]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext2, ext4: make mb block cache names more explicit
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
364443cb 40#include <linux/iomap.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 55 __u32 csum;
b47820ed
DJ
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
814525f4 59
b47820ed
DJ
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 65
b47820ed
DJ
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
b47820ed 75 }
05ac5aa1
DJ
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
78 }
79
814525f4
DW
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 90 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 111 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
678aaf48
JK
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
7ff9c073 124 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
678aaf48
JK
136}
137
d47992f8
LC
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
cb20d518
TT
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
f348c252 146int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 150
bd9db175
ZL
151 if (ext4_has_inline_data(inode))
152 return 0;
153
ac27a0ec
DK
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155}
156
ac27a0ec
DK
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 175 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 176 ret = ext4_journal_restart(handle, nblocks);
487caeef 177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
e50e5129 190 int extra_credits = 3;
0421a189 191 struct ext4_xattr_inode_array *ea_inode_array = NULL;
ac27a0ec 192
7ff9c073 193 trace_ext4_evict_inode(inode);
2581fdc8 194
0930fcc1 195 if (inode->i_nlink) {
2d859db3
JK
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
6a7fd522
VN
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
2d859db3
JK
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
d76a3a77 220 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
221 filemap_write_and_wait(&inode->i_data);
222 }
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 224
0930fcc1
AV
225 goto no_delete;
226 }
227
e2bfb088
TT
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
907f4554 231
678aaf48
JK
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 234 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
e50e5129
AD
241
242 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, extra_credits);
ac27a0ec 243 if (IS_ERR(handle)) {
bc965ab3 244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
617ba13b 250 ext4_orphan_del(NULL, inode);
8e8ad8a5 251 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
252 goto no_delete;
253 }
ac27a0ec 254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
e50e5129
AD
256
257 /*
258 * Delete xattr inode before deleting the main inode.
259 */
0421a189 260 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array);
e50e5129
AD
261 if (err) {
262 ext4_warning(inode->i_sb,
263 "couldn't delete inode's xattr (err %d)", err);
264 goto stop_handle;
265 }
266
267 if (!IS_NOQUOTA(inode))
268 extra_credits += 2 * EXT4_QUOTA_DEL_BLOCKS(inode->i_sb);
269
270 if (!ext4_handle_has_enough_credits(handle,
271 ext4_blocks_for_truncate(inode) + extra_credits)) {
272 err = ext4_journal_extend(handle,
273 ext4_blocks_for_truncate(inode) + extra_credits);
274 if (err > 0)
275 err = ext4_journal_restart(handle,
276 ext4_blocks_for_truncate(inode) + extra_credits);
277 if (err != 0) {
278 ext4_warning(inode->i_sb,
279 "couldn't extend journal (err %d)", err);
280 goto stop_handle;
281 }
282 }
283
ac27a0ec 284 inode->i_size = 0;
bc965ab3
TT
285 err = ext4_mark_inode_dirty(handle, inode);
286 if (err) {
12062ddd 287 ext4_warning(inode->i_sb,
bc965ab3
TT
288 "couldn't mark inode dirty (err %d)", err);
289 goto stop_handle;
290 }
2c98eb5e
TT
291 if (inode->i_blocks) {
292 err = ext4_truncate(inode);
293 if (err) {
294 ext4_error(inode->i_sb,
295 "couldn't truncate inode %lu (err %d)",
296 inode->i_ino, err);
297 goto stop_handle;
298 }
299 }
bc965ab3
TT
300
301 /*
302 * ext4_ext_truncate() doesn't reserve any slop when it
303 * restarts journal transactions; therefore there may not be
304 * enough credits left in the handle to remove the inode from
305 * the orphan list and set the dtime field.
306 */
e50e5129
AD
307 if (!ext4_handle_has_enough_credits(handle, extra_credits)) {
308 err = ext4_journal_extend(handle, extra_credits);
bc965ab3 309 if (err > 0)
e50e5129 310 err = ext4_journal_restart(handle, extra_credits);
bc965ab3 311 if (err != 0) {
12062ddd 312 ext4_warning(inode->i_sb,
bc965ab3
TT
313 "couldn't extend journal (err %d)", err);
314 stop_handle:
315 ext4_journal_stop(handle);
45388219 316 ext4_orphan_del(NULL, inode);
8e8ad8a5 317 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
318 goto no_delete;
319 }
320 }
321
ac27a0ec 322 /*
617ba13b 323 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 324 * AKPM: I think this can be inside the above `if'.
617ba13b 325 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 326 * deletion of a non-existent orphan - this is because we don't
617ba13b 327 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
328 * (Well, we could do this if we need to, but heck - it works)
329 */
617ba13b
MC
330 ext4_orphan_del(handle, inode);
331 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
332
333 /*
334 * One subtle ordering requirement: if anything has gone wrong
335 * (transaction abort, IO errors, whatever), then we can still
336 * do these next steps (the fs will already have been marked as
337 * having errors), but we can't free the inode if the mark_dirty
338 * fails.
339 */
617ba13b 340 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 341 /* If that failed, just do the required in-core inode clear. */
0930fcc1 342 ext4_clear_inode(inode);
ac27a0ec 343 else
617ba13b 344 ext4_free_inode(handle, inode);
e50e5129 345
617ba13b 346 ext4_journal_stop(handle);
8e8ad8a5 347 sb_end_intwrite(inode->i_sb);
0421a189 348 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
349 return;
350no_delete:
0930fcc1 351 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
352}
353
a9e7f447
DM
354#ifdef CONFIG_QUOTA
355qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 356{
a9e7f447 357 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 358}
a9e7f447 359#endif
9d0be502 360
0637c6f4
TT
361/*
362 * Called with i_data_sem down, which is important since we can call
363 * ext4_discard_preallocations() from here.
364 */
5f634d06
AK
365void ext4_da_update_reserve_space(struct inode *inode,
366 int used, int quota_claim)
12219aea
AK
367{
368 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 369 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
370
371 spin_lock(&ei->i_block_reservation_lock);
d8990240 372 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 373 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 374 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 375 "with only %d reserved data blocks",
0637c6f4
TT
376 __func__, inode->i_ino, used,
377 ei->i_reserved_data_blocks);
378 WARN_ON(1);
379 used = ei->i_reserved_data_blocks;
380 }
12219aea 381
0637c6f4
TT
382 /* Update per-inode reservations */
383 ei->i_reserved_data_blocks -= used;
71d4f7d0 384 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 385
12219aea 386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 387
72b8ab9d
ES
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
7b415bf6 390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 391 else {
5f634d06
AK
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
72b8ab9d 395 * not re-claim the quota for fallocated blocks.
5f634d06 396 */
7b415bf6 397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 398 }
d6014301
AK
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
0637c6f4
TT
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
d6014301 407 ext4_discard_preallocations(inode);
12219aea
AK
408}
409
e29136f8 410static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
411 unsigned int line,
412 struct ext4_map_blocks *map)
6fd058f7 413{
24676da4
TT
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
c398eda0
TT
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
6a797d27 420 return -EFSCORRUPTED;
6fd058f7
TT
421 }
422 return 0;
423}
424
53085fac
JK
425int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
426 ext4_lblk_t len)
427{
428 int ret;
429
430 if (ext4_encrypted_inode(inode))
a7550b30 431 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
432
433 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
434 if (ret > 0)
435 ret = 0;
436
437 return ret;
438}
439
e29136f8 440#define check_block_validity(inode, map) \
c398eda0 441 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 442
921f266b
DM
443#ifdef ES_AGGRESSIVE_TEST
444static void ext4_map_blocks_es_recheck(handle_t *handle,
445 struct inode *inode,
446 struct ext4_map_blocks *es_map,
447 struct ext4_map_blocks *map,
448 int flags)
449{
450 int retval;
451
452 map->m_flags = 0;
453 /*
454 * There is a race window that the result is not the same.
455 * e.g. xfstests #223 when dioread_nolock enables. The reason
456 * is that we lookup a block mapping in extent status tree with
457 * out taking i_data_sem. So at the time the unwritten extent
458 * could be converted.
459 */
2dcba478 460 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
462 retval = ext4_ext_map_blocks(handle, inode, map, flags &
463 EXT4_GET_BLOCKS_KEEP_SIZE);
464 } else {
465 retval = ext4_ind_map_blocks(handle, inode, map, flags &
466 EXT4_GET_BLOCKS_KEEP_SIZE);
467 }
2dcba478 468 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
469
470 /*
471 * We don't check m_len because extent will be collpased in status
472 * tree. So the m_len might not equal.
473 */
474 if (es_map->m_lblk != map->m_lblk ||
475 es_map->m_flags != map->m_flags ||
476 es_map->m_pblk != map->m_pblk) {
bdafe42a 477 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
478 "es_cached ex [%d/%d/%llu/%x] != "
479 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
480 inode->i_ino, es_map->m_lblk, es_map->m_len,
481 es_map->m_pblk, es_map->m_flags, map->m_lblk,
482 map->m_len, map->m_pblk, map->m_flags,
483 retval, flags);
484 }
485}
486#endif /* ES_AGGRESSIVE_TEST */
487
f5ab0d1f 488/*
e35fd660 489 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 490 * and returns if the blocks are already mapped.
f5ab0d1f 491 *
f5ab0d1f
MC
492 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
493 * and store the allocated blocks in the result buffer head and mark it
494 * mapped.
495 *
e35fd660
TT
496 * If file type is extents based, it will call ext4_ext_map_blocks(),
497 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
498 * based files
499 *
facab4d9
JK
500 * On success, it returns the number of blocks being mapped or allocated. if
501 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
502 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
503 *
504 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
505 * that case, @map is returned as unmapped but we still do fill map->m_len to
506 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
507 *
508 * It returns the error in case of allocation failure.
509 */
e35fd660
TT
510int ext4_map_blocks(handle_t *handle, struct inode *inode,
511 struct ext4_map_blocks *map, int flags)
0e855ac8 512{
d100eef2 513 struct extent_status es;
0e855ac8 514 int retval;
b8a86845 515 int ret = 0;
921f266b
DM
516#ifdef ES_AGGRESSIVE_TEST
517 struct ext4_map_blocks orig_map;
518
519 memcpy(&orig_map, map, sizeof(*map));
520#endif
f5ab0d1f 521
e35fd660
TT
522 map->m_flags = 0;
523 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
524 "logical block %lu\n", inode->i_ino, flags, map->m_len,
525 (unsigned long) map->m_lblk);
d100eef2 526
e861b5e9
TT
527 /*
528 * ext4_map_blocks returns an int, and m_len is an unsigned int
529 */
530 if (unlikely(map->m_len > INT_MAX))
531 map->m_len = INT_MAX;
532
4adb6ab3
KM
533 /* We can handle the block number less than EXT_MAX_BLOCKS */
534 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 535 return -EFSCORRUPTED;
4adb6ab3 536
d100eef2
ZL
537 /* Lookup extent status tree firstly */
538 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
539 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
540 map->m_pblk = ext4_es_pblock(&es) +
541 map->m_lblk - es.es_lblk;
542 map->m_flags |= ext4_es_is_written(&es) ?
543 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
544 retval = es.es_len - (map->m_lblk - es.es_lblk);
545 if (retval > map->m_len)
546 retval = map->m_len;
547 map->m_len = retval;
548 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
549 map->m_pblk = 0;
550 retval = es.es_len - (map->m_lblk - es.es_lblk);
551 if (retval > map->m_len)
552 retval = map->m_len;
553 map->m_len = retval;
d100eef2
ZL
554 retval = 0;
555 } else {
556 BUG_ON(1);
557 }
921f266b
DM
558#ifdef ES_AGGRESSIVE_TEST
559 ext4_map_blocks_es_recheck(handle, inode, map,
560 &orig_map, flags);
561#endif
d100eef2
ZL
562 goto found;
563 }
564
4df3d265 565 /*
b920c755
TT
566 * Try to see if we can get the block without requesting a new
567 * file system block.
4df3d265 568 */
2dcba478 569 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 570 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
571 retval = ext4_ext_map_blocks(handle, inode, map, flags &
572 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 573 } else {
a4e5d88b
DM
574 retval = ext4_ind_map_blocks(handle, inode, map, flags &
575 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 576 }
f7fec032 577 if (retval > 0) {
3be78c73 578 unsigned int status;
f7fec032 579
44fb851d
ZL
580 if (unlikely(retval != map->m_len)) {
581 ext4_warning(inode->i_sb,
582 "ES len assertion failed for inode "
583 "%lu: retval %d != map->m_len %d",
584 inode->i_ino, retval, map->m_len);
585 WARN_ON(1);
921f266b 586 }
921f266b 587
f7fec032
ZL
588 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
589 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
590 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 591 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
592 ext4_find_delalloc_range(inode, map->m_lblk,
593 map->m_lblk + map->m_len - 1))
594 status |= EXTENT_STATUS_DELAYED;
595 ret = ext4_es_insert_extent(inode, map->m_lblk,
596 map->m_len, map->m_pblk, status);
597 if (ret < 0)
598 retval = ret;
599 }
2dcba478 600 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 601
d100eef2 602found:
e35fd660 603 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 604 ret = check_block_validity(inode, map);
6fd058f7
TT
605 if (ret != 0)
606 return ret;
607 }
608
f5ab0d1f 609 /* If it is only a block(s) look up */
c2177057 610 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
611 return retval;
612
613 /*
614 * Returns if the blocks have already allocated
615 *
616 * Note that if blocks have been preallocated
df3ab170 617 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
618 * with buffer head unmapped.
619 */
e35fd660 620 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
621 /*
622 * If we need to convert extent to unwritten
623 * we continue and do the actual work in
624 * ext4_ext_map_blocks()
625 */
626 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
627 return retval;
4df3d265 628
2a8964d6 629 /*
a25a4e1a
ZL
630 * Here we clear m_flags because after allocating an new extent,
631 * it will be set again.
2a8964d6 632 */
a25a4e1a 633 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 634
4df3d265 635 /*
556615dc 636 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 637 * will possibly result in updating i_data, so we take
d91bd2c1 638 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 639 * with create == 1 flag.
4df3d265 640 */
c8b459f4 641 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 642
4df3d265
AK
643 /*
644 * We need to check for EXT4 here because migrate
645 * could have changed the inode type in between
646 */
12e9b892 647 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 648 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 649 } else {
e35fd660 650 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 651
e35fd660 652 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
653 /*
654 * We allocated new blocks which will result in
655 * i_data's format changing. Force the migrate
656 * to fail by clearing migrate flags
657 */
19f5fb7a 658 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 659 }
d2a17637 660
5f634d06
AK
661 /*
662 * Update reserved blocks/metadata blocks after successful
663 * block allocation which had been deferred till now. We don't
664 * support fallocate for non extent files. So we can update
665 * reserve space here.
666 */
667 if ((retval > 0) &&
1296cc85 668 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
669 ext4_da_update_reserve_space(inode, retval, 1);
670 }
2ac3b6e0 671
f7fec032 672 if (retval > 0) {
3be78c73 673 unsigned int status;
f7fec032 674
44fb851d
ZL
675 if (unlikely(retval != map->m_len)) {
676 ext4_warning(inode->i_sb,
677 "ES len assertion failed for inode "
678 "%lu: retval %d != map->m_len %d",
679 inode->i_ino, retval, map->m_len);
680 WARN_ON(1);
921f266b 681 }
921f266b 682
c86d8db3
JK
683 /*
684 * We have to zeroout blocks before inserting them into extent
685 * status tree. Otherwise someone could look them up there and
9b623df6
JK
686 * use them before they are really zeroed. We also have to
687 * unmap metadata before zeroing as otherwise writeback can
688 * overwrite zeros with stale data from block device.
c86d8db3
JK
689 */
690 if (flags & EXT4_GET_BLOCKS_ZERO &&
691 map->m_flags & EXT4_MAP_MAPPED &&
692 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
693 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
694 map->m_len);
c86d8db3
JK
695 ret = ext4_issue_zeroout(inode, map->m_lblk,
696 map->m_pblk, map->m_len);
697 if (ret) {
698 retval = ret;
699 goto out_sem;
700 }
701 }
702
adb23551
ZL
703 /*
704 * If the extent has been zeroed out, we don't need to update
705 * extent status tree.
706 */
707 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
708 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
709 if (ext4_es_is_written(&es))
c86d8db3 710 goto out_sem;
adb23551 711 }
f7fec032
ZL
712 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
713 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
714 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 715 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
716 ext4_find_delalloc_range(inode, map->m_lblk,
717 map->m_lblk + map->m_len - 1))
718 status |= EXTENT_STATUS_DELAYED;
719 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
720 map->m_pblk, status);
c86d8db3 721 if (ret < 0) {
f7fec032 722 retval = ret;
c86d8db3
JK
723 goto out_sem;
724 }
5356f261
AK
725 }
726
c86d8db3 727out_sem:
4df3d265 728 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 729 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 730 ret = check_block_validity(inode, map);
6fd058f7
TT
731 if (ret != 0)
732 return ret;
06bd3c36
JK
733
734 /*
735 * Inodes with freshly allocated blocks where contents will be
736 * visible after transaction commit must be on transaction's
737 * ordered data list.
738 */
739 if (map->m_flags & EXT4_MAP_NEW &&
740 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
741 !(flags & EXT4_GET_BLOCKS_ZERO) &&
742 !IS_NOQUOTA(inode) &&
743 ext4_should_order_data(inode)) {
ee0876bc
JK
744 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
745 ret = ext4_jbd2_inode_add_wait(handle, inode);
746 else
747 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
748 if (ret)
749 return ret;
750 }
6fd058f7 751 }
0e855ac8
AK
752 return retval;
753}
754
ed8ad838
JK
755/*
756 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757 * we have to be careful as someone else may be manipulating b_state as well.
758 */
759static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760{
761 unsigned long old_state;
762 unsigned long new_state;
763
764 flags &= EXT4_MAP_FLAGS;
765
766 /* Dummy buffer_head? Set non-atomically. */
767 if (!bh->b_page) {
768 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769 return;
770 }
771 /*
772 * Someone else may be modifying b_state. Be careful! This is ugly but
773 * once we get rid of using bh as a container for mapping information
774 * to pass to / from get_block functions, this can go away.
775 */
776 do {
777 old_state = READ_ONCE(bh->b_state);
778 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779 } while (unlikely(
780 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781}
782
2ed88685
TT
783static int _ext4_get_block(struct inode *inode, sector_t iblock,
784 struct buffer_head *bh, int flags)
ac27a0ec 785{
2ed88685 786 struct ext4_map_blocks map;
efe70c29 787 int ret = 0;
ac27a0ec 788
46c7f254
TM
789 if (ext4_has_inline_data(inode))
790 return -ERANGE;
791
2ed88685
TT
792 map.m_lblk = iblock;
793 map.m_len = bh->b_size >> inode->i_blkbits;
794
efe70c29
JK
795 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796 flags);
7fb5409d 797 if (ret > 0) {
2ed88685 798 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 799 ext4_update_bh_state(bh, map.m_flags);
2ed88685 800 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 801 ret = 0;
547edce3
RZ
802 } else if (ret == 0) {
803 /* hole case, need to fill in bh->b_size */
804 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
805 }
806 return ret;
807}
808
2ed88685
TT
809int ext4_get_block(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh, int create)
811{
812 return _ext4_get_block(inode, iblock, bh,
813 create ? EXT4_GET_BLOCKS_CREATE : 0);
814}
815
705965bd
JK
816/*
817 * Get block function used when preparing for buffered write if we require
818 * creating an unwritten extent if blocks haven't been allocated. The extent
819 * will be converted to written after the IO is complete.
820 */
821int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
822 struct buffer_head *bh_result, int create)
823{
824 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
825 inode->i_ino, create);
826 return _ext4_get_block(inode, iblock, bh_result,
827 EXT4_GET_BLOCKS_IO_CREATE_EXT);
828}
829
efe70c29
JK
830/* Maximum number of blocks we map for direct IO at once. */
831#define DIO_MAX_BLOCKS 4096
832
e84dfbe2
JK
833/*
834 * Get blocks function for the cases that need to start a transaction -
835 * generally difference cases of direct IO and DAX IO. It also handles retries
836 * in case of ENOSPC.
837 */
838static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
839 struct buffer_head *bh_result, int flags)
efe70c29
JK
840{
841 int dio_credits;
e84dfbe2
JK
842 handle_t *handle;
843 int retries = 0;
844 int ret;
efe70c29
JK
845
846 /* Trim mapping request to maximum we can map at once for DIO */
847 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
848 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
849 dio_credits = ext4_chunk_trans_blocks(inode,
850 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
851retry:
852 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
853 if (IS_ERR(handle))
854 return PTR_ERR(handle);
855
856 ret = _ext4_get_block(inode, iblock, bh_result, flags);
857 ext4_journal_stop(handle);
858
859 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
860 goto retry;
861 return ret;
efe70c29
JK
862}
863
705965bd
JK
864/* Get block function for DIO reads and writes to inodes without extents */
865int ext4_dio_get_block(struct inode *inode, sector_t iblock,
866 struct buffer_head *bh, int create)
867{
efe70c29
JK
868 /* We don't expect handle for direct IO */
869 WARN_ON_ONCE(ext4_journal_current_handle());
870
e84dfbe2
JK
871 if (!create)
872 return _ext4_get_block(inode, iblock, bh, 0);
873 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
874}
875
876/*
109811c2 877 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
878 * blocks are not allocated yet. The extent will be converted to written
879 * after IO is complete.
880 */
109811c2
JK
881static int ext4_dio_get_block_unwritten_async(struct inode *inode,
882 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 883{
efe70c29
JK
884 int ret;
885
efe70c29
JK
886 /* We don't expect handle for direct IO */
887 WARN_ON_ONCE(ext4_journal_current_handle());
888
e84dfbe2
JK
889 ret = ext4_get_block_trans(inode, iblock, bh_result,
890 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 891
109811c2
JK
892 /*
893 * When doing DIO using unwritten extents, we need io_end to convert
894 * unwritten extents to written on IO completion. We allocate io_end
895 * once we spot unwritten extent and store it in b_private. Generic
896 * DIO code keeps b_private set and furthermore passes the value to
897 * our completion callback in 'private' argument.
898 */
899 if (!ret && buffer_unwritten(bh_result)) {
900 if (!bh_result->b_private) {
901 ext4_io_end_t *io_end;
902
903 io_end = ext4_init_io_end(inode, GFP_KERNEL);
904 if (!io_end)
905 return -ENOMEM;
906 bh_result->b_private = io_end;
907 ext4_set_io_unwritten_flag(inode, io_end);
908 }
efe70c29 909 set_buffer_defer_completion(bh_result);
efe70c29
JK
910 }
911
912 return ret;
705965bd
JK
913}
914
109811c2
JK
915/*
916 * Get block function for non-AIO DIO writes when we create unwritten extent if
917 * blocks are not allocated yet. The extent will be converted to written
918 * after IO is complete from ext4_ext_direct_IO() function.
919 */
920static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
921 sector_t iblock, struct buffer_head *bh_result, int create)
922{
109811c2
JK
923 int ret;
924
925 /* We don't expect handle for direct IO */
926 WARN_ON_ONCE(ext4_journal_current_handle());
927
e84dfbe2
JK
928 ret = ext4_get_block_trans(inode, iblock, bh_result,
929 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
930
931 /*
932 * Mark inode as having pending DIO writes to unwritten extents.
933 * ext4_ext_direct_IO() checks this flag and converts extents to
934 * written.
935 */
936 if (!ret && buffer_unwritten(bh_result))
937 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
938
939 return ret;
940}
941
705965bd
JK
942static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
943 struct buffer_head *bh_result, int create)
944{
945 int ret;
946
947 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
948 inode->i_ino, create);
efe70c29
JK
949 /* We don't expect handle for direct IO */
950 WARN_ON_ONCE(ext4_journal_current_handle());
951
705965bd
JK
952 ret = _ext4_get_block(inode, iblock, bh_result, 0);
953 /*
954 * Blocks should have been preallocated! ext4_file_write_iter() checks
955 * that.
956 */
efe70c29 957 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
958
959 return ret;
960}
961
962
ac27a0ec
DK
963/*
964 * `handle' can be NULL if create is zero
965 */
617ba13b 966struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 967 ext4_lblk_t block, int map_flags)
ac27a0ec 968{
2ed88685
TT
969 struct ext4_map_blocks map;
970 struct buffer_head *bh;
c5e298ae 971 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 972 int err;
ac27a0ec
DK
973
974 J_ASSERT(handle != NULL || create == 0);
975
2ed88685
TT
976 map.m_lblk = block;
977 map.m_len = 1;
c5e298ae 978 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 979
10560082
TT
980 if (err == 0)
981 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 982 if (err < 0)
10560082 983 return ERR_PTR(err);
2ed88685
TT
984
985 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
986 if (unlikely(!bh))
987 return ERR_PTR(-ENOMEM);
2ed88685
TT
988 if (map.m_flags & EXT4_MAP_NEW) {
989 J_ASSERT(create != 0);
990 J_ASSERT(handle != NULL);
ac27a0ec 991
2ed88685
TT
992 /*
993 * Now that we do not always journal data, we should
994 * keep in mind whether this should always journal the
995 * new buffer as metadata. For now, regular file
996 * writes use ext4_get_block instead, so it's not a
997 * problem.
998 */
999 lock_buffer(bh);
1000 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
1001 err = ext4_journal_get_create_access(handle, bh);
1002 if (unlikely(err)) {
1003 unlock_buffer(bh);
1004 goto errout;
1005 }
1006 if (!buffer_uptodate(bh)) {
2ed88685
TT
1007 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1008 set_buffer_uptodate(bh);
ac27a0ec 1009 }
2ed88685
TT
1010 unlock_buffer(bh);
1011 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1012 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
1013 if (unlikely(err))
1014 goto errout;
1015 } else
2ed88685 1016 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 1017 return bh;
10560082
TT
1018errout:
1019 brelse(bh);
1020 return ERR_PTR(err);
ac27a0ec
DK
1021}
1022
617ba13b 1023struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1024 ext4_lblk_t block, int map_flags)
ac27a0ec 1025{
af5bc92d 1026 struct buffer_head *bh;
ac27a0ec 1027
c5e298ae 1028 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1029 if (IS_ERR(bh))
ac27a0ec 1030 return bh;
1c215028 1031 if (!bh || buffer_uptodate(bh))
ac27a0ec 1032 return bh;
dfec8a14 1033 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1034 wait_on_buffer(bh);
1035 if (buffer_uptodate(bh))
1036 return bh;
1037 put_bh(bh);
1c215028 1038 return ERR_PTR(-EIO);
ac27a0ec
DK
1039}
1040
f19d5870
TM
1041int ext4_walk_page_buffers(handle_t *handle,
1042 struct buffer_head *head,
1043 unsigned from,
1044 unsigned to,
1045 int *partial,
1046 int (*fn)(handle_t *handle,
1047 struct buffer_head *bh))
ac27a0ec
DK
1048{
1049 struct buffer_head *bh;
1050 unsigned block_start, block_end;
1051 unsigned blocksize = head->b_size;
1052 int err, ret = 0;
1053 struct buffer_head *next;
1054
af5bc92d
TT
1055 for (bh = head, block_start = 0;
1056 ret == 0 && (bh != head || !block_start);
de9a55b8 1057 block_start = block_end, bh = next) {
ac27a0ec
DK
1058 next = bh->b_this_page;
1059 block_end = block_start + blocksize;
1060 if (block_end <= from || block_start >= to) {
1061 if (partial && !buffer_uptodate(bh))
1062 *partial = 1;
1063 continue;
1064 }
1065 err = (*fn)(handle, bh);
1066 if (!ret)
1067 ret = err;
1068 }
1069 return ret;
1070}
1071
1072/*
1073 * To preserve ordering, it is essential that the hole instantiation and
1074 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1075 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1076 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1077 * prepare_write() is the right place.
1078 *
36ade451
JK
1079 * Also, this function can nest inside ext4_writepage(). In that case, we
1080 * *know* that ext4_writepage() has generated enough buffer credits to do the
1081 * whole page. So we won't block on the journal in that case, which is good,
1082 * because the caller may be PF_MEMALLOC.
ac27a0ec 1083 *
617ba13b 1084 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1085 * quota file writes. If we were to commit the transaction while thus
1086 * reentered, there can be a deadlock - we would be holding a quota
1087 * lock, and the commit would never complete if another thread had a
1088 * transaction open and was blocking on the quota lock - a ranking
1089 * violation.
1090 *
dab291af 1091 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1092 * will _not_ run commit under these circumstances because handle->h_ref
1093 * is elevated. We'll still have enough credits for the tiny quotafile
1094 * write.
1095 */
f19d5870
TM
1096int do_journal_get_write_access(handle_t *handle,
1097 struct buffer_head *bh)
ac27a0ec 1098{
56d35a4c
JK
1099 int dirty = buffer_dirty(bh);
1100 int ret;
1101
ac27a0ec
DK
1102 if (!buffer_mapped(bh) || buffer_freed(bh))
1103 return 0;
56d35a4c 1104 /*
ebdec241 1105 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1106 * the dirty bit as jbd2_journal_get_write_access() could complain
1107 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1108 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1109 * the bit before releasing a page lock and thus writeback cannot
1110 * ever write the buffer.
1111 */
1112 if (dirty)
1113 clear_buffer_dirty(bh);
5d601255 1114 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1115 ret = ext4_journal_get_write_access(handle, bh);
1116 if (!ret && dirty)
1117 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1118 return ret;
ac27a0ec
DK
1119}
1120
2058f83a
MH
1121#ifdef CONFIG_EXT4_FS_ENCRYPTION
1122static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1123 get_block_t *get_block)
1124{
09cbfeaf 1125 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1126 unsigned to = from + len;
1127 struct inode *inode = page->mapping->host;
1128 unsigned block_start, block_end;
1129 sector_t block;
1130 int err = 0;
1131 unsigned blocksize = inode->i_sb->s_blocksize;
1132 unsigned bbits;
1133 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1134 bool decrypt = false;
1135
1136 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1137 BUG_ON(from > PAGE_SIZE);
1138 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1139 BUG_ON(from > to);
1140
1141 if (!page_has_buffers(page))
1142 create_empty_buffers(page, blocksize, 0);
1143 head = page_buffers(page);
1144 bbits = ilog2(blocksize);
09cbfeaf 1145 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1146
1147 for (bh = head, block_start = 0; bh != head || !block_start;
1148 block++, block_start = block_end, bh = bh->b_this_page) {
1149 block_end = block_start + blocksize;
1150 if (block_end <= from || block_start >= to) {
1151 if (PageUptodate(page)) {
1152 if (!buffer_uptodate(bh))
1153 set_buffer_uptodate(bh);
1154 }
1155 continue;
1156 }
1157 if (buffer_new(bh))
1158 clear_buffer_new(bh);
1159 if (!buffer_mapped(bh)) {
1160 WARN_ON(bh->b_size != blocksize);
1161 err = get_block(inode, block, bh, 1);
1162 if (err)
1163 break;
1164 if (buffer_new(bh)) {
e64855c6 1165 clean_bdev_bh_alias(bh);
2058f83a
MH
1166 if (PageUptodate(page)) {
1167 clear_buffer_new(bh);
1168 set_buffer_uptodate(bh);
1169 mark_buffer_dirty(bh);
1170 continue;
1171 }
1172 if (block_end > to || block_start < from)
1173 zero_user_segments(page, to, block_end,
1174 block_start, from);
1175 continue;
1176 }
1177 }
1178 if (PageUptodate(page)) {
1179 if (!buffer_uptodate(bh))
1180 set_buffer_uptodate(bh);
1181 continue;
1182 }
1183 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1184 !buffer_unwritten(bh) &&
1185 (block_start < from || block_end > to)) {
dfec8a14 1186 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1187 *wait_bh++ = bh;
1188 decrypt = ext4_encrypted_inode(inode) &&
1189 S_ISREG(inode->i_mode);
1190 }
1191 }
1192 /*
1193 * If we issued read requests, let them complete.
1194 */
1195 while (wait_bh > wait) {
1196 wait_on_buffer(*--wait_bh);
1197 if (!buffer_uptodate(*wait_bh))
1198 err = -EIO;
1199 }
1200 if (unlikely(err))
1201 page_zero_new_buffers(page, from, to);
1202 else if (decrypt)
7821d4dd 1203 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1204 PAGE_SIZE, 0, page->index);
2058f83a
MH
1205 return err;
1206}
1207#endif
1208
bfc1af65 1209static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1210 loff_t pos, unsigned len, unsigned flags,
1211 struct page **pagep, void **fsdata)
ac27a0ec 1212{
af5bc92d 1213 struct inode *inode = mapping->host;
1938a150 1214 int ret, needed_blocks;
ac27a0ec
DK
1215 handle_t *handle;
1216 int retries = 0;
af5bc92d 1217 struct page *page;
de9a55b8 1218 pgoff_t index;
af5bc92d 1219 unsigned from, to;
bfc1af65 1220
0db1ff22
TT
1221 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1222 return -EIO;
1223
9bffad1e 1224 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1225 /*
1226 * Reserve one block more for addition to orphan list in case
1227 * we allocate blocks but write fails for some reason
1228 */
1229 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1230 index = pos >> PAGE_SHIFT;
1231 from = pos & (PAGE_SIZE - 1);
af5bc92d 1232 to = from + len;
ac27a0ec 1233
f19d5870
TM
1234 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1235 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1236 flags, pagep);
1237 if (ret < 0)
47564bfb
TT
1238 return ret;
1239 if (ret == 1)
1240 return 0;
f19d5870
TM
1241 }
1242
47564bfb
TT
1243 /*
1244 * grab_cache_page_write_begin() can take a long time if the
1245 * system is thrashing due to memory pressure, or if the page
1246 * is being written back. So grab it first before we start
1247 * the transaction handle. This also allows us to allocate
1248 * the page (if needed) without using GFP_NOFS.
1249 */
1250retry_grab:
1251 page = grab_cache_page_write_begin(mapping, index, flags);
1252 if (!page)
1253 return -ENOMEM;
1254 unlock_page(page);
1255
1256retry_journal:
9924a92a 1257 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1258 if (IS_ERR(handle)) {
09cbfeaf 1259 put_page(page);
47564bfb 1260 return PTR_ERR(handle);
7479d2b9 1261 }
ac27a0ec 1262
47564bfb
TT
1263 lock_page(page);
1264 if (page->mapping != mapping) {
1265 /* The page got truncated from under us */
1266 unlock_page(page);
09cbfeaf 1267 put_page(page);
cf108bca 1268 ext4_journal_stop(handle);
47564bfb 1269 goto retry_grab;
cf108bca 1270 }
7afe5aa5
DM
1271 /* In case writeback began while the page was unlocked */
1272 wait_for_stable_page(page);
cf108bca 1273
2058f83a
MH
1274#ifdef CONFIG_EXT4_FS_ENCRYPTION
1275 if (ext4_should_dioread_nolock(inode))
1276 ret = ext4_block_write_begin(page, pos, len,
705965bd 1277 ext4_get_block_unwritten);
2058f83a
MH
1278 else
1279 ret = ext4_block_write_begin(page, pos, len,
1280 ext4_get_block);
1281#else
744692dc 1282 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1283 ret = __block_write_begin(page, pos, len,
1284 ext4_get_block_unwritten);
744692dc 1285 else
6e1db88d 1286 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1287#endif
bfc1af65 1288 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1289 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1290 from, to, NULL,
1291 do_journal_get_write_access);
ac27a0ec 1292 }
bfc1af65
NP
1293
1294 if (ret) {
af5bc92d 1295 unlock_page(page);
ae4d5372 1296 /*
6e1db88d 1297 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1298 * outside i_size. Trim these off again. Don't need
1299 * i_size_read because we hold i_mutex.
1938a150
AK
1300 *
1301 * Add inode to orphan list in case we crash before
1302 * truncate finishes
ae4d5372 1303 */
ffacfa7a 1304 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1305 ext4_orphan_add(handle, inode);
1306
1307 ext4_journal_stop(handle);
1308 if (pos + len > inode->i_size) {
b9a4207d 1309 ext4_truncate_failed_write(inode);
de9a55b8 1310 /*
ffacfa7a 1311 * If truncate failed early the inode might
1938a150
AK
1312 * still be on the orphan list; we need to
1313 * make sure the inode is removed from the
1314 * orphan list in that case.
1315 */
1316 if (inode->i_nlink)
1317 ext4_orphan_del(NULL, inode);
1318 }
bfc1af65 1319
47564bfb
TT
1320 if (ret == -ENOSPC &&
1321 ext4_should_retry_alloc(inode->i_sb, &retries))
1322 goto retry_journal;
09cbfeaf 1323 put_page(page);
47564bfb
TT
1324 return ret;
1325 }
1326 *pagep = page;
ac27a0ec
DK
1327 return ret;
1328}
1329
bfc1af65
NP
1330/* For write_end() in data=journal mode */
1331static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1332{
13fca323 1333 int ret;
ac27a0ec
DK
1334 if (!buffer_mapped(bh) || buffer_freed(bh))
1335 return 0;
1336 set_buffer_uptodate(bh);
13fca323
TT
1337 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1338 clear_buffer_meta(bh);
1339 clear_buffer_prio(bh);
1340 return ret;
ac27a0ec
DK
1341}
1342
eed4333f
ZL
1343/*
1344 * We need to pick up the new inode size which generic_commit_write gave us
1345 * `file' can be NULL - eg, when called from page_symlink().
1346 *
1347 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1348 * buffers are managed internally.
1349 */
1350static int ext4_write_end(struct file *file,
1351 struct address_space *mapping,
1352 loff_t pos, unsigned len, unsigned copied,
1353 struct page *page, void *fsdata)
f8514083 1354{
f8514083 1355 handle_t *handle = ext4_journal_current_handle();
eed4333f 1356 struct inode *inode = mapping->host;
0572639f 1357 loff_t old_size = inode->i_size;
eed4333f
ZL
1358 int ret = 0, ret2;
1359 int i_size_changed = 0;
1360
1361 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1362 if (ext4_has_inline_data(inode)) {
1363 ret = ext4_write_inline_data_end(inode, pos, len,
1364 copied, page);
eb5efbcb
TT
1365 if (ret < 0) {
1366 unlock_page(page);
1367 put_page(page);
42c832de 1368 goto errout;
eb5efbcb 1369 }
42c832de
TT
1370 copied = ret;
1371 } else
f19d5870
TM
1372 copied = block_write_end(file, mapping, pos,
1373 len, copied, page, fsdata);
f8514083 1374 /*
4631dbf6 1375 * it's important to update i_size while still holding page lock:
f8514083
AK
1376 * page writeout could otherwise come in and zero beyond i_size.
1377 */
4631dbf6 1378 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1379 unlock_page(page);
09cbfeaf 1380 put_page(page);
f8514083 1381
0572639f
XW
1382 if (old_size < pos)
1383 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1384 /*
1385 * Don't mark the inode dirty under page lock. First, it unnecessarily
1386 * makes the holding time of page lock longer. Second, it forces lock
1387 * ordering of page lock and transaction start for journaling
1388 * filesystems.
1389 */
1390 if (i_size_changed)
1391 ext4_mark_inode_dirty(handle, inode);
1392
ffacfa7a 1393 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1394 /* if we have allocated more blocks and copied
1395 * less. We will have blocks allocated outside
1396 * inode->i_size. So truncate them
1397 */
1398 ext4_orphan_add(handle, inode);
74d553aa 1399errout:
617ba13b 1400 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1401 if (!ret)
1402 ret = ret2;
bfc1af65 1403
f8514083 1404 if (pos + len > inode->i_size) {
b9a4207d 1405 ext4_truncate_failed_write(inode);
de9a55b8 1406 /*
ffacfa7a 1407 * If truncate failed early the inode might still be
f8514083
AK
1408 * on the orphan list; we need to make sure the inode
1409 * is removed from the orphan list in that case.
1410 */
1411 if (inode->i_nlink)
1412 ext4_orphan_del(NULL, inode);
1413 }
1414
bfc1af65 1415 return ret ? ret : copied;
ac27a0ec
DK
1416}
1417
b90197b6
TT
1418/*
1419 * This is a private version of page_zero_new_buffers() which doesn't
1420 * set the buffer to be dirty, since in data=journalled mode we need
1421 * to call ext4_handle_dirty_metadata() instead.
1422 */
3b136499
JK
1423static void ext4_journalled_zero_new_buffers(handle_t *handle,
1424 struct page *page,
1425 unsigned from, unsigned to)
b90197b6
TT
1426{
1427 unsigned int block_start = 0, block_end;
1428 struct buffer_head *head, *bh;
1429
1430 bh = head = page_buffers(page);
1431 do {
1432 block_end = block_start + bh->b_size;
1433 if (buffer_new(bh)) {
1434 if (block_end > from && block_start < to) {
1435 if (!PageUptodate(page)) {
1436 unsigned start, size;
1437
1438 start = max(from, block_start);
1439 size = min(to, block_end) - start;
1440
1441 zero_user(page, start, size);
3b136499 1442 write_end_fn(handle, bh);
b90197b6
TT
1443 }
1444 clear_buffer_new(bh);
1445 }
1446 }
1447 block_start = block_end;
1448 bh = bh->b_this_page;
1449 } while (bh != head);
1450}
1451
bfc1af65 1452static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1453 struct address_space *mapping,
1454 loff_t pos, unsigned len, unsigned copied,
1455 struct page *page, void *fsdata)
ac27a0ec 1456{
617ba13b 1457 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1458 struct inode *inode = mapping->host;
0572639f 1459 loff_t old_size = inode->i_size;
ac27a0ec
DK
1460 int ret = 0, ret2;
1461 int partial = 0;
bfc1af65 1462 unsigned from, to;
4631dbf6 1463 int size_changed = 0;
ac27a0ec 1464
9bffad1e 1465 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1466 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1467 to = from + len;
1468
441c8508
CW
1469 BUG_ON(!ext4_handle_valid(handle));
1470
eb5efbcb
TT
1471 if (ext4_has_inline_data(inode)) {
1472 ret = ext4_write_inline_data_end(inode, pos, len,
1473 copied, page);
1474 if (ret < 0) {
1475 unlock_page(page);
1476 put_page(page);
1477 goto errout;
1478 }
1479 copied = ret;
1480 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1481 copied = 0;
1482 ext4_journalled_zero_new_buffers(handle, page, from, to);
1483 } else {
1484 if (unlikely(copied < len))
1485 ext4_journalled_zero_new_buffers(handle, page,
1486 from + copied, to);
3fdcfb66 1487 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1488 from + copied, &partial,
1489 write_end_fn);
3fdcfb66
TM
1490 if (!partial)
1491 SetPageUptodate(page);
1492 }
4631dbf6 1493 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1494 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1495 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1496 unlock_page(page);
09cbfeaf 1497 put_page(page);
4631dbf6 1498
0572639f
XW
1499 if (old_size < pos)
1500 pagecache_isize_extended(inode, old_size, pos);
1501
4631dbf6 1502 if (size_changed) {
617ba13b 1503 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1504 if (!ret)
1505 ret = ret2;
1506 }
bfc1af65 1507
ffacfa7a 1508 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1509 /* if we have allocated more blocks and copied
1510 * less. We will have blocks allocated outside
1511 * inode->i_size. So truncate them
1512 */
1513 ext4_orphan_add(handle, inode);
1514
eb5efbcb 1515errout:
617ba13b 1516 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1517 if (!ret)
1518 ret = ret2;
f8514083 1519 if (pos + len > inode->i_size) {
b9a4207d 1520 ext4_truncate_failed_write(inode);
de9a55b8 1521 /*
ffacfa7a 1522 * If truncate failed early the inode might still be
f8514083
AK
1523 * on the orphan list; we need to make sure the inode
1524 * is removed from the orphan list in that case.
1525 */
1526 if (inode->i_nlink)
1527 ext4_orphan_del(NULL, inode);
1528 }
bfc1af65
NP
1529
1530 return ret ? ret : copied;
ac27a0ec 1531}
d2a17637 1532
9d0be502 1533/*
c27e43a1 1534 * Reserve space for a single cluster
9d0be502 1535 */
c27e43a1 1536static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1537{
60e58e0f 1538 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1539 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1540 int ret;
03179fe9
TT
1541
1542 /*
1543 * We will charge metadata quota at writeout time; this saves
1544 * us from metadata over-estimation, though we may go over by
1545 * a small amount in the end. Here we just reserve for data.
1546 */
1547 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1548 if (ret)
1549 return ret;
d2a17637 1550
0637c6f4 1551 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1552 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1553 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1554 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1555 return -ENOSPC;
1556 }
9d0be502 1557 ei->i_reserved_data_blocks++;
c27e43a1 1558 trace_ext4_da_reserve_space(inode);
0637c6f4 1559 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1560
d2a17637
MC
1561 return 0; /* success */
1562}
1563
12219aea 1564static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1565{
1566 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1567 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1568
cd213226
MC
1569 if (!to_free)
1570 return; /* Nothing to release, exit */
1571
d2a17637 1572 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1573
5a58ec87 1574 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1575 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1576 /*
0637c6f4
TT
1577 * if there aren't enough reserved blocks, then the
1578 * counter is messed up somewhere. Since this
1579 * function is called from invalidate page, it's
1580 * harmless to return without any action.
cd213226 1581 */
8de5c325 1582 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1583 "ino %lu, to_free %d with only %d reserved "
1084f252 1584 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1585 ei->i_reserved_data_blocks);
1586 WARN_ON(1);
1587 to_free = ei->i_reserved_data_blocks;
cd213226 1588 }
0637c6f4 1589 ei->i_reserved_data_blocks -= to_free;
cd213226 1590
72b8ab9d 1591 /* update fs dirty data blocks counter */
57042651 1592 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1593
d2a17637 1594 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1595
7b415bf6 1596 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1597}
1598
1599static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1600 unsigned int offset,
1601 unsigned int length)
d2a17637 1602{
9705acd6 1603 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1604 struct buffer_head *head, *bh;
1605 unsigned int curr_off = 0;
7b415bf6
AK
1606 struct inode *inode = page->mapping->host;
1607 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1608 unsigned int stop = offset + length;
7b415bf6 1609 int num_clusters;
51865fda 1610 ext4_fsblk_t lblk;
d2a17637 1611
09cbfeaf 1612 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1613
d2a17637
MC
1614 head = page_buffers(page);
1615 bh = head;
1616 do {
1617 unsigned int next_off = curr_off + bh->b_size;
1618
ca99fdd2
LC
1619 if (next_off > stop)
1620 break;
1621
d2a17637
MC
1622 if ((offset <= curr_off) && (buffer_delay(bh))) {
1623 to_release++;
9705acd6 1624 contiguous_blks++;
d2a17637 1625 clear_buffer_delay(bh);
9705acd6
LC
1626 } else if (contiguous_blks) {
1627 lblk = page->index <<
09cbfeaf 1628 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1629 lblk += (curr_off >> inode->i_blkbits) -
1630 contiguous_blks;
1631 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1632 contiguous_blks = 0;
d2a17637
MC
1633 }
1634 curr_off = next_off;
1635 } while ((bh = bh->b_this_page) != head);
7b415bf6 1636
9705acd6 1637 if (contiguous_blks) {
09cbfeaf 1638 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1639 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1640 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1641 }
1642
7b415bf6
AK
1643 /* If we have released all the blocks belonging to a cluster, then we
1644 * need to release the reserved space for that cluster. */
1645 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1646 while (num_clusters > 0) {
09cbfeaf 1647 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1648 ((num_clusters - 1) << sbi->s_cluster_bits);
1649 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1650 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1651 ext4_da_release_space(inode, 1);
1652
1653 num_clusters--;
1654 }
d2a17637 1655}
ac27a0ec 1656
64769240
AT
1657/*
1658 * Delayed allocation stuff
1659 */
1660
4e7ea81d
JK
1661struct mpage_da_data {
1662 struct inode *inode;
1663 struct writeback_control *wbc;
6b523df4 1664
4e7ea81d
JK
1665 pgoff_t first_page; /* The first page to write */
1666 pgoff_t next_page; /* Current page to examine */
1667 pgoff_t last_page; /* Last page to examine */
791b7f08 1668 /*
4e7ea81d
JK
1669 * Extent to map - this can be after first_page because that can be
1670 * fully mapped. We somewhat abuse m_flags to store whether the extent
1671 * is delalloc or unwritten.
791b7f08 1672 */
4e7ea81d
JK
1673 struct ext4_map_blocks map;
1674 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1675 unsigned int do_map:1;
4e7ea81d 1676};
64769240 1677
4e7ea81d
JK
1678static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1679 bool invalidate)
c4a0c46e
AK
1680{
1681 int nr_pages, i;
1682 pgoff_t index, end;
1683 struct pagevec pvec;
1684 struct inode *inode = mpd->inode;
1685 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1686
1687 /* This is necessary when next_page == 0. */
1688 if (mpd->first_page >= mpd->next_page)
1689 return;
c4a0c46e 1690
c7f5938a
CW
1691 index = mpd->first_page;
1692 end = mpd->next_page - 1;
4e7ea81d
JK
1693 if (invalidate) {
1694 ext4_lblk_t start, last;
09cbfeaf
KS
1695 start = index << (PAGE_SHIFT - inode->i_blkbits);
1696 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1697 ext4_es_remove_extent(inode, start, last - start + 1);
1698 }
51865fda 1699
66bea92c 1700 pagevec_init(&pvec, 0);
c4a0c46e
AK
1701 while (index <= end) {
1702 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1703 if (nr_pages == 0)
1704 break;
1705 for (i = 0; i < nr_pages; i++) {
1706 struct page *page = pvec.pages[i];
9b1d0998 1707 if (page->index > end)
c4a0c46e 1708 break;
c4a0c46e
AK
1709 BUG_ON(!PageLocked(page));
1710 BUG_ON(PageWriteback(page));
4e7ea81d 1711 if (invalidate) {
4e800c03 1712 if (page_mapped(page))
1713 clear_page_dirty_for_io(page);
09cbfeaf 1714 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1715 ClearPageUptodate(page);
1716 }
c4a0c46e
AK
1717 unlock_page(page);
1718 }
9b1d0998
JK
1719 index = pvec.pages[nr_pages - 1]->index + 1;
1720 pagevec_release(&pvec);
c4a0c46e 1721 }
c4a0c46e
AK
1722}
1723
df22291f
AK
1724static void ext4_print_free_blocks(struct inode *inode)
1725{
1726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1727 struct super_block *sb = inode->i_sb;
f78ee70d 1728 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1729
1730 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1731 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1732 ext4_count_free_clusters(sb)));
92b97816
TT
1733 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1735 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1736 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1737 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1738 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1739 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1740 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1742 ei->i_reserved_data_blocks);
df22291f
AK
1743 return;
1744}
1745
c364b22c 1746static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1747{
c364b22c 1748 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1749}
1750
5356f261
AK
1751/*
1752 * This function is grabs code from the very beginning of
1753 * ext4_map_blocks, but assumes that the caller is from delayed write
1754 * time. This function looks up the requested blocks and sets the
1755 * buffer delay bit under the protection of i_data_sem.
1756 */
1757static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1758 struct ext4_map_blocks *map,
1759 struct buffer_head *bh)
1760{
d100eef2 1761 struct extent_status es;
5356f261
AK
1762 int retval;
1763 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1764#ifdef ES_AGGRESSIVE_TEST
1765 struct ext4_map_blocks orig_map;
1766
1767 memcpy(&orig_map, map, sizeof(*map));
1768#endif
5356f261
AK
1769
1770 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1771 invalid_block = ~0;
1772
1773 map->m_flags = 0;
1774 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1775 "logical block %lu\n", inode->i_ino, map->m_len,
1776 (unsigned long) map->m_lblk);
d100eef2
ZL
1777
1778 /* Lookup extent status tree firstly */
1779 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1780 if (ext4_es_is_hole(&es)) {
1781 retval = 0;
c8b459f4 1782 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1783 goto add_delayed;
1784 }
1785
1786 /*
1787 * Delayed extent could be allocated by fallocate.
1788 * So we need to check it.
1789 */
1790 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1791 map_bh(bh, inode->i_sb, invalid_block);
1792 set_buffer_new(bh);
1793 set_buffer_delay(bh);
1794 return 0;
1795 }
1796
1797 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1798 retval = es.es_len - (iblock - es.es_lblk);
1799 if (retval > map->m_len)
1800 retval = map->m_len;
1801 map->m_len = retval;
1802 if (ext4_es_is_written(&es))
1803 map->m_flags |= EXT4_MAP_MAPPED;
1804 else if (ext4_es_is_unwritten(&es))
1805 map->m_flags |= EXT4_MAP_UNWRITTEN;
1806 else
1807 BUG_ON(1);
1808
921f266b
DM
1809#ifdef ES_AGGRESSIVE_TEST
1810 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1811#endif
d100eef2
ZL
1812 return retval;
1813 }
1814
5356f261
AK
1815 /*
1816 * Try to see if we can get the block without requesting a new
1817 * file system block.
1818 */
c8b459f4 1819 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1820 if (ext4_has_inline_data(inode))
9c3569b5 1821 retval = 0;
cbd7584e 1822 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1823 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1824 else
2f8e0a7c 1825 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1826
d100eef2 1827add_delayed:
5356f261 1828 if (retval == 0) {
f7fec032 1829 int ret;
5356f261
AK
1830 /*
1831 * XXX: __block_prepare_write() unmaps passed block,
1832 * is it OK?
1833 */
386ad67c
LC
1834 /*
1835 * If the block was allocated from previously allocated cluster,
1836 * then we don't need to reserve it again. However we still need
1837 * to reserve metadata for every block we're going to write.
1838 */
c27e43a1 1839 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1840 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1841 ret = ext4_da_reserve_space(inode);
f7fec032 1842 if (ret) {
5356f261 1843 /* not enough space to reserve */
f7fec032 1844 retval = ret;
5356f261 1845 goto out_unlock;
f7fec032 1846 }
5356f261
AK
1847 }
1848
f7fec032
ZL
1849 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1850 ~0, EXTENT_STATUS_DELAYED);
1851 if (ret) {
1852 retval = ret;
51865fda 1853 goto out_unlock;
f7fec032 1854 }
51865fda 1855
5356f261
AK
1856 map_bh(bh, inode->i_sb, invalid_block);
1857 set_buffer_new(bh);
1858 set_buffer_delay(bh);
f7fec032
ZL
1859 } else if (retval > 0) {
1860 int ret;
3be78c73 1861 unsigned int status;
f7fec032 1862
44fb851d
ZL
1863 if (unlikely(retval != map->m_len)) {
1864 ext4_warning(inode->i_sb,
1865 "ES len assertion failed for inode "
1866 "%lu: retval %d != map->m_len %d",
1867 inode->i_ino, retval, map->m_len);
1868 WARN_ON(1);
921f266b 1869 }
921f266b 1870
f7fec032
ZL
1871 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1872 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1873 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1874 map->m_pblk, status);
1875 if (ret != 0)
1876 retval = ret;
5356f261
AK
1877 }
1878
1879out_unlock:
1880 up_read((&EXT4_I(inode)->i_data_sem));
1881
1882 return retval;
1883}
1884
64769240 1885/*
d91bd2c1 1886 * This is a special get_block_t callback which is used by
b920c755
TT
1887 * ext4_da_write_begin(). It will either return mapped block or
1888 * reserve space for a single block.
29fa89d0
AK
1889 *
1890 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1891 * We also have b_blocknr = -1 and b_bdev initialized properly
1892 *
1893 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1894 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1895 * initialized properly.
64769240 1896 */
9c3569b5
TM
1897int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1898 struct buffer_head *bh, int create)
64769240 1899{
2ed88685 1900 struct ext4_map_blocks map;
64769240
AT
1901 int ret = 0;
1902
1903 BUG_ON(create == 0);
2ed88685
TT
1904 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1905
1906 map.m_lblk = iblock;
1907 map.m_len = 1;
64769240
AT
1908
1909 /*
1910 * first, we need to know whether the block is allocated already
1911 * preallocated blocks are unmapped but should treated
1912 * the same as allocated blocks.
1913 */
5356f261
AK
1914 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1915 if (ret <= 0)
2ed88685 1916 return ret;
64769240 1917
2ed88685 1918 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1919 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1920
1921 if (buffer_unwritten(bh)) {
1922 /* A delayed write to unwritten bh should be marked
1923 * new and mapped. Mapped ensures that we don't do
1924 * get_block multiple times when we write to the same
1925 * offset and new ensures that we do proper zero out
1926 * for partial write.
1927 */
1928 set_buffer_new(bh);
c8205636 1929 set_buffer_mapped(bh);
2ed88685
TT
1930 }
1931 return 0;
64769240 1932}
61628a3f 1933
62e086be
AK
1934static int bget_one(handle_t *handle, struct buffer_head *bh)
1935{
1936 get_bh(bh);
1937 return 0;
1938}
1939
1940static int bput_one(handle_t *handle, struct buffer_head *bh)
1941{
1942 put_bh(bh);
1943 return 0;
1944}
1945
1946static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1947 unsigned int len)
1948{
1949 struct address_space *mapping = page->mapping;
1950 struct inode *inode = mapping->host;
3fdcfb66 1951 struct buffer_head *page_bufs = NULL;
62e086be 1952 handle_t *handle = NULL;
3fdcfb66
TM
1953 int ret = 0, err = 0;
1954 int inline_data = ext4_has_inline_data(inode);
1955 struct buffer_head *inode_bh = NULL;
62e086be 1956
cb20d518 1957 ClearPageChecked(page);
3fdcfb66
TM
1958
1959 if (inline_data) {
1960 BUG_ON(page->index != 0);
1961 BUG_ON(len > ext4_get_max_inline_size(inode));
1962 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1963 if (inode_bh == NULL)
1964 goto out;
1965 } else {
1966 page_bufs = page_buffers(page);
1967 if (!page_bufs) {
1968 BUG();
1969 goto out;
1970 }
1971 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1972 NULL, bget_one);
1973 }
bdf96838
TT
1974 /*
1975 * We need to release the page lock before we start the
1976 * journal, so grab a reference so the page won't disappear
1977 * out from under us.
1978 */
1979 get_page(page);
62e086be
AK
1980 unlock_page(page);
1981
9924a92a
TT
1982 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1983 ext4_writepage_trans_blocks(inode));
62e086be
AK
1984 if (IS_ERR(handle)) {
1985 ret = PTR_ERR(handle);
bdf96838
TT
1986 put_page(page);
1987 goto out_no_pagelock;
62e086be 1988 }
441c8508
CW
1989 BUG_ON(!ext4_handle_valid(handle));
1990
bdf96838
TT
1991 lock_page(page);
1992 put_page(page);
1993 if (page->mapping != mapping) {
1994 /* The page got truncated from under us */
1995 ext4_journal_stop(handle);
1996 ret = 0;
1997 goto out;
1998 }
1999
3fdcfb66 2000 if (inline_data) {
5d601255 2001 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 2002 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2003
3fdcfb66
TM
2004 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2005
2006 } else {
2007 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2008 do_journal_get_write_access);
2009
2010 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2011 write_end_fn);
2012 }
62e086be
AK
2013 if (ret == 0)
2014 ret = err;
2d859db3 2015 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2016 err = ext4_journal_stop(handle);
2017 if (!ret)
2018 ret = err;
2019
3fdcfb66 2020 if (!ext4_has_inline_data(inode))
8c9367fd 2021 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 2022 NULL, bput_one);
19f5fb7a 2023 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2024out:
bdf96838
TT
2025 unlock_page(page);
2026out_no_pagelock:
3fdcfb66 2027 brelse(inode_bh);
62e086be
AK
2028 return ret;
2029}
2030
61628a3f 2031/*
43ce1d23
AK
2032 * Note that we don't need to start a transaction unless we're journaling data
2033 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2034 * need to file the inode to the transaction's list in ordered mode because if
2035 * we are writing back data added by write(), the inode is already there and if
25985edc 2036 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2037 * transaction the data will hit the disk. In case we are journaling data, we
2038 * cannot start transaction directly because transaction start ranks above page
2039 * lock so we have to do some magic.
2040 *
b920c755 2041 * This function can get called via...
20970ba6 2042 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2043 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2044 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2045 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2046 *
2047 * We don't do any block allocation in this function. If we have page with
2048 * multiple blocks we need to write those buffer_heads that are mapped. This
2049 * is important for mmaped based write. So if we do with blocksize 1K
2050 * truncate(f, 1024);
2051 * a = mmap(f, 0, 4096);
2052 * a[0] = 'a';
2053 * truncate(f, 4096);
2054 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2055 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2056 * do_wp_page). So writepage should write the first block. If we modify
2057 * the mmap area beyond 1024 we will again get a page_fault and the
2058 * page_mkwrite callback will do the block allocation and mark the
2059 * buffer_heads mapped.
2060 *
2061 * We redirty the page if we have any buffer_heads that is either delay or
2062 * unwritten in the page.
2063 *
2064 * We can get recursively called as show below.
2065 *
2066 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2067 * ext4_writepage()
2068 *
2069 * But since we don't do any block allocation we should not deadlock.
2070 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2071 */
43ce1d23 2072static int ext4_writepage(struct page *page,
62e086be 2073 struct writeback_control *wbc)
64769240 2074{
f8bec370 2075 int ret = 0;
61628a3f 2076 loff_t size;
498e5f24 2077 unsigned int len;
744692dc 2078 struct buffer_head *page_bufs = NULL;
61628a3f 2079 struct inode *inode = page->mapping->host;
36ade451 2080 struct ext4_io_submit io_submit;
1c8349a1 2081 bool keep_towrite = false;
61628a3f 2082
0db1ff22
TT
2083 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2084 ext4_invalidatepage(page, 0, PAGE_SIZE);
2085 unlock_page(page);
2086 return -EIO;
2087 }
2088
a9c667f8 2089 trace_ext4_writepage(page);
f0e6c985 2090 size = i_size_read(inode);
09cbfeaf
KS
2091 if (page->index == size >> PAGE_SHIFT)
2092 len = size & ~PAGE_MASK;
f0e6c985 2093 else
09cbfeaf 2094 len = PAGE_SIZE;
64769240 2095
a42afc5f 2096 page_bufs = page_buffers(page);
a42afc5f 2097 /*
fe386132
JK
2098 * We cannot do block allocation or other extent handling in this
2099 * function. If there are buffers needing that, we have to redirty
2100 * the page. But we may reach here when we do a journal commit via
2101 * journal_submit_inode_data_buffers() and in that case we must write
2102 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2103 *
2104 * Also, if there is only one buffer per page (the fs block
2105 * size == the page size), if one buffer needs block
2106 * allocation or needs to modify the extent tree to clear the
2107 * unwritten flag, we know that the page can't be written at
2108 * all, so we might as well refuse the write immediately.
2109 * Unfortunately if the block size != page size, we can't as
2110 * easily detect this case using ext4_walk_page_buffers(), but
2111 * for the extremely common case, this is an optimization that
2112 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2113 */
f19d5870
TM
2114 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2115 ext4_bh_delay_or_unwritten)) {
f8bec370 2116 redirty_page_for_writepage(wbc, page);
cccd147a 2117 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2118 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2119 /*
2120 * For memory cleaning there's no point in writing only
2121 * some buffers. So just bail out. Warn if we came here
2122 * from direct reclaim.
2123 */
2124 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2125 == PF_MEMALLOC);
f0e6c985
AK
2126 unlock_page(page);
2127 return 0;
2128 }
1c8349a1 2129 keep_towrite = true;
a42afc5f 2130 }
64769240 2131
cb20d518 2132 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2133 /*
2134 * It's mmapped pagecache. Add buffers and journal it. There
2135 * doesn't seem much point in redirtying the page here.
2136 */
3f0ca309 2137 return __ext4_journalled_writepage(page, len);
43ce1d23 2138
97a851ed
JK
2139 ext4_io_submit_init(&io_submit, wbc);
2140 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2141 if (!io_submit.io_end) {
2142 redirty_page_for_writepage(wbc, page);
2143 unlock_page(page);
2144 return -ENOMEM;
2145 }
1c8349a1 2146 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2147 ext4_io_submit(&io_submit);
97a851ed
JK
2148 /* Drop io_end reference we got from init */
2149 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2150 return ret;
2151}
2152
5f1132b2
JK
2153static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2154{
2155 int len;
a056bdaa 2156 loff_t size;
5f1132b2
JK
2157 int err;
2158
2159 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2160 clear_page_dirty_for_io(page);
2161 /*
2162 * We have to be very careful here! Nothing protects writeback path
2163 * against i_size changes and the page can be writeably mapped into
2164 * page tables. So an application can be growing i_size and writing
2165 * data through mmap while writeback runs. clear_page_dirty_for_io()
2166 * write-protects our page in page tables and the page cannot get
2167 * written to again until we release page lock. So only after
2168 * clear_page_dirty_for_io() we are safe to sample i_size for
2169 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2170 * on the barrier provided by TestClearPageDirty in
2171 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2172 * after page tables are updated.
2173 */
2174 size = i_size_read(mpd->inode);
09cbfeaf
KS
2175 if (page->index == size >> PAGE_SHIFT)
2176 len = size & ~PAGE_MASK;
5f1132b2 2177 else
09cbfeaf 2178 len = PAGE_SIZE;
1c8349a1 2179 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2180 if (!err)
2181 mpd->wbc->nr_to_write--;
2182 mpd->first_page++;
2183
2184 return err;
2185}
2186
4e7ea81d
JK
2187#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2188
61628a3f 2189/*
fffb2739
JK
2190 * mballoc gives us at most this number of blocks...
2191 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2192 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2193 */
fffb2739 2194#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2195
4e7ea81d
JK
2196/*
2197 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2198 *
2199 * @mpd - extent of blocks
2200 * @lblk - logical number of the block in the file
09930042 2201 * @bh - buffer head we want to add to the extent
4e7ea81d 2202 *
09930042
JK
2203 * The function is used to collect contig. blocks in the same state. If the
2204 * buffer doesn't require mapping for writeback and we haven't started the
2205 * extent of buffers to map yet, the function returns 'true' immediately - the
2206 * caller can write the buffer right away. Otherwise the function returns true
2207 * if the block has been added to the extent, false if the block couldn't be
2208 * added.
4e7ea81d 2209 */
09930042
JK
2210static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2211 struct buffer_head *bh)
4e7ea81d
JK
2212{
2213 struct ext4_map_blocks *map = &mpd->map;
2214
09930042
JK
2215 /* Buffer that doesn't need mapping for writeback? */
2216 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2217 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2218 /* So far no extent to map => we write the buffer right away */
2219 if (map->m_len == 0)
2220 return true;
2221 return false;
2222 }
4e7ea81d
JK
2223
2224 /* First block in the extent? */
2225 if (map->m_len == 0) {
dddbd6ac
JK
2226 /* We cannot map unless handle is started... */
2227 if (!mpd->do_map)
2228 return false;
4e7ea81d
JK
2229 map->m_lblk = lblk;
2230 map->m_len = 1;
09930042
JK
2231 map->m_flags = bh->b_state & BH_FLAGS;
2232 return true;
4e7ea81d
JK
2233 }
2234
09930042
JK
2235 /* Don't go larger than mballoc is willing to allocate */
2236 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2237 return false;
2238
4e7ea81d
JK
2239 /* Can we merge the block to our big extent? */
2240 if (lblk == map->m_lblk + map->m_len &&
09930042 2241 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2242 map->m_len++;
09930042 2243 return true;
4e7ea81d 2244 }
09930042 2245 return false;
4e7ea81d
JK
2246}
2247
5f1132b2
JK
2248/*
2249 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2250 *
2251 * @mpd - extent of blocks for mapping
2252 * @head - the first buffer in the page
2253 * @bh - buffer we should start processing from
2254 * @lblk - logical number of the block in the file corresponding to @bh
2255 *
2256 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2257 * the page for IO if all buffers in this page were mapped and there's no
2258 * accumulated extent of buffers to map or add buffers in the page to the
2259 * extent of buffers to map. The function returns 1 if the caller can continue
2260 * by processing the next page, 0 if it should stop adding buffers to the
2261 * extent to map because we cannot extend it anymore. It can also return value
2262 * < 0 in case of error during IO submission.
2263 */
2264static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2265 struct buffer_head *head,
2266 struct buffer_head *bh,
2267 ext4_lblk_t lblk)
4e7ea81d
JK
2268{
2269 struct inode *inode = mpd->inode;
5f1132b2 2270 int err;
93407472 2271 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2272 >> inode->i_blkbits;
2273
2274 do {
2275 BUG_ON(buffer_locked(bh));
2276
09930042 2277 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2278 /* Found extent to map? */
2279 if (mpd->map.m_len)
5f1132b2 2280 return 0;
dddbd6ac
JK
2281 /* Buffer needs mapping and handle is not started? */
2282 if (!mpd->do_map)
2283 return 0;
09930042 2284 /* Everything mapped so far and we hit EOF */
5f1132b2 2285 break;
4e7ea81d 2286 }
4e7ea81d 2287 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2288 /* So far everything mapped? Submit the page for IO. */
2289 if (mpd->map.m_len == 0) {
2290 err = mpage_submit_page(mpd, head->b_page);
2291 if (err < 0)
2292 return err;
2293 }
2294 return lblk < blocks;
4e7ea81d
JK
2295}
2296
2297/*
2298 * mpage_map_buffers - update buffers corresponding to changed extent and
2299 * submit fully mapped pages for IO
2300 *
2301 * @mpd - description of extent to map, on return next extent to map
2302 *
2303 * Scan buffers corresponding to changed extent (we expect corresponding pages
2304 * to be already locked) and update buffer state according to new extent state.
2305 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2306 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2307 * and do extent conversion after IO is finished. If the last page is not fully
2308 * mapped, we update @map to the next extent in the last page that needs
2309 * mapping. Otherwise we submit the page for IO.
2310 */
2311static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2312{
2313 struct pagevec pvec;
2314 int nr_pages, i;
2315 struct inode *inode = mpd->inode;
2316 struct buffer_head *head, *bh;
09cbfeaf 2317 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2318 pgoff_t start, end;
2319 ext4_lblk_t lblk;
2320 sector_t pblock;
2321 int err;
2322
2323 start = mpd->map.m_lblk >> bpp_bits;
2324 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2325 lblk = start << bpp_bits;
2326 pblock = mpd->map.m_pblk;
2327
2328 pagevec_init(&pvec, 0);
2329 while (start <= end) {
2330 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2331 PAGEVEC_SIZE);
2332 if (nr_pages == 0)
2333 break;
2334 for (i = 0; i < nr_pages; i++) {
2335 struct page *page = pvec.pages[i];
2336
2337 if (page->index > end)
2338 break;
70261f56 2339 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2340 BUG_ON(page->index != start);
2341 bh = head = page_buffers(page);
2342 do {
2343 if (lblk < mpd->map.m_lblk)
2344 continue;
2345 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2346 /*
2347 * Buffer after end of mapped extent.
2348 * Find next buffer in the page to map.
2349 */
2350 mpd->map.m_len = 0;
2351 mpd->map.m_flags = 0;
5f1132b2
JK
2352 /*
2353 * FIXME: If dioread_nolock supports
2354 * blocksize < pagesize, we need to make
2355 * sure we add size mapped so far to
2356 * io_end->size as the following call
2357 * can submit the page for IO.
2358 */
2359 err = mpage_process_page_bufs(mpd, head,
2360 bh, lblk);
4e7ea81d 2361 pagevec_release(&pvec);
5f1132b2
JK
2362 if (err > 0)
2363 err = 0;
2364 return err;
4e7ea81d
JK
2365 }
2366 if (buffer_delay(bh)) {
2367 clear_buffer_delay(bh);
2368 bh->b_blocknr = pblock++;
2369 }
4e7ea81d 2370 clear_buffer_unwritten(bh);
5f1132b2 2371 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2372
2373 /*
2374 * FIXME: This is going to break if dioread_nolock
2375 * supports blocksize < pagesize as we will try to
2376 * convert potentially unmapped parts of inode.
2377 */
09cbfeaf 2378 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2379 /* Page fully mapped - let IO run! */
2380 err = mpage_submit_page(mpd, page);
2381 if (err < 0) {
2382 pagevec_release(&pvec);
2383 return err;
2384 }
2385 start++;
2386 }
2387 pagevec_release(&pvec);
2388 }
2389 /* Extent fully mapped and matches with page boundary. We are done. */
2390 mpd->map.m_len = 0;
2391 mpd->map.m_flags = 0;
2392 return 0;
2393}
2394
2395static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2396{
2397 struct inode *inode = mpd->inode;
2398 struct ext4_map_blocks *map = &mpd->map;
2399 int get_blocks_flags;
090f32ee 2400 int err, dioread_nolock;
4e7ea81d
JK
2401
2402 trace_ext4_da_write_pages_extent(inode, map);
2403 /*
2404 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2405 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2406 * where we have written into one or more preallocated blocks). It is
2407 * possible that we're going to need more metadata blocks than
2408 * previously reserved. However we must not fail because we're in
2409 * writeback and there is nothing we can do about it so it might result
2410 * in data loss. So use reserved blocks to allocate metadata if
2411 * possible.
2412 *
754cfed6
TT
2413 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2414 * the blocks in question are delalloc blocks. This indicates
2415 * that the blocks and quotas has already been checked when
2416 * the data was copied into the page cache.
4e7ea81d
JK
2417 */
2418 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2419 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2420 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2421 dioread_nolock = ext4_should_dioread_nolock(inode);
2422 if (dioread_nolock)
4e7ea81d
JK
2423 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2424 if (map->m_flags & (1 << BH_Delay))
2425 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2426
2427 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2428 if (err < 0)
2429 return err;
090f32ee 2430 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2431 if (!mpd->io_submit.io_end->handle &&
2432 ext4_handle_valid(handle)) {
2433 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2434 handle->h_rsv_handle = NULL;
2435 }
3613d228 2436 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2437 }
4e7ea81d
JK
2438
2439 BUG_ON(map->m_len == 0);
2440 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2441 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2442 map->m_len);
4e7ea81d
JK
2443 }
2444 return 0;
2445}
2446
2447/*
2448 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2449 * mpd->len and submit pages underlying it for IO
2450 *
2451 * @handle - handle for journal operations
2452 * @mpd - extent to map
7534e854
JK
2453 * @give_up_on_write - we set this to true iff there is a fatal error and there
2454 * is no hope of writing the data. The caller should discard
2455 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2456 *
2457 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2458 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2459 * them to initialized or split the described range from larger unwritten
2460 * extent. Note that we need not map all the described range since allocation
2461 * can return less blocks or the range is covered by more unwritten extents. We
2462 * cannot map more because we are limited by reserved transaction credits. On
2463 * the other hand we always make sure that the last touched page is fully
2464 * mapped so that it can be written out (and thus forward progress is
2465 * guaranteed). After mapping we submit all mapped pages for IO.
2466 */
2467static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2468 struct mpage_da_data *mpd,
2469 bool *give_up_on_write)
4e7ea81d
JK
2470{
2471 struct inode *inode = mpd->inode;
2472 struct ext4_map_blocks *map = &mpd->map;
2473 int err;
2474 loff_t disksize;
6603120e 2475 int progress = 0;
4e7ea81d
JK
2476
2477 mpd->io_submit.io_end->offset =
2478 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2479 do {
4e7ea81d
JK
2480 err = mpage_map_one_extent(handle, mpd);
2481 if (err < 0) {
2482 struct super_block *sb = inode->i_sb;
2483
0db1ff22
TT
2484 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2485 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2486 goto invalidate_dirty_pages;
4e7ea81d 2487 /*
cb530541
TT
2488 * Let the uper layers retry transient errors.
2489 * In the case of ENOSPC, if ext4_count_free_blocks()
2490 * is non-zero, a commit should free up blocks.
4e7ea81d 2491 */
cb530541 2492 if ((err == -ENOMEM) ||
6603120e
DM
2493 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2494 if (progress)
2495 goto update_disksize;
cb530541 2496 return err;
6603120e 2497 }
cb530541
TT
2498 ext4_msg(sb, KERN_CRIT,
2499 "Delayed block allocation failed for "
2500 "inode %lu at logical offset %llu with"
2501 " max blocks %u with error %d",
2502 inode->i_ino,
2503 (unsigned long long)map->m_lblk,
2504 (unsigned)map->m_len, -err);
2505 ext4_msg(sb, KERN_CRIT,
2506 "This should not happen!! Data will "
2507 "be lost\n");
2508 if (err == -ENOSPC)
2509 ext4_print_free_blocks(inode);
2510 invalidate_dirty_pages:
2511 *give_up_on_write = true;
4e7ea81d
JK
2512 return err;
2513 }
6603120e 2514 progress = 1;
4e7ea81d
JK
2515 /*
2516 * Update buffer state, submit mapped pages, and get us new
2517 * extent to map
2518 */
2519 err = mpage_map_and_submit_buffers(mpd);
2520 if (err < 0)
6603120e 2521 goto update_disksize;
27d7c4ed 2522 } while (map->m_len);
4e7ea81d 2523
6603120e 2524update_disksize:
622cad13
TT
2525 /*
2526 * Update on-disk size after IO is submitted. Races with
2527 * truncate are avoided by checking i_size under i_data_sem.
2528 */
09cbfeaf 2529 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2530 if (disksize > EXT4_I(inode)->i_disksize) {
2531 int err2;
622cad13
TT
2532 loff_t i_size;
2533
2534 down_write(&EXT4_I(inode)->i_data_sem);
2535 i_size = i_size_read(inode);
2536 if (disksize > i_size)
2537 disksize = i_size;
2538 if (disksize > EXT4_I(inode)->i_disksize)
2539 EXT4_I(inode)->i_disksize = disksize;
622cad13 2540 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2541 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2542 if (err2)
2543 ext4_error(inode->i_sb,
2544 "Failed to mark inode %lu dirty",
2545 inode->i_ino);
2546 if (!err)
2547 err = err2;
2548 }
2549 return err;
2550}
2551
fffb2739
JK
2552/*
2553 * Calculate the total number of credits to reserve for one writepages
20970ba6 2554 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2555 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2556 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2557 * bpp - 1 blocks in bpp different extents.
2558 */
525f4ed8
MC
2559static int ext4_da_writepages_trans_blocks(struct inode *inode)
2560{
fffb2739 2561 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2562
fffb2739
JK
2563 return ext4_meta_trans_blocks(inode,
2564 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2565}
61628a3f 2566
8e48dcfb 2567/*
4e7ea81d
JK
2568 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2569 * and underlying extent to map
2570 *
2571 * @mpd - where to look for pages
2572 *
2573 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2574 * IO immediately. When we find a page which isn't mapped we start accumulating
2575 * extent of buffers underlying these pages that needs mapping (formed by
2576 * either delayed or unwritten buffers). We also lock the pages containing
2577 * these buffers. The extent found is returned in @mpd structure (starting at
2578 * mpd->lblk with length mpd->len blocks).
2579 *
2580 * Note that this function can attach bios to one io_end structure which are
2581 * neither logically nor physically contiguous. Although it may seem as an
2582 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2583 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2584 */
4e7ea81d 2585static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2586{
4e7ea81d
JK
2587 struct address_space *mapping = mpd->inode->i_mapping;
2588 struct pagevec pvec;
2589 unsigned int nr_pages;
aeac589a 2590 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2591 pgoff_t index = mpd->first_page;
2592 pgoff_t end = mpd->last_page;
2593 int tag;
2594 int i, err = 0;
2595 int blkbits = mpd->inode->i_blkbits;
2596 ext4_lblk_t lblk;
2597 struct buffer_head *head;
8e48dcfb 2598
4e7ea81d 2599 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2600 tag = PAGECACHE_TAG_TOWRITE;
2601 else
2602 tag = PAGECACHE_TAG_DIRTY;
2603
4e7ea81d
JK
2604 pagevec_init(&pvec, 0);
2605 mpd->map.m_len = 0;
2606 mpd->next_page = index;
4f01b02c 2607 while (index <= end) {
5b41d924 2608 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2609 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2610 if (nr_pages == 0)
4e7ea81d 2611 goto out;
8e48dcfb
TT
2612
2613 for (i = 0; i < nr_pages; i++) {
2614 struct page *page = pvec.pages[i];
2615
2616 /*
2617 * At this point, the page may be truncated or
2618 * invalidated (changing page->mapping to NULL), or
2619 * even swizzled back from swapper_space to tmpfs file
2620 * mapping. However, page->index will not change
2621 * because we have a reference on the page.
2622 */
4f01b02c
TT
2623 if (page->index > end)
2624 goto out;
8e48dcfb 2625
aeac589a
ML
2626 /*
2627 * Accumulated enough dirty pages? This doesn't apply
2628 * to WB_SYNC_ALL mode. For integrity sync we have to
2629 * keep going because someone may be concurrently
2630 * dirtying pages, and we might have synced a lot of
2631 * newly appeared dirty pages, but have not synced all
2632 * of the old dirty pages.
2633 */
2634 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2635 goto out;
2636
4e7ea81d
JK
2637 /* If we can't merge this page, we are done. */
2638 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2639 goto out;
78aaced3 2640
8e48dcfb 2641 lock_page(page);
8e48dcfb 2642 /*
4e7ea81d
JK
2643 * If the page is no longer dirty, or its mapping no
2644 * longer corresponds to inode we are writing (which
2645 * means it has been truncated or invalidated), or the
2646 * page is already under writeback and we are not doing
2647 * a data integrity writeback, skip the page
8e48dcfb 2648 */
4f01b02c
TT
2649 if (!PageDirty(page) ||
2650 (PageWriteback(page) &&
4e7ea81d 2651 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2652 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2653 unlock_page(page);
2654 continue;
2655 }
2656
7cb1a535 2657 wait_on_page_writeback(page);
8e48dcfb 2658 BUG_ON(PageWriteback(page));
8e48dcfb 2659
4e7ea81d 2660 if (mpd->map.m_len == 0)
8eb9e5ce 2661 mpd->first_page = page->index;
8eb9e5ce 2662 mpd->next_page = page->index + 1;
f8bec370 2663 /* Add all dirty buffers to mpd */
4e7ea81d 2664 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2665 (PAGE_SHIFT - blkbits);
f8bec370 2666 head = page_buffers(page);
5f1132b2
JK
2667 err = mpage_process_page_bufs(mpd, head, head, lblk);
2668 if (err <= 0)
4e7ea81d 2669 goto out;
5f1132b2 2670 err = 0;
aeac589a 2671 left--;
8e48dcfb
TT
2672 }
2673 pagevec_release(&pvec);
2674 cond_resched();
2675 }
4f01b02c 2676 return 0;
8eb9e5ce
TT
2677out:
2678 pagevec_release(&pvec);
4e7ea81d 2679 return err;
8e48dcfb
TT
2680}
2681
20970ba6
TT
2682static int __writepage(struct page *page, struct writeback_control *wbc,
2683 void *data)
2684{
2685 struct address_space *mapping = data;
2686 int ret = ext4_writepage(page, wbc);
2687 mapping_set_error(mapping, ret);
2688 return ret;
2689}
2690
2691static int ext4_writepages(struct address_space *mapping,
2692 struct writeback_control *wbc)
64769240 2693{
4e7ea81d
JK
2694 pgoff_t writeback_index = 0;
2695 long nr_to_write = wbc->nr_to_write;
22208ded 2696 int range_whole = 0;
4e7ea81d 2697 int cycled = 1;
61628a3f 2698 handle_t *handle = NULL;
df22291f 2699 struct mpage_da_data mpd;
5e745b04 2700 struct inode *inode = mapping->host;
6b523df4 2701 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2702 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2703 bool done;
1bce63d1 2704 struct blk_plug plug;
cb530541 2705 bool give_up_on_write = false;
61628a3f 2706
0db1ff22
TT
2707 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2708 return -EIO;
2709
c8585c6f 2710 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2711 trace_ext4_writepages(inode, wbc);
ba80b101 2712
c8585c6f
DJ
2713 if (dax_mapping(mapping)) {
2714 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2715 wbc);
2716 goto out_writepages;
2717 }
7f6d5b52 2718
61628a3f
MC
2719 /*
2720 * No pages to write? This is mainly a kludge to avoid starting
2721 * a transaction for special inodes like journal inode on last iput()
2722 * because that could violate lock ordering on umount
2723 */
a1d6cc56 2724 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2725 goto out_writepages;
2a21e37e 2726
20970ba6
TT
2727 if (ext4_should_journal_data(inode)) {
2728 struct blk_plug plug;
20970ba6
TT
2729
2730 blk_start_plug(&plug);
2731 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2732 blk_finish_plug(&plug);
bbf023c7 2733 goto out_writepages;
20970ba6
TT
2734 }
2735
2a21e37e
TT
2736 /*
2737 * If the filesystem has aborted, it is read-only, so return
2738 * right away instead of dumping stack traces later on that
2739 * will obscure the real source of the problem. We test
4ab2f15b 2740 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2741 * the latter could be true if the filesystem is mounted
20970ba6 2742 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2743 * *never* be called, so if that ever happens, we would want
2744 * the stack trace.
2745 */
0db1ff22
TT
2746 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2747 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2748 ret = -EROFS;
2749 goto out_writepages;
2750 }
2a21e37e 2751
6b523df4
JK
2752 if (ext4_should_dioread_nolock(inode)) {
2753 /*
70261f56 2754 * We may need to convert up to one extent per block in
6b523df4
JK
2755 * the page and we may dirty the inode.
2756 */
09cbfeaf 2757 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2758 }
2759
4e7ea81d
JK
2760 /*
2761 * If we have inline data and arrive here, it means that
2762 * we will soon create the block for the 1st page, so
2763 * we'd better clear the inline data here.
2764 */
2765 if (ext4_has_inline_data(inode)) {
2766 /* Just inode will be modified... */
2767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2768 if (IS_ERR(handle)) {
2769 ret = PTR_ERR(handle);
2770 goto out_writepages;
2771 }
2772 BUG_ON(ext4_test_inode_state(inode,
2773 EXT4_STATE_MAY_INLINE_DATA));
2774 ext4_destroy_inline_data(handle, inode);
2775 ext4_journal_stop(handle);
2776 }
2777
22208ded
AK
2778 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2779 range_whole = 1;
61628a3f 2780
2acf2c26 2781 if (wbc->range_cyclic) {
4e7ea81d
JK
2782 writeback_index = mapping->writeback_index;
2783 if (writeback_index)
2acf2c26 2784 cycled = 0;
4e7ea81d
JK
2785 mpd.first_page = writeback_index;
2786 mpd.last_page = -1;
5b41d924 2787 } else {
09cbfeaf
KS
2788 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2789 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2790 }
a1d6cc56 2791
4e7ea81d
JK
2792 mpd.inode = inode;
2793 mpd.wbc = wbc;
2794 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2795retry:
6e6938b6 2796 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2797 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2798 done = false;
1bce63d1 2799 blk_start_plug(&plug);
dddbd6ac
JK
2800
2801 /*
2802 * First writeback pages that don't need mapping - we can avoid
2803 * starting a transaction unnecessarily and also avoid being blocked
2804 * in the block layer on device congestion while having transaction
2805 * started.
2806 */
2807 mpd.do_map = 0;
2808 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2809 if (!mpd.io_submit.io_end) {
2810 ret = -ENOMEM;
2811 goto unplug;
2812 }
2813 ret = mpage_prepare_extent_to_map(&mpd);
2814 /* Submit prepared bio */
2815 ext4_io_submit(&mpd.io_submit);
2816 ext4_put_io_end_defer(mpd.io_submit.io_end);
2817 mpd.io_submit.io_end = NULL;
2818 /* Unlock pages we didn't use */
2819 mpage_release_unused_pages(&mpd, false);
2820 if (ret < 0)
2821 goto unplug;
2822
4e7ea81d
JK
2823 while (!done && mpd.first_page <= mpd.last_page) {
2824 /* For each extent of pages we use new io_end */
2825 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826 if (!mpd.io_submit.io_end) {
2827 ret = -ENOMEM;
2828 break;
2829 }
a1d6cc56
AK
2830
2831 /*
4e7ea81d
JK
2832 * We have two constraints: We find one extent to map and we
2833 * must always write out whole page (makes a difference when
2834 * blocksize < pagesize) so that we don't block on IO when we
2835 * try to write out the rest of the page. Journalled mode is
2836 * not supported by delalloc.
a1d6cc56
AK
2837 */
2838 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2839 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2840
4e7ea81d 2841 /* start a new transaction */
6b523df4
JK
2842 handle = ext4_journal_start_with_reserve(inode,
2843 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2844 if (IS_ERR(handle)) {
2845 ret = PTR_ERR(handle);
1693918e 2846 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2847 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2848 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2849 /* Release allocated io_end */
2850 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2851 mpd.io_submit.io_end = NULL;
4e7ea81d 2852 break;
61628a3f 2853 }
dddbd6ac 2854 mpd.do_map = 1;
f63e6005 2855
4e7ea81d
JK
2856 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2857 ret = mpage_prepare_extent_to_map(&mpd);
2858 if (!ret) {
2859 if (mpd.map.m_len)
cb530541
TT
2860 ret = mpage_map_and_submit_extent(handle, &mpd,
2861 &give_up_on_write);
4e7ea81d
JK
2862 else {
2863 /*
2864 * We scanned the whole range (or exhausted
2865 * nr_to_write), submitted what was mapped and
2866 * didn't find anything needing mapping. We are
2867 * done.
2868 */
2869 done = true;
2870 }
f63e6005 2871 }
646caa9c
JK
2872 /*
2873 * Caution: If the handle is synchronous,
2874 * ext4_journal_stop() can wait for transaction commit
2875 * to finish which may depend on writeback of pages to
2876 * complete or on page lock to be released. In that
2877 * case, we have to wait until after after we have
2878 * submitted all the IO, released page locks we hold,
2879 * and dropped io_end reference (for extent conversion
2880 * to be able to complete) before stopping the handle.
2881 */
2882 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2883 ext4_journal_stop(handle);
2884 handle = NULL;
dddbd6ac 2885 mpd.do_map = 0;
646caa9c 2886 }
4e7ea81d
JK
2887 /* Submit prepared bio */
2888 ext4_io_submit(&mpd.io_submit);
2889 /* Unlock pages we didn't use */
cb530541 2890 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2891 /*
2892 * Drop our io_end reference we got from init. We have
2893 * to be careful and use deferred io_end finishing if
2894 * we are still holding the transaction as we can
2895 * release the last reference to io_end which may end
2896 * up doing unwritten extent conversion.
2897 */
2898 if (handle) {
2899 ext4_put_io_end_defer(mpd.io_submit.io_end);
2900 ext4_journal_stop(handle);
2901 } else
2902 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2903 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2904
2905 if (ret == -ENOSPC && sbi->s_journal) {
2906 /*
2907 * Commit the transaction which would
22208ded
AK
2908 * free blocks released in the transaction
2909 * and try again
2910 */
df22291f 2911 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2912 ret = 0;
4e7ea81d
JK
2913 continue;
2914 }
2915 /* Fatal error - ENOMEM, EIO... */
2916 if (ret)
61628a3f 2917 break;
a1d6cc56 2918 }
dddbd6ac 2919unplug:
1bce63d1 2920 blk_finish_plug(&plug);
9c12a831 2921 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2922 cycled = 1;
4e7ea81d
JK
2923 mpd.last_page = writeback_index - 1;
2924 mpd.first_page = 0;
2acf2c26
AK
2925 goto retry;
2926 }
22208ded
AK
2927
2928 /* Update index */
22208ded
AK
2929 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2930 /*
4e7ea81d 2931 * Set the writeback_index so that range_cyclic
22208ded
AK
2932 * mode will write it back later
2933 */
4e7ea81d 2934 mapping->writeback_index = mpd.first_page;
a1d6cc56 2935
61628a3f 2936out_writepages:
20970ba6
TT
2937 trace_ext4_writepages_result(inode, wbc, ret,
2938 nr_to_write - wbc->nr_to_write);
c8585c6f 2939 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2940 return ret;
64769240
AT
2941}
2942
79f0be8d
AK
2943static int ext4_nonda_switch(struct super_block *sb)
2944{
5c1ff336 2945 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2946 struct ext4_sb_info *sbi = EXT4_SB(sb);
2947
2948 /*
2949 * switch to non delalloc mode if we are running low
2950 * on free block. The free block accounting via percpu
179f7ebf 2951 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2952 * accumulated on each CPU without updating global counters
2953 * Delalloc need an accurate free block accounting. So switch
2954 * to non delalloc when we are near to error range.
2955 */
5c1ff336
EW
2956 free_clusters =
2957 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2958 dirty_clusters =
2959 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2960 /*
2961 * Start pushing delalloc when 1/2 of free blocks are dirty.
2962 */
5c1ff336 2963 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2964 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2965
5c1ff336
EW
2966 if (2 * free_clusters < 3 * dirty_clusters ||
2967 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2968 /*
c8afb446
ES
2969 * free block count is less than 150% of dirty blocks
2970 * or free blocks is less than watermark
79f0be8d
AK
2971 */
2972 return 1;
2973 }
2974 return 0;
2975}
2976
0ff8947f
ES
2977/* We always reserve for an inode update; the superblock could be there too */
2978static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2979{
e2b911c5 2980 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2981 return 1;
2982
2983 if (pos + len <= 0x7fffffffULL)
2984 return 1;
2985
2986 /* We might need to update the superblock to set LARGE_FILE */
2987 return 2;
2988}
2989
64769240 2990static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2991 loff_t pos, unsigned len, unsigned flags,
2992 struct page **pagep, void **fsdata)
64769240 2993{
72b8ab9d 2994 int ret, retries = 0;
64769240
AT
2995 struct page *page;
2996 pgoff_t index;
64769240
AT
2997 struct inode *inode = mapping->host;
2998 handle_t *handle;
2999
0db1ff22
TT
3000 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3001 return -EIO;
3002
09cbfeaf 3003 index = pos >> PAGE_SHIFT;
79f0be8d 3004
4db0d88e
TT
3005 if (ext4_nonda_switch(inode->i_sb) ||
3006 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
3007 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3008 return ext4_write_begin(file, mapping, pos,
3009 len, flags, pagep, fsdata);
3010 }
3011 *fsdata = (void *)0;
9bffad1e 3012 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
3013
3014 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3015 ret = ext4_da_write_inline_data_begin(mapping, inode,
3016 pos, len, flags,
3017 pagep, fsdata);
3018 if (ret < 0)
47564bfb
TT
3019 return ret;
3020 if (ret == 1)
3021 return 0;
9c3569b5
TM
3022 }
3023
47564bfb
TT
3024 /*
3025 * grab_cache_page_write_begin() can take a long time if the
3026 * system is thrashing due to memory pressure, or if the page
3027 * is being written back. So grab it first before we start
3028 * the transaction handle. This also allows us to allocate
3029 * the page (if needed) without using GFP_NOFS.
3030 */
3031retry_grab:
3032 page = grab_cache_page_write_begin(mapping, index, flags);
3033 if (!page)
3034 return -ENOMEM;
3035 unlock_page(page);
3036
64769240
AT
3037 /*
3038 * With delayed allocation, we don't log the i_disksize update
3039 * if there is delayed block allocation. But we still need
3040 * to journalling the i_disksize update if writes to the end
3041 * of file which has an already mapped buffer.
3042 */
47564bfb 3043retry_journal:
0ff8947f
ES
3044 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3045 ext4_da_write_credits(inode, pos, len));
64769240 3046 if (IS_ERR(handle)) {
09cbfeaf 3047 put_page(page);
47564bfb 3048 return PTR_ERR(handle);
64769240
AT
3049 }
3050
47564bfb
TT
3051 lock_page(page);
3052 if (page->mapping != mapping) {
3053 /* The page got truncated from under us */
3054 unlock_page(page);
09cbfeaf 3055 put_page(page);
d5a0d4f7 3056 ext4_journal_stop(handle);
47564bfb 3057 goto retry_grab;
d5a0d4f7 3058 }
47564bfb 3059 /* In case writeback began while the page was unlocked */
7afe5aa5 3060 wait_for_stable_page(page);
64769240 3061
2058f83a
MH
3062#ifdef CONFIG_EXT4_FS_ENCRYPTION
3063 ret = ext4_block_write_begin(page, pos, len,
3064 ext4_da_get_block_prep);
3065#else
6e1db88d 3066 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3067#endif
64769240
AT
3068 if (ret < 0) {
3069 unlock_page(page);
3070 ext4_journal_stop(handle);
ae4d5372
AK
3071 /*
3072 * block_write_begin may have instantiated a few blocks
3073 * outside i_size. Trim these off again. Don't need
3074 * i_size_read because we hold i_mutex.
3075 */
3076 if (pos + len > inode->i_size)
b9a4207d 3077 ext4_truncate_failed_write(inode);
47564bfb
TT
3078
3079 if (ret == -ENOSPC &&
3080 ext4_should_retry_alloc(inode->i_sb, &retries))
3081 goto retry_journal;
3082
09cbfeaf 3083 put_page(page);
47564bfb 3084 return ret;
64769240
AT
3085 }
3086
47564bfb 3087 *pagep = page;
64769240
AT
3088 return ret;
3089}
3090
632eaeab
MC
3091/*
3092 * Check if we should update i_disksize
3093 * when write to the end of file but not require block allocation
3094 */
3095static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3096 unsigned long offset)
632eaeab
MC
3097{
3098 struct buffer_head *bh;
3099 struct inode *inode = page->mapping->host;
3100 unsigned int idx;
3101 int i;
3102
3103 bh = page_buffers(page);
3104 idx = offset >> inode->i_blkbits;
3105
af5bc92d 3106 for (i = 0; i < idx; i++)
632eaeab
MC
3107 bh = bh->b_this_page;
3108
29fa89d0 3109 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3110 return 0;
3111 return 1;
3112}
3113
64769240 3114static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3115 struct address_space *mapping,
3116 loff_t pos, unsigned len, unsigned copied,
3117 struct page *page, void *fsdata)
64769240
AT
3118{
3119 struct inode *inode = mapping->host;
3120 int ret = 0, ret2;
3121 handle_t *handle = ext4_journal_current_handle();
3122 loff_t new_i_size;
632eaeab 3123 unsigned long start, end;
79f0be8d
AK
3124 int write_mode = (int)(unsigned long)fsdata;
3125
74d553aa
TT
3126 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3127 return ext4_write_end(file, mapping, pos,
3128 len, copied, page, fsdata);
632eaeab 3129
9bffad1e 3130 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3131 start = pos & (PAGE_SIZE - 1);
af5bc92d 3132 end = start + copied - 1;
64769240
AT
3133
3134 /*
3135 * generic_write_end() will run mark_inode_dirty() if i_size
3136 * changes. So let's piggyback the i_disksize mark_inode_dirty
3137 * into that.
3138 */
64769240 3139 new_i_size = pos + copied;
ea51d132 3140 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3141 if (ext4_has_inline_data(inode) ||
3142 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3143 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3144 /* We need to mark inode dirty even if
3145 * new_i_size is less that inode->i_size
3146 * bu greater than i_disksize.(hint delalloc)
3147 */
3148 ext4_mark_inode_dirty(handle, inode);
64769240 3149 }
632eaeab 3150 }
9c3569b5
TM
3151
3152 if (write_mode != CONVERT_INLINE_DATA &&
3153 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3154 ext4_has_inline_data(inode))
3155 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3156 page);
3157 else
3158 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3159 page, fsdata);
9c3569b5 3160
64769240
AT
3161 copied = ret2;
3162 if (ret2 < 0)
3163 ret = ret2;
3164 ret2 = ext4_journal_stop(handle);
3165 if (!ret)
3166 ret = ret2;
3167
3168 return ret ? ret : copied;
3169}
3170
d47992f8
LC
3171static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3172 unsigned int length)
64769240 3173{
64769240
AT
3174 /*
3175 * Drop reserved blocks
3176 */
3177 BUG_ON(!PageLocked(page));
3178 if (!page_has_buffers(page))
3179 goto out;
3180
ca99fdd2 3181 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3182
3183out:
d47992f8 3184 ext4_invalidatepage(page, offset, length);
64769240
AT
3185
3186 return;
3187}
3188
ccd2506b
TT
3189/*
3190 * Force all delayed allocation blocks to be allocated for a given inode.
3191 */
3192int ext4_alloc_da_blocks(struct inode *inode)
3193{
fb40ba0d
TT
3194 trace_ext4_alloc_da_blocks(inode);
3195
71d4f7d0 3196 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3197 return 0;
3198
3199 /*
3200 * We do something simple for now. The filemap_flush() will
3201 * also start triggering a write of the data blocks, which is
3202 * not strictly speaking necessary (and for users of
3203 * laptop_mode, not even desirable). However, to do otherwise
3204 * would require replicating code paths in:
de9a55b8 3205 *
20970ba6 3206 * ext4_writepages() ->
ccd2506b
TT
3207 * write_cache_pages() ---> (via passed in callback function)
3208 * __mpage_da_writepage() -->
3209 * mpage_add_bh_to_extent()
3210 * mpage_da_map_blocks()
3211 *
3212 * The problem is that write_cache_pages(), located in
3213 * mm/page-writeback.c, marks pages clean in preparation for
3214 * doing I/O, which is not desirable if we're not planning on
3215 * doing I/O at all.
3216 *
3217 * We could call write_cache_pages(), and then redirty all of
380cf090 3218 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3219 * would be ugly in the extreme. So instead we would need to
3220 * replicate parts of the code in the above functions,
25985edc 3221 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3222 * write out the pages, but rather only collect contiguous
3223 * logical block extents, call the multi-block allocator, and
3224 * then update the buffer heads with the block allocations.
de9a55b8 3225 *
ccd2506b
TT
3226 * For now, though, we'll cheat by calling filemap_flush(),
3227 * which will map the blocks, and start the I/O, but not
3228 * actually wait for the I/O to complete.
3229 */
3230 return filemap_flush(inode->i_mapping);
3231}
64769240 3232
ac27a0ec
DK
3233/*
3234 * bmap() is special. It gets used by applications such as lilo and by
3235 * the swapper to find the on-disk block of a specific piece of data.
3236 *
3237 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3238 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3239 * filesystem and enables swap, then they may get a nasty shock when the
3240 * data getting swapped to that swapfile suddenly gets overwritten by
3241 * the original zero's written out previously to the journal and
3242 * awaiting writeback in the kernel's buffer cache.
3243 *
3244 * So, if we see any bmap calls here on a modified, data-journaled file,
3245 * take extra steps to flush any blocks which might be in the cache.
3246 */
617ba13b 3247static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3248{
3249 struct inode *inode = mapping->host;
3250 journal_t *journal;
3251 int err;
3252
46c7f254
TM
3253 /*
3254 * We can get here for an inline file via the FIBMAP ioctl
3255 */
3256 if (ext4_has_inline_data(inode))
3257 return 0;
3258
64769240
AT
3259 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3260 test_opt(inode->i_sb, DELALLOC)) {
3261 /*
3262 * With delalloc we want to sync the file
3263 * so that we can make sure we allocate
3264 * blocks for file
3265 */
3266 filemap_write_and_wait(mapping);
3267 }
3268
19f5fb7a
TT
3269 if (EXT4_JOURNAL(inode) &&
3270 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3271 /*
3272 * This is a REALLY heavyweight approach, but the use of
3273 * bmap on dirty files is expected to be extremely rare:
3274 * only if we run lilo or swapon on a freshly made file
3275 * do we expect this to happen.
3276 *
3277 * (bmap requires CAP_SYS_RAWIO so this does not
3278 * represent an unprivileged user DOS attack --- we'd be
3279 * in trouble if mortal users could trigger this path at
3280 * will.)
3281 *
617ba13b 3282 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3283 * regular files. If somebody wants to bmap a directory
3284 * or symlink and gets confused because the buffer
3285 * hasn't yet been flushed to disk, they deserve
3286 * everything they get.
3287 */
3288
19f5fb7a 3289 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3290 journal = EXT4_JOURNAL(inode);
dab291af
MC
3291 jbd2_journal_lock_updates(journal);
3292 err = jbd2_journal_flush(journal);
3293 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3294
3295 if (err)
3296 return 0;
3297 }
3298
af5bc92d 3299 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3300}
3301
617ba13b 3302static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3303{
46c7f254
TM
3304 int ret = -EAGAIN;
3305 struct inode *inode = page->mapping->host;
3306
0562e0ba 3307 trace_ext4_readpage(page);
46c7f254
TM
3308
3309 if (ext4_has_inline_data(inode))
3310 ret = ext4_readpage_inline(inode, page);
3311
3312 if (ret == -EAGAIN)
f64e02fe 3313 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3314
3315 return ret;
ac27a0ec
DK
3316}
3317
3318static int
617ba13b 3319ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3320 struct list_head *pages, unsigned nr_pages)
3321{
46c7f254
TM
3322 struct inode *inode = mapping->host;
3323
3324 /* If the file has inline data, no need to do readpages. */
3325 if (ext4_has_inline_data(inode))
3326 return 0;
3327
f64e02fe 3328 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3329}
3330
d47992f8
LC
3331static void ext4_invalidatepage(struct page *page, unsigned int offset,
3332 unsigned int length)
ac27a0ec 3333{
ca99fdd2 3334 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3335
4520fb3c
JK
3336 /* No journalling happens on data buffers when this function is used */
3337 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3338
ca99fdd2 3339 block_invalidatepage(page, offset, length);
4520fb3c
JK
3340}
3341
53e87268 3342static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3343 unsigned int offset,
3344 unsigned int length)
4520fb3c
JK
3345{
3346 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3347
ca99fdd2 3348 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3349
ac27a0ec
DK
3350 /*
3351 * If it's a full truncate we just forget about the pending dirtying
3352 */
09cbfeaf 3353 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3354 ClearPageChecked(page);
3355
ca99fdd2 3356 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3357}
3358
3359/* Wrapper for aops... */
3360static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3361 unsigned int offset,
3362 unsigned int length)
53e87268 3363{
ca99fdd2 3364 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3365}
3366
617ba13b 3367static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3368{
617ba13b 3369 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3370
0562e0ba
JZ
3371 trace_ext4_releasepage(page);
3372
e1c36595
JK
3373 /* Page has dirty journalled data -> cannot release */
3374 if (PageChecked(page))
ac27a0ec 3375 return 0;
0390131b
FM
3376 if (journal)
3377 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3378 else
3379 return try_to_free_buffers(page);
ac27a0ec
DK
3380}
3381
ba5843f5 3382#ifdef CONFIG_FS_DAX
364443cb
JK
3383static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3384 unsigned flags, struct iomap *iomap)
3385{
fa5d932c 3386 struct block_device *bdev;
364443cb
JK
3387 unsigned int blkbits = inode->i_blkbits;
3388 unsigned long first_block = offset >> blkbits;
3389 unsigned long last_block = (offset + length - 1) >> blkbits;
3390 struct ext4_map_blocks map;
3391 int ret;
3392
364443cb
JK
3393 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3394 return -ERANGE;
3395
3396 map.m_lblk = first_block;
3397 map.m_len = last_block - first_block + 1;
3398
776722e8
JK
3399 if (!(flags & IOMAP_WRITE)) {
3400 ret = ext4_map_blocks(NULL, inode, &map, 0);
3401 } else {
3402 int dio_credits;
3403 handle_t *handle;
3404 int retries = 0;
3405
3406 /* Trim mapping request to maximum we can map at once for DIO */
3407 if (map.m_len > DIO_MAX_BLOCKS)
3408 map.m_len = DIO_MAX_BLOCKS;
3409 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3410retry:
3411 /*
3412 * Either we allocate blocks and then we don't get unwritten
3413 * extent so we have reserved enough credits, or the blocks
3414 * are already allocated and unwritten and in that case
3415 * extent conversion fits in the credits as well.
3416 */
3417 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3418 dio_credits);
3419 if (IS_ERR(handle))
3420 return PTR_ERR(handle);
3421
3422 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3423 EXT4_GET_BLOCKS_CREATE_ZERO);
3424 if (ret < 0) {
3425 ext4_journal_stop(handle);
3426 if (ret == -ENOSPC &&
3427 ext4_should_retry_alloc(inode->i_sb, &retries))
3428 goto retry;
3429 return ret;
3430 }
776722e8
JK
3431
3432 /*
e2ae766c 3433 * If we added blocks beyond i_size, we need to make sure they
776722e8 3434 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3435 * ext4_iomap_end(). For faults we don't need to do that (and
3436 * even cannot because for orphan list operations inode_lock is
3437 * required) - if we happen to instantiate block beyond i_size,
3438 * it is because we race with truncate which has already added
3439 * the inode to the orphan list.
776722e8 3440 */
e2ae766c
JK
3441 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3442 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3443 int err;
3444
3445 err = ext4_orphan_add(handle, inode);
3446 if (err < 0) {
3447 ext4_journal_stop(handle);
3448 return err;
3449 }
3450 }
3451 ext4_journal_stop(handle);
3452 }
364443cb
JK
3453
3454 iomap->flags = 0;
fa5d932c
DW
3455 bdev = inode->i_sb->s_bdev;
3456 iomap->bdev = bdev;
3457 if (blk_queue_dax(bdev->bd_queue))
f5705aa8 3458 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
fa5d932c
DW
3459 else
3460 iomap->dax_dev = NULL;
364443cb
JK
3461 iomap->offset = first_block << blkbits;
3462
3463 if (ret == 0) {
3464 iomap->type = IOMAP_HOLE;
3465 iomap->blkno = IOMAP_NULL_BLOCK;
3466 iomap->length = (u64)map.m_len << blkbits;
3467 } else {
3468 if (map.m_flags & EXT4_MAP_MAPPED) {
3469 iomap->type = IOMAP_MAPPED;
3470 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3471 iomap->type = IOMAP_UNWRITTEN;
3472 } else {
3473 WARN_ON_ONCE(1);
3474 return -EIO;
3475 }
3476 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3477 iomap->length = (u64)map.m_len << blkbits;
3478 }
3479
3480 if (map.m_flags & EXT4_MAP_NEW)
3481 iomap->flags |= IOMAP_F_NEW;
3482 return 0;
3483}
3484
776722e8
JK
3485static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3486 ssize_t written, unsigned flags, struct iomap *iomap)
3487{
3488 int ret = 0;
3489 handle_t *handle;
3490 int blkbits = inode->i_blkbits;
3491 bool truncate = false;
3492
f5705aa8 3493 fs_put_dax(iomap->dax_dev);
e2ae766c 3494 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3495 return 0;
3496
3497 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3498 if (IS_ERR(handle)) {
3499 ret = PTR_ERR(handle);
3500 goto orphan_del;
3501 }
3502 if (ext4_update_inode_size(inode, offset + written))
3503 ext4_mark_inode_dirty(handle, inode);
3504 /*
3505 * We may need to truncate allocated but not written blocks beyond EOF.
3506 */
3507 if (iomap->offset + iomap->length >
3508 ALIGN(inode->i_size, 1 << blkbits)) {
3509 ext4_lblk_t written_blk, end_blk;
3510
3511 written_blk = (offset + written) >> blkbits;
3512 end_blk = (offset + length) >> blkbits;
3513 if (written_blk < end_blk && ext4_can_truncate(inode))
3514 truncate = true;
3515 }
3516 /*
3517 * Remove inode from orphan list if we were extending a inode and
3518 * everything went fine.
3519 */
3520 if (!truncate && inode->i_nlink &&
3521 !list_empty(&EXT4_I(inode)->i_orphan))
3522 ext4_orphan_del(handle, inode);
3523 ext4_journal_stop(handle);
3524 if (truncate) {
3525 ext4_truncate_failed_write(inode);
3526orphan_del:
3527 /*
3528 * If truncate failed early the inode might still be on the
3529 * orphan list; we need to make sure the inode is removed from
3530 * the orphan list in that case.
3531 */
3532 if (inode->i_nlink)
3533 ext4_orphan_del(NULL, inode);
3534 }
3535 return ret;
3536}
3537
8ff6daa1 3538const struct iomap_ops ext4_iomap_ops = {
364443cb 3539 .iomap_begin = ext4_iomap_begin,
776722e8 3540 .iomap_end = ext4_iomap_end,
364443cb
JK
3541};
3542
ba5843f5 3543#endif
ed923b57 3544
187372a3 3545static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3546 ssize_t size, void *private)
4c0425ff 3547{
109811c2 3548 ext4_io_end_t *io_end = private;
4c0425ff 3549
97a851ed 3550 /* if not async direct IO just return */
7b7a8665 3551 if (!io_end)
187372a3 3552 return 0;
4b70df18 3553
88635ca2 3554 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3555 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3556 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3557
74c66bcb
JK
3558 /*
3559 * Error during AIO DIO. We cannot convert unwritten extents as the
3560 * data was not written. Just clear the unwritten flag and drop io_end.
3561 */
3562 if (size <= 0) {
3563 ext4_clear_io_unwritten_flag(io_end);
3564 size = 0;
3565 }
4c0425ff
MC
3566 io_end->offset = offset;
3567 io_end->size = size;
7b7a8665 3568 ext4_put_io_end(io_end);
187372a3
CH
3569
3570 return 0;
4c0425ff 3571}
c7064ef1 3572
4c0425ff 3573/*
914f82a3
JK
3574 * Handling of direct IO writes.
3575 *
3576 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3577 * preallocated extents, and those write extend the file, no need to
3578 * fall back to buffered IO.
3579 *
556615dc 3580 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3581 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3582 * still keep the range to write as unwritten.
4c0425ff 3583 *
69c499d1 3584 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3585 * For async direct IO, since the IO may still pending when return, we
25985edc 3586 * set up an end_io call back function, which will do the conversion
8d5d02e6 3587 * when async direct IO completed.
4c0425ff
MC
3588 *
3589 * If the O_DIRECT write will extend the file then add this inode to the
3590 * orphan list. So recovery will truncate it back to the original size
3591 * if the machine crashes during the write.
3592 *
3593 */
0e01df10 3594static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3595{
3596 struct file *file = iocb->ki_filp;
3597 struct inode *inode = file->f_mapping->host;
914f82a3 3598 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3599 ssize_t ret;
c8b8e32d 3600 loff_t offset = iocb->ki_pos;
a6cbcd4a 3601 size_t count = iov_iter_count(iter);
69c499d1
TT
3602 int overwrite = 0;
3603 get_block_t *get_block_func = NULL;
3604 int dio_flags = 0;
4c0425ff 3605 loff_t final_size = offset + count;
914f82a3
JK
3606 int orphan = 0;
3607 handle_t *handle;
729f52c6 3608
914f82a3
JK
3609 if (final_size > inode->i_size) {
3610 /* Credits for sb + inode write */
3611 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3612 if (IS_ERR(handle)) {
3613 ret = PTR_ERR(handle);
3614 goto out;
3615 }
3616 ret = ext4_orphan_add(handle, inode);
3617 if (ret) {
3618 ext4_journal_stop(handle);
3619 goto out;
3620 }
3621 orphan = 1;
3622 ei->i_disksize = inode->i_size;
3623 ext4_journal_stop(handle);
3624 }
4bd809db 3625
69c499d1 3626 BUG_ON(iocb->private == NULL);
4bd809db 3627
e8340395
JK
3628 /*
3629 * Make all waiters for direct IO properly wait also for extent
3630 * conversion. This also disallows race between truncate() and
3631 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3632 */
914f82a3 3633 inode_dio_begin(inode);
e8340395 3634
69c499d1
TT
3635 /* If we do a overwrite dio, i_mutex locking can be released */
3636 overwrite = *((int *)iocb->private);
4bd809db 3637
2dcba478 3638 if (overwrite)
5955102c 3639 inode_unlock(inode);
8d5d02e6 3640
69c499d1 3641 /*
914f82a3 3642 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3643 *
109811c2
JK
3644 * Allocated blocks to fill the hole are marked as unwritten to prevent
3645 * parallel buffered read to expose the stale data before DIO complete
3646 * the data IO.
69c499d1 3647 *
109811c2
JK
3648 * As to previously fallocated extents, ext4 get_block will just simply
3649 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3650 *
109811c2
JK
3651 * For non AIO case, we will convert those unwritten extents to written
3652 * after return back from blockdev_direct_IO. That way we save us from
3653 * allocating io_end structure and also the overhead of offloading
3654 * the extent convertion to a workqueue.
69c499d1
TT
3655 *
3656 * For async DIO, the conversion needs to be deferred when the
3657 * IO is completed. The ext4 end_io callback function will be
3658 * called to take care of the conversion work. Here for async
3659 * case, we allocate an io_end structure to hook to the iocb.
3660 */
3661 iocb->private = NULL;
109811c2 3662 if (overwrite)
705965bd 3663 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3664 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3665 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3666 get_block_func = ext4_dio_get_block;
3667 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3668 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3669 get_block_func = ext4_dio_get_block_unwritten_sync;
3670 dio_flags = DIO_LOCKING;
69c499d1 3671 } else {
109811c2 3672 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3673 dio_flags = DIO_LOCKING;
3674 }
0bd2d5ec
JK
3675 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3676 get_block_func, ext4_end_io_dio, NULL,
3677 dio_flags);
69c499d1 3678
97a851ed 3679 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3680 EXT4_STATE_DIO_UNWRITTEN)) {
3681 int err;
3682 /*
3683 * for non AIO case, since the IO is already
3684 * completed, we could do the conversion right here
3685 */
6b523df4 3686 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3687 offset, ret);
3688 if (err < 0)
3689 ret = err;
3690 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3691 }
4bd809db 3692
914f82a3 3693 inode_dio_end(inode);
69c499d1 3694 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3695 if (overwrite)
5955102c 3696 inode_lock(inode);
8d5d02e6 3697
914f82a3
JK
3698 if (ret < 0 && final_size > inode->i_size)
3699 ext4_truncate_failed_write(inode);
3700
3701 /* Handle extending of i_size after direct IO write */
3702 if (orphan) {
3703 int err;
3704
3705 /* Credits for sb + inode write */
3706 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3707 if (IS_ERR(handle)) {
3708 /* This is really bad luck. We've written the data
3709 * but cannot extend i_size. Bail out and pretend
3710 * the write failed... */
3711 ret = PTR_ERR(handle);
3712 if (inode->i_nlink)
3713 ext4_orphan_del(NULL, inode);
3714
3715 goto out;
3716 }
3717 if (inode->i_nlink)
3718 ext4_orphan_del(handle, inode);
3719 if (ret > 0) {
3720 loff_t end = offset + ret;
3721 if (end > inode->i_size) {
3722 ei->i_disksize = end;
3723 i_size_write(inode, end);
3724 /*
3725 * We're going to return a positive `ret'
3726 * here due to non-zero-length I/O, so there's
3727 * no way of reporting error returns from
3728 * ext4_mark_inode_dirty() to userspace. So
3729 * ignore it.
3730 */
3731 ext4_mark_inode_dirty(handle, inode);
3732 }
3733 }
3734 err = ext4_journal_stop(handle);
3735 if (ret == 0)
3736 ret = err;
3737 }
3738out:
3739 return ret;
3740}
3741
0e01df10 3742static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3743{
16c54688
JK
3744 struct address_space *mapping = iocb->ki_filp->f_mapping;
3745 struct inode *inode = mapping->host;
0bd2d5ec 3746 size_t count = iov_iter_count(iter);
914f82a3
JK
3747 ssize_t ret;
3748
16c54688
JK
3749 /*
3750 * Shared inode_lock is enough for us - it protects against concurrent
3751 * writes & truncates and since we take care of writing back page cache,
3752 * we are protected against page writeback as well.
3753 */
3754 inode_lock_shared(inode);
0bd2d5ec 3755 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3756 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3757 if (ret)
3758 goto out_unlock;
3759 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3760 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3761out_unlock:
3762 inode_unlock_shared(inode);
69c499d1 3763 return ret;
4c0425ff
MC
3764}
3765
c8b8e32d 3766static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3767{
3768 struct file *file = iocb->ki_filp;
3769 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3770 size_t count = iov_iter_count(iter);
c8b8e32d 3771 loff_t offset = iocb->ki_pos;
0562e0ba 3772 ssize_t ret;
4c0425ff 3773
2058f83a
MH
3774#ifdef CONFIG_EXT4_FS_ENCRYPTION
3775 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3776 return 0;
3777#endif
3778
84ebd795
TT
3779 /*
3780 * If we are doing data journalling we don't support O_DIRECT
3781 */
3782 if (ext4_should_journal_data(inode))
3783 return 0;
3784
46c7f254
TM
3785 /* Let buffer I/O handle the inline data case. */
3786 if (ext4_has_inline_data(inode))
3787 return 0;
3788
0bd2d5ec
JK
3789 /* DAX uses iomap path now */
3790 if (WARN_ON_ONCE(IS_DAX(inode)))
3791 return 0;
3792
6f673763 3793 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3794 if (iov_iter_rw(iter) == READ)
0e01df10 3795 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3796 else
0e01df10 3797 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3798 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3799 return ret;
4c0425ff
MC
3800}
3801
ac27a0ec 3802/*
617ba13b 3803 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3804 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3805 * much here because ->set_page_dirty is called under VFS locks. The page is
3806 * not necessarily locked.
3807 *
3808 * We cannot just dirty the page and leave attached buffers clean, because the
3809 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3810 * or jbddirty because all the journalling code will explode.
3811 *
3812 * So what we do is to mark the page "pending dirty" and next time writepage
3813 * is called, propagate that into the buffers appropriately.
3814 */
617ba13b 3815static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3816{
3817 SetPageChecked(page);
3818 return __set_page_dirty_nobuffers(page);
3819}
3820
6dcc693b
JK
3821static int ext4_set_page_dirty(struct page *page)
3822{
3823 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3824 WARN_ON_ONCE(!page_has_buffers(page));
3825 return __set_page_dirty_buffers(page);
3826}
3827
74d553aa 3828static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3829 .readpage = ext4_readpage,
3830 .readpages = ext4_readpages,
43ce1d23 3831 .writepage = ext4_writepage,
20970ba6 3832 .writepages = ext4_writepages,
8ab22b9a 3833 .write_begin = ext4_write_begin,
74d553aa 3834 .write_end = ext4_write_end,
6dcc693b 3835 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3836 .bmap = ext4_bmap,
3837 .invalidatepage = ext4_invalidatepage,
3838 .releasepage = ext4_releasepage,
3839 .direct_IO = ext4_direct_IO,
3840 .migratepage = buffer_migrate_page,
3841 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3842 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3843};
3844
617ba13b 3845static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3846 .readpage = ext4_readpage,
3847 .readpages = ext4_readpages,
43ce1d23 3848 .writepage = ext4_writepage,
20970ba6 3849 .writepages = ext4_writepages,
8ab22b9a
HH
3850 .write_begin = ext4_write_begin,
3851 .write_end = ext4_journalled_write_end,
3852 .set_page_dirty = ext4_journalled_set_page_dirty,
3853 .bmap = ext4_bmap,
4520fb3c 3854 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3855 .releasepage = ext4_releasepage,
84ebd795 3856 .direct_IO = ext4_direct_IO,
8ab22b9a 3857 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3858 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3859};
3860
64769240 3861static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3862 .readpage = ext4_readpage,
3863 .readpages = ext4_readpages,
43ce1d23 3864 .writepage = ext4_writepage,
20970ba6 3865 .writepages = ext4_writepages,
8ab22b9a
HH
3866 .write_begin = ext4_da_write_begin,
3867 .write_end = ext4_da_write_end,
6dcc693b 3868 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3869 .bmap = ext4_bmap,
3870 .invalidatepage = ext4_da_invalidatepage,
3871 .releasepage = ext4_releasepage,
3872 .direct_IO = ext4_direct_IO,
3873 .migratepage = buffer_migrate_page,
3874 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3875 .error_remove_page = generic_error_remove_page,
64769240
AT
3876};
3877
617ba13b 3878void ext4_set_aops(struct inode *inode)
ac27a0ec 3879{
3d2b1582
LC
3880 switch (ext4_inode_journal_mode(inode)) {
3881 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3882 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3883 break;
3884 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3885 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3886 return;
3d2b1582
LC
3887 default:
3888 BUG();
3889 }
74d553aa
TT
3890 if (test_opt(inode->i_sb, DELALLOC))
3891 inode->i_mapping->a_ops = &ext4_da_aops;
3892 else
3893 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3894}
3895
923ae0ff 3896static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3897 struct address_space *mapping, loff_t from, loff_t length)
3898{
09cbfeaf
KS
3899 ext4_fsblk_t index = from >> PAGE_SHIFT;
3900 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3901 unsigned blocksize, pos;
d863dc36
LC
3902 ext4_lblk_t iblock;
3903 struct inode *inode = mapping->host;
3904 struct buffer_head *bh;
3905 struct page *page;
3906 int err = 0;
3907
09cbfeaf 3908 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3909 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3910 if (!page)
3911 return -ENOMEM;
3912
3913 blocksize = inode->i_sb->s_blocksize;
d863dc36 3914
09cbfeaf 3915 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3916
3917 if (!page_has_buffers(page))
3918 create_empty_buffers(page, blocksize, 0);
3919
3920 /* Find the buffer that contains "offset" */
3921 bh = page_buffers(page);
3922 pos = blocksize;
3923 while (offset >= pos) {
3924 bh = bh->b_this_page;
3925 iblock++;
3926 pos += blocksize;
3927 }
d863dc36
LC
3928 if (buffer_freed(bh)) {
3929 BUFFER_TRACE(bh, "freed: skip");
3930 goto unlock;
3931 }
d863dc36
LC
3932 if (!buffer_mapped(bh)) {
3933 BUFFER_TRACE(bh, "unmapped");
3934 ext4_get_block(inode, iblock, bh, 0);
3935 /* unmapped? It's a hole - nothing to do */
3936 if (!buffer_mapped(bh)) {
3937 BUFFER_TRACE(bh, "still unmapped");
3938 goto unlock;
3939 }
3940 }
3941
3942 /* Ok, it's mapped. Make sure it's up-to-date */
3943 if (PageUptodate(page))
3944 set_buffer_uptodate(bh);
3945
3946 if (!buffer_uptodate(bh)) {
3947 err = -EIO;
dfec8a14 3948 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3949 wait_on_buffer(bh);
3950 /* Uhhuh. Read error. Complain and punt. */
3951 if (!buffer_uptodate(bh))
3952 goto unlock;
c9c7429c
MH
3953 if (S_ISREG(inode->i_mode) &&
3954 ext4_encrypted_inode(inode)) {
3955 /* We expect the key to be set. */
a7550b30 3956 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3957 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 3958 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3959 page, PAGE_SIZE, 0, page->index));
c9c7429c 3960 }
d863dc36 3961 }
d863dc36
LC
3962 if (ext4_should_journal_data(inode)) {
3963 BUFFER_TRACE(bh, "get write access");
3964 err = ext4_journal_get_write_access(handle, bh);
3965 if (err)
3966 goto unlock;
3967 }
d863dc36 3968 zero_user(page, offset, length);
d863dc36
LC
3969 BUFFER_TRACE(bh, "zeroed end of block");
3970
d863dc36
LC
3971 if (ext4_should_journal_data(inode)) {
3972 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3973 } else {
353eefd3 3974 err = 0;
d863dc36 3975 mark_buffer_dirty(bh);
3957ef53 3976 if (ext4_should_order_data(inode))
ee0876bc 3977 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3978 }
d863dc36
LC
3979
3980unlock:
3981 unlock_page(page);
09cbfeaf 3982 put_page(page);
d863dc36
LC
3983 return err;
3984}
3985
923ae0ff
RZ
3986/*
3987 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3988 * starting from file offset 'from'. The range to be zero'd must
3989 * be contained with in one block. If the specified range exceeds
3990 * the end of the block it will be shortened to end of the block
3991 * that cooresponds to 'from'
3992 */
3993static int ext4_block_zero_page_range(handle_t *handle,
3994 struct address_space *mapping, loff_t from, loff_t length)
3995{
3996 struct inode *inode = mapping->host;
09cbfeaf 3997 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3998 unsigned blocksize = inode->i_sb->s_blocksize;
3999 unsigned max = blocksize - (offset & (blocksize - 1));
4000
4001 /*
4002 * correct length if it does not fall between
4003 * 'from' and the end of the block
4004 */
4005 if (length > max || length < 0)
4006 length = max;
4007
47e69351
JK
4008 if (IS_DAX(inode)) {
4009 return iomap_zero_range(inode, from, length, NULL,
4010 &ext4_iomap_ops);
4011 }
923ae0ff
RZ
4012 return __ext4_block_zero_page_range(handle, mapping, from, length);
4013}
4014
94350ab5
MW
4015/*
4016 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4017 * up to the end of the block which corresponds to `from'.
4018 * This required during truncate. We need to physically zero the tail end
4019 * of that block so it doesn't yield old data if the file is later grown.
4020 */
c197855e 4021static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
4022 struct address_space *mapping, loff_t from)
4023{
09cbfeaf 4024 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
4025 unsigned length;
4026 unsigned blocksize;
4027 struct inode *inode = mapping->host;
4028
0d06863f
TT
4029 /* If we are processing an encrypted inode during orphan list handling */
4030 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4031 return 0;
4032
94350ab5
MW
4033 blocksize = inode->i_sb->s_blocksize;
4034 length = blocksize - (offset & (blocksize - 1));
4035
4036 return ext4_block_zero_page_range(handle, mapping, from, length);
4037}
4038
a87dd18c
LC
4039int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4040 loff_t lstart, loff_t length)
4041{
4042 struct super_block *sb = inode->i_sb;
4043 struct address_space *mapping = inode->i_mapping;
e1be3a92 4044 unsigned partial_start, partial_end;
a87dd18c
LC
4045 ext4_fsblk_t start, end;
4046 loff_t byte_end = (lstart + length - 1);
4047 int err = 0;
4048
e1be3a92
LC
4049 partial_start = lstart & (sb->s_blocksize - 1);
4050 partial_end = byte_end & (sb->s_blocksize - 1);
4051
a87dd18c
LC
4052 start = lstart >> sb->s_blocksize_bits;
4053 end = byte_end >> sb->s_blocksize_bits;
4054
4055 /* Handle partial zero within the single block */
e1be3a92
LC
4056 if (start == end &&
4057 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4058 err = ext4_block_zero_page_range(handle, mapping,
4059 lstart, length);
4060 return err;
4061 }
4062 /* Handle partial zero out on the start of the range */
e1be3a92 4063 if (partial_start) {
a87dd18c
LC
4064 err = ext4_block_zero_page_range(handle, mapping,
4065 lstart, sb->s_blocksize);
4066 if (err)
4067 return err;
4068 }
4069 /* Handle partial zero out on the end of the range */
e1be3a92 4070 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4071 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4072 byte_end - partial_end,
4073 partial_end + 1);
a87dd18c
LC
4074 return err;
4075}
4076
91ef4caf
DG
4077int ext4_can_truncate(struct inode *inode)
4078{
91ef4caf
DG
4079 if (S_ISREG(inode->i_mode))
4080 return 1;
4081 if (S_ISDIR(inode->i_mode))
4082 return 1;
4083 if (S_ISLNK(inode->i_mode))
4084 return !ext4_inode_is_fast_symlink(inode);
4085 return 0;
4086}
4087
01127848
JK
4088/*
4089 * We have to make sure i_disksize gets properly updated before we truncate
4090 * page cache due to hole punching or zero range. Otherwise i_disksize update
4091 * can get lost as it may have been postponed to submission of writeback but
4092 * that will never happen after we truncate page cache.
4093 */
4094int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4095 loff_t len)
4096{
4097 handle_t *handle;
4098 loff_t size = i_size_read(inode);
4099
5955102c 4100 WARN_ON(!inode_is_locked(inode));
01127848
JK
4101 if (offset > size || offset + len < size)
4102 return 0;
4103
4104 if (EXT4_I(inode)->i_disksize >= size)
4105 return 0;
4106
4107 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4108 if (IS_ERR(handle))
4109 return PTR_ERR(handle);
4110 ext4_update_i_disksize(inode, size);
4111 ext4_mark_inode_dirty(handle, inode);
4112 ext4_journal_stop(handle);
4113
4114 return 0;
4115}
4116
a4bb6b64 4117/*
cca32b7e 4118 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4119 * associated with the given offset and length
4120 *
4121 * @inode: File inode
4122 * @offset: The offset where the hole will begin
4123 * @len: The length of the hole
4124 *
4907cb7b 4125 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4126 */
4127
aeb2817a 4128int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4129{
26a4c0c6
TT
4130 struct super_block *sb = inode->i_sb;
4131 ext4_lblk_t first_block, stop_block;
4132 struct address_space *mapping = inode->i_mapping;
a87dd18c 4133 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4134 handle_t *handle;
4135 unsigned int credits;
4136 int ret = 0;
4137
a4bb6b64 4138 if (!S_ISREG(inode->i_mode))
73355192 4139 return -EOPNOTSUPP;
a4bb6b64 4140
b8a86845 4141 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4142
26a4c0c6
TT
4143 /*
4144 * Write out all dirty pages to avoid race conditions
4145 * Then release them.
4146 */
cca32b7e 4147 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4148 ret = filemap_write_and_wait_range(mapping, offset,
4149 offset + length - 1);
4150 if (ret)
4151 return ret;
4152 }
4153
5955102c 4154 inode_lock(inode);
9ef06cec 4155
26a4c0c6
TT
4156 /* No need to punch hole beyond i_size */
4157 if (offset >= inode->i_size)
4158 goto out_mutex;
4159
4160 /*
4161 * If the hole extends beyond i_size, set the hole
4162 * to end after the page that contains i_size
4163 */
4164 if (offset + length > inode->i_size) {
4165 length = inode->i_size +
09cbfeaf 4166 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4167 offset;
4168 }
4169
a361293f
JK
4170 if (offset & (sb->s_blocksize - 1) ||
4171 (offset + length) & (sb->s_blocksize - 1)) {
4172 /*
4173 * Attach jinode to inode for jbd2 if we do any zeroing of
4174 * partial block
4175 */
4176 ret = ext4_inode_attach_jinode(inode);
4177 if (ret < 0)
4178 goto out_mutex;
4179
4180 }
4181
ea3d7209
JK
4182 /* Wait all existing dio workers, newcomers will block on i_mutex */
4183 ext4_inode_block_unlocked_dio(inode);
4184 inode_dio_wait(inode);
4185
4186 /*
4187 * Prevent page faults from reinstantiating pages we have released from
4188 * page cache.
4189 */
4190 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4191 first_block_offset = round_up(offset, sb->s_blocksize);
4192 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4193
a87dd18c 4194 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4195 if (last_block_offset > first_block_offset) {
4196 ret = ext4_update_disksize_before_punch(inode, offset, length);
4197 if (ret)
4198 goto out_dio;
a87dd18c
LC
4199 truncate_pagecache_range(inode, first_block_offset,
4200 last_block_offset);
01127848 4201 }
26a4c0c6
TT
4202
4203 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4204 credits = ext4_writepage_trans_blocks(inode);
4205 else
4206 credits = ext4_blocks_for_truncate(inode);
4207 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4208 if (IS_ERR(handle)) {
4209 ret = PTR_ERR(handle);
4210 ext4_std_error(sb, ret);
4211 goto out_dio;
4212 }
4213
a87dd18c
LC
4214 ret = ext4_zero_partial_blocks(handle, inode, offset,
4215 length);
4216 if (ret)
4217 goto out_stop;
26a4c0c6
TT
4218
4219 first_block = (offset + sb->s_blocksize - 1) >>
4220 EXT4_BLOCK_SIZE_BITS(sb);
4221 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4222
4223 /* If there are no blocks to remove, return now */
4224 if (first_block >= stop_block)
4225 goto out_stop;
4226
4227 down_write(&EXT4_I(inode)->i_data_sem);
4228 ext4_discard_preallocations(inode);
4229
4230 ret = ext4_es_remove_extent(inode, first_block,
4231 stop_block - first_block);
4232 if (ret) {
4233 up_write(&EXT4_I(inode)->i_data_sem);
4234 goto out_stop;
4235 }
4236
4237 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4238 ret = ext4_ext_remove_space(inode, first_block,
4239 stop_block - 1);
4240 else
4f579ae7 4241 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4242 stop_block);
4243
819c4920 4244 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4245 if (IS_SYNC(inode))
4246 ext4_handle_sync(handle);
e251f9bc 4247
eeca7ea1 4248 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6 4249 ext4_mark_inode_dirty(handle, inode);
67a7d5f5
JK
4250 if (ret >= 0)
4251 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4252out_stop:
4253 ext4_journal_stop(handle);
4254out_dio:
ea3d7209 4255 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4256 ext4_inode_resume_unlocked_dio(inode);
4257out_mutex:
5955102c 4258 inode_unlock(inode);
26a4c0c6 4259 return ret;
a4bb6b64
AH
4260}
4261
a361293f
JK
4262int ext4_inode_attach_jinode(struct inode *inode)
4263{
4264 struct ext4_inode_info *ei = EXT4_I(inode);
4265 struct jbd2_inode *jinode;
4266
4267 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4268 return 0;
4269
4270 jinode = jbd2_alloc_inode(GFP_KERNEL);
4271 spin_lock(&inode->i_lock);
4272 if (!ei->jinode) {
4273 if (!jinode) {
4274 spin_unlock(&inode->i_lock);
4275 return -ENOMEM;
4276 }
4277 ei->jinode = jinode;
4278 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4279 jinode = NULL;
4280 }
4281 spin_unlock(&inode->i_lock);
4282 if (unlikely(jinode != NULL))
4283 jbd2_free_inode(jinode);
4284 return 0;
4285}
4286
ac27a0ec 4287/*
617ba13b 4288 * ext4_truncate()
ac27a0ec 4289 *
617ba13b
MC
4290 * We block out ext4_get_block() block instantiations across the entire
4291 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4292 * simultaneously on behalf of the same inode.
4293 *
42b2aa86 4294 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4295 * is one core, guiding principle: the file's tree must always be consistent on
4296 * disk. We must be able to restart the truncate after a crash.
4297 *
4298 * The file's tree may be transiently inconsistent in memory (although it
4299 * probably isn't), but whenever we close off and commit a journal transaction,
4300 * the contents of (the filesystem + the journal) must be consistent and
4301 * restartable. It's pretty simple, really: bottom up, right to left (although
4302 * left-to-right works OK too).
4303 *
4304 * Note that at recovery time, journal replay occurs *before* the restart of
4305 * truncate against the orphan inode list.
4306 *
4307 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4308 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4309 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4310 * ext4_truncate() to have another go. So there will be instantiated blocks
4311 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4312 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4313 * ext4_truncate() run will find them and release them.
ac27a0ec 4314 */
2c98eb5e 4315int ext4_truncate(struct inode *inode)
ac27a0ec 4316{
819c4920
TT
4317 struct ext4_inode_info *ei = EXT4_I(inode);
4318 unsigned int credits;
2c98eb5e 4319 int err = 0;
819c4920
TT
4320 handle_t *handle;
4321 struct address_space *mapping = inode->i_mapping;
819c4920 4322
19b5ef61
TT
4323 /*
4324 * There is a possibility that we're either freeing the inode
e04027e8 4325 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4326 * have i_mutex locked because it's not necessary.
4327 */
4328 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4329 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4330 trace_ext4_truncate_enter(inode);
4331
91ef4caf 4332 if (!ext4_can_truncate(inode))
2c98eb5e 4333 return 0;
ac27a0ec 4334
12e9b892 4335 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4336
5534fb5b 4337 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4338 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4339
aef1c851
TM
4340 if (ext4_has_inline_data(inode)) {
4341 int has_inline = 1;
4342
01daf945
TT
4343 err = ext4_inline_data_truncate(inode, &has_inline);
4344 if (err)
4345 return err;
aef1c851 4346 if (has_inline)
2c98eb5e 4347 return 0;
aef1c851
TM
4348 }
4349
a361293f
JK
4350 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4351 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4352 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4353 return 0;
a361293f
JK
4354 }
4355
819c4920
TT
4356 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4357 credits = ext4_writepage_trans_blocks(inode);
4358 else
4359 credits = ext4_blocks_for_truncate(inode);
4360
4361 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4362 if (IS_ERR(handle))
4363 return PTR_ERR(handle);
819c4920 4364
eb3544c6
LC
4365 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4366 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4367
4368 /*
4369 * We add the inode to the orphan list, so that if this
4370 * truncate spans multiple transactions, and we crash, we will
4371 * resume the truncate when the filesystem recovers. It also
4372 * marks the inode dirty, to catch the new size.
4373 *
4374 * Implication: the file must always be in a sane, consistent
4375 * truncatable state while each transaction commits.
4376 */
2c98eb5e
TT
4377 err = ext4_orphan_add(handle, inode);
4378 if (err)
819c4920
TT
4379 goto out_stop;
4380
4381 down_write(&EXT4_I(inode)->i_data_sem);
4382
4383 ext4_discard_preallocations(inode);
4384
ff9893dc 4385 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4386 err = ext4_ext_truncate(handle, inode);
ff9893dc 4387 else
819c4920
TT
4388 ext4_ind_truncate(handle, inode);
4389
4390 up_write(&ei->i_data_sem);
d0abb36d
TT
4391 if (err)
4392 goto out_stop;
819c4920
TT
4393
4394 if (IS_SYNC(inode))
4395 ext4_handle_sync(handle);
4396
4397out_stop:
4398 /*
4399 * If this was a simple ftruncate() and the file will remain alive,
4400 * then we need to clear up the orphan record which we created above.
4401 * However, if this was a real unlink then we were called by
58d86a50 4402 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4403 * orphan info for us.
4404 */
4405 if (inode->i_nlink)
4406 ext4_orphan_del(handle, inode);
4407
eeca7ea1 4408 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4409 ext4_mark_inode_dirty(handle, inode);
4410 ext4_journal_stop(handle);
ac27a0ec 4411
0562e0ba 4412 trace_ext4_truncate_exit(inode);
2c98eb5e 4413 return err;
ac27a0ec
DK
4414}
4415
ac27a0ec 4416/*
617ba13b 4417 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4418 * underlying buffer_head on success. If 'in_mem' is true, we have all
4419 * data in memory that is needed to recreate the on-disk version of this
4420 * inode.
4421 */
617ba13b
MC
4422static int __ext4_get_inode_loc(struct inode *inode,
4423 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4424{
240799cd
TT
4425 struct ext4_group_desc *gdp;
4426 struct buffer_head *bh;
4427 struct super_block *sb = inode->i_sb;
4428 ext4_fsblk_t block;
4429 int inodes_per_block, inode_offset;
4430
3a06d778 4431 iloc->bh = NULL;
240799cd 4432 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4433 return -EFSCORRUPTED;
ac27a0ec 4434
240799cd
TT
4435 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4436 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4437 if (!gdp)
ac27a0ec
DK
4438 return -EIO;
4439
240799cd
TT
4440 /*
4441 * Figure out the offset within the block group inode table
4442 */
00d09882 4443 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4444 inode_offset = ((inode->i_ino - 1) %
4445 EXT4_INODES_PER_GROUP(sb));
4446 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4447 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4448
4449 bh = sb_getblk(sb, block);
aebf0243 4450 if (unlikely(!bh))
860d21e2 4451 return -ENOMEM;
ac27a0ec
DK
4452 if (!buffer_uptodate(bh)) {
4453 lock_buffer(bh);
9c83a923
HK
4454
4455 /*
4456 * If the buffer has the write error flag, we have failed
4457 * to write out another inode in the same block. In this
4458 * case, we don't have to read the block because we may
4459 * read the old inode data successfully.
4460 */
4461 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4462 set_buffer_uptodate(bh);
4463
ac27a0ec
DK
4464 if (buffer_uptodate(bh)) {
4465 /* someone brought it uptodate while we waited */
4466 unlock_buffer(bh);
4467 goto has_buffer;
4468 }
4469
4470 /*
4471 * If we have all information of the inode in memory and this
4472 * is the only valid inode in the block, we need not read the
4473 * block.
4474 */
4475 if (in_mem) {
4476 struct buffer_head *bitmap_bh;
240799cd 4477 int i, start;
ac27a0ec 4478
240799cd 4479 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4480
240799cd
TT
4481 /* Is the inode bitmap in cache? */
4482 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4483 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4484 goto make_io;
4485
4486 /*
4487 * If the inode bitmap isn't in cache then the
4488 * optimisation may end up performing two reads instead
4489 * of one, so skip it.
4490 */
4491 if (!buffer_uptodate(bitmap_bh)) {
4492 brelse(bitmap_bh);
4493 goto make_io;
4494 }
240799cd 4495 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4496 if (i == inode_offset)
4497 continue;
617ba13b 4498 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4499 break;
4500 }
4501 brelse(bitmap_bh);
240799cd 4502 if (i == start + inodes_per_block) {
ac27a0ec
DK
4503 /* all other inodes are free, so skip I/O */
4504 memset(bh->b_data, 0, bh->b_size);
4505 set_buffer_uptodate(bh);
4506 unlock_buffer(bh);
4507 goto has_buffer;
4508 }
4509 }
4510
4511make_io:
240799cd
TT
4512 /*
4513 * If we need to do any I/O, try to pre-readahead extra
4514 * blocks from the inode table.
4515 */
4516 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4517 ext4_fsblk_t b, end, table;
4518 unsigned num;
0d606e2c 4519 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4520
4521 table = ext4_inode_table(sb, gdp);
b713a5ec 4522 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4523 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4524 if (table > b)
4525 b = table;
0d606e2c 4526 end = b + ra_blks;
240799cd 4527 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4528 if (ext4_has_group_desc_csum(sb))
560671a0 4529 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4530 table += num / inodes_per_block;
4531 if (end > table)
4532 end = table;
4533 while (b <= end)
4534 sb_breadahead(sb, b++);
4535 }
4536
ac27a0ec
DK
4537 /*
4538 * There are other valid inodes in the buffer, this inode
4539 * has in-inode xattrs, or we don't have this inode in memory.
4540 * Read the block from disk.
4541 */
0562e0ba 4542 trace_ext4_load_inode(inode);
ac27a0ec
DK
4543 get_bh(bh);
4544 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4545 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4546 wait_on_buffer(bh);
4547 if (!buffer_uptodate(bh)) {
c398eda0
TT
4548 EXT4_ERROR_INODE_BLOCK(inode, block,
4549 "unable to read itable block");
ac27a0ec
DK
4550 brelse(bh);
4551 return -EIO;
4552 }
4553 }
4554has_buffer:
4555 iloc->bh = bh;
4556 return 0;
4557}
4558
617ba13b 4559int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4560{
4561 /* We have all inode data except xattrs in memory here. */
617ba13b 4562 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4563 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4564}
4565
617ba13b 4566void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4567{
617ba13b 4568 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4569 unsigned int new_fl = 0;
ac27a0ec 4570
617ba13b 4571 if (flags & EXT4_SYNC_FL)
00a1a053 4572 new_fl |= S_SYNC;
617ba13b 4573 if (flags & EXT4_APPEND_FL)
00a1a053 4574 new_fl |= S_APPEND;
617ba13b 4575 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4576 new_fl |= S_IMMUTABLE;
617ba13b 4577 if (flags & EXT4_NOATIME_FL)
00a1a053 4578 new_fl |= S_NOATIME;
617ba13b 4579 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4580 new_fl |= S_DIRSYNC;
a3caa24b
JK
4581 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4582 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4583 !ext4_encrypted_inode(inode))
923ae0ff 4584 new_fl |= S_DAX;
5f16f322 4585 inode_set_flags(inode, new_fl,
923ae0ff 4586 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4587}
4588
0fc1b451 4589static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4590 struct ext4_inode_info *ei)
0fc1b451
AK
4591{
4592 blkcnt_t i_blocks ;
8180a562
AK
4593 struct inode *inode = &(ei->vfs_inode);
4594 struct super_block *sb = inode->i_sb;
0fc1b451 4595
e2b911c5 4596 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4597 /* we are using combined 48 bit field */
4598 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4599 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4600 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4601 /* i_blocks represent file system block size */
4602 return i_blocks << (inode->i_blkbits - 9);
4603 } else {
4604 return i_blocks;
4605 }
0fc1b451
AK
4606 } else {
4607 return le32_to_cpu(raw_inode->i_blocks_lo);
4608 }
4609}
ff9ddf7e 4610
152a7b0a
TM
4611static inline void ext4_iget_extra_inode(struct inode *inode,
4612 struct ext4_inode *raw_inode,
4613 struct ext4_inode_info *ei)
4614{
4615 __le32 *magic = (void *)raw_inode +
4616 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4617 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4618 EXT4_INODE_SIZE(inode->i_sb) &&
4619 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4620 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4621 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4622 } else
4623 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4624}
4625
040cb378
LX
4626int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4627{
0b7b7779 4628 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4629 return -EOPNOTSUPP;
4630 *projid = EXT4_I(inode)->i_projid;
4631 return 0;
4632}
4633
1d1fe1ee 4634struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4635{
617ba13b
MC
4636 struct ext4_iloc iloc;
4637 struct ext4_inode *raw_inode;
1d1fe1ee 4638 struct ext4_inode_info *ei;
1d1fe1ee 4639 struct inode *inode;
b436b9be 4640 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4641 long ret;
7e6e1ef4 4642 loff_t size;
ac27a0ec 4643 int block;
08cefc7a
EB
4644 uid_t i_uid;
4645 gid_t i_gid;
040cb378 4646 projid_t i_projid;
ac27a0ec 4647
1d1fe1ee
DH
4648 inode = iget_locked(sb, ino);
4649 if (!inode)
4650 return ERR_PTR(-ENOMEM);
4651 if (!(inode->i_state & I_NEW))
4652 return inode;
4653
4654 ei = EXT4_I(inode);
7dc57615 4655 iloc.bh = NULL;
ac27a0ec 4656
1d1fe1ee
DH
4657 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4658 if (ret < 0)
ac27a0ec 4659 goto bad_inode;
617ba13b 4660 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4661
4662 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4663 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4664 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4665 EXT4_INODE_SIZE(inode->i_sb) ||
4666 (ei->i_extra_isize & 3)) {
4667 EXT4_ERROR_INODE(inode,
4668 "bad extra_isize %u (inode size %u)",
4669 ei->i_extra_isize,
4670 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4671 ret = -EFSCORRUPTED;
814525f4
DW
4672 goto bad_inode;
4673 }
4674 } else
4675 ei->i_extra_isize = 0;
4676
4677 /* Precompute checksum seed for inode metadata */
9aa5d32b 4678 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4679 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4680 __u32 csum;
4681 __le32 inum = cpu_to_le32(inode->i_ino);
4682 __le32 gen = raw_inode->i_generation;
4683 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4684 sizeof(inum));
4685 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4686 sizeof(gen));
4687 }
4688
4689 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4690 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4691 ret = -EFSBADCRC;
814525f4
DW
4692 goto bad_inode;
4693 }
4694
ac27a0ec 4695 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4696 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4697 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4698 if (ext4_has_feature_project(sb) &&
040cb378
LX
4699 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4700 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4701 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4702 else
4703 i_projid = EXT4_DEF_PROJID;
4704
af5bc92d 4705 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4706 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4707 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4708 }
08cefc7a
EB
4709 i_uid_write(inode, i_uid);
4710 i_gid_write(inode, i_gid);
040cb378 4711 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4712 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4713
353eb83c 4714 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4715 ei->i_inline_off = 0;
ac27a0ec
DK
4716 ei->i_dir_start_lookup = 0;
4717 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4718 /* We now have enough fields to check if the inode was active or not.
4719 * This is needed because nfsd might try to access dead inodes
4720 * the test is that same one that e2fsck uses
4721 * NeilBrown 1999oct15
4722 */
4723 if (inode->i_nlink == 0) {
393d1d1d
DTB
4724 if ((inode->i_mode == 0 ||
4725 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4726 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4727 /* this inode is deleted */
1d1fe1ee 4728 ret = -ESTALE;
ac27a0ec
DK
4729 goto bad_inode;
4730 }
4731 /* The only unlinked inodes we let through here have
4732 * valid i_mode and are being read by the orphan
4733 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4734 * the process of deleting those.
4735 * OR it is the EXT4_BOOT_LOADER_INO which is
4736 * not initialized on a new filesystem. */
ac27a0ec 4737 }
ac27a0ec 4738 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4739 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4740 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4741 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4742 ei->i_file_acl |=
4743 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4744 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4
DW
4745 if ((size = i_size_read(inode)) < 0) {
4746 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4747 ret = -EFSCORRUPTED;
4748 goto bad_inode;
4749 }
ac27a0ec 4750 ei->i_disksize = inode->i_size;
a9e7f447
DM
4751#ifdef CONFIG_QUOTA
4752 ei->i_reserved_quota = 0;
4753#endif
ac27a0ec
DK
4754 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4755 ei->i_block_group = iloc.block_group;
a4912123 4756 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4757 /*
4758 * NOTE! The in-memory inode i_data array is in little-endian order
4759 * even on big-endian machines: we do NOT byteswap the block numbers!
4760 */
617ba13b 4761 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4762 ei->i_data[block] = raw_inode->i_block[block];
4763 INIT_LIST_HEAD(&ei->i_orphan);
4764
b436b9be
JK
4765 /*
4766 * Set transaction id's of transactions that have to be committed
4767 * to finish f[data]sync. We set them to currently running transaction
4768 * as we cannot be sure that the inode or some of its metadata isn't
4769 * part of the transaction - the inode could have been reclaimed and
4770 * now it is reread from disk.
4771 */
4772 if (journal) {
4773 transaction_t *transaction;
4774 tid_t tid;
4775
a931da6a 4776 read_lock(&journal->j_state_lock);
b436b9be
JK
4777 if (journal->j_running_transaction)
4778 transaction = journal->j_running_transaction;
4779 else
4780 transaction = journal->j_committing_transaction;
4781 if (transaction)
4782 tid = transaction->t_tid;
4783 else
4784 tid = journal->j_commit_sequence;
a931da6a 4785 read_unlock(&journal->j_state_lock);
b436b9be
JK
4786 ei->i_sync_tid = tid;
4787 ei->i_datasync_tid = tid;
4788 }
4789
0040d987 4790 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4791 if (ei->i_extra_isize == 0) {
4792 /* The extra space is currently unused. Use it. */
2dc8d9e1 4793 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4794 ei->i_extra_isize = sizeof(struct ext4_inode) -
4795 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4796 } else {
152a7b0a 4797 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4798 }
814525f4 4799 }
ac27a0ec 4800
ef7f3835
KS
4801 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4802 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4803 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4804 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4805
ed3654eb 4806 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4807 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4808 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4809 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4810 inode->i_version |=
4811 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4812 }
25ec56b5
JNC
4813 }
4814
c4b5a614 4815 ret = 0;
485c26ec 4816 if (ei->i_file_acl &&
1032988c 4817 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4818 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4819 ei->i_file_acl);
6a797d27 4820 ret = -EFSCORRUPTED;
485c26ec 4821 goto bad_inode;
f19d5870
TM
4822 } else if (!ext4_has_inline_data(inode)) {
4823 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4824 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4825 (S_ISLNK(inode->i_mode) &&
4826 !ext4_inode_is_fast_symlink(inode))))
4827 /* Validate extent which is part of inode */
4828 ret = ext4_ext_check_inode(inode);
4829 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4830 (S_ISLNK(inode->i_mode) &&
4831 !ext4_inode_is_fast_symlink(inode))) {
4832 /* Validate block references which are part of inode */
4833 ret = ext4_ind_check_inode(inode);
4834 }
fe2c8191 4835 }
567f3e9a 4836 if (ret)
de9a55b8 4837 goto bad_inode;
7a262f7c 4838
ac27a0ec 4839 if (S_ISREG(inode->i_mode)) {
617ba13b 4840 inode->i_op = &ext4_file_inode_operations;
be64f884 4841 inode->i_fop = &ext4_file_operations;
617ba13b 4842 ext4_set_aops(inode);
ac27a0ec 4843 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4844 inode->i_op = &ext4_dir_inode_operations;
4845 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4846 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4847 if (ext4_encrypted_inode(inode)) {
4848 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4849 ext4_set_aops(inode);
4850 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4851 inode->i_link = (char *)ei->i_data;
617ba13b 4852 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4853 nd_terminate_link(ei->i_data, inode->i_size,
4854 sizeof(ei->i_data) - 1);
4855 } else {
617ba13b
MC
4856 inode->i_op = &ext4_symlink_inode_operations;
4857 ext4_set_aops(inode);
ac27a0ec 4858 }
21fc61c7 4859 inode_nohighmem(inode);
563bdd61
TT
4860 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4861 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4862 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4863 if (raw_inode->i_block[0])
4864 init_special_inode(inode, inode->i_mode,
4865 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4866 else
4867 init_special_inode(inode, inode->i_mode,
4868 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4869 } else if (ino == EXT4_BOOT_LOADER_INO) {
4870 make_bad_inode(inode);
563bdd61 4871 } else {
6a797d27 4872 ret = -EFSCORRUPTED;
24676da4 4873 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4874 goto bad_inode;
ac27a0ec 4875 }
af5bc92d 4876 brelse(iloc.bh);
617ba13b 4877 ext4_set_inode_flags(inode);
33d201e0
TE
4878 if (ei->i_flags & EXT4_EA_INODE_FL)
4879 ext4_xattr_inode_set_class(inode);
1d1fe1ee
DH
4880 unlock_new_inode(inode);
4881 return inode;
ac27a0ec
DK
4882
4883bad_inode:
567f3e9a 4884 brelse(iloc.bh);
1d1fe1ee
DH
4885 iget_failed(inode);
4886 return ERR_PTR(ret);
ac27a0ec
DK
4887}
4888
f4bb2981
TT
4889struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4890{
4891 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4892 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4893 return ext4_iget(sb, ino);
4894}
4895
0fc1b451
AK
4896static int ext4_inode_blocks_set(handle_t *handle,
4897 struct ext4_inode *raw_inode,
4898 struct ext4_inode_info *ei)
4899{
4900 struct inode *inode = &(ei->vfs_inode);
4901 u64 i_blocks = inode->i_blocks;
4902 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4903
4904 if (i_blocks <= ~0U) {
4905 /*
4907cb7b 4906 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4907 * as multiple of 512 bytes
4908 */
8180a562 4909 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4910 raw_inode->i_blocks_high = 0;
84a8dce2 4911 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4912 return 0;
4913 }
e2b911c5 4914 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4915 return -EFBIG;
4916
4917 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4918 /*
4919 * i_blocks can be represented in a 48 bit variable
4920 * as multiple of 512 bytes
4921 */
8180a562 4922 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4923 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4924 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4925 } else {
84a8dce2 4926 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4927 /* i_block is stored in file system block size */
4928 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4929 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4930 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4931 }
f287a1a5 4932 return 0;
0fc1b451
AK
4933}
4934
a26f4992
TT
4935struct other_inode {
4936 unsigned long orig_ino;
4937 struct ext4_inode *raw_inode;
4938};
4939
4940static int other_inode_match(struct inode * inode, unsigned long ino,
4941 void *data)
4942{
4943 struct other_inode *oi = (struct other_inode *) data;
4944
4945 if ((inode->i_ino != ino) ||
4946 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4947 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4948 ((inode->i_state & I_DIRTY_TIME) == 0))
4949 return 0;
4950 spin_lock(&inode->i_lock);
4951 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4952 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4953 (inode->i_state & I_DIRTY_TIME)) {
4954 struct ext4_inode_info *ei = EXT4_I(inode);
4955
4956 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4957 spin_unlock(&inode->i_lock);
4958
4959 spin_lock(&ei->i_raw_lock);
4960 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4961 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4962 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4963 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4964 spin_unlock(&ei->i_raw_lock);
4965 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4966 return -1;
4967 }
4968 spin_unlock(&inode->i_lock);
4969 return -1;
4970}
4971
4972/*
4973 * Opportunistically update the other time fields for other inodes in
4974 * the same inode table block.
4975 */
4976static void ext4_update_other_inodes_time(struct super_block *sb,
4977 unsigned long orig_ino, char *buf)
4978{
4979 struct other_inode oi;
4980 unsigned long ino;
4981 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4982 int inode_size = EXT4_INODE_SIZE(sb);
4983
4984 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4985 /*
4986 * Calculate the first inode in the inode table block. Inode
4987 * numbers are one-based. That is, the first inode in a block
4988 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4989 */
4990 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4991 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4992 if (ino == orig_ino)
4993 continue;
4994 oi.raw_inode = (struct ext4_inode *) buf;
4995 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4996 }
4997}
4998
ac27a0ec
DK
4999/*
5000 * Post the struct inode info into an on-disk inode location in the
5001 * buffer-cache. This gobbles the caller's reference to the
5002 * buffer_head in the inode location struct.
5003 *
5004 * The caller must have write access to iloc->bh.
5005 */
617ba13b 5006static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5007 struct inode *inode,
830156c7 5008 struct ext4_iloc *iloc)
ac27a0ec 5009{
617ba13b
MC
5010 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5011 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5012 struct buffer_head *bh = iloc->bh;
202ee5df 5013 struct super_block *sb = inode->i_sb;
ac27a0ec 5014 int err = 0, rc, block;
202ee5df 5015 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5016 uid_t i_uid;
5017 gid_t i_gid;
040cb378 5018 projid_t i_projid;
ac27a0ec 5019
202ee5df
TT
5020 spin_lock(&ei->i_raw_lock);
5021
5022 /* For fields not tracked in the in-memory inode,
ac27a0ec 5023 * initialise them to zero for new inodes. */
19f5fb7a 5024 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5025 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
5026
5027 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5028 i_uid = i_uid_read(inode);
5029 i_gid = i_gid_read(inode);
040cb378 5030 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5031 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5032 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5033 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5034/*
5035 * Fix up interoperability with old kernels. Otherwise, old inodes get
5036 * re-used with the upper 16 bits of the uid/gid intact
5037 */
93e3b4e6
DJ
5038 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5039 raw_inode->i_uid_high = 0;
5040 raw_inode->i_gid_high = 0;
5041 } else {
ac27a0ec 5042 raw_inode->i_uid_high =
08cefc7a 5043 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5044 raw_inode->i_gid_high =
08cefc7a 5045 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5046 }
5047 } else {
08cefc7a
EB
5048 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5049 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5050 raw_inode->i_uid_high = 0;
5051 raw_inode->i_gid_high = 0;
5052 }
5053 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5054
5055 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5056 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5057 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5058 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5059
bce92d56
LX
5060 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5061 if (err) {
202ee5df 5062 spin_unlock(&ei->i_raw_lock);
0fc1b451 5063 goto out_brelse;
202ee5df 5064 }
ac27a0ec 5065 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5066 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5067 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5068 raw_inode->i_file_acl_high =
5069 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5070 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
e08ac99f 5071 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5072 ext4_isize_set(raw_inode, ei->i_disksize);
5073 need_datasync = 1;
5074 }
a48380f7 5075 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5076 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5077 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5078 cpu_to_le32(EXT4_GOOD_OLD_REV))
5079 set_large_file = 1;
ac27a0ec
DK
5080 }
5081 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5082 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5083 if (old_valid_dev(inode->i_rdev)) {
5084 raw_inode->i_block[0] =
5085 cpu_to_le32(old_encode_dev(inode->i_rdev));
5086 raw_inode->i_block[1] = 0;
5087 } else {
5088 raw_inode->i_block[0] = 0;
5089 raw_inode->i_block[1] =
5090 cpu_to_le32(new_encode_dev(inode->i_rdev));
5091 raw_inode->i_block[2] = 0;
5092 }
f19d5870 5093 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5094 for (block = 0; block < EXT4_N_BLOCKS; block++)
5095 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5096 }
ac27a0ec 5097
ed3654eb 5098 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5099 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5100 if (ei->i_extra_isize) {
5101 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5102 raw_inode->i_version_hi =
5103 cpu_to_le32(inode->i_version >> 32);
5104 raw_inode->i_extra_isize =
5105 cpu_to_le16(ei->i_extra_isize);
5106 }
25ec56b5 5107 }
040cb378 5108
0b7b7779 5109 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5110 i_projid != EXT4_DEF_PROJID);
5111
5112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5113 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5114 raw_inode->i_projid = cpu_to_le32(i_projid);
5115
814525f4 5116 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5117 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
5118 if (inode->i_sb->s_flags & MS_LAZYTIME)
5119 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5120 bh->b_data);
202ee5df 5121
830156c7 5122 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5123 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5124 if (!err)
5125 err = rc;
19f5fb7a 5126 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5127 if (set_large_file) {
5d601255 5128 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5129 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5130 if (err)
5131 goto out_brelse;
5132 ext4_update_dynamic_rev(sb);
e2b911c5 5133 ext4_set_feature_large_file(sb);
202ee5df
TT
5134 ext4_handle_sync(handle);
5135 err = ext4_handle_dirty_super(handle, sb);
5136 }
b71fc079 5137 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5138out_brelse:
af5bc92d 5139 brelse(bh);
617ba13b 5140 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5141 return err;
5142}
5143
5144/*
617ba13b 5145 * ext4_write_inode()
ac27a0ec
DK
5146 *
5147 * We are called from a few places:
5148 *
87f7e416 5149 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5150 * Here, there will be no transaction running. We wait for any running
4907cb7b 5151 * transaction to commit.
ac27a0ec 5152 *
87f7e416
TT
5153 * - Within flush work (sys_sync(), kupdate and such).
5154 * We wait on commit, if told to.
ac27a0ec 5155 *
87f7e416
TT
5156 * - Within iput_final() -> write_inode_now()
5157 * We wait on commit, if told to.
ac27a0ec
DK
5158 *
5159 * In all cases it is actually safe for us to return without doing anything,
5160 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5161 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5162 * writeback.
ac27a0ec
DK
5163 *
5164 * Note that we are absolutely dependent upon all inode dirtiers doing the
5165 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5166 * which we are interested.
5167 *
5168 * It would be a bug for them to not do this. The code:
5169 *
5170 * mark_inode_dirty(inode)
5171 * stuff();
5172 * inode->i_size = expr;
5173 *
87f7e416
TT
5174 * is in error because write_inode() could occur while `stuff()' is running,
5175 * and the new i_size will be lost. Plus the inode will no longer be on the
5176 * superblock's dirty inode list.
ac27a0ec 5177 */
a9185b41 5178int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5179{
91ac6f43
FM
5180 int err;
5181
87f7e416 5182 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5183 return 0;
5184
91ac6f43
FM
5185 if (EXT4_SB(inode->i_sb)->s_journal) {
5186 if (ext4_journal_current_handle()) {
5187 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5188 dump_stack();
5189 return -EIO;
5190 }
ac27a0ec 5191
10542c22
JK
5192 /*
5193 * No need to force transaction in WB_SYNC_NONE mode. Also
5194 * ext4_sync_fs() will force the commit after everything is
5195 * written.
5196 */
5197 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5198 return 0;
5199
5200 err = ext4_force_commit(inode->i_sb);
5201 } else {
5202 struct ext4_iloc iloc;
ac27a0ec 5203
8b472d73 5204 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5205 if (err)
5206 return err;
10542c22
JK
5207 /*
5208 * sync(2) will flush the whole buffer cache. No need to do
5209 * it here separately for each inode.
5210 */
5211 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5212 sync_dirty_buffer(iloc.bh);
5213 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5214 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5215 "IO error syncing inode");
830156c7
FM
5216 err = -EIO;
5217 }
fd2dd9fb 5218 brelse(iloc.bh);
91ac6f43
FM
5219 }
5220 return err;
ac27a0ec
DK
5221}
5222
53e87268
JK
5223/*
5224 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5225 * buffers that are attached to a page stradding i_size and are undergoing
5226 * commit. In that case we have to wait for commit to finish and try again.
5227 */
5228static void ext4_wait_for_tail_page_commit(struct inode *inode)
5229{
5230 struct page *page;
5231 unsigned offset;
5232 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5233 tid_t commit_tid = 0;
5234 int ret;
5235
09cbfeaf 5236 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5237 /*
5238 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5239 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5240 * blocksize case
5241 */
93407472 5242 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5243 return;
5244 while (1) {
5245 page = find_lock_page(inode->i_mapping,
09cbfeaf 5246 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5247 if (!page)
5248 return;
ca99fdd2 5249 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5250 PAGE_SIZE - offset);
53e87268 5251 unlock_page(page);
09cbfeaf 5252 put_page(page);
53e87268
JK
5253 if (ret != -EBUSY)
5254 return;
5255 commit_tid = 0;
5256 read_lock(&journal->j_state_lock);
5257 if (journal->j_committing_transaction)
5258 commit_tid = journal->j_committing_transaction->t_tid;
5259 read_unlock(&journal->j_state_lock);
5260 if (commit_tid)
5261 jbd2_log_wait_commit(journal, commit_tid);
5262 }
5263}
5264
ac27a0ec 5265/*
617ba13b 5266 * ext4_setattr()
ac27a0ec
DK
5267 *
5268 * Called from notify_change.
5269 *
5270 * We want to trap VFS attempts to truncate the file as soon as
5271 * possible. In particular, we want to make sure that when the VFS
5272 * shrinks i_size, we put the inode on the orphan list and modify
5273 * i_disksize immediately, so that during the subsequent flushing of
5274 * dirty pages and freeing of disk blocks, we can guarantee that any
5275 * commit will leave the blocks being flushed in an unused state on
5276 * disk. (On recovery, the inode will get truncated and the blocks will
5277 * be freed, so we have a strong guarantee that no future commit will
5278 * leave these blocks visible to the user.)
5279 *
678aaf48
JK
5280 * Another thing we have to assure is that if we are in ordered mode
5281 * and inode is still attached to the committing transaction, we must
5282 * we start writeout of all the dirty pages which are being truncated.
5283 * This way we are sure that all the data written in the previous
5284 * transaction are already on disk (truncate waits for pages under
5285 * writeback).
5286 *
5287 * Called with inode->i_mutex down.
ac27a0ec 5288 */
617ba13b 5289int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5290{
2b0143b5 5291 struct inode *inode = d_inode(dentry);
ac27a0ec 5292 int error, rc = 0;
3d287de3 5293 int orphan = 0;
ac27a0ec
DK
5294 const unsigned int ia_valid = attr->ia_valid;
5295
0db1ff22
TT
5296 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5297 return -EIO;
5298
31051c85 5299 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5300 if (error)
5301 return error;
5302
a7cdadee
JK
5303 if (is_quota_modification(inode, attr)) {
5304 error = dquot_initialize(inode);
5305 if (error)
5306 return error;
5307 }
08cefc7a
EB
5308 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5309 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5310 handle_t *handle;
5311
5312 /* (user+group)*(old+new) structure, inode write (sb,
5313 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5314 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5315 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5316 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5317 if (IS_ERR(handle)) {
5318 error = PTR_ERR(handle);
5319 goto err_out;
5320 }
b43fa828 5321 error = dquot_transfer(inode, attr);
ac27a0ec 5322 if (error) {
617ba13b 5323 ext4_journal_stop(handle);
ac27a0ec
DK
5324 return error;
5325 }
5326 /* Update corresponding info in inode so that everything is in
5327 * one transaction */
5328 if (attr->ia_valid & ATTR_UID)
5329 inode->i_uid = attr->ia_uid;
5330 if (attr->ia_valid & ATTR_GID)
5331 inode->i_gid = attr->ia_gid;
617ba13b
MC
5332 error = ext4_mark_inode_dirty(handle, inode);
5333 ext4_journal_stop(handle);
ac27a0ec
DK
5334 }
5335
3da40c7b 5336 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5337 handle_t *handle;
3da40c7b
JB
5338 loff_t oldsize = inode->i_size;
5339 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5340
12e9b892 5341 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5343
0c095c7f
TT
5344 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5345 return -EFBIG;
e2b46574 5346 }
3da40c7b
JB
5347 if (!S_ISREG(inode->i_mode))
5348 return -EINVAL;
dff6efc3
CH
5349
5350 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5351 inode_inc_iversion(inode);
5352
3da40c7b 5353 if (ext4_should_order_data(inode) &&
5208386c 5354 (attr->ia_size < inode->i_size)) {
3da40c7b 5355 error = ext4_begin_ordered_truncate(inode,
678aaf48 5356 attr->ia_size);
3da40c7b
JB
5357 if (error)
5358 goto err_out;
5359 }
5360 if (attr->ia_size != inode->i_size) {
5208386c
JK
5361 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5362 if (IS_ERR(handle)) {
5363 error = PTR_ERR(handle);
5364 goto err_out;
5365 }
3da40c7b 5366 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5367 error = ext4_orphan_add(handle, inode);
5368 orphan = 1;
5369 }
911af577
EG
5370 /*
5371 * Update c/mtime on truncate up, ext4_truncate() will
5372 * update c/mtime in shrink case below
5373 */
5374 if (!shrink) {
eeca7ea1 5375 inode->i_mtime = current_time(inode);
911af577
EG
5376 inode->i_ctime = inode->i_mtime;
5377 }
90e775b7 5378 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5379 EXT4_I(inode)->i_disksize = attr->ia_size;
5380 rc = ext4_mark_inode_dirty(handle, inode);
5381 if (!error)
5382 error = rc;
90e775b7
JK
5383 /*
5384 * We have to update i_size under i_data_sem together
5385 * with i_disksize to avoid races with writeback code
5386 * running ext4_wb_update_i_disksize().
5387 */
5388 if (!error)
5389 i_size_write(inode, attr->ia_size);
5390 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5391 ext4_journal_stop(handle);
5392 if (error) {
3da40c7b
JB
5393 if (orphan)
5394 ext4_orphan_del(NULL, inode);
678aaf48
JK
5395 goto err_out;
5396 }
d6320cbf 5397 }
3da40c7b
JB
5398 if (!shrink)
5399 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5400
5208386c
JK
5401 /*
5402 * Blocks are going to be removed from the inode. Wait
5403 * for dio in flight. Temporarily disable
5404 * dioread_nolock to prevent livelock.
5405 */
5406 if (orphan) {
5407 if (!ext4_should_journal_data(inode)) {
5408 ext4_inode_block_unlocked_dio(inode);
5409 inode_dio_wait(inode);
5410 ext4_inode_resume_unlocked_dio(inode);
5411 } else
5412 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5413 }
ea3d7209 5414 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5415 /*
5416 * Truncate pagecache after we've waited for commit
5417 * in data=journal mode to make pages freeable.
5418 */
923ae0ff 5419 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5420 if (shrink) {
5421 rc = ext4_truncate(inode);
5422 if (rc)
5423 error = rc;
5424 }
ea3d7209 5425 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5426 }
ac27a0ec 5427
2c98eb5e 5428 if (!error) {
1025774c
CH
5429 setattr_copy(inode, attr);
5430 mark_inode_dirty(inode);
5431 }
5432
5433 /*
5434 * If the call to ext4_truncate failed to get a transaction handle at
5435 * all, we need to clean up the in-core orphan list manually.
5436 */
3d287de3 5437 if (orphan && inode->i_nlink)
617ba13b 5438 ext4_orphan_del(NULL, inode);
ac27a0ec 5439
2c98eb5e 5440 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5441 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5442
5443err_out:
617ba13b 5444 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5445 if (!error)
5446 error = rc;
5447 return error;
5448}
5449
a528d35e
DH
5450int ext4_getattr(const struct path *path, struct kstat *stat,
5451 u32 request_mask, unsigned int query_flags)
3e3398a0 5452{
99652ea5
DH
5453 struct inode *inode = d_inode(path->dentry);
5454 struct ext4_inode *raw_inode;
5455 struct ext4_inode_info *ei = EXT4_I(inode);
5456 unsigned int flags;
5457
5458 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5459 stat->result_mask |= STATX_BTIME;
5460 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5461 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5462 }
5463
5464 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5465 if (flags & EXT4_APPEND_FL)
5466 stat->attributes |= STATX_ATTR_APPEND;
5467 if (flags & EXT4_COMPR_FL)
5468 stat->attributes |= STATX_ATTR_COMPRESSED;
5469 if (flags & EXT4_ENCRYPT_FL)
5470 stat->attributes |= STATX_ATTR_ENCRYPTED;
5471 if (flags & EXT4_IMMUTABLE_FL)
5472 stat->attributes |= STATX_ATTR_IMMUTABLE;
5473 if (flags & EXT4_NODUMP_FL)
5474 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5475
3209f68b
DH
5476 stat->attributes_mask |= (STATX_ATTR_APPEND |
5477 STATX_ATTR_COMPRESSED |
5478 STATX_ATTR_ENCRYPTED |
5479 STATX_ATTR_IMMUTABLE |
5480 STATX_ATTR_NODUMP);
5481
3e3398a0 5482 generic_fillattr(inode, stat);
99652ea5
DH
5483 return 0;
5484}
5485
5486int ext4_file_getattr(const struct path *path, struct kstat *stat,
5487 u32 request_mask, unsigned int query_flags)
5488{
5489 struct inode *inode = d_inode(path->dentry);
5490 u64 delalloc_blocks;
5491
5492 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5493
9206c561
AD
5494 /*
5495 * If there is inline data in the inode, the inode will normally not
5496 * have data blocks allocated (it may have an external xattr block).
5497 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5498 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5499 */
5500 if (unlikely(ext4_has_inline_data(inode)))
5501 stat->blocks += (stat->size + 511) >> 9;
5502
3e3398a0
MC
5503 /*
5504 * We can't update i_blocks if the block allocation is delayed
5505 * otherwise in the case of system crash before the real block
5506 * allocation is done, we will have i_blocks inconsistent with
5507 * on-disk file blocks.
5508 * We always keep i_blocks updated together with real
5509 * allocation. But to not confuse with user, stat
5510 * will return the blocks that include the delayed allocation
5511 * blocks for this file.
5512 */
96607551 5513 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5514 EXT4_I(inode)->i_reserved_data_blocks);
5515 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5516 return 0;
5517}
ac27a0ec 5518
fffb2739
JK
5519static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5520 int pextents)
a02908f1 5521{
12e9b892 5522 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5523 return ext4_ind_trans_blocks(inode, lblocks);
5524 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5525}
ac51d837 5526
ac27a0ec 5527/*
a02908f1
MC
5528 * Account for index blocks, block groups bitmaps and block group
5529 * descriptor blocks if modify datablocks and index blocks
5530 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5531 *
a02908f1 5532 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5533 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5534 * they could still across block group boundary.
ac27a0ec 5535 *
a02908f1
MC
5536 * Also account for superblock, inode, quota and xattr blocks
5537 */
e50e5129 5538int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5539 int pextents)
a02908f1 5540{
8df9675f
TT
5541 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5542 int gdpblocks;
a02908f1
MC
5543 int idxblocks;
5544 int ret = 0;
5545
5546 /*
fffb2739
JK
5547 * How many index blocks need to touch to map @lblocks logical blocks
5548 * to @pextents physical extents?
a02908f1 5549 */
fffb2739 5550 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5551
5552 ret = idxblocks;
5553
5554 /*
5555 * Now let's see how many group bitmaps and group descriptors need
5556 * to account
5557 */
fffb2739 5558 groups = idxblocks + pextents;
a02908f1 5559 gdpblocks = groups;
8df9675f
TT
5560 if (groups > ngroups)
5561 groups = ngroups;
a02908f1
MC
5562 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5563 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5564
5565 /* bitmaps and block group descriptor blocks */
5566 ret += groups + gdpblocks;
5567
5568 /* Blocks for super block, inode, quota and xattr blocks */
5569 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5570
5571 return ret;
5572}
5573
5574/*
25985edc 5575 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5576 * the modification of a single pages into a single transaction,
5577 * which may include multiple chunks of block allocations.
ac27a0ec 5578 *
525f4ed8 5579 * This could be called via ext4_write_begin()
ac27a0ec 5580 *
525f4ed8 5581 * We need to consider the worse case, when
a02908f1 5582 * one new block per extent.
ac27a0ec 5583 */
a86c6181 5584int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5585{
617ba13b 5586 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5587 int ret;
5588
fffb2739 5589 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5590
a02908f1 5591 /* Account for data blocks for journalled mode */
617ba13b 5592 if (ext4_should_journal_data(inode))
a02908f1 5593 ret += bpp;
ac27a0ec
DK
5594 return ret;
5595}
f3bd1f3f
MC
5596
5597/*
5598 * Calculate the journal credits for a chunk of data modification.
5599 *
5600 * This is called from DIO, fallocate or whoever calling
79e83036 5601 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5602 *
5603 * journal buffers for data blocks are not included here, as DIO
5604 * and fallocate do no need to journal data buffers.
5605 */
5606int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5607{
5608 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5609}
5610
ac27a0ec 5611/*
617ba13b 5612 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5613 * Give this, we know that the caller already has write access to iloc->bh.
5614 */
617ba13b 5615int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5616 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5617{
5618 int err = 0;
5619
0db1ff22
TT
5620 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5621 return -EIO;
5622
c64db50e 5623 if (IS_I_VERSION(inode))
25ec56b5
JNC
5624 inode_inc_iversion(inode);
5625
ac27a0ec
DK
5626 /* the do_update_inode consumes one bh->b_count */
5627 get_bh(iloc->bh);
5628
dab291af 5629 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5630 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5631 put_bh(iloc->bh);
5632 return err;
5633}
5634
5635/*
5636 * On success, We end up with an outstanding reference count against
5637 * iloc->bh. This _must_ be cleaned up later.
5638 */
5639
5640int
617ba13b
MC
5641ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5642 struct ext4_iloc *iloc)
ac27a0ec 5643{
0390131b
FM
5644 int err;
5645
0db1ff22
TT
5646 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5647 return -EIO;
5648
0390131b
FM
5649 err = ext4_get_inode_loc(inode, iloc);
5650 if (!err) {
5651 BUFFER_TRACE(iloc->bh, "get_write_access");
5652 err = ext4_journal_get_write_access(handle, iloc->bh);
5653 if (err) {
5654 brelse(iloc->bh);
5655 iloc->bh = NULL;
ac27a0ec
DK
5656 }
5657 }
617ba13b 5658 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5659 return err;
5660}
5661
6dd4ee7c
KS
5662/*
5663 * Expand an inode by new_extra_isize bytes.
5664 * Returns 0 on success or negative error number on failure.
5665 */
1d03ec98
AK
5666static int ext4_expand_extra_isize(struct inode *inode,
5667 unsigned int new_extra_isize,
5668 struct ext4_iloc iloc,
5669 handle_t *handle)
6dd4ee7c
KS
5670{
5671 struct ext4_inode *raw_inode;
5672 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5673
5674 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5675 return 0;
5676
5677 raw_inode = ext4_raw_inode(&iloc);
5678
5679 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5680
5681 /* No extended attributes present */
19f5fb7a
TT
5682 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5683 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
887a9730
KK
5684 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5685 EXT4_I(inode)->i_extra_isize, 0,
5686 new_extra_isize - EXT4_I(inode)->i_extra_isize);
6dd4ee7c
KS
5687 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5688 return 0;
5689 }
5690
5691 /* try to expand with EAs present */
5692 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5693 raw_inode, handle);
5694}
5695
ac27a0ec
DK
5696/*
5697 * What we do here is to mark the in-core inode as clean with respect to inode
5698 * dirtiness (it may still be data-dirty).
5699 * This means that the in-core inode may be reaped by prune_icache
5700 * without having to perform any I/O. This is a very good thing,
5701 * because *any* task may call prune_icache - even ones which
5702 * have a transaction open against a different journal.
5703 *
5704 * Is this cheating? Not really. Sure, we haven't written the
5705 * inode out, but prune_icache isn't a user-visible syncing function.
5706 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5707 * we start and wait on commits.
ac27a0ec 5708 */
617ba13b 5709int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5710{
617ba13b 5711 struct ext4_iloc iloc;
6dd4ee7c
KS
5712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5713 static unsigned int mnt_count;
5714 int err, ret;
ac27a0ec
DK
5715
5716 might_sleep();
7ff9c073 5717 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5718 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5719 if (err)
5720 return err;
88e03877 5721 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5722 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c 5723 /*
88e03877
EW
5724 * In nojournal mode, we can immediately attempt to expand
5725 * the inode. When journaled, we first need to obtain extra
5726 * buffer credits since we may write into the EA block
6dd4ee7c
KS
5727 * with this same handle. If journal_extend fails, then it will
5728 * only result in a minor loss of functionality for that inode.
5729 * If this is felt to be critical, then e2fsck should be run to
5730 * force a large enough s_min_extra_isize.
5731 */
88e03877
EW
5732 if (!ext4_handle_valid(handle) ||
5733 jbd2_journal_extend(handle,
5734 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
6dd4ee7c
KS
5735 ret = ext4_expand_extra_isize(inode,
5736 sbi->s_want_extra_isize,
5737 iloc, handle);
5738 if (ret) {
c1bddad9
AK
5739 if (mnt_count !=
5740 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5741 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5742 "Unable to expand inode %lu. Delete"
5743 " some EAs or run e2fsck.",
5744 inode->i_ino);
c1bddad9
AK
5745 mnt_count =
5746 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5747 }
5748 }
5749 }
5750 }
5e1021f2 5751 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5752}
5753
5754/*
617ba13b 5755 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5756 *
5757 * We're really interested in the case where a file is being extended.
5758 * i_size has been changed by generic_commit_write() and we thus need
5759 * to include the updated inode in the current transaction.
5760 *
5dd4056d 5761 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5762 * are allocated to the file.
5763 *
5764 * If the inode is marked synchronous, we don't honour that here - doing
5765 * so would cause a commit on atime updates, which we don't bother doing.
5766 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5767 *
5768 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5769 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5770 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5771 */
aa385729 5772void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5773{
ac27a0ec
DK
5774 handle_t *handle;
5775
0ae45f63
TT
5776 if (flags == I_DIRTY_TIME)
5777 return;
9924a92a 5778 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5779 if (IS_ERR(handle))
5780 goto out;
f3dc272f 5781
f3dc272f
CW
5782 ext4_mark_inode_dirty(handle, inode);
5783
617ba13b 5784 ext4_journal_stop(handle);
ac27a0ec
DK
5785out:
5786 return;
5787}
5788
5789#if 0
5790/*
5791 * Bind an inode's backing buffer_head into this transaction, to prevent
5792 * it from being flushed to disk early. Unlike
617ba13b 5793 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5794 * returns no iloc structure, so the caller needs to repeat the iloc
5795 * lookup to mark the inode dirty later.
5796 */
617ba13b 5797static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5798{
617ba13b 5799 struct ext4_iloc iloc;
ac27a0ec
DK
5800
5801 int err = 0;
5802 if (handle) {
617ba13b 5803 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5804 if (!err) {
5805 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5806 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5807 if (!err)
0390131b 5808 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5809 NULL,
0390131b 5810 iloc.bh);
ac27a0ec
DK
5811 brelse(iloc.bh);
5812 }
5813 }
617ba13b 5814 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5815 return err;
5816}
5817#endif
5818
617ba13b 5819int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5820{
5821 journal_t *journal;
5822 handle_t *handle;
5823 int err;
c8585c6f 5824 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5825
5826 /*
5827 * We have to be very careful here: changing a data block's
5828 * journaling status dynamically is dangerous. If we write a
5829 * data block to the journal, change the status and then delete
5830 * that block, we risk forgetting to revoke the old log record
5831 * from the journal and so a subsequent replay can corrupt data.
5832 * So, first we make sure that the journal is empty and that
5833 * nobody is changing anything.
5834 */
5835
617ba13b 5836 journal = EXT4_JOURNAL(inode);
0390131b
FM
5837 if (!journal)
5838 return 0;
d699594d 5839 if (is_journal_aborted(journal))
ac27a0ec
DK
5840 return -EROFS;
5841
17335dcc
DM
5842 /* Wait for all existing dio workers */
5843 ext4_inode_block_unlocked_dio(inode);
5844 inode_dio_wait(inode);
5845
4c546592
DJ
5846 /*
5847 * Before flushing the journal and switching inode's aops, we have
5848 * to flush all dirty data the inode has. There can be outstanding
5849 * delayed allocations, there can be unwritten extents created by
5850 * fallocate or buffered writes in dioread_nolock mode covered by
5851 * dirty data which can be converted only after flushing the dirty
5852 * data (and journalled aops don't know how to handle these cases).
5853 */
5854 if (val) {
5855 down_write(&EXT4_I(inode)->i_mmap_sem);
5856 err = filemap_write_and_wait(inode->i_mapping);
5857 if (err < 0) {
5858 up_write(&EXT4_I(inode)->i_mmap_sem);
5859 ext4_inode_resume_unlocked_dio(inode);
5860 return err;
5861 }
5862 }
5863
c8585c6f 5864 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5865 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5866
5867 /*
5868 * OK, there are no updates running now, and all cached data is
5869 * synced to disk. We are now in a completely consistent state
5870 * which doesn't have anything in the journal, and we know that
5871 * no filesystem updates are running, so it is safe to modify
5872 * the inode's in-core data-journaling state flag now.
5873 */
5874
5875 if (val)
12e9b892 5876 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5877 else {
4f879ca6
JK
5878 err = jbd2_journal_flush(journal);
5879 if (err < 0) {
5880 jbd2_journal_unlock_updates(journal);
c8585c6f 5881 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5882 ext4_inode_resume_unlocked_dio(inode);
5883 return err;
5884 }
12e9b892 5885 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5886 }
617ba13b 5887 ext4_set_aops(inode);
a3caa24b
JK
5888 /*
5889 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5890 * E.g. S_DAX may get cleared / set.
5891 */
5892 ext4_set_inode_flags(inode);
ac27a0ec 5893
dab291af 5894 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5895 percpu_up_write(&sbi->s_journal_flag_rwsem);
5896
4c546592
DJ
5897 if (val)
5898 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5899 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5900
5901 /* Finally we can mark the inode as dirty. */
5902
9924a92a 5903 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5904 if (IS_ERR(handle))
5905 return PTR_ERR(handle);
5906
617ba13b 5907 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5908 ext4_handle_sync(handle);
617ba13b
MC
5909 ext4_journal_stop(handle);
5910 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5911
5912 return err;
5913}
2e9ee850
AK
5914
5915static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5916{
5917 return !buffer_mapped(bh);
5918}
5919
11bac800 5920int ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 5921{
11bac800 5922 struct vm_area_struct *vma = vmf->vma;
c2ec175c 5923 struct page *page = vmf->page;
2e9ee850
AK
5924 loff_t size;
5925 unsigned long len;
9ea7df53 5926 int ret;
2e9ee850 5927 struct file *file = vma->vm_file;
496ad9aa 5928 struct inode *inode = file_inode(file);
2e9ee850 5929 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5930 handle_t *handle;
5931 get_block_t *get_block;
5932 int retries = 0;
2e9ee850 5933
8e8ad8a5 5934 sb_start_pagefault(inode->i_sb);
041bbb6d 5935 file_update_time(vma->vm_file);
ea3d7209
JK
5936
5937 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978
EB
5938
5939 ret = ext4_convert_inline_data(inode);
5940 if (ret)
5941 goto out_ret;
5942
9ea7df53
JK
5943 /* Delalloc case is easy... */
5944 if (test_opt(inode->i_sb, DELALLOC) &&
5945 !ext4_should_journal_data(inode) &&
5946 !ext4_nonda_switch(inode->i_sb)) {
5947 do {
5c500029 5948 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5949 ext4_da_get_block_prep);
5950 } while (ret == -ENOSPC &&
5951 ext4_should_retry_alloc(inode->i_sb, &retries));
5952 goto out_ret;
2e9ee850 5953 }
0e499890
DW
5954
5955 lock_page(page);
9ea7df53
JK
5956 size = i_size_read(inode);
5957 /* Page got truncated from under us? */
5958 if (page->mapping != mapping || page_offset(page) > size) {
5959 unlock_page(page);
5960 ret = VM_FAULT_NOPAGE;
5961 goto out;
0e499890 5962 }
2e9ee850 5963
09cbfeaf
KS
5964 if (page->index == size >> PAGE_SHIFT)
5965 len = size & ~PAGE_MASK;
2e9ee850 5966 else
09cbfeaf 5967 len = PAGE_SIZE;
a827eaff 5968 /*
9ea7df53
JK
5969 * Return if we have all the buffers mapped. This avoids the need to do
5970 * journal_start/journal_stop which can block and take a long time
a827eaff 5971 */
2e9ee850 5972 if (page_has_buffers(page)) {
f19d5870
TM
5973 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5974 0, len, NULL,
5975 ext4_bh_unmapped)) {
9ea7df53 5976 /* Wait so that we don't change page under IO */
1d1d1a76 5977 wait_for_stable_page(page);
9ea7df53
JK
5978 ret = VM_FAULT_LOCKED;
5979 goto out;
a827eaff 5980 }
2e9ee850 5981 }
a827eaff 5982 unlock_page(page);
9ea7df53
JK
5983 /* OK, we need to fill the hole... */
5984 if (ext4_should_dioread_nolock(inode))
705965bd 5985 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5986 else
5987 get_block = ext4_get_block;
5988retry_alloc:
9924a92a
TT
5989 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5990 ext4_writepage_trans_blocks(inode));
9ea7df53 5991 if (IS_ERR(handle)) {
c2ec175c 5992 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5993 goto out;
5994 }
5c500029 5995 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5996 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5997 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5998 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5999 unlock_page(page);
6000 ret = VM_FAULT_SIGBUS;
fcbb5515 6001 ext4_journal_stop(handle);
9ea7df53
JK
6002 goto out;
6003 }
6004 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6005 }
6006 ext4_journal_stop(handle);
6007 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6008 goto retry_alloc;
6009out_ret:
6010 ret = block_page_mkwrite_return(ret);
6011out:
ea3d7209 6012 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6013 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
6014 return ret;
6015}
ea3d7209 6016
11bac800 6017int ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6018{
11bac800 6019 struct inode *inode = file_inode(vmf->vma->vm_file);
ea3d7209
JK
6020 int err;
6021
6022 down_read(&EXT4_I(inode)->i_mmap_sem);
11bac800 6023 err = filemap_fault(vmf);
ea3d7209
JK
6024 up_read(&EXT4_I(inode)->i_mmap_sem);
6025
6026 return err;
6027}
2d90c160
JK
6028
6029/*
6030 * Find the first extent at or after @lblk in an inode that is not a hole.
6031 * Search for @map_len blocks at most. The extent is returned in @result.
6032 *
6033 * The function returns 1 if we found an extent. The function returns 0 in
6034 * case there is no extent at or after @lblk and in that case also sets
6035 * @result->es_len to 0. In case of error, the error code is returned.
6036 */
6037int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6038 unsigned int map_len, struct extent_status *result)
6039{
6040 struct ext4_map_blocks map;
6041 struct extent_status es = {};
6042 int ret;
6043
6044 map.m_lblk = lblk;
6045 map.m_len = map_len;
6046
6047 /*
6048 * For non-extent based files this loop may iterate several times since
6049 * we do not determine full hole size.
6050 */
6051 while (map.m_len > 0) {
6052 ret = ext4_map_blocks(NULL, inode, &map, 0);
6053 if (ret < 0)
6054 return ret;
6055 /* There's extent covering m_lblk? Just return it. */
6056 if (ret > 0) {
6057 int status;
6058
6059 ext4_es_store_pblock(result, map.m_pblk);
6060 result->es_lblk = map.m_lblk;
6061 result->es_len = map.m_len;
6062 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6063 status = EXTENT_STATUS_UNWRITTEN;
6064 else
6065 status = EXTENT_STATUS_WRITTEN;
6066 ext4_es_store_status(result, status);
6067 return 1;
6068 }
6069 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6070 map.m_lblk + map.m_len - 1,
6071 &es);
6072 /* Is delalloc data before next block in extent tree? */
6073 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6074 ext4_lblk_t offset = 0;
6075
6076 if (es.es_lblk < lblk)
6077 offset = lblk - es.es_lblk;
6078 result->es_lblk = es.es_lblk + offset;
6079 ext4_es_store_pblock(result,
6080 ext4_es_pblock(&es) + offset);
6081 result->es_len = es.es_len - offset;
6082 ext4_es_store_status(result, ext4_es_status(&es));
6083
6084 return 1;
6085 }
6086 /* There's a hole at m_lblk, advance us after it */
6087 map.m_lblk += map.m_len;
6088 map_len -= map.m_len;
6089 map.m_len = map_len;
6090 cond_resched();
6091 }
6092 result->es_len = 0;
6093 return 0;
6094}