]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: convert ext4_dx_find_entry() to use the ERR_PTR convention
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 150
bd9db175
ZL
151 if (ext4_has_inline_data(inode))
152 return 0;
153
ac27a0ec
DK
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155}
156
ac27a0ec
DK
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 175 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 176 ret = ext4_journal_restart(handle, nblocks);
487caeef 177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
2581fdc8 192
0930fcc1 193 if (inode->i_nlink) {
2d859db3
JK
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
d76a3a77 218 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
219 filemap_write_and_wait(&inode->i_data);
220 }
91b0abe3 221 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
222
223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
224 goto no_delete;
225 }
226
907f4554 227 if (!is_bad_inode(inode))
871a2931 228 dquot_initialize(inode);
907f4554 229
678aaf48
JK
230 if (ext4_should_order_data(inode))
231 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 232 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 233
5dc23bdd 234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
235 if (is_bad_inode(inode))
236 goto no_delete;
237
8e8ad8a5
JK
238 /*
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
241 */
242 sb_start_intwrite(inode->i_sb);
9924a92a
TT
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 245 if (IS_ERR(handle)) {
bc965ab3 246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
247 /*
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
250 * cleaned up.
251 */
617ba13b 252 ext4_orphan_del(NULL, inode);
8e8ad8a5 253 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
254 goto no_delete;
255 }
256
257 if (IS_SYNC(inode))
0390131b 258 ext4_handle_sync(handle);
ac27a0ec 259 inode->i_size = 0;
bc965ab3
TT
260 err = ext4_mark_inode_dirty(handle, inode);
261 if (err) {
12062ddd 262 ext4_warning(inode->i_sb,
bc965ab3
TT
263 "couldn't mark inode dirty (err %d)", err);
264 goto stop_handle;
265 }
ac27a0ec 266 if (inode->i_blocks)
617ba13b 267 ext4_truncate(inode);
bc965ab3
TT
268
269 /*
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
274 */
0390131b 275 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
276 err = ext4_journal_extend(handle, 3);
277 if (err > 0)
278 err = ext4_journal_restart(handle, 3);
279 if (err != 0) {
12062ddd 280 ext4_warning(inode->i_sb,
bc965ab3
TT
281 "couldn't extend journal (err %d)", err);
282 stop_handle:
283 ext4_journal_stop(handle);
45388219 284 ext4_orphan_del(NULL, inode);
8e8ad8a5 285 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
286 goto no_delete;
287 }
288 }
289
ac27a0ec 290 /*
617ba13b 291 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 292 * AKPM: I think this can be inside the above `if'.
617ba13b 293 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 294 * deletion of a non-existent orphan - this is because we don't
617ba13b 295 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
296 * (Well, we could do this if we need to, but heck - it works)
297 */
617ba13b
MC
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
300
301 /*
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
306 * fails.
307 */
617ba13b 308 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 309 /* If that failed, just do the required in-core inode clear. */
0930fcc1 310 ext4_clear_inode(inode);
ac27a0ec 311 else
617ba13b
MC
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
8e8ad8a5 314 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
315 return;
316no_delete:
0930fcc1 317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
318}
319
a9e7f447
DM
320#ifdef CONFIG_QUOTA
321qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 322{
a9e7f447 323 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 324}
a9e7f447 325#endif
9d0be502 326
0637c6f4
TT
327/*
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
330 */
5f634d06
AK
331void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
12219aea
AK
333{
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 335 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
336
337 spin_lock(&ei->i_block_reservation_lock);
d8990240 338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 339 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 341 "with only %d reserved data blocks",
0637c6f4
TT
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
344 WARN_ON(1);
345 used = ei->i_reserved_data_blocks;
346 }
12219aea 347
0637c6f4
TT
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
71d4f7d0 350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 351
12219aea 352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 353
72b8ab9d
ES
354 /* Update quota subsystem for data blocks */
355 if (quota_claim)
7b415bf6 356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 357 else {
5f634d06
AK
358 /*
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
72b8ab9d 361 * not re-claim the quota for fallocated blocks.
5f634d06 362 */
7b415bf6 363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 364 }
d6014301
AK
365
366 /*
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
370 */
0637c6f4
TT
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
d6014301 373 ext4_discard_preallocations(inode);
12219aea
AK
374}
375
e29136f8 376static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
377 unsigned int line,
378 struct ext4_map_blocks *map)
6fd058f7 379{
24676da4
TT
380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 map->m_len)) {
c398eda0
TT
382 ext4_error_inode(inode, func, line, map->m_pblk,
383 "lblock %lu mapped to illegal pblock "
384 "(length %d)", (unsigned long) map->m_lblk,
385 map->m_len);
6fd058f7
TT
386 return -EIO;
387 }
388 return 0;
389}
390
e29136f8 391#define check_block_validity(inode, map) \
c398eda0 392 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 393
921f266b
DM
394#ifdef ES_AGGRESSIVE_TEST
395static void ext4_map_blocks_es_recheck(handle_t *handle,
396 struct inode *inode,
397 struct ext4_map_blocks *es_map,
398 struct ext4_map_blocks *map,
399 int flags)
400{
401 int retval;
402
403 map->m_flags = 0;
404 /*
405 * There is a race window that the result is not the same.
406 * e.g. xfstests #223 when dioread_nolock enables. The reason
407 * is that we lookup a block mapping in extent status tree with
408 * out taking i_data_sem. So at the time the unwritten extent
409 * could be converted.
410 */
411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 412 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 } else {
417 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 EXT4_GET_BLOCKS_KEEP_SIZE);
419 }
420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 up_read((&EXT4_I(inode)->i_data_sem));
422 /*
423 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424 * because it shouldn't be marked in es_map->m_flags.
425 */
426 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
bdafe42a 435 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443}
444#endif /* ES_AGGRESSIVE_TEST */
445
f5ab0d1f 446/*
e35fd660 447 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 448 * and returns if the blocks are already mapped.
f5ab0d1f 449 *
f5ab0d1f
MC
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
e35fd660
TT
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
456 * based files
457 *
556615dc
LC
458 * On success, it returns the number of blocks being mapped or allocated.
459 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
460 * the result buffer head is unmapped. If the create ==1, it will make sure
461 * the buffer head is mapped.
462 *
463 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 464 * that case, buffer head is unmapped
f5ab0d1f
MC
465 *
466 * It returns the error in case of allocation failure.
467 */
e35fd660
TT
468int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
0e855ac8 470{
d100eef2 471 struct extent_status es;
0e855ac8 472 int retval;
b8a86845 473 int ret = 0;
921f266b
DM
474#ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478#endif
f5ab0d1f 479
e35fd660
TT
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
d100eef2 484
e861b5e9
TT
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
4adb6ab3
KM
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EIO;
494
d100eef2
ZL
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 497 ext4_es_lru_add(inode);
d100eef2
ZL
498 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499 map->m_pblk = ext4_es_pblock(&es) +
500 map->m_lblk - es.es_lblk;
501 map->m_flags |= ext4_es_is_written(&es) ?
502 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503 retval = es.es_len - (map->m_lblk - es.es_lblk);
504 if (retval > map->m_len)
505 retval = map->m_len;
506 map->m_len = retval;
507 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508 retval = 0;
509 } else {
510 BUG_ON(1);
511 }
921f266b
DM
512#ifdef ES_AGGRESSIVE_TEST
513 ext4_map_blocks_es_recheck(handle, inode, map,
514 &orig_map, flags);
515#endif
d100eef2
ZL
516 goto found;
517 }
518
4df3d265 519 /*
b920c755
TT
520 * Try to see if we can get the block without requesting a new
521 * file system block.
4df3d265 522 */
729f52c6 523 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 524 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
526 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 528 } else {
a4e5d88b
DM
529 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 531 }
f7fec032 532 if (retval > 0) {
3be78c73 533 unsigned int status;
f7fec032 534
44fb851d
ZL
535 if (unlikely(retval != map->m_len)) {
536 ext4_warning(inode->i_sb,
537 "ES len assertion failed for inode "
538 "%lu: retval %d != map->m_len %d",
539 inode->i_ino, retval, map->m_len);
540 WARN_ON(1);
921f266b 541 }
921f266b 542
f7fec032
ZL
543 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546 ext4_find_delalloc_range(inode, map->m_lblk,
547 map->m_lblk + map->m_len - 1))
548 status |= EXTENT_STATUS_DELAYED;
549 ret = ext4_es_insert_extent(inode, map->m_lblk,
550 map->m_len, map->m_pblk, status);
551 if (ret < 0)
552 retval = ret;
553 }
729f52c6
ZL
554 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 556
d100eef2 557found:
e35fd660 558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 559 ret = check_block_validity(inode, map);
6fd058f7
TT
560 if (ret != 0)
561 return ret;
562 }
563
f5ab0d1f 564 /* If it is only a block(s) look up */
c2177057 565 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
566 return retval;
567
568 /*
569 * Returns if the blocks have already allocated
570 *
571 * Note that if blocks have been preallocated
df3ab170 572 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
573 * with buffer head unmapped.
574 */
e35fd660 575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
576 /*
577 * If we need to convert extent to unwritten
578 * we continue and do the actual work in
579 * ext4_ext_map_blocks()
580 */
581 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582 return retval;
4df3d265 583
2a8964d6 584 /*
a25a4e1a
ZL
585 * Here we clear m_flags because after allocating an new extent,
586 * it will be set again.
2a8964d6 587 */
a25a4e1a 588 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 589
4df3d265 590 /*
556615dc 591 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f
MC
592 * will possibly result in updating i_data, so we take
593 * the write lock of i_data_sem, and call get_blocks()
594 * with create == 1 flag.
4df3d265 595 */
c8b459f4 596 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637
MC
597
598 /*
599 * if the caller is from delayed allocation writeout path
600 * we have already reserved fs blocks for allocation
601 * let the underlying get_block() function know to
602 * avoid double accounting
603 */
c2177057 604 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 605 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
606 /*
607 * We need to check for EXT4 here because migrate
608 * could have changed the inode type in between
609 */
12e9b892 610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 611 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 612 } else {
e35fd660 613 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 614
e35fd660 615 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
616 /*
617 * We allocated new blocks which will result in
618 * i_data's format changing. Force the migrate
619 * to fail by clearing migrate flags
620 */
19f5fb7a 621 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 622 }
d2a17637 623
5f634d06
AK
624 /*
625 * Update reserved blocks/metadata blocks after successful
626 * block allocation which had been deferred till now. We don't
627 * support fallocate for non extent files. So we can update
628 * reserve space here.
629 */
630 if ((retval > 0) &&
1296cc85 631 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
632 ext4_da_update_reserve_space(inode, retval, 1);
633 }
f7fec032 634 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 635 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 636
f7fec032 637 if (retval > 0) {
3be78c73 638 unsigned int status;
f7fec032 639
44fb851d
ZL
640 if (unlikely(retval != map->m_len)) {
641 ext4_warning(inode->i_sb,
642 "ES len assertion failed for inode "
643 "%lu: retval %d != map->m_len %d",
644 inode->i_ino, retval, map->m_len);
645 WARN_ON(1);
921f266b 646 }
921f266b 647
adb23551
ZL
648 /*
649 * If the extent has been zeroed out, we don't need to update
650 * extent status tree.
651 */
652 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654 if (ext4_es_is_written(&es))
655 goto has_zeroout;
656 }
f7fec032
ZL
657 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660 ext4_find_delalloc_range(inode, map->m_lblk,
661 map->m_lblk + map->m_len - 1))
662 status |= EXTENT_STATUS_DELAYED;
663 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664 map->m_pblk, status);
665 if (ret < 0)
666 retval = ret;
5356f261
AK
667 }
668
adb23551 669has_zeroout:
4df3d265 670 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 671 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 672 ret = check_block_validity(inode, map);
6fd058f7
TT
673 if (ret != 0)
674 return ret;
675 }
0e855ac8
AK
676 return retval;
677}
678
f3bd1f3f
MC
679/* Maximum number of blocks we map for direct IO at once. */
680#define DIO_MAX_BLOCKS 4096
681
2ed88685
TT
682static int _ext4_get_block(struct inode *inode, sector_t iblock,
683 struct buffer_head *bh, int flags)
ac27a0ec 684{
3e4fdaf8 685 handle_t *handle = ext4_journal_current_handle();
2ed88685 686 struct ext4_map_blocks map;
7fb5409d 687 int ret = 0, started = 0;
f3bd1f3f 688 int dio_credits;
ac27a0ec 689
46c7f254
TM
690 if (ext4_has_inline_data(inode))
691 return -ERANGE;
692
2ed88685
TT
693 map.m_lblk = iblock;
694 map.m_len = bh->b_size >> inode->i_blkbits;
695
8b0f165f 696 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 697 /* Direct IO write... */
2ed88685
TT
698 if (map.m_len > DIO_MAX_BLOCKS)
699 map.m_len = DIO_MAX_BLOCKS;
700 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
701 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702 dio_credits);
7fb5409d 703 if (IS_ERR(handle)) {
ac27a0ec 704 ret = PTR_ERR(handle);
2ed88685 705 return ret;
ac27a0ec 706 }
7fb5409d 707 started = 1;
ac27a0ec
DK
708 }
709
2ed88685 710 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 711 if (ret > 0) {
7b7a8665
CH
712 ext4_io_end_t *io_end = ext4_inode_aio(inode);
713
2ed88685
TT
714 map_bh(bh, inode->i_sb, map.m_pblk);
715 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
716 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717 set_buffer_defer_completion(bh);
2ed88685 718 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 719 ret = 0;
ac27a0ec 720 }
7fb5409d
JK
721 if (started)
722 ext4_journal_stop(handle);
ac27a0ec
DK
723 return ret;
724}
725
2ed88685
TT
726int ext4_get_block(struct inode *inode, sector_t iblock,
727 struct buffer_head *bh, int create)
728{
729 return _ext4_get_block(inode, iblock, bh,
730 create ? EXT4_GET_BLOCKS_CREATE : 0);
731}
732
ac27a0ec
DK
733/*
734 * `handle' can be NULL if create is zero
735 */
617ba13b 736struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 737 ext4_lblk_t block, int create, int *errp)
ac27a0ec 738{
2ed88685
TT
739 struct ext4_map_blocks map;
740 struct buffer_head *bh;
ac27a0ec
DK
741 int fatal = 0, err;
742
743 J_ASSERT(handle != NULL || create == 0);
744
2ed88685
TT
745 map.m_lblk = block;
746 map.m_len = 1;
747 err = ext4_map_blocks(handle, inode, &map,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 749
90b0a973
CM
750 /* ensure we send some value back into *errp */
751 *errp = 0;
752
0f70b406
TT
753 if (create && err == 0)
754 err = -ENOSPC; /* should never happen */
2ed88685
TT
755 if (err < 0)
756 *errp = err;
757 if (err <= 0)
758 return NULL;
2ed88685
TT
759
760 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 761 if (unlikely(!bh)) {
860d21e2 762 *errp = -ENOMEM;
2ed88685 763 return NULL;
ac27a0ec 764 }
2ed88685
TT
765 if (map.m_flags & EXT4_MAP_NEW) {
766 J_ASSERT(create != 0);
767 J_ASSERT(handle != NULL);
ac27a0ec 768
2ed88685
TT
769 /*
770 * Now that we do not always journal data, we should
771 * keep in mind whether this should always journal the
772 * new buffer as metadata. For now, regular file
773 * writes use ext4_get_block instead, so it's not a
774 * problem.
775 */
776 lock_buffer(bh);
777 BUFFER_TRACE(bh, "call get_create_access");
778 fatal = ext4_journal_get_create_access(handle, bh);
779 if (!fatal && !buffer_uptodate(bh)) {
780 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
781 set_buffer_uptodate(bh);
ac27a0ec 782 }
2ed88685
TT
783 unlock_buffer(bh);
784 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785 err = ext4_handle_dirty_metadata(handle, inode, bh);
786 if (!fatal)
787 fatal = err;
788 } else {
789 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 790 }
2ed88685
TT
791 if (fatal) {
792 *errp = fatal;
793 brelse(bh);
794 bh = NULL;
795 }
796 return bh;
ac27a0ec
DK
797}
798
617ba13b 799struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 800 ext4_lblk_t block, int create, int *err)
ac27a0ec 801{
af5bc92d 802 struct buffer_head *bh;
ac27a0ec 803
617ba13b 804 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
805 if (!bh)
806 return bh;
807 if (buffer_uptodate(bh))
808 return bh;
65299a3b 809 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
810 wait_on_buffer(bh);
811 if (buffer_uptodate(bh))
812 return bh;
813 put_bh(bh);
814 *err = -EIO;
815 return NULL;
816}
817
f19d5870
TM
818int ext4_walk_page_buffers(handle_t *handle,
819 struct buffer_head *head,
820 unsigned from,
821 unsigned to,
822 int *partial,
823 int (*fn)(handle_t *handle,
824 struct buffer_head *bh))
ac27a0ec
DK
825{
826 struct buffer_head *bh;
827 unsigned block_start, block_end;
828 unsigned blocksize = head->b_size;
829 int err, ret = 0;
830 struct buffer_head *next;
831
af5bc92d
TT
832 for (bh = head, block_start = 0;
833 ret == 0 && (bh != head || !block_start);
de9a55b8 834 block_start = block_end, bh = next) {
ac27a0ec
DK
835 next = bh->b_this_page;
836 block_end = block_start + blocksize;
837 if (block_end <= from || block_start >= to) {
838 if (partial && !buffer_uptodate(bh))
839 *partial = 1;
840 continue;
841 }
842 err = (*fn)(handle, bh);
843 if (!ret)
844 ret = err;
845 }
846 return ret;
847}
848
849/*
850 * To preserve ordering, it is essential that the hole instantiation and
851 * the data write be encapsulated in a single transaction. We cannot
617ba13b 852 * close off a transaction and start a new one between the ext4_get_block()
dab291af 853 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
854 * prepare_write() is the right place.
855 *
36ade451
JK
856 * Also, this function can nest inside ext4_writepage(). In that case, we
857 * *know* that ext4_writepage() has generated enough buffer credits to do the
858 * whole page. So we won't block on the journal in that case, which is good,
859 * because the caller may be PF_MEMALLOC.
ac27a0ec 860 *
617ba13b 861 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
862 * quota file writes. If we were to commit the transaction while thus
863 * reentered, there can be a deadlock - we would be holding a quota
864 * lock, and the commit would never complete if another thread had a
865 * transaction open and was blocking on the quota lock - a ranking
866 * violation.
867 *
dab291af 868 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
869 * will _not_ run commit under these circumstances because handle->h_ref
870 * is elevated. We'll still have enough credits for the tiny quotafile
871 * write.
872 */
f19d5870
TM
873int do_journal_get_write_access(handle_t *handle,
874 struct buffer_head *bh)
ac27a0ec 875{
56d35a4c
JK
876 int dirty = buffer_dirty(bh);
877 int ret;
878
ac27a0ec
DK
879 if (!buffer_mapped(bh) || buffer_freed(bh))
880 return 0;
56d35a4c 881 /*
ebdec241 882 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
883 * the dirty bit as jbd2_journal_get_write_access() could complain
884 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 885 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
886 * the bit before releasing a page lock and thus writeback cannot
887 * ever write the buffer.
888 */
889 if (dirty)
890 clear_buffer_dirty(bh);
5d601255 891 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
892 ret = ext4_journal_get_write_access(handle, bh);
893 if (!ret && dirty)
894 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
895 return ret;
ac27a0ec
DK
896}
897
8b0f165f
AP
898static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
899 struct buffer_head *bh_result, int create);
bfc1af65 900static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
901 loff_t pos, unsigned len, unsigned flags,
902 struct page **pagep, void **fsdata)
ac27a0ec 903{
af5bc92d 904 struct inode *inode = mapping->host;
1938a150 905 int ret, needed_blocks;
ac27a0ec
DK
906 handle_t *handle;
907 int retries = 0;
af5bc92d 908 struct page *page;
de9a55b8 909 pgoff_t index;
af5bc92d 910 unsigned from, to;
bfc1af65 911
9bffad1e 912 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
913 /*
914 * Reserve one block more for addition to orphan list in case
915 * we allocate blocks but write fails for some reason
916 */
917 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 918 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
919 from = pos & (PAGE_CACHE_SIZE - 1);
920 to = from + len;
ac27a0ec 921
f19d5870
TM
922 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
923 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
924 flags, pagep);
925 if (ret < 0)
47564bfb
TT
926 return ret;
927 if (ret == 1)
928 return 0;
f19d5870
TM
929 }
930
47564bfb
TT
931 /*
932 * grab_cache_page_write_begin() can take a long time if the
933 * system is thrashing due to memory pressure, or if the page
934 * is being written back. So grab it first before we start
935 * the transaction handle. This also allows us to allocate
936 * the page (if needed) without using GFP_NOFS.
937 */
938retry_grab:
939 page = grab_cache_page_write_begin(mapping, index, flags);
940 if (!page)
941 return -ENOMEM;
942 unlock_page(page);
943
944retry_journal:
9924a92a 945 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 946 if (IS_ERR(handle)) {
47564bfb
TT
947 page_cache_release(page);
948 return PTR_ERR(handle);
7479d2b9 949 }
ac27a0ec 950
47564bfb
TT
951 lock_page(page);
952 if (page->mapping != mapping) {
953 /* The page got truncated from under us */
954 unlock_page(page);
955 page_cache_release(page);
cf108bca 956 ext4_journal_stop(handle);
47564bfb 957 goto retry_grab;
cf108bca 958 }
7afe5aa5
DM
959 /* In case writeback began while the page was unlocked */
960 wait_for_stable_page(page);
cf108bca 961
744692dc 962 if (ext4_should_dioread_nolock(inode))
6e1db88d 963 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 964 else
6e1db88d 965 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
966
967 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
968 ret = ext4_walk_page_buffers(handle, page_buffers(page),
969 from, to, NULL,
970 do_journal_get_write_access);
ac27a0ec 971 }
bfc1af65
NP
972
973 if (ret) {
af5bc92d 974 unlock_page(page);
ae4d5372 975 /*
6e1db88d 976 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
977 * outside i_size. Trim these off again. Don't need
978 * i_size_read because we hold i_mutex.
1938a150
AK
979 *
980 * Add inode to orphan list in case we crash before
981 * truncate finishes
ae4d5372 982 */
ffacfa7a 983 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
984 ext4_orphan_add(handle, inode);
985
986 ext4_journal_stop(handle);
987 if (pos + len > inode->i_size) {
b9a4207d 988 ext4_truncate_failed_write(inode);
de9a55b8 989 /*
ffacfa7a 990 * If truncate failed early the inode might
1938a150
AK
991 * still be on the orphan list; we need to
992 * make sure the inode is removed from the
993 * orphan list in that case.
994 */
995 if (inode->i_nlink)
996 ext4_orphan_del(NULL, inode);
997 }
bfc1af65 998
47564bfb
TT
999 if (ret == -ENOSPC &&
1000 ext4_should_retry_alloc(inode->i_sb, &retries))
1001 goto retry_journal;
1002 page_cache_release(page);
1003 return ret;
1004 }
1005 *pagep = page;
ac27a0ec
DK
1006 return ret;
1007}
1008
bfc1af65
NP
1009/* For write_end() in data=journal mode */
1010static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1011{
13fca323 1012 int ret;
ac27a0ec
DK
1013 if (!buffer_mapped(bh) || buffer_freed(bh))
1014 return 0;
1015 set_buffer_uptodate(bh);
13fca323
TT
1016 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017 clear_buffer_meta(bh);
1018 clear_buffer_prio(bh);
1019 return ret;
ac27a0ec
DK
1020}
1021
eed4333f
ZL
1022/*
1023 * We need to pick up the new inode size which generic_commit_write gave us
1024 * `file' can be NULL - eg, when called from page_symlink().
1025 *
1026 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1027 * buffers are managed internally.
1028 */
1029static int ext4_write_end(struct file *file,
1030 struct address_space *mapping,
1031 loff_t pos, unsigned len, unsigned copied,
1032 struct page *page, void *fsdata)
f8514083 1033{
f8514083 1034 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1035 struct inode *inode = mapping->host;
1036 int ret = 0, ret2;
1037 int i_size_changed = 0;
1038
1039 trace_ext4_write_end(inode, pos, len, copied);
1040 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1041 ret = ext4_jbd2_file_inode(handle, inode);
1042 if (ret) {
1043 unlock_page(page);
1044 page_cache_release(page);
1045 goto errout;
1046 }
1047 }
f8514083 1048
42c832de
TT
1049 if (ext4_has_inline_data(inode)) {
1050 ret = ext4_write_inline_data_end(inode, pos, len,
1051 copied, page);
1052 if (ret < 0)
1053 goto errout;
1054 copied = ret;
1055 } else
f19d5870
TM
1056 copied = block_write_end(file, mapping, pos,
1057 len, copied, page, fsdata);
f8514083 1058 /*
4631dbf6 1059 * it's important to update i_size while still holding page lock:
f8514083
AK
1060 * page writeout could otherwise come in and zero beyond i_size.
1061 */
4631dbf6 1062 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1063 unlock_page(page);
1064 page_cache_release(page);
1065
1066 /*
1067 * Don't mark the inode dirty under page lock. First, it unnecessarily
1068 * makes the holding time of page lock longer. Second, it forces lock
1069 * ordering of page lock and transaction start for journaling
1070 * filesystems.
1071 */
1072 if (i_size_changed)
1073 ext4_mark_inode_dirty(handle, inode);
1074
ffacfa7a 1075 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1076 /* if we have allocated more blocks and copied
1077 * less. We will have blocks allocated outside
1078 * inode->i_size. So truncate them
1079 */
1080 ext4_orphan_add(handle, inode);
74d553aa 1081errout:
617ba13b 1082 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1083 if (!ret)
1084 ret = ret2;
bfc1af65 1085
f8514083 1086 if (pos + len > inode->i_size) {
b9a4207d 1087 ext4_truncate_failed_write(inode);
de9a55b8 1088 /*
ffacfa7a 1089 * If truncate failed early the inode might still be
f8514083
AK
1090 * on the orphan list; we need to make sure the inode
1091 * is removed from the orphan list in that case.
1092 */
1093 if (inode->i_nlink)
1094 ext4_orphan_del(NULL, inode);
1095 }
1096
bfc1af65 1097 return ret ? ret : copied;
ac27a0ec
DK
1098}
1099
bfc1af65 1100static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1101 struct address_space *mapping,
1102 loff_t pos, unsigned len, unsigned copied,
1103 struct page *page, void *fsdata)
ac27a0ec 1104{
617ba13b 1105 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1106 struct inode *inode = mapping->host;
ac27a0ec
DK
1107 int ret = 0, ret2;
1108 int partial = 0;
bfc1af65 1109 unsigned from, to;
4631dbf6 1110 int size_changed = 0;
ac27a0ec 1111
9bffad1e 1112 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1113 from = pos & (PAGE_CACHE_SIZE - 1);
1114 to = from + len;
1115
441c8508
CW
1116 BUG_ON(!ext4_handle_valid(handle));
1117
3fdcfb66
TM
1118 if (ext4_has_inline_data(inode))
1119 copied = ext4_write_inline_data_end(inode, pos, len,
1120 copied, page);
1121 else {
1122 if (copied < len) {
1123 if (!PageUptodate(page))
1124 copied = 0;
1125 page_zero_new_buffers(page, from+copied, to);
1126 }
ac27a0ec 1127
3fdcfb66
TM
1128 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1129 to, &partial, write_end_fn);
1130 if (!partial)
1131 SetPageUptodate(page);
1132 }
4631dbf6 1133 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1134 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1135 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1136 unlock_page(page);
1137 page_cache_release(page);
1138
1139 if (size_changed) {
617ba13b 1140 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1141 if (!ret)
1142 ret = ret2;
1143 }
bfc1af65 1144
ffacfa7a 1145 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1146 /* if we have allocated more blocks and copied
1147 * less. We will have blocks allocated outside
1148 * inode->i_size. So truncate them
1149 */
1150 ext4_orphan_add(handle, inode);
1151
617ba13b 1152 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1153 if (!ret)
1154 ret = ret2;
f8514083 1155 if (pos + len > inode->i_size) {
b9a4207d 1156 ext4_truncate_failed_write(inode);
de9a55b8 1157 /*
ffacfa7a 1158 * If truncate failed early the inode might still be
f8514083
AK
1159 * on the orphan list; we need to make sure the inode
1160 * is removed from the orphan list in that case.
1161 */
1162 if (inode->i_nlink)
1163 ext4_orphan_del(NULL, inode);
1164 }
bfc1af65
NP
1165
1166 return ret ? ret : copied;
ac27a0ec 1167}
d2a17637 1168
9d0be502 1169/*
7b415bf6 1170 * Reserve a single cluster located at lblock
9d0be502 1171 */
01f49d0b 1172static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1173{
60e58e0f 1174 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1175 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1176 unsigned int md_needed;
5dd4056d 1177 int ret;
03179fe9
TT
1178
1179 /*
1180 * We will charge metadata quota at writeout time; this saves
1181 * us from metadata over-estimation, though we may go over by
1182 * a small amount in the end. Here we just reserve for data.
1183 */
1184 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1185 if (ret)
1186 return ret;
d2a17637
MC
1187
1188 /*
1189 * recalculate the amount of metadata blocks to reserve
1190 * in order to allocate nrblocks
1191 * worse case is one extent per block
1192 */
0637c6f4 1193 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1194 /*
1195 * ext4_calc_metadata_amount() has side effects, which we have
1196 * to be prepared undo if we fail to claim space.
1197 */
71d4f7d0
TT
1198 md_needed = 0;
1199 trace_ext4_da_reserve_space(inode, 0);
d2a17637 1200
71d4f7d0 1201 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1202 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1203 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1204 return -ENOSPC;
1205 }
9d0be502 1206 ei->i_reserved_data_blocks++;
0637c6f4 1207 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1208
d2a17637
MC
1209 return 0; /* success */
1210}
1211
12219aea 1212static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1213{
1214 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1215 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1216
cd213226
MC
1217 if (!to_free)
1218 return; /* Nothing to release, exit */
1219
d2a17637 1220 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1221
5a58ec87 1222 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1223 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1224 /*
0637c6f4
TT
1225 * if there aren't enough reserved blocks, then the
1226 * counter is messed up somewhere. Since this
1227 * function is called from invalidate page, it's
1228 * harmless to return without any action.
cd213226 1229 */
8de5c325 1230 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1231 "ino %lu, to_free %d with only %d reserved "
1084f252 1232 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1233 ei->i_reserved_data_blocks);
1234 WARN_ON(1);
1235 to_free = ei->i_reserved_data_blocks;
cd213226 1236 }
0637c6f4 1237 ei->i_reserved_data_blocks -= to_free;
cd213226 1238
72b8ab9d 1239 /* update fs dirty data blocks counter */
57042651 1240 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1241
d2a17637 1242 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1243
7b415bf6 1244 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1245}
1246
1247static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1248 unsigned int offset,
1249 unsigned int length)
d2a17637
MC
1250{
1251 int to_release = 0;
1252 struct buffer_head *head, *bh;
1253 unsigned int curr_off = 0;
7b415bf6
AK
1254 struct inode *inode = page->mapping->host;
1255 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1256 unsigned int stop = offset + length;
7b415bf6 1257 int num_clusters;
51865fda 1258 ext4_fsblk_t lblk;
d2a17637 1259
ca99fdd2
LC
1260 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1261
d2a17637
MC
1262 head = page_buffers(page);
1263 bh = head;
1264 do {
1265 unsigned int next_off = curr_off + bh->b_size;
1266
ca99fdd2
LC
1267 if (next_off > stop)
1268 break;
1269
d2a17637
MC
1270 if ((offset <= curr_off) && (buffer_delay(bh))) {
1271 to_release++;
1272 clear_buffer_delay(bh);
1273 }
1274 curr_off = next_off;
1275 } while ((bh = bh->b_this_page) != head);
7b415bf6 1276
51865fda
ZL
1277 if (to_release) {
1278 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1279 ext4_es_remove_extent(inode, lblk, to_release);
1280 }
1281
7b415bf6
AK
1282 /* If we have released all the blocks belonging to a cluster, then we
1283 * need to release the reserved space for that cluster. */
1284 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1285 while (num_clusters > 0) {
7b415bf6
AK
1286 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1287 ((num_clusters - 1) << sbi->s_cluster_bits);
1288 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1289 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1290 ext4_da_release_space(inode, 1);
1291
1292 num_clusters--;
1293 }
d2a17637 1294}
ac27a0ec 1295
64769240
AT
1296/*
1297 * Delayed allocation stuff
1298 */
1299
4e7ea81d
JK
1300struct mpage_da_data {
1301 struct inode *inode;
1302 struct writeback_control *wbc;
6b523df4 1303
4e7ea81d
JK
1304 pgoff_t first_page; /* The first page to write */
1305 pgoff_t next_page; /* Current page to examine */
1306 pgoff_t last_page; /* Last page to examine */
791b7f08 1307 /*
4e7ea81d
JK
1308 * Extent to map - this can be after first_page because that can be
1309 * fully mapped. We somewhat abuse m_flags to store whether the extent
1310 * is delalloc or unwritten.
791b7f08 1311 */
4e7ea81d
JK
1312 struct ext4_map_blocks map;
1313 struct ext4_io_submit io_submit; /* IO submission data */
1314};
64769240 1315
4e7ea81d
JK
1316static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1317 bool invalidate)
c4a0c46e
AK
1318{
1319 int nr_pages, i;
1320 pgoff_t index, end;
1321 struct pagevec pvec;
1322 struct inode *inode = mpd->inode;
1323 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1324
1325 /* This is necessary when next_page == 0. */
1326 if (mpd->first_page >= mpd->next_page)
1327 return;
c4a0c46e 1328
c7f5938a
CW
1329 index = mpd->first_page;
1330 end = mpd->next_page - 1;
4e7ea81d
JK
1331 if (invalidate) {
1332 ext4_lblk_t start, last;
1333 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1334 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1335 ext4_es_remove_extent(inode, start, last - start + 1);
1336 }
51865fda 1337
66bea92c 1338 pagevec_init(&pvec, 0);
c4a0c46e
AK
1339 while (index <= end) {
1340 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1341 if (nr_pages == 0)
1342 break;
1343 for (i = 0; i < nr_pages; i++) {
1344 struct page *page = pvec.pages[i];
9b1d0998 1345 if (page->index > end)
c4a0c46e 1346 break;
c4a0c46e
AK
1347 BUG_ON(!PageLocked(page));
1348 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1349 if (invalidate) {
1350 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1351 ClearPageUptodate(page);
1352 }
c4a0c46e
AK
1353 unlock_page(page);
1354 }
9b1d0998
JK
1355 index = pvec.pages[nr_pages - 1]->index + 1;
1356 pagevec_release(&pvec);
c4a0c46e 1357 }
c4a0c46e
AK
1358}
1359
df22291f
AK
1360static void ext4_print_free_blocks(struct inode *inode)
1361{
1362 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1363 struct super_block *sb = inode->i_sb;
f78ee70d 1364 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1365
1366 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1367 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1368 ext4_count_free_clusters(sb)));
92b97816
TT
1369 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1370 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1371 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1372 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1373 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1374 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1375 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1376 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1377 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1378 ei->i_reserved_data_blocks);
df22291f
AK
1379 return;
1380}
1381
c364b22c 1382static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1383{
c364b22c 1384 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1385}
1386
5356f261
AK
1387/*
1388 * This function is grabs code from the very beginning of
1389 * ext4_map_blocks, but assumes that the caller is from delayed write
1390 * time. This function looks up the requested blocks and sets the
1391 * buffer delay bit under the protection of i_data_sem.
1392 */
1393static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1394 struct ext4_map_blocks *map,
1395 struct buffer_head *bh)
1396{
d100eef2 1397 struct extent_status es;
5356f261
AK
1398 int retval;
1399 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1400#ifdef ES_AGGRESSIVE_TEST
1401 struct ext4_map_blocks orig_map;
1402
1403 memcpy(&orig_map, map, sizeof(*map));
1404#endif
5356f261
AK
1405
1406 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1407 invalid_block = ~0;
1408
1409 map->m_flags = 0;
1410 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1411 "logical block %lu\n", inode->i_ino, map->m_len,
1412 (unsigned long) map->m_lblk);
d100eef2
ZL
1413
1414 /* Lookup extent status tree firstly */
1415 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1416 ext4_es_lru_add(inode);
d100eef2
ZL
1417 if (ext4_es_is_hole(&es)) {
1418 retval = 0;
c8b459f4 1419 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1420 goto add_delayed;
1421 }
1422
1423 /*
1424 * Delayed extent could be allocated by fallocate.
1425 * So we need to check it.
1426 */
1427 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1428 map_bh(bh, inode->i_sb, invalid_block);
1429 set_buffer_new(bh);
1430 set_buffer_delay(bh);
1431 return 0;
1432 }
1433
1434 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1435 retval = es.es_len - (iblock - es.es_lblk);
1436 if (retval > map->m_len)
1437 retval = map->m_len;
1438 map->m_len = retval;
1439 if (ext4_es_is_written(&es))
1440 map->m_flags |= EXT4_MAP_MAPPED;
1441 else if (ext4_es_is_unwritten(&es))
1442 map->m_flags |= EXT4_MAP_UNWRITTEN;
1443 else
1444 BUG_ON(1);
1445
921f266b
DM
1446#ifdef ES_AGGRESSIVE_TEST
1447 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1448#endif
d100eef2
ZL
1449 return retval;
1450 }
1451
5356f261
AK
1452 /*
1453 * Try to see if we can get the block without requesting a new
1454 * file system block.
1455 */
c8b459f4 1456 down_read(&EXT4_I(inode)->i_data_sem);
9c3569b5
TM
1457 if (ext4_has_inline_data(inode)) {
1458 /*
1459 * We will soon create blocks for this page, and let
1460 * us pretend as if the blocks aren't allocated yet.
1461 * In case of clusters, we have to handle the work
1462 * of mapping from cluster so that the reserved space
1463 * is calculated properly.
1464 */
1465 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1466 ext4_find_delalloc_cluster(inode, map->m_lblk))
1467 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1468 retval = 0;
1469 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1470 retval = ext4_ext_map_blocks(NULL, inode, map,
1471 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1472 else
d100eef2
ZL
1473 retval = ext4_ind_map_blocks(NULL, inode, map,
1474 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1475
d100eef2 1476add_delayed:
5356f261 1477 if (retval == 0) {
f7fec032 1478 int ret;
5356f261
AK
1479 /*
1480 * XXX: __block_prepare_write() unmaps passed block,
1481 * is it OK?
1482 */
386ad67c
LC
1483 /*
1484 * If the block was allocated from previously allocated cluster,
1485 * then we don't need to reserve it again. However we still need
1486 * to reserve metadata for every block we're going to write.
1487 */
5356f261 1488 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1489 ret = ext4_da_reserve_space(inode, iblock);
1490 if (ret) {
5356f261 1491 /* not enough space to reserve */
f7fec032 1492 retval = ret;
5356f261 1493 goto out_unlock;
f7fec032 1494 }
5356f261
AK
1495 }
1496
f7fec032
ZL
1497 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1498 ~0, EXTENT_STATUS_DELAYED);
1499 if (ret) {
1500 retval = ret;
51865fda 1501 goto out_unlock;
f7fec032 1502 }
51865fda 1503
5356f261
AK
1504 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1505 * and it should not appear on the bh->b_state.
1506 */
1507 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1508
1509 map_bh(bh, inode->i_sb, invalid_block);
1510 set_buffer_new(bh);
1511 set_buffer_delay(bh);
f7fec032
ZL
1512 } else if (retval > 0) {
1513 int ret;
3be78c73 1514 unsigned int status;
f7fec032 1515
44fb851d
ZL
1516 if (unlikely(retval != map->m_len)) {
1517 ext4_warning(inode->i_sb,
1518 "ES len assertion failed for inode "
1519 "%lu: retval %d != map->m_len %d",
1520 inode->i_ino, retval, map->m_len);
1521 WARN_ON(1);
921f266b 1522 }
921f266b 1523
f7fec032
ZL
1524 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1525 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1526 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1527 map->m_pblk, status);
1528 if (ret != 0)
1529 retval = ret;
5356f261
AK
1530 }
1531
1532out_unlock:
1533 up_read((&EXT4_I(inode)->i_data_sem));
1534
1535 return retval;
1536}
1537
64769240 1538/*
b920c755
TT
1539 * This is a special get_blocks_t callback which is used by
1540 * ext4_da_write_begin(). It will either return mapped block or
1541 * reserve space for a single block.
29fa89d0
AK
1542 *
1543 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1544 * We also have b_blocknr = -1 and b_bdev initialized properly
1545 *
1546 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1547 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1548 * initialized properly.
64769240 1549 */
9c3569b5
TM
1550int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1551 struct buffer_head *bh, int create)
64769240 1552{
2ed88685 1553 struct ext4_map_blocks map;
64769240
AT
1554 int ret = 0;
1555
1556 BUG_ON(create == 0);
2ed88685
TT
1557 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1558
1559 map.m_lblk = iblock;
1560 map.m_len = 1;
64769240
AT
1561
1562 /*
1563 * first, we need to know whether the block is allocated already
1564 * preallocated blocks are unmapped but should treated
1565 * the same as allocated blocks.
1566 */
5356f261
AK
1567 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1568 if (ret <= 0)
2ed88685 1569 return ret;
64769240 1570
2ed88685
TT
1571 map_bh(bh, inode->i_sb, map.m_pblk);
1572 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1573
1574 if (buffer_unwritten(bh)) {
1575 /* A delayed write to unwritten bh should be marked
1576 * new and mapped. Mapped ensures that we don't do
1577 * get_block multiple times when we write to the same
1578 * offset and new ensures that we do proper zero out
1579 * for partial write.
1580 */
1581 set_buffer_new(bh);
c8205636 1582 set_buffer_mapped(bh);
2ed88685
TT
1583 }
1584 return 0;
64769240 1585}
61628a3f 1586
62e086be
AK
1587static int bget_one(handle_t *handle, struct buffer_head *bh)
1588{
1589 get_bh(bh);
1590 return 0;
1591}
1592
1593static int bput_one(handle_t *handle, struct buffer_head *bh)
1594{
1595 put_bh(bh);
1596 return 0;
1597}
1598
1599static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1600 unsigned int len)
1601{
1602 struct address_space *mapping = page->mapping;
1603 struct inode *inode = mapping->host;
3fdcfb66 1604 struct buffer_head *page_bufs = NULL;
62e086be 1605 handle_t *handle = NULL;
3fdcfb66
TM
1606 int ret = 0, err = 0;
1607 int inline_data = ext4_has_inline_data(inode);
1608 struct buffer_head *inode_bh = NULL;
62e086be 1609
cb20d518 1610 ClearPageChecked(page);
3fdcfb66
TM
1611
1612 if (inline_data) {
1613 BUG_ON(page->index != 0);
1614 BUG_ON(len > ext4_get_max_inline_size(inode));
1615 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1616 if (inode_bh == NULL)
1617 goto out;
1618 } else {
1619 page_bufs = page_buffers(page);
1620 if (!page_bufs) {
1621 BUG();
1622 goto out;
1623 }
1624 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1625 NULL, bget_one);
1626 }
62e086be
AK
1627 /* As soon as we unlock the page, it can go away, but we have
1628 * references to buffers so we are safe */
1629 unlock_page(page);
1630
9924a92a
TT
1631 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1632 ext4_writepage_trans_blocks(inode));
62e086be
AK
1633 if (IS_ERR(handle)) {
1634 ret = PTR_ERR(handle);
1635 goto out;
1636 }
1637
441c8508
CW
1638 BUG_ON(!ext4_handle_valid(handle));
1639
3fdcfb66 1640 if (inline_data) {
5d601255 1641 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1642 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1643
3fdcfb66
TM
1644 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1645
1646 } else {
1647 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1648 do_journal_get_write_access);
1649
1650 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1651 write_end_fn);
1652 }
62e086be
AK
1653 if (ret == 0)
1654 ret = err;
2d859db3 1655 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1656 err = ext4_journal_stop(handle);
1657 if (!ret)
1658 ret = err;
1659
3fdcfb66 1660 if (!ext4_has_inline_data(inode))
8c9367fd 1661 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1662 NULL, bput_one);
19f5fb7a 1663 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1664out:
3fdcfb66 1665 brelse(inode_bh);
62e086be
AK
1666 return ret;
1667}
1668
61628a3f 1669/*
43ce1d23
AK
1670 * Note that we don't need to start a transaction unless we're journaling data
1671 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1672 * need to file the inode to the transaction's list in ordered mode because if
1673 * we are writing back data added by write(), the inode is already there and if
25985edc 1674 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1675 * transaction the data will hit the disk. In case we are journaling data, we
1676 * cannot start transaction directly because transaction start ranks above page
1677 * lock so we have to do some magic.
1678 *
b920c755 1679 * This function can get called via...
20970ba6 1680 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1681 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1682 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1683 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1684 *
1685 * We don't do any block allocation in this function. If we have page with
1686 * multiple blocks we need to write those buffer_heads that are mapped. This
1687 * is important for mmaped based write. So if we do with blocksize 1K
1688 * truncate(f, 1024);
1689 * a = mmap(f, 0, 4096);
1690 * a[0] = 'a';
1691 * truncate(f, 4096);
1692 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1693 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1694 * do_wp_page). So writepage should write the first block. If we modify
1695 * the mmap area beyond 1024 we will again get a page_fault and the
1696 * page_mkwrite callback will do the block allocation and mark the
1697 * buffer_heads mapped.
1698 *
1699 * We redirty the page if we have any buffer_heads that is either delay or
1700 * unwritten in the page.
1701 *
1702 * We can get recursively called as show below.
1703 *
1704 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1705 * ext4_writepage()
1706 *
1707 * But since we don't do any block allocation we should not deadlock.
1708 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1709 */
43ce1d23 1710static int ext4_writepage(struct page *page,
62e086be 1711 struct writeback_control *wbc)
64769240 1712{
f8bec370 1713 int ret = 0;
61628a3f 1714 loff_t size;
498e5f24 1715 unsigned int len;
744692dc 1716 struct buffer_head *page_bufs = NULL;
61628a3f 1717 struct inode *inode = page->mapping->host;
36ade451 1718 struct ext4_io_submit io_submit;
1c8349a1 1719 bool keep_towrite = false;
61628a3f 1720
a9c667f8 1721 trace_ext4_writepage(page);
f0e6c985
AK
1722 size = i_size_read(inode);
1723 if (page->index == size >> PAGE_CACHE_SHIFT)
1724 len = size & ~PAGE_CACHE_MASK;
1725 else
1726 len = PAGE_CACHE_SIZE;
64769240 1727
a42afc5f 1728 page_bufs = page_buffers(page);
a42afc5f 1729 /*
fe386132
JK
1730 * We cannot do block allocation or other extent handling in this
1731 * function. If there are buffers needing that, we have to redirty
1732 * the page. But we may reach here when we do a journal commit via
1733 * journal_submit_inode_data_buffers() and in that case we must write
1734 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1735 */
f19d5870
TM
1736 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1737 ext4_bh_delay_or_unwritten)) {
f8bec370 1738 redirty_page_for_writepage(wbc, page);
fe386132
JK
1739 if (current->flags & PF_MEMALLOC) {
1740 /*
1741 * For memory cleaning there's no point in writing only
1742 * some buffers. So just bail out. Warn if we came here
1743 * from direct reclaim.
1744 */
1745 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1746 == PF_MEMALLOC);
f0e6c985
AK
1747 unlock_page(page);
1748 return 0;
1749 }
1c8349a1 1750 keep_towrite = true;
a42afc5f 1751 }
64769240 1752
cb20d518 1753 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1754 /*
1755 * It's mmapped pagecache. Add buffers and journal it. There
1756 * doesn't seem much point in redirtying the page here.
1757 */
3f0ca309 1758 return __ext4_journalled_writepage(page, len);
43ce1d23 1759
97a851ed
JK
1760 ext4_io_submit_init(&io_submit, wbc);
1761 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1762 if (!io_submit.io_end) {
1763 redirty_page_for_writepage(wbc, page);
1764 unlock_page(page);
1765 return -ENOMEM;
1766 }
1c8349a1 1767 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1768 ext4_io_submit(&io_submit);
97a851ed
JK
1769 /* Drop io_end reference we got from init */
1770 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1771 return ret;
1772}
1773
5f1132b2
JK
1774static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1775{
1776 int len;
1777 loff_t size = i_size_read(mpd->inode);
1778 int err;
1779
1780 BUG_ON(page->index != mpd->first_page);
1781 if (page->index == size >> PAGE_CACHE_SHIFT)
1782 len = size & ~PAGE_CACHE_MASK;
1783 else
1784 len = PAGE_CACHE_SIZE;
1785 clear_page_dirty_for_io(page);
1c8349a1 1786 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1787 if (!err)
1788 mpd->wbc->nr_to_write--;
1789 mpd->first_page++;
1790
1791 return err;
1792}
1793
4e7ea81d
JK
1794#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1795
61628a3f 1796/*
fffb2739
JK
1797 * mballoc gives us at most this number of blocks...
1798 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1799 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1800 */
fffb2739 1801#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1802
4e7ea81d
JK
1803/*
1804 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1805 *
1806 * @mpd - extent of blocks
1807 * @lblk - logical number of the block in the file
09930042 1808 * @bh - buffer head we want to add to the extent
4e7ea81d 1809 *
09930042
JK
1810 * The function is used to collect contig. blocks in the same state. If the
1811 * buffer doesn't require mapping for writeback and we haven't started the
1812 * extent of buffers to map yet, the function returns 'true' immediately - the
1813 * caller can write the buffer right away. Otherwise the function returns true
1814 * if the block has been added to the extent, false if the block couldn't be
1815 * added.
4e7ea81d 1816 */
09930042
JK
1817static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1818 struct buffer_head *bh)
4e7ea81d
JK
1819{
1820 struct ext4_map_blocks *map = &mpd->map;
1821
09930042
JK
1822 /* Buffer that doesn't need mapping for writeback? */
1823 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1824 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1825 /* So far no extent to map => we write the buffer right away */
1826 if (map->m_len == 0)
1827 return true;
1828 return false;
1829 }
4e7ea81d
JK
1830
1831 /* First block in the extent? */
1832 if (map->m_len == 0) {
1833 map->m_lblk = lblk;
1834 map->m_len = 1;
09930042
JK
1835 map->m_flags = bh->b_state & BH_FLAGS;
1836 return true;
4e7ea81d
JK
1837 }
1838
09930042
JK
1839 /* Don't go larger than mballoc is willing to allocate */
1840 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1841 return false;
1842
4e7ea81d
JK
1843 /* Can we merge the block to our big extent? */
1844 if (lblk == map->m_lblk + map->m_len &&
09930042 1845 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1846 map->m_len++;
09930042 1847 return true;
4e7ea81d 1848 }
09930042 1849 return false;
4e7ea81d
JK
1850}
1851
5f1132b2
JK
1852/*
1853 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1854 *
1855 * @mpd - extent of blocks for mapping
1856 * @head - the first buffer in the page
1857 * @bh - buffer we should start processing from
1858 * @lblk - logical number of the block in the file corresponding to @bh
1859 *
1860 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1861 * the page for IO if all buffers in this page were mapped and there's no
1862 * accumulated extent of buffers to map or add buffers in the page to the
1863 * extent of buffers to map. The function returns 1 if the caller can continue
1864 * by processing the next page, 0 if it should stop adding buffers to the
1865 * extent to map because we cannot extend it anymore. It can also return value
1866 * < 0 in case of error during IO submission.
1867 */
1868static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1869 struct buffer_head *head,
1870 struct buffer_head *bh,
1871 ext4_lblk_t lblk)
4e7ea81d
JK
1872{
1873 struct inode *inode = mpd->inode;
5f1132b2 1874 int err;
4e7ea81d
JK
1875 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1876 >> inode->i_blkbits;
1877
1878 do {
1879 BUG_ON(buffer_locked(bh));
1880
09930042 1881 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1882 /* Found extent to map? */
1883 if (mpd->map.m_len)
5f1132b2 1884 return 0;
09930042 1885 /* Everything mapped so far and we hit EOF */
5f1132b2 1886 break;
4e7ea81d 1887 }
4e7ea81d 1888 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1889 /* So far everything mapped? Submit the page for IO. */
1890 if (mpd->map.m_len == 0) {
1891 err = mpage_submit_page(mpd, head->b_page);
1892 if (err < 0)
1893 return err;
1894 }
1895 return lblk < blocks;
4e7ea81d
JK
1896}
1897
1898/*
1899 * mpage_map_buffers - update buffers corresponding to changed extent and
1900 * submit fully mapped pages for IO
1901 *
1902 * @mpd - description of extent to map, on return next extent to map
1903 *
1904 * Scan buffers corresponding to changed extent (we expect corresponding pages
1905 * to be already locked) and update buffer state according to new extent state.
1906 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1907 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1908 * and do extent conversion after IO is finished. If the last page is not fully
1909 * mapped, we update @map to the next extent in the last page that needs
1910 * mapping. Otherwise we submit the page for IO.
1911 */
1912static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1913{
1914 struct pagevec pvec;
1915 int nr_pages, i;
1916 struct inode *inode = mpd->inode;
1917 struct buffer_head *head, *bh;
1918 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1919 pgoff_t start, end;
1920 ext4_lblk_t lblk;
1921 sector_t pblock;
1922 int err;
1923
1924 start = mpd->map.m_lblk >> bpp_bits;
1925 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1926 lblk = start << bpp_bits;
1927 pblock = mpd->map.m_pblk;
1928
1929 pagevec_init(&pvec, 0);
1930 while (start <= end) {
1931 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1932 PAGEVEC_SIZE);
1933 if (nr_pages == 0)
1934 break;
1935 for (i = 0; i < nr_pages; i++) {
1936 struct page *page = pvec.pages[i];
1937
1938 if (page->index > end)
1939 break;
70261f56 1940 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
1941 BUG_ON(page->index != start);
1942 bh = head = page_buffers(page);
1943 do {
1944 if (lblk < mpd->map.m_lblk)
1945 continue;
1946 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1947 /*
1948 * Buffer after end of mapped extent.
1949 * Find next buffer in the page to map.
1950 */
1951 mpd->map.m_len = 0;
1952 mpd->map.m_flags = 0;
5f1132b2
JK
1953 /*
1954 * FIXME: If dioread_nolock supports
1955 * blocksize < pagesize, we need to make
1956 * sure we add size mapped so far to
1957 * io_end->size as the following call
1958 * can submit the page for IO.
1959 */
1960 err = mpage_process_page_bufs(mpd, head,
1961 bh, lblk);
4e7ea81d 1962 pagevec_release(&pvec);
5f1132b2
JK
1963 if (err > 0)
1964 err = 0;
1965 return err;
4e7ea81d
JK
1966 }
1967 if (buffer_delay(bh)) {
1968 clear_buffer_delay(bh);
1969 bh->b_blocknr = pblock++;
1970 }
4e7ea81d 1971 clear_buffer_unwritten(bh);
5f1132b2 1972 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
1973
1974 /*
1975 * FIXME: This is going to break if dioread_nolock
1976 * supports blocksize < pagesize as we will try to
1977 * convert potentially unmapped parts of inode.
1978 */
1979 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1980 /* Page fully mapped - let IO run! */
1981 err = mpage_submit_page(mpd, page);
1982 if (err < 0) {
1983 pagevec_release(&pvec);
1984 return err;
1985 }
1986 start++;
1987 }
1988 pagevec_release(&pvec);
1989 }
1990 /* Extent fully mapped and matches with page boundary. We are done. */
1991 mpd->map.m_len = 0;
1992 mpd->map.m_flags = 0;
1993 return 0;
1994}
1995
1996static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1997{
1998 struct inode *inode = mpd->inode;
1999 struct ext4_map_blocks *map = &mpd->map;
2000 int get_blocks_flags;
090f32ee 2001 int err, dioread_nolock;
4e7ea81d
JK
2002
2003 trace_ext4_da_write_pages_extent(inode, map);
2004 /*
2005 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2006 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2007 * where we have written into one or more preallocated blocks). It is
2008 * possible that we're going to need more metadata blocks than
2009 * previously reserved. However we must not fail because we're in
2010 * writeback and there is nothing we can do about it so it might result
2011 * in data loss. So use reserved blocks to allocate metadata if
2012 * possible.
2013 *
2014 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2015 * in question are delalloc blocks. This affects functions in many
2016 * different parts of the allocation call path. This flag exists
2017 * primarily because we don't want to change *many* call functions, so
2018 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2019 * once the inode's allocation semaphore is taken.
2020 */
2021 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2022 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2023 dioread_nolock = ext4_should_dioread_nolock(inode);
2024 if (dioread_nolock)
4e7ea81d
JK
2025 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2026 if (map->m_flags & (1 << BH_Delay))
2027 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2028
2029 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2030 if (err < 0)
2031 return err;
090f32ee 2032 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2033 if (!mpd->io_submit.io_end->handle &&
2034 ext4_handle_valid(handle)) {
2035 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2036 handle->h_rsv_handle = NULL;
2037 }
3613d228 2038 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2039 }
4e7ea81d
JK
2040
2041 BUG_ON(map->m_len == 0);
2042 if (map->m_flags & EXT4_MAP_NEW) {
2043 struct block_device *bdev = inode->i_sb->s_bdev;
2044 int i;
2045
2046 for (i = 0; i < map->m_len; i++)
2047 unmap_underlying_metadata(bdev, map->m_pblk + i);
2048 }
2049 return 0;
2050}
2051
2052/*
2053 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2054 * mpd->len and submit pages underlying it for IO
2055 *
2056 * @handle - handle for journal operations
2057 * @mpd - extent to map
7534e854
JK
2058 * @give_up_on_write - we set this to true iff there is a fatal error and there
2059 * is no hope of writing the data. The caller should discard
2060 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2061 *
2062 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2063 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2064 * them to initialized or split the described range from larger unwritten
2065 * extent. Note that we need not map all the described range since allocation
2066 * can return less blocks or the range is covered by more unwritten extents. We
2067 * cannot map more because we are limited by reserved transaction credits. On
2068 * the other hand we always make sure that the last touched page is fully
2069 * mapped so that it can be written out (and thus forward progress is
2070 * guaranteed). After mapping we submit all mapped pages for IO.
2071 */
2072static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2073 struct mpage_da_data *mpd,
2074 bool *give_up_on_write)
4e7ea81d
JK
2075{
2076 struct inode *inode = mpd->inode;
2077 struct ext4_map_blocks *map = &mpd->map;
2078 int err;
2079 loff_t disksize;
6603120e 2080 int progress = 0;
4e7ea81d
JK
2081
2082 mpd->io_submit.io_end->offset =
2083 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2084 do {
4e7ea81d
JK
2085 err = mpage_map_one_extent(handle, mpd);
2086 if (err < 0) {
2087 struct super_block *sb = inode->i_sb;
2088
cb530541
TT
2089 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2090 goto invalidate_dirty_pages;
4e7ea81d 2091 /*
cb530541
TT
2092 * Let the uper layers retry transient errors.
2093 * In the case of ENOSPC, if ext4_count_free_blocks()
2094 * is non-zero, a commit should free up blocks.
4e7ea81d 2095 */
cb530541 2096 if ((err == -ENOMEM) ||
6603120e
DM
2097 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2098 if (progress)
2099 goto update_disksize;
cb530541 2100 return err;
6603120e 2101 }
cb530541
TT
2102 ext4_msg(sb, KERN_CRIT,
2103 "Delayed block allocation failed for "
2104 "inode %lu at logical offset %llu with"
2105 " max blocks %u with error %d",
2106 inode->i_ino,
2107 (unsigned long long)map->m_lblk,
2108 (unsigned)map->m_len, -err);
2109 ext4_msg(sb, KERN_CRIT,
2110 "This should not happen!! Data will "
2111 "be lost\n");
2112 if (err == -ENOSPC)
2113 ext4_print_free_blocks(inode);
2114 invalidate_dirty_pages:
2115 *give_up_on_write = true;
4e7ea81d
JK
2116 return err;
2117 }
6603120e 2118 progress = 1;
4e7ea81d
JK
2119 /*
2120 * Update buffer state, submit mapped pages, and get us new
2121 * extent to map
2122 */
2123 err = mpage_map_and_submit_buffers(mpd);
2124 if (err < 0)
6603120e 2125 goto update_disksize;
27d7c4ed 2126 } while (map->m_len);
4e7ea81d 2127
6603120e 2128update_disksize:
622cad13
TT
2129 /*
2130 * Update on-disk size after IO is submitted. Races with
2131 * truncate are avoided by checking i_size under i_data_sem.
2132 */
4e7ea81d 2133 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2134 if (disksize > EXT4_I(inode)->i_disksize) {
2135 int err2;
622cad13
TT
2136 loff_t i_size;
2137
2138 down_write(&EXT4_I(inode)->i_data_sem);
2139 i_size = i_size_read(inode);
2140 if (disksize > i_size)
2141 disksize = i_size;
2142 if (disksize > EXT4_I(inode)->i_disksize)
2143 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2144 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2145 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2146 if (err2)
2147 ext4_error(inode->i_sb,
2148 "Failed to mark inode %lu dirty",
2149 inode->i_ino);
2150 if (!err)
2151 err = err2;
2152 }
2153 return err;
2154}
2155
fffb2739
JK
2156/*
2157 * Calculate the total number of credits to reserve for one writepages
20970ba6 2158 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2159 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2160 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2161 * bpp - 1 blocks in bpp different extents.
2162 */
525f4ed8
MC
2163static int ext4_da_writepages_trans_blocks(struct inode *inode)
2164{
fffb2739 2165 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2166
fffb2739
JK
2167 return ext4_meta_trans_blocks(inode,
2168 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2169}
61628a3f 2170
8e48dcfb 2171/*
4e7ea81d
JK
2172 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2173 * and underlying extent to map
2174 *
2175 * @mpd - where to look for pages
2176 *
2177 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2178 * IO immediately. When we find a page which isn't mapped we start accumulating
2179 * extent of buffers underlying these pages that needs mapping (formed by
2180 * either delayed or unwritten buffers). We also lock the pages containing
2181 * these buffers. The extent found is returned in @mpd structure (starting at
2182 * mpd->lblk with length mpd->len blocks).
2183 *
2184 * Note that this function can attach bios to one io_end structure which are
2185 * neither logically nor physically contiguous. Although it may seem as an
2186 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2187 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2188 */
4e7ea81d 2189static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2190{
4e7ea81d
JK
2191 struct address_space *mapping = mpd->inode->i_mapping;
2192 struct pagevec pvec;
2193 unsigned int nr_pages;
aeac589a 2194 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2195 pgoff_t index = mpd->first_page;
2196 pgoff_t end = mpd->last_page;
2197 int tag;
2198 int i, err = 0;
2199 int blkbits = mpd->inode->i_blkbits;
2200 ext4_lblk_t lblk;
2201 struct buffer_head *head;
8e48dcfb 2202
4e7ea81d 2203 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2204 tag = PAGECACHE_TAG_TOWRITE;
2205 else
2206 tag = PAGECACHE_TAG_DIRTY;
2207
4e7ea81d
JK
2208 pagevec_init(&pvec, 0);
2209 mpd->map.m_len = 0;
2210 mpd->next_page = index;
4f01b02c 2211 while (index <= end) {
5b41d924 2212 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2213 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2214 if (nr_pages == 0)
4e7ea81d 2215 goto out;
8e48dcfb
TT
2216
2217 for (i = 0; i < nr_pages; i++) {
2218 struct page *page = pvec.pages[i];
2219
2220 /*
2221 * At this point, the page may be truncated or
2222 * invalidated (changing page->mapping to NULL), or
2223 * even swizzled back from swapper_space to tmpfs file
2224 * mapping. However, page->index will not change
2225 * because we have a reference on the page.
2226 */
4f01b02c
TT
2227 if (page->index > end)
2228 goto out;
8e48dcfb 2229
aeac589a
ML
2230 /*
2231 * Accumulated enough dirty pages? This doesn't apply
2232 * to WB_SYNC_ALL mode. For integrity sync we have to
2233 * keep going because someone may be concurrently
2234 * dirtying pages, and we might have synced a lot of
2235 * newly appeared dirty pages, but have not synced all
2236 * of the old dirty pages.
2237 */
2238 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2239 goto out;
2240
4e7ea81d
JK
2241 /* If we can't merge this page, we are done. */
2242 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2243 goto out;
78aaced3 2244
8e48dcfb 2245 lock_page(page);
8e48dcfb 2246 /*
4e7ea81d
JK
2247 * If the page is no longer dirty, or its mapping no
2248 * longer corresponds to inode we are writing (which
2249 * means it has been truncated or invalidated), or the
2250 * page is already under writeback and we are not doing
2251 * a data integrity writeback, skip the page
8e48dcfb 2252 */
4f01b02c
TT
2253 if (!PageDirty(page) ||
2254 (PageWriteback(page) &&
4e7ea81d 2255 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2256 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2257 unlock_page(page);
2258 continue;
2259 }
2260
7cb1a535 2261 wait_on_page_writeback(page);
8e48dcfb 2262 BUG_ON(PageWriteback(page));
8e48dcfb 2263
4e7ea81d 2264 if (mpd->map.m_len == 0)
8eb9e5ce 2265 mpd->first_page = page->index;
8eb9e5ce 2266 mpd->next_page = page->index + 1;
f8bec370 2267 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2268 lblk = ((ext4_lblk_t)page->index) <<
2269 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2270 head = page_buffers(page);
5f1132b2
JK
2271 err = mpage_process_page_bufs(mpd, head, head, lblk);
2272 if (err <= 0)
4e7ea81d 2273 goto out;
5f1132b2 2274 err = 0;
aeac589a 2275 left--;
8e48dcfb
TT
2276 }
2277 pagevec_release(&pvec);
2278 cond_resched();
2279 }
4f01b02c 2280 return 0;
8eb9e5ce
TT
2281out:
2282 pagevec_release(&pvec);
4e7ea81d 2283 return err;
8e48dcfb
TT
2284}
2285
20970ba6
TT
2286static int __writepage(struct page *page, struct writeback_control *wbc,
2287 void *data)
2288{
2289 struct address_space *mapping = data;
2290 int ret = ext4_writepage(page, wbc);
2291 mapping_set_error(mapping, ret);
2292 return ret;
2293}
2294
2295static int ext4_writepages(struct address_space *mapping,
2296 struct writeback_control *wbc)
64769240 2297{
4e7ea81d
JK
2298 pgoff_t writeback_index = 0;
2299 long nr_to_write = wbc->nr_to_write;
22208ded 2300 int range_whole = 0;
4e7ea81d 2301 int cycled = 1;
61628a3f 2302 handle_t *handle = NULL;
df22291f 2303 struct mpage_da_data mpd;
5e745b04 2304 struct inode *inode = mapping->host;
6b523df4 2305 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2306 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2307 bool done;
1bce63d1 2308 struct blk_plug plug;
cb530541 2309 bool give_up_on_write = false;
61628a3f 2310
20970ba6 2311 trace_ext4_writepages(inode, wbc);
ba80b101 2312
61628a3f
MC
2313 /*
2314 * No pages to write? This is mainly a kludge to avoid starting
2315 * a transaction for special inodes like journal inode on last iput()
2316 * because that could violate lock ordering on umount
2317 */
a1d6cc56 2318 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2319 goto out_writepages;
2a21e37e 2320
20970ba6
TT
2321 if (ext4_should_journal_data(inode)) {
2322 struct blk_plug plug;
20970ba6
TT
2323
2324 blk_start_plug(&plug);
2325 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2326 blk_finish_plug(&plug);
bbf023c7 2327 goto out_writepages;
20970ba6
TT
2328 }
2329
2a21e37e
TT
2330 /*
2331 * If the filesystem has aborted, it is read-only, so return
2332 * right away instead of dumping stack traces later on that
2333 * will obscure the real source of the problem. We test
4ab2f15b 2334 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2335 * the latter could be true if the filesystem is mounted
20970ba6 2336 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2337 * *never* be called, so if that ever happens, we would want
2338 * the stack trace.
2339 */
bbf023c7
ML
2340 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2341 ret = -EROFS;
2342 goto out_writepages;
2343 }
2a21e37e 2344
6b523df4
JK
2345 if (ext4_should_dioread_nolock(inode)) {
2346 /*
70261f56 2347 * We may need to convert up to one extent per block in
6b523df4
JK
2348 * the page and we may dirty the inode.
2349 */
2350 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2351 }
2352
4e7ea81d
JK
2353 /*
2354 * If we have inline data and arrive here, it means that
2355 * we will soon create the block for the 1st page, so
2356 * we'd better clear the inline data here.
2357 */
2358 if (ext4_has_inline_data(inode)) {
2359 /* Just inode will be modified... */
2360 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2361 if (IS_ERR(handle)) {
2362 ret = PTR_ERR(handle);
2363 goto out_writepages;
2364 }
2365 BUG_ON(ext4_test_inode_state(inode,
2366 EXT4_STATE_MAY_INLINE_DATA));
2367 ext4_destroy_inline_data(handle, inode);
2368 ext4_journal_stop(handle);
2369 }
2370
22208ded
AK
2371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2372 range_whole = 1;
61628a3f 2373
2acf2c26 2374 if (wbc->range_cyclic) {
4e7ea81d
JK
2375 writeback_index = mapping->writeback_index;
2376 if (writeback_index)
2acf2c26 2377 cycled = 0;
4e7ea81d
JK
2378 mpd.first_page = writeback_index;
2379 mpd.last_page = -1;
5b41d924 2380 } else {
4e7ea81d
JK
2381 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2382 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2383 }
a1d6cc56 2384
4e7ea81d
JK
2385 mpd.inode = inode;
2386 mpd.wbc = wbc;
2387 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2388retry:
6e6938b6 2389 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2390 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2391 done = false;
1bce63d1 2392 blk_start_plug(&plug);
4e7ea81d
JK
2393 while (!done && mpd.first_page <= mpd.last_page) {
2394 /* For each extent of pages we use new io_end */
2395 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2396 if (!mpd.io_submit.io_end) {
2397 ret = -ENOMEM;
2398 break;
2399 }
a1d6cc56
AK
2400
2401 /*
4e7ea81d
JK
2402 * We have two constraints: We find one extent to map and we
2403 * must always write out whole page (makes a difference when
2404 * blocksize < pagesize) so that we don't block on IO when we
2405 * try to write out the rest of the page. Journalled mode is
2406 * not supported by delalloc.
a1d6cc56
AK
2407 */
2408 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2409 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2410
4e7ea81d 2411 /* start a new transaction */
6b523df4
JK
2412 handle = ext4_journal_start_with_reserve(inode,
2413 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2414 if (IS_ERR(handle)) {
2415 ret = PTR_ERR(handle);
1693918e 2416 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2417 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2418 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2419 /* Release allocated io_end */
2420 ext4_put_io_end(mpd.io_submit.io_end);
2421 break;
61628a3f 2422 }
f63e6005 2423
4e7ea81d
JK
2424 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2425 ret = mpage_prepare_extent_to_map(&mpd);
2426 if (!ret) {
2427 if (mpd.map.m_len)
cb530541
TT
2428 ret = mpage_map_and_submit_extent(handle, &mpd,
2429 &give_up_on_write);
4e7ea81d
JK
2430 else {
2431 /*
2432 * We scanned the whole range (or exhausted
2433 * nr_to_write), submitted what was mapped and
2434 * didn't find anything needing mapping. We are
2435 * done.
2436 */
2437 done = true;
2438 }
f63e6005 2439 }
61628a3f 2440 ext4_journal_stop(handle);
4e7ea81d
JK
2441 /* Submit prepared bio */
2442 ext4_io_submit(&mpd.io_submit);
2443 /* Unlock pages we didn't use */
cb530541 2444 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2445 /* Drop our io_end reference we got from init */
2446 ext4_put_io_end(mpd.io_submit.io_end);
2447
2448 if (ret == -ENOSPC && sbi->s_journal) {
2449 /*
2450 * Commit the transaction which would
22208ded
AK
2451 * free blocks released in the transaction
2452 * and try again
2453 */
df22291f 2454 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2455 ret = 0;
4e7ea81d
JK
2456 continue;
2457 }
2458 /* Fatal error - ENOMEM, EIO... */
2459 if (ret)
61628a3f 2460 break;
a1d6cc56 2461 }
1bce63d1 2462 blk_finish_plug(&plug);
9c12a831 2463 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2464 cycled = 1;
4e7ea81d
JK
2465 mpd.last_page = writeback_index - 1;
2466 mpd.first_page = 0;
2acf2c26
AK
2467 goto retry;
2468 }
22208ded
AK
2469
2470 /* Update index */
22208ded
AK
2471 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2472 /*
4e7ea81d 2473 * Set the writeback_index so that range_cyclic
22208ded
AK
2474 * mode will write it back later
2475 */
4e7ea81d 2476 mapping->writeback_index = mpd.first_page;
a1d6cc56 2477
61628a3f 2478out_writepages:
20970ba6
TT
2479 trace_ext4_writepages_result(inode, wbc, ret,
2480 nr_to_write - wbc->nr_to_write);
61628a3f 2481 return ret;
64769240
AT
2482}
2483
79f0be8d
AK
2484static int ext4_nonda_switch(struct super_block *sb)
2485{
5c1ff336 2486 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2487 struct ext4_sb_info *sbi = EXT4_SB(sb);
2488
2489 /*
2490 * switch to non delalloc mode if we are running low
2491 * on free block. The free block accounting via percpu
179f7ebf 2492 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2493 * accumulated on each CPU without updating global counters
2494 * Delalloc need an accurate free block accounting. So switch
2495 * to non delalloc when we are near to error range.
2496 */
5c1ff336
EW
2497 free_clusters =
2498 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2499 dirty_clusters =
2500 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2501 /*
2502 * Start pushing delalloc when 1/2 of free blocks are dirty.
2503 */
5c1ff336 2504 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2505 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2506
5c1ff336
EW
2507 if (2 * free_clusters < 3 * dirty_clusters ||
2508 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2509 /*
c8afb446
ES
2510 * free block count is less than 150% of dirty blocks
2511 * or free blocks is less than watermark
79f0be8d
AK
2512 */
2513 return 1;
2514 }
2515 return 0;
2516}
2517
64769240 2518static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2519 loff_t pos, unsigned len, unsigned flags,
2520 struct page **pagep, void **fsdata)
64769240 2521{
72b8ab9d 2522 int ret, retries = 0;
64769240
AT
2523 struct page *page;
2524 pgoff_t index;
64769240
AT
2525 struct inode *inode = mapping->host;
2526 handle_t *handle;
2527
2528 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2529
2530 if (ext4_nonda_switch(inode->i_sb)) {
2531 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2532 return ext4_write_begin(file, mapping, pos,
2533 len, flags, pagep, fsdata);
2534 }
2535 *fsdata = (void *)0;
9bffad1e 2536 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2537
2538 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2539 ret = ext4_da_write_inline_data_begin(mapping, inode,
2540 pos, len, flags,
2541 pagep, fsdata);
2542 if (ret < 0)
47564bfb
TT
2543 return ret;
2544 if (ret == 1)
2545 return 0;
9c3569b5
TM
2546 }
2547
47564bfb
TT
2548 /*
2549 * grab_cache_page_write_begin() can take a long time if the
2550 * system is thrashing due to memory pressure, or if the page
2551 * is being written back. So grab it first before we start
2552 * the transaction handle. This also allows us to allocate
2553 * the page (if needed) without using GFP_NOFS.
2554 */
2555retry_grab:
2556 page = grab_cache_page_write_begin(mapping, index, flags);
2557 if (!page)
2558 return -ENOMEM;
2559 unlock_page(page);
2560
64769240
AT
2561 /*
2562 * With delayed allocation, we don't log the i_disksize update
2563 * if there is delayed block allocation. But we still need
2564 * to journalling the i_disksize update if writes to the end
2565 * of file which has an already mapped buffer.
2566 */
47564bfb 2567retry_journal:
9924a92a 2568 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2569 if (IS_ERR(handle)) {
47564bfb
TT
2570 page_cache_release(page);
2571 return PTR_ERR(handle);
64769240
AT
2572 }
2573
47564bfb
TT
2574 lock_page(page);
2575 if (page->mapping != mapping) {
2576 /* The page got truncated from under us */
2577 unlock_page(page);
2578 page_cache_release(page);
d5a0d4f7 2579 ext4_journal_stop(handle);
47564bfb 2580 goto retry_grab;
d5a0d4f7 2581 }
47564bfb 2582 /* In case writeback began while the page was unlocked */
7afe5aa5 2583 wait_for_stable_page(page);
64769240 2584
6e1db88d 2585 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2586 if (ret < 0) {
2587 unlock_page(page);
2588 ext4_journal_stop(handle);
ae4d5372
AK
2589 /*
2590 * block_write_begin may have instantiated a few blocks
2591 * outside i_size. Trim these off again. Don't need
2592 * i_size_read because we hold i_mutex.
2593 */
2594 if (pos + len > inode->i_size)
b9a4207d 2595 ext4_truncate_failed_write(inode);
47564bfb
TT
2596
2597 if (ret == -ENOSPC &&
2598 ext4_should_retry_alloc(inode->i_sb, &retries))
2599 goto retry_journal;
2600
2601 page_cache_release(page);
2602 return ret;
64769240
AT
2603 }
2604
47564bfb 2605 *pagep = page;
64769240
AT
2606 return ret;
2607}
2608
632eaeab
MC
2609/*
2610 * Check if we should update i_disksize
2611 * when write to the end of file but not require block allocation
2612 */
2613static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2614 unsigned long offset)
632eaeab
MC
2615{
2616 struct buffer_head *bh;
2617 struct inode *inode = page->mapping->host;
2618 unsigned int idx;
2619 int i;
2620
2621 bh = page_buffers(page);
2622 idx = offset >> inode->i_blkbits;
2623
af5bc92d 2624 for (i = 0; i < idx; i++)
632eaeab
MC
2625 bh = bh->b_this_page;
2626
29fa89d0 2627 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2628 return 0;
2629 return 1;
2630}
2631
64769240 2632static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2633 struct address_space *mapping,
2634 loff_t pos, unsigned len, unsigned copied,
2635 struct page *page, void *fsdata)
64769240
AT
2636{
2637 struct inode *inode = mapping->host;
2638 int ret = 0, ret2;
2639 handle_t *handle = ext4_journal_current_handle();
2640 loff_t new_i_size;
632eaeab 2641 unsigned long start, end;
79f0be8d
AK
2642 int write_mode = (int)(unsigned long)fsdata;
2643
74d553aa
TT
2644 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2645 return ext4_write_end(file, mapping, pos,
2646 len, copied, page, fsdata);
632eaeab 2647
9bffad1e 2648 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2649 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2650 end = start + copied - 1;
64769240
AT
2651
2652 /*
2653 * generic_write_end() will run mark_inode_dirty() if i_size
2654 * changes. So let's piggyback the i_disksize mark_inode_dirty
2655 * into that.
2656 */
64769240 2657 new_i_size = pos + copied;
ea51d132 2658 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2659 if (ext4_has_inline_data(inode) ||
2660 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2661 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2662 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2663 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2664 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2665 /* We need to mark inode dirty even if
2666 * new_i_size is less that inode->i_size
2667 * bu greater than i_disksize.(hint delalloc)
2668 */
2669 ext4_mark_inode_dirty(handle, inode);
64769240 2670 }
632eaeab 2671 }
9c3569b5
TM
2672
2673 if (write_mode != CONVERT_INLINE_DATA &&
2674 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2675 ext4_has_inline_data(inode))
2676 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2677 page);
2678 else
2679 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2680 page, fsdata);
9c3569b5 2681
64769240
AT
2682 copied = ret2;
2683 if (ret2 < 0)
2684 ret = ret2;
2685 ret2 = ext4_journal_stop(handle);
2686 if (!ret)
2687 ret = ret2;
2688
2689 return ret ? ret : copied;
2690}
2691
d47992f8
LC
2692static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2693 unsigned int length)
64769240 2694{
64769240
AT
2695 /*
2696 * Drop reserved blocks
2697 */
2698 BUG_ON(!PageLocked(page));
2699 if (!page_has_buffers(page))
2700 goto out;
2701
ca99fdd2 2702 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2703
2704out:
d47992f8 2705 ext4_invalidatepage(page, offset, length);
64769240
AT
2706
2707 return;
2708}
2709
ccd2506b
TT
2710/*
2711 * Force all delayed allocation blocks to be allocated for a given inode.
2712 */
2713int ext4_alloc_da_blocks(struct inode *inode)
2714{
fb40ba0d
TT
2715 trace_ext4_alloc_da_blocks(inode);
2716
71d4f7d0 2717 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2718 return 0;
2719
2720 /*
2721 * We do something simple for now. The filemap_flush() will
2722 * also start triggering a write of the data blocks, which is
2723 * not strictly speaking necessary (and for users of
2724 * laptop_mode, not even desirable). However, to do otherwise
2725 * would require replicating code paths in:
de9a55b8 2726 *
20970ba6 2727 * ext4_writepages() ->
ccd2506b
TT
2728 * write_cache_pages() ---> (via passed in callback function)
2729 * __mpage_da_writepage() -->
2730 * mpage_add_bh_to_extent()
2731 * mpage_da_map_blocks()
2732 *
2733 * The problem is that write_cache_pages(), located in
2734 * mm/page-writeback.c, marks pages clean in preparation for
2735 * doing I/O, which is not desirable if we're not planning on
2736 * doing I/O at all.
2737 *
2738 * We could call write_cache_pages(), and then redirty all of
380cf090 2739 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2740 * would be ugly in the extreme. So instead we would need to
2741 * replicate parts of the code in the above functions,
25985edc 2742 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2743 * write out the pages, but rather only collect contiguous
2744 * logical block extents, call the multi-block allocator, and
2745 * then update the buffer heads with the block allocations.
de9a55b8 2746 *
ccd2506b
TT
2747 * For now, though, we'll cheat by calling filemap_flush(),
2748 * which will map the blocks, and start the I/O, but not
2749 * actually wait for the I/O to complete.
2750 */
2751 return filemap_flush(inode->i_mapping);
2752}
64769240 2753
ac27a0ec
DK
2754/*
2755 * bmap() is special. It gets used by applications such as lilo and by
2756 * the swapper to find the on-disk block of a specific piece of data.
2757 *
2758 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2759 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2760 * filesystem and enables swap, then they may get a nasty shock when the
2761 * data getting swapped to that swapfile suddenly gets overwritten by
2762 * the original zero's written out previously to the journal and
2763 * awaiting writeback in the kernel's buffer cache.
2764 *
2765 * So, if we see any bmap calls here on a modified, data-journaled file,
2766 * take extra steps to flush any blocks which might be in the cache.
2767 */
617ba13b 2768static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2769{
2770 struct inode *inode = mapping->host;
2771 journal_t *journal;
2772 int err;
2773
46c7f254
TM
2774 /*
2775 * We can get here for an inline file via the FIBMAP ioctl
2776 */
2777 if (ext4_has_inline_data(inode))
2778 return 0;
2779
64769240
AT
2780 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2781 test_opt(inode->i_sb, DELALLOC)) {
2782 /*
2783 * With delalloc we want to sync the file
2784 * so that we can make sure we allocate
2785 * blocks for file
2786 */
2787 filemap_write_and_wait(mapping);
2788 }
2789
19f5fb7a
TT
2790 if (EXT4_JOURNAL(inode) &&
2791 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2792 /*
2793 * This is a REALLY heavyweight approach, but the use of
2794 * bmap on dirty files is expected to be extremely rare:
2795 * only if we run lilo or swapon on a freshly made file
2796 * do we expect this to happen.
2797 *
2798 * (bmap requires CAP_SYS_RAWIO so this does not
2799 * represent an unprivileged user DOS attack --- we'd be
2800 * in trouble if mortal users could trigger this path at
2801 * will.)
2802 *
617ba13b 2803 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2804 * regular files. If somebody wants to bmap a directory
2805 * or symlink and gets confused because the buffer
2806 * hasn't yet been flushed to disk, they deserve
2807 * everything they get.
2808 */
2809
19f5fb7a 2810 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2811 journal = EXT4_JOURNAL(inode);
dab291af
MC
2812 jbd2_journal_lock_updates(journal);
2813 err = jbd2_journal_flush(journal);
2814 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2815
2816 if (err)
2817 return 0;
2818 }
2819
af5bc92d 2820 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2821}
2822
617ba13b 2823static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2824{
46c7f254
TM
2825 int ret = -EAGAIN;
2826 struct inode *inode = page->mapping->host;
2827
0562e0ba 2828 trace_ext4_readpage(page);
46c7f254
TM
2829
2830 if (ext4_has_inline_data(inode))
2831 ret = ext4_readpage_inline(inode, page);
2832
2833 if (ret == -EAGAIN)
2834 return mpage_readpage(page, ext4_get_block);
2835
2836 return ret;
ac27a0ec
DK
2837}
2838
2839static int
617ba13b 2840ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2841 struct list_head *pages, unsigned nr_pages)
2842{
46c7f254
TM
2843 struct inode *inode = mapping->host;
2844
2845 /* If the file has inline data, no need to do readpages. */
2846 if (ext4_has_inline_data(inode))
2847 return 0;
2848
617ba13b 2849 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2850}
2851
d47992f8
LC
2852static void ext4_invalidatepage(struct page *page, unsigned int offset,
2853 unsigned int length)
ac27a0ec 2854{
ca99fdd2 2855 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2856
4520fb3c
JK
2857 /* No journalling happens on data buffers when this function is used */
2858 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2859
ca99fdd2 2860 block_invalidatepage(page, offset, length);
4520fb3c
JK
2861}
2862
53e87268 2863static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2864 unsigned int offset,
2865 unsigned int length)
4520fb3c
JK
2866{
2867 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2868
ca99fdd2 2869 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2870
ac27a0ec
DK
2871 /*
2872 * If it's a full truncate we just forget about the pending dirtying
2873 */
ca99fdd2 2874 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2875 ClearPageChecked(page);
2876
ca99fdd2 2877 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2878}
2879
2880/* Wrapper for aops... */
2881static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2882 unsigned int offset,
2883 unsigned int length)
53e87268 2884{
ca99fdd2 2885 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2886}
2887
617ba13b 2888static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2889{
617ba13b 2890 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2891
0562e0ba
JZ
2892 trace_ext4_releasepage(page);
2893
e1c36595
JK
2894 /* Page has dirty journalled data -> cannot release */
2895 if (PageChecked(page))
ac27a0ec 2896 return 0;
0390131b
FM
2897 if (journal)
2898 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2899 else
2900 return try_to_free_buffers(page);
ac27a0ec
DK
2901}
2902
2ed88685
TT
2903/*
2904 * ext4_get_block used when preparing for a DIO write or buffer write.
2905 * We allocate an uinitialized extent if blocks haven't been allocated.
2906 * The extent will be converted to initialized after the IO is complete.
2907 */
f19d5870 2908int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2909 struct buffer_head *bh_result, int create)
2910{
c7064ef1 2911 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2912 inode->i_ino, create);
2ed88685
TT
2913 return _ext4_get_block(inode, iblock, bh_result,
2914 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2915}
2916
729f52c6 2917static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2918 struct buffer_head *bh_result, int create)
729f52c6 2919{
8b0f165f
AP
2920 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2921 inode->i_ino, create);
2922 return _ext4_get_block(inode, iblock, bh_result,
2923 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2924}
2925
4c0425ff 2926static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2927 ssize_t size, void *private)
4c0425ff
MC
2928{
2929 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2930
97a851ed 2931 /* if not async direct IO just return */
7b7a8665 2932 if (!io_end)
97a851ed 2933 return;
4b70df18 2934
88635ca2 2935 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2936 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2937 iocb->private, io_end->inode->i_ino, iocb, offset,
2938 size);
8d5d02e6 2939
b5a7e970 2940 iocb->private = NULL;
4c0425ff
MC
2941 io_end->offset = offset;
2942 io_end->size = size;
7b7a8665 2943 ext4_put_io_end(io_end);
4c0425ff 2944}
c7064ef1 2945
4c0425ff
MC
2946/*
2947 * For ext4 extent files, ext4 will do direct-io write to holes,
2948 * preallocated extents, and those write extend the file, no need to
2949 * fall back to buffered IO.
2950 *
556615dc 2951 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 2952 * If those blocks were preallocated, we mark sure they are split, but
556615dc 2953 * still keep the range to write as unwritten.
4c0425ff 2954 *
69c499d1 2955 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2956 * For async direct IO, since the IO may still pending when return, we
25985edc 2957 * set up an end_io call back function, which will do the conversion
8d5d02e6 2958 * when async direct IO completed.
4c0425ff
MC
2959 *
2960 * If the O_DIRECT write will extend the file then add this inode to the
2961 * orphan list. So recovery will truncate it back to the original size
2962 * if the machine crashes during the write.
2963 *
2964 */
2965static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
16b1f05d 2966 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
2967{
2968 struct file *file = iocb->ki_filp;
2969 struct inode *inode = file->f_mapping->host;
2970 ssize_t ret;
a6cbcd4a 2971 size_t count = iov_iter_count(iter);
69c499d1
TT
2972 int overwrite = 0;
2973 get_block_t *get_block_func = NULL;
2974 int dio_flags = 0;
4c0425ff 2975 loff_t final_size = offset + count;
97a851ed 2976 ext4_io_end_t *io_end = NULL;
729f52c6 2977
69c499d1
TT
2978 /* Use the old path for reads and writes beyond i_size. */
2979 if (rw != WRITE || final_size > inode->i_size)
16b1f05d 2980 return ext4_ind_direct_IO(rw, iocb, iter, offset);
4bd809db 2981
69c499d1 2982 BUG_ON(iocb->private == NULL);
4bd809db 2983
e8340395
JK
2984 /*
2985 * Make all waiters for direct IO properly wait also for extent
2986 * conversion. This also disallows race between truncate() and
2987 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2988 */
2989 if (rw == WRITE)
2990 atomic_inc(&inode->i_dio_count);
2991
69c499d1
TT
2992 /* If we do a overwrite dio, i_mutex locking can be released */
2993 overwrite = *((int *)iocb->private);
4bd809db 2994
69c499d1 2995 if (overwrite) {
69c499d1
TT
2996 down_read(&EXT4_I(inode)->i_data_sem);
2997 mutex_unlock(&inode->i_mutex);
2998 }
8d5d02e6 2999
69c499d1
TT
3000 /*
3001 * We could direct write to holes and fallocate.
3002 *
3003 * Allocated blocks to fill the hole are marked as
556615dc 3004 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3005 * the stale data before DIO complete the data IO.
3006 *
3007 * As to previously fallocated extents, ext4 get_block will
3008 * just simply mark the buffer mapped but still keep the
556615dc 3009 * extents unwritten.
69c499d1
TT
3010 *
3011 * For non AIO case, we will convert those unwritten extents
3012 * to written after return back from blockdev_direct_IO.
3013 *
3014 * For async DIO, the conversion needs to be deferred when the
3015 * IO is completed. The ext4 end_io callback function will be
3016 * called to take care of the conversion work. Here for async
3017 * case, we allocate an io_end structure to hook to the iocb.
3018 */
3019 iocb->private = NULL;
3020 ext4_inode_aio_set(inode, NULL);
3021 if (!is_sync_kiocb(iocb)) {
97a851ed 3022 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3023 if (!io_end) {
3024 ret = -ENOMEM;
3025 goto retake_lock;
8b0f165f 3026 }
97a851ed
JK
3027 /*
3028 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3029 */
3030 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3031 /*
69c499d1
TT
3032 * we save the io structure for current async direct
3033 * IO, so that later ext4_map_blocks() could flag the
3034 * io structure whether there is a unwritten extents
3035 * needs to be converted when IO is completed.
8d5d02e6 3036 */
69c499d1
TT
3037 ext4_inode_aio_set(inode, io_end);
3038 }
4bd809db 3039
69c499d1
TT
3040 if (overwrite) {
3041 get_block_func = ext4_get_block_write_nolock;
3042 } else {
3043 get_block_func = ext4_get_block_write;
3044 dio_flags = DIO_LOCKING;
3045 }
3046 ret = __blockdev_direct_IO(rw, iocb, inode,
31b14039
AV
3047 inode->i_sb->s_bdev, iter,
3048 offset,
69c499d1
TT
3049 get_block_func,
3050 ext4_end_io_dio,
3051 NULL,
3052 dio_flags);
3053
69c499d1 3054 /*
97a851ed
JK
3055 * Put our reference to io_end. This can free the io_end structure e.g.
3056 * in sync IO case or in case of error. It can even perform extent
3057 * conversion if all bios we submitted finished before we got here.
3058 * Note that in that case iocb->private can be already set to NULL
3059 * here.
69c499d1 3060 */
97a851ed
JK
3061 if (io_end) {
3062 ext4_inode_aio_set(inode, NULL);
3063 ext4_put_io_end(io_end);
3064 /*
3065 * When no IO was submitted ext4_end_io_dio() was not
3066 * called so we have to put iocb's reference.
3067 */
3068 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3069 WARN_ON(iocb->private != io_end);
3070 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3071 ext4_put_io_end(io_end);
3072 iocb->private = NULL;
3073 }
3074 }
3075 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3076 EXT4_STATE_DIO_UNWRITTEN)) {
3077 int err;
3078 /*
3079 * for non AIO case, since the IO is already
3080 * completed, we could do the conversion right here
3081 */
6b523df4 3082 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3083 offset, ret);
3084 if (err < 0)
3085 ret = err;
3086 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3087 }
4bd809db 3088
69c499d1 3089retake_lock:
e8340395
JK
3090 if (rw == WRITE)
3091 inode_dio_done(inode);
69c499d1
TT
3092 /* take i_mutex locking again if we do a ovewrite dio */
3093 if (overwrite) {
69c499d1
TT
3094 up_read(&EXT4_I(inode)->i_data_sem);
3095 mutex_lock(&inode->i_mutex);
4c0425ff 3096 }
8d5d02e6 3097
69c499d1 3098 return ret;
4c0425ff
MC
3099}
3100
3101static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 3102 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
3103{
3104 struct file *file = iocb->ki_filp;
3105 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3106 size_t count = iov_iter_count(iter);
0562e0ba 3107 ssize_t ret;
4c0425ff 3108
84ebd795
TT
3109 /*
3110 * If we are doing data journalling we don't support O_DIRECT
3111 */
3112 if (ext4_should_journal_data(inode))
3113 return 0;
3114
46c7f254
TM
3115 /* Let buffer I/O handle the inline data case. */
3116 if (ext4_has_inline_data(inode))
3117 return 0;
3118
a6cbcd4a 3119 trace_ext4_direct_IO_enter(inode, offset, count, rw);
12e9b892 3120 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
16b1f05d 3121 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
0562e0ba 3122 else
16b1f05d 3123 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
a6cbcd4a 3124 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
0562e0ba 3125 return ret;
4c0425ff
MC
3126}
3127
ac27a0ec 3128/*
617ba13b 3129 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3130 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3131 * much here because ->set_page_dirty is called under VFS locks. The page is
3132 * not necessarily locked.
3133 *
3134 * We cannot just dirty the page and leave attached buffers clean, because the
3135 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3136 * or jbddirty because all the journalling code will explode.
3137 *
3138 * So what we do is to mark the page "pending dirty" and next time writepage
3139 * is called, propagate that into the buffers appropriately.
3140 */
617ba13b 3141static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3142{
3143 SetPageChecked(page);
3144 return __set_page_dirty_nobuffers(page);
3145}
3146
74d553aa 3147static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3148 .readpage = ext4_readpage,
3149 .readpages = ext4_readpages,
43ce1d23 3150 .writepage = ext4_writepage,
20970ba6 3151 .writepages = ext4_writepages,
8ab22b9a 3152 .write_begin = ext4_write_begin,
74d553aa 3153 .write_end = ext4_write_end,
8ab22b9a
HH
3154 .bmap = ext4_bmap,
3155 .invalidatepage = ext4_invalidatepage,
3156 .releasepage = ext4_releasepage,
3157 .direct_IO = ext4_direct_IO,
3158 .migratepage = buffer_migrate_page,
3159 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3160 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3161};
3162
617ba13b 3163static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3164 .readpage = ext4_readpage,
3165 .readpages = ext4_readpages,
43ce1d23 3166 .writepage = ext4_writepage,
20970ba6 3167 .writepages = ext4_writepages,
8ab22b9a
HH
3168 .write_begin = ext4_write_begin,
3169 .write_end = ext4_journalled_write_end,
3170 .set_page_dirty = ext4_journalled_set_page_dirty,
3171 .bmap = ext4_bmap,
4520fb3c 3172 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3173 .releasepage = ext4_releasepage,
84ebd795 3174 .direct_IO = ext4_direct_IO,
8ab22b9a 3175 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3176 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3177};
3178
64769240 3179static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3180 .readpage = ext4_readpage,
3181 .readpages = ext4_readpages,
43ce1d23 3182 .writepage = ext4_writepage,
20970ba6 3183 .writepages = ext4_writepages,
8ab22b9a
HH
3184 .write_begin = ext4_da_write_begin,
3185 .write_end = ext4_da_write_end,
3186 .bmap = ext4_bmap,
3187 .invalidatepage = ext4_da_invalidatepage,
3188 .releasepage = ext4_releasepage,
3189 .direct_IO = ext4_direct_IO,
3190 .migratepage = buffer_migrate_page,
3191 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3192 .error_remove_page = generic_error_remove_page,
64769240
AT
3193};
3194
617ba13b 3195void ext4_set_aops(struct inode *inode)
ac27a0ec 3196{
3d2b1582
LC
3197 switch (ext4_inode_journal_mode(inode)) {
3198 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3199 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3200 break;
3201 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3202 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3203 break;
3204 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3205 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3206 return;
3d2b1582
LC
3207 default:
3208 BUG();
3209 }
74d553aa
TT
3210 if (test_opt(inode->i_sb, DELALLOC))
3211 inode->i_mapping->a_ops = &ext4_da_aops;
3212 else
3213 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3214}
3215
d863dc36
LC
3216/*
3217 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3218 * starting from file offset 'from'. The range to be zero'd must
3219 * be contained with in one block. If the specified range exceeds
3220 * the end of the block it will be shortened to end of the block
3221 * that cooresponds to 'from'
3222 */
94350ab5 3223static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3224 struct address_space *mapping, loff_t from, loff_t length)
3225{
3226 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3227 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3228 unsigned blocksize, max, pos;
3229 ext4_lblk_t iblock;
3230 struct inode *inode = mapping->host;
3231 struct buffer_head *bh;
3232 struct page *page;
3233 int err = 0;
3234
3235 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3236 mapping_gfp_mask(mapping) & ~__GFP_FS);
3237 if (!page)
3238 return -ENOMEM;
3239
3240 blocksize = inode->i_sb->s_blocksize;
3241 max = blocksize - (offset & (blocksize - 1));
3242
3243 /*
3244 * correct length if it does not fall between
3245 * 'from' and the end of the block
3246 */
3247 if (length > max || length < 0)
3248 length = max;
3249
3250 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3251
3252 if (!page_has_buffers(page))
3253 create_empty_buffers(page, blocksize, 0);
3254
3255 /* Find the buffer that contains "offset" */
3256 bh = page_buffers(page);
3257 pos = blocksize;
3258 while (offset >= pos) {
3259 bh = bh->b_this_page;
3260 iblock++;
3261 pos += blocksize;
3262 }
d863dc36
LC
3263 if (buffer_freed(bh)) {
3264 BUFFER_TRACE(bh, "freed: skip");
3265 goto unlock;
3266 }
d863dc36
LC
3267 if (!buffer_mapped(bh)) {
3268 BUFFER_TRACE(bh, "unmapped");
3269 ext4_get_block(inode, iblock, bh, 0);
3270 /* unmapped? It's a hole - nothing to do */
3271 if (!buffer_mapped(bh)) {
3272 BUFFER_TRACE(bh, "still unmapped");
3273 goto unlock;
3274 }
3275 }
3276
3277 /* Ok, it's mapped. Make sure it's up-to-date */
3278 if (PageUptodate(page))
3279 set_buffer_uptodate(bh);
3280
3281 if (!buffer_uptodate(bh)) {
3282 err = -EIO;
3283 ll_rw_block(READ, 1, &bh);
3284 wait_on_buffer(bh);
3285 /* Uhhuh. Read error. Complain and punt. */
3286 if (!buffer_uptodate(bh))
3287 goto unlock;
3288 }
d863dc36
LC
3289 if (ext4_should_journal_data(inode)) {
3290 BUFFER_TRACE(bh, "get write access");
3291 err = ext4_journal_get_write_access(handle, bh);
3292 if (err)
3293 goto unlock;
3294 }
d863dc36 3295 zero_user(page, offset, length);
d863dc36
LC
3296 BUFFER_TRACE(bh, "zeroed end of block");
3297
d863dc36
LC
3298 if (ext4_should_journal_data(inode)) {
3299 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3300 } else {
353eefd3 3301 err = 0;
d863dc36 3302 mark_buffer_dirty(bh);
0713ed0c
LC
3303 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3304 err = ext4_jbd2_file_inode(handle, inode);
3305 }
d863dc36
LC
3306
3307unlock:
3308 unlock_page(page);
3309 page_cache_release(page);
3310 return err;
3311}
3312
94350ab5
MW
3313/*
3314 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3315 * up to the end of the block which corresponds to `from'.
3316 * This required during truncate. We need to physically zero the tail end
3317 * of that block so it doesn't yield old data if the file is later grown.
3318 */
c197855e 3319static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3320 struct address_space *mapping, loff_t from)
3321{
3322 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3323 unsigned length;
3324 unsigned blocksize;
3325 struct inode *inode = mapping->host;
3326
3327 blocksize = inode->i_sb->s_blocksize;
3328 length = blocksize - (offset & (blocksize - 1));
3329
3330 return ext4_block_zero_page_range(handle, mapping, from, length);
3331}
3332
a87dd18c
LC
3333int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3334 loff_t lstart, loff_t length)
3335{
3336 struct super_block *sb = inode->i_sb;
3337 struct address_space *mapping = inode->i_mapping;
e1be3a92 3338 unsigned partial_start, partial_end;
a87dd18c
LC
3339 ext4_fsblk_t start, end;
3340 loff_t byte_end = (lstart + length - 1);
3341 int err = 0;
3342
e1be3a92
LC
3343 partial_start = lstart & (sb->s_blocksize - 1);
3344 partial_end = byte_end & (sb->s_blocksize - 1);
3345
a87dd18c
LC
3346 start = lstart >> sb->s_blocksize_bits;
3347 end = byte_end >> sb->s_blocksize_bits;
3348
3349 /* Handle partial zero within the single block */
e1be3a92
LC
3350 if (start == end &&
3351 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3352 err = ext4_block_zero_page_range(handle, mapping,
3353 lstart, length);
3354 return err;
3355 }
3356 /* Handle partial zero out on the start of the range */
e1be3a92 3357 if (partial_start) {
a87dd18c
LC
3358 err = ext4_block_zero_page_range(handle, mapping,
3359 lstart, sb->s_blocksize);
3360 if (err)
3361 return err;
3362 }
3363 /* Handle partial zero out on the end of the range */
e1be3a92 3364 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3365 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3366 byte_end - partial_end,
3367 partial_end + 1);
a87dd18c
LC
3368 return err;
3369}
3370
91ef4caf
DG
3371int ext4_can_truncate(struct inode *inode)
3372{
91ef4caf
DG
3373 if (S_ISREG(inode->i_mode))
3374 return 1;
3375 if (S_ISDIR(inode->i_mode))
3376 return 1;
3377 if (S_ISLNK(inode->i_mode))
3378 return !ext4_inode_is_fast_symlink(inode);
3379 return 0;
3380}
3381
a4bb6b64
AH
3382/*
3383 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3384 * associated with the given offset and length
3385 *
3386 * @inode: File inode
3387 * @offset: The offset where the hole will begin
3388 * @len: The length of the hole
3389 *
4907cb7b 3390 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3391 */
3392
aeb2817a 3393int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3394{
26a4c0c6
TT
3395 struct super_block *sb = inode->i_sb;
3396 ext4_lblk_t first_block, stop_block;
3397 struct address_space *mapping = inode->i_mapping;
a87dd18c 3398 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3399 handle_t *handle;
3400 unsigned int credits;
3401 int ret = 0;
3402
a4bb6b64 3403 if (!S_ISREG(inode->i_mode))
73355192 3404 return -EOPNOTSUPP;
a4bb6b64 3405
b8a86845 3406 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3407
26a4c0c6
TT
3408 /*
3409 * Write out all dirty pages to avoid race conditions
3410 * Then release them.
3411 */
3412 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3413 ret = filemap_write_and_wait_range(mapping, offset,
3414 offset + length - 1);
3415 if (ret)
3416 return ret;
3417 }
3418
3419 mutex_lock(&inode->i_mutex);
9ef06cec 3420
26a4c0c6
TT
3421 /* No need to punch hole beyond i_size */
3422 if (offset >= inode->i_size)
3423 goto out_mutex;
3424
3425 /*
3426 * If the hole extends beyond i_size, set the hole
3427 * to end after the page that contains i_size
3428 */
3429 if (offset + length > inode->i_size) {
3430 length = inode->i_size +
3431 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3432 offset;
3433 }
3434
a361293f
JK
3435 if (offset & (sb->s_blocksize - 1) ||
3436 (offset + length) & (sb->s_blocksize - 1)) {
3437 /*
3438 * Attach jinode to inode for jbd2 if we do any zeroing of
3439 * partial block
3440 */
3441 ret = ext4_inode_attach_jinode(inode);
3442 if (ret < 0)
3443 goto out_mutex;
3444
3445 }
3446
a87dd18c
LC
3447 first_block_offset = round_up(offset, sb->s_blocksize);
3448 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3449
a87dd18c
LC
3450 /* Now release the pages and zero block aligned part of pages*/
3451 if (last_block_offset > first_block_offset)
3452 truncate_pagecache_range(inode, first_block_offset,
3453 last_block_offset);
26a4c0c6
TT
3454
3455 /* Wait all existing dio workers, newcomers will block on i_mutex */
3456 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3457 inode_dio_wait(inode);
3458
3459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3460 credits = ext4_writepage_trans_blocks(inode);
3461 else
3462 credits = ext4_blocks_for_truncate(inode);
3463 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3464 if (IS_ERR(handle)) {
3465 ret = PTR_ERR(handle);
3466 ext4_std_error(sb, ret);
3467 goto out_dio;
3468 }
3469
a87dd18c
LC
3470 ret = ext4_zero_partial_blocks(handle, inode, offset,
3471 length);
3472 if (ret)
3473 goto out_stop;
26a4c0c6
TT
3474
3475 first_block = (offset + sb->s_blocksize - 1) >>
3476 EXT4_BLOCK_SIZE_BITS(sb);
3477 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3478
3479 /* If there are no blocks to remove, return now */
3480 if (first_block >= stop_block)
3481 goto out_stop;
3482
3483 down_write(&EXT4_I(inode)->i_data_sem);
3484 ext4_discard_preallocations(inode);
3485
3486 ret = ext4_es_remove_extent(inode, first_block,
3487 stop_block - first_block);
3488 if (ret) {
3489 up_write(&EXT4_I(inode)->i_data_sem);
3490 goto out_stop;
3491 }
3492
3493 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3494 ret = ext4_ext_remove_space(inode, first_block,
3495 stop_block - 1);
3496 else
4f579ae7 3497 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3498 stop_block);
3499
819c4920 3500 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3501 if (IS_SYNC(inode))
3502 ext4_handle_sync(handle);
e251f9bc
MP
3503
3504 /* Now release the pages again to reduce race window */
3505 if (last_block_offset > first_block_offset)
3506 truncate_pagecache_range(inode, first_block_offset,
3507 last_block_offset);
3508
26a4c0c6
TT
3509 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3510 ext4_mark_inode_dirty(handle, inode);
3511out_stop:
3512 ext4_journal_stop(handle);
3513out_dio:
3514 ext4_inode_resume_unlocked_dio(inode);
3515out_mutex:
3516 mutex_unlock(&inode->i_mutex);
3517 return ret;
a4bb6b64
AH
3518}
3519
a361293f
JK
3520int ext4_inode_attach_jinode(struct inode *inode)
3521{
3522 struct ext4_inode_info *ei = EXT4_I(inode);
3523 struct jbd2_inode *jinode;
3524
3525 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3526 return 0;
3527
3528 jinode = jbd2_alloc_inode(GFP_KERNEL);
3529 spin_lock(&inode->i_lock);
3530 if (!ei->jinode) {
3531 if (!jinode) {
3532 spin_unlock(&inode->i_lock);
3533 return -ENOMEM;
3534 }
3535 ei->jinode = jinode;
3536 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3537 jinode = NULL;
3538 }
3539 spin_unlock(&inode->i_lock);
3540 if (unlikely(jinode != NULL))
3541 jbd2_free_inode(jinode);
3542 return 0;
3543}
3544
ac27a0ec 3545/*
617ba13b 3546 * ext4_truncate()
ac27a0ec 3547 *
617ba13b
MC
3548 * We block out ext4_get_block() block instantiations across the entire
3549 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3550 * simultaneously on behalf of the same inode.
3551 *
42b2aa86 3552 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3553 * is one core, guiding principle: the file's tree must always be consistent on
3554 * disk. We must be able to restart the truncate after a crash.
3555 *
3556 * The file's tree may be transiently inconsistent in memory (although it
3557 * probably isn't), but whenever we close off and commit a journal transaction,
3558 * the contents of (the filesystem + the journal) must be consistent and
3559 * restartable. It's pretty simple, really: bottom up, right to left (although
3560 * left-to-right works OK too).
3561 *
3562 * Note that at recovery time, journal replay occurs *before* the restart of
3563 * truncate against the orphan inode list.
3564 *
3565 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3566 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3567 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3568 * ext4_truncate() to have another go. So there will be instantiated blocks
3569 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3570 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3571 * ext4_truncate() run will find them and release them.
ac27a0ec 3572 */
617ba13b 3573void ext4_truncate(struct inode *inode)
ac27a0ec 3574{
819c4920
TT
3575 struct ext4_inode_info *ei = EXT4_I(inode);
3576 unsigned int credits;
3577 handle_t *handle;
3578 struct address_space *mapping = inode->i_mapping;
819c4920 3579
19b5ef61
TT
3580 /*
3581 * There is a possibility that we're either freeing the inode
e04027e8 3582 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3583 * have i_mutex locked because it's not necessary.
3584 */
3585 if (!(inode->i_state & (I_NEW|I_FREEING)))
3586 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3587 trace_ext4_truncate_enter(inode);
3588
91ef4caf 3589 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3590 return;
3591
12e9b892 3592 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3593
5534fb5b 3594 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3595 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3596
aef1c851
TM
3597 if (ext4_has_inline_data(inode)) {
3598 int has_inline = 1;
3599
3600 ext4_inline_data_truncate(inode, &has_inline);
3601 if (has_inline)
3602 return;
3603 }
3604
a361293f
JK
3605 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3606 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3607 if (ext4_inode_attach_jinode(inode) < 0)
3608 return;
3609 }
3610
819c4920
TT
3611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612 credits = ext4_writepage_trans_blocks(inode);
3613 else
3614 credits = ext4_blocks_for_truncate(inode);
3615
3616 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3617 if (IS_ERR(handle)) {
3618 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3619 return;
3620 }
3621
eb3544c6
LC
3622 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3623 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3624
3625 /*
3626 * We add the inode to the orphan list, so that if this
3627 * truncate spans multiple transactions, and we crash, we will
3628 * resume the truncate when the filesystem recovers. It also
3629 * marks the inode dirty, to catch the new size.
3630 *
3631 * Implication: the file must always be in a sane, consistent
3632 * truncatable state while each transaction commits.
3633 */
3634 if (ext4_orphan_add(handle, inode))
3635 goto out_stop;
3636
3637 down_write(&EXT4_I(inode)->i_data_sem);
3638
3639 ext4_discard_preallocations(inode);
3640
ff9893dc 3641 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3642 ext4_ext_truncate(handle, inode);
ff9893dc 3643 else
819c4920
TT
3644 ext4_ind_truncate(handle, inode);
3645
3646 up_write(&ei->i_data_sem);
3647
3648 if (IS_SYNC(inode))
3649 ext4_handle_sync(handle);
3650
3651out_stop:
3652 /*
3653 * If this was a simple ftruncate() and the file will remain alive,
3654 * then we need to clear up the orphan record which we created above.
3655 * However, if this was a real unlink then we were called by
3656 * ext4_delete_inode(), and we allow that function to clean up the
3657 * orphan info for us.
3658 */
3659 if (inode->i_nlink)
3660 ext4_orphan_del(handle, inode);
3661
3662 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3663 ext4_mark_inode_dirty(handle, inode);
3664 ext4_journal_stop(handle);
ac27a0ec 3665
0562e0ba 3666 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3667}
3668
ac27a0ec 3669/*
617ba13b 3670 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3671 * underlying buffer_head on success. If 'in_mem' is true, we have all
3672 * data in memory that is needed to recreate the on-disk version of this
3673 * inode.
3674 */
617ba13b
MC
3675static int __ext4_get_inode_loc(struct inode *inode,
3676 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3677{
240799cd
TT
3678 struct ext4_group_desc *gdp;
3679 struct buffer_head *bh;
3680 struct super_block *sb = inode->i_sb;
3681 ext4_fsblk_t block;
3682 int inodes_per_block, inode_offset;
3683
3a06d778 3684 iloc->bh = NULL;
240799cd
TT
3685 if (!ext4_valid_inum(sb, inode->i_ino))
3686 return -EIO;
ac27a0ec 3687
240799cd
TT
3688 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3689 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3690 if (!gdp)
ac27a0ec
DK
3691 return -EIO;
3692
240799cd
TT
3693 /*
3694 * Figure out the offset within the block group inode table
3695 */
00d09882 3696 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3697 inode_offset = ((inode->i_ino - 1) %
3698 EXT4_INODES_PER_GROUP(sb));
3699 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3700 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3701
3702 bh = sb_getblk(sb, block);
aebf0243 3703 if (unlikely(!bh))
860d21e2 3704 return -ENOMEM;
ac27a0ec
DK
3705 if (!buffer_uptodate(bh)) {
3706 lock_buffer(bh);
9c83a923
HK
3707
3708 /*
3709 * If the buffer has the write error flag, we have failed
3710 * to write out another inode in the same block. In this
3711 * case, we don't have to read the block because we may
3712 * read the old inode data successfully.
3713 */
3714 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3715 set_buffer_uptodate(bh);
3716
ac27a0ec
DK
3717 if (buffer_uptodate(bh)) {
3718 /* someone brought it uptodate while we waited */
3719 unlock_buffer(bh);
3720 goto has_buffer;
3721 }
3722
3723 /*
3724 * If we have all information of the inode in memory and this
3725 * is the only valid inode in the block, we need not read the
3726 * block.
3727 */
3728 if (in_mem) {
3729 struct buffer_head *bitmap_bh;
240799cd 3730 int i, start;
ac27a0ec 3731
240799cd 3732 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3733
240799cd
TT
3734 /* Is the inode bitmap in cache? */
3735 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3736 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3737 goto make_io;
3738
3739 /*
3740 * If the inode bitmap isn't in cache then the
3741 * optimisation may end up performing two reads instead
3742 * of one, so skip it.
3743 */
3744 if (!buffer_uptodate(bitmap_bh)) {
3745 brelse(bitmap_bh);
3746 goto make_io;
3747 }
240799cd 3748 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3749 if (i == inode_offset)
3750 continue;
617ba13b 3751 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3752 break;
3753 }
3754 brelse(bitmap_bh);
240799cd 3755 if (i == start + inodes_per_block) {
ac27a0ec
DK
3756 /* all other inodes are free, so skip I/O */
3757 memset(bh->b_data, 0, bh->b_size);
3758 set_buffer_uptodate(bh);
3759 unlock_buffer(bh);
3760 goto has_buffer;
3761 }
3762 }
3763
3764make_io:
240799cd
TT
3765 /*
3766 * If we need to do any I/O, try to pre-readahead extra
3767 * blocks from the inode table.
3768 */
3769 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3770 ext4_fsblk_t b, end, table;
3771 unsigned num;
0d606e2c 3772 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3773
3774 table = ext4_inode_table(sb, gdp);
b713a5ec 3775 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3776 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3777 if (table > b)
3778 b = table;
0d606e2c 3779 end = b + ra_blks;
240799cd 3780 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3781 if (ext4_has_group_desc_csum(sb))
560671a0 3782 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3783 table += num / inodes_per_block;
3784 if (end > table)
3785 end = table;
3786 while (b <= end)
3787 sb_breadahead(sb, b++);
3788 }
3789
ac27a0ec
DK
3790 /*
3791 * There are other valid inodes in the buffer, this inode
3792 * has in-inode xattrs, or we don't have this inode in memory.
3793 * Read the block from disk.
3794 */
0562e0ba 3795 trace_ext4_load_inode(inode);
ac27a0ec
DK
3796 get_bh(bh);
3797 bh->b_end_io = end_buffer_read_sync;
65299a3b 3798 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3799 wait_on_buffer(bh);
3800 if (!buffer_uptodate(bh)) {
c398eda0
TT
3801 EXT4_ERROR_INODE_BLOCK(inode, block,
3802 "unable to read itable block");
ac27a0ec
DK
3803 brelse(bh);
3804 return -EIO;
3805 }
3806 }
3807has_buffer:
3808 iloc->bh = bh;
3809 return 0;
3810}
3811
617ba13b 3812int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3813{
3814 /* We have all inode data except xattrs in memory here. */
617ba13b 3815 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3816 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3817}
3818
617ba13b 3819void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3820{
617ba13b 3821 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3822 unsigned int new_fl = 0;
ac27a0ec 3823
617ba13b 3824 if (flags & EXT4_SYNC_FL)
00a1a053 3825 new_fl |= S_SYNC;
617ba13b 3826 if (flags & EXT4_APPEND_FL)
00a1a053 3827 new_fl |= S_APPEND;
617ba13b 3828 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3829 new_fl |= S_IMMUTABLE;
617ba13b 3830 if (flags & EXT4_NOATIME_FL)
00a1a053 3831 new_fl |= S_NOATIME;
617ba13b 3832 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3833 new_fl |= S_DIRSYNC;
5f16f322
TT
3834 inode_set_flags(inode, new_fl,
3835 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3836}
3837
ff9ddf7e
JK
3838/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3839void ext4_get_inode_flags(struct ext4_inode_info *ei)
3840{
84a8dce2
DM
3841 unsigned int vfs_fl;
3842 unsigned long old_fl, new_fl;
3843
3844 do {
3845 vfs_fl = ei->vfs_inode.i_flags;
3846 old_fl = ei->i_flags;
3847 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3848 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3849 EXT4_DIRSYNC_FL);
3850 if (vfs_fl & S_SYNC)
3851 new_fl |= EXT4_SYNC_FL;
3852 if (vfs_fl & S_APPEND)
3853 new_fl |= EXT4_APPEND_FL;
3854 if (vfs_fl & S_IMMUTABLE)
3855 new_fl |= EXT4_IMMUTABLE_FL;
3856 if (vfs_fl & S_NOATIME)
3857 new_fl |= EXT4_NOATIME_FL;
3858 if (vfs_fl & S_DIRSYNC)
3859 new_fl |= EXT4_DIRSYNC_FL;
3860 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3861}
de9a55b8 3862
0fc1b451 3863static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3864 struct ext4_inode_info *ei)
0fc1b451
AK
3865{
3866 blkcnt_t i_blocks ;
8180a562
AK
3867 struct inode *inode = &(ei->vfs_inode);
3868 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3869
3870 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3871 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3872 /* we are using combined 48 bit field */
3873 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3874 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3875 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3876 /* i_blocks represent file system block size */
3877 return i_blocks << (inode->i_blkbits - 9);
3878 } else {
3879 return i_blocks;
3880 }
0fc1b451
AK
3881 } else {
3882 return le32_to_cpu(raw_inode->i_blocks_lo);
3883 }
3884}
ff9ddf7e 3885
152a7b0a
TM
3886static inline void ext4_iget_extra_inode(struct inode *inode,
3887 struct ext4_inode *raw_inode,
3888 struct ext4_inode_info *ei)
3889{
3890 __le32 *magic = (void *)raw_inode +
3891 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3892 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3893 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3894 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3895 } else
3896 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3897}
3898
1d1fe1ee 3899struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3900{
617ba13b
MC
3901 struct ext4_iloc iloc;
3902 struct ext4_inode *raw_inode;
1d1fe1ee 3903 struct ext4_inode_info *ei;
1d1fe1ee 3904 struct inode *inode;
b436b9be 3905 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3906 long ret;
ac27a0ec 3907 int block;
08cefc7a
EB
3908 uid_t i_uid;
3909 gid_t i_gid;
ac27a0ec 3910
1d1fe1ee
DH
3911 inode = iget_locked(sb, ino);
3912 if (!inode)
3913 return ERR_PTR(-ENOMEM);
3914 if (!(inode->i_state & I_NEW))
3915 return inode;
3916
3917 ei = EXT4_I(inode);
7dc57615 3918 iloc.bh = NULL;
ac27a0ec 3919
1d1fe1ee
DH
3920 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3921 if (ret < 0)
ac27a0ec 3922 goto bad_inode;
617ba13b 3923 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3924
3925 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3926 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3927 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3928 EXT4_INODE_SIZE(inode->i_sb)) {
3929 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3930 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3931 EXT4_INODE_SIZE(inode->i_sb));
3932 ret = -EIO;
3933 goto bad_inode;
3934 }
3935 } else
3936 ei->i_extra_isize = 0;
3937
3938 /* Precompute checksum seed for inode metadata */
3939 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3940 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3941 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3942 __u32 csum;
3943 __le32 inum = cpu_to_le32(inode->i_ino);
3944 __le32 gen = raw_inode->i_generation;
3945 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3946 sizeof(inum));
3947 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3948 sizeof(gen));
3949 }
3950
3951 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3952 EXT4_ERROR_INODE(inode, "checksum invalid");
3953 ret = -EIO;
3954 goto bad_inode;
3955 }
3956
ac27a0ec 3957 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3958 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3959 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3960 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3961 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3962 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3963 }
08cefc7a
EB
3964 i_uid_write(inode, i_uid);
3965 i_gid_write(inode, i_gid);
bfe86848 3966 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3967
353eb83c 3968 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3969 ei->i_inline_off = 0;
ac27a0ec
DK
3970 ei->i_dir_start_lookup = 0;
3971 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3972 /* We now have enough fields to check if the inode was active or not.
3973 * This is needed because nfsd might try to access dead inodes
3974 * the test is that same one that e2fsck uses
3975 * NeilBrown 1999oct15
3976 */
3977 if (inode->i_nlink == 0) {
393d1d1d
DTB
3978 if ((inode->i_mode == 0 ||
3979 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3980 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3981 /* this inode is deleted */
1d1fe1ee 3982 ret = -ESTALE;
ac27a0ec
DK
3983 goto bad_inode;
3984 }
3985 /* The only unlinked inodes we let through here have
3986 * valid i_mode and are being read by the orphan
3987 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
3988 * the process of deleting those.
3989 * OR it is the EXT4_BOOT_LOADER_INO which is
3990 * not initialized on a new filesystem. */
ac27a0ec 3991 }
ac27a0ec 3992 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3993 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3994 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3995 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3996 ei->i_file_acl |=
3997 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3998 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3999 ei->i_disksize = inode->i_size;
a9e7f447
DM
4000#ifdef CONFIG_QUOTA
4001 ei->i_reserved_quota = 0;
4002#endif
ac27a0ec
DK
4003 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4004 ei->i_block_group = iloc.block_group;
a4912123 4005 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4006 /*
4007 * NOTE! The in-memory inode i_data array is in little-endian order
4008 * even on big-endian machines: we do NOT byteswap the block numbers!
4009 */
617ba13b 4010 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4011 ei->i_data[block] = raw_inode->i_block[block];
4012 INIT_LIST_HEAD(&ei->i_orphan);
4013
b436b9be
JK
4014 /*
4015 * Set transaction id's of transactions that have to be committed
4016 * to finish f[data]sync. We set them to currently running transaction
4017 * as we cannot be sure that the inode or some of its metadata isn't
4018 * part of the transaction - the inode could have been reclaimed and
4019 * now it is reread from disk.
4020 */
4021 if (journal) {
4022 transaction_t *transaction;
4023 tid_t tid;
4024
a931da6a 4025 read_lock(&journal->j_state_lock);
b436b9be
JK
4026 if (journal->j_running_transaction)
4027 transaction = journal->j_running_transaction;
4028 else
4029 transaction = journal->j_committing_transaction;
4030 if (transaction)
4031 tid = transaction->t_tid;
4032 else
4033 tid = journal->j_commit_sequence;
a931da6a 4034 read_unlock(&journal->j_state_lock);
b436b9be
JK
4035 ei->i_sync_tid = tid;
4036 ei->i_datasync_tid = tid;
4037 }
4038
0040d987 4039 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4040 if (ei->i_extra_isize == 0) {
4041 /* The extra space is currently unused. Use it. */
617ba13b
MC
4042 ei->i_extra_isize = sizeof(struct ext4_inode) -
4043 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4044 } else {
152a7b0a 4045 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4046 }
814525f4 4047 }
ac27a0ec 4048
ef7f3835
KS
4049 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4050 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4051 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4052 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4053
ed3654eb 4054 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4055 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4056 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4057 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4058 inode->i_version |=
4059 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4060 }
25ec56b5
JNC
4061 }
4062
c4b5a614 4063 ret = 0;
485c26ec 4064 if (ei->i_file_acl &&
1032988c 4065 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4066 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4067 ei->i_file_acl);
485c26ec
TT
4068 ret = -EIO;
4069 goto bad_inode;
f19d5870
TM
4070 } else if (!ext4_has_inline_data(inode)) {
4071 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4072 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4073 (S_ISLNK(inode->i_mode) &&
4074 !ext4_inode_is_fast_symlink(inode))))
4075 /* Validate extent which is part of inode */
4076 ret = ext4_ext_check_inode(inode);
4077 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078 (S_ISLNK(inode->i_mode) &&
4079 !ext4_inode_is_fast_symlink(inode))) {
4080 /* Validate block references which are part of inode */
4081 ret = ext4_ind_check_inode(inode);
4082 }
fe2c8191 4083 }
567f3e9a 4084 if (ret)
de9a55b8 4085 goto bad_inode;
7a262f7c 4086
ac27a0ec 4087 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4088 inode->i_op = &ext4_file_inode_operations;
4089 inode->i_fop = &ext4_file_operations;
4090 ext4_set_aops(inode);
ac27a0ec 4091 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4092 inode->i_op = &ext4_dir_inode_operations;
4093 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4094 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4095 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4096 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4097 nd_terminate_link(ei->i_data, inode->i_size,
4098 sizeof(ei->i_data) - 1);
4099 } else {
617ba13b
MC
4100 inode->i_op = &ext4_symlink_inode_operations;
4101 ext4_set_aops(inode);
ac27a0ec 4102 }
563bdd61
TT
4103 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4104 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4105 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4106 if (raw_inode->i_block[0])
4107 init_special_inode(inode, inode->i_mode,
4108 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4109 else
4110 init_special_inode(inode, inode->i_mode,
4111 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4112 } else if (ino == EXT4_BOOT_LOADER_INO) {
4113 make_bad_inode(inode);
563bdd61 4114 } else {
563bdd61 4115 ret = -EIO;
24676da4 4116 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4117 goto bad_inode;
ac27a0ec 4118 }
af5bc92d 4119 brelse(iloc.bh);
617ba13b 4120 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4121 unlock_new_inode(inode);
4122 return inode;
ac27a0ec
DK
4123
4124bad_inode:
567f3e9a 4125 brelse(iloc.bh);
1d1fe1ee
DH
4126 iget_failed(inode);
4127 return ERR_PTR(ret);
ac27a0ec
DK
4128}
4129
0fc1b451
AK
4130static int ext4_inode_blocks_set(handle_t *handle,
4131 struct ext4_inode *raw_inode,
4132 struct ext4_inode_info *ei)
4133{
4134 struct inode *inode = &(ei->vfs_inode);
4135 u64 i_blocks = inode->i_blocks;
4136 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4137
4138 if (i_blocks <= ~0U) {
4139 /*
4907cb7b 4140 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4141 * as multiple of 512 bytes
4142 */
8180a562 4143 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4144 raw_inode->i_blocks_high = 0;
84a8dce2 4145 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4146 return 0;
4147 }
4148 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4149 return -EFBIG;
4150
4151 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4152 /*
4153 * i_blocks can be represented in a 48 bit variable
4154 * as multiple of 512 bytes
4155 */
8180a562 4156 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4157 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4158 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4159 } else {
84a8dce2 4160 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4161 /* i_block is stored in file system block size */
4162 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4163 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4164 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4165 }
f287a1a5 4166 return 0;
0fc1b451
AK
4167}
4168
ac27a0ec
DK
4169/*
4170 * Post the struct inode info into an on-disk inode location in the
4171 * buffer-cache. This gobbles the caller's reference to the
4172 * buffer_head in the inode location struct.
4173 *
4174 * The caller must have write access to iloc->bh.
4175 */
617ba13b 4176static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4177 struct inode *inode,
830156c7 4178 struct ext4_iloc *iloc)
ac27a0ec 4179{
617ba13b
MC
4180 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4181 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4182 struct buffer_head *bh = iloc->bh;
202ee5df 4183 struct super_block *sb = inode->i_sb;
ac27a0ec 4184 int err = 0, rc, block;
202ee5df 4185 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4186 uid_t i_uid;
4187 gid_t i_gid;
ac27a0ec 4188
202ee5df
TT
4189 spin_lock(&ei->i_raw_lock);
4190
4191 /* For fields not tracked in the in-memory inode,
ac27a0ec 4192 * initialise them to zero for new inodes. */
19f5fb7a 4193 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4194 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4195
ff9ddf7e 4196 ext4_get_inode_flags(ei);
ac27a0ec 4197 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4198 i_uid = i_uid_read(inode);
4199 i_gid = i_gid_read(inode);
af5bc92d 4200 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4201 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4202 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4203/*
4204 * Fix up interoperability with old kernels. Otherwise, old inodes get
4205 * re-used with the upper 16 bits of the uid/gid intact
4206 */
af5bc92d 4207 if (!ei->i_dtime) {
ac27a0ec 4208 raw_inode->i_uid_high =
08cefc7a 4209 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4210 raw_inode->i_gid_high =
08cefc7a 4211 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4212 } else {
4213 raw_inode->i_uid_high = 0;
4214 raw_inode->i_gid_high = 0;
4215 }
4216 } else {
08cefc7a
EB
4217 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4218 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4219 raw_inode->i_uid_high = 0;
4220 raw_inode->i_gid_high = 0;
4221 }
4222 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4223
4224 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4225 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4226 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4227 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4228
202ee5df
TT
4229 if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4230 spin_unlock(&ei->i_raw_lock);
0fc1b451 4231 goto out_brelse;
202ee5df 4232 }
ac27a0ec 4233 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4234 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4235 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4236 raw_inode->i_file_acl_high =
4237 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4238 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4239 if (ei->i_disksize != ext4_isize(raw_inode)) {
4240 ext4_isize_set(raw_inode, ei->i_disksize);
4241 need_datasync = 1;
4242 }
a48380f7 4243 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4244 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4245 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4246 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4247 cpu_to_le32(EXT4_GOOD_OLD_REV))
4248 set_large_file = 1;
ac27a0ec
DK
4249 }
4250 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4251 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4252 if (old_valid_dev(inode->i_rdev)) {
4253 raw_inode->i_block[0] =
4254 cpu_to_le32(old_encode_dev(inode->i_rdev));
4255 raw_inode->i_block[1] = 0;
4256 } else {
4257 raw_inode->i_block[0] = 0;
4258 raw_inode->i_block[1] =
4259 cpu_to_le32(new_encode_dev(inode->i_rdev));
4260 raw_inode->i_block[2] = 0;
4261 }
f19d5870 4262 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4263 for (block = 0; block < EXT4_N_BLOCKS; block++)
4264 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4265 }
ac27a0ec 4266
ed3654eb 4267 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4268 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4269 if (ei->i_extra_isize) {
4270 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4271 raw_inode->i_version_hi =
4272 cpu_to_le32(inode->i_version >> 32);
4273 raw_inode->i_extra_isize =
4274 cpu_to_le16(ei->i_extra_isize);
4275 }
25ec56b5
JNC
4276 }
4277
814525f4
DW
4278 ext4_inode_csum_set(inode, raw_inode, ei);
4279
202ee5df
TT
4280 spin_unlock(&ei->i_raw_lock);
4281
830156c7 4282 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4283 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4284 if (!err)
4285 err = rc;
19f5fb7a 4286 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4287 if (set_large_file) {
5d601255 4288 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4289 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4290 if (err)
4291 goto out_brelse;
4292 ext4_update_dynamic_rev(sb);
4293 EXT4_SET_RO_COMPAT_FEATURE(sb,
4294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4295 ext4_handle_sync(handle);
4296 err = ext4_handle_dirty_super(handle, sb);
4297 }
b71fc079 4298 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4299out_brelse:
af5bc92d 4300 brelse(bh);
617ba13b 4301 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4302 return err;
4303}
4304
4305/*
617ba13b 4306 * ext4_write_inode()
ac27a0ec
DK
4307 *
4308 * We are called from a few places:
4309 *
87f7e416 4310 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4311 * Here, there will be no transaction running. We wait for any running
4907cb7b 4312 * transaction to commit.
ac27a0ec 4313 *
87f7e416
TT
4314 * - Within flush work (sys_sync(), kupdate and such).
4315 * We wait on commit, if told to.
ac27a0ec 4316 *
87f7e416
TT
4317 * - Within iput_final() -> write_inode_now()
4318 * We wait on commit, if told to.
ac27a0ec
DK
4319 *
4320 * In all cases it is actually safe for us to return without doing anything,
4321 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4322 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4323 * writeback.
ac27a0ec
DK
4324 *
4325 * Note that we are absolutely dependent upon all inode dirtiers doing the
4326 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4327 * which we are interested.
4328 *
4329 * It would be a bug for them to not do this. The code:
4330 *
4331 * mark_inode_dirty(inode)
4332 * stuff();
4333 * inode->i_size = expr;
4334 *
87f7e416
TT
4335 * is in error because write_inode() could occur while `stuff()' is running,
4336 * and the new i_size will be lost. Plus the inode will no longer be on the
4337 * superblock's dirty inode list.
ac27a0ec 4338 */
a9185b41 4339int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4340{
91ac6f43
FM
4341 int err;
4342
87f7e416 4343 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4344 return 0;
4345
91ac6f43
FM
4346 if (EXT4_SB(inode->i_sb)->s_journal) {
4347 if (ext4_journal_current_handle()) {
4348 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4349 dump_stack();
4350 return -EIO;
4351 }
ac27a0ec 4352
10542c22
JK
4353 /*
4354 * No need to force transaction in WB_SYNC_NONE mode. Also
4355 * ext4_sync_fs() will force the commit after everything is
4356 * written.
4357 */
4358 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4359 return 0;
4360
4361 err = ext4_force_commit(inode->i_sb);
4362 } else {
4363 struct ext4_iloc iloc;
ac27a0ec 4364
8b472d73 4365 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4366 if (err)
4367 return err;
10542c22
JK
4368 /*
4369 * sync(2) will flush the whole buffer cache. No need to do
4370 * it here separately for each inode.
4371 */
4372 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4373 sync_dirty_buffer(iloc.bh);
4374 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4375 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376 "IO error syncing inode");
830156c7
FM
4377 err = -EIO;
4378 }
fd2dd9fb 4379 brelse(iloc.bh);
91ac6f43
FM
4380 }
4381 return err;
ac27a0ec
DK
4382}
4383
53e87268
JK
4384/*
4385 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386 * buffers that are attached to a page stradding i_size and are undergoing
4387 * commit. In that case we have to wait for commit to finish and try again.
4388 */
4389static void ext4_wait_for_tail_page_commit(struct inode *inode)
4390{
4391 struct page *page;
4392 unsigned offset;
4393 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394 tid_t commit_tid = 0;
4395 int ret;
4396
4397 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4398 /*
4399 * All buffers in the last page remain valid? Then there's nothing to
4400 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4401 * blocksize case
4402 */
4403 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4404 return;
4405 while (1) {
4406 page = find_lock_page(inode->i_mapping,
4407 inode->i_size >> PAGE_CACHE_SHIFT);
4408 if (!page)
4409 return;
ca99fdd2
LC
4410 ret = __ext4_journalled_invalidatepage(page, offset,
4411 PAGE_CACHE_SIZE - offset);
53e87268
JK
4412 unlock_page(page);
4413 page_cache_release(page);
4414 if (ret != -EBUSY)
4415 return;
4416 commit_tid = 0;
4417 read_lock(&journal->j_state_lock);
4418 if (journal->j_committing_transaction)
4419 commit_tid = journal->j_committing_transaction->t_tid;
4420 read_unlock(&journal->j_state_lock);
4421 if (commit_tid)
4422 jbd2_log_wait_commit(journal, commit_tid);
4423 }
4424}
4425
ac27a0ec 4426/*
617ba13b 4427 * ext4_setattr()
ac27a0ec
DK
4428 *
4429 * Called from notify_change.
4430 *
4431 * We want to trap VFS attempts to truncate the file as soon as
4432 * possible. In particular, we want to make sure that when the VFS
4433 * shrinks i_size, we put the inode on the orphan list and modify
4434 * i_disksize immediately, so that during the subsequent flushing of
4435 * dirty pages and freeing of disk blocks, we can guarantee that any
4436 * commit will leave the blocks being flushed in an unused state on
4437 * disk. (On recovery, the inode will get truncated and the blocks will
4438 * be freed, so we have a strong guarantee that no future commit will
4439 * leave these blocks visible to the user.)
4440 *
678aaf48
JK
4441 * Another thing we have to assure is that if we are in ordered mode
4442 * and inode is still attached to the committing transaction, we must
4443 * we start writeout of all the dirty pages which are being truncated.
4444 * This way we are sure that all the data written in the previous
4445 * transaction are already on disk (truncate waits for pages under
4446 * writeback).
4447 *
4448 * Called with inode->i_mutex down.
ac27a0ec 4449 */
617ba13b 4450int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4451{
4452 struct inode *inode = dentry->d_inode;
4453 int error, rc = 0;
3d287de3 4454 int orphan = 0;
ac27a0ec
DK
4455 const unsigned int ia_valid = attr->ia_valid;
4456
4457 error = inode_change_ok(inode, attr);
4458 if (error)
4459 return error;
4460
12755627 4461 if (is_quota_modification(inode, attr))
871a2931 4462 dquot_initialize(inode);
08cefc7a
EB
4463 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4465 handle_t *handle;
4466
4467 /* (user+group)*(old+new) structure, inode write (sb,
4468 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4469 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4472 if (IS_ERR(handle)) {
4473 error = PTR_ERR(handle);
4474 goto err_out;
4475 }
b43fa828 4476 error = dquot_transfer(inode, attr);
ac27a0ec 4477 if (error) {
617ba13b 4478 ext4_journal_stop(handle);
ac27a0ec
DK
4479 return error;
4480 }
4481 /* Update corresponding info in inode so that everything is in
4482 * one transaction */
4483 if (attr->ia_valid & ATTR_UID)
4484 inode->i_uid = attr->ia_uid;
4485 if (attr->ia_valid & ATTR_GID)
4486 inode->i_gid = attr->ia_gid;
617ba13b
MC
4487 error = ext4_mark_inode_dirty(handle, inode);
4488 ext4_journal_stop(handle);
ac27a0ec
DK
4489 }
4490
5208386c
JK
4491 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4492 handle_t *handle;
562c72aa 4493
12e9b892 4494 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4495 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4496
0c095c7f
TT
4497 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4498 return -EFBIG;
e2b46574 4499 }
dff6efc3
CH
4500
4501 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4502 inode_inc_iversion(inode);
4503
5208386c
JK
4504 if (S_ISREG(inode->i_mode) &&
4505 (attr->ia_size < inode->i_size)) {
4506 if (ext4_should_order_data(inode)) {
4507 error = ext4_begin_ordered_truncate(inode,
678aaf48 4508 attr->ia_size);
5208386c 4509 if (error)
678aaf48 4510 goto err_out;
5208386c
JK
4511 }
4512 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4513 if (IS_ERR(handle)) {
4514 error = PTR_ERR(handle);
4515 goto err_out;
4516 }
4517 if (ext4_handle_valid(handle)) {
4518 error = ext4_orphan_add(handle, inode);
4519 orphan = 1;
4520 }
90e775b7 4521 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4522 EXT4_I(inode)->i_disksize = attr->ia_size;
4523 rc = ext4_mark_inode_dirty(handle, inode);
4524 if (!error)
4525 error = rc;
90e775b7
JK
4526 /*
4527 * We have to update i_size under i_data_sem together
4528 * with i_disksize to avoid races with writeback code
4529 * running ext4_wb_update_i_disksize().
4530 */
4531 if (!error)
4532 i_size_write(inode, attr->ia_size);
4533 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4534 ext4_journal_stop(handle);
4535 if (error) {
4536 ext4_orphan_del(NULL, inode);
678aaf48
JK
4537 goto err_out;
4538 }
90e775b7
JK
4539 } else
4540 i_size_write(inode, attr->ia_size);
53e87268 4541
5208386c
JK
4542 /*
4543 * Blocks are going to be removed from the inode. Wait
4544 * for dio in flight. Temporarily disable
4545 * dioread_nolock to prevent livelock.
4546 */
4547 if (orphan) {
4548 if (!ext4_should_journal_data(inode)) {
4549 ext4_inode_block_unlocked_dio(inode);
4550 inode_dio_wait(inode);
4551 ext4_inode_resume_unlocked_dio(inode);
4552 } else
4553 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4554 }
5208386c
JK
4555 /*
4556 * Truncate pagecache after we've waited for commit
4557 * in data=journal mode to make pages freeable.
4558 */
7caef267 4559 truncate_pagecache(inode, inode->i_size);
072bd7ea 4560 }
5208386c
JK
4561 /*
4562 * We want to call ext4_truncate() even if attr->ia_size ==
4563 * inode->i_size for cases like truncation of fallocated space
4564 */
4565 if (attr->ia_valid & ATTR_SIZE)
4566 ext4_truncate(inode);
ac27a0ec 4567
1025774c
CH
4568 if (!rc) {
4569 setattr_copy(inode, attr);
4570 mark_inode_dirty(inode);
4571 }
4572
4573 /*
4574 * If the call to ext4_truncate failed to get a transaction handle at
4575 * all, we need to clean up the in-core orphan list manually.
4576 */
3d287de3 4577 if (orphan && inode->i_nlink)
617ba13b 4578 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4579
4580 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4581 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4582
4583err_out:
617ba13b 4584 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4585 if (!error)
4586 error = rc;
4587 return error;
4588}
4589
3e3398a0
MC
4590int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4591 struct kstat *stat)
4592{
4593 struct inode *inode;
8af8eecc 4594 unsigned long long delalloc_blocks;
3e3398a0
MC
4595
4596 inode = dentry->d_inode;
4597 generic_fillattr(inode, stat);
4598
9206c561
AD
4599 /*
4600 * If there is inline data in the inode, the inode will normally not
4601 * have data blocks allocated (it may have an external xattr block).
4602 * Report at least one sector for such files, so tools like tar, rsync,
4603 * others doen't incorrectly think the file is completely sparse.
4604 */
4605 if (unlikely(ext4_has_inline_data(inode)))
4606 stat->blocks += (stat->size + 511) >> 9;
4607
3e3398a0
MC
4608 /*
4609 * We can't update i_blocks if the block allocation is delayed
4610 * otherwise in the case of system crash before the real block
4611 * allocation is done, we will have i_blocks inconsistent with
4612 * on-disk file blocks.
4613 * We always keep i_blocks updated together with real
4614 * allocation. But to not confuse with user, stat
4615 * will return the blocks that include the delayed allocation
4616 * blocks for this file.
4617 */
96607551 4618 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4619 EXT4_I(inode)->i_reserved_data_blocks);
4620 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4621 return 0;
4622}
ac27a0ec 4623
fffb2739
JK
4624static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4625 int pextents)
a02908f1 4626{
12e9b892 4627 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4628 return ext4_ind_trans_blocks(inode, lblocks);
4629 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4630}
ac51d837 4631
ac27a0ec 4632/*
a02908f1
MC
4633 * Account for index blocks, block groups bitmaps and block group
4634 * descriptor blocks if modify datablocks and index blocks
4635 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4636 *
a02908f1 4637 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4638 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4639 * they could still across block group boundary.
ac27a0ec 4640 *
a02908f1
MC
4641 * Also account for superblock, inode, quota and xattr blocks
4642 */
fffb2739
JK
4643static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4644 int pextents)
a02908f1 4645{
8df9675f
TT
4646 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4647 int gdpblocks;
a02908f1
MC
4648 int idxblocks;
4649 int ret = 0;
4650
4651 /*
fffb2739
JK
4652 * How many index blocks need to touch to map @lblocks logical blocks
4653 * to @pextents physical extents?
a02908f1 4654 */
fffb2739 4655 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4656
4657 ret = idxblocks;
4658
4659 /*
4660 * Now let's see how many group bitmaps and group descriptors need
4661 * to account
4662 */
fffb2739 4663 groups = idxblocks + pextents;
a02908f1 4664 gdpblocks = groups;
8df9675f
TT
4665 if (groups > ngroups)
4666 groups = ngroups;
a02908f1
MC
4667 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4668 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4669
4670 /* bitmaps and block group descriptor blocks */
4671 ret += groups + gdpblocks;
4672
4673 /* Blocks for super block, inode, quota and xattr blocks */
4674 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4675
4676 return ret;
4677}
4678
4679/*
25985edc 4680 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4681 * the modification of a single pages into a single transaction,
4682 * which may include multiple chunks of block allocations.
ac27a0ec 4683 *
525f4ed8 4684 * This could be called via ext4_write_begin()
ac27a0ec 4685 *
525f4ed8 4686 * We need to consider the worse case, when
a02908f1 4687 * one new block per extent.
ac27a0ec 4688 */
a86c6181 4689int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4690{
617ba13b 4691 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4692 int ret;
4693
fffb2739 4694 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4695
a02908f1 4696 /* Account for data blocks for journalled mode */
617ba13b 4697 if (ext4_should_journal_data(inode))
a02908f1 4698 ret += bpp;
ac27a0ec
DK
4699 return ret;
4700}
f3bd1f3f
MC
4701
4702/*
4703 * Calculate the journal credits for a chunk of data modification.
4704 *
4705 * This is called from DIO, fallocate or whoever calling
79e83036 4706 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4707 *
4708 * journal buffers for data blocks are not included here, as DIO
4709 * and fallocate do no need to journal data buffers.
4710 */
4711int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4712{
4713 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4714}
4715
ac27a0ec 4716/*
617ba13b 4717 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4718 * Give this, we know that the caller already has write access to iloc->bh.
4719 */
617ba13b 4720int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4721 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4722{
4723 int err = 0;
4724
c64db50e 4725 if (IS_I_VERSION(inode))
25ec56b5
JNC
4726 inode_inc_iversion(inode);
4727
ac27a0ec
DK
4728 /* the do_update_inode consumes one bh->b_count */
4729 get_bh(iloc->bh);
4730
dab291af 4731 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4732 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4733 put_bh(iloc->bh);
4734 return err;
4735}
4736
4737/*
4738 * On success, We end up with an outstanding reference count against
4739 * iloc->bh. This _must_ be cleaned up later.
4740 */
4741
4742int
617ba13b
MC
4743ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4744 struct ext4_iloc *iloc)
ac27a0ec 4745{
0390131b
FM
4746 int err;
4747
4748 err = ext4_get_inode_loc(inode, iloc);
4749 if (!err) {
4750 BUFFER_TRACE(iloc->bh, "get_write_access");
4751 err = ext4_journal_get_write_access(handle, iloc->bh);
4752 if (err) {
4753 brelse(iloc->bh);
4754 iloc->bh = NULL;
ac27a0ec
DK
4755 }
4756 }
617ba13b 4757 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4758 return err;
4759}
4760
6dd4ee7c
KS
4761/*
4762 * Expand an inode by new_extra_isize bytes.
4763 * Returns 0 on success or negative error number on failure.
4764 */
1d03ec98
AK
4765static int ext4_expand_extra_isize(struct inode *inode,
4766 unsigned int new_extra_isize,
4767 struct ext4_iloc iloc,
4768 handle_t *handle)
6dd4ee7c
KS
4769{
4770 struct ext4_inode *raw_inode;
4771 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4772
4773 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4774 return 0;
4775
4776 raw_inode = ext4_raw_inode(&iloc);
4777
4778 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4779
4780 /* No extended attributes present */
19f5fb7a
TT
4781 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4782 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4783 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4784 new_extra_isize);
4785 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4786 return 0;
4787 }
4788
4789 /* try to expand with EAs present */
4790 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4791 raw_inode, handle);
4792}
4793
ac27a0ec
DK
4794/*
4795 * What we do here is to mark the in-core inode as clean with respect to inode
4796 * dirtiness (it may still be data-dirty).
4797 * This means that the in-core inode may be reaped by prune_icache
4798 * without having to perform any I/O. This is a very good thing,
4799 * because *any* task may call prune_icache - even ones which
4800 * have a transaction open against a different journal.
4801 *
4802 * Is this cheating? Not really. Sure, we haven't written the
4803 * inode out, but prune_icache isn't a user-visible syncing function.
4804 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4805 * we start and wait on commits.
ac27a0ec 4806 */
617ba13b 4807int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4808{
617ba13b 4809 struct ext4_iloc iloc;
6dd4ee7c
KS
4810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4811 static unsigned int mnt_count;
4812 int err, ret;
ac27a0ec
DK
4813
4814 might_sleep();
7ff9c073 4815 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4816 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4817 if (ext4_handle_valid(handle) &&
4818 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4819 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4820 /*
4821 * We need extra buffer credits since we may write into EA block
4822 * with this same handle. If journal_extend fails, then it will
4823 * only result in a minor loss of functionality for that inode.
4824 * If this is felt to be critical, then e2fsck should be run to
4825 * force a large enough s_min_extra_isize.
4826 */
4827 if ((jbd2_journal_extend(handle,
4828 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4829 ret = ext4_expand_extra_isize(inode,
4830 sbi->s_want_extra_isize,
4831 iloc, handle);
4832 if (ret) {
19f5fb7a
TT
4833 ext4_set_inode_state(inode,
4834 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4835 if (mnt_count !=
4836 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4837 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4838 "Unable to expand inode %lu. Delete"
4839 " some EAs or run e2fsck.",
4840 inode->i_ino);
c1bddad9
AK
4841 mnt_count =
4842 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4843 }
4844 }
4845 }
4846 }
ac27a0ec 4847 if (!err)
617ba13b 4848 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4849 return err;
4850}
4851
4852/*
617ba13b 4853 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4854 *
4855 * We're really interested in the case where a file is being extended.
4856 * i_size has been changed by generic_commit_write() and we thus need
4857 * to include the updated inode in the current transaction.
4858 *
5dd4056d 4859 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4860 * are allocated to the file.
4861 *
4862 * If the inode is marked synchronous, we don't honour that here - doing
4863 * so would cause a commit on atime updates, which we don't bother doing.
4864 * We handle synchronous inodes at the highest possible level.
4865 */
aa385729 4866void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4867{
ac27a0ec
DK
4868 handle_t *handle;
4869
9924a92a 4870 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4871 if (IS_ERR(handle))
4872 goto out;
f3dc272f 4873
f3dc272f
CW
4874 ext4_mark_inode_dirty(handle, inode);
4875
617ba13b 4876 ext4_journal_stop(handle);
ac27a0ec
DK
4877out:
4878 return;
4879}
4880
4881#if 0
4882/*
4883 * Bind an inode's backing buffer_head into this transaction, to prevent
4884 * it from being flushed to disk early. Unlike
617ba13b 4885 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4886 * returns no iloc structure, so the caller needs to repeat the iloc
4887 * lookup to mark the inode dirty later.
4888 */
617ba13b 4889static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4890{
617ba13b 4891 struct ext4_iloc iloc;
ac27a0ec
DK
4892
4893 int err = 0;
4894 if (handle) {
617ba13b 4895 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4896 if (!err) {
4897 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4898 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4899 if (!err)
0390131b 4900 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4901 NULL,
0390131b 4902 iloc.bh);
ac27a0ec
DK
4903 brelse(iloc.bh);
4904 }
4905 }
617ba13b 4906 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4907 return err;
4908}
4909#endif
4910
617ba13b 4911int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4912{
4913 journal_t *journal;
4914 handle_t *handle;
4915 int err;
4916
4917 /*
4918 * We have to be very careful here: changing a data block's
4919 * journaling status dynamically is dangerous. If we write a
4920 * data block to the journal, change the status and then delete
4921 * that block, we risk forgetting to revoke the old log record
4922 * from the journal and so a subsequent replay can corrupt data.
4923 * So, first we make sure that the journal is empty and that
4924 * nobody is changing anything.
4925 */
4926
617ba13b 4927 journal = EXT4_JOURNAL(inode);
0390131b
FM
4928 if (!journal)
4929 return 0;
d699594d 4930 if (is_journal_aborted(journal))
ac27a0ec 4931 return -EROFS;
2aff57b0
YY
4932 /* We have to allocate physical blocks for delalloc blocks
4933 * before flushing journal. otherwise delalloc blocks can not
4934 * be allocated any more. even more truncate on delalloc blocks
4935 * could trigger BUG by flushing delalloc blocks in journal.
4936 * There is no delalloc block in non-journal data mode.
4937 */
4938 if (val && test_opt(inode->i_sb, DELALLOC)) {
4939 err = ext4_alloc_da_blocks(inode);
4940 if (err < 0)
4941 return err;
4942 }
ac27a0ec 4943
17335dcc
DM
4944 /* Wait for all existing dio workers */
4945 ext4_inode_block_unlocked_dio(inode);
4946 inode_dio_wait(inode);
4947
dab291af 4948 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4949
4950 /*
4951 * OK, there are no updates running now, and all cached data is
4952 * synced to disk. We are now in a completely consistent state
4953 * which doesn't have anything in the journal, and we know that
4954 * no filesystem updates are running, so it is safe to modify
4955 * the inode's in-core data-journaling state flag now.
4956 */
4957
4958 if (val)
12e9b892 4959 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4960 else {
4961 jbd2_journal_flush(journal);
12e9b892 4962 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4963 }
617ba13b 4964 ext4_set_aops(inode);
ac27a0ec 4965
dab291af 4966 jbd2_journal_unlock_updates(journal);
17335dcc 4967 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4968
4969 /* Finally we can mark the inode as dirty. */
4970
9924a92a 4971 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4972 if (IS_ERR(handle))
4973 return PTR_ERR(handle);
4974
617ba13b 4975 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4976 ext4_handle_sync(handle);
617ba13b
MC
4977 ext4_journal_stop(handle);
4978 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4979
4980 return err;
4981}
2e9ee850
AK
4982
4983static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4984{
4985 return !buffer_mapped(bh);
4986}
4987
c2ec175c 4988int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4989{
c2ec175c 4990 struct page *page = vmf->page;
2e9ee850
AK
4991 loff_t size;
4992 unsigned long len;
9ea7df53 4993 int ret;
2e9ee850 4994 struct file *file = vma->vm_file;
496ad9aa 4995 struct inode *inode = file_inode(file);
2e9ee850 4996 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4997 handle_t *handle;
4998 get_block_t *get_block;
4999 int retries = 0;
2e9ee850 5000
8e8ad8a5 5001 sb_start_pagefault(inode->i_sb);
041bbb6d 5002 file_update_time(vma->vm_file);
9ea7df53
JK
5003 /* Delalloc case is easy... */
5004 if (test_opt(inode->i_sb, DELALLOC) &&
5005 !ext4_should_journal_data(inode) &&
5006 !ext4_nonda_switch(inode->i_sb)) {
5007 do {
5008 ret = __block_page_mkwrite(vma, vmf,
5009 ext4_da_get_block_prep);
5010 } while (ret == -ENOSPC &&
5011 ext4_should_retry_alloc(inode->i_sb, &retries));
5012 goto out_ret;
2e9ee850 5013 }
0e499890
DW
5014
5015 lock_page(page);
9ea7df53
JK
5016 size = i_size_read(inode);
5017 /* Page got truncated from under us? */
5018 if (page->mapping != mapping || page_offset(page) > size) {
5019 unlock_page(page);
5020 ret = VM_FAULT_NOPAGE;
5021 goto out;
0e499890 5022 }
2e9ee850
AK
5023
5024 if (page->index == size >> PAGE_CACHE_SHIFT)
5025 len = size & ~PAGE_CACHE_MASK;
5026 else
5027 len = PAGE_CACHE_SIZE;
a827eaff 5028 /*
9ea7df53
JK
5029 * Return if we have all the buffers mapped. This avoids the need to do
5030 * journal_start/journal_stop which can block and take a long time
a827eaff 5031 */
2e9ee850 5032 if (page_has_buffers(page)) {
f19d5870
TM
5033 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5034 0, len, NULL,
5035 ext4_bh_unmapped)) {
9ea7df53 5036 /* Wait so that we don't change page under IO */
1d1d1a76 5037 wait_for_stable_page(page);
9ea7df53
JK
5038 ret = VM_FAULT_LOCKED;
5039 goto out;
a827eaff 5040 }
2e9ee850 5041 }
a827eaff 5042 unlock_page(page);
9ea7df53
JK
5043 /* OK, we need to fill the hole... */
5044 if (ext4_should_dioread_nolock(inode))
5045 get_block = ext4_get_block_write;
5046 else
5047 get_block = ext4_get_block;
5048retry_alloc:
9924a92a
TT
5049 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5050 ext4_writepage_trans_blocks(inode));
9ea7df53 5051 if (IS_ERR(handle)) {
c2ec175c 5052 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5053 goto out;
5054 }
5055 ret = __block_page_mkwrite(vma, vmf, get_block);
5056 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5057 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5058 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5059 unlock_page(page);
5060 ret = VM_FAULT_SIGBUS;
fcbb5515 5061 ext4_journal_stop(handle);
9ea7df53
JK
5062 goto out;
5063 }
5064 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5065 }
5066 ext4_journal_stop(handle);
5067 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5068 goto retry_alloc;
5069out_ret:
5070 ret = block_page_mkwrite_return(ret);
5071out:
8e8ad8a5 5072 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5073 return ret;
5074}