]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: add read support for inline data
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9f125d64 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a
BF
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
f5ab0d1f 486/*
e35fd660 487 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 488 * and returns if the blocks are already mapped.
f5ab0d1f 489 *
f5ab0d1f
MC
490 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491 * and store the allocated blocks in the result buffer head and mark it
492 * mapped.
493 *
e35fd660
TT
494 * If file type is extents based, it will call ext4_ext_map_blocks(),
495 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
496 * based files
497 *
498 * On success, it returns the number of blocks being mapped or allocate.
499 * if create==0 and the blocks are pre-allocated and uninitialized block,
500 * the result buffer head is unmapped. If the create ==1, it will make sure
501 * the buffer head is mapped.
502 *
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 504 * that case, buffer head is unmapped
f5ab0d1f
MC
505 *
506 * It returns the error in case of allocation failure.
507 */
e35fd660
TT
508int ext4_map_blocks(handle_t *handle, struct inode *inode,
509 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
510{
511 int retval;
f5ab0d1f 512
e35fd660
TT
513 map->m_flags = 0;
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
4df3d265 517 /*
b920c755
TT
518 * Try to see if we can get the block without requesting a new
519 * file system block.
4df3d265 520 */
729f52c6
ZL
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 526 } else {
a4e5d88b
DM
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 }
729f52c6
ZL
530 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 532
e35fd660 533 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
51865fda
ZL
534 int ret;
535 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536 /* delayed alloc may be allocated by fallocate and
537 * coverted to initialized by directIO.
538 * we need to handle delayed extent here.
539 */
540 down_write((&EXT4_I(inode)->i_data_sem));
541 goto delayed_mapped;
542 }
543 ret = check_block_validity(inode, map);
6fd058f7
TT
544 if (ret != 0)
545 return ret;
546 }
547
f5ab0d1f 548 /* If it is only a block(s) look up */
c2177057 549 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
550 return retval;
551
552 /*
553 * Returns if the blocks have already allocated
554 *
555 * Note that if blocks have been preallocated
df3ab170 556 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
557 * with buffer head unmapped.
558 */
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
560 return retval;
561
2a8964d6
AK
562 /*
563 * When we call get_blocks without the create flag, the
564 * BH_Unwritten flag could have gotten set if the blocks
565 * requested were part of a uninitialized extent. We need to
566 * clear this flag now that we are committed to convert all or
567 * part of the uninitialized extent to be an initialized
568 * extent. This is because we need to avoid the combination
569 * of BH_Unwritten and BH_Mapped flags being simultaneously
570 * set on the buffer_head.
571 */
e35fd660 572 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 573
4df3d265 574 /*
f5ab0d1f
MC
575 * New blocks allocate and/or writing to uninitialized extent
576 * will possibly result in updating i_data, so we take
577 * the write lock of i_data_sem, and call get_blocks()
578 * with create == 1 flag.
4df3d265
AK
579 */
580 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
581
582 /*
583 * if the caller is from delayed allocation writeout path
584 * we have already reserved fs blocks for allocation
585 * let the underlying get_block() function know to
586 * avoid double accounting
587 */
c2177057 588 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 589 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
590 /*
591 * We need to check for EXT4 here because migrate
592 * could have changed the inode type in between
593 */
12e9b892 594 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 595 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 596 } else {
e35fd660 597 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 598
e35fd660 599 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
600 /*
601 * We allocated new blocks which will result in
602 * i_data's format changing. Force the migrate
603 * to fail by clearing migrate flags
604 */
19f5fb7a 605 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 606 }
d2a17637 607
5f634d06
AK
608 /*
609 * Update reserved blocks/metadata blocks after successful
610 * block allocation which had been deferred till now. We don't
611 * support fallocate for non extent files. So we can update
612 * reserve space here.
613 */
614 if ((retval > 0) &&
1296cc85 615 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
616 ext4_da_update_reserve_space(inode, retval, 1);
617 }
5356f261 618 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 619 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 620
51865fda
ZL
621 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622 int ret;
51865fda
ZL
623delayed_mapped:
624 /* delayed allocation blocks has been allocated */
625 ret = ext4_es_remove_extent(inode, map->m_lblk,
626 map->m_len);
627 if (ret < 0)
628 retval = ret;
629 }
5356f261
AK
630 }
631
4df3d265 632 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 633 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 634 int ret = check_block_validity(inode, map);
6fd058f7
TT
635 if (ret != 0)
636 return ret;
637 }
0e855ac8
AK
638 return retval;
639}
640
f3bd1f3f
MC
641/* Maximum number of blocks we map for direct IO at once. */
642#define DIO_MAX_BLOCKS 4096
643
2ed88685
TT
644static int _ext4_get_block(struct inode *inode, sector_t iblock,
645 struct buffer_head *bh, int flags)
ac27a0ec 646{
3e4fdaf8 647 handle_t *handle = ext4_journal_current_handle();
2ed88685 648 struct ext4_map_blocks map;
7fb5409d 649 int ret = 0, started = 0;
f3bd1f3f 650 int dio_credits;
ac27a0ec 651
46c7f254
TM
652 if (ext4_has_inline_data(inode))
653 return -ERANGE;
654
2ed88685
TT
655 map.m_lblk = iblock;
656 map.m_len = bh->b_size >> inode->i_blkbits;
657
8b0f165f 658 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 659 /* Direct IO write... */
2ed88685
TT
660 if (map.m_len > DIO_MAX_BLOCKS)
661 map.m_len = DIO_MAX_BLOCKS;
662 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 663 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 664 if (IS_ERR(handle)) {
ac27a0ec 665 ret = PTR_ERR(handle);
2ed88685 666 return ret;
ac27a0ec 667 }
7fb5409d 668 started = 1;
ac27a0ec
DK
669 }
670
2ed88685 671 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 672 if (ret > 0) {
2ed88685
TT
673 map_bh(bh, inode->i_sb, map.m_pblk);
674 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 676 ret = 0;
ac27a0ec 677 }
7fb5409d
JK
678 if (started)
679 ext4_journal_stop(handle);
ac27a0ec
DK
680 return ret;
681}
682
2ed88685
TT
683int ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int create)
685{
686 return _ext4_get_block(inode, iblock, bh,
687 create ? EXT4_GET_BLOCKS_CREATE : 0);
688}
689
ac27a0ec
DK
690/*
691 * `handle' can be NULL if create is zero
692 */
617ba13b 693struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 694 ext4_lblk_t block, int create, int *errp)
ac27a0ec 695{
2ed88685
TT
696 struct ext4_map_blocks map;
697 struct buffer_head *bh;
ac27a0ec
DK
698 int fatal = 0, err;
699
700 J_ASSERT(handle != NULL || create == 0);
701
2ed88685
TT
702 map.m_lblk = block;
703 map.m_len = 1;
704 err = ext4_map_blocks(handle, inode, &map,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 706
90b0a973
CM
707 /* ensure we send some value back into *errp */
708 *errp = 0;
709
2ed88685
TT
710 if (err < 0)
711 *errp = err;
712 if (err <= 0)
713 return NULL;
2ed88685
TT
714
715 bh = sb_getblk(inode->i_sb, map.m_pblk);
716 if (!bh) {
717 *errp = -EIO;
718 return NULL;
ac27a0ec 719 }
2ed88685
TT
720 if (map.m_flags & EXT4_MAP_NEW) {
721 J_ASSERT(create != 0);
722 J_ASSERT(handle != NULL);
ac27a0ec 723
2ed88685
TT
724 /*
725 * Now that we do not always journal data, we should
726 * keep in mind whether this should always journal the
727 * new buffer as metadata. For now, regular file
728 * writes use ext4_get_block instead, so it's not a
729 * problem.
730 */
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 fatal = ext4_journal_get_create_access(handle, bh);
734 if (!fatal && !buffer_uptodate(bh)) {
735 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736 set_buffer_uptodate(bh);
ac27a0ec 737 }
2ed88685
TT
738 unlock_buffer(bh);
739 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740 err = ext4_handle_dirty_metadata(handle, inode, bh);
741 if (!fatal)
742 fatal = err;
743 } else {
744 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 745 }
2ed88685
TT
746 if (fatal) {
747 *errp = fatal;
748 brelse(bh);
749 bh = NULL;
750 }
751 return bh;
ac27a0ec
DK
752}
753
617ba13b 754struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *err)
ac27a0ec 756{
af5bc92d 757 struct buffer_head *bh;
ac27a0ec 758
617ba13b 759 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
760 if (!bh)
761 return bh;
762 if (buffer_uptodate(bh))
763 return bh;
65299a3b 764 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
765 wait_on_buffer(bh);
766 if (buffer_uptodate(bh))
767 return bh;
768 put_bh(bh);
769 *err = -EIO;
770 return NULL;
771}
772
af5bc92d
TT
773static int walk_page_buffers(handle_t *handle,
774 struct buffer_head *head,
775 unsigned from,
776 unsigned to,
777 int *partial,
778 int (*fn)(handle_t *handle,
779 struct buffer_head *bh))
ac27a0ec
DK
780{
781 struct buffer_head *bh;
782 unsigned block_start, block_end;
783 unsigned blocksize = head->b_size;
784 int err, ret = 0;
785 struct buffer_head *next;
786
af5bc92d
TT
787 for (bh = head, block_start = 0;
788 ret == 0 && (bh != head || !block_start);
de9a55b8 789 block_start = block_end, bh = next) {
ac27a0ec
DK
790 next = bh->b_this_page;
791 block_end = block_start + blocksize;
792 if (block_end <= from || block_start >= to) {
793 if (partial && !buffer_uptodate(bh))
794 *partial = 1;
795 continue;
796 }
797 err = (*fn)(handle, bh);
798 if (!ret)
799 ret = err;
800 }
801 return ret;
802}
803
804/*
805 * To preserve ordering, it is essential that the hole instantiation and
806 * the data write be encapsulated in a single transaction. We cannot
617ba13b 807 * close off a transaction and start a new one between the ext4_get_block()
dab291af 808 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
809 * prepare_write() is the right place.
810 *
617ba13b
MC
811 * Also, this function can nest inside ext4_writepage() ->
812 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
813 * has generated enough buffer credits to do the whole page. So we won't
814 * block on the journal in that case, which is good, because the caller may
815 * be PF_MEMALLOC.
816 *
617ba13b 817 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
818 * quota file writes. If we were to commit the transaction while thus
819 * reentered, there can be a deadlock - we would be holding a quota
820 * lock, and the commit would never complete if another thread had a
821 * transaction open and was blocking on the quota lock - a ranking
822 * violation.
823 *
dab291af 824 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
825 * will _not_ run commit under these circumstances because handle->h_ref
826 * is elevated. We'll still have enough credits for the tiny quotafile
827 * write.
828 */
829static int do_journal_get_write_access(handle_t *handle,
de9a55b8 830 struct buffer_head *bh)
ac27a0ec 831{
56d35a4c
JK
832 int dirty = buffer_dirty(bh);
833 int ret;
834
ac27a0ec
DK
835 if (!buffer_mapped(bh) || buffer_freed(bh))
836 return 0;
56d35a4c 837 /*
ebdec241 838 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
839 * the dirty bit as jbd2_journal_get_write_access() could complain
840 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 841 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
842 * the bit before releasing a page lock and thus writeback cannot
843 * ever write the buffer.
844 */
845 if (dirty)
846 clear_buffer_dirty(bh);
847 ret = ext4_journal_get_write_access(handle, bh);
848 if (!ret && dirty)
849 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850 return ret;
ac27a0ec
DK
851}
852
744692dc
JZ
853static int ext4_get_block_write(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh_result, int create);
8b0f165f
AP
855static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
856 struct buffer_head *bh_result, int create);
bfc1af65 857static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
858 loff_t pos, unsigned len, unsigned flags,
859 struct page **pagep, void **fsdata)
ac27a0ec 860{
af5bc92d 861 struct inode *inode = mapping->host;
1938a150 862 int ret, needed_blocks;
ac27a0ec
DK
863 handle_t *handle;
864 int retries = 0;
af5bc92d 865 struct page *page;
de9a55b8 866 pgoff_t index;
af5bc92d 867 unsigned from, to;
bfc1af65 868
9bffad1e 869 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
870 /*
871 * Reserve one block more for addition to orphan list in case
872 * we allocate blocks but write fails for some reason
873 */
874 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 875 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
876 from = pos & (PAGE_CACHE_SIZE - 1);
877 to = from + len;
ac27a0ec
DK
878
879retry:
af5bc92d
TT
880 handle = ext4_journal_start(inode, needed_blocks);
881 if (IS_ERR(handle)) {
882 ret = PTR_ERR(handle);
883 goto out;
7479d2b9 884 }
ac27a0ec 885
ebd3610b
JK
886 /* We cannot recurse into the filesystem as the transaction is already
887 * started */
888 flags |= AOP_FLAG_NOFS;
889
54566b2c 890 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
891 if (!page) {
892 ext4_journal_stop(handle);
893 ret = -ENOMEM;
894 goto out;
895 }
896 *pagep = page;
897
744692dc 898 if (ext4_should_dioread_nolock(inode))
6e1db88d 899 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 900 else
6e1db88d 901 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
902
903 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
904 ret = walk_page_buffers(handle, page_buffers(page),
905 from, to, NULL, do_journal_get_write_access);
906 }
bfc1af65
NP
907
908 if (ret) {
af5bc92d 909 unlock_page(page);
af5bc92d 910 page_cache_release(page);
ae4d5372 911 /*
6e1db88d 912 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
913 * outside i_size. Trim these off again. Don't need
914 * i_size_read because we hold i_mutex.
1938a150
AK
915 *
916 * Add inode to orphan list in case we crash before
917 * truncate finishes
ae4d5372 918 */
ffacfa7a 919 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
920 ext4_orphan_add(handle, inode);
921
922 ext4_journal_stop(handle);
923 if (pos + len > inode->i_size) {
b9a4207d 924 ext4_truncate_failed_write(inode);
de9a55b8 925 /*
ffacfa7a 926 * If truncate failed early the inode might
1938a150
AK
927 * still be on the orphan list; we need to
928 * make sure the inode is removed from the
929 * orphan list in that case.
930 */
931 if (inode->i_nlink)
932 ext4_orphan_del(NULL, inode);
933 }
bfc1af65
NP
934 }
935
617ba13b 936 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 937 goto retry;
7479d2b9 938out:
ac27a0ec
DK
939 return ret;
940}
941
bfc1af65
NP
942/* For write_end() in data=journal mode */
943static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
944{
945 if (!buffer_mapped(bh) || buffer_freed(bh))
946 return 0;
947 set_buffer_uptodate(bh);
0390131b 948 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
949}
950
f8514083 951static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
952 struct address_space *mapping,
953 loff_t pos, unsigned len, unsigned copied,
954 struct page *page, void *fsdata)
f8514083
AK
955{
956 int i_size_changed = 0;
957 struct inode *inode = mapping->host;
958 handle_t *handle = ext4_journal_current_handle();
959
960 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
961
962 /*
963 * No need to use i_size_read() here, the i_size
964 * cannot change under us because we hold i_mutex.
965 *
966 * But it's important to update i_size while still holding page lock:
967 * page writeout could otherwise come in and zero beyond i_size.
968 */
969 if (pos + copied > inode->i_size) {
970 i_size_write(inode, pos + copied);
971 i_size_changed = 1;
972 }
973
974 if (pos + copied > EXT4_I(inode)->i_disksize) {
975 /* We need to mark inode dirty even if
976 * new_i_size is less that inode->i_size
977 * bu greater than i_disksize.(hint delalloc)
978 */
979 ext4_update_i_disksize(inode, (pos + copied));
980 i_size_changed = 1;
981 }
982 unlock_page(page);
983 page_cache_release(page);
984
985 /*
986 * Don't mark the inode dirty under page lock. First, it unnecessarily
987 * makes the holding time of page lock longer. Second, it forces lock
988 * ordering of page lock and transaction start for journaling
989 * filesystems.
990 */
991 if (i_size_changed)
992 ext4_mark_inode_dirty(handle, inode);
993
994 return copied;
995}
996
ac27a0ec
DK
997/*
998 * We need to pick up the new inode size which generic_commit_write gave us
999 * `file' can be NULL - eg, when called from page_symlink().
1000 *
617ba13b 1001 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1002 * buffers are managed internally.
1003 */
bfc1af65 1004static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1005 struct address_space *mapping,
1006 loff_t pos, unsigned len, unsigned copied,
1007 struct page *page, void *fsdata)
ac27a0ec 1008{
617ba13b 1009 handle_t *handle = ext4_journal_current_handle();
cf108bca 1010 struct inode *inode = mapping->host;
ac27a0ec
DK
1011 int ret = 0, ret2;
1012
9bffad1e 1013 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1014 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1015
1016 if (ret == 0) {
f8514083 1017 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1018 page, fsdata);
f8a87d89 1019 copied = ret2;
ffacfa7a 1020 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1021 /* if we have allocated more blocks and copied
1022 * less. We will have blocks allocated outside
1023 * inode->i_size. So truncate them
1024 */
1025 ext4_orphan_add(handle, inode);
f8a87d89
RK
1026 if (ret2 < 0)
1027 ret = ret2;
09e0834f
AF
1028 } else {
1029 unlock_page(page);
1030 page_cache_release(page);
ac27a0ec 1031 }
09e0834f 1032
617ba13b 1033 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1034 if (!ret)
1035 ret = ret2;
bfc1af65 1036
f8514083 1037 if (pos + len > inode->i_size) {
b9a4207d 1038 ext4_truncate_failed_write(inode);
de9a55b8 1039 /*
ffacfa7a 1040 * If truncate failed early the inode might still be
f8514083
AK
1041 * on the orphan list; we need to make sure the inode
1042 * is removed from the orphan list in that case.
1043 */
1044 if (inode->i_nlink)
1045 ext4_orphan_del(NULL, inode);
1046 }
1047
1048
bfc1af65 1049 return ret ? ret : copied;
ac27a0ec
DK
1050}
1051
bfc1af65 1052static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1053 struct address_space *mapping,
1054 loff_t pos, unsigned len, unsigned copied,
1055 struct page *page, void *fsdata)
ac27a0ec 1056{
617ba13b 1057 handle_t *handle = ext4_journal_current_handle();
cf108bca 1058 struct inode *inode = mapping->host;
ac27a0ec 1059 int ret = 0, ret2;
ac27a0ec 1060
9bffad1e 1061 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1062 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1063 page, fsdata);
f8a87d89 1064 copied = ret2;
ffacfa7a 1065 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1066 /* if we have allocated more blocks and copied
1067 * less. We will have blocks allocated outside
1068 * inode->i_size. So truncate them
1069 */
1070 ext4_orphan_add(handle, inode);
1071
f8a87d89
RK
1072 if (ret2 < 0)
1073 ret = ret2;
ac27a0ec 1074
617ba13b 1075 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1076 if (!ret)
1077 ret = ret2;
bfc1af65 1078
f8514083 1079 if (pos + len > inode->i_size) {
b9a4207d 1080 ext4_truncate_failed_write(inode);
de9a55b8 1081 /*
ffacfa7a 1082 * If truncate failed early the inode might still be
f8514083
AK
1083 * on the orphan list; we need to make sure the inode
1084 * is removed from the orphan list in that case.
1085 */
1086 if (inode->i_nlink)
1087 ext4_orphan_del(NULL, inode);
1088 }
1089
bfc1af65 1090 return ret ? ret : copied;
ac27a0ec
DK
1091}
1092
bfc1af65 1093static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1094 struct address_space *mapping,
1095 loff_t pos, unsigned len, unsigned copied,
1096 struct page *page, void *fsdata)
ac27a0ec 1097{
617ba13b 1098 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1099 struct inode *inode = mapping->host;
ac27a0ec
DK
1100 int ret = 0, ret2;
1101 int partial = 0;
bfc1af65 1102 unsigned from, to;
cf17fea6 1103 loff_t new_i_size;
ac27a0ec 1104
9bffad1e 1105 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1106 from = pos & (PAGE_CACHE_SIZE - 1);
1107 to = from + len;
1108
441c8508
CW
1109 BUG_ON(!ext4_handle_valid(handle));
1110
bfc1af65
NP
1111 if (copied < len) {
1112 if (!PageUptodate(page))
1113 copied = 0;
1114 page_zero_new_buffers(page, from+copied, to);
1115 }
ac27a0ec
DK
1116
1117 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1118 to, &partial, write_end_fn);
ac27a0ec
DK
1119 if (!partial)
1120 SetPageUptodate(page);
cf17fea6
AK
1121 new_i_size = pos + copied;
1122 if (new_i_size > inode->i_size)
bfc1af65 1123 i_size_write(inode, pos+copied);
19f5fb7a 1124 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1125 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1126 if (new_i_size > EXT4_I(inode)->i_disksize) {
1127 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1128 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1129 if (!ret)
1130 ret = ret2;
1131 }
bfc1af65 1132
cf108bca 1133 unlock_page(page);
f8514083 1134 page_cache_release(page);
ffacfa7a 1135 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1136 /* if we have allocated more blocks and copied
1137 * less. We will have blocks allocated outside
1138 * inode->i_size. So truncate them
1139 */
1140 ext4_orphan_add(handle, inode);
1141
617ba13b 1142 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1143 if (!ret)
1144 ret = ret2;
f8514083 1145 if (pos + len > inode->i_size) {
b9a4207d 1146 ext4_truncate_failed_write(inode);
de9a55b8 1147 /*
ffacfa7a 1148 * If truncate failed early the inode might still be
f8514083
AK
1149 * on the orphan list; we need to make sure the inode
1150 * is removed from the orphan list in that case.
1151 */
1152 if (inode->i_nlink)
1153 ext4_orphan_del(NULL, inode);
1154 }
bfc1af65
NP
1155
1156 return ret ? ret : copied;
ac27a0ec 1157}
d2a17637 1158
9d0be502 1159/*
7b415bf6 1160 * Reserve a single cluster located at lblock
9d0be502 1161 */
01f49d0b 1162static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1163{
030ba6bc 1164 int retries = 0;
60e58e0f 1165 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1166 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1167 unsigned int md_needed;
5dd4056d 1168 int ret;
03179fe9
TT
1169 ext4_lblk_t save_last_lblock;
1170 int save_len;
1171
1172 /*
1173 * We will charge metadata quota at writeout time; this saves
1174 * us from metadata over-estimation, though we may go over by
1175 * a small amount in the end. Here we just reserve for data.
1176 */
1177 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1178 if (ret)
1179 return ret;
d2a17637
MC
1180
1181 /*
1182 * recalculate the amount of metadata blocks to reserve
1183 * in order to allocate nrblocks
1184 * worse case is one extent per block
1185 */
030ba6bc 1186repeat:
0637c6f4 1187 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1188 /*
1189 * ext4_calc_metadata_amount() has side effects, which we have
1190 * to be prepared undo if we fail to claim space.
1191 */
1192 save_len = ei->i_da_metadata_calc_len;
1193 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1194 md_needed = EXT4_NUM_B2C(sbi,
1195 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1196 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1197
72b8ab9d
ES
1198 /*
1199 * We do still charge estimated metadata to the sb though;
1200 * we cannot afford to run out of free blocks.
1201 */
e7d5f315 1202 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1203 ei->i_da_metadata_calc_len = save_len;
1204 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1205 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1206 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1207 yield();
1208 goto repeat;
1209 }
03179fe9 1210 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1211 return -ENOSPC;
1212 }
9d0be502 1213 ei->i_reserved_data_blocks++;
0637c6f4
TT
1214 ei->i_reserved_meta_blocks += md_needed;
1215 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1216
d2a17637
MC
1217 return 0; /* success */
1218}
1219
12219aea 1220static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1221{
1222 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1223 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1224
cd213226
MC
1225 if (!to_free)
1226 return; /* Nothing to release, exit */
1227
d2a17637 1228 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1229
5a58ec87 1230 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1231 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1232 /*
0637c6f4
TT
1233 * if there aren't enough reserved blocks, then the
1234 * counter is messed up somewhere. Since this
1235 * function is called from invalidate page, it's
1236 * harmless to return without any action.
cd213226 1237 */
0637c6f4
TT
1238 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1239 "ino %lu, to_free %d with only %d reserved "
1084f252 1240 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1241 ei->i_reserved_data_blocks);
1242 WARN_ON(1);
1243 to_free = ei->i_reserved_data_blocks;
cd213226 1244 }
0637c6f4 1245 ei->i_reserved_data_blocks -= to_free;
cd213226 1246
0637c6f4
TT
1247 if (ei->i_reserved_data_blocks == 0) {
1248 /*
1249 * We can release all of the reserved metadata blocks
1250 * only when we have written all of the delayed
1251 * allocation blocks.
7b415bf6
AK
1252 * Note that in case of bigalloc, i_reserved_meta_blocks,
1253 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1254 */
57042651 1255 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1256 ei->i_reserved_meta_blocks);
ee5f4d9c 1257 ei->i_reserved_meta_blocks = 0;
9d0be502 1258 ei->i_da_metadata_calc_len = 0;
0637c6f4 1259 }
d2a17637 1260
72b8ab9d 1261 /* update fs dirty data blocks counter */
57042651 1262 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1263
d2a17637 1264 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1265
7b415bf6 1266 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1267}
1268
1269static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1270 unsigned long offset)
d2a17637
MC
1271{
1272 int to_release = 0;
1273 struct buffer_head *head, *bh;
1274 unsigned int curr_off = 0;
7b415bf6
AK
1275 struct inode *inode = page->mapping->host;
1276 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1277 int num_clusters;
51865fda 1278 ext4_fsblk_t lblk;
d2a17637
MC
1279
1280 head = page_buffers(page);
1281 bh = head;
1282 do {
1283 unsigned int next_off = curr_off + bh->b_size;
1284
1285 if ((offset <= curr_off) && (buffer_delay(bh))) {
1286 to_release++;
1287 clear_buffer_delay(bh);
1288 }
1289 curr_off = next_off;
1290 } while ((bh = bh->b_this_page) != head);
7b415bf6 1291
51865fda
ZL
1292 if (to_release) {
1293 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1294 ext4_es_remove_extent(inode, lblk, to_release);
1295 }
1296
7b415bf6
AK
1297 /* If we have released all the blocks belonging to a cluster, then we
1298 * need to release the reserved space for that cluster. */
1299 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1300 while (num_clusters > 0) {
7b415bf6
AK
1301 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1302 ((num_clusters - 1) << sbi->s_cluster_bits);
1303 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1304 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1305 ext4_da_release_space(inode, 1);
1306
1307 num_clusters--;
1308 }
d2a17637 1309}
ac27a0ec 1310
64769240
AT
1311/*
1312 * Delayed allocation stuff
1313 */
1314
64769240
AT
1315/*
1316 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1317 * them with writepage() call back
64769240
AT
1318 *
1319 * @mpd->inode: inode
1320 * @mpd->first_page: first page of the extent
1321 * @mpd->next_page: page after the last page of the extent
64769240
AT
1322 *
1323 * By the time mpage_da_submit_io() is called we expect all blocks
1324 * to be allocated. this may be wrong if allocation failed.
1325 *
1326 * As pages are already locked by write_cache_pages(), we can't use it
1327 */
1de3e3df
TT
1328static int mpage_da_submit_io(struct mpage_da_data *mpd,
1329 struct ext4_map_blocks *map)
64769240 1330{
791b7f08
AK
1331 struct pagevec pvec;
1332 unsigned long index, end;
1333 int ret = 0, err, nr_pages, i;
1334 struct inode *inode = mpd->inode;
1335 struct address_space *mapping = inode->i_mapping;
cb20d518 1336 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1337 unsigned int len, block_start;
1338 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1339 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1340 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1341 struct ext4_io_submit io_submit;
64769240
AT
1342
1343 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1344 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1345 /*
1346 * We need to start from the first_page to the next_page - 1
1347 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1348 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1349 * at the currently mapped buffer_heads.
1350 */
64769240
AT
1351 index = mpd->first_page;
1352 end = mpd->next_page - 1;
1353
791b7f08 1354 pagevec_init(&pvec, 0);
64769240 1355 while (index <= end) {
791b7f08 1356 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1357 if (nr_pages == 0)
1358 break;
1359 for (i = 0; i < nr_pages; i++) {
97498956 1360 int commit_write = 0, skip_page = 0;
64769240
AT
1361 struct page *page = pvec.pages[i];
1362
791b7f08
AK
1363 index = page->index;
1364 if (index > end)
1365 break;
cb20d518
TT
1366
1367 if (index == size >> PAGE_CACHE_SHIFT)
1368 len = size & ~PAGE_CACHE_MASK;
1369 else
1370 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1371 if (map) {
1372 cur_logical = index << (PAGE_CACHE_SHIFT -
1373 inode->i_blkbits);
1374 pblock = map->m_pblk + (cur_logical -
1375 map->m_lblk);
1376 }
791b7f08
AK
1377 index++;
1378
1379 BUG_ON(!PageLocked(page));
1380 BUG_ON(PageWriteback(page));
1381
64769240 1382 /*
cb20d518
TT
1383 * If the page does not have buffers (for
1384 * whatever reason), try to create them using
a107e5a3 1385 * __block_write_begin. If this fails,
97498956 1386 * skip the page and move on.
64769240 1387 */
cb20d518 1388 if (!page_has_buffers(page)) {
a107e5a3 1389 if (__block_write_begin(page, 0, len,
cb20d518 1390 noalloc_get_block_write)) {
97498956 1391 skip_page:
cb20d518
TT
1392 unlock_page(page);
1393 continue;
1394 }
1395 commit_write = 1;
1396 }
64769240 1397
3ecdb3a1
TT
1398 bh = page_bufs = page_buffers(page);
1399 block_start = 0;
64769240 1400 do {
1de3e3df 1401 if (!bh)
97498956 1402 goto skip_page;
1de3e3df
TT
1403 if (map && (cur_logical >= map->m_lblk) &&
1404 (cur_logical <= (map->m_lblk +
1405 (map->m_len - 1)))) {
29fa89d0
AK
1406 if (buffer_delay(bh)) {
1407 clear_buffer_delay(bh);
1408 bh->b_blocknr = pblock;
29fa89d0 1409 }
1de3e3df
TT
1410 if (buffer_unwritten(bh) ||
1411 buffer_mapped(bh))
1412 BUG_ON(bh->b_blocknr != pblock);
1413 if (map->m_flags & EXT4_MAP_UNINIT)
1414 set_buffer_uninit(bh);
1415 clear_buffer_unwritten(bh);
1416 }
29fa89d0 1417
13a79a47
YY
1418 /*
1419 * skip page if block allocation undone and
1420 * block is dirty
1421 */
1422 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1423 skip_page = 1;
3ecdb3a1
TT
1424 bh = bh->b_this_page;
1425 block_start += bh->b_size;
64769240
AT
1426 cur_logical++;
1427 pblock++;
1de3e3df
TT
1428 } while (bh != page_bufs);
1429
97498956
TT
1430 if (skip_page)
1431 goto skip_page;
cb20d518
TT
1432
1433 if (commit_write)
1434 /* mark the buffer_heads as dirty & uptodate */
1435 block_commit_write(page, 0, len);
1436
97498956 1437 clear_page_dirty_for_io(page);
bd2d0210
TT
1438 /*
1439 * Delalloc doesn't support data journalling,
1440 * but eventually maybe we'll lift this
1441 * restriction.
1442 */
1443 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1444 err = __ext4_journalled_writepage(page, len);
1449032b 1445 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1446 err = ext4_bio_write_page(&io_submit, page,
1447 len, mpd->wbc);
9dd75f1f
TT
1448 else if (buffer_uninit(page_bufs)) {
1449 ext4_set_bh_endio(page_bufs, inode);
1450 err = block_write_full_page_endio(page,
1451 noalloc_get_block_write,
1452 mpd->wbc, ext4_end_io_buffer_write);
1453 } else
1449032b
TT
1454 err = block_write_full_page(page,
1455 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1456
1457 if (!err)
a1d6cc56 1458 mpd->pages_written++;
64769240
AT
1459 /*
1460 * In error case, we have to continue because
1461 * remaining pages are still locked
64769240
AT
1462 */
1463 if (ret == 0)
1464 ret = err;
64769240
AT
1465 }
1466 pagevec_release(&pvec);
1467 }
bd2d0210 1468 ext4_io_submit(&io_submit);
64769240 1469 return ret;
64769240
AT
1470}
1471
c7f5938a 1472static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1473{
1474 int nr_pages, i;
1475 pgoff_t index, end;
1476 struct pagevec pvec;
1477 struct inode *inode = mpd->inode;
1478 struct address_space *mapping = inode->i_mapping;
51865fda 1479 ext4_lblk_t start, last;
c4a0c46e 1480
c7f5938a
CW
1481 index = mpd->first_page;
1482 end = mpd->next_page - 1;
51865fda
ZL
1483
1484 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1485 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1486 ext4_es_remove_extent(inode, start, last - start + 1);
1487
66bea92c 1488 pagevec_init(&pvec, 0);
c4a0c46e
AK
1489 while (index <= end) {
1490 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1491 if (nr_pages == 0)
1492 break;
1493 for (i = 0; i < nr_pages; i++) {
1494 struct page *page = pvec.pages[i];
9b1d0998 1495 if (page->index > end)
c4a0c46e 1496 break;
c4a0c46e
AK
1497 BUG_ON(!PageLocked(page));
1498 BUG_ON(PageWriteback(page));
1499 block_invalidatepage(page, 0);
1500 ClearPageUptodate(page);
1501 unlock_page(page);
1502 }
9b1d0998
JK
1503 index = pvec.pages[nr_pages - 1]->index + 1;
1504 pagevec_release(&pvec);
c4a0c46e
AK
1505 }
1506 return;
1507}
1508
df22291f
AK
1509static void ext4_print_free_blocks(struct inode *inode)
1510{
1511 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1512 struct super_block *sb = inode->i_sb;
1513
1514 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1515 EXT4_C2B(EXT4_SB(inode->i_sb),
1516 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1517 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1518 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1519 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1520 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1521 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1522 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1523 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1524 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1525 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1526 EXT4_I(inode)->i_reserved_data_blocks);
1527 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1528 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1529 return;
1530}
1531
64769240 1532/*
5a87b7a5
TT
1533 * mpage_da_map_and_submit - go through given space, map them
1534 * if necessary, and then submit them for I/O
64769240 1535 *
8dc207c0 1536 * @mpd - bh describing space
64769240
AT
1537 *
1538 * The function skips space we know is already mapped to disk blocks.
1539 *
64769240 1540 */
5a87b7a5 1541static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1542{
2ac3b6e0 1543 int err, blks, get_blocks_flags;
1de3e3df 1544 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1545 sector_t next = mpd->b_blocknr;
1546 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1547 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1548 handle_t *handle = NULL;
64769240
AT
1549
1550 /*
5a87b7a5
TT
1551 * If the blocks are mapped already, or we couldn't accumulate
1552 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1553 */
5a87b7a5
TT
1554 if ((mpd->b_size == 0) ||
1555 ((mpd->b_state & (1 << BH_Mapped)) &&
1556 !(mpd->b_state & (1 << BH_Delay)) &&
1557 !(mpd->b_state & (1 << BH_Unwritten))))
1558 goto submit_io;
2fa3cdfb
TT
1559
1560 handle = ext4_journal_current_handle();
1561 BUG_ON(!handle);
1562
79ffab34 1563 /*
79e83036 1564 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1565 * blocks, or to convert an uninitialized extent to be
1566 * initialized (in the case where we have written into
1567 * one or more preallocated blocks).
1568 *
1569 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1570 * indicate that we are on the delayed allocation path. This
1571 * affects functions in many different parts of the allocation
1572 * call path. This flag exists primarily because we don't
79e83036 1573 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1574 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1575 * inode's allocation semaphore is taken.
1576 *
1577 * If the blocks in questions were delalloc blocks, set
1578 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1579 * variables are updated after the blocks have been allocated.
79ffab34 1580 */
2ed88685
TT
1581 map.m_lblk = next;
1582 map.m_len = max_blocks;
1296cc85 1583 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1584 if (ext4_should_dioread_nolock(mpd->inode))
1585 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1586 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1587 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1588
2ed88685 1589 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1590 if (blks < 0) {
e3570639
ES
1591 struct super_block *sb = mpd->inode->i_sb;
1592
2fa3cdfb 1593 err = blks;
ed5bde0b 1594 /*
5a87b7a5 1595 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1596 * appears to be free blocks we will just let
1597 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1598 */
1599 if (err == -EAGAIN)
5a87b7a5 1600 goto submit_io;
df22291f 1601
5dee5437 1602 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1603 mpd->retval = err;
5a87b7a5 1604 goto submit_io;
df22291f
AK
1605 }
1606
c4a0c46e 1607 /*
ed5bde0b
TT
1608 * get block failure will cause us to loop in
1609 * writepages, because a_ops->writepage won't be able
1610 * to make progress. The page will be redirtied by
1611 * writepage and writepages will again try to write
1612 * the same.
c4a0c46e 1613 */
e3570639
ES
1614 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1615 ext4_msg(sb, KERN_CRIT,
1616 "delayed block allocation failed for inode %lu "
1617 "at logical offset %llu with max blocks %zd "
1618 "with error %d", mpd->inode->i_ino,
1619 (unsigned long long) next,
1620 mpd->b_size >> mpd->inode->i_blkbits, err);
1621 ext4_msg(sb, KERN_CRIT,
1622 "This should not happen!! Data will be lost\n");
1623 if (err == -ENOSPC)
1624 ext4_print_free_blocks(mpd->inode);
030ba6bc 1625 }
2fa3cdfb 1626 /* invalidate all the pages */
c7f5938a 1627 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1628
1629 /* Mark this page range as having been completed */
1630 mpd->io_done = 1;
5a87b7a5 1631 return;
c4a0c46e 1632 }
2fa3cdfb
TT
1633 BUG_ON(blks == 0);
1634
1de3e3df 1635 mapp = &map;
2ed88685
TT
1636 if (map.m_flags & EXT4_MAP_NEW) {
1637 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1638 int i;
64769240 1639
2ed88685
TT
1640 for (i = 0; i < map.m_len; i++)
1641 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1642 }
1643
1644 /*
03f5d8bc 1645 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1646 */
1647 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1648 if (disksize > i_size_read(mpd->inode))
1649 disksize = i_size_read(mpd->inode);
1650 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1651 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1652 err = ext4_mark_inode_dirty(handle, mpd->inode);
1653 if (err)
1654 ext4_error(mpd->inode->i_sb,
1655 "Failed to mark inode %lu dirty",
1656 mpd->inode->i_ino);
2fa3cdfb
TT
1657 }
1658
5a87b7a5 1659submit_io:
1de3e3df 1660 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1661 mpd->io_done = 1;
64769240
AT
1662}
1663
bf068ee2
AK
1664#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1665 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1666
1667/*
1668 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1669 *
1670 * @mpd->lbh - extent of blocks
1671 * @logical - logical number of the block in the file
1672 * @bh - bh of the block (used to access block's state)
1673 *
1674 * the function is used to collect contig. blocks in same state
1675 */
1676static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1677 sector_t logical, size_t b_size,
1678 unsigned long b_state)
64769240 1679{
64769240 1680 sector_t next;
8dc207c0 1681 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1682
c445e3e0
ES
1683 /*
1684 * XXX Don't go larger than mballoc is willing to allocate
1685 * This is a stopgap solution. We eventually need to fold
1686 * mpage_da_submit_io() into this function and then call
79e83036 1687 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1688 */
1689 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1690 goto flush_it;
1691
525f4ed8 1692 /* check if thereserved journal credits might overflow */
12e9b892 1693 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1694 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1695 /*
1696 * With non-extent format we are limited by the journal
1697 * credit available. Total credit needed to insert
1698 * nrblocks contiguous blocks is dependent on the
1699 * nrblocks. So limit nrblocks.
1700 */
1701 goto flush_it;
1702 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1703 EXT4_MAX_TRANS_DATA) {
1704 /*
1705 * Adding the new buffer_head would make it cross the
1706 * allowed limit for which we have journal credit
1707 * reserved. So limit the new bh->b_size
1708 */
1709 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1710 mpd->inode->i_blkbits;
1711 /* we will do mpage_da_submit_io in the next loop */
1712 }
1713 }
64769240
AT
1714 /*
1715 * First block in the extent
1716 */
8dc207c0
TT
1717 if (mpd->b_size == 0) {
1718 mpd->b_blocknr = logical;
1719 mpd->b_size = b_size;
1720 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1721 return;
1722 }
1723
8dc207c0 1724 next = mpd->b_blocknr + nrblocks;
64769240
AT
1725 /*
1726 * Can we merge the block to our big extent?
1727 */
8dc207c0
TT
1728 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1729 mpd->b_size += b_size;
64769240
AT
1730 return;
1731 }
1732
525f4ed8 1733flush_it:
64769240
AT
1734 /*
1735 * We couldn't merge the block to our extent, so we
1736 * need to flush current extent and start new one
1737 */
5a87b7a5 1738 mpage_da_map_and_submit(mpd);
a1d6cc56 1739 return;
64769240
AT
1740}
1741
c364b22c 1742static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1743{
c364b22c 1744 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1745}
1746
5356f261
AK
1747/*
1748 * This function is grabs code from the very beginning of
1749 * ext4_map_blocks, but assumes that the caller is from delayed write
1750 * time. This function looks up the requested blocks and sets the
1751 * buffer delay bit under the protection of i_data_sem.
1752 */
1753static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1754 struct ext4_map_blocks *map,
1755 struct buffer_head *bh)
1756{
1757 int retval;
1758 sector_t invalid_block = ~((sector_t) 0xffff);
1759
1760 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1761 invalid_block = ~0;
1762
1763 map->m_flags = 0;
1764 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1765 "logical block %lu\n", inode->i_ino, map->m_len,
1766 (unsigned long) map->m_lblk);
1767 /*
1768 * Try to see if we can get the block without requesting a new
1769 * file system block.
1770 */
1771 down_read((&EXT4_I(inode)->i_data_sem));
1772 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1773 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1774 else
1775 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1776
1777 if (retval == 0) {
1778 /*
1779 * XXX: __block_prepare_write() unmaps passed block,
1780 * is it OK?
1781 */
1782 /* If the block was allocated from previously allocated cluster,
1783 * then we dont need to reserve it again. */
1784 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1785 retval = ext4_da_reserve_space(inode, iblock);
1786 if (retval)
1787 /* not enough space to reserve */
1788 goto out_unlock;
1789 }
1790
51865fda
ZL
1791 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1792 if (retval)
1793 goto out_unlock;
1794
5356f261
AK
1795 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1796 * and it should not appear on the bh->b_state.
1797 */
1798 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1799
1800 map_bh(bh, inode->i_sb, invalid_block);
1801 set_buffer_new(bh);
1802 set_buffer_delay(bh);
1803 }
1804
1805out_unlock:
1806 up_read((&EXT4_I(inode)->i_data_sem));
1807
1808 return retval;
1809}
1810
64769240 1811/*
b920c755
TT
1812 * This is a special get_blocks_t callback which is used by
1813 * ext4_da_write_begin(). It will either return mapped block or
1814 * reserve space for a single block.
29fa89d0
AK
1815 *
1816 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1817 * We also have b_blocknr = -1 and b_bdev initialized properly
1818 *
1819 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1820 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1821 * initialized properly.
64769240
AT
1822 */
1823static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1824 struct buffer_head *bh, int create)
64769240 1825{
2ed88685 1826 struct ext4_map_blocks map;
64769240
AT
1827 int ret = 0;
1828
1829 BUG_ON(create == 0);
2ed88685
TT
1830 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1831
1832 map.m_lblk = iblock;
1833 map.m_len = 1;
64769240
AT
1834
1835 /*
1836 * first, we need to know whether the block is allocated already
1837 * preallocated blocks are unmapped but should treated
1838 * the same as allocated blocks.
1839 */
5356f261
AK
1840 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1841 if (ret <= 0)
2ed88685 1842 return ret;
64769240 1843
2ed88685
TT
1844 map_bh(bh, inode->i_sb, map.m_pblk);
1845 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1846
1847 if (buffer_unwritten(bh)) {
1848 /* A delayed write to unwritten bh should be marked
1849 * new and mapped. Mapped ensures that we don't do
1850 * get_block multiple times when we write to the same
1851 * offset and new ensures that we do proper zero out
1852 * for partial write.
1853 */
1854 set_buffer_new(bh);
c8205636 1855 set_buffer_mapped(bh);
2ed88685
TT
1856 }
1857 return 0;
64769240 1858}
61628a3f 1859
b920c755
TT
1860/*
1861 * This function is used as a standard get_block_t calback function
1862 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1863 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1864 * These functions should only try to map a single block at a time.
b920c755
TT
1865 *
1866 * Since this function doesn't do block allocations even if the caller
1867 * requests it by passing in create=1, it is critically important that
1868 * any caller checks to make sure that any buffer heads are returned
1869 * by this function are either all already mapped or marked for
206f7ab4
CH
1870 * delayed allocation before calling block_write_full_page(). Otherwise,
1871 * b_blocknr could be left unitialized, and the page write functions will
1872 * be taken by surprise.
b920c755
TT
1873 */
1874static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1875 struct buffer_head *bh_result, int create)
1876{
a2dc52b5 1877 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1878 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1879}
1880
62e086be
AK
1881static int bget_one(handle_t *handle, struct buffer_head *bh)
1882{
1883 get_bh(bh);
1884 return 0;
1885}
1886
1887static int bput_one(handle_t *handle, struct buffer_head *bh)
1888{
1889 put_bh(bh);
1890 return 0;
1891}
1892
1893static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1894 unsigned int len)
1895{
1896 struct address_space *mapping = page->mapping;
1897 struct inode *inode = mapping->host;
1898 struct buffer_head *page_bufs;
1899 handle_t *handle = NULL;
1900 int ret = 0;
1901 int err;
1902
cb20d518 1903 ClearPageChecked(page);
62e086be
AK
1904 page_bufs = page_buffers(page);
1905 BUG_ON(!page_bufs);
1906 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1907 /* As soon as we unlock the page, it can go away, but we have
1908 * references to buffers so we are safe */
1909 unlock_page(page);
1910
1911 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1912 if (IS_ERR(handle)) {
1913 ret = PTR_ERR(handle);
1914 goto out;
1915 }
1916
441c8508
CW
1917 BUG_ON(!ext4_handle_valid(handle));
1918
62e086be
AK
1919 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1920 do_journal_get_write_access);
1921
1922 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1923 write_end_fn);
1924 if (ret == 0)
1925 ret = err;
2d859db3 1926 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1927 err = ext4_journal_stop(handle);
1928 if (!ret)
1929 ret = err;
1930
1931 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1932 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1933out:
1934 return ret;
1935}
1936
61628a3f 1937/*
43ce1d23
AK
1938 * Note that we don't need to start a transaction unless we're journaling data
1939 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1940 * need to file the inode to the transaction's list in ordered mode because if
1941 * we are writing back data added by write(), the inode is already there and if
25985edc 1942 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1943 * transaction the data will hit the disk. In case we are journaling data, we
1944 * cannot start transaction directly because transaction start ranks above page
1945 * lock so we have to do some magic.
1946 *
b920c755
TT
1947 * This function can get called via...
1948 * - ext4_da_writepages after taking page lock (have journal handle)
1949 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1950 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1951 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1952 *
1953 * We don't do any block allocation in this function. If we have page with
1954 * multiple blocks we need to write those buffer_heads that are mapped. This
1955 * is important for mmaped based write. So if we do with blocksize 1K
1956 * truncate(f, 1024);
1957 * a = mmap(f, 0, 4096);
1958 * a[0] = 'a';
1959 * truncate(f, 4096);
1960 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1961 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1962 * do_wp_page). So writepage should write the first block. If we modify
1963 * the mmap area beyond 1024 we will again get a page_fault and the
1964 * page_mkwrite callback will do the block allocation and mark the
1965 * buffer_heads mapped.
1966 *
1967 * We redirty the page if we have any buffer_heads that is either delay or
1968 * unwritten in the page.
1969 *
1970 * We can get recursively called as show below.
1971 *
1972 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1973 * ext4_writepage()
1974 *
1975 * But since we don't do any block allocation we should not deadlock.
1976 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1977 */
43ce1d23 1978static int ext4_writepage(struct page *page,
62e086be 1979 struct writeback_control *wbc)
64769240 1980{
a42afc5f 1981 int ret = 0, commit_write = 0;
61628a3f 1982 loff_t size;
498e5f24 1983 unsigned int len;
744692dc 1984 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1985 struct inode *inode = page->mapping->host;
1986
a9c667f8 1987 trace_ext4_writepage(page);
f0e6c985
AK
1988 size = i_size_read(inode);
1989 if (page->index == size >> PAGE_CACHE_SHIFT)
1990 len = size & ~PAGE_CACHE_MASK;
1991 else
1992 len = PAGE_CACHE_SIZE;
64769240 1993
a42afc5f
TT
1994 /*
1995 * If the page does not have buffers (for whatever reason),
a107e5a3 1996 * try to create them using __block_write_begin. If this
a42afc5f
TT
1997 * fails, redirty the page and move on.
1998 */
b1142e8f 1999 if (!page_has_buffers(page)) {
a107e5a3 2000 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2001 noalloc_get_block_write)) {
2002 redirty_page:
f0e6c985
AK
2003 redirty_page_for_writepage(wbc, page);
2004 unlock_page(page);
2005 return 0;
2006 }
a42afc5f
TT
2007 commit_write = 1;
2008 }
2009 page_bufs = page_buffers(page);
2010 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2011 ext4_bh_delay_or_unwritten)) {
f0e6c985 2012 /*
b1142e8f
TT
2013 * We don't want to do block allocation, so redirty
2014 * the page and return. We may reach here when we do
2015 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2016 * We can also reach here via shrink_page_list but it
2017 * should never be for direct reclaim so warn if that
2018 * happens
f0e6c985 2019 */
966dbde2
MG
2020 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2021 PF_MEMALLOC);
a42afc5f
TT
2022 goto redirty_page;
2023 }
2024 if (commit_write)
ed9b3e33 2025 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2026 block_commit_write(page, 0, len);
64769240 2027
cb20d518 2028 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2029 /*
2030 * It's mmapped pagecache. Add buffers and journal it. There
2031 * doesn't seem much point in redirtying the page here.
2032 */
3f0ca309 2033 return __ext4_journalled_writepage(page, len);
43ce1d23 2034
a42afc5f 2035 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2036 ext4_set_bh_endio(page_bufs, inode);
2037 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2038 wbc, ext4_end_io_buffer_write);
2039 } else
b920c755
TT
2040 ret = block_write_full_page(page, noalloc_get_block_write,
2041 wbc);
64769240 2042
64769240
AT
2043 return ret;
2044}
2045
61628a3f 2046/*
525f4ed8 2047 * This is called via ext4_da_writepages() to
25985edc 2048 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2049 * a single extent allocation into a single transaction,
2050 * ext4_da_writpeages() will loop calling this before
2051 * the block allocation.
61628a3f 2052 */
525f4ed8
MC
2053
2054static int ext4_da_writepages_trans_blocks(struct inode *inode)
2055{
2056 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2057
2058 /*
2059 * With non-extent format the journal credit needed to
2060 * insert nrblocks contiguous block is dependent on
2061 * number of contiguous block. So we will limit
2062 * number of contiguous block to a sane value
2063 */
12e9b892 2064 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2065 (max_blocks > EXT4_MAX_TRANS_DATA))
2066 max_blocks = EXT4_MAX_TRANS_DATA;
2067
2068 return ext4_chunk_trans_blocks(inode, max_blocks);
2069}
61628a3f 2070
8e48dcfb
TT
2071/*
2072 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2073 * address space and accumulate pages that need writing, and call
168fc022
TT
2074 * mpage_da_map_and_submit to map a single contiguous memory region
2075 * and then write them.
8e48dcfb
TT
2076 */
2077static int write_cache_pages_da(struct address_space *mapping,
2078 struct writeback_control *wbc,
72f84e65
ES
2079 struct mpage_da_data *mpd,
2080 pgoff_t *done_index)
8e48dcfb 2081{
4f01b02c 2082 struct buffer_head *bh, *head;
168fc022 2083 struct inode *inode = mapping->host;
4f01b02c
TT
2084 struct pagevec pvec;
2085 unsigned int nr_pages;
2086 sector_t logical;
2087 pgoff_t index, end;
2088 long nr_to_write = wbc->nr_to_write;
2089 int i, tag, ret = 0;
8e48dcfb 2090
168fc022
TT
2091 memset(mpd, 0, sizeof(struct mpage_da_data));
2092 mpd->wbc = wbc;
2093 mpd->inode = inode;
8e48dcfb
TT
2094 pagevec_init(&pvec, 0);
2095 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2096 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2097
6e6938b6 2098 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2099 tag = PAGECACHE_TAG_TOWRITE;
2100 else
2101 tag = PAGECACHE_TAG_DIRTY;
2102
72f84e65 2103 *done_index = index;
4f01b02c 2104 while (index <= end) {
5b41d924 2105 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2106 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2107 if (nr_pages == 0)
4f01b02c 2108 return 0;
8e48dcfb
TT
2109
2110 for (i = 0; i < nr_pages; i++) {
2111 struct page *page = pvec.pages[i];
2112
2113 /*
2114 * At this point, the page may be truncated or
2115 * invalidated (changing page->mapping to NULL), or
2116 * even swizzled back from swapper_space to tmpfs file
2117 * mapping. However, page->index will not change
2118 * because we have a reference on the page.
2119 */
4f01b02c
TT
2120 if (page->index > end)
2121 goto out;
8e48dcfb 2122
72f84e65
ES
2123 *done_index = page->index + 1;
2124
78aaced3
TT
2125 /*
2126 * If we can't merge this page, and we have
2127 * accumulated an contiguous region, write it
2128 */
2129 if ((mpd->next_page != page->index) &&
2130 (mpd->next_page != mpd->first_page)) {
2131 mpage_da_map_and_submit(mpd);
2132 goto ret_extent_tail;
2133 }
2134
8e48dcfb
TT
2135 lock_page(page);
2136
2137 /*
4f01b02c
TT
2138 * If the page is no longer dirty, or its
2139 * mapping no longer corresponds to inode we
2140 * are writing (which means it has been
2141 * truncated or invalidated), or the page is
2142 * already under writeback and we are not
2143 * doing a data integrity writeback, skip the page
8e48dcfb 2144 */
4f01b02c
TT
2145 if (!PageDirty(page) ||
2146 (PageWriteback(page) &&
2147 (wbc->sync_mode == WB_SYNC_NONE)) ||
2148 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2149 unlock_page(page);
2150 continue;
2151 }
2152
7cb1a535 2153 wait_on_page_writeback(page);
8e48dcfb 2154 BUG_ON(PageWriteback(page));
8e48dcfb 2155
168fc022 2156 if (mpd->next_page != page->index)
8eb9e5ce 2157 mpd->first_page = page->index;
8eb9e5ce
TT
2158 mpd->next_page = page->index + 1;
2159 logical = (sector_t) page->index <<
2160 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2161
2162 if (!page_has_buffers(page)) {
4f01b02c
TT
2163 mpage_add_bh_to_extent(mpd, logical,
2164 PAGE_CACHE_SIZE,
8eb9e5ce 2165 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2166 if (mpd->io_done)
2167 goto ret_extent_tail;
8eb9e5ce
TT
2168 } else {
2169 /*
4f01b02c
TT
2170 * Page with regular buffer heads,
2171 * just add all dirty ones
8eb9e5ce
TT
2172 */
2173 head = page_buffers(page);
2174 bh = head;
2175 do {
2176 BUG_ON(buffer_locked(bh));
2177 /*
2178 * We need to try to allocate
2179 * unmapped blocks in the same page.
2180 * Otherwise we won't make progress
2181 * with the page in ext4_writepage
2182 */
2183 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2184 mpage_add_bh_to_extent(mpd, logical,
2185 bh->b_size,
2186 bh->b_state);
4f01b02c
TT
2187 if (mpd->io_done)
2188 goto ret_extent_tail;
8eb9e5ce
TT
2189 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2190 /*
4f01b02c
TT
2191 * mapped dirty buffer. We need
2192 * to update the b_state
2193 * because we look at b_state
2194 * in mpage_da_map_blocks. We
2195 * don't update b_size because
2196 * if we find an unmapped
2197 * buffer_head later we need to
2198 * use the b_state flag of that
2199 * buffer_head.
8eb9e5ce
TT
2200 */
2201 if (mpd->b_size == 0)
2202 mpd->b_state = bh->b_state & BH_FLAGS;
2203 }
2204 logical++;
2205 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2206 }
2207
2208 if (nr_to_write > 0) {
2209 nr_to_write--;
2210 if (nr_to_write == 0 &&
4f01b02c 2211 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2212 /*
2213 * We stop writing back only if we are
2214 * not doing integrity sync. In case of
2215 * integrity sync we have to keep going
2216 * because someone may be concurrently
2217 * dirtying pages, and we might have
2218 * synced a lot of newly appeared dirty
2219 * pages, but have not synced all of the
2220 * old dirty pages.
2221 */
4f01b02c 2222 goto out;
8e48dcfb
TT
2223 }
2224 }
2225 pagevec_release(&pvec);
2226 cond_resched();
2227 }
4f01b02c
TT
2228 return 0;
2229ret_extent_tail:
2230 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2231out:
2232 pagevec_release(&pvec);
2233 cond_resched();
8e48dcfb
TT
2234 return ret;
2235}
2236
2237
64769240 2238static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2239 struct writeback_control *wbc)
64769240 2240{
22208ded
AK
2241 pgoff_t index;
2242 int range_whole = 0;
61628a3f 2243 handle_t *handle = NULL;
df22291f 2244 struct mpage_da_data mpd;
5e745b04 2245 struct inode *inode = mapping->host;
498e5f24 2246 int pages_written = 0;
55138e0b 2247 unsigned int max_pages;
2acf2c26 2248 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2249 int needed_blocks, ret = 0;
2250 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2251 loff_t range_start = wbc->range_start;
5e745b04 2252 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2253 pgoff_t done_index = 0;
5b41d924 2254 pgoff_t end;
1bce63d1 2255 struct blk_plug plug;
61628a3f 2256
9bffad1e 2257 trace_ext4_da_writepages(inode, wbc);
ba80b101 2258
61628a3f
MC
2259 /*
2260 * No pages to write? This is mainly a kludge to avoid starting
2261 * a transaction for special inodes like journal inode on last iput()
2262 * because that could violate lock ordering on umount
2263 */
a1d6cc56 2264 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2265 return 0;
2a21e37e
TT
2266
2267 /*
2268 * If the filesystem has aborted, it is read-only, so return
2269 * right away instead of dumping stack traces later on that
2270 * will obscure the real source of the problem. We test
4ab2f15b 2271 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2272 * the latter could be true if the filesystem is mounted
2273 * read-only, and in that case, ext4_da_writepages should
2274 * *never* be called, so if that ever happens, we would want
2275 * the stack trace.
2276 */
4ab2f15b 2277 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2278 return -EROFS;
2279
22208ded
AK
2280 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2281 range_whole = 1;
61628a3f 2282
2acf2c26
AK
2283 range_cyclic = wbc->range_cyclic;
2284 if (wbc->range_cyclic) {
22208ded 2285 index = mapping->writeback_index;
2acf2c26
AK
2286 if (index)
2287 cycled = 0;
2288 wbc->range_start = index << PAGE_CACHE_SHIFT;
2289 wbc->range_end = LLONG_MAX;
2290 wbc->range_cyclic = 0;
5b41d924
ES
2291 end = -1;
2292 } else {
22208ded 2293 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2294 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2295 }
a1d6cc56 2296
55138e0b
TT
2297 /*
2298 * This works around two forms of stupidity. The first is in
2299 * the writeback code, which caps the maximum number of pages
2300 * written to be 1024 pages. This is wrong on multiple
2301 * levels; different architectues have a different page size,
2302 * which changes the maximum amount of data which gets
2303 * written. Secondly, 4 megabytes is way too small. XFS
2304 * forces this value to be 16 megabytes by multiplying
2305 * nr_to_write parameter by four, and then relies on its
2306 * allocator to allocate larger extents to make them
2307 * contiguous. Unfortunately this brings us to the second
2308 * stupidity, which is that ext4's mballoc code only allocates
2309 * at most 2048 blocks. So we force contiguous writes up to
2310 * the number of dirty blocks in the inode, or
2311 * sbi->max_writeback_mb_bump whichever is smaller.
2312 */
2313 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2314 if (!range_cyclic && range_whole) {
2315 if (wbc->nr_to_write == LONG_MAX)
2316 desired_nr_to_write = wbc->nr_to_write;
2317 else
2318 desired_nr_to_write = wbc->nr_to_write * 8;
2319 } else
55138e0b
TT
2320 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2321 max_pages);
2322 if (desired_nr_to_write > max_pages)
2323 desired_nr_to_write = max_pages;
2324
2325 if (wbc->nr_to_write < desired_nr_to_write) {
2326 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2327 wbc->nr_to_write = desired_nr_to_write;
2328 }
2329
2acf2c26 2330retry:
6e6938b6 2331 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2332 tag_pages_for_writeback(mapping, index, end);
2333
1bce63d1 2334 blk_start_plug(&plug);
22208ded 2335 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2336
2337 /*
2338 * we insert one extent at a time. So we need
2339 * credit needed for single extent allocation.
2340 * journalled mode is currently not supported
2341 * by delalloc
2342 */
2343 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2344 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2345
61628a3f
MC
2346 /* start a new transaction*/
2347 handle = ext4_journal_start(inode, needed_blocks);
2348 if (IS_ERR(handle)) {
2349 ret = PTR_ERR(handle);
1693918e 2350 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2351 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2352 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2353 blk_finish_plug(&plug);
61628a3f
MC
2354 goto out_writepages;
2355 }
f63e6005
TT
2356
2357 /*
8eb9e5ce 2358 * Now call write_cache_pages_da() to find the next
f63e6005 2359 * contiguous region of logical blocks that need
8eb9e5ce 2360 * blocks to be allocated by ext4 and submit them.
f63e6005 2361 */
72f84e65 2362 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2363 /*
af901ca1 2364 * If we have a contiguous extent of pages and we
f63e6005
TT
2365 * haven't done the I/O yet, map the blocks and submit
2366 * them for I/O.
2367 */
2368 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2369 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2370 ret = MPAGE_DA_EXTENT_TAIL;
2371 }
b3a3ca8c 2372 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2373 wbc->nr_to_write -= mpd.pages_written;
df22291f 2374
61628a3f 2375 ext4_journal_stop(handle);
df22291f 2376
8f64b32e 2377 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2378 /* commit the transaction which would
2379 * free blocks released in the transaction
2380 * and try again
2381 */
df22291f 2382 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2383 ret = 0;
2384 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2385 /*
8de49e67
KM
2386 * Got one extent now try with rest of the pages.
2387 * If mpd.retval is set -EIO, journal is aborted.
2388 * So we don't need to write any more.
a1d6cc56 2389 */
22208ded 2390 pages_written += mpd.pages_written;
8de49e67 2391 ret = mpd.retval;
2acf2c26 2392 io_done = 1;
22208ded 2393 } else if (wbc->nr_to_write)
61628a3f
MC
2394 /*
2395 * There is no more writeout needed
2396 * or we requested for a noblocking writeout
2397 * and we found the device congested
2398 */
61628a3f 2399 break;
a1d6cc56 2400 }
1bce63d1 2401 blk_finish_plug(&plug);
2acf2c26
AK
2402 if (!io_done && !cycled) {
2403 cycled = 1;
2404 index = 0;
2405 wbc->range_start = index << PAGE_CACHE_SHIFT;
2406 wbc->range_end = mapping->writeback_index - 1;
2407 goto retry;
2408 }
22208ded
AK
2409
2410 /* Update index */
2acf2c26 2411 wbc->range_cyclic = range_cyclic;
22208ded
AK
2412 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2413 /*
2414 * set the writeback_index so that range_cyclic
2415 * mode will write it back later
2416 */
72f84e65 2417 mapping->writeback_index = done_index;
a1d6cc56 2418
61628a3f 2419out_writepages:
2faf2e19 2420 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2421 wbc->range_start = range_start;
9bffad1e 2422 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2423 return ret;
64769240
AT
2424}
2425
79f0be8d
AK
2426#define FALL_BACK_TO_NONDELALLOC 1
2427static int ext4_nonda_switch(struct super_block *sb)
2428{
2429 s64 free_blocks, dirty_blocks;
2430 struct ext4_sb_info *sbi = EXT4_SB(sb);
2431
2432 /*
2433 * switch to non delalloc mode if we are running low
2434 * on free block. The free block accounting via percpu
179f7ebf 2435 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2436 * accumulated on each CPU without updating global counters
2437 * Delalloc need an accurate free block accounting. So switch
2438 * to non delalloc when we are near to error range.
2439 */
57042651
TT
2440 free_blocks = EXT4_C2B(sbi,
2441 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2442 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2443 /*
2444 * Start pushing delalloc when 1/2 of free blocks are dirty.
2445 */
2446 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2447 !writeback_in_progress(sb->s_bdi) &&
2448 down_read_trylock(&sb->s_umount)) {
2449 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2450 up_read(&sb->s_umount);
2451 }
2452
79f0be8d 2453 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2454 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2455 /*
c8afb446
ES
2456 * free block count is less than 150% of dirty blocks
2457 * or free blocks is less than watermark
79f0be8d
AK
2458 */
2459 return 1;
2460 }
2461 return 0;
2462}
2463
64769240 2464static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2465 loff_t pos, unsigned len, unsigned flags,
2466 struct page **pagep, void **fsdata)
64769240 2467{
72b8ab9d 2468 int ret, retries = 0;
64769240
AT
2469 struct page *page;
2470 pgoff_t index;
64769240
AT
2471 struct inode *inode = mapping->host;
2472 handle_t *handle;
2473
2474 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2475
2476 if (ext4_nonda_switch(inode->i_sb)) {
2477 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2478 return ext4_write_begin(file, mapping, pos,
2479 len, flags, pagep, fsdata);
2480 }
2481 *fsdata = (void *)0;
9bffad1e 2482 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2483retry:
64769240
AT
2484 /*
2485 * With delayed allocation, we don't log the i_disksize update
2486 * if there is delayed block allocation. But we still need
2487 * to journalling the i_disksize update if writes to the end
2488 * of file which has an already mapped buffer.
2489 */
2490 handle = ext4_journal_start(inode, 1);
2491 if (IS_ERR(handle)) {
2492 ret = PTR_ERR(handle);
2493 goto out;
2494 }
ebd3610b
JK
2495 /* We cannot recurse into the filesystem as the transaction is already
2496 * started */
2497 flags |= AOP_FLAG_NOFS;
64769240 2498
54566b2c 2499 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2500 if (!page) {
2501 ext4_journal_stop(handle);
2502 ret = -ENOMEM;
2503 goto out;
2504 }
64769240
AT
2505 *pagep = page;
2506
6e1db88d 2507 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2508 if (ret < 0) {
2509 unlock_page(page);
2510 ext4_journal_stop(handle);
2511 page_cache_release(page);
ae4d5372
AK
2512 /*
2513 * block_write_begin may have instantiated a few blocks
2514 * outside i_size. Trim these off again. Don't need
2515 * i_size_read because we hold i_mutex.
2516 */
2517 if (pos + len > inode->i_size)
b9a4207d 2518 ext4_truncate_failed_write(inode);
64769240
AT
2519 }
2520
d2a17637
MC
2521 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2522 goto retry;
64769240
AT
2523out:
2524 return ret;
2525}
2526
632eaeab
MC
2527/*
2528 * Check if we should update i_disksize
2529 * when write to the end of file but not require block allocation
2530 */
2531static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2532 unsigned long offset)
632eaeab
MC
2533{
2534 struct buffer_head *bh;
2535 struct inode *inode = page->mapping->host;
2536 unsigned int idx;
2537 int i;
2538
2539 bh = page_buffers(page);
2540 idx = offset >> inode->i_blkbits;
2541
af5bc92d 2542 for (i = 0; i < idx; i++)
632eaeab
MC
2543 bh = bh->b_this_page;
2544
29fa89d0 2545 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2546 return 0;
2547 return 1;
2548}
2549
64769240 2550static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2551 struct address_space *mapping,
2552 loff_t pos, unsigned len, unsigned copied,
2553 struct page *page, void *fsdata)
64769240
AT
2554{
2555 struct inode *inode = mapping->host;
2556 int ret = 0, ret2;
2557 handle_t *handle = ext4_journal_current_handle();
2558 loff_t new_i_size;
632eaeab 2559 unsigned long start, end;
79f0be8d
AK
2560 int write_mode = (int)(unsigned long)fsdata;
2561
2562 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2563 switch (ext4_inode_journal_mode(inode)) {
2564 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2565 return ext4_ordered_write_end(file, mapping, pos,
2566 len, copied, page, fsdata);
3d2b1582 2567 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2568 return ext4_writeback_write_end(file, mapping, pos,
2569 len, copied, page, fsdata);
3d2b1582 2570 default:
79f0be8d
AK
2571 BUG();
2572 }
2573 }
632eaeab 2574
9bffad1e 2575 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2576 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2577 end = start + copied - 1;
64769240
AT
2578
2579 /*
2580 * generic_write_end() will run mark_inode_dirty() if i_size
2581 * changes. So let's piggyback the i_disksize mark_inode_dirty
2582 * into that.
2583 */
2584
2585 new_i_size = pos + copied;
ea51d132 2586 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2587 if (ext4_da_should_update_i_disksize(page, end)) {
2588 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2589 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2590 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2591 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2592 /* We need to mark inode dirty even if
2593 * new_i_size is less that inode->i_size
2594 * bu greater than i_disksize.(hint delalloc)
2595 */
2596 ext4_mark_inode_dirty(handle, inode);
64769240 2597 }
632eaeab 2598 }
64769240
AT
2599 ret2 = generic_write_end(file, mapping, pos, len, copied,
2600 page, fsdata);
2601 copied = ret2;
2602 if (ret2 < 0)
2603 ret = ret2;
2604 ret2 = ext4_journal_stop(handle);
2605 if (!ret)
2606 ret = ret2;
2607
2608 return ret ? ret : copied;
2609}
2610
2611static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2612{
64769240
AT
2613 /*
2614 * Drop reserved blocks
2615 */
2616 BUG_ON(!PageLocked(page));
2617 if (!page_has_buffers(page))
2618 goto out;
2619
d2a17637 2620 ext4_da_page_release_reservation(page, offset);
64769240
AT
2621
2622out:
2623 ext4_invalidatepage(page, offset);
2624
2625 return;
2626}
2627
ccd2506b
TT
2628/*
2629 * Force all delayed allocation blocks to be allocated for a given inode.
2630 */
2631int ext4_alloc_da_blocks(struct inode *inode)
2632{
fb40ba0d
TT
2633 trace_ext4_alloc_da_blocks(inode);
2634
ccd2506b
TT
2635 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2636 !EXT4_I(inode)->i_reserved_meta_blocks)
2637 return 0;
2638
2639 /*
2640 * We do something simple for now. The filemap_flush() will
2641 * also start triggering a write of the data blocks, which is
2642 * not strictly speaking necessary (and for users of
2643 * laptop_mode, not even desirable). However, to do otherwise
2644 * would require replicating code paths in:
de9a55b8 2645 *
ccd2506b
TT
2646 * ext4_da_writepages() ->
2647 * write_cache_pages() ---> (via passed in callback function)
2648 * __mpage_da_writepage() -->
2649 * mpage_add_bh_to_extent()
2650 * mpage_da_map_blocks()
2651 *
2652 * The problem is that write_cache_pages(), located in
2653 * mm/page-writeback.c, marks pages clean in preparation for
2654 * doing I/O, which is not desirable if we're not planning on
2655 * doing I/O at all.
2656 *
2657 * We could call write_cache_pages(), and then redirty all of
380cf090 2658 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2659 * would be ugly in the extreme. So instead we would need to
2660 * replicate parts of the code in the above functions,
25985edc 2661 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2662 * write out the pages, but rather only collect contiguous
2663 * logical block extents, call the multi-block allocator, and
2664 * then update the buffer heads with the block allocations.
de9a55b8 2665 *
ccd2506b
TT
2666 * For now, though, we'll cheat by calling filemap_flush(),
2667 * which will map the blocks, and start the I/O, but not
2668 * actually wait for the I/O to complete.
2669 */
2670 return filemap_flush(inode->i_mapping);
2671}
64769240 2672
ac27a0ec
DK
2673/*
2674 * bmap() is special. It gets used by applications such as lilo and by
2675 * the swapper to find the on-disk block of a specific piece of data.
2676 *
2677 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2678 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2679 * filesystem and enables swap, then they may get a nasty shock when the
2680 * data getting swapped to that swapfile suddenly gets overwritten by
2681 * the original zero's written out previously to the journal and
2682 * awaiting writeback in the kernel's buffer cache.
2683 *
2684 * So, if we see any bmap calls here on a modified, data-journaled file,
2685 * take extra steps to flush any blocks which might be in the cache.
2686 */
617ba13b 2687static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2688{
2689 struct inode *inode = mapping->host;
2690 journal_t *journal;
2691 int err;
2692
46c7f254
TM
2693 /*
2694 * We can get here for an inline file via the FIBMAP ioctl
2695 */
2696 if (ext4_has_inline_data(inode))
2697 return 0;
2698
64769240
AT
2699 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2700 test_opt(inode->i_sb, DELALLOC)) {
2701 /*
2702 * With delalloc we want to sync the file
2703 * so that we can make sure we allocate
2704 * blocks for file
2705 */
2706 filemap_write_and_wait(mapping);
2707 }
2708
19f5fb7a
TT
2709 if (EXT4_JOURNAL(inode) &&
2710 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2711 /*
2712 * This is a REALLY heavyweight approach, but the use of
2713 * bmap on dirty files is expected to be extremely rare:
2714 * only if we run lilo or swapon on a freshly made file
2715 * do we expect this to happen.
2716 *
2717 * (bmap requires CAP_SYS_RAWIO so this does not
2718 * represent an unprivileged user DOS attack --- we'd be
2719 * in trouble if mortal users could trigger this path at
2720 * will.)
2721 *
617ba13b 2722 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2723 * regular files. If somebody wants to bmap a directory
2724 * or symlink and gets confused because the buffer
2725 * hasn't yet been flushed to disk, they deserve
2726 * everything they get.
2727 */
2728
19f5fb7a 2729 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2730 journal = EXT4_JOURNAL(inode);
dab291af
MC
2731 jbd2_journal_lock_updates(journal);
2732 err = jbd2_journal_flush(journal);
2733 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2734
2735 if (err)
2736 return 0;
2737 }
2738
af5bc92d 2739 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2740}
2741
617ba13b 2742static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2743{
46c7f254
TM
2744 int ret = -EAGAIN;
2745 struct inode *inode = page->mapping->host;
2746
0562e0ba 2747 trace_ext4_readpage(page);
46c7f254
TM
2748
2749 if (ext4_has_inline_data(inode))
2750 ret = ext4_readpage_inline(inode, page);
2751
2752 if (ret == -EAGAIN)
2753 return mpage_readpage(page, ext4_get_block);
2754
2755 return ret;
ac27a0ec
DK
2756}
2757
2758static int
617ba13b 2759ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2760 struct list_head *pages, unsigned nr_pages)
2761{
46c7f254
TM
2762 struct inode *inode = mapping->host;
2763
2764 /* If the file has inline data, no need to do readpages. */
2765 if (ext4_has_inline_data(inode))
2766 return 0;
2767
617ba13b 2768 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2769}
2770
744692dc
JZ
2771static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2772{
2773 struct buffer_head *head, *bh;
2774 unsigned int curr_off = 0;
2775
2776 if (!page_has_buffers(page))
2777 return;
2778 head = bh = page_buffers(page);
2779 do {
2780 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2781 && bh->b_private) {
2782 ext4_free_io_end(bh->b_private);
2783 bh->b_private = NULL;
2784 bh->b_end_io = NULL;
2785 }
2786 curr_off = curr_off + bh->b_size;
2787 bh = bh->b_this_page;
2788 } while (bh != head);
2789}
2790
617ba13b 2791static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2792{
617ba13b 2793 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2794
0562e0ba
JZ
2795 trace_ext4_invalidatepage(page, offset);
2796
744692dc
JZ
2797 /*
2798 * free any io_end structure allocated for buffers to be discarded
2799 */
2800 if (ext4_should_dioread_nolock(page->mapping->host))
2801 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2802 /*
2803 * If it's a full truncate we just forget about the pending dirtying
2804 */
2805 if (offset == 0)
2806 ClearPageChecked(page);
2807
0390131b
FM
2808 if (journal)
2809 jbd2_journal_invalidatepage(journal, page, offset);
2810 else
2811 block_invalidatepage(page, offset);
ac27a0ec
DK
2812}
2813
617ba13b 2814static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2815{
617ba13b 2816 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2817
0562e0ba
JZ
2818 trace_ext4_releasepage(page);
2819
ac27a0ec
DK
2820 WARN_ON(PageChecked(page));
2821 if (!page_has_buffers(page))
2822 return 0;
0390131b
FM
2823 if (journal)
2824 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2825 else
2826 return try_to_free_buffers(page);
ac27a0ec
DK
2827}
2828
2ed88685
TT
2829/*
2830 * ext4_get_block used when preparing for a DIO write or buffer write.
2831 * We allocate an uinitialized extent if blocks haven't been allocated.
2832 * The extent will be converted to initialized after the IO is complete.
2833 */
c7064ef1 2834static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2835 struct buffer_head *bh_result, int create)
2836{
c7064ef1 2837 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2838 inode->i_ino, create);
2ed88685
TT
2839 return _ext4_get_block(inode, iblock, bh_result,
2840 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2841}
2842
729f52c6 2843static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2844 struct buffer_head *bh_result, int create)
729f52c6 2845{
8b0f165f
AP
2846 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2847 inode->i_ino, create);
2848 return _ext4_get_block(inode, iblock, bh_result,
2849 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2850}
2851
4c0425ff 2852static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2853 ssize_t size, void *private, int ret,
2854 bool is_async)
4c0425ff 2855{
72c5052d 2856 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff 2857 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2858
4b70df18
M
2859 /* if not async direct IO or dio with 0 bytes write, just return */
2860 if (!io_end || !size)
552ef802 2861 goto out;
4b70df18 2862
88635ca2 2863 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2864 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2865 iocb->private, io_end->inode->i_ino, iocb, offset,
2866 size);
8d5d02e6 2867
b5a7e970
TT
2868 iocb->private = NULL;
2869
8d5d02e6 2870 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2871 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2872 ext4_free_io_end(io_end);
5b3ff237
JZ
2873out:
2874 if (is_async)
2875 aio_complete(iocb, ret, 0);
72c5052d 2876 inode_dio_done(inode);
5b3ff237 2877 return;
8d5d02e6
MC
2878 }
2879
4c0425ff
MC
2880 io_end->offset = offset;
2881 io_end->size = size;
5b3ff237
JZ
2882 if (is_async) {
2883 io_end->iocb = iocb;
2884 io_end->result = ret;
2885 }
4c0425ff 2886
28a535f9 2887 ext4_add_complete_io(io_end);
4c0425ff 2888}
c7064ef1 2889
744692dc
JZ
2890static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2891{
2892 ext4_io_end_t *io_end = bh->b_private;
744692dc 2893 struct inode *inode;
744692dc
JZ
2894
2895 if (!test_clear_buffer_uninit(bh) || !io_end)
2896 goto out;
2897
2898 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2899 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2900 "sb umounted, discard end_io request for inode %lu",
2901 io_end->inode->i_ino);
744692dc
JZ
2902 ext4_free_io_end(io_end);
2903 goto out;
2904 }
2905
32c80b32
TM
2906 /*
2907 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2908 * but being more careful is always safe for the future change.
2909 */
744692dc 2910 inode = io_end->inode;
0edeb71d 2911 ext4_set_io_unwritten_flag(inode, io_end);
28a535f9 2912 ext4_add_complete_io(io_end);
744692dc
JZ
2913out:
2914 bh->b_private = NULL;
2915 bh->b_end_io = NULL;
2916 clear_buffer_uninit(bh);
2917 end_buffer_async_write(bh, uptodate);
2918}
2919
2920static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2921{
2922 ext4_io_end_t *io_end;
2923 struct page *page = bh->b_page;
2924 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2925 size_t size = bh->b_size;
2926
2927retry:
2928 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2929 if (!io_end) {
6db26ffc 2930 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2931 schedule();
2932 goto retry;
2933 }
2934 io_end->offset = offset;
2935 io_end->size = size;
2936 /*
2937 * We need to hold a reference to the page to make sure it
2938 * doesn't get evicted before ext4_end_io_work() has a chance
2939 * to convert the extent from written to unwritten.
2940 */
2941 io_end->page = page;
2942 get_page(io_end->page);
2943
2944 bh->b_private = io_end;
2945 bh->b_end_io = ext4_end_io_buffer_write;
2946 return 0;
2947}
2948
4c0425ff
MC
2949/*
2950 * For ext4 extent files, ext4 will do direct-io write to holes,
2951 * preallocated extents, and those write extend the file, no need to
2952 * fall back to buffered IO.
2953 *
b595076a 2954 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 2955 * If those blocks were preallocated, we mark sure they are split, but
b595076a 2956 * still keep the range to write as uninitialized.
4c0425ff 2957 *
69c499d1 2958 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2959 * For async direct IO, since the IO may still pending when return, we
25985edc 2960 * set up an end_io call back function, which will do the conversion
8d5d02e6 2961 * when async direct IO completed.
4c0425ff
MC
2962 *
2963 * If the O_DIRECT write will extend the file then add this inode to the
2964 * orphan list. So recovery will truncate it back to the original size
2965 * if the machine crashes during the write.
2966 *
2967 */
2968static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2969 const struct iovec *iov, loff_t offset,
2970 unsigned long nr_segs)
2971{
2972 struct file *file = iocb->ki_filp;
2973 struct inode *inode = file->f_mapping->host;
2974 ssize_t ret;
2975 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
2976 int overwrite = 0;
2977 get_block_t *get_block_func = NULL;
2978 int dio_flags = 0;
4c0425ff 2979 loff_t final_size = offset + count;
729f52c6 2980
69c499d1
TT
2981 /* Use the old path for reads and writes beyond i_size. */
2982 if (rw != WRITE || final_size > inode->i_size)
2983 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 2984
69c499d1 2985 BUG_ON(iocb->private == NULL);
4bd809db 2986
69c499d1
TT
2987 /* If we do a overwrite dio, i_mutex locking can be released */
2988 overwrite = *((int *)iocb->private);
4bd809db 2989
69c499d1
TT
2990 if (overwrite) {
2991 atomic_inc(&inode->i_dio_count);
2992 down_read(&EXT4_I(inode)->i_data_sem);
2993 mutex_unlock(&inode->i_mutex);
2994 }
8d5d02e6 2995
69c499d1
TT
2996 /*
2997 * We could direct write to holes and fallocate.
2998 *
2999 * Allocated blocks to fill the hole are marked as
3000 * uninitialized to prevent parallel buffered read to expose
3001 * the stale data before DIO complete the data IO.
3002 *
3003 * As to previously fallocated extents, ext4 get_block will
3004 * just simply mark the buffer mapped but still keep the
3005 * extents uninitialized.
3006 *
3007 * For non AIO case, we will convert those unwritten extents
3008 * to written after return back from blockdev_direct_IO.
3009 *
3010 * For async DIO, the conversion needs to be deferred when the
3011 * IO is completed. The ext4 end_io callback function will be
3012 * called to take care of the conversion work. Here for async
3013 * case, we allocate an io_end structure to hook to the iocb.
3014 */
3015 iocb->private = NULL;
3016 ext4_inode_aio_set(inode, NULL);
3017 if (!is_sync_kiocb(iocb)) {
3018 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3019 if (!io_end) {
3020 ret = -ENOMEM;
3021 goto retake_lock;
8b0f165f 3022 }
69c499d1
TT
3023 io_end->flag |= EXT4_IO_END_DIRECT;
3024 iocb->private = io_end;
8d5d02e6 3025 /*
69c499d1
TT
3026 * we save the io structure for current async direct
3027 * IO, so that later ext4_map_blocks() could flag the
3028 * io structure whether there is a unwritten extents
3029 * needs to be converted when IO is completed.
8d5d02e6 3030 */
69c499d1
TT
3031 ext4_inode_aio_set(inode, io_end);
3032 }
4bd809db 3033
69c499d1
TT
3034 if (overwrite) {
3035 get_block_func = ext4_get_block_write_nolock;
3036 } else {
3037 get_block_func = ext4_get_block_write;
3038 dio_flags = DIO_LOCKING;
3039 }
3040 ret = __blockdev_direct_IO(rw, iocb, inode,
3041 inode->i_sb->s_bdev, iov,
3042 offset, nr_segs,
3043 get_block_func,
3044 ext4_end_io_dio,
3045 NULL,
3046 dio_flags);
3047
3048 if (iocb->private)
3049 ext4_inode_aio_set(inode, NULL);
3050 /*
3051 * The io_end structure takes a reference to the inode, that
3052 * structure needs to be destroyed and the reference to the
3053 * inode need to be dropped, when IO is complete, even with 0
3054 * byte write, or failed.
3055 *
3056 * In the successful AIO DIO case, the io_end structure will
3057 * be destroyed and the reference to the inode will be dropped
3058 * after the end_io call back function is called.
3059 *
3060 * In the case there is 0 byte write, or error case, since VFS
3061 * direct IO won't invoke the end_io call back function, we
3062 * need to free the end_io structure here.
3063 */
3064 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3065 ext4_free_io_end(iocb->private);
3066 iocb->private = NULL;
3067 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3068 EXT4_STATE_DIO_UNWRITTEN)) {
3069 int err;
3070 /*
3071 * for non AIO case, since the IO is already
3072 * completed, we could do the conversion right here
3073 */
3074 err = ext4_convert_unwritten_extents(inode,
3075 offset, ret);
3076 if (err < 0)
3077 ret = err;
3078 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079 }
4bd809db 3080
69c499d1
TT
3081retake_lock:
3082 /* take i_mutex locking again if we do a ovewrite dio */
3083 if (overwrite) {
3084 inode_dio_done(inode);
3085 up_read(&EXT4_I(inode)->i_data_sem);
3086 mutex_lock(&inode->i_mutex);
4c0425ff 3087 }
8d5d02e6 3088
69c499d1 3089 return ret;
4c0425ff
MC
3090}
3091
3092static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3093 const struct iovec *iov, loff_t offset,
3094 unsigned long nr_segs)
3095{
3096 struct file *file = iocb->ki_filp;
3097 struct inode *inode = file->f_mapping->host;
0562e0ba 3098 ssize_t ret;
4c0425ff 3099
84ebd795
TT
3100 /*
3101 * If we are doing data journalling we don't support O_DIRECT
3102 */
3103 if (ext4_should_journal_data(inode))
3104 return 0;
3105
46c7f254
TM
3106 /* Let buffer I/O handle the inline data case. */
3107 if (ext4_has_inline_data(inode))
3108 return 0;
3109
0562e0ba 3110 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3111 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3112 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3113 else
3114 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3115 trace_ext4_direct_IO_exit(inode, offset,
3116 iov_length(iov, nr_segs), rw, ret);
3117 return ret;
4c0425ff
MC
3118}
3119
ac27a0ec 3120/*
617ba13b 3121 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3122 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3123 * much here because ->set_page_dirty is called under VFS locks. The page is
3124 * not necessarily locked.
3125 *
3126 * We cannot just dirty the page and leave attached buffers clean, because the
3127 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3128 * or jbddirty because all the journalling code will explode.
3129 *
3130 * So what we do is to mark the page "pending dirty" and next time writepage
3131 * is called, propagate that into the buffers appropriately.
3132 */
617ba13b 3133static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3134{
3135 SetPageChecked(page);
3136 return __set_page_dirty_nobuffers(page);
3137}
3138
617ba13b 3139static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3140 .readpage = ext4_readpage,
3141 .readpages = ext4_readpages,
43ce1d23 3142 .writepage = ext4_writepage,
8ab22b9a
HH
3143 .write_begin = ext4_write_begin,
3144 .write_end = ext4_ordered_write_end,
3145 .bmap = ext4_bmap,
3146 .invalidatepage = ext4_invalidatepage,
3147 .releasepage = ext4_releasepage,
3148 .direct_IO = ext4_direct_IO,
3149 .migratepage = buffer_migrate_page,
3150 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3151 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3152};
3153
617ba13b 3154static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3155 .readpage = ext4_readpage,
3156 .readpages = ext4_readpages,
43ce1d23 3157 .writepage = ext4_writepage,
8ab22b9a
HH
3158 .write_begin = ext4_write_begin,
3159 .write_end = ext4_writeback_write_end,
3160 .bmap = ext4_bmap,
3161 .invalidatepage = ext4_invalidatepage,
3162 .releasepage = ext4_releasepage,
3163 .direct_IO = ext4_direct_IO,
3164 .migratepage = buffer_migrate_page,
3165 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3166 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3167};
3168
617ba13b 3169static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3170 .readpage = ext4_readpage,
3171 .readpages = ext4_readpages,
43ce1d23 3172 .writepage = ext4_writepage,
8ab22b9a
HH
3173 .write_begin = ext4_write_begin,
3174 .write_end = ext4_journalled_write_end,
3175 .set_page_dirty = ext4_journalled_set_page_dirty,
3176 .bmap = ext4_bmap,
3177 .invalidatepage = ext4_invalidatepage,
3178 .releasepage = ext4_releasepage,
84ebd795 3179 .direct_IO = ext4_direct_IO,
8ab22b9a 3180 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3181 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3182};
3183
64769240 3184static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3185 .readpage = ext4_readpage,
3186 .readpages = ext4_readpages,
43ce1d23 3187 .writepage = ext4_writepage,
8ab22b9a 3188 .writepages = ext4_da_writepages,
8ab22b9a
HH
3189 .write_begin = ext4_da_write_begin,
3190 .write_end = ext4_da_write_end,
3191 .bmap = ext4_bmap,
3192 .invalidatepage = ext4_da_invalidatepage,
3193 .releasepage = ext4_releasepage,
3194 .direct_IO = ext4_direct_IO,
3195 .migratepage = buffer_migrate_page,
3196 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3197 .error_remove_page = generic_error_remove_page,
64769240
AT
3198};
3199
617ba13b 3200void ext4_set_aops(struct inode *inode)
ac27a0ec 3201{
3d2b1582
LC
3202 switch (ext4_inode_journal_mode(inode)) {
3203 case EXT4_INODE_ORDERED_DATA_MODE:
3204 if (test_opt(inode->i_sb, DELALLOC))
3205 inode->i_mapping->a_ops = &ext4_da_aops;
3206 else
3207 inode->i_mapping->a_ops = &ext4_ordered_aops;
3208 break;
3209 case EXT4_INODE_WRITEBACK_DATA_MODE:
3210 if (test_opt(inode->i_sb, DELALLOC))
3211 inode->i_mapping->a_ops = &ext4_da_aops;
3212 else
3213 inode->i_mapping->a_ops = &ext4_writeback_aops;
3214 break;
3215 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3216 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3217 break;
3218 default:
3219 BUG();
3220 }
ac27a0ec
DK
3221}
3222
4e96b2db
AH
3223
3224/*
3225 * ext4_discard_partial_page_buffers()
3226 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3227 * This function finds and locks the page containing the offset
3228 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3229 * Calling functions that already have the page locked should call
3230 * ext4_discard_partial_page_buffers_no_lock directly.
3231 */
3232int ext4_discard_partial_page_buffers(handle_t *handle,
3233 struct address_space *mapping, loff_t from,
3234 loff_t length, int flags)
3235{
3236 struct inode *inode = mapping->host;
3237 struct page *page;
3238 int err = 0;
3239
3240 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3241 mapping_gfp_mask(mapping) & ~__GFP_FS);
3242 if (!page)
5129d05f 3243 return -ENOMEM;
4e96b2db
AH
3244
3245 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3246 from, length, flags);
3247
3248 unlock_page(page);
3249 page_cache_release(page);
3250 return err;
3251}
3252
3253/*
3254 * ext4_discard_partial_page_buffers_no_lock()
3255 * Zeros a page range of length 'length' starting from offset 'from'.
3256 * Buffer heads that correspond to the block aligned regions of the
3257 * zeroed range will be unmapped. Unblock aligned regions
3258 * will have the corresponding buffer head mapped if needed so that
3259 * that region of the page can be updated with the partial zero out.
3260 *
3261 * This function assumes that the page has already been locked. The
3262 * The range to be discarded must be contained with in the given page.
3263 * If the specified range exceeds the end of the page it will be shortened
3264 * to the end of the page that corresponds to 'from'. This function is
3265 * appropriate for updating a page and it buffer heads to be unmapped and
3266 * zeroed for blocks that have been either released, or are going to be
3267 * released.
3268 *
3269 * handle: The journal handle
3270 * inode: The files inode
3271 * page: A locked page that contains the offset "from"
4907cb7b 3272 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3273 * to begin discarding
3274 * len: The length of bytes to discard
3275 * flags: Optional flags that may be used:
3276 *
3277 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3278 * Only zero the regions of the page whose buffer heads
3279 * have already been unmapped. This flag is appropriate
4907cb7b 3280 * for updating the contents of a page whose blocks may
4e96b2db
AH
3281 * have already been released, and we only want to zero
3282 * out the regions that correspond to those released blocks.
3283 *
4907cb7b 3284 * Returns zero on success or negative on failure.
4e96b2db 3285 */
5f163cc7 3286static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3287 struct inode *inode, struct page *page, loff_t from,
3288 loff_t length, int flags)
3289{
3290 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3291 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3292 unsigned int blocksize, max, pos;
4e96b2db
AH
3293 ext4_lblk_t iblock;
3294 struct buffer_head *bh;
3295 int err = 0;
3296
3297 blocksize = inode->i_sb->s_blocksize;
3298 max = PAGE_CACHE_SIZE - offset;
3299
3300 if (index != page->index)
3301 return -EINVAL;
3302
3303 /*
3304 * correct length if it does not fall between
3305 * 'from' and the end of the page
3306 */
3307 if (length > max || length < 0)
3308 length = max;
3309
3310 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3311
093e6e36
YY
3312 if (!page_has_buffers(page))
3313 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3314
3315 /* Find the buffer that contains "offset" */
3316 bh = page_buffers(page);
3317 pos = blocksize;
3318 while (offset >= pos) {
3319 bh = bh->b_this_page;
3320 iblock++;
3321 pos += blocksize;
3322 }
3323
3324 pos = offset;
3325 while (pos < offset + length) {
e260daf2
YY
3326 unsigned int end_of_block, range_to_discard;
3327
4e96b2db
AH
3328 err = 0;
3329
3330 /* The length of space left to zero and unmap */
3331 range_to_discard = offset + length - pos;
3332
3333 /* The length of space until the end of the block */
3334 end_of_block = blocksize - (pos & (blocksize-1));
3335
3336 /*
3337 * Do not unmap or zero past end of block
3338 * for this buffer head
3339 */
3340 if (range_to_discard > end_of_block)
3341 range_to_discard = end_of_block;
3342
3343
3344 /*
3345 * Skip this buffer head if we are only zeroing unampped
3346 * regions of the page
3347 */
3348 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3349 buffer_mapped(bh))
3350 goto next;
3351
3352 /* If the range is block aligned, unmap */
3353 if (range_to_discard == blocksize) {
3354 clear_buffer_dirty(bh);
3355 bh->b_bdev = NULL;
3356 clear_buffer_mapped(bh);
3357 clear_buffer_req(bh);
3358 clear_buffer_new(bh);
3359 clear_buffer_delay(bh);
3360 clear_buffer_unwritten(bh);
3361 clear_buffer_uptodate(bh);
3362 zero_user(page, pos, range_to_discard);
3363 BUFFER_TRACE(bh, "Buffer discarded");
3364 goto next;
3365 }
3366
3367 /*
3368 * If this block is not completely contained in the range
3369 * to be discarded, then it is not going to be released. Because
3370 * we need to keep this block, we need to make sure this part
3371 * of the page is uptodate before we modify it by writeing
3372 * partial zeros on it.
3373 */
3374 if (!buffer_mapped(bh)) {
3375 /*
3376 * Buffer head must be mapped before we can read
3377 * from the block
3378 */
3379 BUFFER_TRACE(bh, "unmapped");
3380 ext4_get_block(inode, iblock, bh, 0);
3381 /* unmapped? It's a hole - nothing to do */
3382 if (!buffer_mapped(bh)) {
3383 BUFFER_TRACE(bh, "still unmapped");
3384 goto next;
3385 }
3386 }
3387
3388 /* Ok, it's mapped. Make sure it's up-to-date */
3389 if (PageUptodate(page))
3390 set_buffer_uptodate(bh);
3391
3392 if (!buffer_uptodate(bh)) {
3393 err = -EIO;
3394 ll_rw_block(READ, 1, &bh);
3395 wait_on_buffer(bh);
3396 /* Uhhuh. Read error. Complain and punt.*/
3397 if (!buffer_uptodate(bh))
3398 goto next;
3399 }
3400
3401 if (ext4_should_journal_data(inode)) {
3402 BUFFER_TRACE(bh, "get write access");
3403 err = ext4_journal_get_write_access(handle, bh);
3404 if (err)
3405 goto next;
3406 }
3407
3408 zero_user(page, pos, range_to_discard);
3409
3410 err = 0;
3411 if (ext4_should_journal_data(inode)) {
3412 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3413 } else
4e96b2db 3414 mark_buffer_dirty(bh);
4e96b2db
AH
3415
3416 BUFFER_TRACE(bh, "Partial buffer zeroed");
3417next:
3418 bh = bh->b_this_page;
3419 iblock++;
3420 pos += range_to_discard;
3421 }
3422
3423 return err;
3424}
3425
91ef4caf
DG
3426int ext4_can_truncate(struct inode *inode)
3427{
91ef4caf
DG
3428 if (S_ISREG(inode->i_mode))
3429 return 1;
3430 if (S_ISDIR(inode->i_mode))
3431 return 1;
3432 if (S_ISLNK(inode->i_mode))
3433 return !ext4_inode_is_fast_symlink(inode);
3434 return 0;
3435}
3436
a4bb6b64
AH
3437/*
3438 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3439 * associated with the given offset and length
3440 *
3441 * @inode: File inode
3442 * @offset: The offset where the hole will begin
3443 * @len: The length of the hole
3444 *
4907cb7b 3445 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3446 */
3447
3448int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3449{
3450 struct inode *inode = file->f_path.dentry->d_inode;
3451 if (!S_ISREG(inode->i_mode))
73355192 3452 return -EOPNOTSUPP;
a4bb6b64
AH
3453
3454 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3455 /* TODO: Add support for non extent hole punching */
73355192 3456 return -EOPNOTSUPP;
a4bb6b64
AH
3457 }
3458
bab08ab9
TT
3459 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3460 /* TODO: Add support for bigalloc file systems */
73355192 3461 return -EOPNOTSUPP;
bab08ab9
TT
3462 }
3463
a4bb6b64
AH
3464 return ext4_ext_punch_hole(file, offset, length);
3465}
3466
ac27a0ec 3467/*
617ba13b 3468 * ext4_truncate()
ac27a0ec 3469 *
617ba13b
MC
3470 * We block out ext4_get_block() block instantiations across the entire
3471 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3472 * simultaneously on behalf of the same inode.
3473 *
42b2aa86 3474 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3475 * is one core, guiding principle: the file's tree must always be consistent on
3476 * disk. We must be able to restart the truncate after a crash.
3477 *
3478 * The file's tree may be transiently inconsistent in memory (although it
3479 * probably isn't), but whenever we close off and commit a journal transaction,
3480 * the contents of (the filesystem + the journal) must be consistent and
3481 * restartable. It's pretty simple, really: bottom up, right to left (although
3482 * left-to-right works OK too).
3483 *
3484 * Note that at recovery time, journal replay occurs *before* the restart of
3485 * truncate against the orphan inode list.
3486 *
3487 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3488 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3489 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3490 * ext4_truncate() to have another go. So there will be instantiated blocks
3491 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3492 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3493 * ext4_truncate() run will find them and release them.
ac27a0ec 3494 */
617ba13b 3495void ext4_truncate(struct inode *inode)
ac27a0ec 3496{
0562e0ba
JZ
3497 trace_ext4_truncate_enter(inode);
3498
91ef4caf 3499 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3500 return;
3501
12e9b892 3502 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3503
5534fb5b 3504 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3505 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3506
ff9893dc 3507 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3508 ext4_ext_truncate(inode);
ff9893dc
AG
3509 else
3510 ext4_ind_truncate(inode);
ac27a0ec 3511
0562e0ba 3512 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3513}
3514
ac27a0ec 3515/*
617ba13b 3516 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3517 * underlying buffer_head on success. If 'in_mem' is true, we have all
3518 * data in memory that is needed to recreate the on-disk version of this
3519 * inode.
3520 */
617ba13b
MC
3521static int __ext4_get_inode_loc(struct inode *inode,
3522 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3523{
240799cd
TT
3524 struct ext4_group_desc *gdp;
3525 struct buffer_head *bh;
3526 struct super_block *sb = inode->i_sb;
3527 ext4_fsblk_t block;
3528 int inodes_per_block, inode_offset;
3529
3a06d778 3530 iloc->bh = NULL;
240799cd
TT
3531 if (!ext4_valid_inum(sb, inode->i_ino))
3532 return -EIO;
ac27a0ec 3533
240799cd
TT
3534 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3535 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3536 if (!gdp)
ac27a0ec
DK
3537 return -EIO;
3538
240799cd
TT
3539 /*
3540 * Figure out the offset within the block group inode table
3541 */
00d09882 3542 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3543 inode_offset = ((inode->i_ino - 1) %
3544 EXT4_INODES_PER_GROUP(sb));
3545 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3546 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3547
3548 bh = sb_getblk(sb, block);
ac27a0ec 3549 if (!bh) {
c398eda0
TT
3550 EXT4_ERROR_INODE_BLOCK(inode, block,
3551 "unable to read itable block");
ac27a0ec
DK
3552 return -EIO;
3553 }
3554 if (!buffer_uptodate(bh)) {
3555 lock_buffer(bh);
9c83a923
HK
3556
3557 /*
3558 * If the buffer has the write error flag, we have failed
3559 * to write out another inode in the same block. In this
3560 * case, we don't have to read the block because we may
3561 * read the old inode data successfully.
3562 */
3563 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3564 set_buffer_uptodate(bh);
3565
ac27a0ec
DK
3566 if (buffer_uptodate(bh)) {
3567 /* someone brought it uptodate while we waited */
3568 unlock_buffer(bh);
3569 goto has_buffer;
3570 }
3571
3572 /*
3573 * If we have all information of the inode in memory and this
3574 * is the only valid inode in the block, we need not read the
3575 * block.
3576 */
3577 if (in_mem) {
3578 struct buffer_head *bitmap_bh;
240799cd 3579 int i, start;
ac27a0ec 3580
240799cd 3581 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3582
240799cd
TT
3583 /* Is the inode bitmap in cache? */
3584 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3585 if (!bitmap_bh)
3586 goto make_io;
3587
3588 /*
3589 * If the inode bitmap isn't in cache then the
3590 * optimisation may end up performing two reads instead
3591 * of one, so skip it.
3592 */
3593 if (!buffer_uptodate(bitmap_bh)) {
3594 brelse(bitmap_bh);
3595 goto make_io;
3596 }
240799cd 3597 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3598 if (i == inode_offset)
3599 continue;
617ba13b 3600 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3601 break;
3602 }
3603 brelse(bitmap_bh);
240799cd 3604 if (i == start + inodes_per_block) {
ac27a0ec
DK
3605 /* all other inodes are free, so skip I/O */
3606 memset(bh->b_data, 0, bh->b_size);
3607 set_buffer_uptodate(bh);
3608 unlock_buffer(bh);
3609 goto has_buffer;
3610 }
3611 }
3612
3613make_io:
240799cd
TT
3614 /*
3615 * If we need to do any I/O, try to pre-readahead extra
3616 * blocks from the inode table.
3617 */
3618 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3619 ext4_fsblk_t b, end, table;
3620 unsigned num;
3621
3622 table = ext4_inode_table(sb, gdp);
b713a5ec 3623 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3624 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3625 if (table > b)
3626 b = table;
3627 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3628 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3629 if (ext4_has_group_desc_csum(sb))
560671a0 3630 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3631 table += num / inodes_per_block;
3632 if (end > table)
3633 end = table;
3634 while (b <= end)
3635 sb_breadahead(sb, b++);
3636 }
3637
ac27a0ec
DK
3638 /*
3639 * There are other valid inodes in the buffer, this inode
3640 * has in-inode xattrs, or we don't have this inode in memory.
3641 * Read the block from disk.
3642 */
0562e0ba 3643 trace_ext4_load_inode(inode);
ac27a0ec
DK
3644 get_bh(bh);
3645 bh->b_end_io = end_buffer_read_sync;
65299a3b 3646 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3647 wait_on_buffer(bh);
3648 if (!buffer_uptodate(bh)) {
c398eda0
TT
3649 EXT4_ERROR_INODE_BLOCK(inode, block,
3650 "unable to read itable block");
ac27a0ec
DK
3651 brelse(bh);
3652 return -EIO;
3653 }
3654 }
3655has_buffer:
3656 iloc->bh = bh;
3657 return 0;
3658}
3659
617ba13b 3660int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3661{
3662 /* We have all inode data except xattrs in memory here. */
617ba13b 3663 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3664 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3665}
3666
617ba13b 3667void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3668{
617ba13b 3669 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3670
3671 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3672 if (flags & EXT4_SYNC_FL)
ac27a0ec 3673 inode->i_flags |= S_SYNC;
617ba13b 3674 if (flags & EXT4_APPEND_FL)
ac27a0ec 3675 inode->i_flags |= S_APPEND;
617ba13b 3676 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3677 inode->i_flags |= S_IMMUTABLE;
617ba13b 3678 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3679 inode->i_flags |= S_NOATIME;
617ba13b 3680 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3681 inode->i_flags |= S_DIRSYNC;
3682}
3683
ff9ddf7e
JK
3684/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3685void ext4_get_inode_flags(struct ext4_inode_info *ei)
3686{
84a8dce2
DM
3687 unsigned int vfs_fl;
3688 unsigned long old_fl, new_fl;
3689
3690 do {
3691 vfs_fl = ei->vfs_inode.i_flags;
3692 old_fl = ei->i_flags;
3693 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3694 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3695 EXT4_DIRSYNC_FL);
3696 if (vfs_fl & S_SYNC)
3697 new_fl |= EXT4_SYNC_FL;
3698 if (vfs_fl & S_APPEND)
3699 new_fl |= EXT4_APPEND_FL;
3700 if (vfs_fl & S_IMMUTABLE)
3701 new_fl |= EXT4_IMMUTABLE_FL;
3702 if (vfs_fl & S_NOATIME)
3703 new_fl |= EXT4_NOATIME_FL;
3704 if (vfs_fl & S_DIRSYNC)
3705 new_fl |= EXT4_DIRSYNC_FL;
3706 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3707}
de9a55b8 3708
0fc1b451 3709static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3710 struct ext4_inode_info *ei)
0fc1b451
AK
3711{
3712 blkcnt_t i_blocks ;
8180a562
AK
3713 struct inode *inode = &(ei->vfs_inode);
3714 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3715
3716 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3717 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3718 /* we are using combined 48 bit field */
3719 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3720 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3721 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3722 /* i_blocks represent file system block size */
3723 return i_blocks << (inode->i_blkbits - 9);
3724 } else {
3725 return i_blocks;
3726 }
0fc1b451
AK
3727 } else {
3728 return le32_to_cpu(raw_inode->i_blocks_lo);
3729 }
3730}
ff9ddf7e 3731
152a7b0a
TM
3732static inline void ext4_iget_extra_inode(struct inode *inode,
3733 struct ext4_inode *raw_inode,
3734 struct ext4_inode_info *ei)
3735{
3736 __le32 *magic = (void *)raw_inode +
3737 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3738 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3739 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09
TM
3740 ext4_find_inline_data_nolock(inode);
3741 }
152a7b0a
TM
3742}
3743
1d1fe1ee 3744struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3745{
617ba13b
MC
3746 struct ext4_iloc iloc;
3747 struct ext4_inode *raw_inode;
1d1fe1ee 3748 struct ext4_inode_info *ei;
1d1fe1ee 3749 struct inode *inode;
b436b9be 3750 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3751 long ret;
ac27a0ec 3752 int block;
08cefc7a
EB
3753 uid_t i_uid;
3754 gid_t i_gid;
ac27a0ec 3755
1d1fe1ee
DH
3756 inode = iget_locked(sb, ino);
3757 if (!inode)
3758 return ERR_PTR(-ENOMEM);
3759 if (!(inode->i_state & I_NEW))
3760 return inode;
3761
3762 ei = EXT4_I(inode);
7dc57615 3763 iloc.bh = NULL;
ac27a0ec 3764
1d1fe1ee
DH
3765 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3766 if (ret < 0)
ac27a0ec 3767 goto bad_inode;
617ba13b 3768 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3769
3770 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3771 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3772 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3773 EXT4_INODE_SIZE(inode->i_sb)) {
3774 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3775 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3776 EXT4_INODE_SIZE(inode->i_sb));
3777 ret = -EIO;
3778 goto bad_inode;
3779 }
3780 } else
3781 ei->i_extra_isize = 0;
3782
3783 /* Precompute checksum seed for inode metadata */
3784 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3785 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3786 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3787 __u32 csum;
3788 __le32 inum = cpu_to_le32(inode->i_ino);
3789 __le32 gen = raw_inode->i_generation;
3790 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3791 sizeof(inum));
3792 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3793 sizeof(gen));
3794 }
3795
3796 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3797 EXT4_ERROR_INODE(inode, "checksum invalid");
3798 ret = -EIO;
3799 goto bad_inode;
3800 }
3801
ac27a0ec 3802 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3803 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3804 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3805 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3806 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3807 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3808 }
08cefc7a
EB
3809 i_uid_write(inode, i_uid);
3810 i_gid_write(inode, i_gid);
bfe86848 3811 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3812
353eb83c 3813 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3814 ei->i_inline_off = 0;
ac27a0ec
DK
3815 ei->i_dir_start_lookup = 0;
3816 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3817 /* We now have enough fields to check if the inode was active or not.
3818 * This is needed because nfsd might try to access dead inodes
3819 * the test is that same one that e2fsck uses
3820 * NeilBrown 1999oct15
3821 */
3822 if (inode->i_nlink == 0) {
3823 if (inode->i_mode == 0 ||
617ba13b 3824 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3825 /* this inode is deleted */
1d1fe1ee 3826 ret = -ESTALE;
ac27a0ec
DK
3827 goto bad_inode;
3828 }
3829 /* The only unlinked inodes we let through here have
3830 * valid i_mode and are being read by the orphan
3831 * recovery code: that's fine, we're about to complete
3832 * the process of deleting those. */
3833 }
ac27a0ec 3834 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3835 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3836 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3837 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3838 ei->i_file_acl |=
3839 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3840 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3841 ei->i_disksize = inode->i_size;
a9e7f447
DM
3842#ifdef CONFIG_QUOTA
3843 ei->i_reserved_quota = 0;
3844#endif
ac27a0ec
DK
3845 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3846 ei->i_block_group = iloc.block_group;
a4912123 3847 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3848 /*
3849 * NOTE! The in-memory inode i_data array is in little-endian order
3850 * even on big-endian machines: we do NOT byteswap the block numbers!
3851 */
617ba13b 3852 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3853 ei->i_data[block] = raw_inode->i_block[block];
3854 INIT_LIST_HEAD(&ei->i_orphan);
3855
b436b9be
JK
3856 /*
3857 * Set transaction id's of transactions that have to be committed
3858 * to finish f[data]sync. We set them to currently running transaction
3859 * as we cannot be sure that the inode or some of its metadata isn't
3860 * part of the transaction - the inode could have been reclaimed and
3861 * now it is reread from disk.
3862 */
3863 if (journal) {
3864 transaction_t *transaction;
3865 tid_t tid;
3866
a931da6a 3867 read_lock(&journal->j_state_lock);
b436b9be
JK
3868 if (journal->j_running_transaction)
3869 transaction = journal->j_running_transaction;
3870 else
3871 transaction = journal->j_committing_transaction;
3872 if (transaction)
3873 tid = transaction->t_tid;
3874 else
3875 tid = journal->j_commit_sequence;
a931da6a 3876 read_unlock(&journal->j_state_lock);
b436b9be
JK
3877 ei->i_sync_tid = tid;
3878 ei->i_datasync_tid = tid;
3879 }
3880
0040d987 3881 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3882 if (ei->i_extra_isize == 0) {
3883 /* The extra space is currently unused. Use it. */
617ba13b
MC
3884 ei->i_extra_isize = sizeof(struct ext4_inode) -
3885 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 3886 } else {
152a7b0a 3887 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 3888 }
814525f4 3889 }
ac27a0ec 3890
ef7f3835
KS
3891 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3892 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3893 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3894 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3895
25ec56b5
JNC
3896 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3897 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3898 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3899 inode->i_version |=
3900 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3901 }
3902
c4b5a614 3903 ret = 0;
485c26ec 3904 if (ei->i_file_acl &&
1032988c 3905 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3906 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3907 ei->i_file_acl);
485c26ec
TT
3908 ret = -EIO;
3909 goto bad_inode;
07a03824 3910 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3911 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3912 (S_ISLNK(inode->i_mode) &&
3913 !ext4_inode_is_fast_symlink(inode)))
3914 /* Validate extent which is part of inode */
3915 ret = ext4_ext_check_inode(inode);
de9a55b8 3916 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3917 (S_ISLNK(inode->i_mode) &&
3918 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3919 /* Validate block references which are part of inode */
1f7d1e77 3920 ret = ext4_ind_check_inode(inode);
fe2c8191 3921 }
567f3e9a 3922 if (ret)
de9a55b8 3923 goto bad_inode;
7a262f7c 3924
ac27a0ec 3925 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3926 inode->i_op = &ext4_file_inode_operations;
3927 inode->i_fop = &ext4_file_operations;
3928 ext4_set_aops(inode);
ac27a0ec 3929 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3930 inode->i_op = &ext4_dir_inode_operations;
3931 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3932 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3933 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3934 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3935 nd_terminate_link(ei->i_data, inode->i_size,
3936 sizeof(ei->i_data) - 1);
3937 } else {
617ba13b
MC
3938 inode->i_op = &ext4_symlink_inode_operations;
3939 ext4_set_aops(inode);
ac27a0ec 3940 }
563bdd61
TT
3941 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3942 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3943 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3944 if (raw_inode->i_block[0])
3945 init_special_inode(inode, inode->i_mode,
3946 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3947 else
3948 init_special_inode(inode, inode->i_mode,
3949 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3950 } else {
563bdd61 3951 ret = -EIO;
24676da4 3952 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3953 goto bad_inode;
ac27a0ec 3954 }
af5bc92d 3955 brelse(iloc.bh);
617ba13b 3956 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3957 unlock_new_inode(inode);
3958 return inode;
ac27a0ec
DK
3959
3960bad_inode:
567f3e9a 3961 brelse(iloc.bh);
1d1fe1ee
DH
3962 iget_failed(inode);
3963 return ERR_PTR(ret);
ac27a0ec
DK
3964}
3965
0fc1b451
AK
3966static int ext4_inode_blocks_set(handle_t *handle,
3967 struct ext4_inode *raw_inode,
3968 struct ext4_inode_info *ei)
3969{
3970 struct inode *inode = &(ei->vfs_inode);
3971 u64 i_blocks = inode->i_blocks;
3972 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3973
3974 if (i_blocks <= ~0U) {
3975 /*
4907cb7b 3976 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
3977 * as multiple of 512 bytes
3978 */
8180a562 3979 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3980 raw_inode->i_blocks_high = 0;
84a8dce2 3981 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3982 return 0;
3983 }
3984 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3985 return -EFBIG;
3986
3987 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3988 /*
3989 * i_blocks can be represented in a 48 bit variable
3990 * as multiple of 512 bytes
3991 */
8180a562 3992 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3993 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3994 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3995 } else {
84a8dce2 3996 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3997 /* i_block is stored in file system block size */
3998 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3999 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4000 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4001 }
f287a1a5 4002 return 0;
0fc1b451
AK
4003}
4004
ac27a0ec
DK
4005/*
4006 * Post the struct inode info into an on-disk inode location in the
4007 * buffer-cache. This gobbles the caller's reference to the
4008 * buffer_head in the inode location struct.
4009 *
4010 * The caller must have write access to iloc->bh.
4011 */
617ba13b 4012static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4013 struct inode *inode,
830156c7 4014 struct ext4_iloc *iloc)
ac27a0ec 4015{
617ba13b
MC
4016 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4017 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4018 struct buffer_head *bh = iloc->bh;
4019 int err = 0, rc, block;
b71fc079 4020 int need_datasync = 0;
08cefc7a
EB
4021 uid_t i_uid;
4022 gid_t i_gid;
ac27a0ec
DK
4023
4024 /* For fields not not tracking in the in-memory inode,
4025 * initialise them to zero for new inodes. */
19f5fb7a 4026 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4027 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4028
ff9ddf7e 4029 ext4_get_inode_flags(ei);
ac27a0ec 4030 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4031 i_uid = i_uid_read(inode);
4032 i_gid = i_gid_read(inode);
af5bc92d 4033 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4034 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4035 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4036/*
4037 * Fix up interoperability with old kernels. Otherwise, old inodes get
4038 * re-used with the upper 16 bits of the uid/gid intact
4039 */
af5bc92d 4040 if (!ei->i_dtime) {
ac27a0ec 4041 raw_inode->i_uid_high =
08cefc7a 4042 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4043 raw_inode->i_gid_high =
08cefc7a 4044 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4045 } else {
4046 raw_inode->i_uid_high = 0;
4047 raw_inode->i_gid_high = 0;
4048 }
4049 } else {
08cefc7a
EB
4050 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4051 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4052 raw_inode->i_uid_high = 0;
4053 raw_inode->i_gid_high = 0;
4054 }
4055 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4056
4057 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4058 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4059 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4060 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4061
0fc1b451
AK
4062 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4063 goto out_brelse;
ac27a0ec 4064 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4065 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4066 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4067 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4068 raw_inode->i_file_acl_high =
4069 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4070 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4071 if (ei->i_disksize != ext4_isize(raw_inode)) {
4072 ext4_isize_set(raw_inode, ei->i_disksize);
4073 need_datasync = 1;
4074 }
a48380f7
AK
4075 if (ei->i_disksize > 0x7fffffffULL) {
4076 struct super_block *sb = inode->i_sb;
4077 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4078 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4079 EXT4_SB(sb)->s_es->s_rev_level ==
4080 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4081 /* If this is the first large file
4082 * created, add a flag to the superblock.
4083 */
4084 err = ext4_journal_get_write_access(handle,
4085 EXT4_SB(sb)->s_sbh);
4086 if (err)
4087 goto out_brelse;
4088 ext4_update_dynamic_rev(sb);
4089 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4090 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4091 ext4_handle_sync(handle);
b50924c2 4092 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4093 }
4094 }
4095 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4096 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4097 if (old_valid_dev(inode->i_rdev)) {
4098 raw_inode->i_block[0] =
4099 cpu_to_le32(old_encode_dev(inode->i_rdev));
4100 raw_inode->i_block[1] = 0;
4101 } else {
4102 raw_inode->i_block[0] = 0;
4103 raw_inode->i_block[1] =
4104 cpu_to_le32(new_encode_dev(inode->i_rdev));
4105 raw_inode->i_block[2] = 0;
4106 }
de9a55b8
TT
4107 } else
4108 for (block = 0; block < EXT4_N_BLOCKS; block++)
4109 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4110
25ec56b5
JNC
4111 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4112 if (ei->i_extra_isize) {
4113 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4114 raw_inode->i_version_hi =
4115 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4116 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4117 }
4118
814525f4
DW
4119 ext4_inode_csum_set(inode, raw_inode, ei);
4120
830156c7 4121 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4122 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4123 if (!err)
4124 err = rc;
19f5fb7a 4125 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4126
b71fc079 4127 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4128out_brelse:
af5bc92d 4129 brelse(bh);
617ba13b 4130 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4131 return err;
4132}
4133
4134/*
617ba13b 4135 * ext4_write_inode()
ac27a0ec
DK
4136 *
4137 * We are called from a few places:
4138 *
4139 * - Within generic_file_write() for O_SYNC files.
4140 * Here, there will be no transaction running. We wait for any running
4907cb7b 4141 * transaction to commit.
ac27a0ec
DK
4142 *
4143 * - Within sys_sync(), kupdate and such.
4144 * We wait on commit, if tol to.
4145 *
4146 * - Within prune_icache() (PF_MEMALLOC == true)
4147 * Here we simply return. We can't afford to block kswapd on the
4148 * journal commit.
4149 *
4150 * In all cases it is actually safe for us to return without doing anything,
4151 * because the inode has been copied into a raw inode buffer in
617ba13b 4152 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4153 * knfsd.
4154 *
4155 * Note that we are absolutely dependent upon all inode dirtiers doing the
4156 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4157 * which we are interested.
4158 *
4159 * It would be a bug for them to not do this. The code:
4160 *
4161 * mark_inode_dirty(inode)
4162 * stuff();
4163 * inode->i_size = expr;
4164 *
4165 * is in error because a kswapd-driven write_inode() could occur while
4166 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4167 * will no longer be on the superblock's dirty inode list.
4168 */
a9185b41 4169int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4170{
91ac6f43
FM
4171 int err;
4172
ac27a0ec
DK
4173 if (current->flags & PF_MEMALLOC)
4174 return 0;
4175
91ac6f43
FM
4176 if (EXT4_SB(inode->i_sb)->s_journal) {
4177 if (ext4_journal_current_handle()) {
4178 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4179 dump_stack();
4180 return -EIO;
4181 }
ac27a0ec 4182
a9185b41 4183 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4184 return 0;
4185
4186 err = ext4_force_commit(inode->i_sb);
4187 } else {
4188 struct ext4_iloc iloc;
ac27a0ec 4189
8b472d73 4190 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4191 if (err)
4192 return err;
a9185b41 4193 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4194 sync_dirty_buffer(iloc.bh);
4195 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4196 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4197 "IO error syncing inode");
830156c7
FM
4198 err = -EIO;
4199 }
fd2dd9fb 4200 brelse(iloc.bh);
91ac6f43
FM
4201 }
4202 return err;
ac27a0ec
DK
4203}
4204
4205/*
617ba13b 4206 * ext4_setattr()
ac27a0ec
DK
4207 *
4208 * Called from notify_change.
4209 *
4210 * We want to trap VFS attempts to truncate the file as soon as
4211 * possible. In particular, we want to make sure that when the VFS
4212 * shrinks i_size, we put the inode on the orphan list and modify
4213 * i_disksize immediately, so that during the subsequent flushing of
4214 * dirty pages and freeing of disk blocks, we can guarantee that any
4215 * commit will leave the blocks being flushed in an unused state on
4216 * disk. (On recovery, the inode will get truncated and the blocks will
4217 * be freed, so we have a strong guarantee that no future commit will
4218 * leave these blocks visible to the user.)
4219 *
678aaf48
JK
4220 * Another thing we have to assure is that if we are in ordered mode
4221 * and inode is still attached to the committing transaction, we must
4222 * we start writeout of all the dirty pages which are being truncated.
4223 * This way we are sure that all the data written in the previous
4224 * transaction are already on disk (truncate waits for pages under
4225 * writeback).
4226 *
4227 * Called with inode->i_mutex down.
ac27a0ec 4228 */
617ba13b 4229int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4230{
4231 struct inode *inode = dentry->d_inode;
4232 int error, rc = 0;
3d287de3 4233 int orphan = 0;
ac27a0ec
DK
4234 const unsigned int ia_valid = attr->ia_valid;
4235
4236 error = inode_change_ok(inode, attr);
4237 if (error)
4238 return error;
4239
12755627 4240 if (is_quota_modification(inode, attr))
871a2931 4241 dquot_initialize(inode);
08cefc7a
EB
4242 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4243 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4244 handle_t *handle;
4245
4246 /* (user+group)*(old+new) structure, inode write (sb,
4247 * inode block, ? - but truncate inode update has it) */
5aca07eb 4248 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4249 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4250 if (IS_ERR(handle)) {
4251 error = PTR_ERR(handle);
4252 goto err_out;
4253 }
b43fa828 4254 error = dquot_transfer(inode, attr);
ac27a0ec 4255 if (error) {
617ba13b 4256 ext4_journal_stop(handle);
ac27a0ec
DK
4257 return error;
4258 }
4259 /* Update corresponding info in inode so that everything is in
4260 * one transaction */
4261 if (attr->ia_valid & ATTR_UID)
4262 inode->i_uid = attr->ia_uid;
4263 if (attr->ia_valid & ATTR_GID)
4264 inode->i_gid = attr->ia_gid;
617ba13b
MC
4265 error = ext4_mark_inode_dirty(handle, inode);
4266 ext4_journal_stop(handle);
ac27a0ec
DK
4267 }
4268
e2b46574 4269 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4270
12e9b892 4271 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4272 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4273
0c095c7f
TT
4274 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4275 return -EFBIG;
e2b46574
ES
4276 }
4277 }
4278
ac27a0ec 4279 if (S_ISREG(inode->i_mode) &&
c8d46e41 4280 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4281 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4282 handle_t *handle;
4283
617ba13b 4284 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4285 if (IS_ERR(handle)) {
4286 error = PTR_ERR(handle);
4287 goto err_out;
4288 }
3d287de3
DM
4289 if (ext4_handle_valid(handle)) {
4290 error = ext4_orphan_add(handle, inode);
4291 orphan = 1;
4292 }
617ba13b
MC
4293 EXT4_I(inode)->i_disksize = attr->ia_size;
4294 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4295 if (!error)
4296 error = rc;
617ba13b 4297 ext4_journal_stop(handle);
678aaf48
JK
4298
4299 if (ext4_should_order_data(inode)) {
4300 error = ext4_begin_ordered_truncate(inode,
4301 attr->ia_size);
4302 if (error) {
4303 /* Do as much error cleanup as possible */
4304 handle = ext4_journal_start(inode, 3);
4305 if (IS_ERR(handle)) {
4306 ext4_orphan_del(NULL, inode);
4307 goto err_out;
4308 }
4309 ext4_orphan_del(handle, inode);
3d287de3 4310 orphan = 0;
678aaf48
JK
4311 ext4_journal_stop(handle);
4312 goto err_out;
4313 }
4314 }
ac27a0ec
DK
4315 }
4316
072bd7ea 4317 if (attr->ia_valid & ATTR_SIZE) {
1c9114f9 4318 if (attr->ia_size != i_size_read(inode)) {
072bd7ea 4319 truncate_setsize(inode, attr->ia_size);
1b65007e
DM
4320 /* Inode size will be reduced, wait for dio in flight.
4321 * Temporarily disable dioread_nolock to prevent
4322 * livelock. */
4323 if (orphan) {
4324 ext4_inode_block_unlocked_dio(inode);
1c9114f9 4325 inode_dio_wait(inode);
1b65007e
DM
4326 ext4_inode_resume_unlocked_dio(inode);
4327 }
1c9114f9 4328 }
afcff5d8 4329 ext4_truncate(inode);
072bd7ea 4330 }
ac27a0ec 4331
1025774c
CH
4332 if (!rc) {
4333 setattr_copy(inode, attr);
4334 mark_inode_dirty(inode);
4335 }
4336
4337 /*
4338 * If the call to ext4_truncate failed to get a transaction handle at
4339 * all, we need to clean up the in-core orphan list manually.
4340 */
3d287de3 4341 if (orphan && inode->i_nlink)
617ba13b 4342 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4343
4344 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4345 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4346
4347err_out:
617ba13b 4348 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4349 if (!error)
4350 error = rc;
4351 return error;
4352}
4353
3e3398a0
MC
4354int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4355 struct kstat *stat)
4356{
4357 struct inode *inode;
4358 unsigned long delalloc_blocks;
4359
4360 inode = dentry->d_inode;
4361 generic_fillattr(inode, stat);
4362
4363 /*
4364 * We can't update i_blocks if the block allocation is delayed
4365 * otherwise in the case of system crash before the real block
4366 * allocation is done, we will have i_blocks inconsistent with
4367 * on-disk file blocks.
4368 * We always keep i_blocks updated together with real
4369 * allocation. But to not confuse with user, stat
4370 * will return the blocks that include the delayed allocation
4371 * blocks for this file.
4372 */
96607551
TM
4373 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4374 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4375
4376 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4377 return 0;
4378}
ac27a0ec 4379
a02908f1
MC
4380static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4381{
12e9b892 4382 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4383 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4384 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4385}
ac51d837 4386
ac27a0ec 4387/*
a02908f1
MC
4388 * Account for index blocks, block groups bitmaps and block group
4389 * descriptor blocks if modify datablocks and index blocks
4390 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4391 *
a02908f1 4392 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4393 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4394 * they could still across block group boundary.
ac27a0ec 4395 *
a02908f1
MC
4396 * Also account for superblock, inode, quota and xattr blocks
4397 */
1f109d5a 4398static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4399{
8df9675f
TT
4400 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4401 int gdpblocks;
a02908f1
MC
4402 int idxblocks;
4403 int ret = 0;
4404
4405 /*
4406 * How many index blocks need to touch to modify nrblocks?
4407 * The "Chunk" flag indicating whether the nrblocks is
4408 * physically contiguous on disk
4409 *
4410 * For Direct IO and fallocate, they calls get_block to allocate
4411 * one single extent at a time, so they could set the "Chunk" flag
4412 */
4413 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4414
4415 ret = idxblocks;
4416
4417 /*
4418 * Now let's see how many group bitmaps and group descriptors need
4419 * to account
4420 */
4421 groups = idxblocks;
4422 if (chunk)
4423 groups += 1;
4424 else
4425 groups += nrblocks;
4426
4427 gdpblocks = groups;
8df9675f
TT
4428 if (groups > ngroups)
4429 groups = ngroups;
a02908f1
MC
4430 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4431 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4432
4433 /* bitmaps and block group descriptor blocks */
4434 ret += groups + gdpblocks;
4435
4436 /* Blocks for super block, inode, quota and xattr blocks */
4437 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4438
4439 return ret;
4440}
4441
4442/*
25985edc 4443 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4444 * the modification of a single pages into a single transaction,
4445 * which may include multiple chunks of block allocations.
ac27a0ec 4446 *
525f4ed8 4447 * This could be called via ext4_write_begin()
ac27a0ec 4448 *
525f4ed8 4449 * We need to consider the worse case, when
a02908f1 4450 * one new block per extent.
ac27a0ec 4451 */
a86c6181 4452int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4453{
617ba13b 4454 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4455 int ret;
4456
a02908f1 4457 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4458
a02908f1 4459 /* Account for data blocks for journalled mode */
617ba13b 4460 if (ext4_should_journal_data(inode))
a02908f1 4461 ret += bpp;
ac27a0ec
DK
4462 return ret;
4463}
f3bd1f3f
MC
4464
4465/*
4466 * Calculate the journal credits for a chunk of data modification.
4467 *
4468 * This is called from DIO, fallocate or whoever calling
79e83036 4469 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4470 *
4471 * journal buffers for data blocks are not included here, as DIO
4472 * and fallocate do no need to journal data buffers.
4473 */
4474int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4475{
4476 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4477}
4478
ac27a0ec 4479/*
617ba13b 4480 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4481 * Give this, we know that the caller already has write access to iloc->bh.
4482 */
617ba13b 4483int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4484 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4485{
4486 int err = 0;
4487
c64db50e 4488 if (IS_I_VERSION(inode))
25ec56b5
JNC
4489 inode_inc_iversion(inode);
4490
ac27a0ec
DK
4491 /* the do_update_inode consumes one bh->b_count */
4492 get_bh(iloc->bh);
4493
dab291af 4494 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4495 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4496 put_bh(iloc->bh);
4497 return err;
4498}
4499
4500/*
4501 * On success, We end up with an outstanding reference count against
4502 * iloc->bh. This _must_ be cleaned up later.
4503 */
4504
4505int
617ba13b
MC
4506ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4507 struct ext4_iloc *iloc)
ac27a0ec 4508{
0390131b
FM
4509 int err;
4510
4511 err = ext4_get_inode_loc(inode, iloc);
4512 if (!err) {
4513 BUFFER_TRACE(iloc->bh, "get_write_access");
4514 err = ext4_journal_get_write_access(handle, iloc->bh);
4515 if (err) {
4516 brelse(iloc->bh);
4517 iloc->bh = NULL;
ac27a0ec
DK
4518 }
4519 }
617ba13b 4520 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4521 return err;
4522}
4523
6dd4ee7c
KS
4524/*
4525 * Expand an inode by new_extra_isize bytes.
4526 * Returns 0 on success or negative error number on failure.
4527 */
1d03ec98
AK
4528static int ext4_expand_extra_isize(struct inode *inode,
4529 unsigned int new_extra_isize,
4530 struct ext4_iloc iloc,
4531 handle_t *handle)
6dd4ee7c
KS
4532{
4533 struct ext4_inode *raw_inode;
4534 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4535
4536 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4537 return 0;
4538
4539 raw_inode = ext4_raw_inode(&iloc);
4540
4541 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4542
4543 /* No extended attributes present */
19f5fb7a
TT
4544 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4545 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4546 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4547 new_extra_isize);
4548 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4549 return 0;
4550 }
4551
4552 /* try to expand with EAs present */
4553 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4554 raw_inode, handle);
4555}
4556
ac27a0ec
DK
4557/*
4558 * What we do here is to mark the in-core inode as clean with respect to inode
4559 * dirtiness (it may still be data-dirty).
4560 * This means that the in-core inode may be reaped by prune_icache
4561 * without having to perform any I/O. This is a very good thing,
4562 * because *any* task may call prune_icache - even ones which
4563 * have a transaction open against a different journal.
4564 *
4565 * Is this cheating? Not really. Sure, we haven't written the
4566 * inode out, but prune_icache isn't a user-visible syncing function.
4567 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4568 * we start and wait on commits.
ac27a0ec 4569 */
617ba13b 4570int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4571{
617ba13b 4572 struct ext4_iloc iloc;
6dd4ee7c
KS
4573 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4574 static unsigned int mnt_count;
4575 int err, ret;
ac27a0ec
DK
4576
4577 might_sleep();
7ff9c073 4578 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4579 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4580 if (ext4_handle_valid(handle) &&
4581 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4582 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4583 /*
4584 * We need extra buffer credits since we may write into EA block
4585 * with this same handle. If journal_extend fails, then it will
4586 * only result in a minor loss of functionality for that inode.
4587 * If this is felt to be critical, then e2fsck should be run to
4588 * force a large enough s_min_extra_isize.
4589 */
4590 if ((jbd2_journal_extend(handle,
4591 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4592 ret = ext4_expand_extra_isize(inode,
4593 sbi->s_want_extra_isize,
4594 iloc, handle);
4595 if (ret) {
19f5fb7a
TT
4596 ext4_set_inode_state(inode,
4597 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4598 if (mnt_count !=
4599 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4600 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4601 "Unable to expand inode %lu. Delete"
4602 " some EAs or run e2fsck.",
4603 inode->i_ino);
c1bddad9
AK
4604 mnt_count =
4605 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4606 }
4607 }
4608 }
4609 }
ac27a0ec 4610 if (!err)
617ba13b 4611 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4612 return err;
4613}
4614
4615/*
617ba13b 4616 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4617 *
4618 * We're really interested in the case where a file is being extended.
4619 * i_size has been changed by generic_commit_write() and we thus need
4620 * to include the updated inode in the current transaction.
4621 *
5dd4056d 4622 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4623 * are allocated to the file.
4624 *
4625 * If the inode is marked synchronous, we don't honour that here - doing
4626 * so would cause a commit on atime updates, which we don't bother doing.
4627 * We handle synchronous inodes at the highest possible level.
4628 */
aa385729 4629void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4630{
ac27a0ec
DK
4631 handle_t *handle;
4632
617ba13b 4633 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4634 if (IS_ERR(handle))
4635 goto out;
f3dc272f 4636
f3dc272f
CW
4637 ext4_mark_inode_dirty(handle, inode);
4638
617ba13b 4639 ext4_journal_stop(handle);
ac27a0ec
DK
4640out:
4641 return;
4642}
4643
4644#if 0
4645/*
4646 * Bind an inode's backing buffer_head into this transaction, to prevent
4647 * it from being flushed to disk early. Unlike
617ba13b 4648 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4649 * returns no iloc structure, so the caller needs to repeat the iloc
4650 * lookup to mark the inode dirty later.
4651 */
617ba13b 4652static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4653{
617ba13b 4654 struct ext4_iloc iloc;
ac27a0ec
DK
4655
4656 int err = 0;
4657 if (handle) {
617ba13b 4658 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4659 if (!err) {
4660 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4661 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4662 if (!err)
0390131b 4663 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4664 NULL,
0390131b 4665 iloc.bh);
ac27a0ec
DK
4666 brelse(iloc.bh);
4667 }
4668 }
617ba13b 4669 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4670 return err;
4671}
4672#endif
4673
617ba13b 4674int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4675{
4676 journal_t *journal;
4677 handle_t *handle;
4678 int err;
4679
4680 /*
4681 * We have to be very careful here: changing a data block's
4682 * journaling status dynamically is dangerous. If we write a
4683 * data block to the journal, change the status and then delete
4684 * that block, we risk forgetting to revoke the old log record
4685 * from the journal and so a subsequent replay can corrupt data.
4686 * So, first we make sure that the journal is empty and that
4687 * nobody is changing anything.
4688 */
4689
617ba13b 4690 journal = EXT4_JOURNAL(inode);
0390131b
FM
4691 if (!journal)
4692 return 0;
d699594d 4693 if (is_journal_aborted(journal))
ac27a0ec 4694 return -EROFS;
2aff57b0
YY
4695 /* We have to allocate physical blocks for delalloc blocks
4696 * before flushing journal. otherwise delalloc blocks can not
4697 * be allocated any more. even more truncate on delalloc blocks
4698 * could trigger BUG by flushing delalloc blocks in journal.
4699 * There is no delalloc block in non-journal data mode.
4700 */
4701 if (val && test_opt(inode->i_sb, DELALLOC)) {
4702 err = ext4_alloc_da_blocks(inode);
4703 if (err < 0)
4704 return err;
4705 }
ac27a0ec 4706
17335dcc
DM
4707 /* Wait for all existing dio workers */
4708 ext4_inode_block_unlocked_dio(inode);
4709 inode_dio_wait(inode);
4710
dab291af 4711 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4712
4713 /*
4714 * OK, there are no updates running now, and all cached data is
4715 * synced to disk. We are now in a completely consistent state
4716 * which doesn't have anything in the journal, and we know that
4717 * no filesystem updates are running, so it is safe to modify
4718 * the inode's in-core data-journaling state flag now.
4719 */
4720
4721 if (val)
12e9b892 4722 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4723 else {
4724 jbd2_journal_flush(journal);
12e9b892 4725 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4726 }
617ba13b 4727 ext4_set_aops(inode);
ac27a0ec 4728
dab291af 4729 jbd2_journal_unlock_updates(journal);
17335dcc 4730 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4731
4732 /* Finally we can mark the inode as dirty. */
4733
617ba13b 4734 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4735 if (IS_ERR(handle))
4736 return PTR_ERR(handle);
4737
617ba13b 4738 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4739 ext4_handle_sync(handle);
617ba13b
MC
4740 ext4_journal_stop(handle);
4741 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4742
4743 return err;
4744}
2e9ee850
AK
4745
4746static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4747{
4748 return !buffer_mapped(bh);
4749}
4750
c2ec175c 4751int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4752{
c2ec175c 4753 struct page *page = vmf->page;
2e9ee850
AK
4754 loff_t size;
4755 unsigned long len;
9ea7df53 4756 int ret;
2e9ee850
AK
4757 struct file *file = vma->vm_file;
4758 struct inode *inode = file->f_path.dentry->d_inode;
4759 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4760 handle_t *handle;
4761 get_block_t *get_block;
4762 int retries = 0;
2e9ee850 4763
8e8ad8a5 4764 sb_start_pagefault(inode->i_sb);
041bbb6d 4765 file_update_time(vma->vm_file);
9ea7df53
JK
4766 /* Delalloc case is easy... */
4767 if (test_opt(inode->i_sb, DELALLOC) &&
4768 !ext4_should_journal_data(inode) &&
4769 !ext4_nonda_switch(inode->i_sb)) {
4770 do {
4771 ret = __block_page_mkwrite(vma, vmf,
4772 ext4_da_get_block_prep);
4773 } while (ret == -ENOSPC &&
4774 ext4_should_retry_alloc(inode->i_sb, &retries));
4775 goto out_ret;
2e9ee850 4776 }
0e499890
DW
4777
4778 lock_page(page);
9ea7df53
JK
4779 size = i_size_read(inode);
4780 /* Page got truncated from under us? */
4781 if (page->mapping != mapping || page_offset(page) > size) {
4782 unlock_page(page);
4783 ret = VM_FAULT_NOPAGE;
4784 goto out;
0e499890 4785 }
2e9ee850
AK
4786
4787 if (page->index == size >> PAGE_CACHE_SHIFT)
4788 len = size & ~PAGE_CACHE_MASK;
4789 else
4790 len = PAGE_CACHE_SIZE;
a827eaff 4791 /*
9ea7df53
JK
4792 * Return if we have all the buffers mapped. This avoids the need to do
4793 * journal_start/journal_stop which can block and take a long time
a827eaff 4794 */
2e9ee850 4795 if (page_has_buffers(page)) {
2e9ee850 4796 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4797 ext4_bh_unmapped)) {
9ea7df53
JK
4798 /* Wait so that we don't change page under IO */
4799 wait_on_page_writeback(page);
4800 ret = VM_FAULT_LOCKED;
4801 goto out;
a827eaff 4802 }
2e9ee850 4803 }
a827eaff 4804 unlock_page(page);
9ea7df53
JK
4805 /* OK, we need to fill the hole... */
4806 if (ext4_should_dioread_nolock(inode))
4807 get_block = ext4_get_block_write;
4808 else
4809 get_block = ext4_get_block;
4810retry_alloc:
4811 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4812 if (IS_ERR(handle)) {
c2ec175c 4813 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4814 goto out;
4815 }
4816 ret = __block_page_mkwrite(vma, vmf, get_block);
4817 if (!ret && ext4_should_journal_data(inode)) {
4818 if (walk_page_buffers(handle, page_buffers(page), 0,
4819 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4820 unlock_page(page);
4821 ret = VM_FAULT_SIGBUS;
fcbb5515 4822 ext4_journal_stop(handle);
9ea7df53
JK
4823 goto out;
4824 }
4825 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4826 }
4827 ext4_journal_stop(handle);
4828 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4829 goto retry_alloc;
4830out_ret:
4831 ret = block_page_mkwrite_return(ret);
4832out:
8e8ad8a5 4833 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
4834 return ret;
4835}