]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
Linux 4.5-rc2
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
f348c252 142int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
e2bfb088
TT
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
0637c6f4
TT
322/*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
5f634d06
AK
326void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
12219aea
AK
328{
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 330 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
331
332 spin_lock(&ei->i_block_reservation_lock);
d8990240 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 334 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 336 "with only %d reserved data blocks",
0637c6f4
TT
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
12219aea 342
0637c6f4
TT
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
71d4f7d0 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 346
12219aea 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 348
72b8ab9d
ES
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
7b415bf6 351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 352 else {
5f634d06
AK
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
72b8ab9d 356 * not re-claim the quota for fallocated blocks.
5f634d06 357 */
7b415bf6 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 359 }
d6014301
AK
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
0637c6f4
TT
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
d6014301 368 ext4_discard_preallocations(inode);
12219aea
AK
369}
370
e29136f8 371static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
372 unsigned int line,
373 struct ext4_map_blocks *map)
6fd058f7 374{
24676da4
TT
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
c398eda0
TT
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
6a797d27 381 return -EFSCORRUPTED;
6fd058f7
TT
382 }
383 return 0;
384}
385
53085fac
JK
386int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387 ext4_lblk_t len)
388{
389 int ret;
390
391 if (ext4_encrypted_inode(inode))
392 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393
394 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395 if (ret > 0)
396 ret = 0;
397
398 return ret;
399}
400
e29136f8 401#define check_block_validity(inode, map) \
c398eda0 402 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 403
921f266b
DM
404#ifdef ES_AGGRESSIVE_TEST
405static void ext4_map_blocks_es_recheck(handle_t *handle,
406 struct inode *inode,
407 struct ext4_map_blocks *es_map,
408 struct ext4_map_blocks *map,
409 int flags)
410{
411 int retval;
412
413 map->m_flags = 0;
414 /*
415 * There is a race window that the result is not the same.
416 * e.g. xfstests #223 when dioread_nolock enables. The reason
417 * is that we lookup a block mapping in extent status tree with
418 * out taking i_data_sem. So at the time the unwritten extent
419 * could be converted.
420 */
2dcba478 421 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
422 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423 retval = ext4_ext_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 } else {
426 retval = ext4_ind_map_blocks(handle, inode, map, flags &
427 EXT4_GET_BLOCKS_KEEP_SIZE);
428 }
2dcba478 429 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
430
431 /*
432 * We don't check m_len because extent will be collpased in status
433 * tree. So the m_len might not equal.
434 */
435 if (es_map->m_lblk != map->m_lblk ||
436 es_map->m_flags != map->m_flags ||
437 es_map->m_pblk != map->m_pblk) {
bdafe42a 438 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
439 "es_cached ex [%d/%d/%llu/%x] != "
440 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 inode->i_ino, es_map->m_lblk, es_map->m_len,
442 es_map->m_pblk, es_map->m_flags, map->m_lblk,
443 map->m_len, map->m_pblk, map->m_flags,
444 retval, flags);
445 }
446}
447#endif /* ES_AGGRESSIVE_TEST */
448
f5ab0d1f 449/*
e35fd660 450 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 451 * and returns if the blocks are already mapped.
f5ab0d1f 452 *
f5ab0d1f
MC
453 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454 * and store the allocated blocks in the result buffer head and mark it
455 * mapped.
456 *
e35fd660
TT
457 * If file type is extents based, it will call ext4_ext_map_blocks(),
458 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
459 * based files
460 *
556615dc
LC
461 * On success, it returns the number of blocks being mapped or allocated.
462 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
463 * the result buffer head is unmapped. If the create ==1, it will make sure
464 * the buffer head is mapped.
465 *
466 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 467 * that case, buffer head is unmapped
f5ab0d1f
MC
468 *
469 * It returns the error in case of allocation failure.
470 */
e35fd660
TT
471int ext4_map_blocks(handle_t *handle, struct inode *inode,
472 struct ext4_map_blocks *map, int flags)
0e855ac8 473{
d100eef2 474 struct extent_status es;
0e855ac8 475 int retval;
b8a86845 476 int ret = 0;
921f266b
DM
477#ifdef ES_AGGRESSIVE_TEST
478 struct ext4_map_blocks orig_map;
479
480 memcpy(&orig_map, map, sizeof(*map));
481#endif
f5ab0d1f 482
e35fd660
TT
483 map->m_flags = 0;
484 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 "logical block %lu\n", inode->i_ino, flags, map->m_len,
486 (unsigned long) map->m_lblk);
d100eef2 487
e861b5e9
TT
488 /*
489 * ext4_map_blocks returns an int, and m_len is an unsigned int
490 */
491 if (unlikely(map->m_len > INT_MAX))
492 map->m_len = INT_MAX;
493
4adb6ab3
KM
494 /* We can handle the block number less than EXT_MAX_BLOCKS */
495 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 496 return -EFSCORRUPTED;
4adb6ab3 497
d100eef2
ZL
498 /* Lookup extent status tree firstly */
499 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501 map->m_pblk = ext4_es_pblock(&es) +
502 map->m_lblk - es.es_lblk;
503 map->m_flags |= ext4_es_is_written(&es) ?
504 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505 retval = es.es_len - (map->m_lblk - es.es_lblk);
506 if (retval > map->m_len)
507 retval = map->m_len;
508 map->m_len = retval;
509 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510 retval = 0;
511 } else {
512 BUG_ON(1);
513 }
921f266b
DM
514#ifdef ES_AGGRESSIVE_TEST
515 ext4_map_blocks_es_recheck(handle, inode, map,
516 &orig_map, flags);
517#endif
d100eef2
ZL
518 goto found;
519 }
520
4df3d265 521 /*
b920c755
TT
522 * Try to see if we can get the block without requesting a new
523 * file system block.
4df3d265 524 */
2dcba478 525 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 526 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
527 retval = ext4_ext_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 } else {
a4e5d88b
DM
530 retval = ext4_ind_map_blocks(handle, inode, map, flags &
531 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 532 }
f7fec032 533 if (retval > 0) {
3be78c73 534 unsigned int status;
f7fec032 535
44fb851d
ZL
536 if (unlikely(retval != map->m_len)) {
537 ext4_warning(inode->i_sb,
538 "ES len assertion failed for inode "
539 "%lu: retval %d != map->m_len %d",
540 inode->i_ino, retval, map->m_len);
541 WARN_ON(1);
921f266b 542 }
921f266b 543
f7fec032
ZL
544 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 547 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
548 ext4_find_delalloc_range(inode, map->m_lblk,
549 map->m_lblk + map->m_len - 1))
550 status |= EXTENT_STATUS_DELAYED;
551 ret = ext4_es_insert_extent(inode, map->m_lblk,
552 map->m_len, map->m_pblk, status);
553 if (ret < 0)
554 retval = ret;
555 }
2dcba478 556 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 557
d100eef2 558found:
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 560 ret = check_block_validity(inode, map);
6fd058f7
TT
561 if (ret != 0)
562 return ret;
563 }
564
f5ab0d1f 565 /* If it is only a block(s) look up */
c2177057 566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
567 return retval;
568
569 /*
570 * Returns if the blocks have already allocated
571 *
572 * Note that if blocks have been preallocated
df3ab170 573 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
574 * with buffer head unmapped.
575 */
e35fd660 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
577 /*
578 * If we need to convert extent to unwritten
579 * we continue and do the actual work in
580 * ext4_ext_map_blocks()
581 */
582 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583 return retval;
4df3d265 584
2a8964d6 585 /*
a25a4e1a
ZL
586 * Here we clear m_flags because after allocating an new extent,
587 * it will be set again.
2a8964d6 588 */
a25a4e1a 589 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 590
4df3d265 591 /*
556615dc 592 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 593 * will possibly result in updating i_data, so we take
d91bd2c1 594 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 595 * with create == 1 flag.
4df3d265 596 */
c8b459f4 597 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 598
4df3d265
AK
599 /*
600 * We need to check for EXT4 here because migrate
601 * could have changed the inode type in between
602 */
12e9b892 603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 604 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 605 } else {
e35fd660 606 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 607
e35fd660 608 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
609 /*
610 * We allocated new blocks which will result in
611 * i_data's format changing. Force the migrate
612 * to fail by clearing migrate flags
613 */
19f5fb7a 614 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 615 }
d2a17637 616
5f634d06
AK
617 /*
618 * Update reserved blocks/metadata blocks after successful
619 * block allocation which had been deferred till now. We don't
620 * support fallocate for non extent files. So we can update
621 * reserve space here.
622 */
623 if ((retval > 0) &&
1296cc85 624 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
625 ext4_da_update_reserve_space(inode, retval, 1);
626 }
2ac3b6e0 627
f7fec032 628 if (retval > 0) {
3be78c73 629 unsigned int status;
f7fec032 630
44fb851d
ZL
631 if (unlikely(retval != map->m_len)) {
632 ext4_warning(inode->i_sb,
633 "ES len assertion failed for inode "
634 "%lu: retval %d != map->m_len %d",
635 inode->i_ino, retval, map->m_len);
636 WARN_ON(1);
921f266b 637 }
921f266b 638
c86d8db3
JK
639 /*
640 * We have to zeroout blocks before inserting them into extent
641 * status tree. Otherwise someone could look them up there and
642 * use them before they are really zeroed.
643 */
644 if (flags & EXT4_GET_BLOCKS_ZERO &&
645 map->m_flags & EXT4_MAP_MAPPED &&
646 map->m_flags & EXT4_MAP_NEW) {
647 ret = ext4_issue_zeroout(inode, map->m_lblk,
648 map->m_pblk, map->m_len);
649 if (ret) {
650 retval = ret;
651 goto out_sem;
652 }
653 }
654
adb23551
ZL
655 /*
656 * If the extent has been zeroed out, we don't need to update
657 * extent status tree.
658 */
659 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661 if (ext4_es_is_written(&es))
c86d8db3 662 goto out_sem;
adb23551 663 }
f7fec032
ZL
664 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 667 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
668 ext4_find_delalloc_range(inode, map->m_lblk,
669 map->m_lblk + map->m_len - 1))
670 status |= EXTENT_STATUS_DELAYED;
671 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672 map->m_pblk, status);
c86d8db3 673 if (ret < 0) {
f7fec032 674 retval = ret;
c86d8db3
JK
675 goto out_sem;
676 }
5356f261
AK
677 }
678
c86d8db3 679out_sem:
4df3d265 680 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 681 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 682 ret = check_block_validity(inode, map);
6fd058f7
TT
683 if (ret != 0)
684 return ret;
685 }
0e855ac8
AK
686 return retval;
687}
688
f3bd1f3f
MC
689/* Maximum number of blocks we map for direct IO at once. */
690#define DIO_MAX_BLOCKS 4096
691
2ed88685
TT
692static int _ext4_get_block(struct inode *inode, sector_t iblock,
693 struct buffer_head *bh, int flags)
ac27a0ec 694{
3e4fdaf8 695 handle_t *handle = ext4_journal_current_handle();
2ed88685 696 struct ext4_map_blocks map;
7fb5409d 697 int ret = 0, started = 0;
f3bd1f3f 698 int dio_credits;
ac27a0ec 699
46c7f254
TM
700 if (ext4_has_inline_data(inode))
701 return -ERANGE;
702
2ed88685
TT
703 map.m_lblk = iblock;
704 map.m_len = bh->b_size >> inode->i_blkbits;
705
2dcba478 706 if (flags && !handle) {
7fb5409d 707 /* Direct IO write... */
2ed88685
TT
708 if (map.m_len > DIO_MAX_BLOCKS)
709 map.m_len = DIO_MAX_BLOCKS;
710 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
711 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
712 dio_credits);
7fb5409d 713 if (IS_ERR(handle)) {
ac27a0ec 714 ret = PTR_ERR(handle);
2ed88685 715 return ret;
ac27a0ec 716 }
7fb5409d 717 started = 1;
ac27a0ec
DK
718 }
719
2ed88685 720 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 721 if (ret > 0) {
7b7a8665
CH
722 ext4_io_end_t *io_end = ext4_inode_aio(inode);
723
2ed88685
TT
724 map_bh(bh, inode->i_sb, map.m_pblk);
725 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
726 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
727 set_buffer_defer_completion(bh);
2ed88685 728 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 729 ret = 0;
ac27a0ec 730 }
7fb5409d
JK
731 if (started)
732 ext4_journal_stop(handle);
ac27a0ec
DK
733 return ret;
734}
735
2ed88685
TT
736int ext4_get_block(struct inode *inode, sector_t iblock,
737 struct buffer_head *bh, int create)
738{
739 return _ext4_get_block(inode, iblock, bh,
740 create ? EXT4_GET_BLOCKS_CREATE : 0);
741}
742
ac27a0ec
DK
743/*
744 * `handle' can be NULL if create is zero
745 */
617ba13b 746struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 747 ext4_lblk_t block, int map_flags)
ac27a0ec 748{
2ed88685
TT
749 struct ext4_map_blocks map;
750 struct buffer_head *bh;
c5e298ae 751 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 752 int err;
ac27a0ec
DK
753
754 J_ASSERT(handle != NULL || create == 0);
755
2ed88685
TT
756 map.m_lblk = block;
757 map.m_len = 1;
c5e298ae 758 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 759
10560082
TT
760 if (err == 0)
761 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 762 if (err < 0)
10560082 763 return ERR_PTR(err);
2ed88685
TT
764
765 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
766 if (unlikely(!bh))
767 return ERR_PTR(-ENOMEM);
2ed88685
TT
768 if (map.m_flags & EXT4_MAP_NEW) {
769 J_ASSERT(create != 0);
770 J_ASSERT(handle != NULL);
ac27a0ec 771
2ed88685
TT
772 /*
773 * Now that we do not always journal data, we should
774 * keep in mind whether this should always journal the
775 * new buffer as metadata. For now, regular file
776 * writes use ext4_get_block instead, so it's not a
777 * problem.
778 */
779 lock_buffer(bh);
780 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
781 err = ext4_journal_get_create_access(handle, bh);
782 if (unlikely(err)) {
783 unlock_buffer(bh);
784 goto errout;
785 }
786 if (!buffer_uptodate(bh)) {
2ed88685
TT
787 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
788 set_buffer_uptodate(bh);
ac27a0ec 789 }
2ed88685
TT
790 unlock_buffer(bh);
791 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
792 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
793 if (unlikely(err))
794 goto errout;
795 } else
2ed88685 796 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 797 return bh;
10560082
TT
798errout:
799 brelse(bh);
800 return ERR_PTR(err);
ac27a0ec
DK
801}
802
617ba13b 803struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 804 ext4_lblk_t block, int map_flags)
ac27a0ec 805{
af5bc92d 806 struct buffer_head *bh;
ac27a0ec 807
c5e298ae 808 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 809 if (IS_ERR(bh))
ac27a0ec 810 return bh;
1c215028 811 if (!bh || buffer_uptodate(bh))
ac27a0ec 812 return bh;
65299a3b 813 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
814 wait_on_buffer(bh);
815 if (buffer_uptodate(bh))
816 return bh;
817 put_bh(bh);
1c215028 818 return ERR_PTR(-EIO);
ac27a0ec
DK
819}
820
f19d5870
TM
821int ext4_walk_page_buffers(handle_t *handle,
822 struct buffer_head *head,
823 unsigned from,
824 unsigned to,
825 int *partial,
826 int (*fn)(handle_t *handle,
827 struct buffer_head *bh))
ac27a0ec
DK
828{
829 struct buffer_head *bh;
830 unsigned block_start, block_end;
831 unsigned blocksize = head->b_size;
832 int err, ret = 0;
833 struct buffer_head *next;
834
af5bc92d
TT
835 for (bh = head, block_start = 0;
836 ret == 0 && (bh != head || !block_start);
de9a55b8 837 block_start = block_end, bh = next) {
ac27a0ec
DK
838 next = bh->b_this_page;
839 block_end = block_start + blocksize;
840 if (block_end <= from || block_start >= to) {
841 if (partial && !buffer_uptodate(bh))
842 *partial = 1;
843 continue;
844 }
845 err = (*fn)(handle, bh);
846 if (!ret)
847 ret = err;
848 }
849 return ret;
850}
851
852/*
853 * To preserve ordering, it is essential that the hole instantiation and
854 * the data write be encapsulated in a single transaction. We cannot
617ba13b 855 * close off a transaction and start a new one between the ext4_get_block()
dab291af 856 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
857 * prepare_write() is the right place.
858 *
36ade451
JK
859 * Also, this function can nest inside ext4_writepage(). In that case, we
860 * *know* that ext4_writepage() has generated enough buffer credits to do the
861 * whole page. So we won't block on the journal in that case, which is good,
862 * because the caller may be PF_MEMALLOC.
ac27a0ec 863 *
617ba13b 864 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
865 * quota file writes. If we were to commit the transaction while thus
866 * reentered, there can be a deadlock - we would be holding a quota
867 * lock, and the commit would never complete if another thread had a
868 * transaction open and was blocking on the quota lock - a ranking
869 * violation.
870 *
dab291af 871 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
872 * will _not_ run commit under these circumstances because handle->h_ref
873 * is elevated. We'll still have enough credits for the tiny quotafile
874 * write.
875 */
f19d5870
TM
876int do_journal_get_write_access(handle_t *handle,
877 struct buffer_head *bh)
ac27a0ec 878{
56d35a4c
JK
879 int dirty = buffer_dirty(bh);
880 int ret;
881
ac27a0ec
DK
882 if (!buffer_mapped(bh) || buffer_freed(bh))
883 return 0;
56d35a4c 884 /*
ebdec241 885 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
886 * the dirty bit as jbd2_journal_get_write_access() could complain
887 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 888 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
889 * the bit before releasing a page lock and thus writeback cannot
890 * ever write the buffer.
891 */
892 if (dirty)
893 clear_buffer_dirty(bh);
5d601255 894 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
895 ret = ext4_journal_get_write_access(handle, bh);
896 if (!ret && dirty)
897 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
898 return ret;
ac27a0ec
DK
899}
900
2058f83a
MH
901#ifdef CONFIG_EXT4_FS_ENCRYPTION
902static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
903 get_block_t *get_block)
904{
905 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
906 unsigned to = from + len;
907 struct inode *inode = page->mapping->host;
908 unsigned block_start, block_end;
909 sector_t block;
910 int err = 0;
911 unsigned blocksize = inode->i_sb->s_blocksize;
912 unsigned bbits;
913 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
914 bool decrypt = false;
915
916 BUG_ON(!PageLocked(page));
917 BUG_ON(from > PAGE_CACHE_SIZE);
918 BUG_ON(to > PAGE_CACHE_SIZE);
919 BUG_ON(from > to);
920
921 if (!page_has_buffers(page))
922 create_empty_buffers(page, blocksize, 0);
923 head = page_buffers(page);
924 bbits = ilog2(blocksize);
925 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
926
927 for (bh = head, block_start = 0; bh != head || !block_start;
928 block++, block_start = block_end, bh = bh->b_this_page) {
929 block_end = block_start + blocksize;
930 if (block_end <= from || block_start >= to) {
931 if (PageUptodate(page)) {
932 if (!buffer_uptodate(bh))
933 set_buffer_uptodate(bh);
934 }
935 continue;
936 }
937 if (buffer_new(bh))
938 clear_buffer_new(bh);
939 if (!buffer_mapped(bh)) {
940 WARN_ON(bh->b_size != blocksize);
941 err = get_block(inode, block, bh, 1);
942 if (err)
943 break;
944 if (buffer_new(bh)) {
945 unmap_underlying_metadata(bh->b_bdev,
946 bh->b_blocknr);
947 if (PageUptodate(page)) {
948 clear_buffer_new(bh);
949 set_buffer_uptodate(bh);
950 mark_buffer_dirty(bh);
951 continue;
952 }
953 if (block_end > to || block_start < from)
954 zero_user_segments(page, to, block_end,
955 block_start, from);
956 continue;
957 }
958 }
959 if (PageUptodate(page)) {
960 if (!buffer_uptodate(bh))
961 set_buffer_uptodate(bh);
962 continue;
963 }
964 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
965 !buffer_unwritten(bh) &&
966 (block_start < from || block_end > to)) {
967 ll_rw_block(READ, 1, &bh);
968 *wait_bh++ = bh;
969 decrypt = ext4_encrypted_inode(inode) &&
970 S_ISREG(inode->i_mode);
971 }
972 }
973 /*
974 * If we issued read requests, let them complete.
975 */
976 while (wait_bh > wait) {
977 wait_on_buffer(*--wait_bh);
978 if (!buffer_uptodate(*wait_bh))
979 err = -EIO;
980 }
981 if (unlikely(err))
982 page_zero_new_buffers(page, from, to);
983 else if (decrypt)
3684de8c 984 err = ext4_decrypt(page);
2058f83a
MH
985 return err;
986}
987#endif
988
bfc1af65 989static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
990 loff_t pos, unsigned len, unsigned flags,
991 struct page **pagep, void **fsdata)
ac27a0ec 992{
af5bc92d 993 struct inode *inode = mapping->host;
1938a150 994 int ret, needed_blocks;
ac27a0ec
DK
995 handle_t *handle;
996 int retries = 0;
af5bc92d 997 struct page *page;
de9a55b8 998 pgoff_t index;
af5bc92d 999 unsigned from, to;
bfc1af65 1000
9bffad1e 1001 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1002 /*
1003 * Reserve one block more for addition to orphan list in case
1004 * we allocate blocks but write fails for some reason
1005 */
1006 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1007 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1008 from = pos & (PAGE_CACHE_SIZE - 1);
1009 to = from + len;
ac27a0ec 1010
f19d5870
TM
1011 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1012 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1013 flags, pagep);
1014 if (ret < 0)
47564bfb
TT
1015 return ret;
1016 if (ret == 1)
1017 return 0;
f19d5870
TM
1018 }
1019
47564bfb
TT
1020 /*
1021 * grab_cache_page_write_begin() can take a long time if the
1022 * system is thrashing due to memory pressure, or if the page
1023 * is being written back. So grab it first before we start
1024 * the transaction handle. This also allows us to allocate
1025 * the page (if needed) without using GFP_NOFS.
1026 */
1027retry_grab:
1028 page = grab_cache_page_write_begin(mapping, index, flags);
1029 if (!page)
1030 return -ENOMEM;
1031 unlock_page(page);
1032
1033retry_journal:
9924a92a 1034 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1035 if (IS_ERR(handle)) {
47564bfb
TT
1036 page_cache_release(page);
1037 return PTR_ERR(handle);
7479d2b9 1038 }
ac27a0ec 1039
47564bfb
TT
1040 lock_page(page);
1041 if (page->mapping != mapping) {
1042 /* The page got truncated from under us */
1043 unlock_page(page);
1044 page_cache_release(page);
cf108bca 1045 ext4_journal_stop(handle);
47564bfb 1046 goto retry_grab;
cf108bca 1047 }
7afe5aa5
DM
1048 /* In case writeback began while the page was unlocked */
1049 wait_for_stable_page(page);
cf108bca 1050
2058f83a
MH
1051#ifdef CONFIG_EXT4_FS_ENCRYPTION
1052 if (ext4_should_dioread_nolock(inode))
1053 ret = ext4_block_write_begin(page, pos, len,
1054 ext4_get_block_write);
1055 else
1056 ret = ext4_block_write_begin(page, pos, len,
1057 ext4_get_block);
1058#else
744692dc 1059 if (ext4_should_dioread_nolock(inode))
6e1db88d 1060 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1061 else
6e1db88d 1062 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1063#endif
bfc1af65 1064 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1065 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1066 from, to, NULL,
1067 do_journal_get_write_access);
ac27a0ec 1068 }
bfc1af65
NP
1069
1070 if (ret) {
af5bc92d 1071 unlock_page(page);
ae4d5372 1072 /*
6e1db88d 1073 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1074 * outside i_size. Trim these off again. Don't need
1075 * i_size_read because we hold i_mutex.
1938a150
AK
1076 *
1077 * Add inode to orphan list in case we crash before
1078 * truncate finishes
ae4d5372 1079 */
ffacfa7a 1080 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1081 ext4_orphan_add(handle, inode);
1082
1083 ext4_journal_stop(handle);
1084 if (pos + len > inode->i_size) {
b9a4207d 1085 ext4_truncate_failed_write(inode);
de9a55b8 1086 /*
ffacfa7a 1087 * If truncate failed early the inode might
1938a150
AK
1088 * still be on the orphan list; we need to
1089 * make sure the inode is removed from the
1090 * orphan list in that case.
1091 */
1092 if (inode->i_nlink)
1093 ext4_orphan_del(NULL, inode);
1094 }
bfc1af65 1095
47564bfb
TT
1096 if (ret == -ENOSPC &&
1097 ext4_should_retry_alloc(inode->i_sb, &retries))
1098 goto retry_journal;
1099 page_cache_release(page);
1100 return ret;
1101 }
1102 *pagep = page;
ac27a0ec
DK
1103 return ret;
1104}
1105
bfc1af65
NP
1106/* For write_end() in data=journal mode */
1107static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1108{
13fca323 1109 int ret;
ac27a0ec
DK
1110 if (!buffer_mapped(bh) || buffer_freed(bh))
1111 return 0;
1112 set_buffer_uptodate(bh);
13fca323
TT
1113 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1114 clear_buffer_meta(bh);
1115 clear_buffer_prio(bh);
1116 return ret;
ac27a0ec
DK
1117}
1118
eed4333f
ZL
1119/*
1120 * We need to pick up the new inode size which generic_commit_write gave us
1121 * `file' can be NULL - eg, when called from page_symlink().
1122 *
1123 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1124 * buffers are managed internally.
1125 */
1126static int ext4_write_end(struct file *file,
1127 struct address_space *mapping,
1128 loff_t pos, unsigned len, unsigned copied,
1129 struct page *page, void *fsdata)
f8514083 1130{
f8514083 1131 handle_t *handle = ext4_journal_current_handle();
eed4333f 1132 struct inode *inode = mapping->host;
0572639f 1133 loff_t old_size = inode->i_size;
eed4333f
ZL
1134 int ret = 0, ret2;
1135 int i_size_changed = 0;
1136
1137 trace_ext4_write_end(inode, pos, len, copied);
1138 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1139 ret = ext4_jbd2_file_inode(handle, inode);
1140 if (ret) {
1141 unlock_page(page);
1142 page_cache_release(page);
1143 goto errout;
1144 }
1145 }
f8514083 1146
42c832de
TT
1147 if (ext4_has_inline_data(inode)) {
1148 ret = ext4_write_inline_data_end(inode, pos, len,
1149 copied, page);
1150 if (ret < 0)
1151 goto errout;
1152 copied = ret;
1153 } else
f19d5870
TM
1154 copied = block_write_end(file, mapping, pos,
1155 len, copied, page, fsdata);
f8514083 1156 /*
4631dbf6 1157 * it's important to update i_size while still holding page lock:
f8514083
AK
1158 * page writeout could otherwise come in and zero beyond i_size.
1159 */
4631dbf6 1160 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1161 unlock_page(page);
1162 page_cache_release(page);
1163
0572639f
XW
1164 if (old_size < pos)
1165 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1166 /*
1167 * Don't mark the inode dirty under page lock. First, it unnecessarily
1168 * makes the holding time of page lock longer. Second, it forces lock
1169 * ordering of page lock and transaction start for journaling
1170 * filesystems.
1171 */
1172 if (i_size_changed)
1173 ext4_mark_inode_dirty(handle, inode);
1174
ffacfa7a 1175 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1176 /* if we have allocated more blocks and copied
1177 * less. We will have blocks allocated outside
1178 * inode->i_size. So truncate them
1179 */
1180 ext4_orphan_add(handle, inode);
74d553aa 1181errout:
617ba13b 1182 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1183 if (!ret)
1184 ret = ret2;
bfc1af65 1185
f8514083 1186 if (pos + len > inode->i_size) {
b9a4207d 1187 ext4_truncate_failed_write(inode);
de9a55b8 1188 /*
ffacfa7a 1189 * If truncate failed early the inode might still be
f8514083
AK
1190 * on the orphan list; we need to make sure the inode
1191 * is removed from the orphan list in that case.
1192 */
1193 if (inode->i_nlink)
1194 ext4_orphan_del(NULL, inode);
1195 }
1196
bfc1af65 1197 return ret ? ret : copied;
ac27a0ec
DK
1198}
1199
b90197b6
TT
1200/*
1201 * This is a private version of page_zero_new_buffers() which doesn't
1202 * set the buffer to be dirty, since in data=journalled mode we need
1203 * to call ext4_handle_dirty_metadata() instead.
1204 */
1205static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1206{
1207 unsigned int block_start = 0, block_end;
1208 struct buffer_head *head, *bh;
1209
1210 bh = head = page_buffers(page);
1211 do {
1212 block_end = block_start + bh->b_size;
1213 if (buffer_new(bh)) {
1214 if (block_end > from && block_start < to) {
1215 if (!PageUptodate(page)) {
1216 unsigned start, size;
1217
1218 start = max(from, block_start);
1219 size = min(to, block_end) - start;
1220
1221 zero_user(page, start, size);
1222 set_buffer_uptodate(bh);
1223 }
1224 clear_buffer_new(bh);
1225 }
1226 }
1227 block_start = block_end;
1228 bh = bh->b_this_page;
1229 } while (bh != head);
1230}
1231
bfc1af65 1232static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1233 struct address_space *mapping,
1234 loff_t pos, unsigned len, unsigned copied,
1235 struct page *page, void *fsdata)
ac27a0ec 1236{
617ba13b 1237 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1238 struct inode *inode = mapping->host;
0572639f 1239 loff_t old_size = inode->i_size;
ac27a0ec
DK
1240 int ret = 0, ret2;
1241 int partial = 0;
bfc1af65 1242 unsigned from, to;
4631dbf6 1243 int size_changed = 0;
ac27a0ec 1244
9bffad1e 1245 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1246 from = pos & (PAGE_CACHE_SIZE - 1);
1247 to = from + len;
1248
441c8508
CW
1249 BUG_ON(!ext4_handle_valid(handle));
1250
3fdcfb66
TM
1251 if (ext4_has_inline_data(inode))
1252 copied = ext4_write_inline_data_end(inode, pos, len,
1253 copied, page);
1254 else {
1255 if (copied < len) {
1256 if (!PageUptodate(page))
1257 copied = 0;
b90197b6 1258 zero_new_buffers(page, from+copied, to);
3fdcfb66 1259 }
ac27a0ec 1260
3fdcfb66
TM
1261 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1262 to, &partial, write_end_fn);
1263 if (!partial)
1264 SetPageUptodate(page);
1265 }
4631dbf6 1266 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1267 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1268 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1269 unlock_page(page);
1270 page_cache_release(page);
1271
0572639f
XW
1272 if (old_size < pos)
1273 pagecache_isize_extended(inode, old_size, pos);
1274
4631dbf6 1275 if (size_changed) {
617ba13b 1276 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1277 if (!ret)
1278 ret = ret2;
1279 }
bfc1af65 1280
ffacfa7a 1281 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1282 /* if we have allocated more blocks and copied
1283 * less. We will have blocks allocated outside
1284 * inode->i_size. So truncate them
1285 */
1286 ext4_orphan_add(handle, inode);
1287
617ba13b 1288 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1289 if (!ret)
1290 ret = ret2;
f8514083 1291 if (pos + len > inode->i_size) {
b9a4207d 1292 ext4_truncate_failed_write(inode);
de9a55b8 1293 /*
ffacfa7a 1294 * If truncate failed early the inode might still be
f8514083
AK
1295 * on the orphan list; we need to make sure the inode
1296 * is removed from the orphan list in that case.
1297 */
1298 if (inode->i_nlink)
1299 ext4_orphan_del(NULL, inode);
1300 }
bfc1af65
NP
1301
1302 return ret ? ret : copied;
ac27a0ec 1303}
d2a17637 1304
9d0be502 1305/*
c27e43a1 1306 * Reserve space for a single cluster
9d0be502 1307 */
c27e43a1 1308static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1309{
60e58e0f 1310 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1311 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1312 int ret;
03179fe9
TT
1313
1314 /*
1315 * We will charge metadata quota at writeout time; this saves
1316 * us from metadata over-estimation, though we may go over by
1317 * a small amount in the end. Here we just reserve for data.
1318 */
1319 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1320 if (ret)
1321 return ret;
d2a17637 1322
0637c6f4 1323 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1324 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1325 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1326 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1327 return -ENOSPC;
1328 }
9d0be502 1329 ei->i_reserved_data_blocks++;
c27e43a1 1330 trace_ext4_da_reserve_space(inode);
0637c6f4 1331 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1332
d2a17637
MC
1333 return 0; /* success */
1334}
1335
12219aea 1336static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1337{
1338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1339 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1340
cd213226
MC
1341 if (!to_free)
1342 return; /* Nothing to release, exit */
1343
d2a17637 1344 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1345
5a58ec87 1346 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1347 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1348 /*
0637c6f4
TT
1349 * if there aren't enough reserved blocks, then the
1350 * counter is messed up somewhere. Since this
1351 * function is called from invalidate page, it's
1352 * harmless to return without any action.
cd213226 1353 */
8de5c325 1354 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1355 "ino %lu, to_free %d with only %d reserved "
1084f252 1356 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1357 ei->i_reserved_data_blocks);
1358 WARN_ON(1);
1359 to_free = ei->i_reserved_data_blocks;
cd213226 1360 }
0637c6f4 1361 ei->i_reserved_data_blocks -= to_free;
cd213226 1362
72b8ab9d 1363 /* update fs dirty data blocks counter */
57042651 1364 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1365
d2a17637 1366 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1367
7b415bf6 1368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1369}
1370
1371static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1372 unsigned int offset,
1373 unsigned int length)
d2a17637 1374{
9705acd6 1375 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1376 struct buffer_head *head, *bh;
1377 unsigned int curr_off = 0;
7b415bf6
AK
1378 struct inode *inode = page->mapping->host;
1379 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1380 unsigned int stop = offset + length;
7b415bf6 1381 int num_clusters;
51865fda 1382 ext4_fsblk_t lblk;
d2a17637 1383
ca99fdd2
LC
1384 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1385
d2a17637
MC
1386 head = page_buffers(page);
1387 bh = head;
1388 do {
1389 unsigned int next_off = curr_off + bh->b_size;
1390
ca99fdd2
LC
1391 if (next_off > stop)
1392 break;
1393
d2a17637
MC
1394 if ((offset <= curr_off) && (buffer_delay(bh))) {
1395 to_release++;
9705acd6 1396 contiguous_blks++;
d2a17637 1397 clear_buffer_delay(bh);
9705acd6
LC
1398 } else if (contiguous_blks) {
1399 lblk = page->index <<
1400 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1401 lblk += (curr_off >> inode->i_blkbits) -
1402 contiguous_blks;
1403 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1404 contiguous_blks = 0;
d2a17637
MC
1405 }
1406 curr_off = next_off;
1407 } while ((bh = bh->b_this_page) != head);
7b415bf6 1408
9705acd6 1409 if (contiguous_blks) {
51865fda 1410 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
9705acd6
LC
1411 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1412 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1413 }
1414
7b415bf6
AK
1415 /* If we have released all the blocks belonging to a cluster, then we
1416 * need to release the reserved space for that cluster. */
1417 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1418 while (num_clusters > 0) {
7b415bf6
AK
1419 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1420 ((num_clusters - 1) << sbi->s_cluster_bits);
1421 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1422 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1423 ext4_da_release_space(inode, 1);
1424
1425 num_clusters--;
1426 }
d2a17637 1427}
ac27a0ec 1428
64769240
AT
1429/*
1430 * Delayed allocation stuff
1431 */
1432
4e7ea81d
JK
1433struct mpage_da_data {
1434 struct inode *inode;
1435 struct writeback_control *wbc;
6b523df4 1436
4e7ea81d
JK
1437 pgoff_t first_page; /* The first page to write */
1438 pgoff_t next_page; /* Current page to examine */
1439 pgoff_t last_page; /* Last page to examine */
791b7f08 1440 /*
4e7ea81d
JK
1441 * Extent to map - this can be after first_page because that can be
1442 * fully mapped. We somewhat abuse m_flags to store whether the extent
1443 * is delalloc or unwritten.
791b7f08 1444 */
4e7ea81d
JK
1445 struct ext4_map_blocks map;
1446 struct ext4_io_submit io_submit; /* IO submission data */
1447};
64769240 1448
4e7ea81d
JK
1449static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1450 bool invalidate)
c4a0c46e
AK
1451{
1452 int nr_pages, i;
1453 pgoff_t index, end;
1454 struct pagevec pvec;
1455 struct inode *inode = mpd->inode;
1456 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1457
1458 /* This is necessary when next_page == 0. */
1459 if (mpd->first_page >= mpd->next_page)
1460 return;
c4a0c46e 1461
c7f5938a
CW
1462 index = mpd->first_page;
1463 end = mpd->next_page - 1;
4e7ea81d
JK
1464 if (invalidate) {
1465 ext4_lblk_t start, last;
1466 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1467 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1468 ext4_es_remove_extent(inode, start, last - start + 1);
1469 }
51865fda 1470
66bea92c 1471 pagevec_init(&pvec, 0);
c4a0c46e
AK
1472 while (index <= end) {
1473 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1474 if (nr_pages == 0)
1475 break;
1476 for (i = 0; i < nr_pages; i++) {
1477 struct page *page = pvec.pages[i];
9b1d0998 1478 if (page->index > end)
c4a0c46e 1479 break;
c4a0c46e
AK
1480 BUG_ON(!PageLocked(page));
1481 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1482 if (invalidate) {
1483 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1484 ClearPageUptodate(page);
1485 }
c4a0c46e
AK
1486 unlock_page(page);
1487 }
9b1d0998
JK
1488 index = pvec.pages[nr_pages - 1]->index + 1;
1489 pagevec_release(&pvec);
c4a0c46e 1490 }
c4a0c46e
AK
1491}
1492
df22291f
AK
1493static void ext4_print_free_blocks(struct inode *inode)
1494{
1495 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1496 struct super_block *sb = inode->i_sb;
f78ee70d 1497 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1498
1499 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1500 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1501 ext4_count_free_clusters(sb)));
92b97816
TT
1502 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1503 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1504 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1505 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1506 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1507 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1508 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1509 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1510 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1511 ei->i_reserved_data_blocks);
df22291f
AK
1512 return;
1513}
1514
c364b22c 1515static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1516{
c364b22c 1517 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1518}
1519
5356f261
AK
1520/*
1521 * This function is grabs code from the very beginning of
1522 * ext4_map_blocks, but assumes that the caller is from delayed write
1523 * time. This function looks up the requested blocks and sets the
1524 * buffer delay bit under the protection of i_data_sem.
1525 */
1526static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1527 struct ext4_map_blocks *map,
1528 struct buffer_head *bh)
1529{
d100eef2 1530 struct extent_status es;
5356f261
AK
1531 int retval;
1532 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1533#ifdef ES_AGGRESSIVE_TEST
1534 struct ext4_map_blocks orig_map;
1535
1536 memcpy(&orig_map, map, sizeof(*map));
1537#endif
5356f261
AK
1538
1539 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1540 invalid_block = ~0;
1541
1542 map->m_flags = 0;
1543 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1544 "logical block %lu\n", inode->i_ino, map->m_len,
1545 (unsigned long) map->m_lblk);
d100eef2
ZL
1546
1547 /* Lookup extent status tree firstly */
1548 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1549 if (ext4_es_is_hole(&es)) {
1550 retval = 0;
c8b459f4 1551 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1552 goto add_delayed;
1553 }
1554
1555 /*
1556 * Delayed extent could be allocated by fallocate.
1557 * So we need to check it.
1558 */
1559 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1560 map_bh(bh, inode->i_sb, invalid_block);
1561 set_buffer_new(bh);
1562 set_buffer_delay(bh);
1563 return 0;
1564 }
1565
1566 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1567 retval = es.es_len - (iblock - es.es_lblk);
1568 if (retval > map->m_len)
1569 retval = map->m_len;
1570 map->m_len = retval;
1571 if (ext4_es_is_written(&es))
1572 map->m_flags |= EXT4_MAP_MAPPED;
1573 else if (ext4_es_is_unwritten(&es))
1574 map->m_flags |= EXT4_MAP_UNWRITTEN;
1575 else
1576 BUG_ON(1);
1577
921f266b
DM
1578#ifdef ES_AGGRESSIVE_TEST
1579 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1580#endif
d100eef2
ZL
1581 return retval;
1582 }
1583
5356f261
AK
1584 /*
1585 * Try to see if we can get the block without requesting a new
1586 * file system block.
1587 */
c8b459f4 1588 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1589 if (ext4_has_inline_data(inode))
9c3569b5 1590 retval = 0;
cbd7584e 1591 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1592 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1593 else
2f8e0a7c 1594 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1595
d100eef2 1596add_delayed:
5356f261 1597 if (retval == 0) {
f7fec032 1598 int ret;
5356f261
AK
1599 /*
1600 * XXX: __block_prepare_write() unmaps passed block,
1601 * is it OK?
1602 */
386ad67c
LC
1603 /*
1604 * If the block was allocated from previously allocated cluster,
1605 * then we don't need to reserve it again. However we still need
1606 * to reserve metadata for every block we're going to write.
1607 */
c27e43a1 1608 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1609 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1610 ret = ext4_da_reserve_space(inode);
f7fec032 1611 if (ret) {
5356f261 1612 /* not enough space to reserve */
f7fec032 1613 retval = ret;
5356f261 1614 goto out_unlock;
f7fec032 1615 }
5356f261
AK
1616 }
1617
f7fec032
ZL
1618 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1619 ~0, EXTENT_STATUS_DELAYED);
1620 if (ret) {
1621 retval = ret;
51865fda 1622 goto out_unlock;
f7fec032 1623 }
51865fda 1624
5356f261
AK
1625 map_bh(bh, inode->i_sb, invalid_block);
1626 set_buffer_new(bh);
1627 set_buffer_delay(bh);
f7fec032
ZL
1628 } else if (retval > 0) {
1629 int ret;
3be78c73 1630 unsigned int status;
f7fec032 1631
44fb851d
ZL
1632 if (unlikely(retval != map->m_len)) {
1633 ext4_warning(inode->i_sb,
1634 "ES len assertion failed for inode "
1635 "%lu: retval %d != map->m_len %d",
1636 inode->i_ino, retval, map->m_len);
1637 WARN_ON(1);
921f266b 1638 }
921f266b 1639
f7fec032
ZL
1640 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1641 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1642 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1643 map->m_pblk, status);
1644 if (ret != 0)
1645 retval = ret;
5356f261
AK
1646 }
1647
1648out_unlock:
1649 up_read((&EXT4_I(inode)->i_data_sem));
1650
1651 return retval;
1652}
1653
64769240 1654/*
d91bd2c1 1655 * This is a special get_block_t callback which is used by
b920c755
TT
1656 * ext4_da_write_begin(). It will either return mapped block or
1657 * reserve space for a single block.
29fa89d0
AK
1658 *
1659 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1660 * We also have b_blocknr = -1 and b_bdev initialized properly
1661 *
1662 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1663 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1664 * initialized properly.
64769240 1665 */
9c3569b5
TM
1666int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1667 struct buffer_head *bh, int create)
64769240 1668{
2ed88685 1669 struct ext4_map_blocks map;
64769240
AT
1670 int ret = 0;
1671
1672 BUG_ON(create == 0);
2ed88685
TT
1673 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1674
1675 map.m_lblk = iblock;
1676 map.m_len = 1;
64769240
AT
1677
1678 /*
1679 * first, we need to know whether the block is allocated already
1680 * preallocated blocks are unmapped but should treated
1681 * the same as allocated blocks.
1682 */
5356f261
AK
1683 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1684 if (ret <= 0)
2ed88685 1685 return ret;
64769240 1686
2ed88685
TT
1687 map_bh(bh, inode->i_sb, map.m_pblk);
1688 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1689
1690 if (buffer_unwritten(bh)) {
1691 /* A delayed write to unwritten bh should be marked
1692 * new and mapped. Mapped ensures that we don't do
1693 * get_block multiple times when we write to the same
1694 * offset and new ensures that we do proper zero out
1695 * for partial write.
1696 */
1697 set_buffer_new(bh);
c8205636 1698 set_buffer_mapped(bh);
2ed88685
TT
1699 }
1700 return 0;
64769240 1701}
61628a3f 1702
62e086be
AK
1703static int bget_one(handle_t *handle, struct buffer_head *bh)
1704{
1705 get_bh(bh);
1706 return 0;
1707}
1708
1709static int bput_one(handle_t *handle, struct buffer_head *bh)
1710{
1711 put_bh(bh);
1712 return 0;
1713}
1714
1715static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1716 unsigned int len)
1717{
1718 struct address_space *mapping = page->mapping;
1719 struct inode *inode = mapping->host;
3fdcfb66 1720 struct buffer_head *page_bufs = NULL;
62e086be 1721 handle_t *handle = NULL;
3fdcfb66
TM
1722 int ret = 0, err = 0;
1723 int inline_data = ext4_has_inline_data(inode);
1724 struct buffer_head *inode_bh = NULL;
62e086be 1725
cb20d518 1726 ClearPageChecked(page);
3fdcfb66
TM
1727
1728 if (inline_data) {
1729 BUG_ON(page->index != 0);
1730 BUG_ON(len > ext4_get_max_inline_size(inode));
1731 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1732 if (inode_bh == NULL)
1733 goto out;
1734 } else {
1735 page_bufs = page_buffers(page);
1736 if (!page_bufs) {
1737 BUG();
1738 goto out;
1739 }
1740 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1741 NULL, bget_one);
1742 }
bdf96838
TT
1743 /*
1744 * We need to release the page lock before we start the
1745 * journal, so grab a reference so the page won't disappear
1746 * out from under us.
1747 */
1748 get_page(page);
62e086be
AK
1749 unlock_page(page);
1750
9924a92a
TT
1751 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1752 ext4_writepage_trans_blocks(inode));
62e086be
AK
1753 if (IS_ERR(handle)) {
1754 ret = PTR_ERR(handle);
bdf96838
TT
1755 put_page(page);
1756 goto out_no_pagelock;
62e086be 1757 }
441c8508
CW
1758 BUG_ON(!ext4_handle_valid(handle));
1759
bdf96838
TT
1760 lock_page(page);
1761 put_page(page);
1762 if (page->mapping != mapping) {
1763 /* The page got truncated from under us */
1764 ext4_journal_stop(handle);
1765 ret = 0;
1766 goto out;
1767 }
1768
3fdcfb66 1769 if (inline_data) {
5d601255 1770 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1771 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1772
3fdcfb66
TM
1773 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1774
1775 } else {
1776 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777 do_journal_get_write_access);
1778
1779 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1780 write_end_fn);
1781 }
62e086be
AK
1782 if (ret == 0)
1783 ret = err;
2d859db3 1784 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1785 err = ext4_journal_stop(handle);
1786 if (!ret)
1787 ret = err;
1788
3fdcfb66 1789 if (!ext4_has_inline_data(inode))
8c9367fd 1790 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1791 NULL, bput_one);
19f5fb7a 1792 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1793out:
bdf96838
TT
1794 unlock_page(page);
1795out_no_pagelock:
3fdcfb66 1796 brelse(inode_bh);
62e086be
AK
1797 return ret;
1798}
1799
61628a3f 1800/*
43ce1d23
AK
1801 * Note that we don't need to start a transaction unless we're journaling data
1802 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1803 * need to file the inode to the transaction's list in ordered mode because if
1804 * we are writing back data added by write(), the inode is already there and if
25985edc 1805 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1806 * transaction the data will hit the disk. In case we are journaling data, we
1807 * cannot start transaction directly because transaction start ranks above page
1808 * lock so we have to do some magic.
1809 *
b920c755 1810 * This function can get called via...
20970ba6 1811 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1812 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1813 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1814 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1815 *
1816 * We don't do any block allocation in this function. If we have page with
1817 * multiple blocks we need to write those buffer_heads that are mapped. This
1818 * is important for mmaped based write. So if we do with blocksize 1K
1819 * truncate(f, 1024);
1820 * a = mmap(f, 0, 4096);
1821 * a[0] = 'a';
1822 * truncate(f, 4096);
1823 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1824 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1825 * do_wp_page). So writepage should write the first block. If we modify
1826 * the mmap area beyond 1024 we will again get a page_fault and the
1827 * page_mkwrite callback will do the block allocation and mark the
1828 * buffer_heads mapped.
1829 *
1830 * We redirty the page if we have any buffer_heads that is either delay or
1831 * unwritten in the page.
1832 *
1833 * We can get recursively called as show below.
1834 *
1835 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1836 * ext4_writepage()
1837 *
1838 * But since we don't do any block allocation we should not deadlock.
1839 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1840 */
43ce1d23 1841static int ext4_writepage(struct page *page,
62e086be 1842 struct writeback_control *wbc)
64769240 1843{
f8bec370 1844 int ret = 0;
61628a3f 1845 loff_t size;
498e5f24 1846 unsigned int len;
744692dc 1847 struct buffer_head *page_bufs = NULL;
61628a3f 1848 struct inode *inode = page->mapping->host;
36ade451 1849 struct ext4_io_submit io_submit;
1c8349a1 1850 bool keep_towrite = false;
61628a3f 1851
a9c667f8 1852 trace_ext4_writepage(page);
f0e6c985
AK
1853 size = i_size_read(inode);
1854 if (page->index == size >> PAGE_CACHE_SHIFT)
1855 len = size & ~PAGE_CACHE_MASK;
1856 else
1857 len = PAGE_CACHE_SIZE;
64769240 1858
a42afc5f 1859 page_bufs = page_buffers(page);
a42afc5f 1860 /*
fe386132
JK
1861 * We cannot do block allocation or other extent handling in this
1862 * function. If there are buffers needing that, we have to redirty
1863 * the page. But we may reach here when we do a journal commit via
1864 * journal_submit_inode_data_buffers() and in that case we must write
1865 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
1866 *
1867 * Also, if there is only one buffer per page (the fs block
1868 * size == the page size), if one buffer needs block
1869 * allocation or needs to modify the extent tree to clear the
1870 * unwritten flag, we know that the page can't be written at
1871 * all, so we might as well refuse the write immediately.
1872 * Unfortunately if the block size != page size, we can't as
1873 * easily detect this case using ext4_walk_page_buffers(), but
1874 * for the extremely common case, this is an optimization that
1875 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 1876 */
f19d5870
TM
1877 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1878 ext4_bh_delay_or_unwritten)) {
f8bec370 1879 redirty_page_for_writepage(wbc, page);
cccd147a
TT
1880 if ((current->flags & PF_MEMALLOC) ||
1881 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
fe386132
JK
1882 /*
1883 * For memory cleaning there's no point in writing only
1884 * some buffers. So just bail out. Warn if we came here
1885 * from direct reclaim.
1886 */
1887 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1888 == PF_MEMALLOC);
f0e6c985
AK
1889 unlock_page(page);
1890 return 0;
1891 }
1c8349a1 1892 keep_towrite = true;
a42afc5f 1893 }
64769240 1894
cb20d518 1895 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1896 /*
1897 * It's mmapped pagecache. Add buffers and journal it. There
1898 * doesn't seem much point in redirtying the page here.
1899 */
3f0ca309 1900 return __ext4_journalled_writepage(page, len);
43ce1d23 1901
97a851ed
JK
1902 ext4_io_submit_init(&io_submit, wbc);
1903 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1904 if (!io_submit.io_end) {
1905 redirty_page_for_writepage(wbc, page);
1906 unlock_page(page);
1907 return -ENOMEM;
1908 }
1c8349a1 1909 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1910 ext4_io_submit(&io_submit);
97a851ed
JK
1911 /* Drop io_end reference we got from init */
1912 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1913 return ret;
1914}
1915
5f1132b2
JK
1916static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1917{
1918 int len;
1919 loff_t size = i_size_read(mpd->inode);
1920 int err;
1921
1922 BUG_ON(page->index != mpd->first_page);
1923 if (page->index == size >> PAGE_CACHE_SHIFT)
1924 len = size & ~PAGE_CACHE_MASK;
1925 else
1926 len = PAGE_CACHE_SIZE;
1927 clear_page_dirty_for_io(page);
1c8349a1 1928 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1929 if (!err)
1930 mpd->wbc->nr_to_write--;
1931 mpd->first_page++;
1932
1933 return err;
1934}
1935
4e7ea81d
JK
1936#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1937
61628a3f 1938/*
fffb2739
JK
1939 * mballoc gives us at most this number of blocks...
1940 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1941 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1942 */
fffb2739 1943#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1944
4e7ea81d
JK
1945/*
1946 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1947 *
1948 * @mpd - extent of blocks
1949 * @lblk - logical number of the block in the file
09930042 1950 * @bh - buffer head we want to add to the extent
4e7ea81d 1951 *
09930042
JK
1952 * The function is used to collect contig. blocks in the same state. If the
1953 * buffer doesn't require mapping for writeback and we haven't started the
1954 * extent of buffers to map yet, the function returns 'true' immediately - the
1955 * caller can write the buffer right away. Otherwise the function returns true
1956 * if the block has been added to the extent, false if the block couldn't be
1957 * added.
4e7ea81d 1958 */
09930042
JK
1959static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1960 struct buffer_head *bh)
4e7ea81d
JK
1961{
1962 struct ext4_map_blocks *map = &mpd->map;
1963
09930042
JK
1964 /* Buffer that doesn't need mapping for writeback? */
1965 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1966 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1967 /* So far no extent to map => we write the buffer right away */
1968 if (map->m_len == 0)
1969 return true;
1970 return false;
1971 }
4e7ea81d
JK
1972
1973 /* First block in the extent? */
1974 if (map->m_len == 0) {
1975 map->m_lblk = lblk;
1976 map->m_len = 1;
09930042
JK
1977 map->m_flags = bh->b_state & BH_FLAGS;
1978 return true;
4e7ea81d
JK
1979 }
1980
09930042
JK
1981 /* Don't go larger than mballoc is willing to allocate */
1982 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1983 return false;
1984
4e7ea81d
JK
1985 /* Can we merge the block to our big extent? */
1986 if (lblk == map->m_lblk + map->m_len &&
09930042 1987 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1988 map->m_len++;
09930042 1989 return true;
4e7ea81d 1990 }
09930042 1991 return false;
4e7ea81d
JK
1992}
1993
5f1132b2
JK
1994/*
1995 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1996 *
1997 * @mpd - extent of blocks for mapping
1998 * @head - the first buffer in the page
1999 * @bh - buffer we should start processing from
2000 * @lblk - logical number of the block in the file corresponding to @bh
2001 *
2002 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2003 * the page for IO if all buffers in this page were mapped and there's no
2004 * accumulated extent of buffers to map or add buffers in the page to the
2005 * extent of buffers to map. The function returns 1 if the caller can continue
2006 * by processing the next page, 0 if it should stop adding buffers to the
2007 * extent to map because we cannot extend it anymore. It can also return value
2008 * < 0 in case of error during IO submission.
2009 */
2010static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2011 struct buffer_head *head,
2012 struct buffer_head *bh,
2013 ext4_lblk_t lblk)
4e7ea81d
JK
2014{
2015 struct inode *inode = mpd->inode;
5f1132b2 2016 int err;
4e7ea81d
JK
2017 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2018 >> inode->i_blkbits;
2019
2020 do {
2021 BUG_ON(buffer_locked(bh));
2022
09930042 2023 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2024 /* Found extent to map? */
2025 if (mpd->map.m_len)
5f1132b2 2026 return 0;
09930042 2027 /* Everything mapped so far and we hit EOF */
5f1132b2 2028 break;
4e7ea81d 2029 }
4e7ea81d 2030 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2031 /* So far everything mapped? Submit the page for IO. */
2032 if (mpd->map.m_len == 0) {
2033 err = mpage_submit_page(mpd, head->b_page);
2034 if (err < 0)
2035 return err;
2036 }
2037 return lblk < blocks;
4e7ea81d
JK
2038}
2039
2040/*
2041 * mpage_map_buffers - update buffers corresponding to changed extent and
2042 * submit fully mapped pages for IO
2043 *
2044 * @mpd - description of extent to map, on return next extent to map
2045 *
2046 * Scan buffers corresponding to changed extent (we expect corresponding pages
2047 * to be already locked) and update buffer state according to new extent state.
2048 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2049 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2050 * and do extent conversion after IO is finished. If the last page is not fully
2051 * mapped, we update @map to the next extent in the last page that needs
2052 * mapping. Otherwise we submit the page for IO.
2053 */
2054static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2055{
2056 struct pagevec pvec;
2057 int nr_pages, i;
2058 struct inode *inode = mpd->inode;
2059 struct buffer_head *head, *bh;
2060 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2061 pgoff_t start, end;
2062 ext4_lblk_t lblk;
2063 sector_t pblock;
2064 int err;
2065
2066 start = mpd->map.m_lblk >> bpp_bits;
2067 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2068 lblk = start << bpp_bits;
2069 pblock = mpd->map.m_pblk;
2070
2071 pagevec_init(&pvec, 0);
2072 while (start <= end) {
2073 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2074 PAGEVEC_SIZE);
2075 if (nr_pages == 0)
2076 break;
2077 for (i = 0; i < nr_pages; i++) {
2078 struct page *page = pvec.pages[i];
2079
2080 if (page->index > end)
2081 break;
70261f56 2082 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2083 BUG_ON(page->index != start);
2084 bh = head = page_buffers(page);
2085 do {
2086 if (lblk < mpd->map.m_lblk)
2087 continue;
2088 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2089 /*
2090 * Buffer after end of mapped extent.
2091 * Find next buffer in the page to map.
2092 */
2093 mpd->map.m_len = 0;
2094 mpd->map.m_flags = 0;
5f1132b2
JK
2095 /*
2096 * FIXME: If dioread_nolock supports
2097 * blocksize < pagesize, we need to make
2098 * sure we add size mapped so far to
2099 * io_end->size as the following call
2100 * can submit the page for IO.
2101 */
2102 err = mpage_process_page_bufs(mpd, head,
2103 bh, lblk);
4e7ea81d 2104 pagevec_release(&pvec);
5f1132b2
JK
2105 if (err > 0)
2106 err = 0;
2107 return err;
4e7ea81d
JK
2108 }
2109 if (buffer_delay(bh)) {
2110 clear_buffer_delay(bh);
2111 bh->b_blocknr = pblock++;
2112 }
4e7ea81d 2113 clear_buffer_unwritten(bh);
5f1132b2 2114 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2115
2116 /*
2117 * FIXME: This is going to break if dioread_nolock
2118 * supports blocksize < pagesize as we will try to
2119 * convert potentially unmapped parts of inode.
2120 */
2121 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2122 /* Page fully mapped - let IO run! */
2123 err = mpage_submit_page(mpd, page);
2124 if (err < 0) {
2125 pagevec_release(&pvec);
2126 return err;
2127 }
2128 start++;
2129 }
2130 pagevec_release(&pvec);
2131 }
2132 /* Extent fully mapped and matches with page boundary. We are done. */
2133 mpd->map.m_len = 0;
2134 mpd->map.m_flags = 0;
2135 return 0;
2136}
2137
2138static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2139{
2140 struct inode *inode = mpd->inode;
2141 struct ext4_map_blocks *map = &mpd->map;
2142 int get_blocks_flags;
090f32ee 2143 int err, dioread_nolock;
4e7ea81d
JK
2144
2145 trace_ext4_da_write_pages_extent(inode, map);
2146 /*
2147 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2148 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2149 * where we have written into one or more preallocated blocks). It is
2150 * possible that we're going to need more metadata blocks than
2151 * previously reserved. However we must not fail because we're in
2152 * writeback and there is nothing we can do about it so it might result
2153 * in data loss. So use reserved blocks to allocate metadata if
2154 * possible.
2155 *
754cfed6
TT
2156 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2157 * the blocks in question are delalloc blocks. This indicates
2158 * that the blocks and quotas has already been checked when
2159 * the data was copied into the page cache.
4e7ea81d
JK
2160 */
2161 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2162 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2163 dioread_nolock = ext4_should_dioread_nolock(inode);
2164 if (dioread_nolock)
4e7ea81d
JK
2165 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2166 if (map->m_flags & (1 << BH_Delay))
2167 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2168
2169 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2170 if (err < 0)
2171 return err;
090f32ee 2172 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2173 if (!mpd->io_submit.io_end->handle &&
2174 ext4_handle_valid(handle)) {
2175 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2176 handle->h_rsv_handle = NULL;
2177 }
3613d228 2178 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2179 }
4e7ea81d
JK
2180
2181 BUG_ON(map->m_len == 0);
2182 if (map->m_flags & EXT4_MAP_NEW) {
2183 struct block_device *bdev = inode->i_sb->s_bdev;
2184 int i;
2185
2186 for (i = 0; i < map->m_len; i++)
2187 unmap_underlying_metadata(bdev, map->m_pblk + i);
2188 }
2189 return 0;
2190}
2191
2192/*
2193 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2194 * mpd->len and submit pages underlying it for IO
2195 *
2196 * @handle - handle for journal operations
2197 * @mpd - extent to map
7534e854
JK
2198 * @give_up_on_write - we set this to true iff there is a fatal error and there
2199 * is no hope of writing the data. The caller should discard
2200 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2201 *
2202 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2203 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2204 * them to initialized or split the described range from larger unwritten
2205 * extent. Note that we need not map all the described range since allocation
2206 * can return less blocks or the range is covered by more unwritten extents. We
2207 * cannot map more because we are limited by reserved transaction credits. On
2208 * the other hand we always make sure that the last touched page is fully
2209 * mapped so that it can be written out (and thus forward progress is
2210 * guaranteed). After mapping we submit all mapped pages for IO.
2211 */
2212static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2213 struct mpage_da_data *mpd,
2214 bool *give_up_on_write)
4e7ea81d
JK
2215{
2216 struct inode *inode = mpd->inode;
2217 struct ext4_map_blocks *map = &mpd->map;
2218 int err;
2219 loff_t disksize;
6603120e 2220 int progress = 0;
4e7ea81d
JK
2221
2222 mpd->io_submit.io_end->offset =
2223 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2224 do {
4e7ea81d
JK
2225 err = mpage_map_one_extent(handle, mpd);
2226 if (err < 0) {
2227 struct super_block *sb = inode->i_sb;
2228
cb530541
TT
2229 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2230 goto invalidate_dirty_pages;
4e7ea81d 2231 /*
cb530541
TT
2232 * Let the uper layers retry transient errors.
2233 * In the case of ENOSPC, if ext4_count_free_blocks()
2234 * is non-zero, a commit should free up blocks.
4e7ea81d 2235 */
cb530541 2236 if ((err == -ENOMEM) ||
6603120e
DM
2237 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2238 if (progress)
2239 goto update_disksize;
cb530541 2240 return err;
6603120e 2241 }
cb530541
TT
2242 ext4_msg(sb, KERN_CRIT,
2243 "Delayed block allocation failed for "
2244 "inode %lu at logical offset %llu with"
2245 " max blocks %u with error %d",
2246 inode->i_ino,
2247 (unsigned long long)map->m_lblk,
2248 (unsigned)map->m_len, -err);
2249 ext4_msg(sb, KERN_CRIT,
2250 "This should not happen!! Data will "
2251 "be lost\n");
2252 if (err == -ENOSPC)
2253 ext4_print_free_blocks(inode);
2254 invalidate_dirty_pages:
2255 *give_up_on_write = true;
4e7ea81d
JK
2256 return err;
2257 }
6603120e 2258 progress = 1;
4e7ea81d
JK
2259 /*
2260 * Update buffer state, submit mapped pages, and get us new
2261 * extent to map
2262 */
2263 err = mpage_map_and_submit_buffers(mpd);
2264 if (err < 0)
6603120e 2265 goto update_disksize;
27d7c4ed 2266 } while (map->m_len);
4e7ea81d 2267
6603120e 2268update_disksize:
622cad13
TT
2269 /*
2270 * Update on-disk size after IO is submitted. Races with
2271 * truncate are avoided by checking i_size under i_data_sem.
2272 */
4e7ea81d 2273 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2274 if (disksize > EXT4_I(inode)->i_disksize) {
2275 int err2;
622cad13
TT
2276 loff_t i_size;
2277
2278 down_write(&EXT4_I(inode)->i_data_sem);
2279 i_size = i_size_read(inode);
2280 if (disksize > i_size)
2281 disksize = i_size;
2282 if (disksize > EXT4_I(inode)->i_disksize)
2283 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2284 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2285 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2286 if (err2)
2287 ext4_error(inode->i_sb,
2288 "Failed to mark inode %lu dirty",
2289 inode->i_ino);
2290 if (!err)
2291 err = err2;
2292 }
2293 return err;
2294}
2295
fffb2739
JK
2296/*
2297 * Calculate the total number of credits to reserve for one writepages
20970ba6 2298 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2299 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2300 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2301 * bpp - 1 blocks in bpp different extents.
2302 */
525f4ed8
MC
2303static int ext4_da_writepages_trans_blocks(struct inode *inode)
2304{
fffb2739 2305 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2306
fffb2739
JK
2307 return ext4_meta_trans_blocks(inode,
2308 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2309}
61628a3f 2310
8e48dcfb 2311/*
4e7ea81d
JK
2312 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2313 * and underlying extent to map
2314 *
2315 * @mpd - where to look for pages
2316 *
2317 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2318 * IO immediately. When we find a page which isn't mapped we start accumulating
2319 * extent of buffers underlying these pages that needs mapping (formed by
2320 * either delayed or unwritten buffers). We also lock the pages containing
2321 * these buffers. The extent found is returned in @mpd structure (starting at
2322 * mpd->lblk with length mpd->len blocks).
2323 *
2324 * Note that this function can attach bios to one io_end structure which are
2325 * neither logically nor physically contiguous. Although it may seem as an
2326 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2327 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2328 */
4e7ea81d 2329static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2330{
4e7ea81d
JK
2331 struct address_space *mapping = mpd->inode->i_mapping;
2332 struct pagevec pvec;
2333 unsigned int nr_pages;
aeac589a 2334 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2335 pgoff_t index = mpd->first_page;
2336 pgoff_t end = mpd->last_page;
2337 int tag;
2338 int i, err = 0;
2339 int blkbits = mpd->inode->i_blkbits;
2340 ext4_lblk_t lblk;
2341 struct buffer_head *head;
8e48dcfb 2342
4e7ea81d 2343 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2344 tag = PAGECACHE_TAG_TOWRITE;
2345 else
2346 tag = PAGECACHE_TAG_DIRTY;
2347
4e7ea81d
JK
2348 pagevec_init(&pvec, 0);
2349 mpd->map.m_len = 0;
2350 mpd->next_page = index;
4f01b02c 2351 while (index <= end) {
5b41d924 2352 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2353 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2354 if (nr_pages == 0)
4e7ea81d 2355 goto out;
8e48dcfb
TT
2356
2357 for (i = 0; i < nr_pages; i++) {
2358 struct page *page = pvec.pages[i];
2359
2360 /*
2361 * At this point, the page may be truncated or
2362 * invalidated (changing page->mapping to NULL), or
2363 * even swizzled back from swapper_space to tmpfs file
2364 * mapping. However, page->index will not change
2365 * because we have a reference on the page.
2366 */
4f01b02c
TT
2367 if (page->index > end)
2368 goto out;
8e48dcfb 2369
aeac589a
ML
2370 /*
2371 * Accumulated enough dirty pages? This doesn't apply
2372 * to WB_SYNC_ALL mode. For integrity sync we have to
2373 * keep going because someone may be concurrently
2374 * dirtying pages, and we might have synced a lot of
2375 * newly appeared dirty pages, but have not synced all
2376 * of the old dirty pages.
2377 */
2378 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2379 goto out;
2380
4e7ea81d
JK
2381 /* If we can't merge this page, we are done. */
2382 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2383 goto out;
78aaced3 2384
8e48dcfb 2385 lock_page(page);
8e48dcfb 2386 /*
4e7ea81d
JK
2387 * If the page is no longer dirty, or its mapping no
2388 * longer corresponds to inode we are writing (which
2389 * means it has been truncated or invalidated), or the
2390 * page is already under writeback and we are not doing
2391 * a data integrity writeback, skip the page
8e48dcfb 2392 */
4f01b02c
TT
2393 if (!PageDirty(page) ||
2394 (PageWriteback(page) &&
4e7ea81d 2395 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2396 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2397 unlock_page(page);
2398 continue;
2399 }
2400
7cb1a535 2401 wait_on_page_writeback(page);
8e48dcfb 2402 BUG_ON(PageWriteback(page));
8e48dcfb 2403
4e7ea81d 2404 if (mpd->map.m_len == 0)
8eb9e5ce 2405 mpd->first_page = page->index;
8eb9e5ce 2406 mpd->next_page = page->index + 1;
f8bec370 2407 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2408 lblk = ((ext4_lblk_t)page->index) <<
2409 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2410 head = page_buffers(page);
5f1132b2
JK
2411 err = mpage_process_page_bufs(mpd, head, head, lblk);
2412 if (err <= 0)
4e7ea81d 2413 goto out;
5f1132b2 2414 err = 0;
aeac589a 2415 left--;
8e48dcfb
TT
2416 }
2417 pagevec_release(&pvec);
2418 cond_resched();
2419 }
4f01b02c 2420 return 0;
8eb9e5ce
TT
2421out:
2422 pagevec_release(&pvec);
4e7ea81d 2423 return err;
8e48dcfb
TT
2424}
2425
20970ba6
TT
2426static int __writepage(struct page *page, struct writeback_control *wbc,
2427 void *data)
2428{
2429 struct address_space *mapping = data;
2430 int ret = ext4_writepage(page, wbc);
2431 mapping_set_error(mapping, ret);
2432 return ret;
2433}
2434
2435static int ext4_writepages(struct address_space *mapping,
2436 struct writeback_control *wbc)
64769240 2437{
4e7ea81d
JK
2438 pgoff_t writeback_index = 0;
2439 long nr_to_write = wbc->nr_to_write;
22208ded 2440 int range_whole = 0;
4e7ea81d 2441 int cycled = 1;
61628a3f 2442 handle_t *handle = NULL;
df22291f 2443 struct mpage_da_data mpd;
5e745b04 2444 struct inode *inode = mapping->host;
6b523df4 2445 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2446 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2447 bool done;
1bce63d1 2448 struct blk_plug plug;
cb530541 2449 bool give_up_on_write = false;
61628a3f 2450
20970ba6 2451 trace_ext4_writepages(inode, wbc);
ba80b101 2452
61628a3f
MC
2453 /*
2454 * No pages to write? This is mainly a kludge to avoid starting
2455 * a transaction for special inodes like journal inode on last iput()
2456 * because that could violate lock ordering on umount
2457 */
a1d6cc56 2458 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2459 goto out_writepages;
2a21e37e 2460
20970ba6
TT
2461 if (ext4_should_journal_data(inode)) {
2462 struct blk_plug plug;
20970ba6
TT
2463
2464 blk_start_plug(&plug);
2465 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2466 blk_finish_plug(&plug);
bbf023c7 2467 goto out_writepages;
20970ba6
TT
2468 }
2469
2a21e37e
TT
2470 /*
2471 * If the filesystem has aborted, it is read-only, so return
2472 * right away instead of dumping stack traces later on that
2473 * will obscure the real source of the problem. We test
4ab2f15b 2474 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2475 * the latter could be true if the filesystem is mounted
20970ba6 2476 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2477 * *never* be called, so if that ever happens, we would want
2478 * the stack trace.
2479 */
bbf023c7
ML
2480 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2481 ret = -EROFS;
2482 goto out_writepages;
2483 }
2a21e37e 2484
6b523df4
JK
2485 if (ext4_should_dioread_nolock(inode)) {
2486 /*
70261f56 2487 * We may need to convert up to one extent per block in
6b523df4
JK
2488 * the page and we may dirty the inode.
2489 */
2490 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2491 }
2492
4e7ea81d
JK
2493 /*
2494 * If we have inline data and arrive here, it means that
2495 * we will soon create the block for the 1st page, so
2496 * we'd better clear the inline data here.
2497 */
2498 if (ext4_has_inline_data(inode)) {
2499 /* Just inode will be modified... */
2500 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2501 if (IS_ERR(handle)) {
2502 ret = PTR_ERR(handle);
2503 goto out_writepages;
2504 }
2505 BUG_ON(ext4_test_inode_state(inode,
2506 EXT4_STATE_MAY_INLINE_DATA));
2507 ext4_destroy_inline_data(handle, inode);
2508 ext4_journal_stop(handle);
2509 }
2510
22208ded
AK
2511 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2512 range_whole = 1;
61628a3f 2513
2acf2c26 2514 if (wbc->range_cyclic) {
4e7ea81d
JK
2515 writeback_index = mapping->writeback_index;
2516 if (writeback_index)
2acf2c26 2517 cycled = 0;
4e7ea81d
JK
2518 mpd.first_page = writeback_index;
2519 mpd.last_page = -1;
5b41d924 2520 } else {
4e7ea81d
JK
2521 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2522 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2523 }
a1d6cc56 2524
4e7ea81d
JK
2525 mpd.inode = inode;
2526 mpd.wbc = wbc;
2527 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2528retry:
6e6938b6 2529 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2530 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2531 done = false;
1bce63d1 2532 blk_start_plug(&plug);
4e7ea81d
JK
2533 while (!done && mpd.first_page <= mpd.last_page) {
2534 /* For each extent of pages we use new io_end */
2535 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2536 if (!mpd.io_submit.io_end) {
2537 ret = -ENOMEM;
2538 break;
2539 }
a1d6cc56
AK
2540
2541 /*
4e7ea81d
JK
2542 * We have two constraints: We find one extent to map and we
2543 * must always write out whole page (makes a difference when
2544 * blocksize < pagesize) so that we don't block on IO when we
2545 * try to write out the rest of the page. Journalled mode is
2546 * not supported by delalloc.
a1d6cc56
AK
2547 */
2548 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2549 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2550
4e7ea81d 2551 /* start a new transaction */
6b523df4
JK
2552 handle = ext4_journal_start_with_reserve(inode,
2553 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2554 if (IS_ERR(handle)) {
2555 ret = PTR_ERR(handle);
1693918e 2556 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2557 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2558 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2559 /* Release allocated io_end */
2560 ext4_put_io_end(mpd.io_submit.io_end);
2561 break;
61628a3f 2562 }
f63e6005 2563
4e7ea81d
JK
2564 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2565 ret = mpage_prepare_extent_to_map(&mpd);
2566 if (!ret) {
2567 if (mpd.map.m_len)
cb530541
TT
2568 ret = mpage_map_and_submit_extent(handle, &mpd,
2569 &give_up_on_write);
4e7ea81d
JK
2570 else {
2571 /*
2572 * We scanned the whole range (or exhausted
2573 * nr_to_write), submitted what was mapped and
2574 * didn't find anything needing mapping. We are
2575 * done.
2576 */
2577 done = true;
2578 }
f63e6005 2579 }
61628a3f 2580 ext4_journal_stop(handle);
4e7ea81d
JK
2581 /* Submit prepared bio */
2582 ext4_io_submit(&mpd.io_submit);
2583 /* Unlock pages we didn't use */
cb530541 2584 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2585 /* Drop our io_end reference we got from init */
2586 ext4_put_io_end(mpd.io_submit.io_end);
2587
2588 if (ret == -ENOSPC && sbi->s_journal) {
2589 /*
2590 * Commit the transaction which would
22208ded
AK
2591 * free blocks released in the transaction
2592 * and try again
2593 */
df22291f 2594 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2595 ret = 0;
4e7ea81d
JK
2596 continue;
2597 }
2598 /* Fatal error - ENOMEM, EIO... */
2599 if (ret)
61628a3f 2600 break;
a1d6cc56 2601 }
1bce63d1 2602 blk_finish_plug(&plug);
9c12a831 2603 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2604 cycled = 1;
4e7ea81d
JK
2605 mpd.last_page = writeback_index - 1;
2606 mpd.first_page = 0;
2acf2c26
AK
2607 goto retry;
2608 }
22208ded
AK
2609
2610 /* Update index */
22208ded
AK
2611 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2612 /*
4e7ea81d 2613 * Set the writeback_index so that range_cyclic
22208ded
AK
2614 * mode will write it back later
2615 */
4e7ea81d 2616 mapping->writeback_index = mpd.first_page;
a1d6cc56 2617
61628a3f 2618out_writepages:
20970ba6
TT
2619 trace_ext4_writepages_result(inode, wbc, ret,
2620 nr_to_write - wbc->nr_to_write);
61628a3f 2621 return ret;
64769240
AT
2622}
2623
79f0be8d
AK
2624static int ext4_nonda_switch(struct super_block *sb)
2625{
5c1ff336 2626 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2627 struct ext4_sb_info *sbi = EXT4_SB(sb);
2628
2629 /*
2630 * switch to non delalloc mode if we are running low
2631 * on free block. The free block accounting via percpu
179f7ebf 2632 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2633 * accumulated on each CPU without updating global counters
2634 * Delalloc need an accurate free block accounting. So switch
2635 * to non delalloc when we are near to error range.
2636 */
5c1ff336
EW
2637 free_clusters =
2638 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2639 dirty_clusters =
2640 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2641 /*
2642 * Start pushing delalloc when 1/2 of free blocks are dirty.
2643 */
5c1ff336 2644 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2645 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2646
5c1ff336
EW
2647 if (2 * free_clusters < 3 * dirty_clusters ||
2648 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2649 /*
c8afb446
ES
2650 * free block count is less than 150% of dirty blocks
2651 * or free blocks is less than watermark
79f0be8d
AK
2652 */
2653 return 1;
2654 }
2655 return 0;
2656}
2657
0ff8947f
ES
2658/* We always reserve for an inode update; the superblock could be there too */
2659static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2660{
e2b911c5 2661 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2662 return 1;
2663
2664 if (pos + len <= 0x7fffffffULL)
2665 return 1;
2666
2667 /* We might need to update the superblock to set LARGE_FILE */
2668 return 2;
2669}
2670
64769240 2671static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2672 loff_t pos, unsigned len, unsigned flags,
2673 struct page **pagep, void **fsdata)
64769240 2674{
72b8ab9d 2675 int ret, retries = 0;
64769240
AT
2676 struct page *page;
2677 pgoff_t index;
64769240
AT
2678 struct inode *inode = mapping->host;
2679 handle_t *handle;
2680
2681 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2682
2683 if (ext4_nonda_switch(inode->i_sb)) {
2684 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2685 return ext4_write_begin(file, mapping, pos,
2686 len, flags, pagep, fsdata);
2687 }
2688 *fsdata = (void *)0;
9bffad1e 2689 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2690
2691 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2692 ret = ext4_da_write_inline_data_begin(mapping, inode,
2693 pos, len, flags,
2694 pagep, fsdata);
2695 if (ret < 0)
47564bfb
TT
2696 return ret;
2697 if (ret == 1)
2698 return 0;
9c3569b5
TM
2699 }
2700
47564bfb
TT
2701 /*
2702 * grab_cache_page_write_begin() can take a long time if the
2703 * system is thrashing due to memory pressure, or if the page
2704 * is being written back. So grab it first before we start
2705 * the transaction handle. This also allows us to allocate
2706 * the page (if needed) without using GFP_NOFS.
2707 */
2708retry_grab:
2709 page = grab_cache_page_write_begin(mapping, index, flags);
2710 if (!page)
2711 return -ENOMEM;
2712 unlock_page(page);
2713
64769240
AT
2714 /*
2715 * With delayed allocation, we don't log the i_disksize update
2716 * if there is delayed block allocation. But we still need
2717 * to journalling the i_disksize update if writes to the end
2718 * of file which has an already mapped buffer.
2719 */
47564bfb 2720retry_journal:
0ff8947f
ES
2721 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2722 ext4_da_write_credits(inode, pos, len));
64769240 2723 if (IS_ERR(handle)) {
47564bfb
TT
2724 page_cache_release(page);
2725 return PTR_ERR(handle);
64769240
AT
2726 }
2727
47564bfb
TT
2728 lock_page(page);
2729 if (page->mapping != mapping) {
2730 /* The page got truncated from under us */
2731 unlock_page(page);
2732 page_cache_release(page);
d5a0d4f7 2733 ext4_journal_stop(handle);
47564bfb 2734 goto retry_grab;
d5a0d4f7 2735 }
47564bfb 2736 /* In case writeback began while the page was unlocked */
7afe5aa5 2737 wait_for_stable_page(page);
64769240 2738
2058f83a
MH
2739#ifdef CONFIG_EXT4_FS_ENCRYPTION
2740 ret = ext4_block_write_begin(page, pos, len,
2741 ext4_da_get_block_prep);
2742#else
6e1db88d 2743 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2744#endif
64769240
AT
2745 if (ret < 0) {
2746 unlock_page(page);
2747 ext4_journal_stop(handle);
ae4d5372
AK
2748 /*
2749 * block_write_begin may have instantiated a few blocks
2750 * outside i_size. Trim these off again. Don't need
2751 * i_size_read because we hold i_mutex.
2752 */
2753 if (pos + len > inode->i_size)
b9a4207d 2754 ext4_truncate_failed_write(inode);
47564bfb
TT
2755
2756 if (ret == -ENOSPC &&
2757 ext4_should_retry_alloc(inode->i_sb, &retries))
2758 goto retry_journal;
2759
2760 page_cache_release(page);
2761 return ret;
64769240
AT
2762 }
2763
47564bfb 2764 *pagep = page;
64769240
AT
2765 return ret;
2766}
2767
632eaeab
MC
2768/*
2769 * Check if we should update i_disksize
2770 * when write to the end of file but not require block allocation
2771 */
2772static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2773 unsigned long offset)
632eaeab
MC
2774{
2775 struct buffer_head *bh;
2776 struct inode *inode = page->mapping->host;
2777 unsigned int idx;
2778 int i;
2779
2780 bh = page_buffers(page);
2781 idx = offset >> inode->i_blkbits;
2782
af5bc92d 2783 for (i = 0; i < idx; i++)
632eaeab
MC
2784 bh = bh->b_this_page;
2785
29fa89d0 2786 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2787 return 0;
2788 return 1;
2789}
2790
64769240 2791static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2792 struct address_space *mapping,
2793 loff_t pos, unsigned len, unsigned copied,
2794 struct page *page, void *fsdata)
64769240
AT
2795{
2796 struct inode *inode = mapping->host;
2797 int ret = 0, ret2;
2798 handle_t *handle = ext4_journal_current_handle();
2799 loff_t new_i_size;
632eaeab 2800 unsigned long start, end;
79f0be8d
AK
2801 int write_mode = (int)(unsigned long)fsdata;
2802
74d553aa
TT
2803 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2804 return ext4_write_end(file, mapping, pos,
2805 len, copied, page, fsdata);
632eaeab 2806
9bffad1e 2807 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2808 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2809 end = start + copied - 1;
64769240
AT
2810
2811 /*
2812 * generic_write_end() will run mark_inode_dirty() if i_size
2813 * changes. So let's piggyback the i_disksize mark_inode_dirty
2814 * into that.
2815 */
64769240 2816 new_i_size = pos + copied;
ea51d132 2817 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2818 if (ext4_has_inline_data(inode) ||
2819 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2820 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2821 /* We need to mark inode dirty even if
2822 * new_i_size is less that inode->i_size
2823 * bu greater than i_disksize.(hint delalloc)
2824 */
2825 ext4_mark_inode_dirty(handle, inode);
64769240 2826 }
632eaeab 2827 }
9c3569b5
TM
2828
2829 if (write_mode != CONVERT_INLINE_DATA &&
2830 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2831 ext4_has_inline_data(inode))
2832 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2833 page);
2834 else
2835 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2836 page, fsdata);
9c3569b5 2837
64769240
AT
2838 copied = ret2;
2839 if (ret2 < 0)
2840 ret = ret2;
2841 ret2 = ext4_journal_stop(handle);
2842 if (!ret)
2843 ret = ret2;
2844
2845 return ret ? ret : copied;
2846}
2847
d47992f8
LC
2848static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2849 unsigned int length)
64769240 2850{
64769240
AT
2851 /*
2852 * Drop reserved blocks
2853 */
2854 BUG_ON(!PageLocked(page));
2855 if (!page_has_buffers(page))
2856 goto out;
2857
ca99fdd2 2858 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2859
2860out:
d47992f8 2861 ext4_invalidatepage(page, offset, length);
64769240
AT
2862
2863 return;
2864}
2865
ccd2506b
TT
2866/*
2867 * Force all delayed allocation blocks to be allocated for a given inode.
2868 */
2869int ext4_alloc_da_blocks(struct inode *inode)
2870{
fb40ba0d
TT
2871 trace_ext4_alloc_da_blocks(inode);
2872
71d4f7d0 2873 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2874 return 0;
2875
2876 /*
2877 * We do something simple for now. The filemap_flush() will
2878 * also start triggering a write of the data blocks, which is
2879 * not strictly speaking necessary (and for users of
2880 * laptop_mode, not even desirable). However, to do otherwise
2881 * would require replicating code paths in:
de9a55b8 2882 *
20970ba6 2883 * ext4_writepages() ->
ccd2506b
TT
2884 * write_cache_pages() ---> (via passed in callback function)
2885 * __mpage_da_writepage() -->
2886 * mpage_add_bh_to_extent()
2887 * mpage_da_map_blocks()
2888 *
2889 * The problem is that write_cache_pages(), located in
2890 * mm/page-writeback.c, marks pages clean in preparation for
2891 * doing I/O, which is not desirable if we're not planning on
2892 * doing I/O at all.
2893 *
2894 * We could call write_cache_pages(), and then redirty all of
380cf090 2895 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2896 * would be ugly in the extreme. So instead we would need to
2897 * replicate parts of the code in the above functions,
25985edc 2898 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2899 * write out the pages, but rather only collect contiguous
2900 * logical block extents, call the multi-block allocator, and
2901 * then update the buffer heads with the block allocations.
de9a55b8 2902 *
ccd2506b
TT
2903 * For now, though, we'll cheat by calling filemap_flush(),
2904 * which will map the blocks, and start the I/O, but not
2905 * actually wait for the I/O to complete.
2906 */
2907 return filemap_flush(inode->i_mapping);
2908}
64769240 2909
ac27a0ec
DK
2910/*
2911 * bmap() is special. It gets used by applications such as lilo and by
2912 * the swapper to find the on-disk block of a specific piece of data.
2913 *
2914 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2915 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2916 * filesystem and enables swap, then they may get a nasty shock when the
2917 * data getting swapped to that swapfile suddenly gets overwritten by
2918 * the original zero's written out previously to the journal and
2919 * awaiting writeback in the kernel's buffer cache.
2920 *
2921 * So, if we see any bmap calls here on a modified, data-journaled file,
2922 * take extra steps to flush any blocks which might be in the cache.
2923 */
617ba13b 2924static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2925{
2926 struct inode *inode = mapping->host;
2927 journal_t *journal;
2928 int err;
2929
46c7f254
TM
2930 /*
2931 * We can get here for an inline file via the FIBMAP ioctl
2932 */
2933 if (ext4_has_inline_data(inode))
2934 return 0;
2935
64769240
AT
2936 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2937 test_opt(inode->i_sb, DELALLOC)) {
2938 /*
2939 * With delalloc we want to sync the file
2940 * so that we can make sure we allocate
2941 * blocks for file
2942 */
2943 filemap_write_and_wait(mapping);
2944 }
2945
19f5fb7a
TT
2946 if (EXT4_JOURNAL(inode) &&
2947 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2948 /*
2949 * This is a REALLY heavyweight approach, but the use of
2950 * bmap on dirty files is expected to be extremely rare:
2951 * only if we run lilo or swapon on a freshly made file
2952 * do we expect this to happen.
2953 *
2954 * (bmap requires CAP_SYS_RAWIO so this does not
2955 * represent an unprivileged user DOS attack --- we'd be
2956 * in trouble if mortal users could trigger this path at
2957 * will.)
2958 *
617ba13b 2959 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2960 * regular files. If somebody wants to bmap a directory
2961 * or symlink and gets confused because the buffer
2962 * hasn't yet been flushed to disk, they deserve
2963 * everything they get.
2964 */
2965
19f5fb7a 2966 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2967 journal = EXT4_JOURNAL(inode);
dab291af
MC
2968 jbd2_journal_lock_updates(journal);
2969 err = jbd2_journal_flush(journal);
2970 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2971
2972 if (err)
2973 return 0;
2974 }
2975
af5bc92d 2976 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2977}
2978
617ba13b 2979static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2980{
46c7f254
TM
2981 int ret = -EAGAIN;
2982 struct inode *inode = page->mapping->host;
2983
0562e0ba 2984 trace_ext4_readpage(page);
46c7f254
TM
2985
2986 if (ext4_has_inline_data(inode))
2987 ret = ext4_readpage_inline(inode, page);
2988
2989 if (ret == -EAGAIN)
f64e02fe 2990 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
2991
2992 return ret;
ac27a0ec
DK
2993}
2994
2995static int
617ba13b 2996ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2997 struct list_head *pages, unsigned nr_pages)
2998{
46c7f254
TM
2999 struct inode *inode = mapping->host;
3000
3001 /* If the file has inline data, no need to do readpages. */
3002 if (ext4_has_inline_data(inode))
3003 return 0;
3004
f64e02fe 3005 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3006}
3007
d47992f8
LC
3008static void ext4_invalidatepage(struct page *page, unsigned int offset,
3009 unsigned int length)
ac27a0ec 3010{
ca99fdd2 3011 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3012
4520fb3c
JK
3013 /* No journalling happens on data buffers when this function is used */
3014 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3015
ca99fdd2 3016 block_invalidatepage(page, offset, length);
4520fb3c
JK
3017}
3018
53e87268 3019static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3020 unsigned int offset,
3021 unsigned int length)
4520fb3c
JK
3022{
3023 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3024
ca99fdd2 3025 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3026
ac27a0ec
DK
3027 /*
3028 * If it's a full truncate we just forget about the pending dirtying
3029 */
ca99fdd2 3030 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
3031 ClearPageChecked(page);
3032
ca99fdd2 3033 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3034}
3035
3036/* Wrapper for aops... */
3037static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3038 unsigned int offset,
3039 unsigned int length)
53e87268 3040{
ca99fdd2 3041 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3042}
3043
617ba13b 3044static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3045{
617ba13b 3046 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3047
0562e0ba
JZ
3048 trace_ext4_releasepage(page);
3049
e1c36595
JK
3050 /* Page has dirty journalled data -> cannot release */
3051 if (PageChecked(page))
ac27a0ec 3052 return 0;
0390131b
FM
3053 if (journal)
3054 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3055 else
3056 return try_to_free_buffers(page);
ac27a0ec
DK
3057}
3058
2ed88685
TT
3059/*
3060 * ext4_get_block used when preparing for a DIO write or buffer write.
3061 * We allocate an uinitialized extent if blocks haven't been allocated.
3062 * The extent will be converted to initialized after the IO is complete.
3063 */
f19d5870 3064int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3065 struct buffer_head *bh_result, int create)
3066{
c7064ef1 3067 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3068 inode->i_ino, create);
2ed88685
TT
3069 return _ext4_get_block(inode, iblock, bh_result,
3070 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3071}
3072
2dcba478 3073static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
8b0f165f 3074 struct buffer_head *bh_result, int create)
729f52c6 3075{
2dcba478
JK
3076 int ret;
3077
3078 ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
8b0f165f 3079 inode->i_ino, create);
2dcba478
JK
3080 ret = _ext4_get_block(inode, iblock, bh_result, 0);
3081 /*
3082 * Blocks should have been preallocated! ext4_file_write_iter() checks
3083 * that.
3084 */
3085 WARN_ON_ONCE(!buffer_mapped(bh_result));
3086
3087 return ret;
729f52c6
ZL
3088}
3089
ba5843f5
JK
3090#ifdef CONFIG_FS_DAX
3091int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3092 struct buffer_head *bh_result, int create)
ed923b57 3093{
ba5843f5
JK
3094 int ret, err;
3095 int credits;
3096 struct ext4_map_blocks map;
3097 handle_t *handle = NULL;
3098 int flags = 0;
c86d8db3 3099
ba5843f5 3100 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
ed923b57 3101 inode->i_ino, create);
ba5843f5
JK
3102 map.m_lblk = iblock;
3103 map.m_len = bh_result->b_size >> inode->i_blkbits;
3104 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3105 if (create) {
3106 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3107 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3108 if (IS_ERR(handle)) {
3109 ret = PTR_ERR(handle);
3110 return ret;
3111 }
3112 }
3113
3114 ret = ext4_map_blocks(handle, inode, &map, flags);
3115 if (create) {
3116 err = ext4_journal_stop(handle);
3117 if (ret >= 0 && err < 0)
3118 ret = err;
3119 }
3120 if (ret <= 0)
3121 goto out;
3122 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3123 int err2;
3124
3125 /*
3126 * We are protected by i_mmap_sem so we know block cannot go
3127 * away from under us even though we dropped i_data_sem.
3128 * Convert extent to written and write zeros there.
3129 *
3130 * Note: We may get here even when create == 0.
3131 */
3132 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3133 if (IS_ERR(handle)) {
3134 ret = PTR_ERR(handle);
3135 goto out;
3136 }
3137
3138 err = ext4_map_blocks(handle, inode, &map,
3139 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3140 if (err < 0)
3141 ret = err;
3142 err2 = ext4_journal_stop(handle);
3143 if (err2 < 0 && ret > 0)
3144 ret = err2;
3145 }
3146out:
3147 WARN_ON_ONCE(ret == 0 && create);
3148 if (ret > 0) {
3149 map_bh(bh_result, inode->i_sb, map.m_pblk);
3150 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3151 map.m_flags;
3152 /*
3153 * At least for now we have to clear BH_New so that DAX code
3154 * doesn't attempt to zero blocks again in a racy way.
3155 */
3156 bh_result->b_state &= ~(1 << BH_New);
3157 bh_result->b_size = map.m_len << inode->i_blkbits;
3158 ret = 0;
3159 }
3160 return ret;
ed923b57 3161}
ba5843f5 3162#endif
ed923b57 3163
4c0425ff 3164static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3165 ssize_t size, void *private)
4c0425ff
MC
3166{
3167 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3168
97a851ed 3169 /* if not async direct IO just return */
7b7a8665 3170 if (!io_end)
97a851ed 3171 return;
4b70df18 3172
88635ca2 3173 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3174 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3175 iocb->private, io_end->inode->i_ino, iocb, offset,
3176 size);
8d5d02e6 3177
b5a7e970 3178 iocb->private = NULL;
4c0425ff
MC
3179 io_end->offset = offset;
3180 io_end->size = size;
7b7a8665 3181 ext4_put_io_end(io_end);
4c0425ff 3182}
c7064ef1 3183
4c0425ff
MC
3184/*
3185 * For ext4 extent files, ext4 will do direct-io write to holes,
3186 * preallocated extents, and those write extend the file, no need to
3187 * fall back to buffered IO.
3188 *
556615dc 3189 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3190 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3191 * still keep the range to write as unwritten.
4c0425ff 3192 *
69c499d1 3193 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3194 * For async direct IO, since the IO may still pending when return, we
25985edc 3195 * set up an end_io call back function, which will do the conversion
8d5d02e6 3196 * when async direct IO completed.
4c0425ff
MC
3197 *
3198 * If the O_DIRECT write will extend the file then add this inode to the
3199 * orphan list. So recovery will truncate it back to the original size
3200 * if the machine crashes during the write.
3201 *
3202 */
6f673763
OS
3203static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3204 loff_t offset)
4c0425ff
MC
3205{
3206 struct file *file = iocb->ki_filp;
3207 struct inode *inode = file->f_mapping->host;
3208 ssize_t ret;
a6cbcd4a 3209 size_t count = iov_iter_count(iter);
69c499d1
TT
3210 int overwrite = 0;
3211 get_block_t *get_block_func = NULL;
3212 int dio_flags = 0;
4c0425ff 3213 loff_t final_size = offset + count;
97a851ed 3214 ext4_io_end_t *io_end = NULL;
729f52c6 3215
69c499d1 3216 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3217 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3218 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3219
69c499d1 3220 BUG_ON(iocb->private == NULL);
4bd809db 3221
e8340395
JK
3222 /*
3223 * Make all waiters for direct IO properly wait also for extent
3224 * conversion. This also disallows race between truncate() and
3225 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3226 */
6f673763 3227 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3228 inode_dio_begin(inode);
e8340395 3229
69c499d1
TT
3230 /* If we do a overwrite dio, i_mutex locking can be released */
3231 overwrite = *((int *)iocb->private);
4bd809db 3232
2dcba478 3233 if (overwrite)
5955102c 3234 inode_unlock(inode);
8d5d02e6 3235
69c499d1
TT
3236 /*
3237 * We could direct write to holes and fallocate.
3238 *
3239 * Allocated blocks to fill the hole are marked as
556615dc 3240 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3241 * the stale data before DIO complete the data IO.
3242 *
3243 * As to previously fallocated extents, ext4 get_block will
3244 * just simply mark the buffer mapped but still keep the
556615dc 3245 * extents unwritten.
69c499d1
TT
3246 *
3247 * For non AIO case, we will convert those unwritten extents
3248 * to written after return back from blockdev_direct_IO.
3249 *
3250 * For async DIO, the conversion needs to be deferred when the
3251 * IO is completed. The ext4 end_io callback function will be
3252 * called to take care of the conversion work. Here for async
3253 * case, we allocate an io_end structure to hook to the iocb.
3254 */
3255 iocb->private = NULL;
3256 ext4_inode_aio_set(inode, NULL);
3257 if (!is_sync_kiocb(iocb)) {
97a851ed 3258 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3259 if (!io_end) {
3260 ret = -ENOMEM;
3261 goto retake_lock;
8b0f165f 3262 }
97a851ed
JK
3263 /*
3264 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3265 */
3266 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3267 /*
69c499d1
TT
3268 * we save the io structure for current async direct
3269 * IO, so that later ext4_map_blocks() could flag the
3270 * io structure whether there is a unwritten extents
3271 * needs to be converted when IO is completed.
8d5d02e6 3272 */
69c499d1
TT
3273 ext4_inode_aio_set(inode, io_end);
3274 }
4bd809db 3275
69c499d1 3276 if (overwrite) {
2dcba478 3277 get_block_func = ext4_get_block_overwrite;
69c499d1
TT
3278 } else {
3279 get_block_func = ext4_get_block_write;
3280 dio_flags = DIO_LOCKING;
3281 }
2058f83a
MH
3282#ifdef CONFIG_EXT4_FS_ENCRYPTION
3283 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3284#endif
923ae0ff 3285 if (IS_DAX(inode))
a95cd631 3286 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3287 ext4_end_io_dio, dio_flags);
3288 else
17f8c842 3289 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3290 inode->i_sb->s_bdev, iter, offset,
3291 get_block_func,
3292 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3293
69c499d1 3294 /*
97a851ed
JK
3295 * Put our reference to io_end. This can free the io_end structure e.g.
3296 * in sync IO case or in case of error. It can even perform extent
3297 * conversion if all bios we submitted finished before we got here.
3298 * Note that in that case iocb->private can be already set to NULL
3299 * here.
69c499d1 3300 */
97a851ed
JK
3301 if (io_end) {
3302 ext4_inode_aio_set(inode, NULL);
3303 ext4_put_io_end(io_end);
3304 /*
3305 * When no IO was submitted ext4_end_io_dio() was not
3306 * called so we have to put iocb's reference.
3307 */
3308 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3309 WARN_ON(iocb->private != io_end);
3310 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3311 ext4_put_io_end(io_end);
3312 iocb->private = NULL;
3313 }
3314 }
3315 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3316 EXT4_STATE_DIO_UNWRITTEN)) {
3317 int err;
3318 /*
3319 * for non AIO case, since the IO is already
3320 * completed, we could do the conversion right here
3321 */
6b523df4 3322 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3323 offset, ret);
3324 if (err < 0)
3325 ret = err;
3326 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3327 }
4bd809db 3328
69c499d1 3329retake_lock:
6f673763 3330 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3331 inode_dio_end(inode);
69c499d1 3332 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3333 if (overwrite)
5955102c 3334 inode_lock(inode);
8d5d02e6 3335
69c499d1 3336 return ret;
4c0425ff
MC
3337}
3338
22c6186e
OS
3339static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3340 loff_t offset)
4c0425ff
MC
3341{
3342 struct file *file = iocb->ki_filp;
3343 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3344 size_t count = iov_iter_count(iter);
0562e0ba 3345 ssize_t ret;
4c0425ff 3346
2058f83a
MH
3347#ifdef CONFIG_EXT4_FS_ENCRYPTION
3348 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3349 return 0;
3350#endif
3351
84ebd795
TT
3352 /*
3353 * If we are doing data journalling we don't support O_DIRECT
3354 */
3355 if (ext4_should_journal_data(inode))
3356 return 0;
3357
46c7f254
TM
3358 /* Let buffer I/O handle the inline data case. */
3359 if (ext4_has_inline_data(inode))
3360 return 0;
3361
6f673763 3362 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3363 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3364 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3365 else
6f673763
OS
3366 ret = ext4_ind_direct_IO(iocb, iter, offset);
3367 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3368 return ret;
4c0425ff
MC
3369}
3370
ac27a0ec 3371/*
617ba13b 3372 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3373 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3374 * much here because ->set_page_dirty is called under VFS locks. The page is
3375 * not necessarily locked.
3376 *
3377 * We cannot just dirty the page and leave attached buffers clean, because the
3378 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3379 * or jbddirty because all the journalling code will explode.
3380 *
3381 * So what we do is to mark the page "pending dirty" and next time writepage
3382 * is called, propagate that into the buffers appropriately.
3383 */
617ba13b 3384static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3385{
3386 SetPageChecked(page);
3387 return __set_page_dirty_nobuffers(page);
3388}
3389
74d553aa 3390static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3391 .readpage = ext4_readpage,
3392 .readpages = ext4_readpages,
43ce1d23 3393 .writepage = ext4_writepage,
20970ba6 3394 .writepages = ext4_writepages,
8ab22b9a 3395 .write_begin = ext4_write_begin,
74d553aa 3396 .write_end = ext4_write_end,
8ab22b9a
HH
3397 .bmap = ext4_bmap,
3398 .invalidatepage = ext4_invalidatepage,
3399 .releasepage = ext4_releasepage,
3400 .direct_IO = ext4_direct_IO,
3401 .migratepage = buffer_migrate_page,
3402 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3403 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3404};
3405
617ba13b 3406static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3407 .readpage = ext4_readpage,
3408 .readpages = ext4_readpages,
43ce1d23 3409 .writepage = ext4_writepage,
20970ba6 3410 .writepages = ext4_writepages,
8ab22b9a
HH
3411 .write_begin = ext4_write_begin,
3412 .write_end = ext4_journalled_write_end,
3413 .set_page_dirty = ext4_journalled_set_page_dirty,
3414 .bmap = ext4_bmap,
4520fb3c 3415 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3416 .releasepage = ext4_releasepage,
84ebd795 3417 .direct_IO = ext4_direct_IO,
8ab22b9a 3418 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3419 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3420};
3421
64769240 3422static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3423 .readpage = ext4_readpage,
3424 .readpages = ext4_readpages,
43ce1d23 3425 .writepage = ext4_writepage,
20970ba6 3426 .writepages = ext4_writepages,
8ab22b9a
HH
3427 .write_begin = ext4_da_write_begin,
3428 .write_end = ext4_da_write_end,
3429 .bmap = ext4_bmap,
3430 .invalidatepage = ext4_da_invalidatepage,
3431 .releasepage = ext4_releasepage,
3432 .direct_IO = ext4_direct_IO,
3433 .migratepage = buffer_migrate_page,
3434 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3435 .error_remove_page = generic_error_remove_page,
64769240
AT
3436};
3437
617ba13b 3438void ext4_set_aops(struct inode *inode)
ac27a0ec 3439{
3d2b1582
LC
3440 switch (ext4_inode_journal_mode(inode)) {
3441 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3442 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3443 break;
3444 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3445 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3446 break;
3447 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3448 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3449 return;
3d2b1582
LC
3450 default:
3451 BUG();
3452 }
74d553aa
TT
3453 if (test_opt(inode->i_sb, DELALLOC))
3454 inode->i_mapping->a_ops = &ext4_da_aops;
3455 else
3456 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3457}
3458
923ae0ff 3459static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3460 struct address_space *mapping, loff_t from, loff_t length)
3461{
3462 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3463 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3464 unsigned blocksize, pos;
d863dc36
LC
3465 ext4_lblk_t iblock;
3466 struct inode *inode = mapping->host;
3467 struct buffer_head *bh;
3468 struct page *page;
3469 int err = 0;
3470
3471 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
c62d2555 3472 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3473 if (!page)
3474 return -ENOMEM;
3475
3476 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3477
3478 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3479
3480 if (!page_has_buffers(page))
3481 create_empty_buffers(page, blocksize, 0);
3482
3483 /* Find the buffer that contains "offset" */
3484 bh = page_buffers(page);
3485 pos = blocksize;
3486 while (offset >= pos) {
3487 bh = bh->b_this_page;
3488 iblock++;
3489 pos += blocksize;
3490 }
d863dc36
LC
3491 if (buffer_freed(bh)) {
3492 BUFFER_TRACE(bh, "freed: skip");
3493 goto unlock;
3494 }
d863dc36
LC
3495 if (!buffer_mapped(bh)) {
3496 BUFFER_TRACE(bh, "unmapped");
3497 ext4_get_block(inode, iblock, bh, 0);
3498 /* unmapped? It's a hole - nothing to do */
3499 if (!buffer_mapped(bh)) {
3500 BUFFER_TRACE(bh, "still unmapped");
3501 goto unlock;
3502 }
3503 }
3504
3505 /* Ok, it's mapped. Make sure it's up-to-date */
3506 if (PageUptodate(page))
3507 set_buffer_uptodate(bh);
3508
3509 if (!buffer_uptodate(bh)) {
3510 err = -EIO;
3511 ll_rw_block(READ, 1, &bh);
3512 wait_on_buffer(bh);
3513 /* Uhhuh. Read error. Complain and punt. */
3514 if (!buffer_uptodate(bh))
3515 goto unlock;
c9c7429c
MH
3516 if (S_ISREG(inode->i_mode) &&
3517 ext4_encrypted_inode(inode)) {
3518 /* We expect the key to be set. */
3519 BUG_ON(!ext4_has_encryption_key(inode));
3520 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3684de8c 3521 WARN_ON_ONCE(ext4_decrypt(page));
c9c7429c 3522 }
d863dc36 3523 }
d863dc36
LC
3524 if (ext4_should_journal_data(inode)) {
3525 BUFFER_TRACE(bh, "get write access");
3526 err = ext4_journal_get_write_access(handle, bh);
3527 if (err)
3528 goto unlock;
3529 }
d863dc36 3530 zero_user(page, offset, length);
d863dc36
LC
3531 BUFFER_TRACE(bh, "zeroed end of block");
3532
d863dc36
LC
3533 if (ext4_should_journal_data(inode)) {
3534 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3535 } else {
353eefd3 3536 err = 0;
d863dc36 3537 mark_buffer_dirty(bh);
0713ed0c
LC
3538 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3539 err = ext4_jbd2_file_inode(handle, inode);
3540 }
d863dc36
LC
3541
3542unlock:
3543 unlock_page(page);
3544 page_cache_release(page);
3545 return err;
3546}
3547
923ae0ff
RZ
3548/*
3549 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3550 * starting from file offset 'from'. The range to be zero'd must
3551 * be contained with in one block. If the specified range exceeds
3552 * the end of the block it will be shortened to end of the block
3553 * that cooresponds to 'from'
3554 */
3555static int ext4_block_zero_page_range(handle_t *handle,
3556 struct address_space *mapping, loff_t from, loff_t length)
3557{
3558 struct inode *inode = mapping->host;
3559 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3560 unsigned blocksize = inode->i_sb->s_blocksize;
3561 unsigned max = blocksize - (offset & (blocksize - 1));
3562
3563 /*
3564 * correct length if it does not fall between
3565 * 'from' and the end of the block
3566 */
3567 if (length > max || length < 0)
3568 length = max;
3569
3570 if (IS_DAX(inode))
3571 return dax_zero_page_range(inode, from, length, ext4_get_block);
3572 return __ext4_block_zero_page_range(handle, mapping, from, length);
3573}
3574
94350ab5
MW
3575/*
3576 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3577 * up to the end of the block which corresponds to `from'.
3578 * This required during truncate. We need to physically zero the tail end
3579 * of that block so it doesn't yield old data if the file is later grown.
3580 */
c197855e 3581static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3582 struct address_space *mapping, loff_t from)
3583{
3584 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3585 unsigned length;
3586 unsigned blocksize;
3587 struct inode *inode = mapping->host;
3588
3589 blocksize = inode->i_sb->s_blocksize;
3590 length = blocksize - (offset & (blocksize - 1));
3591
3592 return ext4_block_zero_page_range(handle, mapping, from, length);
3593}
3594
a87dd18c
LC
3595int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3596 loff_t lstart, loff_t length)
3597{
3598 struct super_block *sb = inode->i_sb;
3599 struct address_space *mapping = inode->i_mapping;
e1be3a92 3600 unsigned partial_start, partial_end;
a87dd18c
LC
3601 ext4_fsblk_t start, end;
3602 loff_t byte_end = (lstart + length - 1);
3603 int err = 0;
3604
e1be3a92
LC
3605 partial_start = lstart & (sb->s_blocksize - 1);
3606 partial_end = byte_end & (sb->s_blocksize - 1);
3607
a87dd18c
LC
3608 start = lstart >> sb->s_blocksize_bits;
3609 end = byte_end >> sb->s_blocksize_bits;
3610
3611 /* Handle partial zero within the single block */
e1be3a92
LC
3612 if (start == end &&
3613 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3614 err = ext4_block_zero_page_range(handle, mapping,
3615 lstart, length);
3616 return err;
3617 }
3618 /* Handle partial zero out on the start of the range */
e1be3a92 3619 if (partial_start) {
a87dd18c
LC
3620 err = ext4_block_zero_page_range(handle, mapping,
3621 lstart, sb->s_blocksize);
3622 if (err)
3623 return err;
3624 }
3625 /* Handle partial zero out on the end of the range */
e1be3a92 3626 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3627 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3628 byte_end - partial_end,
3629 partial_end + 1);
a87dd18c
LC
3630 return err;
3631}
3632
91ef4caf
DG
3633int ext4_can_truncate(struct inode *inode)
3634{
91ef4caf
DG
3635 if (S_ISREG(inode->i_mode))
3636 return 1;
3637 if (S_ISDIR(inode->i_mode))
3638 return 1;
3639 if (S_ISLNK(inode->i_mode))
3640 return !ext4_inode_is_fast_symlink(inode);
3641 return 0;
3642}
3643
01127848
JK
3644/*
3645 * We have to make sure i_disksize gets properly updated before we truncate
3646 * page cache due to hole punching or zero range. Otherwise i_disksize update
3647 * can get lost as it may have been postponed to submission of writeback but
3648 * that will never happen after we truncate page cache.
3649 */
3650int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3651 loff_t len)
3652{
3653 handle_t *handle;
3654 loff_t size = i_size_read(inode);
3655
5955102c 3656 WARN_ON(!inode_is_locked(inode));
01127848
JK
3657 if (offset > size || offset + len < size)
3658 return 0;
3659
3660 if (EXT4_I(inode)->i_disksize >= size)
3661 return 0;
3662
3663 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3664 if (IS_ERR(handle))
3665 return PTR_ERR(handle);
3666 ext4_update_i_disksize(inode, size);
3667 ext4_mark_inode_dirty(handle, inode);
3668 ext4_journal_stop(handle);
3669
3670 return 0;
3671}
3672
a4bb6b64
AH
3673/*
3674 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3675 * associated with the given offset and length
3676 *
3677 * @inode: File inode
3678 * @offset: The offset where the hole will begin
3679 * @len: The length of the hole
3680 *
4907cb7b 3681 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3682 */
3683
aeb2817a 3684int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3685{
26a4c0c6
TT
3686 struct super_block *sb = inode->i_sb;
3687 ext4_lblk_t first_block, stop_block;
3688 struct address_space *mapping = inode->i_mapping;
a87dd18c 3689 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3690 handle_t *handle;
3691 unsigned int credits;
3692 int ret = 0;
3693
a4bb6b64 3694 if (!S_ISREG(inode->i_mode))
73355192 3695 return -EOPNOTSUPP;
a4bb6b64 3696
b8a86845 3697 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3698
26a4c0c6
TT
3699 /*
3700 * Write out all dirty pages to avoid race conditions
3701 * Then release them.
3702 */
3703 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3704 ret = filemap_write_and_wait_range(mapping, offset,
3705 offset + length - 1);
3706 if (ret)
3707 return ret;
3708 }
3709
5955102c 3710 inode_lock(inode);
9ef06cec 3711
26a4c0c6
TT
3712 /* No need to punch hole beyond i_size */
3713 if (offset >= inode->i_size)
3714 goto out_mutex;
3715
3716 /*
3717 * If the hole extends beyond i_size, set the hole
3718 * to end after the page that contains i_size
3719 */
3720 if (offset + length > inode->i_size) {
3721 length = inode->i_size +
3722 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3723 offset;
3724 }
3725
a361293f
JK
3726 if (offset & (sb->s_blocksize - 1) ||
3727 (offset + length) & (sb->s_blocksize - 1)) {
3728 /*
3729 * Attach jinode to inode for jbd2 if we do any zeroing of
3730 * partial block
3731 */
3732 ret = ext4_inode_attach_jinode(inode);
3733 if (ret < 0)
3734 goto out_mutex;
3735
3736 }
3737
ea3d7209
JK
3738 /* Wait all existing dio workers, newcomers will block on i_mutex */
3739 ext4_inode_block_unlocked_dio(inode);
3740 inode_dio_wait(inode);
3741
3742 /*
3743 * Prevent page faults from reinstantiating pages we have released from
3744 * page cache.
3745 */
3746 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
3747 first_block_offset = round_up(offset, sb->s_blocksize);
3748 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3749
a87dd18c 3750 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
3751 if (last_block_offset > first_block_offset) {
3752 ret = ext4_update_disksize_before_punch(inode, offset, length);
3753 if (ret)
3754 goto out_dio;
a87dd18c
LC
3755 truncate_pagecache_range(inode, first_block_offset,
3756 last_block_offset);
01127848 3757 }
26a4c0c6
TT
3758
3759 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760 credits = ext4_writepage_trans_blocks(inode);
3761 else
3762 credits = ext4_blocks_for_truncate(inode);
3763 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3764 if (IS_ERR(handle)) {
3765 ret = PTR_ERR(handle);
3766 ext4_std_error(sb, ret);
3767 goto out_dio;
3768 }
3769
a87dd18c
LC
3770 ret = ext4_zero_partial_blocks(handle, inode, offset,
3771 length);
3772 if (ret)
3773 goto out_stop;
26a4c0c6
TT
3774
3775 first_block = (offset + sb->s_blocksize - 1) >>
3776 EXT4_BLOCK_SIZE_BITS(sb);
3777 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3778
3779 /* If there are no blocks to remove, return now */
3780 if (first_block >= stop_block)
3781 goto out_stop;
3782
3783 down_write(&EXT4_I(inode)->i_data_sem);
3784 ext4_discard_preallocations(inode);
3785
3786 ret = ext4_es_remove_extent(inode, first_block,
3787 stop_block - first_block);
3788 if (ret) {
3789 up_write(&EXT4_I(inode)->i_data_sem);
3790 goto out_stop;
3791 }
3792
3793 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3794 ret = ext4_ext_remove_space(inode, first_block,
3795 stop_block - 1);
3796 else
4f579ae7 3797 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3798 stop_block);
3799
819c4920 3800 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3801 if (IS_SYNC(inode))
3802 ext4_handle_sync(handle);
e251f9bc 3803
26a4c0c6
TT
3804 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3805 ext4_mark_inode_dirty(handle, inode);
3806out_stop:
3807 ext4_journal_stop(handle);
3808out_dio:
ea3d7209 3809 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
3810 ext4_inode_resume_unlocked_dio(inode);
3811out_mutex:
5955102c 3812 inode_unlock(inode);
26a4c0c6 3813 return ret;
a4bb6b64
AH
3814}
3815
a361293f
JK
3816int ext4_inode_attach_jinode(struct inode *inode)
3817{
3818 struct ext4_inode_info *ei = EXT4_I(inode);
3819 struct jbd2_inode *jinode;
3820
3821 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3822 return 0;
3823
3824 jinode = jbd2_alloc_inode(GFP_KERNEL);
3825 spin_lock(&inode->i_lock);
3826 if (!ei->jinode) {
3827 if (!jinode) {
3828 spin_unlock(&inode->i_lock);
3829 return -ENOMEM;
3830 }
3831 ei->jinode = jinode;
3832 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3833 jinode = NULL;
3834 }
3835 spin_unlock(&inode->i_lock);
3836 if (unlikely(jinode != NULL))
3837 jbd2_free_inode(jinode);
3838 return 0;
3839}
3840
ac27a0ec 3841/*
617ba13b 3842 * ext4_truncate()
ac27a0ec 3843 *
617ba13b
MC
3844 * We block out ext4_get_block() block instantiations across the entire
3845 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3846 * simultaneously on behalf of the same inode.
3847 *
42b2aa86 3848 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3849 * is one core, guiding principle: the file's tree must always be consistent on
3850 * disk. We must be able to restart the truncate after a crash.
3851 *
3852 * The file's tree may be transiently inconsistent in memory (although it
3853 * probably isn't), but whenever we close off and commit a journal transaction,
3854 * the contents of (the filesystem + the journal) must be consistent and
3855 * restartable. It's pretty simple, really: bottom up, right to left (although
3856 * left-to-right works OK too).
3857 *
3858 * Note that at recovery time, journal replay occurs *before* the restart of
3859 * truncate against the orphan inode list.
3860 *
3861 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3862 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3863 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3864 * ext4_truncate() to have another go. So there will be instantiated blocks
3865 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3866 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3867 * ext4_truncate() run will find them and release them.
ac27a0ec 3868 */
617ba13b 3869void ext4_truncate(struct inode *inode)
ac27a0ec 3870{
819c4920
TT
3871 struct ext4_inode_info *ei = EXT4_I(inode);
3872 unsigned int credits;
3873 handle_t *handle;
3874 struct address_space *mapping = inode->i_mapping;
819c4920 3875
19b5ef61
TT
3876 /*
3877 * There is a possibility that we're either freeing the inode
e04027e8 3878 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3879 * have i_mutex locked because it's not necessary.
3880 */
3881 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 3882 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
3883 trace_ext4_truncate_enter(inode);
3884
91ef4caf 3885 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3886 return;
3887
12e9b892 3888 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3889
5534fb5b 3890 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3891 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3892
aef1c851
TM
3893 if (ext4_has_inline_data(inode)) {
3894 int has_inline = 1;
3895
3896 ext4_inline_data_truncate(inode, &has_inline);
3897 if (has_inline)
3898 return;
3899 }
3900
a361293f
JK
3901 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3902 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3903 if (ext4_inode_attach_jinode(inode) < 0)
3904 return;
3905 }
3906
819c4920
TT
3907 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3908 credits = ext4_writepage_trans_blocks(inode);
3909 else
3910 credits = ext4_blocks_for_truncate(inode);
3911
3912 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3913 if (IS_ERR(handle)) {
3914 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3915 return;
3916 }
3917
eb3544c6
LC
3918 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3919 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3920
3921 /*
3922 * We add the inode to the orphan list, so that if this
3923 * truncate spans multiple transactions, and we crash, we will
3924 * resume the truncate when the filesystem recovers. It also
3925 * marks the inode dirty, to catch the new size.
3926 *
3927 * Implication: the file must always be in a sane, consistent
3928 * truncatable state while each transaction commits.
3929 */
3930 if (ext4_orphan_add(handle, inode))
3931 goto out_stop;
3932
3933 down_write(&EXT4_I(inode)->i_data_sem);
3934
3935 ext4_discard_preallocations(inode);
3936
ff9893dc 3937 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3938 ext4_ext_truncate(handle, inode);
ff9893dc 3939 else
819c4920
TT
3940 ext4_ind_truncate(handle, inode);
3941
3942 up_write(&ei->i_data_sem);
3943
3944 if (IS_SYNC(inode))
3945 ext4_handle_sync(handle);
3946
3947out_stop:
3948 /*
3949 * If this was a simple ftruncate() and the file will remain alive,
3950 * then we need to clear up the orphan record which we created above.
3951 * However, if this was a real unlink then we were called by
58d86a50 3952 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3953 * orphan info for us.
3954 */
3955 if (inode->i_nlink)
3956 ext4_orphan_del(handle, inode);
3957
3958 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3959 ext4_mark_inode_dirty(handle, inode);
3960 ext4_journal_stop(handle);
ac27a0ec 3961
0562e0ba 3962 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3963}
3964
ac27a0ec 3965/*
617ba13b 3966 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3967 * underlying buffer_head on success. If 'in_mem' is true, we have all
3968 * data in memory that is needed to recreate the on-disk version of this
3969 * inode.
3970 */
617ba13b
MC
3971static int __ext4_get_inode_loc(struct inode *inode,
3972 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3973{
240799cd
TT
3974 struct ext4_group_desc *gdp;
3975 struct buffer_head *bh;
3976 struct super_block *sb = inode->i_sb;
3977 ext4_fsblk_t block;
3978 int inodes_per_block, inode_offset;
3979
3a06d778 3980 iloc->bh = NULL;
240799cd 3981 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 3982 return -EFSCORRUPTED;
ac27a0ec 3983
240799cd
TT
3984 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3985 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3986 if (!gdp)
ac27a0ec
DK
3987 return -EIO;
3988
240799cd
TT
3989 /*
3990 * Figure out the offset within the block group inode table
3991 */
00d09882 3992 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3993 inode_offset = ((inode->i_ino - 1) %
3994 EXT4_INODES_PER_GROUP(sb));
3995 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3996 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3997
3998 bh = sb_getblk(sb, block);
aebf0243 3999 if (unlikely(!bh))
860d21e2 4000 return -ENOMEM;
ac27a0ec
DK
4001 if (!buffer_uptodate(bh)) {
4002 lock_buffer(bh);
9c83a923
HK
4003
4004 /*
4005 * If the buffer has the write error flag, we have failed
4006 * to write out another inode in the same block. In this
4007 * case, we don't have to read the block because we may
4008 * read the old inode data successfully.
4009 */
4010 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4011 set_buffer_uptodate(bh);
4012
ac27a0ec
DK
4013 if (buffer_uptodate(bh)) {
4014 /* someone brought it uptodate while we waited */
4015 unlock_buffer(bh);
4016 goto has_buffer;
4017 }
4018
4019 /*
4020 * If we have all information of the inode in memory and this
4021 * is the only valid inode in the block, we need not read the
4022 * block.
4023 */
4024 if (in_mem) {
4025 struct buffer_head *bitmap_bh;
240799cd 4026 int i, start;
ac27a0ec 4027
240799cd 4028 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4029
240799cd
TT
4030 /* Is the inode bitmap in cache? */
4031 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4032 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4033 goto make_io;
4034
4035 /*
4036 * If the inode bitmap isn't in cache then the
4037 * optimisation may end up performing two reads instead
4038 * of one, so skip it.
4039 */
4040 if (!buffer_uptodate(bitmap_bh)) {
4041 brelse(bitmap_bh);
4042 goto make_io;
4043 }
240799cd 4044 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4045 if (i == inode_offset)
4046 continue;
617ba13b 4047 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4048 break;
4049 }
4050 brelse(bitmap_bh);
240799cd 4051 if (i == start + inodes_per_block) {
ac27a0ec
DK
4052 /* all other inodes are free, so skip I/O */
4053 memset(bh->b_data, 0, bh->b_size);
4054 set_buffer_uptodate(bh);
4055 unlock_buffer(bh);
4056 goto has_buffer;
4057 }
4058 }
4059
4060make_io:
240799cd
TT
4061 /*
4062 * If we need to do any I/O, try to pre-readahead extra
4063 * blocks from the inode table.
4064 */
4065 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4066 ext4_fsblk_t b, end, table;
4067 unsigned num;
0d606e2c 4068 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4069
4070 table = ext4_inode_table(sb, gdp);
b713a5ec 4071 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4072 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4073 if (table > b)
4074 b = table;
0d606e2c 4075 end = b + ra_blks;
240799cd 4076 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4077 if (ext4_has_group_desc_csum(sb))
560671a0 4078 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4079 table += num / inodes_per_block;
4080 if (end > table)
4081 end = table;
4082 while (b <= end)
4083 sb_breadahead(sb, b++);
4084 }
4085
ac27a0ec
DK
4086 /*
4087 * There are other valid inodes in the buffer, this inode
4088 * has in-inode xattrs, or we don't have this inode in memory.
4089 * Read the block from disk.
4090 */
0562e0ba 4091 trace_ext4_load_inode(inode);
ac27a0ec
DK
4092 get_bh(bh);
4093 bh->b_end_io = end_buffer_read_sync;
65299a3b 4094 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4095 wait_on_buffer(bh);
4096 if (!buffer_uptodate(bh)) {
c398eda0
TT
4097 EXT4_ERROR_INODE_BLOCK(inode, block,
4098 "unable to read itable block");
ac27a0ec
DK
4099 brelse(bh);
4100 return -EIO;
4101 }
4102 }
4103has_buffer:
4104 iloc->bh = bh;
4105 return 0;
4106}
4107
617ba13b 4108int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4109{
4110 /* We have all inode data except xattrs in memory here. */
617ba13b 4111 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4112 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4113}
4114
617ba13b 4115void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4116{
617ba13b 4117 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4118 unsigned int new_fl = 0;
ac27a0ec 4119
617ba13b 4120 if (flags & EXT4_SYNC_FL)
00a1a053 4121 new_fl |= S_SYNC;
617ba13b 4122 if (flags & EXT4_APPEND_FL)
00a1a053 4123 new_fl |= S_APPEND;
617ba13b 4124 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4125 new_fl |= S_IMMUTABLE;
617ba13b 4126 if (flags & EXT4_NOATIME_FL)
00a1a053 4127 new_fl |= S_NOATIME;
617ba13b 4128 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4129 new_fl |= S_DIRSYNC;
923ae0ff
RZ
4130 if (test_opt(inode->i_sb, DAX))
4131 new_fl |= S_DAX;
5f16f322 4132 inode_set_flags(inode, new_fl,
923ae0ff 4133 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4134}
4135
ff9ddf7e
JK
4136/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4137void ext4_get_inode_flags(struct ext4_inode_info *ei)
4138{
84a8dce2
DM
4139 unsigned int vfs_fl;
4140 unsigned long old_fl, new_fl;
4141
4142 do {
4143 vfs_fl = ei->vfs_inode.i_flags;
4144 old_fl = ei->i_flags;
4145 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4146 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4147 EXT4_DIRSYNC_FL);
4148 if (vfs_fl & S_SYNC)
4149 new_fl |= EXT4_SYNC_FL;
4150 if (vfs_fl & S_APPEND)
4151 new_fl |= EXT4_APPEND_FL;
4152 if (vfs_fl & S_IMMUTABLE)
4153 new_fl |= EXT4_IMMUTABLE_FL;
4154 if (vfs_fl & S_NOATIME)
4155 new_fl |= EXT4_NOATIME_FL;
4156 if (vfs_fl & S_DIRSYNC)
4157 new_fl |= EXT4_DIRSYNC_FL;
4158 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4159}
de9a55b8 4160
0fc1b451 4161static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4162 struct ext4_inode_info *ei)
0fc1b451
AK
4163{
4164 blkcnt_t i_blocks ;
8180a562
AK
4165 struct inode *inode = &(ei->vfs_inode);
4166 struct super_block *sb = inode->i_sb;
0fc1b451 4167
e2b911c5 4168 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4169 /* we are using combined 48 bit field */
4170 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4171 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4172 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4173 /* i_blocks represent file system block size */
4174 return i_blocks << (inode->i_blkbits - 9);
4175 } else {
4176 return i_blocks;
4177 }
0fc1b451
AK
4178 } else {
4179 return le32_to_cpu(raw_inode->i_blocks_lo);
4180 }
4181}
ff9ddf7e 4182
152a7b0a
TM
4183static inline void ext4_iget_extra_inode(struct inode *inode,
4184 struct ext4_inode *raw_inode,
4185 struct ext4_inode_info *ei)
4186{
4187 __le32 *magic = (void *)raw_inode +
4188 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4189 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4190 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4191 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4192 } else
4193 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4194}
4195
040cb378
LX
4196int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4197{
4198 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4199 return -EOPNOTSUPP;
4200 *projid = EXT4_I(inode)->i_projid;
4201 return 0;
4202}
4203
1d1fe1ee 4204struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4205{
617ba13b
MC
4206 struct ext4_iloc iloc;
4207 struct ext4_inode *raw_inode;
1d1fe1ee 4208 struct ext4_inode_info *ei;
1d1fe1ee 4209 struct inode *inode;
b436b9be 4210 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4211 long ret;
ac27a0ec 4212 int block;
08cefc7a
EB
4213 uid_t i_uid;
4214 gid_t i_gid;
040cb378 4215 projid_t i_projid;
ac27a0ec 4216
1d1fe1ee
DH
4217 inode = iget_locked(sb, ino);
4218 if (!inode)
4219 return ERR_PTR(-ENOMEM);
4220 if (!(inode->i_state & I_NEW))
4221 return inode;
4222
4223 ei = EXT4_I(inode);
7dc57615 4224 iloc.bh = NULL;
ac27a0ec 4225
1d1fe1ee
DH
4226 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4227 if (ret < 0)
ac27a0ec 4228 goto bad_inode;
617ba13b 4229 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4230
4231 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4232 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4233 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4234 EXT4_INODE_SIZE(inode->i_sb)) {
4235 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4236 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4237 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4238 ret = -EFSCORRUPTED;
814525f4
DW
4239 goto bad_inode;
4240 }
4241 } else
4242 ei->i_extra_isize = 0;
4243
4244 /* Precompute checksum seed for inode metadata */
9aa5d32b 4245 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4246 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4247 __u32 csum;
4248 __le32 inum = cpu_to_le32(inode->i_ino);
4249 __le32 gen = raw_inode->i_generation;
4250 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4251 sizeof(inum));
4252 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4253 sizeof(gen));
4254 }
4255
4256 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4257 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4258 ret = -EFSBADCRC;
814525f4
DW
4259 goto bad_inode;
4260 }
4261
ac27a0ec 4262 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4263 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4264 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
040cb378
LX
4265 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4266 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4267 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4268 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4269 else
4270 i_projid = EXT4_DEF_PROJID;
4271
af5bc92d 4272 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4273 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4274 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4275 }
08cefc7a
EB
4276 i_uid_write(inode, i_uid);
4277 i_gid_write(inode, i_gid);
040cb378 4278 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4279 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4280
353eb83c 4281 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4282 ei->i_inline_off = 0;
ac27a0ec
DK
4283 ei->i_dir_start_lookup = 0;
4284 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4285 /* We now have enough fields to check if the inode was active or not.
4286 * This is needed because nfsd might try to access dead inodes
4287 * the test is that same one that e2fsck uses
4288 * NeilBrown 1999oct15
4289 */
4290 if (inode->i_nlink == 0) {
393d1d1d
DTB
4291 if ((inode->i_mode == 0 ||
4292 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4293 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4294 /* this inode is deleted */
1d1fe1ee 4295 ret = -ESTALE;
ac27a0ec
DK
4296 goto bad_inode;
4297 }
4298 /* The only unlinked inodes we let through here have
4299 * valid i_mode and are being read by the orphan
4300 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4301 * the process of deleting those.
4302 * OR it is the EXT4_BOOT_LOADER_INO which is
4303 * not initialized on a new filesystem. */
ac27a0ec 4304 }
ac27a0ec 4305 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4306 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4307 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4308 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4309 ei->i_file_acl |=
4310 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4311 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4312 ei->i_disksize = inode->i_size;
a9e7f447
DM
4313#ifdef CONFIG_QUOTA
4314 ei->i_reserved_quota = 0;
4315#endif
ac27a0ec
DK
4316 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4317 ei->i_block_group = iloc.block_group;
a4912123 4318 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4319 /*
4320 * NOTE! The in-memory inode i_data array is in little-endian order
4321 * even on big-endian machines: we do NOT byteswap the block numbers!
4322 */
617ba13b 4323 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4324 ei->i_data[block] = raw_inode->i_block[block];
4325 INIT_LIST_HEAD(&ei->i_orphan);
4326
b436b9be
JK
4327 /*
4328 * Set transaction id's of transactions that have to be committed
4329 * to finish f[data]sync. We set them to currently running transaction
4330 * as we cannot be sure that the inode or some of its metadata isn't
4331 * part of the transaction - the inode could have been reclaimed and
4332 * now it is reread from disk.
4333 */
4334 if (journal) {
4335 transaction_t *transaction;
4336 tid_t tid;
4337
a931da6a 4338 read_lock(&journal->j_state_lock);
b436b9be
JK
4339 if (journal->j_running_transaction)
4340 transaction = journal->j_running_transaction;
4341 else
4342 transaction = journal->j_committing_transaction;
4343 if (transaction)
4344 tid = transaction->t_tid;
4345 else
4346 tid = journal->j_commit_sequence;
a931da6a 4347 read_unlock(&journal->j_state_lock);
b436b9be
JK
4348 ei->i_sync_tid = tid;
4349 ei->i_datasync_tid = tid;
4350 }
4351
0040d987 4352 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4353 if (ei->i_extra_isize == 0) {
4354 /* The extra space is currently unused. Use it. */
617ba13b
MC
4355 ei->i_extra_isize = sizeof(struct ext4_inode) -
4356 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4357 } else {
152a7b0a 4358 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4359 }
814525f4 4360 }
ac27a0ec 4361
ef7f3835
KS
4362 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4363 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4364 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4365 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4366
ed3654eb 4367 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4368 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4369 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4370 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4371 inode->i_version |=
4372 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4373 }
25ec56b5
JNC
4374 }
4375
c4b5a614 4376 ret = 0;
485c26ec 4377 if (ei->i_file_acl &&
1032988c 4378 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4379 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4380 ei->i_file_acl);
6a797d27 4381 ret = -EFSCORRUPTED;
485c26ec 4382 goto bad_inode;
f19d5870
TM
4383 } else if (!ext4_has_inline_data(inode)) {
4384 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4385 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4386 (S_ISLNK(inode->i_mode) &&
4387 !ext4_inode_is_fast_symlink(inode))))
4388 /* Validate extent which is part of inode */
4389 ret = ext4_ext_check_inode(inode);
4390 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4391 (S_ISLNK(inode->i_mode) &&
4392 !ext4_inode_is_fast_symlink(inode))) {
4393 /* Validate block references which are part of inode */
4394 ret = ext4_ind_check_inode(inode);
4395 }
fe2c8191 4396 }
567f3e9a 4397 if (ret)
de9a55b8 4398 goto bad_inode;
7a262f7c 4399
ac27a0ec 4400 if (S_ISREG(inode->i_mode)) {
617ba13b 4401 inode->i_op = &ext4_file_inode_operations;
be64f884 4402 inode->i_fop = &ext4_file_operations;
617ba13b 4403 ext4_set_aops(inode);
ac27a0ec 4404 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4405 inode->i_op = &ext4_dir_inode_operations;
4406 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4407 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4408 if (ext4_encrypted_inode(inode)) {
4409 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4410 ext4_set_aops(inode);
4411 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4412 inode->i_link = (char *)ei->i_data;
617ba13b 4413 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4414 nd_terminate_link(ei->i_data, inode->i_size,
4415 sizeof(ei->i_data) - 1);
4416 } else {
617ba13b
MC
4417 inode->i_op = &ext4_symlink_inode_operations;
4418 ext4_set_aops(inode);
ac27a0ec 4419 }
21fc61c7 4420 inode_nohighmem(inode);
563bdd61
TT
4421 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4422 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4423 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4424 if (raw_inode->i_block[0])
4425 init_special_inode(inode, inode->i_mode,
4426 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4427 else
4428 init_special_inode(inode, inode->i_mode,
4429 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4430 } else if (ino == EXT4_BOOT_LOADER_INO) {
4431 make_bad_inode(inode);
563bdd61 4432 } else {
6a797d27 4433 ret = -EFSCORRUPTED;
24676da4 4434 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4435 goto bad_inode;
ac27a0ec 4436 }
af5bc92d 4437 brelse(iloc.bh);
617ba13b 4438 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4439 unlock_new_inode(inode);
4440 return inode;
ac27a0ec
DK
4441
4442bad_inode:
567f3e9a 4443 brelse(iloc.bh);
1d1fe1ee
DH
4444 iget_failed(inode);
4445 return ERR_PTR(ret);
ac27a0ec
DK
4446}
4447
f4bb2981
TT
4448struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4449{
4450 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4451 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4452 return ext4_iget(sb, ino);
4453}
4454
0fc1b451
AK
4455static int ext4_inode_blocks_set(handle_t *handle,
4456 struct ext4_inode *raw_inode,
4457 struct ext4_inode_info *ei)
4458{
4459 struct inode *inode = &(ei->vfs_inode);
4460 u64 i_blocks = inode->i_blocks;
4461 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4462
4463 if (i_blocks <= ~0U) {
4464 /*
4907cb7b 4465 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4466 * as multiple of 512 bytes
4467 */
8180a562 4468 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4469 raw_inode->i_blocks_high = 0;
84a8dce2 4470 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4471 return 0;
4472 }
e2b911c5 4473 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4474 return -EFBIG;
4475
4476 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4477 /*
4478 * i_blocks can be represented in a 48 bit variable
4479 * as multiple of 512 bytes
4480 */
8180a562 4481 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4482 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4483 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4484 } else {
84a8dce2 4485 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4486 /* i_block is stored in file system block size */
4487 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4488 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4489 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4490 }
f287a1a5 4491 return 0;
0fc1b451
AK
4492}
4493
a26f4992
TT
4494struct other_inode {
4495 unsigned long orig_ino;
4496 struct ext4_inode *raw_inode;
4497};
4498
4499static int other_inode_match(struct inode * inode, unsigned long ino,
4500 void *data)
4501{
4502 struct other_inode *oi = (struct other_inode *) data;
4503
4504 if ((inode->i_ino != ino) ||
4505 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4506 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4507 ((inode->i_state & I_DIRTY_TIME) == 0))
4508 return 0;
4509 spin_lock(&inode->i_lock);
4510 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4511 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4512 (inode->i_state & I_DIRTY_TIME)) {
4513 struct ext4_inode_info *ei = EXT4_I(inode);
4514
4515 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4516 spin_unlock(&inode->i_lock);
4517
4518 spin_lock(&ei->i_raw_lock);
4519 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4520 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4521 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4522 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4523 spin_unlock(&ei->i_raw_lock);
4524 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4525 return -1;
4526 }
4527 spin_unlock(&inode->i_lock);
4528 return -1;
4529}
4530
4531/*
4532 * Opportunistically update the other time fields for other inodes in
4533 * the same inode table block.
4534 */
4535static void ext4_update_other_inodes_time(struct super_block *sb,
4536 unsigned long orig_ino, char *buf)
4537{
4538 struct other_inode oi;
4539 unsigned long ino;
4540 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4541 int inode_size = EXT4_INODE_SIZE(sb);
4542
4543 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4544 /*
4545 * Calculate the first inode in the inode table block. Inode
4546 * numbers are one-based. That is, the first inode in a block
4547 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4548 */
4549 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4550 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4551 if (ino == orig_ino)
4552 continue;
4553 oi.raw_inode = (struct ext4_inode *) buf;
4554 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4555 }
4556}
4557
ac27a0ec
DK
4558/*
4559 * Post the struct inode info into an on-disk inode location in the
4560 * buffer-cache. This gobbles the caller's reference to the
4561 * buffer_head in the inode location struct.
4562 *
4563 * The caller must have write access to iloc->bh.
4564 */
617ba13b 4565static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4566 struct inode *inode,
830156c7 4567 struct ext4_iloc *iloc)
ac27a0ec 4568{
617ba13b
MC
4569 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4570 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4571 struct buffer_head *bh = iloc->bh;
202ee5df 4572 struct super_block *sb = inode->i_sb;
ac27a0ec 4573 int err = 0, rc, block;
202ee5df 4574 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4575 uid_t i_uid;
4576 gid_t i_gid;
040cb378 4577 projid_t i_projid;
ac27a0ec 4578
202ee5df
TT
4579 spin_lock(&ei->i_raw_lock);
4580
4581 /* For fields not tracked in the in-memory inode,
ac27a0ec 4582 * initialise them to zero for new inodes. */
19f5fb7a 4583 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4584 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4585
ff9ddf7e 4586 ext4_get_inode_flags(ei);
ac27a0ec 4587 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4588 i_uid = i_uid_read(inode);
4589 i_gid = i_gid_read(inode);
040cb378 4590 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4591 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4592 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4593 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4594/*
4595 * Fix up interoperability with old kernels. Otherwise, old inodes get
4596 * re-used with the upper 16 bits of the uid/gid intact
4597 */
af5bc92d 4598 if (!ei->i_dtime) {
ac27a0ec 4599 raw_inode->i_uid_high =
08cefc7a 4600 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4601 raw_inode->i_gid_high =
08cefc7a 4602 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4603 } else {
4604 raw_inode->i_uid_high = 0;
4605 raw_inode->i_gid_high = 0;
4606 }
4607 } else {
08cefc7a
EB
4608 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4609 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4610 raw_inode->i_uid_high = 0;
4611 raw_inode->i_gid_high = 0;
4612 }
4613 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4614
4615 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4616 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4617 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4618 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4619
bce92d56
LX
4620 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4621 if (err) {
202ee5df 4622 spin_unlock(&ei->i_raw_lock);
0fc1b451 4623 goto out_brelse;
202ee5df 4624 }
ac27a0ec 4625 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4626 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4627 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4628 raw_inode->i_file_acl_high =
4629 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4630 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4631 if (ei->i_disksize != ext4_isize(raw_inode)) {
4632 ext4_isize_set(raw_inode, ei->i_disksize);
4633 need_datasync = 1;
4634 }
a48380f7 4635 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4636 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4637 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4638 cpu_to_le32(EXT4_GOOD_OLD_REV))
4639 set_large_file = 1;
ac27a0ec
DK
4640 }
4641 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4642 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4643 if (old_valid_dev(inode->i_rdev)) {
4644 raw_inode->i_block[0] =
4645 cpu_to_le32(old_encode_dev(inode->i_rdev));
4646 raw_inode->i_block[1] = 0;
4647 } else {
4648 raw_inode->i_block[0] = 0;
4649 raw_inode->i_block[1] =
4650 cpu_to_le32(new_encode_dev(inode->i_rdev));
4651 raw_inode->i_block[2] = 0;
4652 }
f19d5870 4653 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4654 for (block = 0; block < EXT4_N_BLOCKS; block++)
4655 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4656 }
ac27a0ec 4657
ed3654eb 4658 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4659 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4660 if (ei->i_extra_isize) {
4661 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4662 raw_inode->i_version_hi =
4663 cpu_to_le32(inode->i_version >> 32);
4664 raw_inode->i_extra_isize =
4665 cpu_to_le16(ei->i_extra_isize);
4666 }
25ec56b5 4667 }
040cb378
LX
4668
4669 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4670 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4671 i_projid != EXT4_DEF_PROJID);
4672
4673 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4674 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4675 raw_inode->i_projid = cpu_to_le32(i_projid);
4676
814525f4 4677 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4678 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4679 if (inode->i_sb->s_flags & MS_LAZYTIME)
4680 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4681 bh->b_data);
202ee5df 4682
830156c7 4683 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4684 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4685 if (!err)
4686 err = rc;
19f5fb7a 4687 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4688 if (set_large_file) {
5d601255 4689 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4690 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4691 if (err)
4692 goto out_brelse;
4693 ext4_update_dynamic_rev(sb);
e2b911c5 4694 ext4_set_feature_large_file(sb);
202ee5df
TT
4695 ext4_handle_sync(handle);
4696 err = ext4_handle_dirty_super(handle, sb);
4697 }
b71fc079 4698 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4699out_brelse:
af5bc92d 4700 brelse(bh);
617ba13b 4701 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4702 return err;
4703}
4704
4705/*
617ba13b 4706 * ext4_write_inode()
ac27a0ec
DK
4707 *
4708 * We are called from a few places:
4709 *
87f7e416 4710 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4711 * Here, there will be no transaction running. We wait for any running
4907cb7b 4712 * transaction to commit.
ac27a0ec 4713 *
87f7e416
TT
4714 * - Within flush work (sys_sync(), kupdate and such).
4715 * We wait on commit, if told to.
ac27a0ec 4716 *
87f7e416
TT
4717 * - Within iput_final() -> write_inode_now()
4718 * We wait on commit, if told to.
ac27a0ec
DK
4719 *
4720 * In all cases it is actually safe for us to return without doing anything,
4721 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4722 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4723 * writeback.
ac27a0ec
DK
4724 *
4725 * Note that we are absolutely dependent upon all inode dirtiers doing the
4726 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4727 * which we are interested.
4728 *
4729 * It would be a bug for them to not do this. The code:
4730 *
4731 * mark_inode_dirty(inode)
4732 * stuff();
4733 * inode->i_size = expr;
4734 *
87f7e416
TT
4735 * is in error because write_inode() could occur while `stuff()' is running,
4736 * and the new i_size will be lost. Plus the inode will no longer be on the
4737 * superblock's dirty inode list.
ac27a0ec 4738 */
a9185b41 4739int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4740{
91ac6f43
FM
4741 int err;
4742
87f7e416 4743 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4744 return 0;
4745
91ac6f43
FM
4746 if (EXT4_SB(inode->i_sb)->s_journal) {
4747 if (ext4_journal_current_handle()) {
4748 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4749 dump_stack();
4750 return -EIO;
4751 }
ac27a0ec 4752
10542c22
JK
4753 /*
4754 * No need to force transaction in WB_SYNC_NONE mode. Also
4755 * ext4_sync_fs() will force the commit after everything is
4756 * written.
4757 */
4758 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4759 return 0;
4760
4761 err = ext4_force_commit(inode->i_sb);
4762 } else {
4763 struct ext4_iloc iloc;
ac27a0ec 4764
8b472d73 4765 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4766 if (err)
4767 return err;
10542c22
JK
4768 /*
4769 * sync(2) will flush the whole buffer cache. No need to do
4770 * it here separately for each inode.
4771 */
4772 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4773 sync_dirty_buffer(iloc.bh);
4774 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4775 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4776 "IO error syncing inode");
830156c7
FM
4777 err = -EIO;
4778 }
fd2dd9fb 4779 brelse(iloc.bh);
91ac6f43
FM
4780 }
4781 return err;
ac27a0ec
DK
4782}
4783
53e87268
JK
4784/*
4785 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4786 * buffers that are attached to a page stradding i_size and are undergoing
4787 * commit. In that case we have to wait for commit to finish and try again.
4788 */
4789static void ext4_wait_for_tail_page_commit(struct inode *inode)
4790{
4791 struct page *page;
4792 unsigned offset;
4793 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4794 tid_t commit_tid = 0;
4795 int ret;
4796
4797 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4798 /*
4799 * All buffers in the last page remain valid? Then there's nothing to
4800 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4801 * blocksize case
4802 */
4803 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4804 return;
4805 while (1) {
4806 page = find_lock_page(inode->i_mapping,
4807 inode->i_size >> PAGE_CACHE_SHIFT);
4808 if (!page)
4809 return;
ca99fdd2
LC
4810 ret = __ext4_journalled_invalidatepage(page, offset,
4811 PAGE_CACHE_SIZE - offset);
53e87268
JK
4812 unlock_page(page);
4813 page_cache_release(page);
4814 if (ret != -EBUSY)
4815 return;
4816 commit_tid = 0;
4817 read_lock(&journal->j_state_lock);
4818 if (journal->j_committing_transaction)
4819 commit_tid = journal->j_committing_transaction->t_tid;
4820 read_unlock(&journal->j_state_lock);
4821 if (commit_tid)
4822 jbd2_log_wait_commit(journal, commit_tid);
4823 }
4824}
4825
ac27a0ec 4826/*
617ba13b 4827 * ext4_setattr()
ac27a0ec
DK
4828 *
4829 * Called from notify_change.
4830 *
4831 * We want to trap VFS attempts to truncate the file as soon as
4832 * possible. In particular, we want to make sure that when the VFS
4833 * shrinks i_size, we put the inode on the orphan list and modify
4834 * i_disksize immediately, so that during the subsequent flushing of
4835 * dirty pages and freeing of disk blocks, we can guarantee that any
4836 * commit will leave the blocks being flushed in an unused state on
4837 * disk. (On recovery, the inode will get truncated and the blocks will
4838 * be freed, so we have a strong guarantee that no future commit will
4839 * leave these blocks visible to the user.)
4840 *
678aaf48
JK
4841 * Another thing we have to assure is that if we are in ordered mode
4842 * and inode is still attached to the committing transaction, we must
4843 * we start writeout of all the dirty pages which are being truncated.
4844 * This way we are sure that all the data written in the previous
4845 * transaction are already on disk (truncate waits for pages under
4846 * writeback).
4847 *
4848 * Called with inode->i_mutex down.
ac27a0ec 4849 */
617ba13b 4850int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4851{
2b0143b5 4852 struct inode *inode = d_inode(dentry);
ac27a0ec 4853 int error, rc = 0;
3d287de3 4854 int orphan = 0;
ac27a0ec
DK
4855 const unsigned int ia_valid = attr->ia_valid;
4856
4857 error = inode_change_ok(inode, attr);
4858 if (error)
4859 return error;
4860
a7cdadee
JK
4861 if (is_quota_modification(inode, attr)) {
4862 error = dquot_initialize(inode);
4863 if (error)
4864 return error;
4865 }
08cefc7a
EB
4866 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4867 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4868 handle_t *handle;
4869
4870 /* (user+group)*(old+new) structure, inode write (sb,
4871 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4872 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4873 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4874 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4875 if (IS_ERR(handle)) {
4876 error = PTR_ERR(handle);
4877 goto err_out;
4878 }
b43fa828 4879 error = dquot_transfer(inode, attr);
ac27a0ec 4880 if (error) {
617ba13b 4881 ext4_journal_stop(handle);
ac27a0ec
DK
4882 return error;
4883 }
4884 /* Update corresponding info in inode so that everything is in
4885 * one transaction */
4886 if (attr->ia_valid & ATTR_UID)
4887 inode->i_uid = attr->ia_uid;
4888 if (attr->ia_valid & ATTR_GID)
4889 inode->i_gid = attr->ia_gid;
617ba13b
MC
4890 error = ext4_mark_inode_dirty(handle, inode);
4891 ext4_journal_stop(handle);
ac27a0ec
DK
4892 }
4893
3da40c7b 4894 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4895 handle_t *handle;
3da40c7b
JB
4896 loff_t oldsize = inode->i_size;
4897 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4898
12e9b892 4899 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4900 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4901
0c095c7f
TT
4902 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4903 return -EFBIG;
e2b46574 4904 }
3da40c7b
JB
4905 if (!S_ISREG(inode->i_mode))
4906 return -EINVAL;
dff6efc3
CH
4907
4908 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4909 inode_inc_iversion(inode);
4910
3da40c7b 4911 if (ext4_should_order_data(inode) &&
5208386c 4912 (attr->ia_size < inode->i_size)) {
3da40c7b 4913 error = ext4_begin_ordered_truncate(inode,
678aaf48 4914 attr->ia_size);
3da40c7b
JB
4915 if (error)
4916 goto err_out;
4917 }
4918 if (attr->ia_size != inode->i_size) {
5208386c
JK
4919 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4920 if (IS_ERR(handle)) {
4921 error = PTR_ERR(handle);
4922 goto err_out;
4923 }
3da40c7b 4924 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
4925 error = ext4_orphan_add(handle, inode);
4926 orphan = 1;
4927 }
911af577
EG
4928 /*
4929 * Update c/mtime on truncate up, ext4_truncate() will
4930 * update c/mtime in shrink case below
4931 */
4932 if (!shrink) {
4933 inode->i_mtime = ext4_current_time(inode);
4934 inode->i_ctime = inode->i_mtime;
4935 }
90e775b7 4936 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4937 EXT4_I(inode)->i_disksize = attr->ia_size;
4938 rc = ext4_mark_inode_dirty(handle, inode);
4939 if (!error)
4940 error = rc;
90e775b7
JK
4941 /*
4942 * We have to update i_size under i_data_sem together
4943 * with i_disksize to avoid races with writeback code
4944 * running ext4_wb_update_i_disksize().
4945 */
4946 if (!error)
4947 i_size_write(inode, attr->ia_size);
4948 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4949 ext4_journal_stop(handle);
4950 if (error) {
3da40c7b
JB
4951 if (orphan)
4952 ext4_orphan_del(NULL, inode);
678aaf48
JK
4953 goto err_out;
4954 }
d6320cbf 4955 }
3da40c7b
JB
4956 if (!shrink)
4957 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 4958
5208386c
JK
4959 /*
4960 * Blocks are going to be removed from the inode. Wait
4961 * for dio in flight. Temporarily disable
4962 * dioread_nolock to prevent livelock.
4963 */
4964 if (orphan) {
4965 if (!ext4_should_journal_data(inode)) {
4966 ext4_inode_block_unlocked_dio(inode);
4967 inode_dio_wait(inode);
4968 ext4_inode_resume_unlocked_dio(inode);
4969 } else
4970 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4971 }
ea3d7209 4972 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
4973 /*
4974 * Truncate pagecache after we've waited for commit
4975 * in data=journal mode to make pages freeable.
4976 */
923ae0ff 4977 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
4978 if (shrink)
4979 ext4_truncate(inode);
ea3d7209 4980 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 4981 }
ac27a0ec 4982
1025774c
CH
4983 if (!rc) {
4984 setattr_copy(inode, attr);
4985 mark_inode_dirty(inode);
4986 }
4987
4988 /*
4989 * If the call to ext4_truncate failed to get a transaction handle at
4990 * all, we need to clean up the in-core orphan list manually.
4991 */
3d287de3 4992 if (orphan && inode->i_nlink)
617ba13b 4993 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4994
4995 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4996 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4997
4998err_out:
617ba13b 4999 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5000 if (!error)
5001 error = rc;
5002 return error;
5003}
5004
3e3398a0
MC
5005int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5006 struct kstat *stat)
5007{
5008 struct inode *inode;
8af8eecc 5009 unsigned long long delalloc_blocks;
3e3398a0 5010
2b0143b5 5011 inode = d_inode(dentry);
3e3398a0
MC
5012 generic_fillattr(inode, stat);
5013
9206c561
AD
5014 /*
5015 * If there is inline data in the inode, the inode will normally not
5016 * have data blocks allocated (it may have an external xattr block).
5017 * Report at least one sector for such files, so tools like tar, rsync,
5018 * others doen't incorrectly think the file is completely sparse.
5019 */
5020 if (unlikely(ext4_has_inline_data(inode)))
5021 stat->blocks += (stat->size + 511) >> 9;
5022
3e3398a0
MC
5023 /*
5024 * We can't update i_blocks if the block allocation is delayed
5025 * otherwise in the case of system crash before the real block
5026 * allocation is done, we will have i_blocks inconsistent with
5027 * on-disk file blocks.
5028 * We always keep i_blocks updated together with real
5029 * allocation. But to not confuse with user, stat
5030 * will return the blocks that include the delayed allocation
5031 * blocks for this file.
5032 */
96607551 5033 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5034 EXT4_I(inode)->i_reserved_data_blocks);
5035 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5036 return 0;
5037}
ac27a0ec 5038
fffb2739
JK
5039static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5040 int pextents)
a02908f1 5041{
12e9b892 5042 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5043 return ext4_ind_trans_blocks(inode, lblocks);
5044 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5045}
ac51d837 5046
ac27a0ec 5047/*
a02908f1
MC
5048 * Account for index blocks, block groups bitmaps and block group
5049 * descriptor blocks if modify datablocks and index blocks
5050 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5051 *
a02908f1 5052 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5053 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5054 * they could still across block group boundary.
ac27a0ec 5055 *
a02908f1
MC
5056 * Also account for superblock, inode, quota and xattr blocks
5057 */
fffb2739
JK
5058static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5059 int pextents)
a02908f1 5060{
8df9675f
TT
5061 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5062 int gdpblocks;
a02908f1
MC
5063 int idxblocks;
5064 int ret = 0;
5065
5066 /*
fffb2739
JK
5067 * How many index blocks need to touch to map @lblocks logical blocks
5068 * to @pextents physical extents?
a02908f1 5069 */
fffb2739 5070 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5071
5072 ret = idxblocks;
5073
5074 /*
5075 * Now let's see how many group bitmaps and group descriptors need
5076 * to account
5077 */
fffb2739 5078 groups = idxblocks + pextents;
a02908f1 5079 gdpblocks = groups;
8df9675f
TT
5080 if (groups > ngroups)
5081 groups = ngroups;
a02908f1
MC
5082 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5083 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5084
5085 /* bitmaps and block group descriptor blocks */
5086 ret += groups + gdpblocks;
5087
5088 /* Blocks for super block, inode, quota and xattr blocks */
5089 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5090
5091 return ret;
5092}
5093
5094/*
25985edc 5095 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5096 * the modification of a single pages into a single transaction,
5097 * which may include multiple chunks of block allocations.
ac27a0ec 5098 *
525f4ed8 5099 * This could be called via ext4_write_begin()
ac27a0ec 5100 *
525f4ed8 5101 * We need to consider the worse case, when
a02908f1 5102 * one new block per extent.
ac27a0ec 5103 */
a86c6181 5104int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5105{
617ba13b 5106 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5107 int ret;
5108
fffb2739 5109 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5110
a02908f1 5111 /* Account for data blocks for journalled mode */
617ba13b 5112 if (ext4_should_journal_data(inode))
a02908f1 5113 ret += bpp;
ac27a0ec
DK
5114 return ret;
5115}
f3bd1f3f
MC
5116
5117/*
5118 * Calculate the journal credits for a chunk of data modification.
5119 *
5120 * This is called from DIO, fallocate or whoever calling
79e83036 5121 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5122 *
5123 * journal buffers for data blocks are not included here, as DIO
5124 * and fallocate do no need to journal data buffers.
5125 */
5126int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5127{
5128 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5129}
5130
ac27a0ec 5131/*
617ba13b 5132 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5133 * Give this, we know that the caller already has write access to iloc->bh.
5134 */
617ba13b 5135int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5136 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5137{
5138 int err = 0;
5139
c64db50e 5140 if (IS_I_VERSION(inode))
25ec56b5
JNC
5141 inode_inc_iversion(inode);
5142
ac27a0ec
DK
5143 /* the do_update_inode consumes one bh->b_count */
5144 get_bh(iloc->bh);
5145
dab291af 5146 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5147 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5148 put_bh(iloc->bh);
5149 return err;
5150}
5151
5152/*
5153 * On success, We end up with an outstanding reference count against
5154 * iloc->bh. This _must_ be cleaned up later.
5155 */
5156
5157int
617ba13b
MC
5158ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5159 struct ext4_iloc *iloc)
ac27a0ec 5160{
0390131b
FM
5161 int err;
5162
5163 err = ext4_get_inode_loc(inode, iloc);
5164 if (!err) {
5165 BUFFER_TRACE(iloc->bh, "get_write_access");
5166 err = ext4_journal_get_write_access(handle, iloc->bh);
5167 if (err) {
5168 brelse(iloc->bh);
5169 iloc->bh = NULL;
ac27a0ec
DK
5170 }
5171 }
617ba13b 5172 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5173 return err;
5174}
5175
6dd4ee7c
KS
5176/*
5177 * Expand an inode by new_extra_isize bytes.
5178 * Returns 0 on success or negative error number on failure.
5179 */
1d03ec98
AK
5180static int ext4_expand_extra_isize(struct inode *inode,
5181 unsigned int new_extra_isize,
5182 struct ext4_iloc iloc,
5183 handle_t *handle)
6dd4ee7c
KS
5184{
5185 struct ext4_inode *raw_inode;
5186 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5187
5188 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5189 return 0;
5190
5191 raw_inode = ext4_raw_inode(&iloc);
5192
5193 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5194
5195 /* No extended attributes present */
19f5fb7a
TT
5196 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5197 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5198 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5199 new_extra_isize);
5200 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5201 return 0;
5202 }
5203
5204 /* try to expand with EAs present */
5205 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5206 raw_inode, handle);
5207}
5208
ac27a0ec
DK
5209/*
5210 * What we do here is to mark the in-core inode as clean with respect to inode
5211 * dirtiness (it may still be data-dirty).
5212 * This means that the in-core inode may be reaped by prune_icache
5213 * without having to perform any I/O. This is a very good thing,
5214 * because *any* task may call prune_icache - even ones which
5215 * have a transaction open against a different journal.
5216 *
5217 * Is this cheating? Not really. Sure, we haven't written the
5218 * inode out, but prune_icache isn't a user-visible syncing function.
5219 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5220 * we start and wait on commits.
ac27a0ec 5221 */
617ba13b 5222int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5223{
617ba13b 5224 struct ext4_iloc iloc;
6dd4ee7c
KS
5225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5226 static unsigned int mnt_count;
5227 int err, ret;
ac27a0ec
DK
5228
5229 might_sleep();
7ff9c073 5230 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5231 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5232 if (ext4_handle_valid(handle) &&
5233 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5234 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5235 /*
5236 * We need extra buffer credits since we may write into EA block
5237 * with this same handle. If journal_extend fails, then it will
5238 * only result in a minor loss of functionality for that inode.
5239 * If this is felt to be critical, then e2fsck should be run to
5240 * force a large enough s_min_extra_isize.
5241 */
5242 if ((jbd2_journal_extend(handle,
5243 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5244 ret = ext4_expand_extra_isize(inode,
5245 sbi->s_want_extra_isize,
5246 iloc, handle);
5247 if (ret) {
19f5fb7a
TT
5248 ext4_set_inode_state(inode,
5249 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5250 if (mnt_count !=
5251 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5252 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5253 "Unable to expand inode %lu. Delete"
5254 " some EAs or run e2fsck.",
5255 inode->i_ino);
c1bddad9
AK
5256 mnt_count =
5257 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5258 }
5259 }
5260 }
5261 }
ac27a0ec 5262 if (!err)
617ba13b 5263 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5264 return err;
5265}
5266
5267/*
617ba13b 5268 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5269 *
5270 * We're really interested in the case where a file is being extended.
5271 * i_size has been changed by generic_commit_write() and we thus need
5272 * to include the updated inode in the current transaction.
5273 *
5dd4056d 5274 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5275 * are allocated to the file.
5276 *
5277 * If the inode is marked synchronous, we don't honour that here - doing
5278 * so would cause a commit on atime updates, which we don't bother doing.
5279 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5280 *
5281 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5282 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5283 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5284 */
aa385729 5285void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5286{
ac27a0ec
DK
5287 handle_t *handle;
5288
0ae45f63
TT
5289 if (flags == I_DIRTY_TIME)
5290 return;
9924a92a 5291 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5292 if (IS_ERR(handle))
5293 goto out;
f3dc272f 5294
f3dc272f
CW
5295 ext4_mark_inode_dirty(handle, inode);
5296
617ba13b 5297 ext4_journal_stop(handle);
ac27a0ec
DK
5298out:
5299 return;
5300}
5301
5302#if 0
5303/*
5304 * Bind an inode's backing buffer_head into this transaction, to prevent
5305 * it from being flushed to disk early. Unlike
617ba13b 5306 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5307 * returns no iloc structure, so the caller needs to repeat the iloc
5308 * lookup to mark the inode dirty later.
5309 */
617ba13b 5310static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5311{
617ba13b 5312 struct ext4_iloc iloc;
ac27a0ec
DK
5313
5314 int err = 0;
5315 if (handle) {
617ba13b 5316 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5317 if (!err) {
5318 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5319 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5320 if (!err)
0390131b 5321 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5322 NULL,
0390131b 5323 iloc.bh);
ac27a0ec
DK
5324 brelse(iloc.bh);
5325 }
5326 }
617ba13b 5327 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5328 return err;
5329}
5330#endif
5331
617ba13b 5332int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5333{
5334 journal_t *journal;
5335 handle_t *handle;
5336 int err;
5337
5338 /*
5339 * We have to be very careful here: changing a data block's
5340 * journaling status dynamically is dangerous. If we write a
5341 * data block to the journal, change the status and then delete
5342 * that block, we risk forgetting to revoke the old log record
5343 * from the journal and so a subsequent replay can corrupt data.
5344 * So, first we make sure that the journal is empty and that
5345 * nobody is changing anything.
5346 */
5347
617ba13b 5348 journal = EXT4_JOURNAL(inode);
0390131b
FM
5349 if (!journal)
5350 return 0;
d699594d 5351 if (is_journal_aborted(journal))
ac27a0ec 5352 return -EROFS;
2aff57b0
YY
5353 /* We have to allocate physical blocks for delalloc blocks
5354 * before flushing journal. otherwise delalloc blocks can not
5355 * be allocated any more. even more truncate on delalloc blocks
5356 * could trigger BUG by flushing delalloc blocks in journal.
5357 * There is no delalloc block in non-journal data mode.
5358 */
5359 if (val && test_opt(inode->i_sb, DELALLOC)) {
5360 err = ext4_alloc_da_blocks(inode);
5361 if (err < 0)
5362 return err;
5363 }
ac27a0ec 5364
17335dcc
DM
5365 /* Wait for all existing dio workers */
5366 ext4_inode_block_unlocked_dio(inode);
5367 inode_dio_wait(inode);
5368
dab291af 5369 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5370
5371 /*
5372 * OK, there are no updates running now, and all cached data is
5373 * synced to disk. We are now in a completely consistent state
5374 * which doesn't have anything in the journal, and we know that
5375 * no filesystem updates are running, so it is safe to modify
5376 * the inode's in-core data-journaling state flag now.
5377 */
5378
5379 if (val)
12e9b892 5380 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5381 else {
4f879ca6
JK
5382 err = jbd2_journal_flush(journal);
5383 if (err < 0) {
5384 jbd2_journal_unlock_updates(journal);
5385 ext4_inode_resume_unlocked_dio(inode);
5386 return err;
5387 }
12e9b892 5388 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5389 }
617ba13b 5390 ext4_set_aops(inode);
ac27a0ec 5391
dab291af 5392 jbd2_journal_unlock_updates(journal);
17335dcc 5393 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5394
5395 /* Finally we can mark the inode as dirty. */
5396
9924a92a 5397 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5398 if (IS_ERR(handle))
5399 return PTR_ERR(handle);
5400
617ba13b 5401 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5402 ext4_handle_sync(handle);
617ba13b
MC
5403 ext4_journal_stop(handle);
5404 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5405
5406 return err;
5407}
2e9ee850
AK
5408
5409static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5410{
5411 return !buffer_mapped(bh);
5412}
5413
c2ec175c 5414int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5415{
c2ec175c 5416 struct page *page = vmf->page;
2e9ee850
AK
5417 loff_t size;
5418 unsigned long len;
9ea7df53 5419 int ret;
2e9ee850 5420 struct file *file = vma->vm_file;
496ad9aa 5421 struct inode *inode = file_inode(file);
2e9ee850 5422 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5423 handle_t *handle;
5424 get_block_t *get_block;
5425 int retries = 0;
2e9ee850 5426
8e8ad8a5 5427 sb_start_pagefault(inode->i_sb);
041bbb6d 5428 file_update_time(vma->vm_file);
ea3d7209
JK
5429
5430 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5431 /* Delalloc case is easy... */
5432 if (test_opt(inode->i_sb, DELALLOC) &&
5433 !ext4_should_journal_data(inode) &&
5434 !ext4_nonda_switch(inode->i_sb)) {
5435 do {
5c500029 5436 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5437 ext4_da_get_block_prep);
5438 } while (ret == -ENOSPC &&
5439 ext4_should_retry_alloc(inode->i_sb, &retries));
5440 goto out_ret;
2e9ee850 5441 }
0e499890
DW
5442
5443 lock_page(page);
9ea7df53
JK
5444 size = i_size_read(inode);
5445 /* Page got truncated from under us? */
5446 if (page->mapping != mapping || page_offset(page) > size) {
5447 unlock_page(page);
5448 ret = VM_FAULT_NOPAGE;
5449 goto out;
0e499890 5450 }
2e9ee850
AK
5451
5452 if (page->index == size >> PAGE_CACHE_SHIFT)
5453 len = size & ~PAGE_CACHE_MASK;
5454 else
5455 len = PAGE_CACHE_SIZE;
a827eaff 5456 /*
9ea7df53
JK
5457 * Return if we have all the buffers mapped. This avoids the need to do
5458 * journal_start/journal_stop which can block and take a long time
a827eaff 5459 */
2e9ee850 5460 if (page_has_buffers(page)) {
f19d5870
TM
5461 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5462 0, len, NULL,
5463 ext4_bh_unmapped)) {
9ea7df53 5464 /* Wait so that we don't change page under IO */
1d1d1a76 5465 wait_for_stable_page(page);
9ea7df53
JK
5466 ret = VM_FAULT_LOCKED;
5467 goto out;
a827eaff 5468 }
2e9ee850 5469 }
a827eaff 5470 unlock_page(page);
9ea7df53
JK
5471 /* OK, we need to fill the hole... */
5472 if (ext4_should_dioread_nolock(inode))
5473 get_block = ext4_get_block_write;
5474 else
5475 get_block = ext4_get_block;
5476retry_alloc:
9924a92a
TT
5477 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5478 ext4_writepage_trans_blocks(inode));
9ea7df53 5479 if (IS_ERR(handle)) {
c2ec175c 5480 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5481 goto out;
5482 }
5c500029 5483 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5484 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5485 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5486 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5487 unlock_page(page);
5488 ret = VM_FAULT_SIGBUS;
fcbb5515 5489 ext4_journal_stop(handle);
9ea7df53
JK
5490 goto out;
5491 }
5492 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5493 }
5494 ext4_journal_stop(handle);
5495 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5496 goto retry_alloc;
5497out_ret:
5498 ret = block_page_mkwrite_return(ret);
5499out:
ea3d7209 5500 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5501 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5502 return ret;
5503}
ea3d7209
JK
5504
5505int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5506{
5507 struct inode *inode = file_inode(vma->vm_file);
5508 int err;
5509
5510 down_read(&EXT4_I(inode)->i_mmap_sem);
5511 err = filemap_fault(vma, vmf);
5512 up_read(&EXT4_I(inode)->i_mmap_sem);
5513
5514 return err;
5515}