);
3fdcfb66
TM
1918
1919 if (inline_data) {
1920 BUG_ON(page->index != 0);
1921 BUG_ON(len > ext4_get_max_inline_size(inode));
1922 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1923 if (inode_bh == NULL)
1924 goto out;
1925 } else {
1926 page_bufs = page_buffers(page);
1927 if (!page_bufs) {
1928 BUG();
1929 goto out;
1930 }
1931 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1932 NULL, bget_one);
1933 }
bdf96838
TT
1934 /*
1935 * We need to release the page lock before we start the
1936 * journal, so grab a reference so the page won't disappear
1937 * out from under us.
1938 */
1939 get_page(page);
62e086be
AK
1940 unlock_page(page);
1941
9924a92a
TT
1942 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1943 ext4_writepage_trans_blocks(inode));
62e086be
AK
1944 if (IS_ERR(handle)) {
1945 ret = PTR_ERR(handle);
bdf96838
TT
1946 put_page(page);
1947 goto out_no_pagelock;
62e086be 1948 }
441c8508
CW
1949 BUG_ON(!ext4_handle_valid(handle));
1950
bdf96838
TT
1951 lock_page(page);
1952 put_page(page);
1953 if (page->mapping != mapping) {
1954 /* The page got truncated from under us */
1955 ext4_journal_stop(handle);
1956 ret = 0;
1957 goto out;
1958 }
1959
3fdcfb66 1960 if (inline_data) {
5d601255 1961 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1962 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1963
3fdcfb66
TM
1964 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1965
1966 } else {
1967 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1968 do_journal_get_write_access);
1969
1970 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1971 write_end_fn);
1972 }
62e086be
AK
1973 if (ret == 0)
1974 ret = err;
2d859db3 1975 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1976 err = ext4_journal_stop(handle);
1977 if (!ret)
1978 ret = err;
1979
3fdcfb66 1980 if (!ext4_has_inline_data(inode))
8c9367fd 1981 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1982 NULL, bput_one);
19f5fb7a 1983 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1984out:
bdf96838
TT
1985 unlock_page(page);
1986out_no_pagelock:
3fdcfb66 1987 brelse(inode_bh);
62e086be
AK
1988 return ret;
1989}
1990
61628a3f 1991/*
43ce1d23
AK
1992 * Note that we don't need to start a transaction unless we're journaling data
1993 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1994 * need to file the inode to the transaction's list in ordered mode because if
1995 * we are writing back data added by write(), the inode is already there and if
25985edc 1996 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1997 * transaction the data will hit the disk. In case we are journaling data, we
1998 * cannot start transaction directly because transaction start ranks above page
1999 * lock so we have to do some magic.
2000 *
b920c755 2001 * This function can get called via...
20970ba6 2002 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2003 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2004 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2005 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2006 *
2007 * We don't do any block allocation in this function. If we have page with
2008 * multiple blocks we need to write those buffer_heads that are mapped. This
2009 * is important for mmaped based write. So if we do with blocksize 1K
2010 * truncate(f, 1024);
2011 * a = mmap(f, 0, 4096);
2012 * a[0] = 'a';
2013 * truncate(f, 4096);
2014 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2015 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2016 * do_wp_page). So writepage should write the first block. If we modify
2017 * the mmap area beyond 1024 we will again get a page_fault and the
2018 * page_mkwrite callback will do the block allocation and mark the
2019 * buffer_heads mapped.
2020 *
2021 * We redirty the page if we have any buffer_heads that is either delay or
2022 * unwritten in the page.
2023 *
2024 * We can get recursively called as show below.
2025 *
2026 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2027 * ext4_writepage()
2028 *
2029 * But since we don't do any block allocation we should not deadlock.
2030 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2031 */
43ce1d23 2032static int ext4_writepage(struct page *page,
62e086be 2033 struct writeback_control *wbc)
64769240 2034{
f8bec370 2035 int ret = 0;
61628a3f 2036 loff_t size;
498e5f24 2037 unsigned int len;
744692dc 2038 struct buffer_head *page_bufs = NULL;
61628a3f 2039 struct inode *inode = page->mapping->host;
36ade451 2040 struct ext4_io_submit io_submit;
1c8349a1 2041 bool keep_towrite = false;
61628a3f 2042
a9c667f8 2043 trace_ext4_writepage(page);
f0e6c985 2044 size = i_size_read(inode);
09cbfeaf
KS
2045 if (page->index == size >> PAGE_SHIFT)
2046 len = size & ~PAGE_MASK;
f0e6c985 2047 else
09cbfeaf 2048 len = PAGE_SIZE;
64769240 2049
a42afc5f 2050 page_bufs = page_buffers(page);
a42afc5f 2051 /*
fe386132
JK
2052 * We cannot do block allocation or other extent handling in this
2053 * function. If there are buffers needing that, we have to redirty
2054 * the page. But we may reach here when we do a journal commit via
2055 * journal_submit_inode_data_buffers() and in that case we must write
2056 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2057 *
2058 * Also, if there is only one buffer per page (the fs block
2059 * size == the page size), if one buffer needs block
2060 * allocation or needs to modify the extent tree to clear the
2061 * unwritten flag, we know that the page can't be written at
2062 * all, so we might as well refuse the write immediately.
2063 * Unfortunately if the block size != page size, we can't as
2064 * easily detect this case using ext4_walk_page_buffers(), but
2065 * for the extremely common case, this is an optimization that
2066 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2067 */
f19d5870
TM
2068 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2069 ext4_bh_delay_or_unwritten)) {
f8bec370 2070 redirty_page_for_writepage(wbc, page);
cccd147a 2071 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2072 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2073 /*
2074 * For memory cleaning there's no point in writing only
2075 * some buffers. So just bail out. Warn if we came here
2076 * from direct reclaim.
2077 */
2078 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2079 == PF_MEMALLOC);
f0e6c985
AK
2080 unlock_page(page);
2081 return 0;
2082 }
1c8349a1 2083 keep_towrite = true;
a42afc5f 2084 }
64769240 2085
cb20d518 2086 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2087 /*
2088 * It's mmapped pagecache. Add buffers and journal it. There
2089 * doesn't seem much point in redirtying the page here.
2090 */
3f0ca309 2091 return __ext4_journalled_writepage(page, len);
43ce1d23 2092
97a851ed
JK
2093 ext4_io_submit_init(&io_submit, wbc);
2094 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2095 if (!io_submit.io_end) {
2096 redirty_page_for_writepage(wbc, page);
2097 unlock_page(page);
2098 return -ENOMEM;
2099 }
1c8349a1 2100 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2101 ext4_io_submit(&io_submit);
97a851ed
JK
2102 /* Drop io_end reference we got from init */
2103 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2104 return ret;
2105}
2106
5f1132b2
JK
2107static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2108{
2109 int len;
2110 loff_t size = i_size_read(mpd->inode);
2111 int err;
2112
2113 BUG_ON(page->index != mpd->first_page);
09cbfeaf
KS
2114 if (page->index == size >> PAGE_SHIFT)
2115 len = size & ~PAGE_MASK;
5f1132b2 2116 else
09cbfeaf 2117 len = PAGE_SIZE;
5f1132b2 2118 clear_page_dirty_for_io(page);
1c8349a1 2119 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2120 if (!err)
2121 mpd->wbc->nr_to_write--;
2122 mpd->first_page++;
2123
2124 return err;
2125}
2126
4e7ea81d
JK
2127#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2128
61628a3f 2129/*
fffb2739
JK
2130 * mballoc gives us at most this number of blocks...
2131 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2132 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2133 */
fffb2739 2134#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2135
4e7ea81d
JK
2136/*
2137 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2138 *
2139 * @mpd - extent of blocks
2140 * @lblk - logical number of the block in the file
09930042 2141 * @bh - buffer head we want to add to the extent
4e7ea81d 2142 *
09930042
JK
2143 * The function is used to collect contig. blocks in the same state. If the
2144 * buffer doesn't require mapping for writeback and we haven't started the
2145 * extent of buffers to map yet, the function returns 'true' immediately - the
2146 * caller can write the buffer right away. Otherwise the function returns true
2147 * if the block has been added to the extent, false if the block couldn't be
2148 * added.
4e7ea81d 2149 */
09930042
JK
2150static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2151 struct buffer_head *bh)
4e7ea81d
JK
2152{
2153 struct ext4_map_blocks *map = &mpd->map;
2154
09930042
JK
2155 /* Buffer that doesn't need mapping for writeback? */
2156 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2157 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2158 /* So far no extent to map => we write the buffer right away */
2159 if (map->m_len == 0)
2160 return true;
2161 return false;
2162 }
4e7ea81d
JK
2163
2164 /* First block in the extent? */
2165 if (map->m_len == 0) {
2166 map->m_lblk = lblk;
2167 map->m_len = 1;
09930042
JK
2168 map->m_flags = bh->b_state & BH_FLAGS;
2169 return true;
4e7ea81d
JK
2170 }
2171
09930042
JK
2172 /* Don't go larger than mballoc is willing to allocate */
2173 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2174 return false;
2175
4e7ea81d
JK
2176 /* Can we merge the block to our big extent? */
2177 if (lblk == map->m_lblk + map->m_len &&
09930042 2178 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2179 map->m_len++;
09930042 2180 return true;
4e7ea81d 2181 }
09930042 2182 return false;
4e7ea81d
JK
2183}
2184
5f1132b2
JK
2185/*
2186 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2187 *
2188 * @mpd - extent of blocks for mapping
2189 * @head - the first buffer in the page
2190 * @bh - buffer we should start processing from
2191 * @lblk - logical number of the block in the file corresponding to @bh
2192 *
2193 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2194 * the page for IO if all buffers in this page were mapped and there's no
2195 * accumulated extent of buffers to map or add buffers in the page to the
2196 * extent of buffers to map. The function returns 1 if the caller can continue
2197 * by processing the next page, 0 if it should stop adding buffers to the
2198 * extent to map because we cannot extend it anymore. It can also return value
2199 * < 0 in case of error during IO submission.
2200 */
2201static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2202 struct buffer_head *head,
2203 struct buffer_head *bh,
2204 ext4_lblk_t lblk)
4e7ea81d
JK
2205{
2206 struct inode *inode = mpd->inode;
5f1132b2 2207 int err;
4e7ea81d
JK
2208 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2209 >> inode->i_blkbits;
2210
2211 do {
2212 BUG_ON(buffer_locked(bh));
2213
09930042 2214 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2215 /* Found extent to map? */
2216 if (mpd->map.m_len)
5f1132b2 2217 return 0;
09930042 2218 /* Everything mapped so far and we hit EOF */
5f1132b2 2219 break;
4e7ea81d 2220 }
4e7ea81d 2221 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2222 /* So far everything mapped? Submit the page for IO. */
2223 if (mpd->map.m_len == 0) {
2224 err = mpage_submit_page(mpd, head->b_page);
2225 if (err < 0)
2226 return err;
2227 }
2228 return lblk < blocks;
4e7ea81d
JK
2229}
2230
2231/*
2232 * mpage_map_buffers - update buffers corresponding to changed extent and
2233 * submit fully mapped pages for IO
2234 *
2235 * @mpd - description of extent to map, on return next extent to map
2236 *
2237 * Scan buffers corresponding to changed extent (we expect corresponding pages
2238 * to be already locked) and update buffer state according to new extent state.
2239 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2240 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2241 * and do extent conversion after IO is finished. If the last page is not fully
2242 * mapped, we update @map to the next extent in the last page that needs
2243 * mapping. Otherwise we submit the page for IO.
2244 */
2245static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2246{
2247 struct pagevec pvec;
2248 int nr_pages, i;
2249 struct inode *inode = mpd->inode;
2250 struct buffer_head *head, *bh;
09cbfeaf 2251 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2252 pgoff_t start, end;
2253 ext4_lblk_t lblk;
2254 sector_t pblock;
2255 int err;
2256
2257 start = mpd->map.m_lblk >> bpp_bits;
2258 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2259 lblk = start << bpp_bits;
2260 pblock = mpd->map.m_pblk;
2261
2262 pagevec_init(&pvec, 0);
2263 while (start <= end) {
2264 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2265 PAGEVEC_SIZE);
2266 if (nr_pages == 0)
2267 break;
2268 for (i = 0; i < nr_pages; i++) {
2269 struct page *page = pvec.pages[i];
2270
2271 if (page->index > end)
2272 break;
70261f56 2273 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2274 BUG_ON(page->index != start);
2275 bh = head = page_buffers(page);
2276 do {
2277 if (lblk < mpd->map.m_lblk)
2278 continue;
2279 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2280 /*
2281 * Buffer after end of mapped extent.
2282 * Find next buffer in the page to map.
2283 */
2284 mpd->map.m_len = 0;
2285 mpd->map.m_flags = 0;
5f1132b2
JK
2286 /*
2287 * FIXME: If dioread_nolock supports
2288 * blocksize < pagesize, we need to make
2289 * sure we add size mapped so far to
2290 * io_end->size as the following call
2291 * can submit the page for IO.
2292 */
2293 err = mpage_process_page_bufs(mpd, head,
2294 bh, lblk);
4e7ea81d 2295 pagevec_release(&pvec);
5f1132b2
JK
2296 if (err > 0)
2297 err = 0;
2298 return err;
4e7ea81d
JK
2299 }
2300 if (buffer_delay(bh)) {
2301 clear_buffer_delay(bh);
2302 bh->b_blocknr = pblock++;
2303 }
4e7ea81d 2304 clear_buffer_unwritten(bh);
5f1132b2 2305 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2306
2307 /*
2308 * FIXME: This is going to break if dioread_nolock
2309 * supports blocksize < pagesize as we will try to
2310 * convert potentially unmapped parts of inode.
2311 */
09cbfeaf 2312 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2313 /* Page fully mapped - let IO run! */
2314 err = mpage_submit_page(mpd, page);
2315 if (err < 0) {
2316 pagevec_release(&pvec);
2317 return err;
2318 }
2319 start++;
2320 }
2321 pagevec_release(&pvec);
2322 }
2323 /* Extent fully mapped and matches with page boundary. We are done. */
2324 mpd->map.m_len = 0;
2325 mpd->map.m_flags = 0;
2326 return 0;
2327}
2328
2329static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2330{
2331 struct inode *inode = mpd->inode;
2332 struct ext4_map_blocks *map = &mpd->map;
2333 int get_blocks_flags;
090f32ee 2334 int err, dioread_nolock;
4e7ea81d
JK
2335
2336 trace_ext4_da_write_pages_extent(inode, map);
2337 /*
2338 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2339 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2340 * where we have written into one or more preallocated blocks). It is
2341 * possible that we're going to need more metadata blocks than
2342 * previously reserved. However we must not fail because we're in
2343 * writeback and there is nothing we can do about it so it might result
2344 * in data loss. So use reserved blocks to allocate metadata if
2345 * possible.
2346 *
754cfed6
TT
2347 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2348 * the blocks in question are delalloc blocks. This indicates
2349 * that the blocks and quotas has already been checked when
2350 * the data was copied into the page cache.
4e7ea81d
JK
2351 */
2352 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2353 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2354 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2355 dioread_nolock = ext4_should_dioread_nolock(inode);
2356 if (dioread_nolock)
4e7ea81d
JK
2357 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2358 if (map->m_flags & (1 << BH_Delay))
2359 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2360
2361 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2362 if (err < 0)
2363 return err;
090f32ee 2364 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2365 if (!mpd->io_submit.io_end->handle &&
2366 ext4_handle_valid(handle)) {
2367 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2368 handle->h_rsv_handle = NULL;
2369 }
3613d228 2370 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2371 }
4e7ea81d
JK
2372
2373 BUG_ON(map->m_len == 0);
2374 if (map->m_flags & EXT4_MAP_NEW) {
2375 struct block_device *bdev = inode->i_sb->s_bdev;
2376 int i;
2377
2378 for (i = 0; i < map->m_len; i++)
2379 unmap_underlying_metadata(bdev, map->m_pblk + i);
2380 }
2381 return 0;
2382}
2383
2384/*
2385 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2386 * mpd->len and submit pages underlying it for IO
2387 *
2388 * @handle - handle for journal operations
2389 * @mpd - extent to map
7534e854
JK
2390 * @give_up_on_write - we set this to true iff there is a fatal error and there
2391 * is no hope of writing the data. The caller should discard
2392 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2393 *
2394 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2395 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2396 * them to initialized or split the described range from larger unwritten
2397 * extent. Note that we need not map all the described range since allocation
2398 * can return less blocks or the range is covered by more unwritten extents. We
2399 * cannot map more because we are limited by reserved transaction credits. On
2400 * the other hand we always make sure that the last touched page is fully
2401 * mapped so that it can be written out (and thus forward progress is
2402 * guaranteed). After mapping we submit all mapped pages for IO.
2403 */
2404static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2405 struct mpage_da_data *mpd,
2406 bool *give_up_on_write)
4e7ea81d
JK
2407{
2408 struct inode *inode = mpd->inode;
2409 struct ext4_map_blocks *map = &mpd->map;
2410 int err;
2411 loff_t disksize;
6603120e 2412 int progress = 0;
4e7ea81d
JK
2413
2414 mpd->io_submit.io_end->offset =
2415 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2416 do {
4e7ea81d
JK
2417 err = mpage_map_one_extent(handle, mpd);
2418 if (err < 0) {
2419 struct super_block *sb = inode->i_sb;
2420
cb530541
TT
2421 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2422 goto invalidate_dirty_pages;
4e7ea81d 2423 /*
cb530541
TT
2424 * Let the uper layers retry transient errors.
2425 * In the case of ENOSPC, if ext4_count_free_blocks()
2426 * is non-zero, a commit should free up blocks.
4e7ea81d 2427 */
cb530541 2428 if ((err == -ENOMEM) ||
6603120e
DM
2429 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2430 if (progress)
2431 goto update_disksize;
cb530541 2432 return err;
6603120e 2433 }
cb530541
TT
2434 ext4_msg(sb, KERN_CRIT,
2435 "Delayed block allocation failed for "
2436 "inode %lu at logical offset %llu with"
2437 " max blocks %u with error %d",
2438 inode->i_ino,
2439 (unsigned long long)map->m_lblk,
2440 (unsigned)map->m_len, -err);
2441 ext4_msg(sb, KERN_CRIT,
2442 "This should not happen!! Data will "
2443 "be lost\n");
2444 if (err == -ENOSPC)
2445 ext4_print_free_blocks(inode);
2446 invalidate_dirty_pages:
2447 *give_up_on_write = true;
4e7ea81d
JK
2448 return err;
2449 }
6603120e 2450 progress = 1;
4e7ea81d
JK
2451 /*
2452 * Update buffer state, submit mapped pages, and get us new
2453 * extent to map
2454 */
2455 err = mpage_map_and_submit_buffers(mpd);
2456 if (err < 0)
6603120e 2457 goto update_disksize;
27d7c4ed 2458 } while (map->m_len);
4e7ea81d 2459
6603120e 2460update_disksize:
622cad13
TT
2461 /*
2462 * Update on-disk size after IO is submitted. Races with
2463 * truncate are avoided by checking i_size under i_data_sem.
2464 */
09cbfeaf 2465 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2466 if (disksize > EXT4_I(inode)->i_disksize) {
2467 int err2;
622cad13
TT
2468 loff_t i_size;
2469
2470 down_write(&EXT4_I(inode)->i_data_sem);
2471 i_size = i_size_read(inode);
2472 if (disksize > i_size)
2473 disksize = i_size;
2474 if (disksize > EXT4_I(inode)->i_disksize)
2475 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2476 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2477 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2478 if (err2)
2479 ext4_error(inode->i_sb,
2480 "Failed to mark inode %lu dirty",
2481 inode->i_ino);
2482 if (!err)
2483 err = err2;
2484 }
2485 return err;
2486}
2487
fffb2739
JK
2488/*
2489 * Calculate the total number of credits to reserve for one writepages
20970ba6 2490 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2491 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2492 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2493 * bpp - 1 blocks in bpp different extents.
2494 */
525f4ed8
MC
2495static int ext4_da_writepages_trans_blocks(struct inode *inode)
2496{
fffb2739 2497 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2498
fffb2739
JK
2499 return ext4_meta_trans_blocks(inode,
2500 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2501}
61628a3f 2502
8e48dcfb 2503/*
4e7ea81d
JK
2504 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2505 * and underlying extent to map
2506 *
2507 * @mpd - where to look for pages
2508 *
2509 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2510 * IO immediately. When we find a page which isn't mapped we start accumulating
2511 * extent of buffers underlying these pages that needs mapping (formed by
2512 * either delayed or unwritten buffers). We also lock the pages containing
2513 * these buffers. The extent found is returned in @mpd structure (starting at
2514 * mpd->lblk with length mpd->len blocks).
2515 *
2516 * Note that this function can attach bios to one io_end structure which are
2517 * neither logically nor physically contiguous. Although it may seem as an
2518 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2519 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2520 */
4e7ea81d 2521static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2522{
4e7ea81d
JK
2523 struct address_space *mapping = mpd->inode->i_mapping;
2524 struct pagevec pvec;
2525 unsigned int nr_pages;
aeac589a 2526 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2527 pgoff_t index = mpd->first_page;
2528 pgoff_t end = mpd->last_page;
2529 int tag;
2530 int i, err = 0;
2531 int blkbits = mpd->inode->i_blkbits;
2532 ext4_lblk_t lblk;
2533 struct buffer_head *head;
8e48dcfb 2534
4e7ea81d 2535 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2536 tag = PAGECACHE_TAG_TOWRITE;
2537 else
2538 tag = PAGECACHE_TAG_DIRTY;
2539
4e7ea81d
JK
2540 pagevec_init(&pvec, 0);
2541 mpd->map.m_len = 0;
2542 mpd->next_page = index;
4f01b02c 2543 while (index <= end) {
5b41d924 2544 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2545 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2546 if (nr_pages == 0)
4e7ea81d 2547 goto out;
8e48dcfb
TT
2548
2549 for (i = 0; i < nr_pages; i++) {
2550 struct page *page = pvec.pages[i];
2551
2552 /*
2553 * At this point, the page may be truncated or
2554 * invalidated (changing page->mapping to NULL), or
2555 * even swizzled back from swapper_space to tmpfs file
2556 * mapping. However, page->index will not change
2557 * because we have a reference on the page.
2558 */
4f01b02c
TT
2559 if (page->index > end)
2560 goto out;
8e48dcfb 2561
aeac589a
ML
2562 /*
2563 * Accumulated enough dirty pages? This doesn't apply
2564 * to WB_SYNC_ALL mode. For integrity sync we have to
2565 * keep going because someone may be concurrently
2566 * dirtying pages, and we might have synced a lot of
2567 * newly appeared dirty pages, but have not synced all
2568 * of the old dirty pages.
2569 */
2570 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2571 goto out;
2572
4e7ea81d
JK
2573 /* If we can't merge this page, we are done. */
2574 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2575 goto out;
78aaced3 2576
8e48dcfb 2577 lock_page(page);
8e48dcfb 2578 /*
4e7ea81d
JK
2579 * If the page is no longer dirty, or its mapping no
2580 * longer corresponds to inode we are writing (which
2581 * means it has been truncated or invalidated), or the
2582 * page is already under writeback and we are not doing
2583 * a data integrity writeback, skip the page
8e48dcfb 2584 */
4f01b02c
TT
2585 if (!PageDirty(page) ||
2586 (PageWriteback(page) &&
4e7ea81d 2587 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2588 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2589 unlock_page(page);
2590 continue;
2591 }
2592
7cb1a535 2593 wait_on_page_writeback(page);
8e48dcfb 2594 BUG_ON(PageWriteback(page));
8e48dcfb 2595
4e7ea81d 2596 if (mpd->map.m_len == 0)
8eb9e5ce 2597 mpd->first_page = page->index;
8eb9e5ce 2598 mpd->next_page = page->index + 1;
f8bec370 2599 /* Add all dirty buffers to mpd */
4e7ea81d 2600 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2601 (PAGE_SHIFT - blkbits);
f8bec370 2602 head = page_buffers(page);
5f1132b2
JK
2603 err = mpage_process_page_bufs(mpd, head, head, lblk);
2604 if (err <= 0)
4e7ea81d 2605 goto out;
5f1132b2 2606 err = 0;
aeac589a 2607 left--;
8e48dcfb
TT
2608 }
2609 pagevec_release(&pvec);
2610 cond_resched();
2611 }
4f01b02c 2612 return 0;
8eb9e5ce
TT
2613out:
2614 pagevec_release(&pvec);
4e7ea81d 2615 return err;
8e48dcfb
TT
2616}
2617
20970ba6
TT
2618static int __writepage(struct page *page, struct writeback_control *wbc,
2619 void *data)
2620{
2621 struct address_space *mapping = data;
2622 int ret = ext4_writepage(page, wbc);
2623 mapping_set_error(mapping, ret);
2624 return ret;
2625}
2626
2627static int ext4_writepages(struct address_space *mapping,
2628 struct writeback_control *wbc)
64769240 2629{
4e7ea81d
JK
2630 pgoff_t writeback_index = 0;
2631 long nr_to_write = wbc->nr_to_write;
22208ded 2632 int range_whole = 0;
4e7ea81d 2633 int cycled = 1;
61628a3f 2634 handle_t *handle = NULL;
df22291f 2635 struct mpage_da_data mpd;
5e745b04 2636 struct inode *inode = mapping->host;
6b523df4 2637 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2638 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2639 bool done;
1bce63d1 2640 struct blk_plug plug;
cb530541 2641 bool give_up_on_write = false;
61628a3f 2642
c8585c6f 2643 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2644 trace_ext4_writepages(inode, wbc);
ba80b101 2645
c8585c6f
DJ
2646 if (dax_mapping(mapping)) {
2647 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2648 wbc);
2649 goto out_writepages;
2650 }
7f6d5b52 2651
61628a3f
MC
2652 /*
2653 * No pages to write? This is mainly a kludge to avoid starting
2654 * a transaction for special inodes like journal inode on last iput()
2655 * because that could violate lock ordering on umount
2656 */
a1d6cc56 2657 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2658 goto out_writepages;
2a21e37e 2659
20970ba6
TT
2660 if (ext4_should_journal_data(inode)) {
2661 struct blk_plug plug;
20970ba6
TT
2662
2663 blk_start_plug(&plug);
2664 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2665 blk_finish_plug(&plug);
bbf023c7 2666 goto out_writepages;
20970ba6
TT
2667 }
2668
2a21e37e
TT
2669 /*
2670 * If the filesystem has aborted, it is read-only, so return
2671 * right away instead of dumping stack traces later on that
2672 * will obscure the real source of the problem. We test
4ab2f15b 2673 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2674 * the latter could be true if the filesystem is mounted
20970ba6 2675 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2676 * *never* be called, so if that ever happens, we would want
2677 * the stack trace.
2678 */
bbf023c7
ML
2679 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2680 ret = -EROFS;
2681 goto out_writepages;
2682 }
2a21e37e 2683
6b523df4
JK
2684 if (ext4_should_dioread_nolock(inode)) {
2685 /*
70261f56 2686 * We may need to convert up to one extent per block in
6b523df4
JK
2687 * the page and we may dirty the inode.
2688 */
09cbfeaf 2689 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2690 }
2691
4e7ea81d
JK
2692 /*
2693 * If we have inline data and arrive here, it means that
2694 * we will soon create the block for the 1st page, so
2695 * we'd better clear the inline data here.
2696 */
2697 if (ext4_has_inline_data(inode)) {
2698 /* Just inode will be modified... */
2699 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2700 if (IS_ERR(handle)) {
2701 ret = PTR_ERR(handle);
2702 goto out_writepages;
2703 }
2704 BUG_ON(ext4_test_inode_state(inode,
2705 EXT4_STATE_MAY_INLINE_DATA));
2706 ext4_destroy_inline_data(handle, inode);
2707 ext4_journal_stop(handle);
2708 }
2709
22208ded
AK
2710 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2711 range_whole = 1;
61628a3f 2712
2acf2c26 2713 if (wbc->range_cyclic) {
4e7ea81d
JK
2714 writeback_index = mapping->writeback_index;
2715 if (writeback_index)
2acf2c26 2716 cycled = 0;
4e7ea81d
JK
2717 mpd.first_page = writeback_index;
2718 mpd.last_page = -1;
5b41d924 2719 } else {
09cbfeaf
KS
2720 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2721 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2722 }
a1d6cc56 2723
4e7ea81d
JK
2724 mpd.inode = inode;
2725 mpd.wbc = wbc;
2726 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2727retry:
6e6938b6 2728 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2729 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2730 done = false;
1bce63d1 2731 blk_start_plug(&plug);
4e7ea81d
JK
2732 while (!done && mpd.first_page <= mpd.last_page) {
2733 /* For each extent of pages we use new io_end */
2734 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2735 if (!mpd.io_submit.io_end) {
2736 ret = -ENOMEM;
2737 break;
2738 }
a1d6cc56
AK
2739
2740 /*
4e7ea81d
JK
2741 * We have two constraints: We find one extent to map and we
2742 * must always write out whole page (makes a difference when
2743 * blocksize < pagesize) so that we don't block on IO when we
2744 * try to write out the rest of the page. Journalled mode is
2745 * not supported by delalloc.
a1d6cc56
AK
2746 */
2747 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2748 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2749
4e7ea81d 2750 /* start a new transaction */
6b523df4
JK
2751 handle = ext4_journal_start_with_reserve(inode,
2752 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2753 if (IS_ERR(handle)) {
2754 ret = PTR_ERR(handle);
1693918e 2755 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2756 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2757 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2758 /* Release allocated io_end */
2759 ext4_put_io_end(mpd.io_submit.io_end);
2760 break;
61628a3f 2761 }
f63e6005 2762
4e7ea81d
JK
2763 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2764 ret = mpage_prepare_extent_to_map(&mpd);
2765 if (!ret) {
2766 if (mpd.map.m_len)
cb530541
TT
2767 ret = mpage_map_and_submit_extent(handle, &mpd,
2768 &give_up_on_write);
4e7ea81d
JK
2769 else {
2770 /*
2771 * We scanned the whole range (or exhausted
2772 * nr_to_write), submitted what was mapped and
2773 * didn't find anything needing mapping. We are
2774 * done.
2775 */
2776 done = true;
2777 }
f63e6005 2778 }
646caa9c
JK
2779 /*
2780 * Caution: If the handle is synchronous,
2781 * ext4_journal_stop() can wait for transaction commit
2782 * to finish which may depend on writeback of pages to
2783 * complete or on page lock to be released. In that
2784 * case, we have to wait until after after we have
2785 * submitted all the IO, released page locks we hold,
2786 * and dropped io_end reference (for extent conversion
2787 * to be able to complete) before stopping the handle.
2788 */
2789 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2790 ext4_journal_stop(handle);
2791 handle = NULL;
2792 }
4e7ea81d
JK
2793 /* Submit prepared bio */
2794 ext4_io_submit(&mpd.io_submit);
2795 /* Unlock pages we didn't use */
cb530541 2796 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2797 /*
2798 * Drop our io_end reference we got from init. We have
2799 * to be careful and use deferred io_end finishing if
2800 * we are still holding the transaction as we can
2801 * release the last reference to io_end which may end
2802 * up doing unwritten extent conversion.
2803 */
2804 if (handle) {
2805 ext4_put_io_end_defer(mpd.io_submit.io_end);
2806 ext4_journal_stop(handle);
2807 } else
2808 ext4_put_io_end(mpd.io_submit.io_end);
4e7ea81d
JK
2809
2810 if (ret == -ENOSPC && sbi->s_journal) {
2811 /*
2812 * Commit the transaction which would
22208ded
AK
2813 * free blocks released in the transaction
2814 * and try again
2815 */
df22291f 2816 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2817 ret = 0;
4e7ea81d
JK
2818 continue;
2819 }
2820 /* Fatal error - ENOMEM, EIO... */
2821 if (ret)
61628a3f 2822 break;
a1d6cc56 2823 }
1bce63d1 2824 blk_finish_plug(&plug);
9c12a831 2825 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2826 cycled = 1;
4e7ea81d
JK
2827 mpd.last_page = writeback_index - 1;
2828 mpd.first_page = 0;
2acf2c26
AK
2829 goto retry;
2830 }
22208ded
AK
2831
2832 /* Update index */
22208ded
AK
2833 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2834 /*
4e7ea81d 2835 * Set the writeback_index so that range_cyclic
22208ded
AK
2836 * mode will write it back later
2837 */
4e7ea81d 2838 mapping->writeback_index = mpd.first_page;
a1d6cc56 2839
61628a3f 2840out_writepages:
20970ba6
TT
2841 trace_ext4_writepages_result(inode, wbc, ret,
2842 nr_to_write - wbc->nr_to_write);
c8585c6f 2843 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2844 return ret;
64769240
AT
2845}
2846
79f0be8d
AK
2847static int ext4_nonda_switch(struct super_block *sb)
2848{
5c1ff336 2849 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2850 struct ext4_sb_info *sbi = EXT4_SB(sb);
2851
2852 /*
2853 * switch to non delalloc mode if we are running low
2854 * on free block. The free block accounting via percpu
179f7ebf 2855 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2856 * accumulated on each CPU without updating global counters
2857 * Delalloc need an accurate free block accounting. So switch
2858 * to non delalloc when we are near to error range.
2859 */
5c1ff336
EW
2860 free_clusters =
2861 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2862 dirty_clusters =
2863 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2864 /*
2865 * Start pushing delalloc when 1/2 of free blocks are dirty.
2866 */
5c1ff336 2867 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2868 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2869
5c1ff336
EW
2870 if (2 * free_clusters < 3 * dirty_clusters ||
2871 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2872 /*
c8afb446
ES
2873 * free block count is less than 150% of dirty blocks
2874 * or free blocks is less than watermark
79f0be8d
AK
2875 */
2876 return 1;
2877 }
2878 return 0;
2879}
2880
0ff8947f
ES
2881/* We always reserve for an inode update; the superblock could be there too */
2882static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2883{
e2b911c5 2884 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2885 return 1;
2886
2887 if (pos + len <= 0x7fffffffULL)
2888 return 1;
2889
2890 /* We might need to update the superblock to set LARGE_FILE */
2891 return 2;
2892}
2893
64769240 2894static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2895 loff_t pos, unsigned len, unsigned flags,
2896 struct page **pagep, void **fsdata)
64769240 2897{
72b8ab9d 2898 int ret, retries = 0;
64769240
AT
2899 struct page *page;
2900 pgoff_t index;
64769240
AT
2901 struct inode *inode = mapping->host;
2902 handle_t *handle;
2903
09cbfeaf 2904 index = pos >> PAGE_SHIFT;
79f0be8d
AK
2905
2906 if (ext4_nonda_switch(inode->i_sb)) {
2907 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2908 return ext4_write_begin(file, mapping, pos,
2909 len, flags, pagep, fsdata);
2910 }
2911 *fsdata = (void *)0;
9bffad1e 2912 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2913
2914 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2915 ret = ext4_da_write_inline_data_begin(mapping, inode,
2916 pos, len, flags,
2917 pagep, fsdata);
2918 if (ret < 0)
47564bfb
TT
2919 return ret;
2920 if (ret == 1)
2921 return 0;
9c3569b5
TM
2922 }
2923
47564bfb
TT
2924 /*
2925 * grab_cache_page_write_begin() can take a long time if the
2926 * system is thrashing due to memory pressure, or if the page
2927 * is being written back. So grab it first before we start
2928 * the transaction handle. This also allows us to allocate
2929 * the page (if needed) without using GFP_NOFS.
2930 */
2931retry_grab:
2932 page = grab_cache_page_write_begin(mapping, index, flags);
2933 if (!page)
2934 return -ENOMEM;
2935 unlock_page(page);
2936
64769240
AT
2937 /*
2938 * With delayed allocation, we don't log the i_disksize update
2939 * if there is delayed block allocation. But we still need
2940 * to journalling the i_disksize update if writes to the end
2941 * of file which has an already mapped buffer.
2942 */
47564bfb 2943retry_journal:
0ff8947f
ES
2944 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2945 ext4_da_write_credits(inode, pos, len));
64769240 2946 if (IS_ERR(handle)) {
09cbfeaf 2947 put_page(page);
47564bfb 2948 return PTR_ERR(handle);
64769240
AT
2949 }
2950
47564bfb
TT
2951 lock_page(page);
2952 if (page->mapping != mapping) {
2953 /* The page got truncated from under us */
2954 unlock_page(page);
09cbfeaf 2955 put_page(page);
d5a0d4f7 2956 ext4_journal_stop(handle);
47564bfb 2957 goto retry_grab;
d5a0d4f7 2958 }
47564bfb 2959 /* In case writeback began while the page was unlocked */
7afe5aa5 2960 wait_for_stable_page(page);
64769240 2961
2058f83a
MH
2962#ifdef CONFIG_EXT4_FS_ENCRYPTION
2963 ret = ext4_block_write_begin(page, pos, len,
2964 ext4_da_get_block_prep);
2965#else
6e1db88d 2966 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2967#endif
64769240
AT
2968 if (ret < 0) {
2969 unlock_page(page);
2970 ext4_journal_stop(handle);
ae4d5372
AK
2971 /*
2972 * block_write_begin may have instantiated a few blocks
2973 * outside i_size. Trim these off again. Don't need
2974 * i_size_read because we hold i_mutex.
2975 */
2976 if (pos + len > inode->i_size)
b9a4207d 2977 ext4_truncate_failed_write(inode);
47564bfb
TT
2978
2979 if (ret == -ENOSPC &&
2980 ext4_should_retry_alloc(inode->i_sb, &retries))
2981 goto retry_journal;
2982
09cbfeaf 2983 put_page(page);
47564bfb 2984 return ret;
64769240
AT
2985 }
2986
47564bfb 2987 *pagep = page;
64769240
AT
2988 return ret;
2989}
2990
632eaeab
MC
2991/*
2992 * Check if we should update i_disksize
2993 * when write to the end of file but not require block allocation
2994 */
2995static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2996 unsigned long offset)
632eaeab
MC
2997{
2998 struct buffer_head *bh;
2999 struct inode *inode = page->mapping->host;
3000 unsigned int idx;
3001 int i;
3002
3003 bh = page_buffers(page);
3004 idx = offset >> inode->i_blkbits;
3005
af5bc92d 3006 for (i = 0; i < idx; i++)
632eaeab
MC
3007 bh = bh->b_this_page;
3008
29fa89d0 3009 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3010 return 0;
3011 return 1;
3012}
3013
64769240 3014static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3015 struct address_space *mapping,
3016 loff_t pos, unsigned len, unsigned copied,
3017 struct page *page, void *fsdata)
64769240
AT
3018{
3019 struct inode *inode = mapping->host;
3020 int ret = 0, ret2;
3021 handle_t *handle = ext4_journal_current_handle();
3022 loff_t new_i_size;
632eaeab 3023 unsigned long start, end;
79f0be8d
AK
3024 int write_mode = (int)(unsigned long)fsdata;
3025
74d553aa
TT
3026 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3027 return ext4_write_end(file, mapping, pos,
3028 len, copied, page, fsdata);
632eaeab 3029
9bffad1e 3030 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3031 start = pos & (PAGE_SIZE - 1);
af5bc92d 3032 end = start + copied - 1;
64769240
AT
3033
3034 /*
3035 * generic_write_end() will run mark_inode_dirty() if i_size
3036 * changes. So let's piggyback the i_disksize mark_inode_dirty
3037 * into that.
3038 */
64769240 3039 new_i_size = pos + copied;
ea51d132 3040 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3041 if (ext4_has_inline_data(inode) ||
3042 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3043 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3044 /* We need to mark inode dirty even if
3045 * new_i_size is less that inode->i_size
3046 * bu greater than i_disksize.(hint delalloc)
3047 */
3048 ext4_mark_inode_dirty(handle, inode);
64769240 3049 }
632eaeab 3050 }
9c3569b5
TM
3051
3052 if (write_mode != CONVERT_INLINE_DATA &&
3053 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3054 ext4_has_inline_data(inode))
3055 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3056 page);
3057 else
3058 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3059 page, fsdata);
9c3569b5 3060
64769240
AT
3061 copied = ret2;
3062 if (ret2 < 0)
3063 ret = ret2;
3064 ret2 = ext4_journal_stop(handle);
3065 if (!ret)
3066 ret = ret2;
3067
3068 return ret ? ret : copied;
3069}
3070
d47992f8
LC
3071static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3072 unsigned int length)
64769240 3073{
64769240
AT
3074 /*
3075 * Drop reserved blocks
3076 */
3077 BUG_ON(!PageLocked(page));
3078 if (!page_has_buffers(page))
3079 goto out;
3080
ca99fdd2 3081 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3082
3083out:
d47992f8 3084 ext4_invalidatepage(page, offset, length);
64769240
AT
3085
3086 return;
3087}
3088
ccd2506b
TT
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
fb40ba0d
TT
3094 trace_ext4_alloc_da_blocks(inode);
3095
71d4f7d0 3096 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3097 return 0;
3098
3099 /*
3100 * We do something simple for now. The filemap_flush() will
3101 * also start triggering a write of the data blocks, which is
3102 * not strictly speaking necessary (and for users of
3103 * laptop_mode, not even desirable). However, to do otherwise
3104 * would require replicating code paths in:
de9a55b8 3105 *
20970ba6 3106 * ext4_writepages() ->
ccd2506b
TT
3107 * write_cache_pages() ---> (via passed in callback function)
3108 * __mpage_da_writepage() -->
3109 * mpage_add_bh_to_extent()
3110 * mpage_da_map_blocks()
3111 *
3112 * The problem is that write_cache_pages(), located in
3113 * mm/page-writeback.c, marks pages clean in preparation for
3114 * doing I/O, which is not desirable if we're not planning on
3115 * doing I/O at all.
3116 *
3117 * We could call write_cache_pages(), and then redirty all of
380cf090 3118 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3119 * would be ugly in the extreme. So instead we would need to
3120 * replicate parts of the code in the above functions,
25985edc 3121 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3122 * write out the pages, but rather only collect contiguous
3123 * logical block extents, call the multi-block allocator, and
3124 * then update the buffer heads with the block allocations.
de9a55b8 3125 *
ccd2506b
TT
3126 * For now, though, we'll cheat by calling filemap_flush(),
3127 * which will map the blocks, and start the I/O, but not
3128 * actually wait for the I/O to complete.
3129 */
3130 return filemap_flush(inode->i_mapping);
3131}
64769240 3132
ac27a0ec
DK
3133/*
3134 * bmap() is special. It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3138 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
617ba13b 3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3148{
3149 struct inode *inode = mapping->host;
3150 journal_t *journal;
3151 int err;
3152
46c7f254
TM
3153 /*
3154 * We can get here for an inline file via the FIBMAP ioctl
3155 */
3156 if (ext4_has_inline_data(inode))
3157 return 0;
3158
64769240
AT
3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 test_opt(inode->i_sb, DELALLOC)) {
3161 /*
3162 * With delalloc we want to sync the file
3163 * so that we can make sure we allocate
3164 * blocks for file
3165 */
3166 filemap_write_and_wait(mapping);
3167 }
3168
19f5fb7a
TT
3169 if (EXT4_JOURNAL(inode) &&
3170 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3171 /*
3172 * This is a REALLY heavyweight approach, but the use of
3173 * bmap on dirty files is expected to be extremely rare:
3174 * only if we run lilo or swapon on a freshly made file
3175 * do we expect this to happen.
3176 *
3177 * (bmap requires CAP_SYS_RAWIO so this does not
3178 * represent an unprivileged user DOS attack --- we'd be
3179 * in trouble if mortal users could trigger this path at
3180 * will.)
3181 *
617ba13b 3182 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3183 * regular files. If somebody wants to bmap a directory
3184 * or symlink and gets confused because the buffer
3185 * hasn't yet been flushed to disk, they deserve
3186 * everything they get.
3187 */
3188
19f5fb7a 3189 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3190 journal = EXT4_JOURNAL(inode);
dab291af
MC
3191 jbd2_journal_lock_updates(journal);
3192 err = jbd2_journal_flush(journal);
3193 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3194
3195 if (err)
3196 return 0;
3197 }
3198
af5bc92d 3199 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3200}
3201
617ba13b 3202static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3203{
46c7f254
TM
3204 int ret = -EAGAIN;
3205 struct inode *inode = page->mapping->host;
3206
0562e0ba 3207 trace_ext4_readpage(page);
46c7f254
TM
3208
3209 if (ext4_has_inline_data(inode))
3210 ret = ext4_readpage_inline(inode, page);
3211
3212 if (ret == -EAGAIN)
f64e02fe 3213 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3214
3215 return ret;
ac27a0ec
DK
3216}
3217
3218static int
617ba13b 3219ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3220 struct list_head *pages, unsigned nr_pages)
3221{
46c7f254
TM
3222 struct inode *inode = mapping->host;
3223
3224 /* If the file has inline data, no need to do readpages. */
3225 if (ext4_has_inline_data(inode))
3226 return 0;
3227
f64e02fe 3228 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3229}
3230
d47992f8
LC
3231static void ext4_invalidatepage(struct page *page, unsigned int offset,
3232 unsigned int length)
ac27a0ec 3233{
ca99fdd2 3234 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3235
4520fb3c
JK
3236 /* No journalling happens on data buffers when this function is used */
3237 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3238
ca99fdd2 3239 block_invalidatepage(page, offset, length);
4520fb3c
JK
3240}
3241
53e87268 3242static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3243 unsigned int offset,
3244 unsigned int length)
4520fb3c
JK
3245{
3246 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247
ca99fdd2 3248 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3249
ac27a0ec
DK
3250 /*
3251 * If it's a full truncate we just forget about the pending dirtying
3252 */
09cbfeaf 3253 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3254 ClearPageChecked(page);
3255
ca99fdd2 3256 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3257}
3258
3259/* Wrapper for aops... */
3260static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3261 unsigned int offset,
3262 unsigned int length)
53e87268 3263{
ca99fdd2 3264 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3265}
3266
617ba13b 3267static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3268{
617ba13b 3269 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3270
0562e0ba
JZ
3271 trace_ext4_releasepage(page);
3272
e1c36595
JK
3273 /* Page has dirty journalled data -> cannot release */
3274 if (PageChecked(page))
ac27a0ec 3275 return 0;
0390131b
FM
3276 if (journal)
3277 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3278 else
3279 return try_to_free_buffers(page);
ac27a0ec
DK
3280}
3281
ba5843f5 3282#ifdef CONFIG_FS_DAX
12735f88
JK
3283/*
3284 * Get block function for DAX IO and mmap faults. It takes care of converting
3285 * unwritten extents to written ones and initializes new / converted blocks
3286 * to zeros.
3287 */
3288int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3289 struct buffer_head *bh_result, int create)
ed923b57 3290{
7cb476f8 3291 int ret;
ba5843f5 3292
12735f88 3293 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
7cb476f8
JK
3294 if (!create)
3295 return _ext4_get_block(inode, iblock, bh_result, 0);
ba5843f5 3296
7cb476f8
JK
3297 ret = ext4_get_block_trans(inode, iblock, bh_result,
3298 EXT4_GET_BLOCKS_PRE_IO |
3299 EXT4_GET_BLOCKS_CREATE_ZERO);
3300 if (ret < 0)
3301 return ret;
ba5843f5 3302
7cb476f8 3303 if (buffer_unwritten(bh_result)) {
ba5843f5 3304 /*
12735f88
JK
3305 * We are protected by i_mmap_sem or i_mutex so we know block
3306 * cannot go away from under us even though we dropped
3307 * i_data_sem. Convert extent to written and write zeros there.
ba5843f5 3308 */
7cb476f8
JK
3309 ret = ext4_get_block_trans(inode, iblock, bh_result,
3310 EXT4_GET_BLOCKS_CONVERT |
3311 EXT4_GET_BLOCKS_CREATE_ZERO);
3312 if (ret < 0)
3313 return ret;
ba5843f5 3314 }
7cb476f8
JK
3315 /*
3316 * At least for now we have to clear BH_New so that DAX code
3317 * doesn't attempt to zero blocks again in a racy way.
3318 */
3319 clear_buffer_new(bh_result);
3320 return 0;
ed923b57 3321}
364443cb
JK
3322
3323static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3324 unsigned flags, struct iomap *iomap)
3325{
3326 unsigned int blkbits = inode->i_blkbits;
3327 unsigned long first_block = offset >> blkbits;
3328 unsigned long last_block = (offset + length - 1) >> blkbits;
3329 struct ext4_map_blocks map;
3330 int ret;
3331
3332 if (flags & IOMAP_WRITE)
3333 return -EIO;
3334
3335 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3336 return -ERANGE;
3337
3338 map.m_lblk = first_block;
3339 map.m_len = last_block - first_block + 1;
3340
3341 ret = ext4_map_blocks(NULL, inode, &map, 0);
3342 if (ret < 0)
3343 return ret;
3344
3345 iomap->flags = 0;
3346 iomap->bdev = inode->i_sb->s_bdev;
3347 iomap->offset = first_block << blkbits;
3348
3349 if (ret == 0) {
3350 iomap->type = IOMAP_HOLE;
3351 iomap->blkno = IOMAP_NULL_BLOCK;
3352 iomap->length = (u64)map.m_len << blkbits;
3353 } else {
3354 if (map.m_flags & EXT4_MAP_MAPPED) {
3355 iomap->type = IOMAP_MAPPED;
3356 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3357 iomap->type = IOMAP_UNWRITTEN;
3358 } else {
3359 WARN_ON_ONCE(1);
3360 return -EIO;
3361 }
3362 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3363 iomap->length = (u64)map.m_len << blkbits;
3364 }
3365
3366 if (map.m_flags & EXT4_MAP_NEW)
3367 iomap->flags |= IOMAP_F_NEW;
3368 return 0;
3369}
3370
3371struct iomap_ops ext4_iomap_ops = {
3372 .iomap_begin = ext4_iomap_begin,
3373};
3374
12735f88
JK
3375#else
3376/* Just define empty function, it will never get called. */
3377int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3378 struct buffer_head *bh_result, int create)
3379{
3380 BUG();
3381 return 0;
ed923b57 3382}
ba5843f5 3383#endif
ed923b57 3384
187372a3 3385static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3386 ssize_t size, void *private)
4c0425ff 3387{
109811c2 3388 ext4_io_end_t *io_end = private;
4c0425ff 3389
97a851ed 3390 /* if not async direct IO just return */
7b7a8665 3391 if (!io_end)
187372a3 3392 return 0;
4b70df18 3393
88635ca2 3394 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3395 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3396 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3397
74c66bcb
JK
3398 /*
3399 * Error during AIO DIO. We cannot convert unwritten extents as the
3400 * data was not written. Just clear the unwritten flag and drop io_end.
3401 */
3402 if (size <= 0) {
3403 ext4_clear_io_unwritten_flag(io_end);
3404 size = 0;
3405 }
4c0425ff
MC
3406 io_end->offset = offset;
3407 io_end->size = size;
7b7a8665 3408 ext4_put_io_end(io_end);
187372a3
CH
3409
3410 return 0;
4c0425ff 3411}
c7064ef1 3412
4c0425ff 3413/*
914f82a3
JK
3414 * Handling of direct IO writes.
3415 *
3416 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3417 * preallocated extents, and those write extend the file, no need to
3418 * fall back to buffered IO.
3419 *
556615dc 3420 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3421 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3422 * still keep the range to write as unwritten.
4c0425ff 3423 *
69c499d1 3424 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3425 * For async direct IO, since the IO may still pending when return, we
25985edc 3426 * set up an end_io call back function, which will do the conversion
8d5d02e6 3427 * when async direct IO completed.
4c0425ff
MC
3428 *
3429 * If the O_DIRECT write will extend the file then add this inode to the
3430 * orphan list. So recovery will truncate it back to the original size
3431 * if the machine crashes during the write.
3432 *
3433 */
0e01df10 3434static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3435{
3436 struct file *file = iocb->ki_filp;
3437 struct inode *inode = file->f_mapping->host;
914f82a3 3438 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3439 ssize_t ret;
c8b8e32d 3440 loff_t offset = iocb->ki_pos;
a6cbcd4a 3441 size_t count = iov_iter_count(iter);
69c499d1
TT
3442 int overwrite = 0;
3443 get_block_t *get_block_func = NULL;
3444 int dio_flags = 0;
4c0425ff 3445 loff_t final_size = offset + count;
914f82a3
JK
3446 int orphan = 0;
3447 handle_t *handle;
729f52c6 3448
914f82a3
JK
3449 if (final_size > inode->i_size) {
3450 /* Credits for sb + inode write */
3451 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3452 if (IS_ERR(handle)) {
3453 ret = PTR_ERR(handle);
3454 goto out;
3455 }
3456 ret = ext4_orphan_add(handle, inode);
3457 if (ret) {
3458 ext4_journal_stop(handle);
3459 goto out;
3460 }
3461 orphan = 1;
3462 ei->i_disksize = inode->i_size;
3463 ext4_journal_stop(handle);
3464 }
4bd809db 3465
69c499d1 3466 BUG_ON(iocb->private == NULL);
4bd809db 3467
e8340395
JK
3468 /*
3469 * Make all waiters for direct IO properly wait also for extent
3470 * conversion. This also disallows race between truncate() and
3471 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3472 */
914f82a3 3473 inode_dio_begin(inode);
e8340395 3474
69c499d1
TT
3475 /* If we do a overwrite dio, i_mutex locking can be released */
3476 overwrite = *((int *)iocb->private);
4bd809db 3477
2dcba478 3478 if (overwrite)
5955102c 3479 inode_unlock(inode);
8d5d02e6 3480
69c499d1 3481 /*
914f82a3 3482 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3483 *
109811c2
JK
3484 * Allocated blocks to fill the hole are marked as unwritten to prevent
3485 * parallel buffered read to expose the stale data before DIO complete
3486 * the data IO.
69c499d1 3487 *
109811c2
JK
3488 * As to previously fallocated extents, ext4 get_block will just simply
3489 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3490 *
109811c2
JK
3491 * For non AIO case, we will convert those unwritten extents to written
3492 * after return back from blockdev_direct_IO. That way we save us from
3493 * allocating io_end structure and also the overhead of offloading
3494 * the extent convertion to a workqueue.
69c499d1
TT
3495 *
3496 * For async DIO, the conversion needs to be deferred when the
3497 * IO is completed. The ext4 end_io callback function will be
3498 * called to take care of the conversion work. Here for async
3499 * case, we allocate an io_end structure to hook to the iocb.
3500 */
3501 iocb->private = NULL;
109811c2 3502 if (overwrite)
705965bd 3503 get_block_func = ext4_dio_get_block_overwrite;
12735f88
JK
3504 else if (IS_DAX(inode)) {
3505 /*
3506 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3507 * writes need zeroing either because they can race with page
3508 * faults or because they use partial blocks.
3509 */
3510 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3511 ext4_aligned_io(inode, offset, count))
3512 get_block_func = ext4_dio_get_block;
3513 else
3514 get_block_func = ext4_dax_get_block;
3515 dio_flags = DIO_LOCKING;
3516 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3517 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
914f82a3
JK
3518 get_block_func = ext4_dio_get_block;
3519 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3520 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3521 get_block_func = ext4_dio_get_block_unwritten_sync;
3522 dio_flags = DIO_LOCKING;
69c499d1 3523 } else {
109811c2 3524 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3525 dio_flags = DIO_LOCKING;
3526 }
2058f83a
MH
3527#ifdef CONFIG_EXT4_FS_ENCRYPTION
3528 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3529#endif
914f82a3 3530 if (IS_DAX(inode)) {
c8b8e32d 3531 ret = dax_do_io(iocb, inode, iter, get_block_func,
923ae0ff 3532 ext4_end_io_dio, dio_flags);
914f82a3 3533 } else
17f8c842 3534 ret = __blockdev_direct_IO(iocb, inode,
c8b8e32d 3535 inode->i_sb->s_bdev, iter,
923ae0ff
RZ
3536 get_block_func,
3537 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3538
97a851ed 3539 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3540 EXT4_STATE_DIO_UNWRITTEN)) {
3541 int err;
3542 /*
3543 * for non AIO case, since the IO is already
3544 * completed, we could do the conversion right here
3545 */
6b523df4 3546 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3547 offset, ret);
3548 if (err < 0)
3549 ret = err;
3550 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3551 }
4bd809db 3552
914f82a3 3553 inode_dio_end(inode);
69c499d1 3554 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3555 if (overwrite)
5955102c 3556 inode_lock(inode);
8d5d02e6 3557
914f82a3
JK
3558 if (ret < 0 && final_size > inode->i_size)
3559 ext4_truncate_failed_write(inode);
3560
3561 /* Handle extending of i_size after direct IO write */
3562 if (orphan) {
3563 int err;
3564
3565 /* Credits for sb + inode write */
3566 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3567 if (IS_ERR(handle)) {
3568 /* This is really bad luck. We've written the data
3569 * but cannot extend i_size. Bail out and pretend
3570 * the write failed... */
3571 ret = PTR_ERR(handle);
3572 if (inode->i_nlink)
3573 ext4_orphan_del(NULL, inode);
3574
3575 goto out;
3576 }
3577 if (inode->i_nlink)
3578 ext4_orphan_del(handle, inode);
3579 if (ret > 0) {
3580 loff_t end = offset + ret;
3581 if (end > inode->i_size) {
3582 ei->i_disksize = end;
3583 i_size_write(inode, end);
3584 /*
3585 * We're going to return a positive `ret'
3586 * here due to non-zero-length I/O, so there's
3587 * no way of reporting error returns from
3588 * ext4_mark_inode_dirty() to userspace. So
3589 * ignore it.
3590 */
3591 ext4_mark_inode_dirty(handle, inode);
3592 }
3593 }
3594 err = ext4_journal_stop(handle);
3595 if (ret == 0)
3596 ret = err;
3597 }
3598out:
3599 return ret;
3600}
3601
0e01df10 3602static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3603{
16c54688
JK
3604 struct address_space *mapping = iocb->ki_filp->f_mapping;
3605 struct inode *inode = mapping->host;
914f82a3
JK
3606 ssize_t ret;
3607
16c54688
JK
3608 /*
3609 * Shared inode_lock is enough for us - it protects against concurrent
3610 * writes & truncates and since we take care of writing back page cache,
3611 * we are protected against page writeback as well.
3612 */
3613 inode_lock_shared(inode);
914f82a3 3614 if (IS_DAX(inode)) {
16c54688 3615 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
914f82a3 3616 } else {
16c54688
JK
3617 size_t count = iov_iter_count(iter);
3618
3619 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3620 iocb->ki_pos + count);
3621 if (ret)
3622 goto out_unlock;
914f82a3 3623 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
0e01df10 3624 iter, ext4_dio_get_block,
16c54688 3625 NULL, NULL, 0);
914f82a3 3626 }
16c54688
JK
3627out_unlock:
3628 inode_unlock_shared(inode);
69c499d1 3629 return ret;
4c0425ff
MC
3630}
3631
c8b8e32d 3632static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3633{
3634 struct file *file = iocb->ki_filp;
3635 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3636 size_t count = iov_iter_count(iter);
c8b8e32d 3637 loff_t offset = iocb->ki_pos;
0562e0ba 3638 ssize_t ret;
4c0425ff 3639
2058f83a
MH
3640#ifdef CONFIG_EXT4_FS_ENCRYPTION
3641 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3642 return 0;
3643#endif
3644
84ebd795
TT
3645 /*
3646 * If we are doing data journalling we don't support O_DIRECT
3647 */
3648 if (ext4_should_journal_data(inode))
3649 return 0;
3650
46c7f254
TM
3651 /* Let buffer I/O handle the inline data case. */
3652 if (ext4_has_inline_data(inode))
3653 return 0;
3654
6f673763 3655 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3656 if (iov_iter_rw(iter) == READ)
0e01df10 3657 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3658 else
0e01df10 3659 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3660 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3661 return ret;
4c0425ff
MC
3662}
3663
ac27a0ec 3664/*
617ba13b 3665 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3666 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3667 * much here because ->set_page_dirty is called under VFS locks. The page is
3668 * not necessarily locked.
3669 *
3670 * We cannot just dirty the page and leave attached buffers clean, because the
3671 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3672 * or jbddirty because all the journalling code will explode.
3673 *
3674 * So what we do is to mark the page "pending dirty" and next time writepage
3675 * is called, propagate that into the buffers appropriately.
3676 */
617ba13b 3677static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3678{
3679 SetPageChecked(page);
3680 return __set_page_dirty_nobuffers(page);
3681}
3682
74d553aa 3683static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3684 .readpage = ext4_readpage,
3685 .readpages = ext4_readpages,
43ce1d23 3686 .writepage = ext4_writepage,
20970ba6 3687 .writepages = ext4_writepages,
8ab22b9a 3688 .write_begin = ext4_write_begin,
74d553aa 3689 .write_end = ext4_write_end,
8ab22b9a
HH
3690 .bmap = ext4_bmap,
3691 .invalidatepage = ext4_invalidatepage,
3692 .releasepage = ext4_releasepage,
3693 .direct_IO = ext4_direct_IO,
3694 .migratepage = buffer_migrate_page,
3695 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3696 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3697};
3698
617ba13b 3699static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3700 .readpage = ext4_readpage,
3701 .readpages = ext4_readpages,
43ce1d23 3702 .writepage = ext4_writepage,
20970ba6 3703 .writepages = ext4_writepages,
8ab22b9a
HH
3704 .write_begin = ext4_write_begin,
3705 .write_end = ext4_journalled_write_end,
3706 .set_page_dirty = ext4_journalled_set_page_dirty,
3707 .bmap = ext4_bmap,
4520fb3c 3708 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3709 .releasepage = ext4_releasepage,
84ebd795 3710 .direct_IO = ext4_direct_IO,
8ab22b9a 3711 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3712 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3713};
3714
64769240 3715static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3716 .readpage = ext4_readpage,
3717 .readpages = ext4_readpages,
43ce1d23 3718 .writepage = ext4_writepage,
20970ba6 3719 .writepages = ext4_writepages,
8ab22b9a
HH
3720 .write_begin = ext4_da_write_begin,
3721 .write_end = ext4_da_write_end,
3722 .bmap = ext4_bmap,
3723 .invalidatepage = ext4_da_invalidatepage,
3724 .releasepage = ext4_releasepage,
3725 .direct_IO = ext4_direct_IO,
3726 .migratepage = buffer_migrate_page,
3727 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3728 .error_remove_page = generic_error_remove_page,
64769240
AT
3729};
3730
617ba13b 3731void ext4_set_aops(struct inode *inode)
ac27a0ec 3732{
3d2b1582
LC
3733 switch (ext4_inode_journal_mode(inode)) {
3734 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3735 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3736 break;
3737 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3738 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3739 return;
3d2b1582
LC
3740 default:
3741 BUG();
3742 }
74d553aa
TT
3743 if (test_opt(inode->i_sb, DELALLOC))
3744 inode->i_mapping->a_ops = &ext4_da_aops;
3745 else
3746 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3747}
3748
923ae0ff 3749static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3750 struct address_space *mapping, loff_t from, loff_t length)
3751{
09cbfeaf
KS
3752 ext4_fsblk_t index = from >> PAGE_SHIFT;
3753 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3754 unsigned blocksize, pos;
d863dc36
LC
3755 ext4_lblk_t iblock;
3756 struct inode *inode = mapping->host;
3757 struct buffer_head *bh;
3758 struct page *page;
3759 int err = 0;
3760
09cbfeaf 3761 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3762 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3763 if (!page)
3764 return -ENOMEM;
3765
3766 blocksize = inode->i_sb->s_blocksize;
d863dc36 3767
09cbfeaf 3768 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3769
3770 if (!page_has_buffers(page))
3771 create_empty_buffers(page, blocksize, 0);
3772
3773 /* Find the buffer that contains "offset" */
3774 bh = page_buffers(page);
3775 pos = blocksize;
3776 while (offset >= pos) {
3777 bh = bh->b_this_page;
3778 iblock++;
3779 pos += blocksize;
3780 }
d863dc36
LC
3781 if (buffer_freed(bh)) {
3782 BUFFER_TRACE(bh, "freed: skip");
3783 goto unlock;
3784 }
d863dc36
LC
3785 if (!buffer_mapped(bh)) {
3786 BUFFER_TRACE(bh, "unmapped");
3787 ext4_get_block(inode, iblock, bh, 0);
3788 /* unmapped? It's a hole - nothing to do */
3789 if (!buffer_mapped(bh)) {
3790 BUFFER_TRACE(bh, "still unmapped");
3791 goto unlock;
3792 }
3793 }
3794
3795 /* Ok, it's mapped. Make sure it's up-to-date */
3796 if (PageUptodate(page))
3797 set_buffer_uptodate(bh);
3798
3799 if (!buffer_uptodate(bh)) {
3800 err = -EIO;
dfec8a14 3801 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3802 wait_on_buffer(bh);
3803 /* Uhhuh. Read error. Complain and punt. */
3804 if (!buffer_uptodate(bh))
3805 goto unlock;
c9c7429c
MH
3806 if (S_ISREG(inode->i_mode) &&
3807 ext4_encrypted_inode(inode)) {
3808 /* We expect the key to be set. */
a7550b30 3809 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3810 BUG_ON(blocksize != PAGE_SIZE);
7821d4dd 3811 BUG_ON(!PageLocked(page));
b50f7b26 3812 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3813 page, PAGE_SIZE, 0, page->index));
c9c7429c 3814 }
d863dc36 3815 }
d863dc36
LC
3816 if (ext4_should_journal_data(inode)) {
3817 BUFFER_TRACE(bh, "get write access");
3818 err = ext4_journal_get_write_access(handle, bh);
3819 if (err)
3820 goto unlock;
3821 }
d863dc36 3822 zero_user(page, offset, length);
d863dc36
LC
3823 BUFFER_TRACE(bh, "zeroed end of block");
3824
d863dc36
LC
3825 if (ext4_should_journal_data(inode)) {
3826 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3827 } else {
353eefd3 3828 err = 0;
d863dc36 3829 mark_buffer_dirty(bh);
3957ef53 3830 if (ext4_should_order_data(inode))
ee0876bc 3831 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3832 }
d863dc36
LC
3833
3834unlock:
3835 unlock_page(page);
09cbfeaf 3836 put_page(page);
d863dc36
LC
3837 return err;
3838}
3839
923ae0ff
RZ
3840/*
3841 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3842 * starting from file offset 'from'. The range to be zero'd must
3843 * be contained with in one block. If the specified range exceeds
3844 * the end of the block it will be shortened to end of the block
3845 * that cooresponds to 'from'
3846 */
3847static int ext4_block_zero_page_range(handle_t *handle,
3848 struct address_space *mapping, loff_t from, loff_t length)
3849{
3850 struct inode *inode = mapping->host;
09cbfeaf 3851 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3852 unsigned blocksize = inode->i_sb->s_blocksize;
3853 unsigned max = blocksize - (offset & (blocksize - 1));
3854
3855 /*
3856 * correct length if it does not fall between
3857 * 'from' and the end of the block
3858 */
3859 if (length > max || length < 0)
3860 length = max;
3861
3862 if (IS_DAX(inode))
3863 return dax_zero_page_range(inode, from, length, ext4_get_block);
3864 return __ext4_block_zero_page_range(handle, mapping, from, length);
3865}
3866
94350ab5
MW
3867/*
3868 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3869 * up to the end of the block which corresponds to `from'.
3870 * This required during truncate. We need to physically zero the tail end
3871 * of that block so it doesn't yield old data if the file is later grown.
3872 */
c197855e 3873static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3874 struct address_space *mapping, loff_t from)
3875{
09cbfeaf 3876 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3877 unsigned length;
3878 unsigned blocksize;
3879 struct inode *inode = mapping->host;
3880
3881 blocksize = inode->i_sb->s_blocksize;
3882 length = blocksize - (offset & (blocksize - 1));
3883
3884 return ext4_block_zero_page_range(handle, mapping, from, length);
3885}
3886
a87dd18c
LC
3887int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3888 loff_t lstart, loff_t length)
3889{
3890 struct super_block *sb = inode->i_sb;
3891 struct address_space *mapping = inode->i_mapping;
e1be3a92 3892 unsigned partial_start, partial_end;
a87dd18c
LC
3893 ext4_fsblk_t start, end;
3894 loff_t byte_end = (lstart + length - 1);
3895 int err = 0;
3896
e1be3a92
LC
3897 partial_start = lstart & (sb->s_blocksize - 1);
3898 partial_end = byte_end & (sb->s_blocksize - 1);
3899
a87dd18c
LC
3900 start = lstart >> sb->s_blocksize_bits;
3901 end = byte_end >> sb->s_blocksize_bits;
3902
3903 /* Handle partial zero within the single block */
e1be3a92
LC
3904 if (start == end &&
3905 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3906 err = ext4_block_zero_page_range(handle, mapping,
3907 lstart, length);
3908 return err;
3909 }
3910 /* Handle partial zero out on the start of the range */
e1be3a92 3911 if (partial_start) {
a87dd18c
LC
3912 err = ext4_block_zero_page_range(handle, mapping,
3913 lstart, sb->s_blocksize);
3914 if (err)
3915 return err;
3916 }
3917 /* Handle partial zero out on the end of the range */
e1be3a92 3918 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3919 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3920 byte_end - partial_end,
3921 partial_end + 1);
a87dd18c
LC
3922 return err;
3923}
3924
91ef4caf
DG
3925int ext4_can_truncate(struct inode *inode)
3926{
91ef4caf
DG
3927 if (S_ISREG(inode->i_mode))
3928 return 1;
3929 if (S_ISDIR(inode->i_mode))
3930 return 1;
3931 if (S_ISLNK(inode->i_mode))
3932 return !ext4_inode_is_fast_symlink(inode);
3933 return 0;
3934}
3935
01127848
JK
3936/*
3937 * We have to make sure i_disksize gets properly updated before we truncate
3938 * page cache due to hole punching or zero range. Otherwise i_disksize update
3939 * can get lost as it may have been postponed to submission of writeback but
3940 * that will never happen after we truncate page cache.
3941 */
3942int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3943 loff_t len)
3944{
3945 handle_t *handle;
3946 loff_t size = i_size_read(inode);
3947
5955102c 3948 WARN_ON(!inode_is_locked(inode));
01127848
JK
3949 if (offset > size || offset + len < size)
3950 return 0;
3951
3952 if (EXT4_I(inode)->i_disksize >= size)
3953 return 0;
3954
3955 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3956 if (IS_ERR(handle))
3957 return PTR_ERR(handle);
3958 ext4_update_i_disksize(inode, size);
3959 ext4_mark_inode_dirty(handle, inode);
3960 ext4_journal_stop(handle);
3961
3962 return 0;
3963}
3964
a4bb6b64 3965/*
cca32b7e 3966 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
3967 * associated with the given offset and length
3968 *
3969 * @inode: File inode
3970 * @offset: The offset where the hole will begin
3971 * @len: The length of the hole
3972 *
4907cb7b 3973 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3974 */
3975
aeb2817a 3976int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3977{
26a4c0c6
TT
3978 struct super_block *sb = inode->i_sb;
3979 ext4_lblk_t first_block, stop_block;
3980 struct address_space *mapping = inode->i_mapping;
a87dd18c 3981 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3982 handle_t *handle;
3983 unsigned int credits;
3984 int ret = 0;
3985
a4bb6b64 3986 if (!S_ISREG(inode->i_mode))
73355192 3987 return -EOPNOTSUPP;
a4bb6b64 3988
b8a86845 3989 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3990
26a4c0c6
TT
3991 /*
3992 * Write out all dirty pages to avoid race conditions
3993 * Then release them.
3994 */
cca32b7e 3995 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
3996 ret = filemap_write_and_wait_range(mapping, offset,
3997 offset + length - 1);
3998 if (ret)
3999 return ret;
4000 }
4001
5955102c 4002 inode_lock(inode);
9ef06cec 4003
26a4c0c6
TT
4004 /* No need to punch hole beyond i_size */
4005 if (offset >= inode->i_size)
4006 goto out_mutex;
4007
4008 /*
4009 * If the hole extends beyond i_size, set the hole
4010 * to end after the page that contains i_size
4011 */
4012 if (offset + length > inode->i_size) {
4013 length = inode->i_size +
09cbfeaf 4014 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4015 offset;
4016 }
4017
a361293f
JK
4018 if (offset & (sb->s_blocksize - 1) ||
4019 (offset + length) & (sb->s_blocksize - 1)) {
4020 /*
4021 * Attach jinode to inode for jbd2 if we do any zeroing of
4022 * partial block
4023 */
4024 ret = ext4_inode_attach_jinode(inode);
4025 if (ret < 0)
4026 goto out_mutex;
4027
4028 }
4029
ea3d7209
JK
4030 /* Wait all existing dio workers, newcomers will block on i_mutex */
4031 ext4_inode_block_unlocked_dio(inode);
4032 inode_dio_wait(inode);
4033
4034 /*
4035 * Prevent page faults from reinstantiating pages we have released from
4036 * page cache.
4037 */
4038 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4039 first_block_offset = round_up(offset, sb->s_blocksize);
4040 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4041
a87dd18c 4042 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4043 if (last_block_offset > first_block_offset) {
4044 ret = ext4_update_disksize_before_punch(inode, offset, length);
4045 if (ret)
4046 goto out_dio;
a87dd18c
LC
4047 truncate_pagecache_range(inode, first_block_offset,
4048 last_block_offset);
01127848 4049 }
26a4c0c6
TT
4050
4051 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4052 credits = ext4_writepage_trans_blocks(inode);
4053 else
4054 credits = ext4_blocks_for_truncate(inode);
4055 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4056 if (IS_ERR(handle)) {
4057 ret = PTR_ERR(handle);
4058 ext4_std_error(sb, ret);
4059 goto out_dio;
4060 }
4061
a87dd18c
LC
4062 ret = ext4_zero_partial_blocks(handle, inode, offset,
4063 length);
4064 if (ret)
4065 goto out_stop;
26a4c0c6
TT
4066
4067 first_block = (offset + sb->s_blocksize - 1) >>
4068 EXT4_BLOCK_SIZE_BITS(sb);
4069 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4070
4071 /* If there are no blocks to remove, return now */
4072 if (first_block >= stop_block)
4073 goto out_stop;
4074
4075 down_write(&EXT4_I(inode)->i_data_sem);
4076 ext4_discard_preallocations(inode);
4077
4078 ret = ext4_es_remove_extent(inode, first_block,
4079 stop_block - first_block);
4080 if (ret) {
4081 up_write(&EXT4_I(inode)->i_data_sem);
4082 goto out_stop;
4083 }
4084
4085 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4086 ret = ext4_ext_remove_space(inode, first_block,
4087 stop_block - 1);
4088 else
4f579ae7 4089 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4090 stop_block);
4091
819c4920 4092 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4093 if (IS_SYNC(inode))
4094 ext4_handle_sync(handle);
e251f9bc 4095
eeca7ea1 4096 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6
TT
4097 ext4_mark_inode_dirty(handle, inode);
4098out_stop:
4099 ext4_journal_stop(handle);
4100out_dio:
ea3d7209 4101 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4102 ext4_inode_resume_unlocked_dio(inode);
4103out_mutex:
5955102c 4104 inode_unlock(inode);
26a4c0c6 4105 return ret;
a4bb6b64
AH
4106}
4107
a361293f
JK
4108int ext4_inode_attach_jinode(struct inode *inode)
4109{
4110 struct ext4_inode_info *ei = EXT4_I(inode);
4111 struct jbd2_inode *jinode;
4112
4113 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4114 return 0;
4115
4116 jinode = jbd2_alloc_inode(GFP_KERNEL);
4117 spin_lock(&inode->i_lock);
4118 if (!ei->jinode) {
4119 if (!jinode) {
4120 spin_unlock(&inode->i_lock);
4121 return -ENOMEM;
4122 }
4123 ei->jinode = jinode;
4124 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4125 jinode = NULL;
4126 }
4127 spin_unlock(&inode->i_lock);
4128 if (unlikely(jinode != NULL))
4129 jbd2_free_inode(jinode);
4130 return 0;
4131}
4132
ac27a0ec 4133/*
617ba13b 4134 * ext4_truncate()
ac27a0ec 4135 *
617ba13b
MC
4136 * We block out ext4_get_block() block instantiations across the entire
4137 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4138 * simultaneously on behalf of the same inode.
4139 *
42b2aa86 4140 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4141 * is one core, guiding principle: the file's tree must always be consistent on
4142 * disk. We must be able to restart the truncate after a crash.
4143 *
4144 * The file's tree may be transiently inconsistent in memory (although it
4145 * probably isn't), but whenever we close off and commit a journal transaction,
4146 * the contents of (the filesystem + the journal) must be consistent and
4147 * restartable. It's pretty simple, really: bottom up, right to left (although
4148 * left-to-right works OK too).
4149 *
4150 * Note that at recovery time, journal replay occurs *before* the restart of
4151 * truncate against the orphan inode list.
4152 *
4153 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4154 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4155 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4156 * ext4_truncate() to have another go. So there will be instantiated blocks
4157 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4158 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4159 * ext4_truncate() run will find them and release them.
ac27a0ec 4160 */
2c98eb5e 4161int ext4_truncate(struct inode *inode)
ac27a0ec 4162{
819c4920
TT
4163 struct ext4_inode_info *ei = EXT4_I(inode);
4164 unsigned int credits;
2c98eb5e 4165 int err = 0;
819c4920
TT
4166 handle_t *handle;
4167 struct address_space *mapping = inode->i_mapping;
819c4920 4168
19b5ef61
TT
4169 /*
4170 * There is a possibility that we're either freeing the inode
e04027e8 4171 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4172 * have i_mutex locked because it's not necessary.
4173 */
4174 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4175 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4176 trace_ext4_truncate_enter(inode);
4177
91ef4caf 4178 if (!ext4_can_truncate(inode))
2c98eb5e 4179 return 0;
ac27a0ec 4180
12e9b892 4181 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4182
5534fb5b 4183 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4184 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4185
aef1c851
TM
4186 if (ext4_has_inline_data(inode)) {
4187 int has_inline = 1;
4188
4189 ext4_inline_data_truncate(inode, &has_inline);
4190 if (has_inline)
2c98eb5e 4191 return 0;
aef1c851
TM
4192 }
4193
a361293f
JK
4194 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4195 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4196 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4197 return 0;
a361293f
JK
4198 }
4199
819c4920
TT
4200 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4201 credits = ext4_writepage_trans_blocks(inode);
4202 else
4203 credits = ext4_blocks_for_truncate(inode);
4204
4205 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4206 if (IS_ERR(handle))
4207 return PTR_ERR(handle);
819c4920 4208
eb3544c6
LC
4209 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4210 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4211
4212 /*
4213 * We add the inode to the orphan list, so that if this
4214 * truncate spans multiple transactions, and we crash, we will
4215 * resume the truncate when the filesystem recovers. It also
4216 * marks the inode dirty, to catch the new size.
4217 *
4218 * Implication: the file must always be in a sane, consistent
4219 * truncatable state while each transaction commits.
4220 */
2c98eb5e
TT
4221 err = ext4_orphan_add(handle, inode);
4222 if (err)
819c4920
TT
4223 goto out_stop;
4224
4225 down_write(&EXT4_I(inode)->i_data_sem);
4226
4227 ext4_discard_preallocations(inode);
4228
ff9893dc 4229 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4230 err = ext4_ext_truncate(handle, inode);
ff9893dc 4231 else
819c4920
TT
4232 ext4_ind_truncate(handle, inode);
4233
4234 up_write(&ei->i_data_sem);
d0abb36d
TT
4235 if (err)
4236 goto out_stop;
819c4920
TT
4237
4238 if (IS_SYNC(inode))
4239 ext4_handle_sync(handle);
4240
4241out_stop:
4242 /*
4243 * If this was a simple ftruncate() and the file will remain alive,
4244 * then we need to clear up the orphan record which we created above.
4245 * However, if this was a real unlink then we were called by
58d86a50 4246 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4247 * orphan info for us.
4248 */
4249 if (inode->i_nlink)
4250 ext4_orphan_del(handle, inode);
4251
eeca7ea1 4252 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4253 ext4_mark_inode_dirty(handle, inode);
4254 ext4_journal_stop(handle);
ac27a0ec 4255
0562e0ba 4256 trace_ext4_truncate_exit(inode);
2c98eb5e 4257 return err;
ac27a0ec
DK
4258}
4259
ac27a0ec 4260/*
617ba13b 4261 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4262 * underlying buffer_head on success. If 'in_mem' is true, we have all
4263 * data in memory that is needed to recreate the on-disk version of this
4264 * inode.
4265 */
617ba13b
MC
4266static int __ext4_get_inode_loc(struct inode *inode,
4267 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4268{
240799cd
TT
4269 struct ext4_group_desc *gdp;
4270 struct buffer_head *bh;
4271 struct super_block *sb = inode->i_sb;
4272 ext4_fsblk_t block;
4273 int inodes_per_block, inode_offset;
4274
3a06d778 4275 iloc->bh = NULL;
240799cd 4276 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4277 return -EFSCORRUPTED;
ac27a0ec 4278
240799cd
TT
4279 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4280 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4281 if (!gdp)
ac27a0ec
DK
4282 return -EIO;
4283
240799cd
TT
4284 /*
4285 * Figure out the offset within the block group inode table
4286 */
00d09882 4287 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4288 inode_offset = ((inode->i_ino - 1) %
4289 EXT4_INODES_PER_GROUP(sb));
4290 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4291 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4292
4293 bh = sb_getblk(sb, block);
aebf0243 4294 if (unlikely(!bh))
860d21e2 4295 return -ENOMEM;
ac27a0ec
DK
4296 if (!buffer_uptodate(bh)) {
4297 lock_buffer(bh);
9c83a923
HK
4298
4299 /*
4300 * If the buffer has the write error flag, we have failed
4301 * to write out another inode in the same block. In this
4302 * case, we don't have to read the block because we may
4303 * read the old inode data successfully.
4304 */
4305 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4306 set_buffer_uptodate(bh);
4307
ac27a0ec
DK
4308 if (buffer_uptodate(bh)) {
4309 /* someone brought it uptodate while we waited */
4310 unlock_buffer(bh);
4311 goto has_buffer;
4312 }
4313
4314 /*
4315 * If we have all information of the inode in memory and this
4316 * is the only valid inode in the block, we need not read the
4317 * block.
4318 */
4319 if (in_mem) {
4320 struct buffer_head *bitmap_bh;
240799cd 4321 int i, start;
ac27a0ec 4322
240799cd 4323 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4324
240799cd
TT
4325 /* Is the inode bitmap in cache? */
4326 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4327 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4328 goto make_io;
4329
4330 /*
4331 * If the inode bitmap isn't in cache then the
4332 * optimisation may end up performing two reads instead
4333 * of one, so skip it.
4334 */
4335 if (!buffer_uptodate(bitmap_bh)) {
4336 brelse(bitmap_bh);
4337 goto make_io;
4338 }
240799cd 4339 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4340 if (i == inode_offset)
4341 continue;
617ba13b 4342 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4343 break;
4344 }
4345 brelse(bitmap_bh);
240799cd 4346 if (i == start + inodes_per_block) {
ac27a0ec
DK
4347 /* all other inodes are free, so skip I/O */
4348 memset(bh->b_data, 0, bh->b_size);
4349 set_buffer_uptodate(bh);
4350 unlock_buffer(bh);
4351 goto has_buffer;
4352 }
4353 }
4354
4355make_io:
240799cd
TT
4356 /*
4357 * If we need to do any I/O, try to pre-readahead extra
4358 * blocks from the inode table.
4359 */
4360 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4361 ext4_fsblk_t b, end, table;
4362 unsigned num;
0d606e2c 4363 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4364
4365 table = ext4_inode_table(sb, gdp);
b713a5ec 4366 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4367 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4368 if (table > b)
4369 b = table;
0d606e2c 4370 end = b + ra_blks;
240799cd 4371 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4372 if (ext4_has_group_desc_csum(sb))
560671a0 4373 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4374 table += num / inodes_per_block;
4375 if (end > table)
4376 end = table;
4377 while (b <= end)
4378 sb_breadahead(sb, b++);
4379 }
4380
ac27a0ec
DK
4381 /*
4382 * There are other valid inodes in the buffer, this inode
4383 * has in-inode xattrs, or we don't have this inode in memory.
4384 * Read the block from disk.
4385 */
0562e0ba 4386 trace_ext4_load_inode(inode);
ac27a0ec
DK
4387 get_bh(bh);
4388 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4389 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4390 wait_on_buffer(bh);
4391 if (!buffer_uptodate(bh)) {
c398eda0
TT
4392 EXT4_ERROR_INODE_BLOCK(inode, block,
4393 "unable to read itable block");
ac27a0ec
DK
4394 brelse(bh);
4395 return -EIO;
4396 }
4397 }
4398has_buffer:
4399 iloc->bh = bh;
4400 return 0;
4401}
4402
617ba13b 4403int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4404{
4405 /* We have all inode data except xattrs in memory here. */
617ba13b 4406 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4407 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4408}
4409
617ba13b 4410void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4411{
617ba13b 4412 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4413 unsigned int new_fl = 0;
ac27a0ec 4414
617ba13b 4415 if (flags & EXT4_SYNC_FL)
00a1a053 4416 new_fl |= S_SYNC;
617ba13b 4417 if (flags & EXT4_APPEND_FL)
00a1a053 4418 new_fl |= S_APPEND;
617ba13b 4419 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4420 new_fl |= S_IMMUTABLE;
617ba13b 4421 if (flags & EXT4_NOATIME_FL)
00a1a053 4422 new_fl |= S_NOATIME;
617ba13b 4423 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4424 new_fl |= S_DIRSYNC;
a3caa24b
JK
4425 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4426 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4427 !ext4_encrypted_inode(inode))
923ae0ff 4428 new_fl |= S_DAX;
5f16f322 4429 inode_set_flags(inode, new_fl,
923ae0ff 4430 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4431}
4432
ff9ddf7e
JK
4433/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4434void ext4_get_inode_flags(struct ext4_inode_info *ei)
4435{
84a8dce2
DM
4436 unsigned int vfs_fl;
4437 unsigned long old_fl, new_fl;
4438
4439 do {
4440 vfs_fl = ei->vfs_inode.i_flags;
4441 old_fl = ei->i_flags;
4442 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4443 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4444 EXT4_DIRSYNC_FL);
4445 if (vfs_fl & S_SYNC)
4446 new_fl |= EXT4_SYNC_FL;
4447 if (vfs_fl & S_APPEND)
4448 new_fl |= EXT4_APPEND_FL;
4449 if (vfs_fl & S_IMMUTABLE)
4450 new_fl |= EXT4_IMMUTABLE_FL;
4451 if (vfs_fl & S_NOATIME)
4452 new_fl |= EXT4_NOATIME_FL;
4453 if (vfs_fl & S_DIRSYNC)
4454 new_fl |= EXT4_DIRSYNC_FL;
4455 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4456}
de9a55b8 4457
0fc1b451 4458static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4459 struct ext4_inode_info *ei)
0fc1b451
AK
4460{
4461 blkcnt_t i_blocks ;
8180a562
AK
4462 struct inode *inode = &(ei->vfs_inode);
4463 struct super_block *sb = inode->i_sb;
0fc1b451 4464
e2b911c5 4465 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4466 /* we are using combined 48 bit field */
4467 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4468 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4469 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4470 /* i_blocks represent file system block size */
4471 return i_blocks << (inode->i_blkbits - 9);
4472 } else {
4473 return i_blocks;
4474 }
0fc1b451
AK
4475 } else {
4476 return le32_to_cpu(raw_inode->i_blocks_lo);
4477 }
4478}
ff9ddf7e 4479
152a7b0a
TM
4480static inline void ext4_iget_extra_inode(struct inode *inode,
4481 struct ext4_inode *raw_inode,
4482 struct ext4_inode_info *ei)
4483{
4484 __le32 *magic = (void *)raw_inode +
4485 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4486 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4487 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4488 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4489 } else
4490 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4491}
4492
040cb378
LX
4493int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4494{
0b7b7779 4495 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4496 return -EOPNOTSUPP;
4497 *projid = EXT4_I(inode)->i_projid;
4498 return 0;
4499}
4500
1d1fe1ee 4501struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4502{
617ba13b
MC
4503 struct ext4_iloc iloc;
4504 struct ext4_inode *raw_inode;
1d1fe1ee 4505 struct ext4_inode_info *ei;
1d1fe1ee 4506 struct inode *inode;
b436b9be 4507 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4508 long ret;
ac27a0ec 4509 int block;
08cefc7a
EB
4510 uid_t i_uid;
4511 gid_t i_gid;
040cb378 4512 projid_t i_projid;
ac27a0ec 4513
1d1fe1ee
DH
4514 inode = iget_locked(sb, ino);
4515 if (!inode)
4516 return ERR_PTR(-ENOMEM);
4517 if (!(inode->i_state & I_NEW))
4518 return inode;
4519
4520 ei = EXT4_I(inode);
7dc57615 4521 iloc.bh = NULL;
ac27a0ec 4522
1d1fe1ee
DH
4523 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4524 if (ret < 0)
ac27a0ec 4525 goto bad_inode;
617ba13b 4526 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4527
4528 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4529 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4530 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4531 EXT4_INODE_SIZE(inode->i_sb)) {
4532 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4533 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4534 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4535 ret = -EFSCORRUPTED;
814525f4
DW
4536 goto bad_inode;
4537 }
4538 } else
4539 ei->i_extra_isize = 0;
4540
4541 /* Precompute checksum seed for inode metadata */
9aa5d32b 4542 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4543 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4544 __u32 csum;
4545 __le32 inum = cpu_to_le32(inode->i_ino);
4546 __le32 gen = raw_inode->i_generation;
4547 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4548 sizeof(inum));
4549 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4550 sizeof(gen));
4551 }
4552
4553 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4554 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4555 ret = -EFSBADCRC;
814525f4
DW
4556 goto bad_inode;
4557 }
4558
ac27a0ec 4559 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4560 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4561 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4562 if (ext4_has_feature_project(sb) &&
040cb378
LX
4563 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4564 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4565 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4566 else
4567 i_projid = EXT4_DEF_PROJID;
4568
af5bc92d 4569 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4570 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4571 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4572 }
08cefc7a
EB
4573 i_uid_write(inode, i_uid);
4574 i_gid_write(inode, i_gid);
040cb378 4575 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4576 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4577
353eb83c 4578 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4579 ei->i_inline_off = 0;
ac27a0ec
DK
4580 ei->i_dir_start_lookup = 0;
4581 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4582 /* We now have enough fields to check if the inode was active or not.
4583 * This is needed because nfsd might try to access dead inodes
4584 * the test is that same one that e2fsck uses
4585 * NeilBrown 1999oct15
4586 */
4587 if (inode->i_nlink == 0) {
393d1d1d
DTB
4588 if ((inode->i_mode == 0 ||
4589 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4590 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4591 /* this inode is deleted */
1d1fe1ee 4592 ret = -ESTALE;
ac27a0ec
DK
4593 goto bad_inode;
4594 }
4595 /* The only unlinked inodes we let through here have
4596 * valid i_mode and are being read by the orphan
4597 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4598 * the process of deleting those.
4599 * OR it is the EXT4_BOOT_LOADER_INO which is
4600 * not initialized on a new filesystem. */
ac27a0ec 4601 }
ac27a0ec 4602 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4603 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4604 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4605 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4606 ei->i_file_acl |=
4607 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4608 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4609 ei->i_disksize = inode->i_size;
a9e7f447
DM
4610#ifdef CONFIG_QUOTA
4611 ei->i_reserved_quota = 0;
4612#endif
ac27a0ec
DK
4613 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4614 ei->i_block_group = iloc.block_group;
a4912123 4615 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4616 /*
4617 * NOTE! The in-memory inode i_data array is in little-endian order
4618 * even on big-endian machines: we do NOT byteswap the block numbers!
4619 */
617ba13b 4620 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4621 ei->i_data[block] = raw_inode->i_block[block];
4622 INIT_LIST_HEAD(&ei->i_orphan);
4623
b436b9be
JK
4624 /*
4625 * Set transaction id's of transactions that have to be committed
4626 * to finish f[data]sync. We set them to currently running transaction
4627 * as we cannot be sure that the inode or some of its metadata isn't
4628 * part of the transaction - the inode could have been reclaimed and
4629 * now it is reread from disk.
4630 */
4631 if (journal) {
4632 transaction_t *transaction;
4633 tid_t tid;
4634
a931da6a 4635 read_lock(&journal->j_state_lock);
b436b9be
JK
4636 if (journal->j_running_transaction)
4637 transaction = journal->j_running_transaction;
4638 else
4639 transaction = journal->j_committing_transaction;
4640 if (transaction)
4641 tid = transaction->t_tid;
4642 else
4643 tid = journal->j_commit_sequence;
a931da6a 4644 read_unlock(&journal->j_state_lock);
b436b9be
JK
4645 ei->i_sync_tid = tid;
4646 ei->i_datasync_tid = tid;
4647 }
4648
0040d987 4649 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4650 if (ei->i_extra_isize == 0) {
4651 /* The extra space is currently unused. Use it. */
617ba13b
MC
4652 ei->i_extra_isize = sizeof(struct ext4_inode) -
4653 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4654 } else {
152a7b0a 4655 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4656 }
814525f4 4657 }
ac27a0ec 4658
ef7f3835
KS
4659 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4660 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4661 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4662 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4663
ed3654eb 4664 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4665 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4666 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4667 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4668 inode->i_version |=
4669 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4670 }
25ec56b5
JNC
4671 }
4672
c4b5a614 4673 ret = 0;
485c26ec 4674 if (ei->i_file_acl &&
1032988c 4675 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4676 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4677 ei->i_file_acl);
6a797d27 4678 ret = -EFSCORRUPTED;
485c26ec 4679 goto bad_inode;
f19d5870
TM
4680 } else if (!ext4_has_inline_data(inode)) {
4681 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4682 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4683 (S_ISLNK(inode->i_mode) &&
4684 !ext4_inode_is_fast_symlink(inode))))
4685 /* Validate extent which is part of inode */
4686 ret = ext4_ext_check_inode(inode);
4687 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4688 (S_ISLNK(inode->i_mode) &&
4689 !ext4_inode_is_fast_symlink(inode))) {
4690 /* Validate block references which are part of inode */
4691 ret = ext4_ind_check_inode(inode);
4692 }
fe2c8191 4693 }
567f3e9a 4694 if (ret)
de9a55b8 4695 goto bad_inode;
7a262f7c 4696
ac27a0ec 4697 if (S_ISREG(inode->i_mode)) {
617ba13b 4698 inode->i_op = &ext4_file_inode_operations;
be64f884 4699 inode->i_fop = &ext4_file_operations;
617ba13b 4700 ext4_set_aops(inode);
ac27a0ec 4701 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4702 inode->i_op = &ext4_dir_inode_operations;
4703 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4704 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4705 if (ext4_encrypted_inode(inode)) {
4706 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4707 ext4_set_aops(inode);
4708 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4709 inode->i_link = (char *)ei->i_data;
617ba13b 4710 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4711 nd_terminate_link(ei->i_data, inode->i_size,
4712 sizeof(ei->i_data) - 1);
4713 } else {
617ba13b
MC
4714 inode->i_op = &ext4_symlink_inode_operations;
4715 ext4_set_aops(inode);
ac27a0ec 4716 }
21fc61c7 4717 inode_nohighmem(inode);
563bdd61
TT
4718 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4719 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4720 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4721 if (raw_inode->i_block[0])
4722 init_special_inode(inode, inode->i_mode,
4723 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4724 else
4725 init_special_inode(inode, inode->i_mode,
4726 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4727 } else if (ino == EXT4_BOOT_LOADER_INO) {
4728 make_bad_inode(inode);
563bdd61 4729 } else {
6a797d27 4730 ret = -EFSCORRUPTED;
24676da4 4731 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4732 goto bad_inode;
ac27a0ec 4733 }
af5bc92d 4734 brelse(iloc.bh);
617ba13b 4735 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4736 unlock_new_inode(inode);
4737 return inode;
ac27a0ec
DK
4738
4739bad_inode:
567f3e9a 4740 brelse(iloc.bh);
1d1fe1ee
DH
4741 iget_failed(inode);
4742 return ERR_PTR(ret);
ac27a0ec
DK
4743}
4744
f4bb2981
TT
4745struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4746{
4747 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4748 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4749 return ext4_iget(sb, ino);
4750}
4751
0fc1b451
AK
4752static int ext4_inode_blocks_set(handle_t *handle,
4753 struct ext4_inode *raw_inode,
4754 struct ext4_inode_info *ei)
4755{
4756 struct inode *inode = &(ei->vfs_inode);
4757 u64 i_blocks = inode->i_blocks;
4758 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4759
4760 if (i_blocks <= ~0U) {
4761 /*
4907cb7b 4762 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4763 * as multiple of 512 bytes
4764 */
8180a562 4765 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4766 raw_inode->i_blocks_high = 0;
84a8dce2 4767 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4768 return 0;
4769 }
e2b911c5 4770 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4771 return -EFBIG;
4772
4773 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4774 /*
4775 * i_blocks can be represented in a 48 bit variable
4776 * as multiple of 512 bytes
4777 */
8180a562 4778 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4779 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4780 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4781 } else {
84a8dce2 4782 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4783 /* i_block is stored in file system block size */
4784 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4785 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4786 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4787 }
f287a1a5 4788 return 0;
0fc1b451
AK
4789}
4790
a26f4992
TT
4791struct other_inode {
4792 unsigned long orig_ino;
4793 struct ext4_inode *raw_inode;
4794};
4795
4796static int other_inode_match(struct inode * inode, unsigned long ino,
4797 void *data)
4798{
4799 struct other_inode *oi = (struct other_inode *) data;
4800
4801 if ((inode->i_ino != ino) ||
4802 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4803 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4804 ((inode->i_state & I_DIRTY_TIME) == 0))
4805 return 0;
4806 spin_lock(&inode->i_lock);
4807 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4808 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4809 (inode->i_state & I_DIRTY_TIME)) {
4810 struct ext4_inode_info *ei = EXT4_I(inode);
4811
4812 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4813 spin_unlock(&inode->i_lock);
4814
4815 spin_lock(&ei->i_raw_lock);
4816 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4817 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4818 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4819 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4820 spin_unlock(&ei->i_raw_lock);
4821 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4822 return -1;
4823 }
4824 spin_unlock(&inode->i_lock);
4825 return -1;
4826}
4827
4828/*
4829 * Opportunistically update the other time fields for other inodes in
4830 * the same inode table block.
4831 */
4832static void ext4_update_other_inodes_time(struct super_block *sb,
4833 unsigned long orig_ino, char *buf)
4834{
4835 struct other_inode oi;
4836 unsigned long ino;
4837 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4838 int inode_size = EXT4_INODE_SIZE(sb);
4839
4840 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4841 /*
4842 * Calculate the first inode in the inode table block. Inode
4843 * numbers are one-based. That is, the first inode in a block
4844 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4845 */
4846 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4847 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4848 if (ino == orig_ino)
4849 continue;
4850 oi.raw_inode = (struct ext4_inode *) buf;
4851 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4852 }
4853}
4854
ac27a0ec
DK
4855/*
4856 * Post the struct inode info into an on-disk inode location in the
4857 * buffer-cache. This gobbles the caller's reference to the
4858 * buffer_head in the inode location struct.
4859 *
4860 * The caller must have write access to iloc->bh.
4861 */
617ba13b 4862static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4863 struct inode *inode,
830156c7 4864 struct ext4_iloc *iloc)
ac27a0ec 4865{
617ba13b
MC
4866 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4867 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4868 struct buffer_head *bh = iloc->bh;
202ee5df 4869 struct super_block *sb = inode->i_sb;
ac27a0ec 4870 int err = 0, rc, block;
202ee5df 4871 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4872 uid_t i_uid;
4873 gid_t i_gid;
040cb378 4874 projid_t i_projid;
ac27a0ec 4875
202ee5df
TT
4876 spin_lock(&ei->i_raw_lock);
4877
4878 /* For fields not tracked in the in-memory inode,
ac27a0ec 4879 * initialise them to zero for new inodes. */
19f5fb7a 4880 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4881 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4882
ff9ddf7e 4883 ext4_get_inode_flags(ei);
ac27a0ec 4884 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4885 i_uid = i_uid_read(inode);
4886 i_gid = i_gid_read(inode);
040cb378 4887 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4888 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4889 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4890 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4891/*
4892 * Fix up interoperability with old kernels. Otherwise, old inodes get
4893 * re-used with the upper 16 bits of the uid/gid intact
4894 */
93e3b4e6
DJ
4895 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4896 raw_inode->i_uid_high = 0;
4897 raw_inode->i_gid_high = 0;
4898 } else {
ac27a0ec 4899 raw_inode->i_uid_high =
08cefc7a 4900 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4901 raw_inode->i_gid_high =
08cefc7a 4902 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4903 }
4904 } else {
08cefc7a
EB
4905 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4906 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4907 raw_inode->i_uid_high = 0;
4908 raw_inode->i_gid_high = 0;
4909 }
4910 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4911
4912 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4913 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4914 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4915 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4916
bce92d56
LX
4917 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4918 if (err) {
202ee5df 4919 spin_unlock(&ei->i_raw_lock);
0fc1b451 4920 goto out_brelse;
202ee5df 4921 }
ac27a0ec 4922 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4923 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4924 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4925 raw_inode->i_file_acl_high =
4926 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4927 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4928 if (ei->i_disksize != ext4_isize(raw_inode)) {
4929 ext4_isize_set(raw_inode, ei->i_disksize);
4930 need_datasync = 1;
4931 }
a48380f7 4932 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4933 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4934 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4935 cpu_to_le32(EXT4_GOOD_OLD_REV))
4936 set_large_file = 1;
ac27a0ec
DK
4937 }
4938 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4939 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4940 if (old_valid_dev(inode->i_rdev)) {
4941 raw_inode->i_block[0] =
4942 cpu_to_le32(old_encode_dev(inode->i_rdev));
4943 raw_inode->i_block[1] = 0;
4944 } else {
4945 raw_inode->i_block[0] = 0;
4946 raw_inode->i_block[1] =
4947 cpu_to_le32(new_encode_dev(inode->i_rdev));
4948 raw_inode->i_block[2] = 0;
4949 }
f19d5870 4950 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4951 for (block = 0; block < EXT4_N_BLOCKS; block++)
4952 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4953 }
ac27a0ec 4954
ed3654eb 4955 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4956 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4957 if (ei->i_extra_isize) {
4958 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4959 raw_inode->i_version_hi =
4960 cpu_to_le32(inode->i_version >> 32);
4961 raw_inode->i_extra_isize =
4962 cpu_to_le16(ei->i_extra_isize);
4963 }
25ec56b5 4964 }
040cb378 4965
0b7b7779 4966 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
4967 i_projid != EXT4_DEF_PROJID);
4968
4969 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4970 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4971 raw_inode->i_projid = cpu_to_le32(i_projid);
4972
814525f4 4973 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4974 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4975 if (inode->i_sb->s_flags & MS_LAZYTIME)
4976 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4977 bh->b_data);
202ee5df 4978
830156c7 4979 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4980 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4981 if (!err)
4982 err = rc;
19f5fb7a 4983 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4984 if (set_large_file) {
5d601255 4985 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4986 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4987 if (err)
4988 goto out_brelse;
4989 ext4_update_dynamic_rev(sb);
e2b911c5 4990 ext4_set_feature_large_file(sb);
202ee5df
TT
4991 ext4_handle_sync(handle);
4992 err = ext4_handle_dirty_super(handle, sb);
4993 }
b71fc079 4994 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4995out_brelse:
af5bc92d 4996 brelse(bh);
617ba13b 4997 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4998 return err;
4999}
5000
5001/*
617ba13b 5002 * ext4_write_inode()
ac27a0ec
DK
5003 *
5004 * We are called from a few places:
5005 *
87f7e416 5006 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5007 * Here, there will be no transaction running. We wait for any running
4907cb7b 5008 * transaction to commit.
ac27a0ec 5009 *
87f7e416
TT
5010 * - Within flush work (sys_sync(), kupdate and such).
5011 * We wait on commit, if told to.
ac27a0ec 5012 *
87f7e416
TT
5013 * - Within iput_final() -> write_inode_now()
5014 * We wait on commit, if told to.
ac27a0ec
DK
5015 *
5016 * In all cases it is actually safe for us to return without doing anything,
5017 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5018 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5019 * writeback.
ac27a0ec
DK
5020 *
5021 * Note that we are absolutely dependent upon all inode dirtiers doing the
5022 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5023 * which we are interested.
5024 *
5025 * It would be a bug for them to not do this. The code:
5026 *
5027 * mark_inode_dirty(inode)
5028 * stuff();
5029 * inode->i_size = expr;
5030 *
87f7e416
TT
5031 * is in error because write_inode() could occur while `stuff()' is running,
5032 * and the new i_size will be lost. Plus the inode will no longer be on the
5033 * superblock's dirty inode list.
ac27a0ec 5034 */
a9185b41 5035int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5036{
91ac6f43
FM
5037 int err;
5038
87f7e416 5039 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5040 return 0;
5041
91ac6f43
FM
5042 if (EXT4_SB(inode->i_sb)->s_journal) {
5043 if (ext4_journal_current_handle()) {
5044 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5045 dump_stack();
5046 return -EIO;
5047 }
ac27a0ec 5048
10542c22
JK
5049 /*
5050 * No need to force transaction in WB_SYNC_NONE mode. Also
5051 * ext4_sync_fs() will force the commit after everything is
5052 * written.
5053 */
5054 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5055 return 0;
5056
5057 err = ext4_force_commit(inode->i_sb);
5058 } else {
5059 struct ext4_iloc iloc;
ac27a0ec 5060
8b472d73 5061 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5062 if (err)
5063 return err;
10542c22
JK
5064 /*
5065 * sync(2) will flush the whole buffer cache. No need to do
5066 * it here separately for each inode.
5067 */
5068 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5069 sync_dirty_buffer(iloc.bh);
5070 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5071 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5072 "IO error syncing inode");
830156c7
FM
5073 err = -EIO;
5074 }
fd2dd9fb 5075 brelse(iloc.bh);
91ac6f43
FM
5076 }
5077 return err;
ac27a0ec
DK
5078}
5079
53e87268
JK
5080/*
5081 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5082 * buffers that are attached to a page stradding i_size and are undergoing
5083 * commit. In that case we have to wait for commit to finish and try again.
5084 */
5085static void ext4_wait_for_tail_page_commit(struct inode *inode)
5086{
5087 struct page *page;
5088 unsigned offset;
5089 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5090 tid_t commit_tid = 0;
5091 int ret;
5092
09cbfeaf 5093 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5094 /*
5095 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5096 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5097 * blocksize case
5098 */
09cbfeaf 5099 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
53e87268
JK
5100 return;
5101 while (1) {
5102 page = find_lock_page(inode->i_mapping,
09cbfeaf 5103 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5104 if (!page)
5105 return;
ca99fdd2 5106 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5107 PAGE_SIZE - offset);
53e87268 5108 unlock_page(page);
09cbfeaf 5109 put_page(page);
53e87268
JK
5110 if (ret != -EBUSY)
5111 return;
5112 commit_tid = 0;
5113 read_lock(&journal->j_state_lock);
5114 if (journal->j_committing_transaction)
5115 commit_tid = journal->j_committing_transaction->t_tid;
5116 read_unlock(&journal->j_state_lock);
5117 if (commit_tid)
5118 jbd2_log_wait_commit(journal, commit_tid);
5119 }
5120}
5121
ac27a0ec 5122/*
617ba13b 5123 * ext4_setattr()
ac27a0ec
DK
5124 *
5125 * Called from notify_change.
5126 *
5127 * We want to trap VFS attempts to truncate the file as soon as
5128 * possible. In particular, we want to make sure that when the VFS
5129 * shrinks i_size, we put the inode on the orphan list and modify
5130 * i_disksize immediately, so that during the subsequent flushing of
5131 * dirty pages and freeing of disk blocks, we can guarantee that any
5132 * commit will leave the blocks being flushed in an unused state on
5133 * disk. (On recovery, the inode will get truncated and the blocks will
5134 * be freed, so we have a strong guarantee that no future commit will
5135 * leave these blocks visible to the user.)
5136 *
678aaf48
JK
5137 * Another thing we have to assure is that if we are in ordered mode
5138 * and inode is still attached to the committing transaction, we must
5139 * we start writeout of all the dirty pages which are being truncated.
5140 * This way we are sure that all the data written in the previous
5141 * transaction are already on disk (truncate waits for pages under
5142 * writeback).
5143 *
5144 * Called with inode->i_mutex down.
ac27a0ec 5145 */
617ba13b 5146int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5147{
2b0143b5 5148 struct inode *inode = d_inode(dentry);
ac27a0ec 5149 int error, rc = 0;
3d287de3 5150 int orphan = 0;
ac27a0ec
DK
5151 const unsigned int ia_valid = attr->ia_valid;
5152
31051c85 5153 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5154 if (error)
5155 return error;
5156
a7cdadee
JK
5157 if (is_quota_modification(inode, attr)) {
5158 error = dquot_initialize(inode);
5159 if (error)
5160 return error;
5161 }
08cefc7a
EB
5162 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5163 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5164 handle_t *handle;
5165
5166 /* (user+group)*(old+new) structure, inode write (sb,
5167 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5168 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5169 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5170 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5171 if (IS_ERR(handle)) {
5172 error = PTR_ERR(handle);
5173 goto err_out;
5174 }
b43fa828 5175 error = dquot_transfer(inode, attr);
ac27a0ec 5176 if (error) {
617ba13b 5177 ext4_journal_stop(handle);
ac27a0ec
DK
5178 return error;
5179 }
5180 /* Update corresponding info in inode so that everything is in
5181 * one transaction */
5182 if (attr->ia_valid & ATTR_UID)
5183 inode->i_uid = attr->ia_uid;
5184 if (attr->ia_valid & ATTR_GID)
5185 inode->i_gid = attr->ia_gid;
617ba13b
MC
5186 error = ext4_mark_inode_dirty(handle, inode);
5187 ext4_journal_stop(handle);
ac27a0ec
DK
5188 }
5189
3da40c7b 5190 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5191 handle_t *handle;
3da40c7b
JB
5192 loff_t oldsize = inode->i_size;
5193 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5194
12e9b892 5195 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5197
0c095c7f
TT
5198 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5199 return -EFBIG;
e2b46574 5200 }
3da40c7b
JB
5201 if (!S_ISREG(inode->i_mode))
5202 return -EINVAL;
dff6efc3
CH
5203
5204 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5205 inode_inc_iversion(inode);
5206
3da40c7b 5207 if (ext4_should_order_data(inode) &&
5208386c 5208 (attr->ia_size < inode->i_size)) {
3da40c7b 5209 error = ext4_begin_ordered_truncate(inode,
678aaf48 5210 attr->ia_size);
3da40c7b
JB
5211 if (error)
5212 goto err_out;
5213 }
5214 if (attr->ia_size != inode->i_size) {
5208386c
JK
5215 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5216 if (IS_ERR(handle)) {
5217 error = PTR_ERR(handle);
5218 goto err_out;
5219 }
3da40c7b 5220 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5221 error = ext4_orphan_add(handle, inode);
5222 orphan = 1;
5223 }
911af577
EG
5224 /*
5225 * Update c/mtime on truncate up, ext4_truncate() will
5226 * update c/mtime in shrink case below
5227 */
5228 if (!shrink) {
eeca7ea1 5229 inode->i_mtime = current_time(inode);
911af577
EG
5230 inode->i_ctime = inode->i_mtime;
5231 }
90e775b7 5232 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5233 EXT4_I(inode)->i_disksize = attr->ia_size;
5234 rc = ext4_mark_inode_dirty(handle, inode);
5235 if (!error)
5236 error = rc;
90e775b7
JK
5237 /*
5238 * We have to update i_size under i_data_sem together
5239 * with i_disksize to avoid races with writeback code
5240 * running ext4_wb_update_i_disksize().
5241 */
5242 if (!error)
5243 i_size_write(inode, attr->ia_size);
5244 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5245 ext4_journal_stop(handle);
5246 if (error) {
3da40c7b
JB
5247 if (orphan)
5248 ext4_orphan_del(NULL, inode);
678aaf48
JK
5249 goto err_out;
5250 }
d6320cbf 5251 }
3da40c7b
JB
5252 if (!shrink)
5253 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5254
5208386c
JK
5255 /*
5256 * Blocks are going to be removed from the inode. Wait
5257 * for dio in flight. Temporarily disable
5258 * dioread_nolock to prevent livelock.
5259 */
5260 if (orphan) {
5261 if (!ext4_should_journal_data(inode)) {
5262 ext4_inode_block_unlocked_dio(inode);
5263 inode_dio_wait(inode);
5264 ext4_inode_resume_unlocked_dio(inode);
5265 } else
5266 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5267 }
ea3d7209 5268 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5269 /*
5270 * Truncate pagecache after we've waited for commit
5271 * in data=journal mode to make pages freeable.
5272 */
923ae0ff 5273 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5274 if (shrink) {
5275 rc = ext4_truncate(inode);
5276 if (rc)
5277 error = rc;
5278 }
ea3d7209 5279 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5280 }
ac27a0ec 5281
2c98eb5e 5282 if (!error) {
1025774c
CH
5283 setattr_copy(inode, attr);
5284 mark_inode_dirty(inode);
5285 }
5286
5287 /*
5288 * If the call to ext4_truncate failed to get a transaction handle at
5289 * all, we need to clean up the in-core orphan list manually.
5290 */
3d287de3 5291 if (orphan && inode->i_nlink)
617ba13b 5292 ext4_orphan_del(NULL, inode);
ac27a0ec 5293
2c98eb5e 5294 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5295 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5296
5297err_out:
617ba13b 5298 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5299 if (!error)
5300 error = rc;
5301 return error;
5302}
5303
3e3398a0
MC
5304int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5305 struct kstat *stat)
5306{
5307 struct inode *inode;
8af8eecc 5308 unsigned long long delalloc_blocks;
3e3398a0 5309
2b0143b5 5310 inode = d_inode(dentry);
3e3398a0
MC
5311 generic_fillattr(inode, stat);
5312
9206c561
AD
5313 /*
5314 * If there is inline data in the inode, the inode will normally not
5315 * have data blocks allocated (it may have an external xattr block).
5316 * Report at least one sector for such files, so tools like tar, rsync,
5317 * others doen't incorrectly think the file is completely sparse.
5318 */
5319 if (unlikely(ext4_has_inline_data(inode)))
5320 stat->blocks += (stat->size + 511) >> 9;
5321
3e3398a0
MC
5322 /*
5323 * We can't update i_blocks if the block allocation is delayed
5324 * otherwise in the case of system crash before the real block
5325 * allocation is done, we will have i_blocks inconsistent with
5326 * on-disk file blocks.
5327 * We always keep i_blocks updated together with real
5328 * allocation. But to not confuse with user, stat
5329 * will return the blocks that include the delayed allocation
5330 * blocks for this file.
5331 */
96607551 5332 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5333 EXT4_I(inode)->i_reserved_data_blocks);
5334 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5335 return 0;
5336}
ac27a0ec 5337
fffb2739
JK
5338static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5339 int pextents)
a02908f1 5340{
12e9b892 5341 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5342 return ext4_ind_trans_blocks(inode, lblocks);
5343 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5344}
ac51d837 5345
ac27a0ec 5346/*
a02908f1
MC
5347 * Account for index blocks, block groups bitmaps and block group
5348 * descriptor blocks if modify datablocks and index blocks
5349 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5350 *
a02908f1 5351 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5352 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5353 * they could still across block group boundary.
ac27a0ec 5354 *
a02908f1
MC
5355 * Also account for superblock, inode, quota and xattr blocks
5356 */
fffb2739
JK
5357static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5358 int pextents)
a02908f1 5359{
8df9675f
TT
5360 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5361 int gdpblocks;
a02908f1
MC
5362 int idxblocks;
5363 int ret = 0;
5364
5365 /*
fffb2739
JK
5366 * How many index blocks need to touch to map @lblocks logical blocks
5367 * to @pextents physical extents?
a02908f1 5368 */
fffb2739 5369 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5370
5371 ret = idxblocks;
5372
5373 /*
5374 * Now let's see how many group bitmaps and group descriptors need
5375 * to account
5376 */
fffb2739 5377 groups = idxblocks + pextents;
a02908f1 5378 gdpblocks = groups;
8df9675f
TT
5379 if (groups > ngroups)
5380 groups = ngroups;
a02908f1
MC
5381 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5382 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5383
5384 /* bitmaps and block group descriptor blocks */
5385 ret += groups + gdpblocks;
5386
5387 /* Blocks for super block, inode, quota and xattr blocks */
5388 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5389
5390 return ret;
5391}
5392
5393/*
25985edc 5394 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5395 * the modification of a single pages into a single transaction,
5396 * which may include multiple chunks of block allocations.
ac27a0ec 5397 *
525f4ed8 5398 * This could be called via ext4_write_begin()
ac27a0ec 5399 *
525f4ed8 5400 * We need to consider the worse case, when
a02908f1 5401 * one new block per extent.
ac27a0ec 5402 */
a86c6181 5403int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5404{
617ba13b 5405 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5406 int ret;
5407
fffb2739 5408 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5409
a02908f1 5410 /* Account for data blocks for journalled mode */
617ba13b 5411 if (ext4_should_journal_data(inode))
a02908f1 5412 ret += bpp;
ac27a0ec
DK
5413 return ret;
5414}
f3bd1f3f
MC
5415
5416/*
5417 * Calculate the journal credits for a chunk of data modification.
5418 *
5419 * This is called from DIO, fallocate or whoever calling
79e83036 5420 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5421 *
5422 * journal buffers for data blocks are not included here, as DIO
5423 * and fallocate do no need to journal data buffers.
5424 */
5425int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5426{
5427 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5428}
5429
ac27a0ec 5430/*
617ba13b 5431 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5432 * Give this, we know that the caller already has write access to iloc->bh.
5433 */
617ba13b 5434int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5435 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5436{
5437 int err = 0;
5438
c64db50e 5439 if (IS_I_VERSION(inode))
25ec56b5
JNC
5440 inode_inc_iversion(inode);
5441
ac27a0ec
DK
5442 /* the do_update_inode consumes one bh->b_count */
5443 get_bh(iloc->bh);
5444
dab291af 5445 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5446 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5447 put_bh(iloc->bh);
5448 return err;
5449}
5450
5451/*
5452 * On success, We end up with an outstanding reference count against
5453 * iloc->bh. This _must_ be cleaned up later.
5454 */
5455
5456int
617ba13b
MC
5457ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5458 struct ext4_iloc *iloc)
ac27a0ec 5459{
0390131b
FM
5460 int err;
5461
5462 err = ext4_get_inode_loc(inode, iloc);
5463 if (!err) {
5464 BUFFER_TRACE(iloc->bh, "get_write_access");
5465 err = ext4_journal_get_write_access(handle, iloc->bh);
5466 if (err) {
5467 brelse(iloc->bh);
5468 iloc->bh = NULL;
ac27a0ec
DK
5469 }
5470 }
617ba13b 5471 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5472 return err;
5473}
5474
6dd4ee7c
KS
5475/*
5476 * Expand an inode by new_extra_isize bytes.
5477 * Returns 0 on success or negative error number on failure.
5478 */
1d03ec98
AK
5479static int ext4_expand_extra_isize(struct inode *inode,
5480 unsigned int new_extra_isize,
5481 struct ext4_iloc iloc,
5482 handle_t *handle)
6dd4ee7c
KS
5483{
5484 struct ext4_inode *raw_inode;
5485 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5486
5487 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5488 return 0;
5489
5490 raw_inode = ext4_raw_inode(&iloc);
5491
5492 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5493
5494 /* No extended attributes present */
19f5fb7a
TT
5495 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5496 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5497 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5498 new_extra_isize);
5499 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5500 return 0;
5501 }
5502
5503 /* try to expand with EAs present */
5504 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5505 raw_inode, handle);
5506}
5507
ac27a0ec
DK
5508/*
5509 * What we do here is to mark the in-core inode as clean with respect to inode
5510 * dirtiness (it may still be data-dirty).
5511 * This means that the in-core inode may be reaped by prune_icache
5512 * without having to perform any I/O. This is a very good thing,
5513 * because *any* task may call prune_icache - even ones which
5514 * have a transaction open against a different journal.
5515 *
5516 * Is this cheating? Not really. Sure, we haven't written the
5517 * inode out, but prune_icache isn't a user-visible syncing function.
5518 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5519 * we start and wait on commits.
ac27a0ec 5520 */
617ba13b 5521int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5522{
617ba13b 5523 struct ext4_iloc iloc;
6dd4ee7c
KS
5524 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5525 static unsigned int mnt_count;
5526 int err, ret;
ac27a0ec
DK
5527
5528 might_sleep();
7ff9c073 5529 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5530 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5531 if (err)
5532 return err;
88e03877 5533 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5534 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c 5535 /*
88e03877
EW
5536 * In nojournal mode, we can immediately attempt to expand
5537 * the inode. When journaled, we first need to obtain extra
5538 * buffer credits since we may write into the EA block
6dd4ee7c
KS
5539 * with this same handle. If journal_extend fails, then it will
5540 * only result in a minor loss of functionality for that inode.
5541 * If this is felt to be critical, then e2fsck should be run to
5542 * force a large enough s_min_extra_isize.
5543 */
88e03877
EW
5544 if (!ext4_handle_valid(handle) ||
5545 jbd2_journal_extend(handle,
5546 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
6dd4ee7c
KS
5547 ret = ext4_expand_extra_isize(inode,
5548 sbi->s_want_extra_isize,
5549 iloc, handle);
5550 if (ret) {
c1bddad9
AK
5551 if (mnt_count !=
5552 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5553 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5554 "Unable to expand inode %lu. Delete"
5555 " some EAs or run e2fsck.",
5556 inode->i_ino);
c1bddad9
AK
5557 mnt_count =
5558 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5559 }
5560 }
5561 }
5562 }
5e1021f2 5563 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5564}
5565
5566/*
617ba13b 5567 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5568 *
5569 * We're really interested in the case where a file is being extended.
5570 * i_size has been changed by generic_commit_write() and we thus need
5571 * to include the updated inode in the current transaction.
5572 *
5dd4056d 5573 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5574 * are allocated to the file.
5575 *
5576 * If the inode is marked synchronous, we don't honour that here - doing
5577 * so would cause a commit on atime updates, which we don't bother doing.
5578 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5579 *
5580 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5581 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5582 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5583 */
aa385729 5584void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5585{
ac27a0ec
DK
5586 handle_t *handle;
5587
0ae45f63
TT
5588 if (flags == I_DIRTY_TIME)
5589 return;
9924a92a 5590 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5591 if (IS_ERR(handle))
5592 goto out;
f3dc272f 5593
f3dc272f
CW
5594 ext4_mark_inode_dirty(handle, inode);
5595
617ba13b 5596 ext4_journal_stop(handle);
ac27a0ec
DK
5597out:
5598 return;
5599}
5600
5601#if 0
5602/*
5603 * Bind an inode's backing buffer_head into this transaction, to prevent
5604 * it from being flushed to disk early. Unlike
617ba13b 5605 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5606 * returns no iloc structure, so the caller needs to repeat the iloc
5607 * lookup to mark the inode dirty later.
5608 */
617ba13b 5609static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5610{
617ba13b 5611 struct ext4_iloc iloc;
ac27a0ec
DK
5612
5613 int err = 0;
5614 if (handle) {
617ba13b 5615 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5616 if (!err) {
5617 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5618 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5619 if (!err)
0390131b 5620 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5621 NULL,
0390131b 5622 iloc.bh);
ac27a0ec
DK
5623 brelse(iloc.bh);
5624 }
5625 }
617ba13b 5626 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5627 return err;
5628}
5629#endif
5630
617ba13b 5631int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5632{
5633 journal_t *journal;
5634 handle_t *handle;
5635 int err;
c8585c6f 5636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5637
5638 /*
5639 * We have to be very careful here: changing a data block's
5640 * journaling status dynamically is dangerous. If we write a
5641 * data block to the journal, change the status and then delete
5642 * that block, we risk forgetting to revoke the old log record
5643 * from the journal and so a subsequent replay can corrupt data.
5644 * So, first we make sure that the journal is empty and that
5645 * nobody is changing anything.
5646 */
5647
617ba13b 5648 journal = EXT4_JOURNAL(inode);
0390131b
FM
5649 if (!journal)
5650 return 0;
d699594d 5651 if (is_journal_aborted(journal))
ac27a0ec
DK
5652 return -EROFS;
5653
17335dcc
DM
5654 /* Wait for all existing dio workers */
5655 ext4_inode_block_unlocked_dio(inode);
5656 inode_dio_wait(inode);
5657
4c546592
DJ
5658 /*
5659 * Before flushing the journal and switching inode's aops, we have
5660 * to flush all dirty data the inode has. There can be outstanding
5661 * delayed allocations, there can be unwritten extents created by
5662 * fallocate or buffered writes in dioread_nolock mode covered by
5663 * dirty data which can be converted only after flushing the dirty
5664 * data (and journalled aops don't know how to handle these cases).
5665 */
5666 if (val) {
5667 down_write(&EXT4_I(inode)->i_mmap_sem);
5668 err = filemap_write_and_wait(inode->i_mapping);
5669 if (err < 0) {
5670 up_write(&EXT4_I(inode)->i_mmap_sem);
5671 ext4_inode_resume_unlocked_dio(inode);
5672 return err;
5673 }
5674 }
5675
c8585c6f 5676 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5677 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5678
5679 /*
5680 * OK, there are no updates running now, and all cached data is
5681 * synced to disk. We are now in a completely consistent state
5682 * which doesn't have anything in the journal, and we know that
5683 * no filesystem updates are running, so it is safe to modify
5684 * the inode's in-core data-journaling state flag now.
5685 */
5686
5687 if (val)
12e9b892 5688 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5689 else {
4f879ca6
JK
5690 err = jbd2_journal_flush(journal);
5691 if (err < 0) {
5692 jbd2_journal_unlock_updates(journal);
c8585c6f 5693 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5694 ext4_inode_resume_unlocked_dio(inode);
5695 return err;
5696 }
12e9b892 5697 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5698 }
617ba13b 5699 ext4_set_aops(inode);
a3caa24b
JK
5700 /*
5701 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5702 * E.g. S_DAX may get cleared / set.
5703 */
5704 ext4_set_inode_flags(inode);
ac27a0ec 5705
dab291af 5706 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5707 percpu_up_write(&sbi->s_journal_flag_rwsem);
5708
4c546592
DJ
5709 if (val)
5710 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5711 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5712
5713 /* Finally we can mark the inode as dirty. */
5714
9924a92a 5715 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5716 if (IS_ERR(handle))
5717 return PTR_ERR(handle);
5718
617ba13b 5719 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5720 ext4_handle_sync(handle);
617ba13b
MC
5721 ext4_journal_stop(handle);
5722 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5723
5724 return err;
5725}
2e9ee850
AK
5726
5727static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5728{
5729 return !buffer_mapped(bh);
5730}
5731
c2ec175c 5732int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5733{
c2ec175c 5734 struct page *page = vmf->page;
2e9ee850
AK
5735 loff_t size;
5736 unsigned long len;
9ea7df53 5737 int ret;
2e9ee850 5738 struct file *file = vma->vm_file;
496ad9aa 5739 struct inode *inode = file_inode(file);
2e9ee850 5740 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5741 handle_t *handle;
5742 get_block_t *get_block;
5743 int retries = 0;
2e9ee850 5744
8e8ad8a5 5745 sb_start_pagefault(inode->i_sb);
041bbb6d 5746 file_update_time(vma->vm_file);
ea3d7209
JK
5747
5748 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5749 /* Delalloc case is easy... */
5750 if (test_opt(inode->i_sb, DELALLOC) &&
5751 !ext4_should_journal_data(inode) &&
5752 !ext4_nonda_switch(inode->i_sb)) {
5753 do {
5c500029 5754 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5755 ext4_da_get_block_prep);
5756 } while (ret == -ENOSPC &&
5757 ext4_should_retry_alloc(inode->i_sb, &retries));
5758 goto out_ret;
2e9ee850 5759 }
0e499890
DW
5760
5761 lock_page(page);
9ea7df53
JK
5762 size = i_size_read(inode);
5763 /* Page got truncated from under us? */
5764 if (page->mapping != mapping || page_offset(page) > size) {
5765 unlock_page(page);
5766 ret = VM_FAULT_NOPAGE;
5767 goto out;
0e499890 5768 }
2e9ee850 5769
09cbfeaf
KS
5770 if (page->index == size >> PAGE_SHIFT)
5771 len = size & ~PAGE_MASK;
2e9ee850 5772 else
09cbfeaf 5773 len = PAGE_SIZE;
a827eaff 5774 /*
9ea7df53
JK
5775 * Return if we have all the buffers mapped. This avoids the need to do
5776 * journal_start/journal_stop which can block and take a long time
a827eaff 5777 */
2e9ee850 5778 if (page_has_buffers(page)) {
f19d5870
TM
5779 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5780 0, len, NULL,
5781 ext4_bh_unmapped)) {
9ea7df53 5782 /* Wait so that we don't change page under IO */
1d1d1a76 5783 wait_for_stable_page(page);
9ea7df53
JK
5784 ret = VM_FAULT_LOCKED;
5785 goto out;
a827eaff 5786 }
2e9ee850 5787 }
a827eaff 5788 unlock_page(page);
9ea7df53
JK
5789 /* OK, we need to fill the hole... */
5790 if (ext4_should_dioread_nolock(inode))
705965bd 5791 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5792 else
5793 get_block = ext4_get_block;
5794retry_alloc:
9924a92a
TT
5795 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5796 ext4_writepage_trans_blocks(inode));
9ea7df53 5797 if (IS_ERR(handle)) {
c2ec175c 5798 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5799 goto out;
5800 }
5c500029 5801 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5802 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5803 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5804 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5805 unlock_page(page);
5806 ret = VM_FAULT_SIGBUS;
fcbb5515 5807 ext4_journal_stop(handle);
9ea7df53
JK
5808 goto out;
5809 }
5810 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5811 }
5812 ext4_journal_stop(handle);
5813 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5814 goto retry_alloc;
5815out_ret:
5816 ret = block_page_mkwrite_return(ret);
5817out:
ea3d7209 5818 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5819 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5820 return ret;
5821}
ea3d7209
JK
5822
5823int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5824{
5825 struct inode *inode = file_inode(vma->vm_file);
5826 int err;
5827
5828 down_read(&EXT4_I(inode)->i_mmap_sem);
5829 err = filemap_fault(vma, vmf);
5830 up_read(&EXT4_I(inode)->i_mmap_sem);
5831
5832 return err;
5833}
2d90c160
JK
5834
5835/*
5836 * Find the first extent at or after @lblk in an inode that is not a hole.
5837 * Search for @map_len blocks at most. The extent is returned in @result.
5838 *
5839 * The function returns 1 if we found an extent. The function returns 0 in
5840 * case there is no extent at or after @lblk and in that case also sets
5841 * @result->es_len to 0. In case of error, the error code is returned.
5842 */
5843int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5844 unsigned int map_len, struct extent_status *result)
5845{
5846 struct ext4_map_blocks map;
5847 struct extent_status es = {};
5848 int ret;
5849
5850 map.m_lblk = lblk;
5851 map.m_len = map_len;
5852
5853 /*
5854 * For non-extent based files this loop may iterate several times since
5855 * we do not determine full hole size.
5856 */
5857 while (map.m_len > 0) {
5858 ret = ext4_map_blocks(NULL, inode, &map, 0);
5859 if (ret < 0)
5860 return ret;
5861 /* There's extent covering m_lblk? Just return it. */
5862 if (ret > 0) {
5863 int status;
5864
5865 ext4_es_store_pblock(result, map.m_pblk);
5866 result->es_lblk = map.m_lblk;
5867 result->es_len = map.m_len;
5868 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5869 status = EXTENT_STATUS_UNWRITTEN;
5870 else
5871 status = EXTENT_STATUS_WRITTEN;
5872 ext4_es_store_status(result, status);
5873 return 1;
5874 }
5875 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5876 map.m_lblk + map.m_len - 1,
5877 &es);
5878 /* Is delalloc data before next block in extent tree? */
5879 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5880 ext4_lblk_t offset = 0;
5881
5882 if (es.es_lblk < lblk)
5883 offset = lblk - es.es_lblk;
5884 result->es_lblk = es.es_lblk + offset;
5885 ext4_es_store_pblock(result,
5886 ext4_es_pblock(&es) + offset);
5887 result->es_len = es.es_len - offset;
5888 ext4_es_store_status(result, ext4_es_status(&es));
5889
5890 return 1;
5891 }
5892 /* There's a hole at m_lblk, advance us after it */
5893 map.m_lblk += map.m_len;
5894 map_len -= map.m_len;
5895 map.m_len = map_len;
5896 cond_resched();
5897 }
5898 result->es_len = 0;
5899 return 0;
5900}