]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: always set i_op in ext4_mknod()
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9f125d64 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a
BF
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
5356f261
AK
486/*
487 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488 */
489static void set_buffers_da_mapped(struct inode *inode,
490 struct ext4_map_blocks *map)
491{
492 struct address_space *mapping = inode->i_mapping;
493 struct pagevec pvec;
494 int i, nr_pages;
495 pgoff_t index, end;
496
497 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498 end = (map->m_lblk + map->m_len - 1) >>
499 (PAGE_CACHE_SHIFT - inode->i_blkbits);
500
501 pagevec_init(&pvec, 0);
502 while (index <= end) {
503 nr_pages = pagevec_lookup(&pvec, mapping, index,
504 min(end - index + 1,
505 (pgoff_t)PAGEVEC_SIZE));
506 if (nr_pages == 0)
507 break;
508 for (i = 0; i < nr_pages; i++) {
509 struct page *page = pvec.pages[i];
510 struct buffer_head *bh, *head;
511
512 if (unlikely(page->mapping != mapping) ||
513 !PageDirty(page))
514 break;
515
516 if (page_has_buffers(page)) {
517 bh = head = page_buffers(page);
518 do {
519 set_buffer_da_mapped(bh);
520 bh = bh->b_this_page;
521 } while (bh != head);
522 }
523 index++;
524 }
525 pagevec_release(&pvec);
526 }
527}
528
f5ab0d1f 529/*
e35fd660 530 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 531 * and returns if the blocks are already mapped.
f5ab0d1f 532 *
f5ab0d1f
MC
533 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534 * and store the allocated blocks in the result buffer head and mark it
535 * mapped.
536 *
e35fd660
TT
537 * If file type is extents based, it will call ext4_ext_map_blocks(),
538 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
539 * based files
540 *
541 * On success, it returns the number of blocks being mapped or allocate.
542 * if create==0 and the blocks are pre-allocated and uninitialized block,
543 * the result buffer head is unmapped. If the create ==1, it will make sure
544 * the buffer head is mapped.
545 *
546 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 547 * that case, buffer head is unmapped
f5ab0d1f
MC
548 *
549 * It returns the error in case of allocation failure.
550 */
e35fd660
TT
551int ext4_map_blocks(handle_t *handle, struct inode *inode,
552 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
553{
554 int retval;
f5ab0d1f 555
e35fd660
TT
556 map->m_flags = 0;
557 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558 "logical block %lu\n", inode->i_ino, flags, map->m_len,
559 (unsigned long) map->m_lblk);
4df3d265 560 /*
b920c755
TT
561 * Try to see if we can get the block without requesting a new
562 * file system block.
4df3d265 563 */
729f52c6
ZL
564 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
567 retval = ext4_ext_map_blocks(handle, inode, map, flags &
568 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 569 } else {
a4e5d88b
DM
570 retval = ext4_ind_map_blocks(handle, inode, map, flags &
571 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 572 }
729f52c6
ZL
573 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 575
e35fd660 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 577 int ret = check_block_validity(inode, map);
6fd058f7
TT
578 if (ret != 0)
579 return ret;
580 }
581
f5ab0d1f 582 /* If it is only a block(s) look up */
c2177057 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
584 return retval;
585
586 /*
587 * Returns if the blocks have already allocated
588 *
589 * Note that if blocks have been preallocated
df3ab170 590 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
591 * with buffer head unmapped.
592 */
e35fd660 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
594 return retval;
595
2a8964d6
AK
596 /*
597 * When we call get_blocks without the create flag, the
598 * BH_Unwritten flag could have gotten set if the blocks
599 * requested were part of a uninitialized extent. We need to
600 * clear this flag now that we are committed to convert all or
601 * part of the uninitialized extent to be an initialized
602 * extent. This is because we need to avoid the combination
603 * of BH_Unwritten and BH_Mapped flags being simultaneously
604 * set on the buffer_head.
605 */
e35fd660 606 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 607
4df3d265 608 /*
f5ab0d1f
MC
609 * New blocks allocate and/or writing to uninitialized extent
610 * will possibly result in updating i_data, so we take
611 * the write lock of i_data_sem, and call get_blocks()
612 * with create == 1 flag.
4df3d265
AK
613 */
614 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
615
616 /*
617 * if the caller is from delayed allocation writeout path
618 * we have already reserved fs blocks for allocation
619 * let the underlying get_block() function know to
620 * avoid double accounting
621 */
c2177057 622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
624 /*
625 * We need to check for EXT4 here because migrate
626 * could have changed the inode type in between
627 */
12e9b892 628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 629 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 630 } else {
e35fd660 631 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 632
e35fd660 633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
634 /*
635 * We allocated new blocks which will result in
636 * i_data's format changing. Force the migrate
637 * to fail by clearing migrate flags
638 */
19f5fb7a 639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 640 }
d2a17637 641
5f634d06
AK
642 /*
643 * Update reserved blocks/metadata blocks after successful
644 * block allocation which had been deferred till now. We don't
645 * support fallocate for non extent files. So we can update
646 * reserve space here.
647 */
648 if ((retval > 0) &&
1296cc85 649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
650 ext4_da_update_reserve_space(inode, retval, 1);
651 }
5356f261 652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 654
5356f261
AK
655 /* If we have successfully mapped the delayed allocated blocks,
656 * set the BH_Da_Mapped bit on them. Its important to do this
657 * under the protection of i_data_sem.
658 */
659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 set_buffers_da_mapped(inode, map);
661 }
662
4df3d265 663 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 664 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 665 int ret = check_block_validity(inode, map);
6fd058f7
TT
666 if (ret != 0)
667 return ret;
668 }
0e855ac8
AK
669 return retval;
670}
671
f3bd1f3f
MC
672/* Maximum number of blocks we map for direct IO at once. */
673#define DIO_MAX_BLOCKS 4096
674
2ed88685
TT
675static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 struct buffer_head *bh, int flags)
ac27a0ec 677{
3e4fdaf8 678 handle_t *handle = ext4_journal_current_handle();
2ed88685 679 struct ext4_map_blocks map;
7fb5409d 680 int ret = 0, started = 0;
f3bd1f3f 681 int dio_credits;
ac27a0ec 682
2ed88685
TT
683 map.m_lblk = iblock;
684 map.m_len = bh->b_size >> inode->i_blkbits;
685
686 if (flags && !handle) {
7fb5409d 687 /* Direct IO write... */
2ed88685
TT
688 if (map.m_len > DIO_MAX_BLOCKS)
689 map.m_len = DIO_MAX_BLOCKS;
690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 691 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 692 if (IS_ERR(handle)) {
ac27a0ec 693 ret = PTR_ERR(handle);
2ed88685 694 return ret;
ac27a0ec 695 }
7fb5409d 696 started = 1;
ac27a0ec
DK
697 }
698
2ed88685 699 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 700 if (ret > 0) {
2ed88685
TT
701 map_bh(bh, inode->i_sb, map.m_pblk);
702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 704 ret = 0;
ac27a0ec 705 }
7fb5409d
JK
706 if (started)
707 ext4_journal_stop(handle);
ac27a0ec
DK
708 return ret;
709}
710
2ed88685
TT
711int ext4_get_block(struct inode *inode, sector_t iblock,
712 struct buffer_head *bh, int create)
713{
714 return _ext4_get_block(inode, iblock, bh,
715 create ? EXT4_GET_BLOCKS_CREATE : 0);
716}
717
ac27a0ec
DK
718/*
719 * `handle' can be NULL if create is zero
720 */
617ba13b 721struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 722 ext4_lblk_t block, int create, int *errp)
ac27a0ec 723{
2ed88685
TT
724 struct ext4_map_blocks map;
725 struct buffer_head *bh;
ac27a0ec
DK
726 int fatal = 0, err;
727
728 J_ASSERT(handle != NULL || create == 0);
729
2ed88685
TT
730 map.m_lblk = block;
731 map.m_len = 1;
732 err = ext4_map_blocks(handle, inode, &map,
733 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 734
90b0a973
CM
735 /* ensure we send some value back into *errp */
736 *errp = 0;
737
2ed88685
TT
738 if (err < 0)
739 *errp = err;
740 if (err <= 0)
741 return NULL;
2ed88685
TT
742
743 bh = sb_getblk(inode->i_sb, map.m_pblk);
744 if (!bh) {
745 *errp = -EIO;
746 return NULL;
ac27a0ec 747 }
2ed88685
TT
748 if (map.m_flags & EXT4_MAP_NEW) {
749 J_ASSERT(create != 0);
750 J_ASSERT(handle != NULL);
ac27a0ec 751
2ed88685
TT
752 /*
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
757 * problem.
758 */
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 fatal = ext4_journal_get_create_access(handle, bh);
762 if (!fatal && !buffer_uptodate(bh)) {
763 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
764 set_buffer_uptodate(bh);
ac27a0ec 765 }
2ed88685
TT
766 unlock_buffer(bh);
767 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
768 err = ext4_handle_dirty_metadata(handle, inode, bh);
769 if (!fatal)
770 fatal = err;
771 } else {
772 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 773 }
2ed88685
TT
774 if (fatal) {
775 *errp = fatal;
776 brelse(bh);
777 bh = NULL;
778 }
779 return bh;
ac27a0ec
DK
780}
781
617ba13b 782struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 783 ext4_lblk_t block, int create, int *err)
ac27a0ec 784{
af5bc92d 785 struct buffer_head *bh;
ac27a0ec 786
617ba13b 787 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
788 if (!bh)
789 return bh;
790 if (buffer_uptodate(bh))
791 return bh;
65299a3b 792 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
793 wait_on_buffer(bh);
794 if (buffer_uptodate(bh))
795 return bh;
796 put_bh(bh);
797 *err = -EIO;
798 return NULL;
799}
800
af5bc92d
TT
801static int walk_page_buffers(handle_t *handle,
802 struct buffer_head *head,
803 unsigned from,
804 unsigned to,
805 int *partial,
806 int (*fn)(handle_t *handle,
807 struct buffer_head *bh))
ac27a0ec
DK
808{
809 struct buffer_head *bh;
810 unsigned block_start, block_end;
811 unsigned blocksize = head->b_size;
812 int err, ret = 0;
813 struct buffer_head *next;
814
af5bc92d
TT
815 for (bh = head, block_start = 0;
816 ret == 0 && (bh != head || !block_start);
de9a55b8 817 block_start = block_end, bh = next) {
ac27a0ec
DK
818 next = bh->b_this_page;
819 block_end = block_start + blocksize;
820 if (block_end <= from || block_start >= to) {
821 if (partial && !buffer_uptodate(bh))
822 *partial = 1;
823 continue;
824 }
825 err = (*fn)(handle, bh);
826 if (!ret)
827 ret = err;
828 }
829 return ret;
830}
831
832/*
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
617ba13b 835 * close off a transaction and start a new one between the ext4_get_block()
dab291af 836 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
837 * prepare_write() is the right place.
838 *
617ba13b
MC
839 * Also, this function can nest inside ext4_writepage() ->
840 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
841 * has generated enough buffer credits to do the whole page. So we won't
842 * block on the journal in that case, which is good, because the caller may
843 * be PF_MEMALLOC.
844 *
617ba13b 845 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
850 * violation.
851 *
dab291af 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
855 * write.
856 */
857static int do_journal_get_write_access(handle_t *handle,
de9a55b8 858 struct buffer_head *bh)
ac27a0ec 859{
56d35a4c
JK
860 int dirty = buffer_dirty(bh);
861 int ret;
862
ac27a0ec
DK
863 if (!buffer_mapped(bh) || buffer_freed(bh))
864 return 0;
56d35a4c 865 /*
ebdec241 866 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 869 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
872 */
873 if (dirty)
874 clear_buffer_dirty(bh);
875 ret = ext4_journal_get_write_access(handle, bh);
876 if (!ret && dirty)
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 return ret;
ac27a0ec
DK
879}
880
744692dc
JZ
881static int ext4_get_block_write(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
bfc1af65 883static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
884 loff_t pos, unsigned len, unsigned flags,
885 struct page **pagep, void **fsdata)
ac27a0ec 886{
af5bc92d 887 struct inode *inode = mapping->host;
1938a150 888 int ret, needed_blocks;
ac27a0ec
DK
889 handle_t *handle;
890 int retries = 0;
af5bc92d 891 struct page *page;
de9a55b8 892 pgoff_t index;
af5bc92d 893 unsigned from, to;
bfc1af65 894
9bffad1e 895 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
896 /*
897 * Reserve one block more for addition to orphan list in case
898 * we allocate blocks but write fails for some reason
899 */
900 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 901 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
902 from = pos & (PAGE_CACHE_SIZE - 1);
903 to = from + len;
ac27a0ec
DK
904
905retry:
af5bc92d
TT
906 handle = ext4_journal_start(inode, needed_blocks);
907 if (IS_ERR(handle)) {
908 ret = PTR_ERR(handle);
909 goto out;
7479d2b9 910 }
ac27a0ec 911
ebd3610b
JK
912 /* We cannot recurse into the filesystem as the transaction is already
913 * started */
914 flags |= AOP_FLAG_NOFS;
915
54566b2c 916 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
917 if (!page) {
918 ext4_journal_stop(handle);
919 ret = -ENOMEM;
920 goto out;
921 }
922 *pagep = page;
923
744692dc 924 if (ext4_should_dioread_nolock(inode))
6e1db88d 925 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 926 else
6e1db88d 927 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
928
929 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
930 ret = walk_page_buffers(handle, page_buffers(page),
931 from, to, NULL, do_journal_get_write_access);
932 }
bfc1af65
NP
933
934 if (ret) {
af5bc92d 935 unlock_page(page);
af5bc92d 936 page_cache_release(page);
ae4d5372 937 /*
6e1db88d 938 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
939 * outside i_size. Trim these off again. Don't need
940 * i_size_read because we hold i_mutex.
1938a150
AK
941 *
942 * Add inode to orphan list in case we crash before
943 * truncate finishes
ae4d5372 944 */
ffacfa7a 945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
946 ext4_orphan_add(handle, inode);
947
948 ext4_journal_stop(handle);
949 if (pos + len > inode->i_size) {
b9a4207d 950 ext4_truncate_failed_write(inode);
de9a55b8 951 /*
ffacfa7a 952 * If truncate failed early the inode might
1938a150
AK
953 * still be on the orphan list; we need to
954 * make sure the inode is removed from the
955 * orphan list in that case.
956 */
957 if (inode->i_nlink)
958 ext4_orphan_del(NULL, inode);
959 }
bfc1af65
NP
960 }
961
617ba13b 962 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 963 goto retry;
7479d2b9 964out:
ac27a0ec
DK
965 return ret;
966}
967
bfc1af65
NP
968/* For write_end() in data=journal mode */
969static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
970{
971 if (!buffer_mapped(bh) || buffer_freed(bh))
972 return 0;
973 set_buffer_uptodate(bh);
0390131b 974 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
975}
976
f8514083 977static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
978 struct address_space *mapping,
979 loff_t pos, unsigned len, unsigned copied,
980 struct page *page, void *fsdata)
f8514083
AK
981{
982 int i_size_changed = 0;
983 struct inode *inode = mapping->host;
984 handle_t *handle = ext4_journal_current_handle();
985
986 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
987
988 /*
989 * No need to use i_size_read() here, the i_size
990 * cannot change under us because we hold i_mutex.
991 *
992 * But it's important to update i_size while still holding page lock:
993 * page writeout could otherwise come in and zero beyond i_size.
994 */
995 if (pos + copied > inode->i_size) {
996 i_size_write(inode, pos + copied);
997 i_size_changed = 1;
998 }
999
1000 if (pos + copied > EXT4_I(inode)->i_disksize) {
1001 /* We need to mark inode dirty even if
1002 * new_i_size is less that inode->i_size
1003 * bu greater than i_disksize.(hint delalloc)
1004 */
1005 ext4_update_i_disksize(inode, (pos + copied));
1006 i_size_changed = 1;
1007 }
1008 unlock_page(page);
1009 page_cache_release(page);
1010
1011 /*
1012 * Don't mark the inode dirty under page lock. First, it unnecessarily
1013 * makes the holding time of page lock longer. Second, it forces lock
1014 * ordering of page lock and transaction start for journaling
1015 * filesystems.
1016 */
1017 if (i_size_changed)
1018 ext4_mark_inode_dirty(handle, inode);
1019
1020 return copied;
1021}
1022
ac27a0ec
DK
1023/*
1024 * We need to pick up the new inode size which generic_commit_write gave us
1025 * `file' can be NULL - eg, when called from page_symlink().
1026 *
617ba13b 1027 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1028 * buffers are managed internally.
1029 */
bfc1af65 1030static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1031 struct address_space *mapping,
1032 loff_t pos, unsigned len, unsigned copied,
1033 struct page *page, void *fsdata)
ac27a0ec 1034{
617ba13b 1035 handle_t *handle = ext4_journal_current_handle();
cf108bca 1036 struct inode *inode = mapping->host;
ac27a0ec
DK
1037 int ret = 0, ret2;
1038
9bffad1e 1039 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1040 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1041
1042 if (ret == 0) {
f8514083 1043 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1044 page, fsdata);
f8a87d89 1045 copied = ret2;
ffacfa7a 1046 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1047 /* if we have allocated more blocks and copied
1048 * less. We will have blocks allocated outside
1049 * inode->i_size. So truncate them
1050 */
1051 ext4_orphan_add(handle, inode);
f8a87d89
RK
1052 if (ret2 < 0)
1053 ret = ret2;
09e0834f
AF
1054 } else {
1055 unlock_page(page);
1056 page_cache_release(page);
ac27a0ec 1057 }
09e0834f 1058
617ba13b 1059 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1060 if (!ret)
1061 ret = ret2;
bfc1af65 1062
f8514083 1063 if (pos + len > inode->i_size) {
b9a4207d 1064 ext4_truncate_failed_write(inode);
de9a55b8 1065 /*
ffacfa7a 1066 * If truncate failed early the inode might still be
f8514083
AK
1067 * on the orphan list; we need to make sure the inode
1068 * is removed from the orphan list in that case.
1069 */
1070 if (inode->i_nlink)
1071 ext4_orphan_del(NULL, inode);
1072 }
1073
1074
bfc1af65 1075 return ret ? ret : copied;
ac27a0ec
DK
1076}
1077
bfc1af65 1078static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1079 struct address_space *mapping,
1080 loff_t pos, unsigned len, unsigned copied,
1081 struct page *page, void *fsdata)
ac27a0ec 1082{
617ba13b 1083 handle_t *handle = ext4_journal_current_handle();
cf108bca 1084 struct inode *inode = mapping->host;
ac27a0ec 1085 int ret = 0, ret2;
ac27a0ec 1086
9bffad1e 1087 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1088 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1089 page, fsdata);
f8a87d89 1090 copied = ret2;
ffacfa7a 1091 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1092 /* if we have allocated more blocks and copied
1093 * less. We will have blocks allocated outside
1094 * inode->i_size. So truncate them
1095 */
1096 ext4_orphan_add(handle, inode);
1097
f8a87d89
RK
1098 if (ret2 < 0)
1099 ret = ret2;
ac27a0ec 1100
617ba13b 1101 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1102 if (!ret)
1103 ret = ret2;
bfc1af65 1104
f8514083 1105 if (pos + len > inode->i_size) {
b9a4207d 1106 ext4_truncate_failed_write(inode);
de9a55b8 1107 /*
ffacfa7a 1108 * If truncate failed early the inode might still be
f8514083
AK
1109 * on the orphan list; we need to make sure the inode
1110 * is removed from the orphan list in that case.
1111 */
1112 if (inode->i_nlink)
1113 ext4_orphan_del(NULL, inode);
1114 }
1115
bfc1af65 1116 return ret ? ret : copied;
ac27a0ec
DK
1117}
1118
bfc1af65 1119static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1120 struct address_space *mapping,
1121 loff_t pos, unsigned len, unsigned copied,
1122 struct page *page, void *fsdata)
ac27a0ec 1123{
617ba13b 1124 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1125 struct inode *inode = mapping->host;
ac27a0ec
DK
1126 int ret = 0, ret2;
1127 int partial = 0;
bfc1af65 1128 unsigned from, to;
cf17fea6 1129 loff_t new_i_size;
ac27a0ec 1130
9bffad1e 1131 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1132 from = pos & (PAGE_CACHE_SIZE - 1);
1133 to = from + len;
1134
441c8508
CW
1135 BUG_ON(!ext4_handle_valid(handle));
1136
bfc1af65
NP
1137 if (copied < len) {
1138 if (!PageUptodate(page))
1139 copied = 0;
1140 page_zero_new_buffers(page, from+copied, to);
1141 }
ac27a0ec
DK
1142
1143 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1144 to, &partial, write_end_fn);
ac27a0ec
DK
1145 if (!partial)
1146 SetPageUptodate(page);
cf17fea6
AK
1147 new_i_size = pos + copied;
1148 if (new_i_size > inode->i_size)
bfc1af65 1149 i_size_write(inode, pos+copied);
19f5fb7a 1150 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1151 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1152 if (new_i_size > EXT4_I(inode)->i_disksize) {
1153 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1154 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1155 if (!ret)
1156 ret = ret2;
1157 }
bfc1af65 1158
cf108bca 1159 unlock_page(page);
f8514083 1160 page_cache_release(page);
ffacfa7a 1161 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1162 /* if we have allocated more blocks and copied
1163 * less. We will have blocks allocated outside
1164 * inode->i_size. So truncate them
1165 */
1166 ext4_orphan_add(handle, inode);
1167
617ba13b 1168 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1169 if (!ret)
1170 ret = ret2;
f8514083 1171 if (pos + len > inode->i_size) {
b9a4207d 1172 ext4_truncate_failed_write(inode);
de9a55b8 1173 /*
ffacfa7a 1174 * If truncate failed early the inode might still be
f8514083
AK
1175 * on the orphan list; we need to make sure the inode
1176 * is removed from the orphan list in that case.
1177 */
1178 if (inode->i_nlink)
1179 ext4_orphan_del(NULL, inode);
1180 }
bfc1af65
NP
1181
1182 return ret ? ret : copied;
ac27a0ec 1183}
d2a17637 1184
9d0be502 1185/*
7b415bf6 1186 * Reserve a single cluster located at lblock
9d0be502 1187 */
01f49d0b 1188static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1189{
030ba6bc 1190 int retries = 0;
60e58e0f 1191 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1192 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1193 unsigned int md_needed;
5dd4056d 1194 int ret;
03179fe9
TT
1195 ext4_lblk_t save_last_lblock;
1196 int save_len;
1197
1198 /*
1199 * We will charge metadata quota at writeout time; this saves
1200 * us from metadata over-estimation, though we may go over by
1201 * a small amount in the end. Here we just reserve for data.
1202 */
1203 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1204 if (ret)
1205 return ret;
d2a17637
MC
1206
1207 /*
1208 * recalculate the amount of metadata blocks to reserve
1209 * in order to allocate nrblocks
1210 * worse case is one extent per block
1211 */
030ba6bc 1212repeat:
0637c6f4 1213 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1214 /*
1215 * ext4_calc_metadata_amount() has side effects, which we have
1216 * to be prepared undo if we fail to claim space.
1217 */
1218 save_len = ei->i_da_metadata_calc_len;
1219 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1220 md_needed = EXT4_NUM_B2C(sbi,
1221 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1222 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1223
72b8ab9d
ES
1224 /*
1225 * We do still charge estimated metadata to the sb though;
1226 * we cannot afford to run out of free blocks.
1227 */
e7d5f315 1228 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1229 ei->i_da_metadata_calc_len = save_len;
1230 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1231 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1232 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1233 yield();
1234 goto repeat;
1235 }
03179fe9 1236 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1237 return -ENOSPC;
1238 }
9d0be502 1239 ei->i_reserved_data_blocks++;
0637c6f4
TT
1240 ei->i_reserved_meta_blocks += md_needed;
1241 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1242
d2a17637
MC
1243 return 0; /* success */
1244}
1245
12219aea 1246static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1247{
1248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1249 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1250
cd213226
MC
1251 if (!to_free)
1252 return; /* Nothing to release, exit */
1253
d2a17637 1254 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1255
5a58ec87 1256 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1257 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1258 /*
0637c6f4
TT
1259 * if there aren't enough reserved blocks, then the
1260 * counter is messed up somewhere. Since this
1261 * function is called from invalidate page, it's
1262 * harmless to return without any action.
cd213226 1263 */
0637c6f4
TT
1264 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1265 "ino %lu, to_free %d with only %d reserved "
1084f252 1266 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1267 ei->i_reserved_data_blocks);
1268 WARN_ON(1);
1269 to_free = ei->i_reserved_data_blocks;
cd213226 1270 }
0637c6f4 1271 ei->i_reserved_data_blocks -= to_free;
cd213226 1272
0637c6f4
TT
1273 if (ei->i_reserved_data_blocks == 0) {
1274 /*
1275 * We can release all of the reserved metadata blocks
1276 * only when we have written all of the delayed
1277 * allocation blocks.
7b415bf6
AK
1278 * Note that in case of bigalloc, i_reserved_meta_blocks,
1279 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1280 */
57042651 1281 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1282 ei->i_reserved_meta_blocks);
ee5f4d9c 1283 ei->i_reserved_meta_blocks = 0;
9d0be502 1284 ei->i_da_metadata_calc_len = 0;
0637c6f4 1285 }
d2a17637 1286
72b8ab9d 1287 /* update fs dirty data blocks counter */
57042651 1288 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1289
d2a17637 1290 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1291
7b415bf6 1292 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1293}
1294
1295static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1296 unsigned long offset)
d2a17637
MC
1297{
1298 int to_release = 0;
1299 struct buffer_head *head, *bh;
1300 unsigned int curr_off = 0;
7b415bf6
AK
1301 struct inode *inode = page->mapping->host;
1302 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1303 int num_clusters;
d2a17637
MC
1304
1305 head = page_buffers(page);
1306 bh = head;
1307 do {
1308 unsigned int next_off = curr_off + bh->b_size;
1309
1310 if ((offset <= curr_off) && (buffer_delay(bh))) {
1311 to_release++;
1312 clear_buffer_delay(bh);
5356f261 1313 clear_buffer_da_mapped(bh);
d2a17637
MC
1314 }
1315 curr_off = next_off;
1316 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1317
1318 /* If we have released all the blocks belonging to a cluster, then we
1319 * need to release the reserved space for that cluster. */
1320 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321 while (num_clusters > 0) {
1322 ext4_fsblk_t lblk;
1323 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1324 ((num_clusters - 1) << sbi->s_cluster_bits);
1325 if (sbi->s_cluster_ratio == 1 ||
1326 !ext4_find_delalloc_cluster(inode, lblk, 1))
1327 ext4_da_release_space(inode, 1);
1328
1329 num_clusters--;
1330 }
d2a17637 1331}
ac27a0ec 1332
64769240
AT
1333/*
1334 * Delayed allocation stuff
1335 */
1336
64769240
AT
1337/*
1338 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1339 * them with writepage() call back
64769240
AT
1340 *
1341 * @mpd->inode: inode
1342 * @mpd->first_page: first page of the extent
1343 * @mpd->next_page: page after the last page of the extent
64769240
AT
1344 *
1345 * By the time mpage_da_submit_io() is called we expect all blocks
1346 * to be allocated. this may be wrong if allocation failed.
1347 *
1348 * As pages are already locked by write_cache_pages(), we can't use it
1349 */
1de3e3df
TT
1350static int mpage_da_submit_io(struct mpage_da_data *mpd,
1351 struct ext4_map_blocks *map)
64769240 1352{
791b7f08
AK
1353 struct pagevec pvec;
1354 unsigned long index, end;
1355 int ret = 0, err, nr_pages, i;
1356 struct inode *inode = mpd->inode;
1357 struct address_space *mapping = inode->i_mapping;
cb20d518 1358 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1359 unsigned int len, block_start;
1360 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1361 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1362 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1363 struct ext4_io_submit io_submit;
64769240
AT
1364
1365 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1366 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1367 /*
1368 * We need to start from the first_page to the next_page - 1
1369 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1370 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1371 * at the currently mapped buffer_heads.
1372 */
64769240
AT
1373 index = mpd->first_page;
1374 end = mpd->next_page - 1;
1375
791b7f08 1376 pagevec_init(&pvec, 0);
64769240 1377 while (index <= end) {
791b7f08 1378 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1379 if (nr_pages == 0)
1380 break;
1381 for (i = 0; i < nr_pages; i++) {
97498956 1382 int commit_write = 0, skip_page = 0;
64769240
AT
1383 struct page *page = pvec.pages[i];
1384
791b7f08
AK
1385 index = page->index;
1386 if (index > end)
1387 break;
cb20d518
TT
1388
1389 if (index == size >> PAGE_CACHE_SHIFT)
1390 len = size & ~PAGE_CACHE_MASK;
1391 else
1392 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1393 if (map) {
1394 cur_logical = index << (PAGE_CACHE_SHIFT -
1395 inode->i_blkbits);
1396 pblock = map->m_pblk + (cur_logical -
1397 map->m_lblk);
1398 }
791b7f08
AK
1399 index++;
1400
1401 BUG_ON(!PageLocked(page));
1402 BUG_ON(PageWriteback(page));
1403
64769240 1404 /*
cb20d518
TT
1405 * If the page does not have buffers (for
1406 * whatever reason), try to create them using
a107e5a3 1407 * __block_write_begin. If this fails,
97498956 1408 * skip the page and move on.
64769240 1409 */
cb20d518 1410 if (!page_has_buffers(page)) {
a107e5a3 1411 if (__block_write_begin(page, 0, len,
cb20d518 1412 noalloc_get_block_write)) {
97498956 1413 skip_page:
cb20d518
TT
1414 unlock_page(page);
1415 continue;
1416 }
1417 commit_write = 1;
1418 }
64769240 1419
3ecdb3a1
TT
1420 bh = page_bufs = page_buffers(page);
1421 block_start = 0;
64769240 1422 do {
1de3e3df 1423 if (!bh)
97498956 1424 goto skip_page;
1de3e3df
TT
1425 if (map && (cur_logical >= map->m_lblk) &&
1426 (cur_logical <= (map->m_lblk +
1427 (map->m_len - 1)))) {
29fa89d0
AK
1428 if (buffer_delay(bh)) {
1429 clear_buffer_delay(bh);
1430 bh->b_blocknr = pblock;
29fa89d0 1431 }
5356f261
AK
1432 if (buffer_da_mapped(bh))
1433 clear_buffer_da_mapped(bh);
1de3e3df
TT
1434 if (buffer_unwritten(bh) ||
1435 buffer_mapped(bh))
1436 BUG_ON(bh->b_blocknr != pblock);
1437 if (map->m_flags & EXT4_MAP_UNINIT)
1438 set_buffer_uninit(bh);
1439 clear_buffer_unwritten(bh);
1440 }
29fa89d0 1441
13a79a47
YY
1442 /*
1443 * skip page if block allocation undone and
1444 * block is dirty
1445 */
1446 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1447 skip_page = 1;
3ecdb3a1
TT
1448 bh = bh->b_this_page;
1449 block_start += bh->b_size;
64769240
AT
1450 cur_logical++;
1451 pblock++;
1de3e3df
TT
1452 } while (bh != page_bufs);
1453
97498956
TT
1454 if (skip_page)
1455 goto skip_page;
cb20d518
TT
1456
1457 if (commit_write)
1458 /* mark the buffer_heads as dirty & uptodate */
1459 block_commit_write(page, 0, len);
1460
97498956 1461 clear_page_dirty_for_io(page);
bd2d0210
TT
1462 /*
1463 * Delalloc doesn't support data journalling,
1464 * but eventually maybe we'll lift this
1465 * restriction.
1466 */
1467 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1468 err = __ext4_journalled_writepage(page, len);
1449032b 1469 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1470 err = ext4_bio_write_page(&io_submit, page,
1471 len, mpd->wbc);
9dd75f1f
TT
1472 else if (buffer_uninit(page_bufs)) {
1473 ext4_set_bh_endio(page_bufs, inode);
1474 err = block_write_full_page_endio(page,
1475 noalloc_get_block_write,
1476 mpd->wbc, ext4_end_io_buffer_write);
1477 } else
1449032b
TT
1478 err = block_write_full_page(page,
1479 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1480
1481 if (!err)
a1d6cc56 1482 mpd->pages_written++;
64769240
AT
1483 /*
1484 * In error case, we have to continue because
1485 * remaining pages are still locked
64769240
AT
1486 */
1487 if (ret == 0)
1488 ret = err;
64769240
AT
1489 }
1490 pagevec_release(&pvec);
1491 }
bd2d0210 1492 ext4_io_submit(&io_submit);
64769240 1493 return ret;
64769240
AT
1494}
1495
c7f5938a 1496static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1497{
1498 int nr_pages, i;
1499 pgoff_t index, end;
1500 struct pagevec pvec;
1501 struct inode *inode = mpd->inode;
1502 struct address_space *mapping = inode->i_mapping;
1503
c7f5938a
CW
1504 index = mpd->first_page;
1505 end = mpd->next_page - 1;
c4a0c46e
AK
1506 while (index <= end) {
1507 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1508 if (nr_pages == 0)
1509 break;
1510 for (i = 0; i < nr_pages; i++) {
1511 struct page *page = pvec.pages[i];
9b1d0998 1512 if (page->index > end)
c4a0c46e 1513 break;
c4a0c46e
AK
1514 BUG_ON(!PageLocked(page));
1515 BUG_ON(PageWriteback(page));
1516 block_invalidatepage(page, 0);
1517 ClearPageUptodate(page);
1518 unlock_page(page);
1519 }
9b1d0998
JK
1520 index = pvec.pages[nr_pages - 1]->index + 1;
1521 pagevec_release(&pvec);
c4a0c46e
AK
1522 }
1523 return;
1524}
1525
df22291f
AK
1526static void ext4_print_free_blocks(struct inode *inode)
1527{
1528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1529 struct super_block *sb = inode->i_sb;
1530
1531 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1532 EXT4_C2B(EXT4_SB(inode->i_sb),
1533 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1534 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1535 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1536 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1537 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1538 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1539 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1540 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1541 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1542 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1543 EXT4_I(inode)->i_reserved_data_blocks);
1544 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1545 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1546 return;
1547}
1548
64769240 1549/*
5a87b7a5
TT
1550 * mpage_da_map_and_submit - go through given space, map them
1551 * if necessary, and then submit them for I/O
64769240 1552 *
8dc207c0 1553 * @mpd - bh describing space
64769240
AT
1554 *
1555 * The function skips space we know is already mapped to disk blocks.
1556 *
64769240 1557 */
5a87b7a5 1558static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1559{
2ac3b6e0 1560 int err, blks, get_blocks_flags;
1de3e3df 1561 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1562 sector_t next = mpd->b_blocknr;
1563 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1564 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1565 handle_t *handle = NULL;
64769240
AT
1566
1567 /*
5a87b7a5
TT
1568 * If the blocks are mapped already, or we couldn't accumulate
1569 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1570 */
5a87b7a5
TT
1571 if ((mpd->b_size == 0) ||
1572 ((mpd->b_state & (1 << BH_Mapped)) &&
1573 !(mpd->b_state & (1 << BH_Delay)) &&
1574 !(mpd->b_state & (1 << BH_Unwritten))))
1575 goto submit_io;
2fa3cdfb
TT
1576
1577 handle = ext4_journal_current_handle();
1578 BUG_ON(!handle);
1579
79ffab34 1580 /*
79e83036 1581 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1582 * blocks, or to convert an uninitialized extent to be
1583 * initialized (in the case where we have written into
1584 * one or more preallocated blocks).
1585 *
1586 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1587 * indicate that we are on the delayed allocation path. This
1588 * affects functions in many different parts of the allocation
1589 * call path. This flag exists primarily because we don't
79e83036 1590 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1591 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1592 * inode's allocation semaphore is taken.
1593 *
1594 * If the blocks in questions were delalloc blocks, set
1595 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1596 * variables are updated after the blocks have been allocated.
79ffab34 1597 */
2ed88685
TT
1598 map.m_lblk = next;
1599 map.m_len = max_blocks;
1296cc85 1600 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1601 if (ext4_should_dioread_nolock(mpd->inode))
1602 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1603 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1604 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1605
2ed88685 1606 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1607 if (blks < 0) {
e3570639
ES
1608 struct super_block *sb = mpd->inode->i_sb;
1609
2fa3cdfb 1610 err = blks;
ed5bde0b 1611 /*
5a87b7a5 1612 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1613 * appears to be free blocks we will just let
1614 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1615 */
1616 if (err == -EAGAIN)
5a87b7a5 1617 goto submit_io;
df22291f 1618
5dee5437 1619 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1620 mpd->retval = err;
5a87b7a5 1621 goto submit_io;
df22291f
AK
1622 }
1623
c4a0c46e 1624 /*
ed5bde0b
TT
1625 * get block failure will cause us to loop in
1626 * writepages, because a_ops->writepage won't be able
1627 * to make progress. The page will be redirtied by
1628 * writepage and writepages will again try to write
1629 * the same.
c4a0c46e 1630 */
e3570639
ES
1631 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1632 ext4_msg(sb, KERN_CRIT,
1633 "delayed block allocation failed for inode %lu "
1634 "at logical offset %llu with max blocks %zd "
1635 "with error %d", mpd->inode->i_ino,
1636 (unsigned long long) next,
1637 mpd->b_size >> mpd->inode->i_blkbits, err);
1638 ext4_msg(sb, KERN_CRIT,
1639 "This should not happen!! Data will be lost\n");
1640 if (err == -ENOSPC)
1641 ext4_print_free_blocks(mpd->inode);
030ba6bc 1642 }
2fa3cdfb 1643 /* invalidate all the pages */
c7f5938a 1644 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1645
1646 /* Mark this page range as having been completed */
1647 mpd->io_done = 1;
5a87b7a5 1648 return;
c4a0c46e 1649 }
2fa3cdfb
TT
1650 BUG_ON(blks == 0);
1651
1de3e3df 1652 mapp = &map;
2ed88685
TT
1653 if (map.m_flags & EXT4_MAP_NEW) {
1654 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1655 int i;
64769240 1656
2ed88685
TT
1657 for (i = 0; i < map.m_len; i++)
1658 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1659
decbd919
TT
1660 if (ext4_should_order_data(mpd->inode)) {
1661 err = ext4_jbd2_file_inode(handle, mpd->inode);
8de49e67 1662 if (err) {
decbd919 1663 /* Only if the journal is aborted */
8de49e67
KM
1664 mpd->retval = err;
1665 goto submit_io;
1666 }
decbd919 1667 }
2fa3cdfb
TT
1668 }
1669
1670 /*
03f5d8bc 1671 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1672 */
1673 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1674 if (disksize > i_size_read(mpd->inode))
1675 disksize = i_size_read(mpd->inode);
1676 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1677 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1678 err = ext4_mark_inode_dirty(handle, mpd->inode);
1679 if (err)
1680 ext4_error(mpd->inode->i_sb,
1681 "Failed to mark inode %lu dirty",
1682 mpd->inode->i_ino);
2fa3cdfb
TT
1683 }
1684
5a87b7a5 1685submit_io:
1de3e3df 1686 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1687 mpd->io_done = 1;
64769240
AT
1688}
1689
bf068ee2
AK
1690#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1691 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1692
1693/*
1694 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1695 *
1696 * @mpd->lbh - extent of blocks
1697 * @logical - logical number of the block in the file
1698 * @bh - bh of the block (used to access block's state)
1699 *
1700 * the function is used to collect contig. blocks in same state
1701 */
1702static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1703 sector_t logical, size_t b_size,
1704 unsigned long b_state)
64769240 1705{
64769240 1706 sector_t next;
8dc207c0 1707 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1708
c445e3e0
ES
1709 /*
1710 * XXX Don't go larger than mballoc is willing to allocate
1711 * This is a stopgap solution. We eventually need to fold
1712 * mpage_da_submit_io() into this function and then call
79e83036 1713 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1714 */
1715 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1716 goto flush_it;
1717
525f4ed8 1718 /* check if thereserved journal credits might overflow */
12e9b892 1719 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1720 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1721 /*
1722 * With non-extent format we are limited by the journal
1723 * credit available. Total credit needed to insert
1724 * nrblocks contiguous blocks is dependent on the
1725 * nrblocks. So limit nrblocks.
1726 */
1727 goto flush_it;
1728 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1729 EXT4_MAX_TRANS_DATA) {
1730 /*
1731 * Adding the new buffer_head would make it cross the
1732 * allowed limit for which we have journal credit
1733 * reserved. So limit the new bh->b_size
1734 */
1735 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1736 mpd->inode->i_blkbits;
1737 /* we will do mpage_da_submit_io in the next loop */
1738 }
1739 }
64769240
AT
1740 /*
1741 * First block in the extent
1742 */
8dc207c0
TT
1743 if (mpd->b_size == 0) {
1744 mpd->b_blocknr = logical;
1745 mpd->b_size = b_size;
1746 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1747 return;
1748 }
1749
8dc207c0 1750 next = mpd->b_blocknr + nrblocks;
64769240
AT
1751 /*
1752 * Can we merge the block to our big extent?
1753 */
8dc207c0
TT
1754 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1755 mpd->b_size += b_size;
64769240
AT
1756 return;
1757 }
1758
525f4ed8 1759flush_it:
64769240
AT
1760 /*
1761 * We couldn't merge the block to our extent, so we
1762 * need to flush current extent and start new one
1763 */
5a87b7a5 1764 mpage_da_map_and_submit(mpd);
a1d6cc56 1765 return;
64769240
AT
1766}
1767
c364b22c 1768static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1769{
c364b22c 1770 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1771}
1772
5356f261
AK
1773/*
1774 * This function is grabs code from the very beginning of
1775 * ext4_map_blocks, but assumes that the caller is from delayed write
1776 * time. This function looks up the requested blocks and sets the
1777 * buffer delay bit under the protection of i_data_sem.
1778 */
1779static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1780 struct ext4_map_blocks *map,
1781 struct buffer_head *bh)
1782{
1783 int retval;
1784 sector_t invalid_block = ~((sector_t) 0xffff);
1785
1786 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1787 invalid_block = ~0;
1788
1789 map->m_flags = 0;
1790 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1791 "logical block %lu\n", inode->i_ino, map->m_len,
1792 (unsigned long) map->m_lblk);
1793 /*
1794 * Try to see if we can get the block without requesting a new
1795 * file system block.
1796 */
1797 down_read((&EXT4_I(inode)->i_data_sem));
1798 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1799 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1800 else
1801 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1802
1803 if (retval == 0) {
1804 /*
1805 * XXX: __block_prepare_write() unmaps passed block,
1806 * is it OK?
1807 */
1808 /* If the block was allocated from previously allocated cluster,
1809 * then we dont need to reserve it again. */
1810 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1811 retval = ext4_da_reserve_space(inode, iblock);
1812 if (retval)
1813 /* not enough space to reserve */
1814 goto out_unlock;
1815 }
1816
1817 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1818 * and it should not appear on the bh->b_state.
1819 */
1820 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1821
1822 map_bh(bh, inode->i_sb, invalid_block);
1823 set_buffer_new(bh);
1824 set_buffer_delay(bh);
1825 }
1826
1827out_unlock:
1828 up_read((&EXT4_I(inode)->i_data_sem));
1829
1830 return retval;
1831}
1832
64769240 1833/*
b920c755
TT
1834 * This is a special get_blocks_t callback which is used by
1835 * ext4_da_write_begin(). It will either return mapped block or
1836 * reserve space for a single block.
29fa89d0
AK
1837 *
1838 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839 * We also have b_blocknr = -1 and b_bdev initialized properly
1840 *
1841 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843 * initialized properly.
64769240
AT
1844 */
1845static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1846 struct buffer_head *bh, int create)
64769240 1847{
2ed88685 1848 struct ext4_map_blocks map;
64769240
AT
1849 int ret = 0;
1850
1851 BUG_ON(create == 0);
2ed88685
TT
1852 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853
1854 map.m_lblk = iblock;
1855 map.m_len = 1;
64769240
AT
1856
1857 /*
1858 * first, we need to know whether the block is allocated already
1859 * preallocated blocks are unmapped but should treated
1860 * the same as allocated blocks.
1861 */
5356f261
AK
1862 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863 if (ret <= 0)
2ed88685 1864 return ret;
64769240 1865
2ed88685
TT
1866 map_bh(bh, inode->i_sb, map.m_pblk);
1867 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1868
1869 if (buffer_unwritten(bh)) {
1870 /* A delayed write to unwritten bh should be marked
1871 * new and mapped. Mapped ensures that we don't do
1872 * get_block multiple times when we write to the same
1873 * offset and new ensures that we do proper zero out
1874 * for partial write.
1875 */
1876 set_buffer_new(bh);
c8205636 1877 set_buffer_mapped(bh);
2ed88685
TT
1878 }
1879 return 0;
64769240 1880}
61628a3f 1881
b920c755
TT
1882/*
1883 * This function is used as a standard get_block_t calback function
1884 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1885 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1886 * These functions should only try to map a single block at a time.
b920c755
TT
1887 *
1888 * Since this function doesn't do block allocations even if the caller
1889 * requests it by passing in create=1, it is critically important that
1890 * any caller checks to make sure that any buffer heads are returned
1891 * by this function are either all already mapped or marked for
206f7ab4
CH
1892 * delayed allocation before calling block_write_full_page(). Otherwise,
1893 * b_blocknr could be left unitialized, and the page write functions will
1894 * be taken by surprise.
b920c755
TT
1895 */
1896static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1897 struct buffer_head *bh_result, int create)
1898{
a2dc52b5 1899 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1900 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1901}
1902
62e086be
AK
1903static int bget_one(handle_t *handle, struct buffer_head *bh)
1904{
1905 get_bh(bh);
1906 return 0;
1907}
1908
1909static int bput_one(handle_t *handle, struct buffer_head *bh)
1910{
1911 put_bh(bh);
1912 return 0;
1913}
1914
1915static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1916 unsigned int len)
1917{
1918 struct address_space *mapping = page->mapping;
1919 struct inode *inode = mapping->host;
1920 struct buffer_head *page_bufs;
1921 handle_t *handle = NULL;
1922 int ret = 0;
1923 int err;
1924
cb20d518 1925 ClearPageChecked(page);
62e086be
AK
1926 page_bufs = page_buffers(page);
1927 BUG_ON(!page_bufs);
1928 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1929 /* As soon as we unlock the page, it can go away, but we have
1930 * references to buffers so we are safe */
1931 unlock_page(page);
1932
1933 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1934 if (IS_ERR(handle)) {
1935 ret = PTR_ERR(handle);
1936 goto out;
1937 }
1938
441c8508
CW
1939 BUG_ON(!ext4_handle_valid(handle));
1940
62e086be
AK
1941 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1942 do_journal_get_write_access);
1943
1944 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1945 write_end_fn);
1946 if (ret == 0)
1947 ret = err;
2d859db3 1948 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1949 err = ext4_journal_stop(handle);
1950 if (!ret)
1951 ret = err;
1952
1953 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1954 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1955out:
1956 return ret;
1957}
1958
61628a3f 1959/*
43ce1d23
AK
1960 * Note that we don't need to start a transaction unless we're journaling data
1961 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1962 * need to file the inode to the transaction's list in ordered mode because if
1963 * we are writing back data added by write(), the inode is already there and if
25985edc 1964 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1965 * transaction the data will hit the disk. In case we are journaling data, we
1966 * cannot start transaction directly because transaction start ranks above page
1967 * lock so we have to do some magic.
1968 *
b920c755
TT
1969 * This function can get called via...
1970 * - ext4_da_writepages after taking page lock (have journal handle)
1971 * - journal_submit_inode_data_buffers (no journal handle)
1972 * - shrink_page_list via pdflush (no journal handle)
1973 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1974 *
1975 * We don't do any block allocation in this function. If we have page with
1976 * multiple blocks we need to write those buffer_heads that are mapped. This
1977 * is important for mmaped based write. So if we do with blocksize 1K
1978 * truncate(f, 1024);
1979 * a = mmap(f, 0, 4096);
1980 * a[0] = 'a';
1981 * truncate(f, 4096);
1982 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1983 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1984 * do_wp_page). So writepage should write the first block. If we modify
1985 * the mmap area beyond 1024 we will again get a page_fault and the
1986 * page_mkwrite callback will do the block allocation and mark the
1987 * buffer_heads mapped.
1988 *
1989 * We redirty the page if we have any buffer_heads that is either delay or
1990 * unwritten in the page.
1991 *
1992 * We can get recursively called as show below.
1993 *
1994 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1995 * ext4_writepage()
1996 *
1997 * But since we don't do any block allocation we should not deadlock.
1998 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1999 */
43ce1d23 2000static int ext4_writepage(struct page *page,
62e086be 2001 struct writeback_control *wbc)
64769240 2002{
a42afc5f 2003 int ret = 0, commit_write = 0;
61628a3f 2004 loff_t size;
498e5f24 2005 unsigned int len;
744692dc 2006 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2007 struct inode *inode = page->mapping->host;
2008
a9c667f8 2009 trace_ext4_writepage(page);
f0e6c985
AK
2010 size = i_size_read(inode);
2011 if (page->index == size >> PAGE_CACHE_SHIFT)
2012 len = size & ~PAGE_CACHE_MASK;
2013 else
2014 len = PAGE_CACHE_SIZE;
64769240 2015
a42afc5f
TT
2016 /*
2017 * If the page does not have buffers (for whatever reason),
a107e5a3 2018 * try to create them using __block_write_begin. If this
a42afc5f
TT
2019 * fails, redirty the page and move on.
2020 */
b1142e8f 2021 if (!page_has_buffers(page)) {
a107e5a3 2022 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2023 noalloc_get_block_write)) {
2024 redirty_page:
f0e6c985
AK
2025 redirty_page_for_writepage(wbc, page);
2026 unlock_page(page);
2027 return 0;
2028 }
a42afc5f
TT
2029 commit_write = 1;
2030 }
2031 page_bufs = page_buffers(page);
2032 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2033 ext4_bh_delay_or_unwritten)) {
f0e6c985 2034 /*
b1142e8f
TT
2035 * We don't want to do block allocation, so redirty
2036 * the page and return. We may reach here when we do
2037 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2038 * We can also reach here via shrink_page_list but it
2039 * should never be for direct reclaim so warn if that
2040 * happens
f0e6c985 2041 */
966dbde2
MG
2042 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2043 PF_MEMALLOC);
a42afc5f
TT
2044 goto redirty_page;
2045 }
2046 if (commit_write)
ed9b3e33 2047 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2048 block_commit_write(page, 0, len);
64769240 2049
cb20d518 2050 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2051 /*
2052 * It's mmapped pagecache. Add buffers and journal it. There
2053 * doesn't seem much point in redirtying the page here.
2054 */
3f0ca309 2055 return __ext4_journalled_writepage(page, len);
43ce1d23 2056
a42afc5f 2057 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2058 ext4_set_bh_endio(page_bufs, inode);
2059 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2060 wbc, ext4_end_io_buffer_write);
2061 } else
b920c755
TT
2062 ret = block_write_full_page(page, noalloc_get_block_write,
2063 wbc);
64769240 2064
64769240
AT
2065 return ret;
2066}
2067
61628a3f 2068/*
525f4ed8 2069 * This is called via ext4_da_writepages() to
25985edc 2070 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2071 * a single extent allocation into a single transaction,
2072 * ext4_da_writpeages() will loop calling this before
2073 * the block allocation.
61628a3f 2074 */
525f4ed8
MC
2075
2076static int ext4_da_writepages_trans_blocks(struct inode *inode)
2077{
2078 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2079
2080 /*
2081 * With non-extent format the journal credit needed to
2082 * insert nrblocks contiguous block is dependent on
2083 * number of contiguous block. So we will limit
2084 * number of contiguous block to a sane value
2085 */
12e9b892 2086 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2087 (max_blocks > EXT4_MAX_TRANS_DATA))
2088 max_blocks = EXT4_MAX_TRANS_DATA;
2089
2090 return ext4_chunk_trans_blocks(inode, max_blocks);
2091}
61628a3f 2092
8e48dcfb
TT
2093/*
2094 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2095 * address space and accumulate pages that need writing, and call
168fc022
TT
2096 * mpage_da_map_and_submit to map a single contiguous memory region
2097 * and then write them.
8e48dcfb
TT
2098 */
2099static int write_cache_pages_da(struct address_space *mapping,
2100 struct writeback_control *wbc,
72f84e65
ES
2101 struct mpage_da_data *mpd,
2102 pgoff_t *done_index)
8e48dcfb 2103{
4f01b02c 2104 struct buffer_head *bh, *head;
168fc022 2105 struct inode *inode = mapping->host;
4f01b02c
TT
2106 struct pagevec pvec;
2107 unsigned int nr_pages;
2108 sector_t logical;
2109 pgoff_t index, end;
2110 long nr_to_write = wbc->nr_to_write;
2111 int i, tag, ret = 0;
8e48dcfb 2112
168fc022
TT
2113 memset(mpd, 0, sizeof(struct mpage_da_data));
2114 mpd->wbc = wbc;
2115 mpd->inode = inode;
8e48dcfb
TT
2116 pagevec_init(&pvec, 0);
2117 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2118 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2119
6e6938b6 2120 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2121 tag = PAGECACHE_TAG_TOWRITE;
2122 else
2123 tag = PAGECACHE_TAG_DIRTY;
2124
72f84e65 2125 *done_index = index;
4f01b02c 2126 while (index <= end) {
5b41d924 2127 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2128 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2129 if (nr_pages == 0)
4f01b02c 2130 return 0;
8e48dcfb
TT
2131
2132 for (i = 0; i < nr_pages; i++) {
2133 struct page *page = pvec.pages[i];
2134
2135 /*
2136 * At this point, the page may be truncated or
2137 * invalidated (changing page->mapping to NULL), or
2138 * even swizzled back from swapper_space to tmpfs file
2139 * mapping. However, page->index will not change
2140 * because we have a reference on the page.
2141 */
4f01b02c
TT
2142 if (page->index > end)
2143 goto out;
8e48dcfb 2144
72f84e65
ES
2145 *done_index = page->index + 1;
2146
78aaced3
TT
2147 /*
2148 * If we can't merge this page, and we have
2149 * accumulated an contiguous region, write it
2150 */
2151 if ((mpd->next_page != page->index) &&
2152 (mpd->next_page != mpd->first_page)) {
2153 mpage_da_map_and_submit(mpd);
2154 goto ret_extent_tail;
2155 }
2156
8e48dcfb
TT
2157 lock_page(page);
2158
2159 /*
4f01b02c
TT
2160 * If the page is no longer dirty, or its
2161 * mapping no longer corresponds to inode we
2162 * are writing (which means it has been
2163 * truncated or invalidated), or the page is
2164 * already under writeback and we are not
2165 * doing a data integrity writeback, skip the page
8e48dcfb 2166 */
4f01b02c
TT
2167 if (!PageDirty(page) ||
2168 (PageWriteback(page) &&
2169 (wbc->sync_mode == WB_SYNC_NONE)) ||
2170 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2171 unlock_page(page);
2172 continue;
2173 }
2174
7cb1a535 2175 wait_on_page_writeback(page);
8e48dcfb 2176 BUG_ON(PageWriteback(page));
8e48dcfb 2177
168fc022 2178 if (mpd->next_page != page->index)
8eb9e5ce 2179 mpd->first_page = page->index;
8eb9e5ce
TT
2180 mpd->next_page = page->index + 1;
2181 logical = (sector_t) page->index <<
2182 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2183
2184 if (!page_has_buffers(page)) {
4f01b02c
TT
2185 mpage_add_bh_to_extent(mpd, logical,
2186 PAGE_CACHE_SIZE,
8eb9e5ce 2187 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2188 if (mpd->io_done)
2189 goto ret_extent_tail;
8eb9e5ce
TT
2190 } else {
2191 /*
4f01b02c
TT
2192 * Page with regular buffer heads,
2193 * just add all dirty ones
8eb9e5ce
TT
2194 */
2195 head = page_buffers(page);
2196 bh = head;
2197 do {
2198 BUG_ON(buffer_locked(bh));
2199 /*
2200 * We need to try to allocate
2201 * unmapped blocks in the same page.
2202 * Otherwise we won't make progress
2203 * with the page in ext4_writepage
2204 */
2205 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2206 mpage_add_bh_to_extent(mpd, logical,
2207 bh->b_size,
2208 bh->b_state);
4f01b02c
TT
2209 if (mpd->io_done)
2210 goto ret_extent_tail;
8eb9e5ce
TT
2211 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2212 /*
4f01b02c
TT
2213 * mapped dirty buffer. We need
2214 * to update the b_state
2215 * because we look at b_state
2216 * in mpage_da_map_blocks. We
2217 * don't update b_size because
2218 * if we find an unmapped
2219 * buffer_head later we need to
2220 * use the b_state flag of that
2221 * buffer_head.
8eb9e5ce
TT
2222 */
2223 if (mpd->b_size == 0)
2224 mpd->b_state = bh->b_state & BH_FLAGS;
2225 }
2226 logical++;
2227 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2228 }
2229
2230 if (nr_to_write > 0) {
2231 nr_to_write--;
2232 if (nr_to_write == 0 &&
4f01b02c 2233 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2234 /*
2235 * We stop writing back only if we are
2236 * not doing integrity sync. In case of
2237 * integrity sync we have to keep going
2238 * because someone may be concurrently
2239 * dirtying pages, and we might have
2240 * synced a lot of newly appeared dirty
2241 * pages, but have not synced all of the
2242 * old dirty pages.
2243 */
4f01b02c 2244 goto out;
8e48dcfb
TT
2245 }
2246 }
2247 pagevec_release(&pvec);
2248 cond_resched();
2249 }
4f01b02c
TT
2250 return 0;
2251ret_extent_tail:
2252 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2253out:
2254 pagevec_release(&pvec);
2255 cond_resched();
8e48dcfb
TT
2256 return ret;
2257}
2258
2259
64769240 2260static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2261 struct writeback_control *wbc)
64769240 2262{
22208ded
AK
2263 pgoff_t index;
2264 int range_whole = 0;
61628a3f 2265 handle_t *handle = NULL;
df22291f 2266 struct mpage_da_data mpd;
5e745b04 2267 struct inode *inode = mapping->host;
498e5f24 2268 int pages_written = 0;
55138e0b 2269 unsigned int max_pages;
2acf2c26 2270 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2271 int needed_blocks, ret = 0;
2272 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2273 loff_t range_start = wbc->range_start;
5e745b04 2274 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2275 pgoff_t done_index = 0;
5b41d924 2276 pgoff_t end;
1bce63d1 2277 struct blk_plug plug;
61628a3f 2278
9bffad1e 2279 trace_ext4_da_writepages(inode, wbc);
ba80b101 2280
61628a3f
MC
2281 /*
2282 * No pages to write? This is mainly a kludge to avoid starting
2283 * a transaction for special inodes like journal inode on last iput()
2284 * because that could violate lock ordering on umount
2285 */
a1d6cc56 2286 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2287 return 0;
2a21e37e
TT
2288
2289 /*
2290 * If the filesystem has aborted, it is read-only, so return
2291 * right away instead of dumping stack traces later on that
2292 * will obscure the real source of the problem. We test
4ab2f15b 2293 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2294 * the latter could be true if the filesystem is mounted
2295 * read-only, and in that case, ext4_da_writepages should
2296 * *never* be called, so if that ever happens, we would want
2297 * the stack trace.
2298 */
4ab2f15b 2299 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2300 return -EROFS;
2301
22208ded
AK
2302 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2303 range_whole = 1;
61628a3f 2304
2acf2c26
AK
2305 range_cyclic = wbc->range_cyclic;
2306 if (wbc->range_cyclic) {
22208ded 2307 index = mapping->writeback_index;
2acf2c26
AK
2308 if (index)
2309 cycled = 0;
2310 wbc->range_start = index << PAGE_CACHE_SHIFT;
2311 wbc->range_end = LLONG_MAX;
2312 wbc->range_cyclic = 0;
5b41d924
ES
2313 end = -1;
2314 } else {
22208ded 2315 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2316 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2317 }
a1d6cc56 2318
55138e0b
TT
2319 /*
2320 * This works around two forms of stupidity. The first is in
2321 * the writeback code, which caps the maximum number of pages
2322 * written to be 1024 pages. This is wrong on multiple
2323 * levels; different architectues have a different page size,
2324 * which changes the maximum amount of data which gets
2325 * written. Secondly, 4 megabytes is way too small. XFS
2326 * forces this value to be 16 megabytes by multiplying
2327 * nr_to_write parameter by four, and then relies on its
2328 * allocator to allocate larger extents to make them
2329 * contiguous. Unfortunately this brings us to the second
2330 * stupidity, which is that ext4's mballoc code only allocates
2331 * at most 2048 blocks. So we force contiguous writes up to
2332 * the number of dirty blocks in the inode, or
2333 * sbi->max_writeback_mb_bump whichever is smaller.
2334 */
2335 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2336 if (!range_cyclic && range_whole) {
2337 if (wbc->nr_to_write == LONG_MAX)
2338 desired_nr_to_write = wbc->nr_to_write;
2339 else
2340 desired_nr_to_write = wbc->nr_to_write * 8;
2341 } else
55138e0b
TT
2342 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2343 max_pages);
2344 if (desired_nr_to_write > max_pages)
2345 desired_nr_to_write = max_pages;
2346
2347 if (wbc->nr_to_write < desired_nr_to_write) {
2348 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2349 wbc->nr_to_write = desired_nr_to_write;
2350 }
2351
2acf2c26 2352retry:
6e6938b6 2353 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2354 tag_pages_for_writeback(mapping, index, end);
2355
1bce63d1 2356 blk_start_plug(&plug);
22208ded 2357 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2358
2359 /*
2360 * we insert one extent at a time. So we need
2361 * credit needed for single extent allocation.
2362 * journalled mode is currently not supported
2363 * by delalloc
2364 */
2365 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2366 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2367
61628a3f
MC
2368 /* start a new transaction*/
2369 handle = ext4_journal_start(inode, needed_blocks);
2370 if (IS_ERR(handle)) {
2371 ret = PTR_ERR(handle);
1693918e 2372 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2373 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2374 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2375 blk_finish_plug(&plug);
61628a3f
MC
2376 goto out_writepages;
2377 }
f63e6005
TT
2378
2379 /*
8eb9e5ce 2380 * Now call write_cache_pages_da() to find the next
f63e6005 2381 * contiguous region of logical blocks that need
8eb9e5ce 2382 * blocks to be allocated by ext4 and submit them.
f63e6005 2383 */
72f84e65 2384 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2385 /*
af901ca1 2386 * If we have a contiguous extent of pages and we
f63e6005
TT
2387 * haven't done the I/O yet, map the blocks and submit
2388 * them for I/O.
2389 */
2390 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2391 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2392 ret = MPAGE_DA_EXTENT_TAIL;
2393 }
b3a3ca8c 2394 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2395 wbc->nr_to_write -= mpd.pages_written;
df22291f 2396
61628a3f 2397 ext4_journal_stop(handle);
df22291f 2398
8f64b32e 2399 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2400 /* commit the transaction which would
2401 * free blocks released in the transaction
2402 * and try again
2403 */
df22291f 2404 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2405 ret = 0;
2406 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2407 /*
8de49e67
KM
2408 * Got one extent now try with rest of the pages.
2409 * If mpd.retval is set -EIO, journal is aborted.
2410 * So we don't need to write any more.
a1d6cc56 2411 */
22208ded 2412 pages_written += mpd.pages_written;
8de49e67 2413 ret = mpd.retval;
2acf2c26 2414 io_done = 1;
22208ded 2415 } else if (wbc->nr_to_write)
61628a3f
MC
2416 /*
2417 * There is no more writeout needed
2418 * or we requested for a noblocking writeout
2419 * and we found the device congested
2420 */
61628a3f 2421 break;
a1d6cc56 2422 }
1bce63d1 2423 blk_finish_plug(&plug);
2acf2c26
AK
2424 if (!io_done && !cycled) {
2425 cycled = 1;
2426 index = 0;
2427 wbc->range_start = index << PAGE_CACHE_SHIFT;
2428 wbc->range_end = mapping->writeback_index - 1;
2429 goto retry;
2430 }
22208ded
AK
2431
2432 /* Update index */
2acf2c26 2433 wbc->range_cyclic = range_cyclic;
22208ded
AK
2434 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2435 /*
2436 * set the writeback_index so that range_cyclic
2437 * mode will write it back later
2438 */
72f84e65 2439 mapping->writeback_index = done_index;
a1d6cc56 2440
61628a3f 2441out_writepages:
2faf2e19 2442 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2443 wbc->range_start = range_start;
9bffad1e 2444 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2445 return ret;
64769240
AT
2446}
2447
79f0be8d
AK
2448#define FALL_BACK_TO_NONDELALLOC 1
2449static int ext4_nonda_switch(struct super_block *sb)
2450{
2451 s64 free_blocks, dirty_blocks;
2452 struct ext4_sb_info *sbi = EXT4_SB(sb);
2453
2454 /*
2455 * switch to non delalloc mode if we are running low
2456 * on free block. The free block accounting via percpu
179f7ebf 2457 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2458 * accumulated on each CPU without updating global counters
2459 * Delalloc need an accurate free block accounting. So switch
2460 * to non delalloc when we are near to error range.
2461 */
57042651
TT
2462 free_blocks = EXT4_C2B(sbi,
2463 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2464 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2465 /*
2466 * Start pushing delalloc when 1/2 of free blocks are dirty.
2467 */
2468 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2469 !writeback_in_progress(sb->s_bdi) &&
2470 down_read_trylock(&sb->s_umount)) {
2471 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2472 up_read(&sb->s_umount);
2473 }
2474
79f0be8d 2475 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2476 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2477 /*
c8afb446
ES
2478 * free block count is less than 150% of dirty blocks
2479 * or free blocks is less than watermark
79f0be8d
AK
2480 */
2481 return 1;
2482 }
2483 return 0;
2484}
2485
64769240 2486static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2487 loff_t pos, unsigned len, unsigned flags,
2488 struct page **pagep, void **fsdata)
64769240 2489{
72b8ab9d 2490 int ret, retries = 0;
64769240
AT
2491 struct page *page;
2492 pgoff_t index;
64769240
AT
2493 struct inode *inode = mapping->host;
2494 handle_t *handle;
2495
2496 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2497
2498 if (ext4_nonda_switch(inode->i_sb)) {
2499 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2500 return ext4_write_begin(file, mapping, pos,
2501 len, flags, pagep, fsdata);
2502 }
2503 *fsdata = (void *)0;
9bffad1e 2504 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2505retry:
64769240
AT
2506 /*
2507 * With delayed allocation, we don't log the i_disksize update
2508 * if there is delayed block allocation. But we still need
2509 * to journalling the i_disksize update if writes to the end
2510 * of file which has an already mapped buffer.
2511 */
2512 handle = ext4_journal_start(inode, 1);
2513 if (IS_ERR(handle)) {
2514 ret = PTR_ERR(handle);
2515 goto out;
2516 }
ebd3610b
JK
2517 /* We cannot recurse into the filesystem as the transaction is already
2518 * started */
2519 flags |= AOP_FLAG_NOFS;
64769240 2520
54566b2c 2521 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2522 if (!page) {
2523 ext4_journal_stop(handle);
2524 ret = -ENOMEM;
2525 goto out;
2526 }
64769240
AT
2527 *pagep = page;
2528
6e1db88d 2529 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2530 if (ret < 0) {
2531 unlock_page(page);
2532 ext4_journal_stop(handle);
2533 page_cache_release(page);
ae4d5372
AK
2534 /*
2535 * block_write_begin may have instantiated a few blocks
2536 * outside i_size. Trim these off again. Don't need
2537 * i_size_read because we hold i_mutex.
2538 */
2539 if (pos + len > inode->i_size)
b9a4207d 2540 ext4_truncate_failed_write(inode);
64769240
AT
2541 }
2542
d2a17637
MC
2543 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2544 goto retry;
64769240
AT
2545out:
2546 return ret;
2547}
2548
632eaeab
MC
2549/*
2550 * Check if we should update i_disksize
2551 * when write to the end of file but not require block allocation
2552 */
2553static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2554 unsigned long offset)
632eaeab
MC
2555{
2556 struct buffer_head *bh;
2557 struct inode *inode = page->mapping->host;
2558 unsigned int idx;
2559 int i;
2560
2561 bh = page_buffers(page);
2562 idx = offset >> inode->i_blkbits;
2563
af5bc92d 2564 for (i = 0; i < idx; i++)
632eaeab
MC
2565 bh = bh->b_this_page;
2566
29fa89d0 2567 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2568 return 0;
2569 return 1;
2570}
2571
64769240 2572static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2573 struct address_space *mapping,
2574 loff_t pos, unsigned len, unsigned copied,
2575 struct page *page, void *fsdata)
64769240
AT
2576{
2577 struct inode *inode = mapping->host;
2578 int ret = 0, ret2;
2579 handle_t *handle = ext4_journal_current_handle();
2580 loff_t new_i_size;
632eaeab 2581 unsigned long start, end;
79f0be8d
AK
2582 int write_mode = (int)(unsigned long)fsdata;
2583
2584 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2585 switch (ext4_inode_journal_mode(inode)) {
2586 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2587 return ext4_ordered_write_end(file, mapping, pos,
2588 len, copied, page, fsdata);
3d2b1582 2589 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2590 return ext4_writeback_write_end(file, mapping, pos,
2591 len, copied, page, fsdata);
3d2b1582 2592 default:
79f0be8d
AK
2593 BUG();
2594 }
2595 }
632eaeab 2596
9bffad1e 2597 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2598 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2599 end = start + copied - 1;
64769240
AT
2600
2601 /*
2602 * generic_write_end() will run mark_inode_dirty() if i_size
2603 * changes. So let's piggyback the i_disksize mark_inode_dirty
2604 * into that.
2605 */
2606
2607 new_i_size = pos + copied;
ea51d132 2608 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2609 if (ext4_da_should_update_i_disksize(page, end)) {
2610 down_write(&EXT4_I(inode)->i_data_sem);
2611 if (new_i_size > EXT4_I(inode)->i_disksize) {
2612 /*
2613 * Updating i_disksize when extending file
2614 * without needing block allocation
2615 */
2616 if (ext4_should_order_data(inode))
2617 ret = ext4_jbd2_file_inode(handle,
2618 inode);
64769240 2619
632eaeab
MC
2620 EXT4_I(inode)->i_disksize = new_i_size;
2621 }
2622 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2623 /* We need to mark inode dirty even if
2624 * new_i_size is less that inode->i_size
2625 * bu greater than i_disksize.(hint delalloc)
2626 */
2627 ext4_mark_inode_dirty(handle, inode);
64769240 2628 }
632eaeab 2629 }
64769240
AT
2630 ret2 = generic_write_end(file, mapping, pos, len, copied,
2631 page, fsdata);
2632 copied = ret2;
2633 if (ret2 < 0)
2634 ret = ret2;
2635 ret2 = ext4_journal_stop(handle);
2636 if (!ret)
2637 ret = ret2;
2638
2639 return ret ? ret : copied;
2640}
2641
2642static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2643{
64769240
AT
2644 /*
2645 * Drop reserved blocks
2646 */
2647 BUG_ON(!PageLocked(page));
2648 if (!page_has_buffers(page))
2649 goto out;
2650
d2a17637 2651 ext4_da_page_release_reservation(page, offset);
64769240
AT
2652
2653out:
2654 ext4_invalidatepage(page, offset);
2655
2656 return;
2657}
2658
ccd2506b
TT
2659/*
2660 * Force all delayed allocation blocks to be allocated for a given inode.
2661 */
2662int ext4_alloc_da_blocks(struct inode *inode)
2663{
fb40ba0d
TT
2664 trace_ext4_alloc_da_blocks(inode);
2665
ccd2506b
TT
2666 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2667 !EXT4_I(inode)->i_reserved_meta_blocks)
2668 return 0;
2669
2670 /*
2671 * We do something simple for now. The filemap_flush() will
2672 * also start triggering a write of the data blocks, which is
2673 * not strictly speaking necessary (and for users of
2674 * laptop_mode, not even desirable). However, to do otherwise
2675 * would require replicating code paths in:
de9a55b8 2676 *
ccd2506b
TT
2677 * ext4_da_writepages() ->
2678 * write_cache_pages() ---> (via passed in callback function)
2679 * __mpage_da_writepage() -->
2680 * mpage_add_bh_to_extent()
2681 * mpage_da_map_blocks()
2682 *
2683 * The problem is that write_cache_pages(), located in
2684 * mm/page-writeback.c, marks pages clean in preparation for
2685 * doing I/O, which is not desirable if we're not planning on
2686 * doing I/O at all.
2687 *
2688 * We could call write_cache_pages(), and then redirty all of
380cf090 2689 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2690 * would be ugly in the extreme. So instead we would need to
2691 * replicate parts of the code in the above functions,
25985edc 2692 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2693 * write out the pages, but rather only collect contiguous
2694 * logical block extents, call the multi-block allocator, and
2695 * then update the buffer heads with the block allocations.
de9a55b8 2696 *
ccd2506b
TT
2697 * For now, though, we'll cheat by calling filemap_flush(),
2698 * which will map the blocks, and start the I/O, but not
2699 * actually wait for the I/O to complete.
2700 */
2701 return filemap_flush(inode->i_mapping);
2702}
64769240 2703
ac27a0ec
DK
2704/*
2705 * bmap() is special. It gets used by applications such as lilo and by
2706 * the swapper to find the on-disk block of a specific piece of data.
2707 *
2708 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2709 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2710 * filesystem and enables swap, then they may get a nasty shock when the
2711 * data getting swapped to that swapfile suddenly gets overwritten by
2712 * the original zero's written out previously to the journal and
2713 * awaiting writeback in the kernel's buffer cache.
2714 *
2715 * So, if we see any bmap calls here on a modified, data-journaled file,
2716 * take extra steps to flush any blocks which might be in the cache.
2717 */
617ba13b 2718static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2719{
2720 struct inode *inode = mapping->host;
2721 journal_t *journal;
2722 int err;
2723
64769240
AT
2724 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2725 test_opt(inode->i_sb, DELALLOC)) {
2726 /*
2727 * With delalloc we want to sync the file
2728 * so that we can make sure we allocate
2729 * blocks for file
2730 */
2731 filemap_write_and_wait(mapping);
2732 }
2733
19f5fb7a
TT
2734 if (EXT4_JOURNAL(inode) &&
2735 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2736 /*
2737 * This is a REALLY heavyweight approach, but the use of
2738 * bmap on dirty files is expected to be extremely rare:
2739 * only if we run lilo or swapon on a freshly made file
2740 * do we expect this to happen.
2741 *
2742 * (bmap requires CAP_SYS_RAWIO so this does not
2743 * represent an unprivileged user DOS attack --- we'd be
2744 * in trouble if mortal users could trigger this path at
2745 * will.)
2746 *
617ba13b 2747 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2748 * regular files. If somebody wants to bmap a directory
2749 * or symlink and gets confused because the buffer
2750 * hasn't yet been flushed to disk, they deserve
2751 * everything they get.
2752 */
2753
19f5fb7a 2754 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2755 journal = EXT4_JOURNAL(inode);
dab291af
MC
2756 jbd2_journal_lock_updates(journal);
2757 err = jbd2_journal_flush(journal);
2758 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2759
2760 if (err)
2761 return 0;
2762 }
2763
af5bc92d 2764 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2765}
2766
617ba13b 2767static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2768{
0562e0ba 2769 trace_ext4_readpage(page);
617ba13b 2770 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2771}
2772
2773static int
617ba13b 2774ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2775 struct list_head *pages, unsigned nr_pages)
2776{
617ba13b 2777 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2778}
2779
744692dc
JZ
2780static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2781{
2782 struct buffer_head *head, *bh;
2783 unsigned int curr_off = 0;
2784
2785 if (!page_has_buffers(page))
2786 return;
2787 head = bh = page_buffers(page);
2788 do {
2789 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2790 && bh->b_private) {
2791 ext4_free_io_end(bh->b_private);
2792 bh->b_private = NULL;
2793 bh->b_end_io = NULL;
2794 }
2795 curr_off = curr_off + bh->b_size;
2796 bh = bh->b_this_page;
2797 } while (bh != head);
2798}
2799
617ba13b 2800static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2801{
617ba13b 2802 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2803
0562e0ba
JZ
2804 trace_ext4_invalidatepage(page, offset);
2805
744692dc
JZ
2806 /*
2807 * free any io_end structure allocated for buffers to be discarded
2808 */
2809 if (ext4_should_dioread_nolock(page->mapping->host))
2810 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2811 /*
2812 * If it's a full truncate we just forget about the pending dirtying
2813 */
2814 if (offset == 0)
2815 ClearPageChecked(page);
2816
0390131b
FM
2817 if (journal)
2818 jbd2_journal_invalidatepage(journal, page, offset);
2819 else
2820 block_invalidatepage(page, offset);
ac27a0ec
DK
2821}
2822
617ba13b 2823static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2824{
617ba13b 2825 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2826
0562e0ba
JZ
2827 trace_ext4_releasepage(page);
2828
ac27a0ec
DK
2829 WARN_ON(PageChecked(page));
2830 if (!page_has_buffers(page))
2831 return 0;
0390131b
FM
2832 if (journal)
2833 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2834 else
2835 return try_to_free_buffers(page);
ac27a0ec
DK
2836}
2837
2ed88685
TT
2838/*
2839 * ext4_get_block used when preparing for a DIO write or buffer write.
2840 * We allocate an uinitialized extent if blocks haven't been allocated.
2841 * The extent will be converted to initialized after the IO is complete.
2842 */
c7064ef1 2843static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2844 struct buffer_head *bh_result, int create)
2845{
c7064ef1 2846 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2847 inode->i_ino, create);
2ed88685
TT
2848 return _ext4_get_block(inode, iblock, bh_result,
2849 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2850}
2851
729f52c6
ZL
2852static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2853 struct buffer_head *bh_result, int flags)
2854{
2855 handle_t *handle = ext4_journal_current_handle();
2856 struct ext4_map_blocks map;
2857 int ret = 0;
2858
2859 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2860 inode->i_ino, flags);
2861
2862 flags = EXT4_GET_BLOCKS_NO_LOCK;
2863
2864 map.m_lblk = iblock;
2865 map.m_len = bh_result->b_size >> inode->i_blkbits;
2866
2867 ret = ext4_map_blocks(handle, inode, &map, flags);
2868 if (ret > 0) {
2869 map_bh(bh_result, inode->i_sb, map.m_pblk);
2870 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2871 map.m_flags;
2872 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2873 ret = 0;
2874 }
2875 return ret;
2876}
2877
4c0425ff 2878static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2879 ssize_t size, void *private, int ret,
2880 bool is_async)
4c0425ff 2881{
72c5052d 2882 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2883 ext4_io_end_t *io_end = iocb->private;
2884 struct workqueue_struct *wq;
744692dc
JZ
2885 unsigned long flags;
2886 struct ext4_inode_info *ei;
4c0425ff 2887
4b70df18
M
2888 /* if not async direct IO or dio with 0 bytes write, just return */
2889 if (!io_end || !size)
552ef802 2890 goto out;
4b70df18 2891
88635ca2 2892 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2893 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2894 iocb->private, io_end->inode->i_ino, iocb, offset,
2895 size);
8d5d02e6 2896
b5a7e970
TT
2897 iocb->private = NULL;
2898
8d5d02e6 2899 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2900 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2901 ext4_free_io_end(io_end);
5b3ff237
JZ
2902out:
2903 if (is_async)
2904 aio_complete(iocb, ret, 0);
72c5052d 2905 inode_dio_done(inode);
5b3ff237 2906 return;
8d5d02e6
MC
2907 }
2908
4c0425ff
MC
2909 io_end->offset = offset;
2910 io_end->size = size;
5b3ff237
JZ
2911 if (is_async) {
2912 io_end->iocb = iocb;
2913 io_end->result = ret;
2914 }
4c0425ff
MC
2915 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2916
8d5d02e6 2917 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2918 ei = EXT4_I(io_end->inode);
2919 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2920 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2921 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2922
2923 /* queue the work to convert unwritten extents to written */
4c81f045 2924 queue_work(wq, &io_end->work);
4c0425ff 2925}
c7064ef1 2926
744692dc
JZ
2927static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2928{
2929 ext4_io_end_t *io_end = bh->b_private;
2930 struct workqueue_struct *wq;
2931 struct inode *inode;
2932 unsigned long flags;
2933
2934 if (!test_clear_buffer_uninit(bh) || !io_end)
2935 goto out;
2936
2937 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2938 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2939 "sb umounted, discard end_io request for inode %lu",
2940 io_end->inode->i_ino);
744692dc
JZ
2941 ext4_free_io_end(io_end);
2942 goto out;
2943 }
2944
32c80b32
TM
2945 /*
2946 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2947 * but being more careful is always safe for the future change.
2948 */
744692dc 2949 inode = io_end->inode;
0edeb71d 2950 ext4_set_io_unwritten_flag(inode, io_end);
744692dc
JZ
2951
2952 /* Add the io_end to per-inode completed io list*/
2953 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2954 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2955 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2956
2957 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2958 /* queue the work to convert unwritten extents to written */
2959 queue_work(wq, &io_end->work);
2960out:
2961 bh->b_private = NULL;
2962 bh->b_end_io = NULL;
2963 clear_buffer_uninit(bh);
2964 end_buffer_async_write(bh, uptodate);
2965}
2966
2967static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2968{
2969 ext4_io_end_t *io_end;
2970 struct page *page = bh->b_page;
2971 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2972 size_t size = bh->b_size;
2973
2974retry:
2975 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2976 if (!io_end) {
6db26ffc 2977 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2978 schedule();
2979 goto retry;
2980 }
2981 io_end->offset = offset;
2982 io_end->size = size;
2983 /*
2984 * We need to hold a reference to the page to make sure it
2985 * doesn't get evicted before ext4_end_io_work() has a chance
2986 * to convert the extent from written to unwritten.
2987 */
2988 io_end->page = page;
2989 get_page(io_end->page);
2990
2991 bh->b_private = io_end;
2992 bh->b_end_io = ext4_end_io_buffer_write;
2993 return 0;
2994}
2995
4c0425ff
MC
2996/*
2997 * For ext4 extent files, ext4 will do direct-io write to holes,
2998 * preallocated extents, and those write extend the file, no need to
2999 * fall back to buffered IO.
3000 *
b595076a 3001 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 3002 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 3003 * still keep the range to write as uninitialized.
4c0425ff 3004 *
8d5d02e6
MC
3005 * The unwrritten extents will be converted to written when DIO is completed.
3006 * For async direct IO, since the IO may still pending when return, we
25985edc 3007 * set up an end_io call back function, which will do the conversion
8d5d02e6 3008 * when async direct IO completed.
4c0425ff
MC
3009 *
3010 * If the O_DIRECT write will extend the file then add this inode to the
3011 * orphan list. So recovery will truncate it back to the original size
3012 * if the machine crashes during the write.
3013 *
3014 */
3015static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3016 const struct iovec *iov, loff_t offset,
3017 unsigned long nr_segs)
3018{
3019 struct file *file = iocb->ki_filp;
3020 struct inode *inode = file->f_mapping->host;
3021 ssize_t ret;
3022 size_t count = iov_length(iov, nr_segs);
3023
3024 loff_t final_size = offset + count;
3025 if (rw == WRITE && final_size <= inode->i_size) {
729f52c6
ZL
3026 int overwrite = 0;
3027
4bd809db
ZL
3028 BUG_ON(iocb->private == NULL);
3029
3030 /* If we do a overwrite dio, i_mutex locking can be released */
3031 overwrite = *((int *)iocb->private);
3032
3033 if (overwrite) {
3034 down_read(&EXT4_I(inode)->i_data_sem);
3035 mutex_unlock(&inode->i_mutex);
3036 }
3037
4c0425ff 3038 /*
8d5d02e6
MC
3039 * We could direct write to holes and fallocate.
3040 *
3041 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 3042 * to prevent parallel buffered read to expose the stale data
4c0425ff 3043 * before DIO complete the data IO.
8d5d02e6
MC
3044 *
3045 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3046 * will just simply mark the buffer mapped but still
3047 * keep the extents uninitialized.
3048 *
8d5d02e6
MC
3049 * for non AIO case, we will convert those unwritten extents
3050 * to written after return back from blockdev_direct_IO.
3051 *
3052 * for async DIO, the conversion needs to be defered when
3053 * the IO is completed. The ext4 end_io callback function
3054 * will be called to take care of the conversion work.
3055 * Here for async case, we allocate an io_end structure to
3056 * hook to the iocb.
4c0425ff 3057 */
8d5d02e6
MC
3058 iocb->private = NULL;
3059 EXT4_I(inode)->cur_aio_dio = NULL;
3060 if (!is_sync_kiocb(iocb)) {
266991b1
JM
3061 ext4_io_end_t *io_end =
3062 ext4_init_io_end(inode, GFP_NOFS);
4bd809db
ZL
3063 if (!io_end) {
3064 ret = -ENOMEM;
3065 goto retake_lock;
3066 }
266991b1
JM
3067 io_end->flag |= EXT4_IO_END_DIRECT;
3068 iocb->private = io_end;
8d5d02e6
MC
3069 /*
3070 * we save the io structure for current async
79e83036 3071 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3072 * could flag the io structure whether there
3073 * is a unwritten extents needs to be converted
3074 * when IO is completed.
3075 */
3076 EXT4_I(inode)->cur_aio_dio = iocb->private;
3077 }
3078
729f52c6
ZL
3079 if (overwrite)
3080 ret = __blockdev_direct_IO(rw, iocb, inode,
3081 inode->i_sb->s_bdev, iov,
3082 offset, nr_segs,
3083 ext4_get_block_write_nolock,
3084 ext4_end_io_dio,
3085 NULL,
3086 0);
3087 else
3088 ret = __blockdev_direct_IO(rw, iocb, inode,
3089 inode->i_sb->s_bdev, iov,
3090 offset, nr_segs,
3091 ext4_get_block_write,
3092 ext4_end_io_dio,
3093 NULL,
3094 DIO_LOCKING);
8d5d02e6
MC
3095 if (iocb->private)
3096 EXT4_I(inode)->cur_aio_dio = NULL;
3097 /*
3098 * The io_end structure takes a reference to the inode,
3099 * that structure needs to be destroyed and the
3100 * reference to the inode need to be dropped, when IO is
3101 * complete, even with 0 byte write, or failed.
3102 *
3103 * In the successful AIO DIO case, the io_end structure will be
3104 * desctroyed and the reference to the inode will be dropped
3105 * after the end_io call back function is called.
3106 *
3107 * In the case there is 0 byte write, or error case, since
3108 * VFS direct IO won't invoke the end_io call back function,
3109 * we need to free the end_io structure here.
3110 */
3111 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3112 ext4_free_io_end(iocb->private);
3113 iocb->private = NULL;
729f52c6 3114 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
19f5fb7a 3115 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3116 int err;
8d5d02e6
MC
3117 /*
3118 * for non AIO case, since the IO is already
25985edc 3119 * completed, we could do the conversion right here
8d5d02e6 3120 */
109f5565
M
3121 err = ext4_convert_unwritten_extents(inode,
3122 offset, ret);
3123 if (err < 0)
3124 ret = err;
19f5fb7a 3125 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3126 }
4bd809db
ZL
3127
3128 retake_lock:
3129 /* take i_mutex locking again if we do a ovewrite dio */
3130 if (overwrite) {
3131 up_read(&EXT4_I(inode)->i_data_sem);
3132 mutex_lock(&inode->i_mutex);
3133 }
3134
4c0425ff
MC
3135 return ret;
3136 }
8d5d02e6
MC
3137
3138 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3139 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3140}
3141
3142static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3143 const struct iovec *iov, loff_t offset,
3144 unsigned long nr_segs)
3145{
3146 struct file *file = iocb->ki_filp;
3147 struct inode *inode = file->f_mapping->host;
0562e0ba 3148 ssize_t ret;
4c0425ff 3149
84ebd795
TT
3150 /*
3151 * If we are doing data journalling we don't support O_DIRECT
3152 */
3153 if (ext4_should_journal_data(inode))
3154 return 0;
3155
0562e0ba 3156 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3157 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3158 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3159 else
3160 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3161 trace_ext4_direct_IO_exit(inode, offset,
3162 iov_length(iov, nr_segs), rw, ret);
3163 return ret;
4c0425ff
MC
3164}
3165
ac27a0ec 3166/*
617ba13b 3167 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3168 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3169 * much here because ->set_page_dirty is called under VFS locks. The page is
3170 * not necessarily locked.
3171 *
3172 * We cannot just dirty the page and leave attached buffers clean, because the
3173 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3174 * or jbddirty because all the journalling code will explode.
3175 *
3176 * So what we do is to mark the page "pending dirty" and next time writepage
3177 * is called, propagate that into the buffers appropriately.
3178 */
617ba13b 3179static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3180{
3181 SetPageChecked(page);
3182 return __set_page_dirty_nobuffers(page);
3183}
3184
617ba13b 3185static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3186 .readpage = ext4_readpage,
3187 .readpages = ext4_readpages,
43ce1d23 3188 .writepage = ext4_writepage,
8ab22b9a
HH
3189 .write_begin = ext4_write_begin,
3190 .write_end = ext4_ordered_write_end,
3191 .bmap = ext4_bmap,
3192 .invalidatepage = ext4_invalidatepage,
3193 .releasepage = ext4_releasepage,
3194 .direct_IO = ext4_direct_IO,
3195 .migratepage = buffer_migrate_page,
3196 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3197 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3198};
3199
617ba13b 3200static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3201 .readpage = ext4_readpage,
3202 .readpages = ext4_readpages,
43ce1d23 3203 .writepage = ext4_writepage,
8ab22b9a
HH
3204 .write_begin = ext4_write_begin,
3205 .write_end = ext4_writeback_write_end,
3206 .bmap = ext4_bmap,
3207 .invalidatepage = ext4_invalidatepage,
3208 .releasepage = ext4_releasepage,
3209 .direct_IO = ext4_direct_IO,
3210 .migratepage = buffer_migrate_page,
3211 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3212 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3213};
3214
617ba13b 3215static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3216 .readpage = ext4_readpage,
3217 .readpages = ext4_readpages,
43ce1d23 3218 .writepage = ext4_writepage,
8ab22b9a
HH
3219 .write_begin = ext4_write_begin,
3220 .write_end = ext4_journalled_write_end,
3221 .set_page_dirty = ext4_journalled_set_page_dirty,
3222 .bmap = ext4_bmap,
3223 .invalidatepage = ext4_invalidatepage,
3224 .releasepage = ext4_releasepage,
84ebd795 3225 .direct_IO = ext4_direct_IO,
8ab22b9a 3226 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3227 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3228};
3229
64769240 3230static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3231 .readpage = ext4_readpage,
3232 .readpages = ext4_readpages,
43ce1d23 3233 .writepage = ext4_writepage,
8ab22b9a 3234 .writepages = ext4_da_writepages,
8ab22b9a
HH
3235 .write_begin = ext4_da_write_begin,
3236 .write_end = ext4_da_write_end,
3237 .bmap = ext4_bmap,
3238 .invalidatepage = ext4_da_invalidatepage,
3239 .releasepage = ext4_releasepage,
3240 .direct_IO = ext4_direct_IO,
3241 .migratepage = buffer_migrate_page,
3242 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3243 .error_remove_page = generic_error_remove_page,
64769240
AT
3244};
3245
617ba13b 3246void ext4_set_aops(struct inode *inode)
ac27a0ec 3247{
3d2b1582
LC
3248 switch (ext4_inode_journal_mode(inode)) {
3249 case EXT4_INODE_ORDERED_DATA_MODE:
3250 if (test_opt(inode->i_sb, DELALLOC))
3251 inode->i_mapping->a_ops = &ext4_da_aops;
3252 else
3253 inode->i_mapping->a_ops = &ext4_ordered_aops;
3254 break;
3255 case EXT4_INODE_WRITEBACK_DATA_MODE:
3256 if (test_opt(inode->i_sb, DELALLOC))
3257 inode->i_mapping->a_ops = &ext4_da_aops;
3258 else
3259 inode->i_mapping->a_ops = &ext4_writeback_aops;
3260 break;
3261 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3262 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3263 break;
3264 default:
3265 BUG();
3266 }
ac27a0ec
DK
3267}
3268
4e96b2db
AH
3269
3270/*
3271 * ext4_discard_partial_page_buffers()
3272 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3273 * This function finds and locks the page containing the offset
3274 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3275 * Calling functions that already have the page locked should call
3276 * ext4_discard_partial_page_buffers_no_lock directly.
3277 */
3278int ext4_discard_partial_page_buffers(handle_t *handle,
3279 struct address_space *mapping, loff_t from,
3280 loff_t length, int flags)
3281{
3282 struct inode *inode = mapping->host;
3283 struct page *page;
3284 int err = 0;
3285
3286 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3287 mapping_gfp_mask(mapping) & ~__GFP_FS);
3288 if (!page)
5129d05f 3289 return -ENOMEM;
4e96b2db
AH
3290
3291 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3292 from, length, flags);
3293
3294 unlock_page(page);
3295 page_cache_release(page);
3296 return err;
3297}
3298
3299/*
3300 * ext4_discard_partial_page_buffers_no_lock()
3301 * Zeros a page range of length 'length' starting from offset 'from'.
3302 * Buffer heads that correspond to the block aligned regions of the
3303 * zeroed range will be unmapped. Unblock aligned regions
3304 * will have the corresponding buffer head mapped if needed so that
3305 * that region of the page can be updated with the partial zero out.
3306 *
3307 * This function assumes that the page has already been locked. The
3308 * The range to be discarded must be contained with in the given page.
3309 * If the specified range exceeds the end of the page it will be shortened
3310 * to the end of the page that corresponds to 'from'. This function is
3311 * appropriate for updating a page and it buffer heads to be unmapped and
3312 * zeroed for blocks that have been either released, or are going to be
3313 * released.
3314 *
3315 * handle: The journal handle
3316 * inode: The files inode
3317 * page: A locked page that contains the offset "from"
3318 * from: The starting byte offset (from the begining of the file)
3319 * to begin discarding
3320 * len: The length of bytes to discard
3321 * flags: Optional flags that may be used:
3322 *
3323 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3324 * Only zero the regions of the page whose buffer heads
3325 * have already been unmapped. This flag is appropriate
3326 * for updateing the contents of a page whose blocks may
3327 * have already been released, and we only want to zero
3328 * out the regions that correspond to those released blocks.
3329 *
3330 * Returns zero on sucess or negative on failure.
3331 */
5f163cc7 3332static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3333 struct inode *inode, struct page *page, loff_t from,
3334 loff_t length, int flags)
3335{
3336 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3337 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3338 unsigned int blocksize, max, pos;
4e96b2db
AH
3339 ext4_lblk_t iblock;
3340 struct buffer_head *bh;
3341 int err = 0;
3342
3343 blocksize = inode->i_sb->s_blocksize;
3344 max = PAGE_CACHE_SIZE - offset;
3345
3346 if (index != page->index)
3347 return -EINVAL;
3348
3349 /*
3350 * correct length if it does not fall between
3351 * 'from' and the end of the page
3352 */
3353 if (length > max || length < 0)
3354 length = max;
3355
3356 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3357
093e6e36
YY
3358 if (!page_has_buffers(page))
3359 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3360
3361 /* Find the buffer that contains "offset" */
3362 bh = page_buffers(page);
3363 pos = blocksize;
3364 while (offset >= pos) {
3365 bh = bh->b_this_page;
3366 iblock++;
3367 pos += blocksize;
3368 }
3369
3370 pos = offset;
3371 while (pos < offset + length) {
e260daf2
YY
3372 unsigned int end_of_block, range_to_discard;
3373
4e96b2db
AH
3374 err = 0;
3375
3376 /* The length of space left to zero and unmap */
3377 range_to_discard = offset + length - pos;
3378
3379 /* The length of space until the end of the block */
3380 end_of_block = blocksize - (pos & (blocksize-1));
3381
3382 /*
3383 * Do not unmap or zero past end of block
3384 * for this buffer head
3385 */
3386 if (range_to_discard > end_of_block)
3387 range_to_discard = end_of_block;
3388
3389
3390 /*
3391 * Skip this buffer head if we are only zeroing unampped
3392 * regions of the page
3393 */
3394 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3395 buffer_mapped(bh))
3396 goto next;
3397
3398 /* If the range is block aligned, unmap */
3399 if (range_to_discard == blocksize) {
3400 clear_buffer_dirty(bh);
3401 bh->b_bdev = NULL;
3402 clear_buffer_mapped(bh);
3403 clear_buffer_req(bh);
3404 clear_buffer_new(bh);
3405 clear_buffer_delay(bh);
3406 clear_buffer_unwritten(bh);
3407 clear_buffer_uptodate(bh);
3408 zero_user(page, pos, range_to_discard);
3409 BUFFER_TRACE(bh, "Buffer discarded");
3410 goto next;
3411 }
3412
3413 /*
3414 * If this block is not completely contained in the range
3415 * to be discarded, then it is not going to be released. Because
3416 * we need to keep this block, we need to make sure this part
3417 * of the page is uptodate before we modify it by writeing
3418 * partial zeros on it.
3419 */
3420 if (!buffer_mapped(bh)) {
3421 /*
3422 * Buffer head must be mapped before we can read
3423 * from the block
3424 */
3425 BUFFER_TRACE(bh, "unmapped");
3426 ext4_get_block(inode, iblock, bh, 0);
3427 /* unmapped? It's a hole - nothing to do */
3428 if (!buffer_mapped(bh)) {
3429 BUFFER_TRACE(bh, "still unmapped");
3430 goto next;
3431 }
3432 }
3433
3434 /* Ok, it's mapped. Make sure it's up-to-date */
3435 if (PageUptodate(page))
3436 set_buffer_uptodate(bh);
3437
3438 if (!buffer_uptodate(bh)) {
3439 err = -EIO;
3440 ll_rw_block(READ, 1, &bh);
3441 wait_on_buffer(bh);
3442 /* Uhhuh. Read error. Complain and punt.*/
3443 if (!buffer_uptodate(bh))
3444 goto next;
3445 }
3446
3447 if (ext4_should_journal_data(inode)) {
3448 BUFFER_TRACE(bh, "get write access");
3449 err = ext4_journal_get_write_access(handle, bh);
3450 if (err)
3451 goto next;
3452 }
3453
3454 zero_user(page, pos, range_to_discard);
3455
3456 err = 0;
3457 if (ext4_should_journal_data(inode)) {
3458 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3459 } else
4e96b2db 3460 mark_buffer_dirty(bh);
4e96b2db
AH
3461
3462 BUFFER_TRACE(bh, "Partial buffer zeroed");
3463next:
3464 bh = bh->b_this_page;
3465 iblock++;
3466 pos += range_to_discard;
3467 }
3468
3469 return err;
3470}
3471
91ef4caf
DG
3472int ext4_can_truncate(struct inode *inode)
3473{
91ef4caf
DG
3474 if (S_ISREG(inode->i_mode))
3475 return 1;
3476 if (S_ISDIR(inode->i_mode))
3477 return 1;
3478 if (S_ISLNK(inode->i_mode))
3479 return !ext4_inode_is_fast_symlink(inode);
3480 return 0;
3481}
3482
a4bb6b64
AH
3483/*
3484 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3485 * associated with the given offset and length
3486 *
3487 * @inode: File inode
3488 * @offset: The offset where the hole will begin
3489 * @len: The length of the hole
3490 *
3491 * Returns: 0 on sucess or negative on failure
3492 */
3493
3494int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3495{
3496 struct inode *inode = file->f_path.dentry->d_inode;
3497 if (!S_ISREG(inode->i_mode))
73355192 3498 return -EOPNOTSUPP;
a4bb6b64
AH
3499
3500 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3501 /* TODO: Add support for non extent hole punching */
73355192 3502 return -EOPNOTSUPP;
a4bb6b64
AH
3503 }
3504
bab08ab9
TT
3505 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3506 /* TODO: Add support for bigalloc file systems */
73355192 3507 return -EOPNOTSUPP;
bab08ab9
TT
3508 }
3509
a4bb6b64
AH
3510 return ext4_ext_punch_hole(file, offset, length);
3511}
3512
ac27a0ec 3513/*
617ba13b 3514 * ext4_truncate()
ac27a0ec 3515 *
617ba13b
MC
3516 * We block out ext4_get_block() block instantiations across the entire
3517 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3518 * simultaneously on behalf of the same inode.
3519 *
42b2aa86 3520 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3521 * is one core, guiding principle: the file's tree must always be consistent on
3522 * disk. We must be able to restart the truncate after a crash.
3523 *
3524 * The file's tree may be transiently inconsistent in memory (although it
3525 * probably isn't), but whenever we close off and commit a journal transaction,
3526 * the contents of (the filesystem + the journal) must be consistent and
3527 * restartable. It's pretty simple, really: bottom up, right to left (although
3528 * left-to-right works OK too).
3529 *
3530 * Note that at recovery time, journal replay occurs *before* the restart of
3531 * truncate against the orphan inode list.
3532 *
3533 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3534 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3535 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3536 * ext4_truncate() to have another go. So there will be instantiated blocks
3537 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3538 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3539 * ext4_truncate() run will find them and release them.
ac27a0ec 3540 */
617ba13b 3541void ext4_truncate(struct inode *inode)
ac27a0ec 3542{
0562e0ba
JZ
3543 trace_ext4_truncate_enter(inode);
3544
91ef4caf 3545 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3546 return;
3547
12e9b892 3548 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3549
5534fb5b 3550 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3551 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3552
ff9893dc 3553 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3554 ext4_ext_truncate(inode);
ff9893dc
AG
3555 else
3556 ext4_ind_truncate(inode);
ac27a0ec 3557
0562e0ba 3558 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3559}
3560
ac27a0ec 3561/*
617ba13b 3562 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3563 * underlying buffer_head on success. If 'in_mem' is true, we have all
3564 * data in memory that is needed to recreate the on-disk version of this
3565 * inode.
3566 */
617ba13b
MC
3567static int __ext4_get_inode_loc(struct inode *inode,
3568 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3569{
240799cd
TT
3570 struct ext4_group_desc *gdp;
3571 struct buffer_head *bh;
3572 struct super_block *sb = inode->i_sb;
3573 ext4_fsblk_t block;
3574 int inodes_per_block, inode_offset;
3575
3a06d778 3576 iloc->bh = NULL;
240799cd
TT
3577 if (!ext4_valid_inum(sb, inode->i_ino))
3578 return -EIO;
ac27a0ec 3579
240799cd
TT
3580 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3581 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3582 if (!gdp)
ac27a0ec
DK
3583 return -EIO;
3584
240799cd
TT
3585 /*
3586 * Figure out the offset within the block group inode table
3587 */
00d09882 3588 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3589 inode_offset = ((inode->i_ino - 1) %
3590 EXT4_INODES_PER_GROUP(sb));
3591 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3592 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3593
3594 bh = sb_getblk(sb, block);
ac27a0ec 3595 if (!bh) {
c398eda0
TT
3596 EXT4_ERROR_INODE_BLOCK(inode, block,
3597 "unable to read itable block");
ac27a0ec
DK
3598 return -EIO;
3599 }
3600 if (!buffer_uptodate(bh)) {
3601 lock_buffer(bh);
9c83a923
HK
3602
3603 /*
3604 * If the buffer has the write error flag, we have failed
3605 * to write out another inode in the same block. In this
3606 * case, we don't have to read the block because we may
3607 * read the old inode data successfully.
3608 */
3609 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3610 set_buffer_uptodate(bh);
3611
ac27a0ec
DK
3612 if (buffer_uptodate(bh)) {
3613 /* someone brought it uptodate while we waited */
3614 unlock_buffer(bh);
3615 goto has_buffer;
3616 }
3617
3618 /*
3619 * If we have all information of the inode in memory and this
3620 * is the only valid inode in the block, we need not read the
3621 * block.
3622 */
3623 if (in_mem) {
3624 struct buffer_head *bitmap_bh;
240799cd 3625 int i, start;
ac27a0ec 3626
240799cd 3627 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3628
240799cd
TT
3629 /* Is the inode bitmap in cache? */
3630 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3631 if (!bitmap_bh)
3632 goto make_io;
3633
3634 /*
3635 * If the inode bitmap isn't in cache then the
3636 * optimisation may end up performing two reads instead
3637 * of one, so skip it.
3638 */
3639 if (!buffer_uptodate(bitmap_bh)) {
3640 brelse(bitmap_bh);
3641 goto make_io;
3642 }
240799cd 3643 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3644 if (i == inode_offset)
3645 continue;
617ba13b 3646 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3647 break;
3648 }
3649 brelse(bitmap_bh);
240799cd 3650 if (i == start + inodes_per_block) {
ac27a0ec
DK
3651 /* all other inodes are free, so skip I/O */
3652 memset(bh->b_data, 0, bh->b_size);
3653 set_buffer_uptodate(bh);
3654 unlock_buffer(bh);
3655 goto has_buffer;
3656 }
3657 }
3658
3659make_io:
240799cd
TT
3660 /*
3661 * If we need to do any I/O, try to pre-readahead extra
3662 * blocks from the inode table.
3663 */
3664 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3665 ext4_fsblk_t b, end, table;
3666 unsigned num;
3667
3668 table = ext4_inode_table(sb, gdp);
b713a5ec 3669 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3670 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3671 if (table > b)
3672 b = table;
3673 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3674 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3675 if (ext4_has_group_desc_csum(sb))
560671a0 3676 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3677 table += num / inodes_per_block;
3678 if (end > table)
3679 end = table;
3680 while (b <= end)
3681 sb_breadahead(sb, b++);
3682 }
3683
ac27a0ec
DK
3684 /*
3685 * There are other valid inodes in the buffer, this inode
3686 * has in-inode xattrs, or we don't have this inode in memory.
3687 * Read the block from disk.
3688 */
0562e0ba 3689 trace_ext4_load_inode(inode);
ac27a0ec
DK
3690 get_bh(bh);
3691 bh->b_end_io = end_buffer_read_sync;
65299a3b 3692 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3693 wait_on_buffer(bh);
3694 if (!buffer_uptodate(bh)) {
c398eda0
TT
3695 EXT4_ERROR_INODE_BLOCK(inode, block,
3696 "unable to read itable block");
ac27a0ec
DK
3697 brelse(bh);
3698 return -EIO;
3699 }
3700 }
3701has_buffer:
3702 iloc->bh = bh;
3703 return 0;
3704}
3705
617ba13b 3706int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3707{
3708 /* We have all inode data except xattrs in memory here. */
617ba13b 3709 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3710 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3711}
3712
617ba13b 3713void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3714{
617ba13b 3715 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3716
3717 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3718 if (flags & EXT4_SYNC_FL)
ac27a0ec 3719 inode->i_flags |= S_SYNC;
617ba13b 3720 if (flags & EXT4_APPEND_FL)
ac27a0ec 3721 inode->i_flags |= S_APPEND;
617ba13b 3722 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3723 inode->i_flags |= S_IMMUTABLE;
617ba13b 3724 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3725 inode->i_flags |= S_NOATIME;
617ba13b 3726 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3727 inode->i_flags |= S_DIRSYNC;
3728}
3729
ff9ddf7e
JK
3730/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3731void ext4_get_inode_flags(struct ext4_inode_info *ei)
3732{
84a8dce2
DM
3733 unsigned int vfs_fl;
3734 unsigned long old_fl, new_fl;
3735
3736 do {
3737 vfs_fl = ei->vfs_inode.i_flags;
3738 old_fl = ei->i_flags;
3739 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3740 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3741 EXT4_DIRSYNC_FL);
3742 if (vfs_fl & S_SYNC)
3743 new_fl |= EXT4_SYNC_FL;
3744 if (vfs_fl & S_APPEND)
3745 new_fl |= EXT4_APPEND_FL;
3746 if (vfs_fl & S_IMMUTABLE)
3747 new_fl |= EXT4_IMMUTABLE_FL;
3748 if (vfs_fl & S_NOATIME)
3749 new_fl |= EXT4_NOATIME_FL;
3750 if (vfs_fl & S_DIRSYNC)
3751 new_fl |= EXT4_DIRSYNC_FL;
3752 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3753}
de9a55b8 3754
0fc1b451 3755static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3756 struct ext4_inode_info *ei)
0fc1b451
AK
3757{
3758 blkcnt_t i_blocks ;
8180a562
AK
3759 struct inode *inode = &(ei->vfs_inode);
3760 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3761
3762 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3763 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3764 /* we are using combined 48 bit field */
3765 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3766 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3767 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3768 /* i_blocks represent file system block size */
3769 return i_blocks << (inode->i_blkbits - 9);
3770 } else {
3771 return i_blocks;
3772 }
0fc1b451
AK
3773 } else {
3774 return le32_to_cpu(raw_inode->i_blocks_lo);
3775 }
3776}
ff9ddf7e 3777
1d1fe1ee 3778struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3779{
617ba13b
MC
3780 struct ext4_iloc iloc;
3781 struct ext4_inode *raw_inode;
1d1fe1ee 3782 struct ext4_inode_info *ei;
1d1fe1ee 3783 struct inode *inode;
b436b9be 3784 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3785 long ret;
ac27a0ec 3786 int block;
08cefc7a
EB
3787 uid_t i_uid;
3788 gid_t i_gid;
ac27a0ec 3789
1d1fe1ee
DH
3790 inode = iget_locked(sb, ino);
3791 if (!inode)
3792 return ERR_PTR(-ENOMEM);
3793 if (!(inode->i_state & I_NEW))
3794 return inode;
3795
3796 ei = EXT4_I(inode);
7dc57615 3797 iloc.bh = NULL;
ac27a0ec 3798
1d1fe1ee
DH
3799 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3800 if (ret < 0)
ac27a0ec 3801 goto bad_inode;
617ba13b 3802 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3803
3804 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3805 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3806 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3807 EXT4_INODE_SIZE(inode->i_sb)) {
3808 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3809 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3810 EXT4_INODE_SIZE(inode->i_sb));
3811 ret = -EIO;
3812 goto bad_inode;
3813 }
3814 } else
3815 ei->i_extra_isize = 0;
3816
3817 /* Precompute checksum seed for inode metadata */
3818 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3819 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3820 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3821 __u32 csum;
3822 __le32 inum = cpu_to_le32(inode->i_ino);
3823 __le32 gen = raw_inode->i_generation;
3824 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3825 sizeof(inum));
3826 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3827 sizeof(gen));
3828 }
3829
3830 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3831 EXT4_ERROR_INODE(inode, "checksum invalid");
3832 ret = -EIO;
3833 goto bad_inode;
3834 }
3835
ac27a0ec 3836 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3837 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3838 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3839 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3840 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3841 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3842 }
08cefc7a
EB
3843 i_uid_write(inode, i_uid);
3844 i_gid_write(inode, i_gid);
bfe86848 3845 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3846
353eb83c 3847 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3848 ei->i_dir_start_lookup = 0;
3849 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3850 /* We now have enough fields to check if the inode was active or not.
3851 * This is needed because nfsd might try to access dead inodes
3852 * the test is that same one that e2fsck uses
3853 * NeilBrown 1999oct15
3854 */
3855 if (inode->i_nlink == 0) {
3856 if (inode->i_mode == 0 ||
617ba13b 3857 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3858 /* this inode is deleted */
1d1fe1ee 3859 ret = -ESTALE;
ac27a0ec
DK
3860 goto bad_inode;
3861 }
3862 /* The only unlinked inodes we let through here have
3863 * valid i_mode and are being read by the orphan
3864 * recovery code: that's fine, we're about to complete
3865 * the process of deleting those. */
3866 }
ac27a0ec 3867 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3868 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3869 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3870 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3871 ei->i_file_acl |=
3872 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3873 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3874 ei->i_disksize = inode->i_size;
a9e7f447
DM
3875#ifdef CONFIG_QUOTA
3876 ei->i_reserved_quota = 0;
3877#endif
ac27a0ec
DK
3878 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3879 ei->i_block_group = iloc.block_group;
a4912123 3880 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3881 /*
3882 * NOTE! The in-memory inode i_data array is in little-endian order
3883 * even on big-endian machines: we do NOT byteswap the block numbers!
3884 */
617ba13b 3885 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3886 ei->i_data[block] = raw_inode->i_block[block];
3887 INIT_LIST_HEAD(&ei->i_orphan);
3888
b436b9be
JK
3889 /*
3890 * Set transaction id's of transactions that have to be committed
3891 * to finish f[data]sync. We set them to currently running transaction
3892 * as we cannot be sure that the inode or some of its metadata isn't
3893 * part of the transaction - the inode could have been reclaimed and
3894 * now it is reread from disk.
3895 */
3896 if (journal) {
3897 transaction_t *transaction;
3898 tid_t tid;
3899
a931da6a 3900 read_lock(&journal->j_state_lock);
b436b9be
JK
3901 if (journal->j_running_transaction)
3902 transaction = journal->j_running_transaction;
3903 else
3904 transaction = journal->j_committing_transaction;
3905 if (transaction)
3906 tid = transaction->t_tid;
3907 else
3908 tid = journal->j_commit_sequence;
a931da6a 3909 read_unlock(&journal->j_state_lock);
b436b9be
JK
3910 ei->i_sync_tid = tid;
3911 ei->i_datasync_tid = tid;
3912 }
3913
0040d987 3914 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3915 if (ei->i_extra_isize == 0) {
3916 /* The extra space is currently unused. Use it. */
617ba13b
MC
3917 ei->i_extra_isize = sizeof(struct ext4_inode) -
3918 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3919 } else {
3920 __le32 *magic = (void *)raw_inode +
617ba13b 3921 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3922 ei->i_extra_isize;
617ba13b 3923 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3924 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec 3925 }
814525f4 3926 }
ac27a0ec 3927
ef7f3835
KS
3928 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3929 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3930 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3931 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3932
25ec56b5
JNC
3933 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3934 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3935 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3936 inode->i_version |=
3937 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3938 }
3939
c4b5a614 3940 ret = 0;
485c26ec 3941 if (ei->i_file_acl &&
1032988c 3942 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3943 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3944 ei->i_file_acl);
485c26ec
TT
3945 ret = -EIO;
3946 goto bad_inode;
07a03824 3947 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3948 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3949 (S_ISLNK(inode->i_mode) &&
3950 !ext4_inode_is_fast_symlink(inode)))
3951 /* Validate extent which is part of inode */
3952 ret = ext4_ext_check_inode(inode);
de9a55b8 3953 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3954 (S_ISLNK(inode->i_mode) &&
3955 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3956 /* Validate block references which are part of inode */
1f7d1e77 3957 ret = ext4_ind_check_inode(inode);
fe2c8191 3958 }
567f3e9a 3959 if (ret)
de9a55b8 3960 goto bad_inode;
7a262f7c 3961
ac27a0ec 3962 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3963 inode->i_op = &ext4_file_inode_operations;
3964 inode->i_fop = &ext4_file_operations;
3965 ext4_set_aops(inode);
ac27a0ec 3966 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3967 inode->i_op = &ext4_dir_inode_operations;
3968 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3969 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3970 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3971 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3972 nd_terminate_link(ei->i_data, inode->i_size,
3973 sizeof(ei->i_data) - 1);
3974 } else {
617ba13b
MC
3975 inode->i_op = &ext4_symlink_inode_operations;
3976 ext4_set_aops(inode);
ac27a0ec 3977 }
563bdd61
TT
3978 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3979 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3980 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3981 if (raw_inode->i_block[0])
3982 init_special_inode(inode, inode->i_mode,
3983 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3984 else
3985 init_special_inode(inode, inode->i_mode,
3986 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3987 } else {
563bdd61 3988 ret = -EIO;
24676da4 3989 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3990 goto bad_inode;
ac27a0ec 3991 }
af5bc92d 3992 brelse(iloc.bh);
617ba13b 3993 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3994 unlock_new_inode(inode);
3995 return inode;
ac27a0ec
DK
3996
3997bad_inode:
567f3e9a 3998 brelse(iloc.bh);
1d1fe1ee
DH
3999 iget_failed(inode);
4000 return ERR_PTR(ret);
ac27a0ec
DK
4001}
4002
0fc1b451
AK
4003static int ext4_inode_blocks_set(handle_t *handle,
4004 struct ext4_inode *raw_inode,
4005 struct ext4_inode_info *ei)
4006{
4007 struct inode *inode = &(ei->vfs_inode);
4008 u64 i_blocks = inode->i_blocks;
4009 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4010
4011 if (i_blocks <= ~0U) {
4012 /*
4013 * i_blocks can be represnted in a 32 bit variable
4014 * as multiple of 512 bytes
4015 */
8180a562 4016 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4017 raw_inode->i_blocks_high = 0;
84a8dce2 4018 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4019 return 0;
4020 }
4021 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4022 return -EFBIG;
4023
4024 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4025 /*
4026 * i_blocks can be represented in a 48 bit variable
4027 * as multiple of 512 bytes
4028 */
8180a562 4029 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4030 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4031 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4032 } else {
84a8dce2 4033 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4034 /* i_block is stored in file system block size */
4035 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4036 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4037 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4038 }
f287a1a5 4039 return 0;
0fc1b451
AK
4040}
4041
ac27a0ec
DK
4042/*
4043 * Post the struct inode info into an on-disk inode location in the
4044 * buffer-cache. This gobbles the caller's reference to the
4045 * buffer_head in the inode location struct.
4046 *
4047 * The caller must have write access to iloc->bh.
4048 */
617ba13b 4049static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4050 struct inode *inode,
830156c7 4051 struct ext4_iloc *iloc)
ac27a0ec 4052{
617ba13b
MC
4053 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4054 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4055 struct buffer_head *bh = iloc->bh;
4056 int err = 0, rc, block;
08cefc7a
EB
4057 uid_t i_uid;
4058 gid_t i_gid;
ac27a0ec
DK
4059
4060 /* For fields not not tracking in the in-memory inode,
4061 * initialise them to zero for new inodes. */
19f5fb7a 4062 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4063 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4064
ff9ddf7e 4065 ext4_get_inode_flags(ei);
ac27a0ec 4066 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4067 i_uid = i_uid_read(inode);
4068 i_gid = i_gid_read(inode);
af5bc92d 4069 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4070 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4071 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4072/*
4073 * Fix up interoperability with old kernels. Otherwise, old inodes get
4074 * re-used with the upper 16 bits of the uid/gid intact
4075 */
af5bc92d 4076 if (!ei->i_dtime) {
ac27a0ec 4077 raw_inode->i_uid_high =
08cefc7a 4078 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4079 raw_inode->i_gid_high =
08cefc7a 4080 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4081 } else {
4082 raw_inode->i_uid_high = 0;
4083 raw_inode->i_gid_high = 0;
4084 }
4085 } else {
08cefc7a
EB
4086 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4087 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4088 raw_inode->i_uid_high = 0;
4089 raw_inode->i_gid_high = 0;
4090 }
4091 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4092
4093 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4094 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4095 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4096 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4097
0fc1b451
AK
4098 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4099 goto out_brelse;
ac27a0ec 4100 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4101 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4103 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4104 raw_inode->i_file_acl_high =
4105 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4106 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4107 ext4_isize_set(raw_inode, ei->i_disksize);
4108 if (ei->i_disksize > 0x7fffffffULL) {
4109 struct super_block *sb = inode->i_sb;
4110 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4111 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4112 EXT4_SB(sb)->s_es->s_rev_level ==
4113 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4114 /* If this is the first large file
4115 * created, add a flag to the superblock.
4116 */
4117 err = ext4_journal_get_write_access(handle,
4118 EXT4_SB(sb)->s_sbh);
4119 if (err)
4120 goto out_brelse;
4121 ext4_update_dynamic_rev(sb);
4122 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4123 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4124 ext4_handle_sync(handle);
b50924c2 4125 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4126 }
4127 }
4128 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4129 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4130 if (old_valid_dev(inode->i_rdev)) {
4131 raw_inode->i_block[0] =
4132 cpu_to_le32(old_encode_dev(inode->i_rdev));
4133 raw_inode->i_block[1] = 0;
4134 } else {
4135 raw_inode->i_block[0] = 0;
4136 raw_inode->i_block[1] =
4137 cpu_to_le32(new_encode_dev(inode->i_rdev));
4138 raw_inode->i_block[2] = 0;
4139 }
de9a55b8
TT
4140 } else
4141 for (block = 0; block < EXT4_N_BLOCKS; block++)
4142 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4143
25ec56b5
JNC
4144 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4145 if (ei->i_extra_isize) {
4146 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4147 raw_inode->i_version_hi =
4148 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4149 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4150 }
4151
814525f4
DW
4152 ext4_inode_csum_set(inode, raw_inode, ei);
4153
830156c7 4154 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4155 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4156 if (!err)
4157 err = rc;
19f5fb7a 4158 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4159
b436b9be 4160 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 4161out_brelse:
af5bc92d 4162 brelse(bh);
617ba13b 4163 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4164 return err;
4165}
4166
4167/*
617ba13b 4168 * ext4_write_inode()
ac27a0ec
DK
4169 *
4170 * We are called from a few places:
4171 *
4172 * - Within generic_file_write() for O_SYNC files.
4173 * Here, there will be no transaction running. We wait for any running
4174 * trasnaction to commit.
4175 *
4176 * - Within sys_sync(), kupdate and such.
4177 * We wait on commit, if tol to.
4178 *
4179 * - Within prune_icache() (PF_MEMALLOC == true)
4180 * Here we simply return. We can't afford to block kswapd on the
4181 * journal commit.
4182 *
4183 * In all cases it is actually safe for us to return without doing anything,
4184 * because the inode has been copied into a raw inode buffer in
617ba13b 4185 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4186 * knfsd.
4187 *
4188 * Note that we are absolutely dependent upon all inode dirtiers doing the
4189 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4190 * which we are interested.
4191 *
4192 * It would be a bug for them to not do this. The code:
4193 *
4194 * mark_inode_dirty(inode)
4195 * stuff();
4196 * inode->i_size = expr;
4197 *
4198 * is in error because a kswapd-driven write_inode() could occur while
4199 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4200 * will no longer be on the superblock's dirty inode list.
4201 */
a9185b41 4202int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4203{
91ac6f43
FM
4204 int err;
4205
ac27a0ec
DK
4206 if (current->flags & PF_MEMALLOC)
4207 return 0;
4208
91ac6f43
FM
4209 if (EXT4_SB(inode->i_sb)->s_journal) {
4210 if (ext4_journal_current_handle()) {
4211 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4212 dump_stack();
4213 return -EIO;
4214 }
ac27a0ec 4215
a9185b41 4216 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4217 return 0;
4218
4219 err = ext4_force_commit(inode->i_sb);
4220 } else {
4221 struct ext4_iloc iloc;
ac27a0ec 4222
8b472d73 4223 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4224 if (err)
4225 return err;
a9185b41 4226 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4227 sync_dirty_buffer(iloc.bh);
4228 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4229 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4230 "IO error syncing inode");
830156c7
FM
4231 err = -EIO;
4232 }
fd2dd9fb 4233 brelse(iloc.bh);
91ac6f43
FM
4234 }
4235 return err;
ac27a0ec
DK
4236}
4237
4238/*
617ba13b 4239 * ext4_setattr()
ac27a0ec
DK
4240 *
4241 * Called from notify_change.
4242 *
4243 * We want to trap VFS attempts to truncate the file as soon as
4244 * possible. In particular, we want to make sure that when the VFS
4245 * shrinks i_size, we put the inode on the orphan list and modify
4246 * i_disksize immediately, so that during the subsequent flushing of
4247 * dirty pages and freeing of disk blocks, we can guarantee that any
4248 * commit will leave the blocks being flushed in an unused state on
4249 * disk. (On recovery, the inode will get truncated and the blocks will
4250 * be freed, so we have a strong guarantee that no future commit will
4251 * leave these blocks visible to the user.)
4252 *
678aaf48
JK
4253 * Another thing we have to assure is that if we are in ordered mode
4254 * and inode is still attached to the committing transaction, we must
4255 * we start writeout of all the dirty pages which are being truncated.
4256 * This way we are sure that all the data written in the previous
4257 * transaction are already on disk (truncate waits for pages under
4258 * writeback).
4259 *
4260 * Called with inode->i_mutex down.
ac27a0ec 4261 */
617ba13b 4262int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4263{
4264 struct inode *inode = dentry->d_inode;
4265 int error, rc = 0;
3d287de3 4266 int orphan = 0;
ac27a0ec
DK
4267 const unsigned int ia_valid = attr->ia_valid;
4268
4269 error = inode_change_ok(inode, attr);
4270 if (error)
4271 return error;
4272
12755627 4273 if (is_quota_modification(inode, attr))
871a2931 4274 dquot_initialize(inode);
08cefc7a
EB
4275 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4276 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4277 handle_t *handle;
4278
4279 /* (user+group)*(old+new) structure, inode write (sb,
4280 * inode block, ? - but truncate inode update has it) */
5aca07eb 4281 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4282 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4283 if (IS_ERR(handle)) {
4284 error = PTR_ERR(handle);
4285 goto err_out;
4286 }
b43fa828 4287 error = dquot_transfer(inode, attr);
ac27a0ec 4288 if (error) {
617ba13b 4289 ext4_journal_stop(handle);
ac27a0ec
DK
4290 return error;
4291 }
4292 /* Update corresponding info in inode so that everything is in
4293 * one transaction */
4294 if (attr->ia_valid & ATTR_UID)
4295 inode->i_uid = attr->ia_uid;
4296 if (attr->ia_valid & ATTR_GID)
4297 inode->i_gid = attr->ia_gid;
617ba13b
MC
4298 error = ext4_mark_inode_dirty(handle, inode);
4299 ext4_journal_stop(handle);
ac27a0ec
DK
4300 }
4301
e2b46574 4302 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4303 inode_dio_wait(inode);
4304
12e9b892 4305 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4306 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4307
0c095c7f
TT
4308 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4309 return -EFBIG;
e2b46574
ES
4310 }
4311 }
4312
ac27a0ec 4313 if (S_ISREG(inode->i_mode) &&
c8d46e41 4314 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4315 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4316 handle_t *handle;
4317
617ba13b 4318 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4319 if (IS_ERR(handle)) {
4320 error = PTR_ERR(handle);
4321 goto err_out;
4322 }
3d287de3
DM
4323 if (ext4_handle_valid(handle)) {
4324 error = ext4_orphan_add(handle, inode);
4325 orphan = 1;
4326 }
617ba13b
MC
4327 EXT4_I(inode)->i_disksize = attr->ia_size;
4328 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4329 if (!error)
4330 error = rc;
617ba13b 4331 ext4_journal_stop(handle);
678aaf48
JK
4332
4333 if (ext4_should_order_data(inode)) {
4334 error = ext4_begin_ordered_truncate(inode,
4335 attr->ia_size);
4336 if (error) {
4337 /* Do as much error cleanup as possible */
4338 handle = ext4_journal_start(inode, 3);
4339 if (IS_ERR(handle)) {
4340 ext4_orphan_del(NULL, inode);
4341 goto err_out;
4342 }
4343 ext4_orphan_del(handle, inode);
3d287de3 4344 orphan = 0;
678aaf48
JK
4345 ext4_journal_stop(handle);
4346 goto err_out;
4347 }
4348 }
ac27a0ec
DK
4349 }
4350
072bd7ea 4351 if (attr->ia_valid & ATTR_SIZE) {
afcff5d8 4352 if (attr->ia_size != i_size_read(inode))
072bd7ea 4353 truncate_setsize(inode, attr->ia_size);
afcff5d8 4354 ext4_truncate(inode);
072bd7ea 4355 }
ac27a0ec 4356
1025774c
CH
4357 if (!rc) {
4358 setattr_copy(inode, attr);
4359 mark_inode_dirty(inode);
4360 }
4361
4362 /*
4363 * If the call to ext4_truncate failed to get a transaction handle at
4364 * all, we need to clean up the in-core orphan list manually.
4365 */
3d287de3 4366 if (orphan && inode->i_nlink)
617ba13b 4367 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4368
4369 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4370 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4371
4372err_out:
617ba13b 4373 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4374 if (!error)
4375 error = rc;
4376 return error;
4377}
4378
3e3398a0
MC
4379int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4380 struct kstat *stat)
4381{
4382 struct inode *inode;
4383 unsigned long delalloc_blocks;
4384
4385 inode = dentry->d_inode;
4386 generic_fillattr(inode, stat);
4387
4388 /*
4389 * We can't update i_blocks if the block allocation is delayed
4390 * otherwise in the case of system crash before the real block
4391 * allocation is done, we will have i_blocks inconsistent with
4392 * on-disk file blocks.
4393 * We always keep i_blocks updated together with real
4394 * allocation. But to not confuse with user, stat
4395 * will return the blocks that include the delayed allocation
4396 * blocks for this file.
4397 */
96607551
TM
4398 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4399 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4400
4401 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4402 return 0;
4403}
ac27a0ec 4404
a02908f1
MC
4405static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4406{
12e9b892 4407 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4408 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4409 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4410}
ac51d837 4411
ac27a0ec 4412/*
a02908f1
MC
4413 * Account for index blocks, block groups bitmaps and block group
4414 * descriptor blocks if modify datablocks and index blocks
4415 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4416 *
a02908f1 4417 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4418 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4419 * they could still across block group boundary.
ac27a0ec 4420 *
a02908f1
MC
4421 * Also account for superblock, inode, quota and xattr blocks
4422 */
1f109d5a 4423static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4424{
8df9675f
TT
4425 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4426 int gdpblocks;
a02908f1
MC
4427 int idxblocks;
4428 int ret = 0;
4429
4430 /*
4431 * How many index blocks need to touch to modify nrblocks?
4432 * The "Chunk" flag indicating whether the nrblocks is
4433 * physically contiguous on disk
4434 *
4435 * For Direct IO and fallocate, they calls get_block to allocate
4436 * one single extent at a time, so they could set the "Chunk" flag
4437 */
4438 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4439
4440 ret = idxblocks;
4441
4442 /*
4443 * Now let's see how many group bitmaps and group descriptors need
4444 * to account
4445 */
4446 groups = idxblocks;
4447 if (chunk)
4448 groups += 1;
4449 else
4450 groups += nrblocks;
4451
4452 gdpblocks = groups;
8df9675f
TT
4453 if (groups > ngroups)
4454 groups = ngroups;
a02908f1
MC
4455 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4456 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4457
4458 /* bitmaps and block group descriptor blocks */
4459 ret += groups + gdpblocks;
4460
4461 /* Blocks for super block, inode, quota and xattr blocks */
4462 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4463
4464 return ret;
4465}
4466
4467/*
25985edc 4468 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4469 * the modification of a single pages into a single transaction,
4470 * which may include multiple chunks of block allocations.
ac27a0ec 4471 *
525f4ed8 4472 * This could be called via ext4_write_begin()
ac27a0ec 4473 *
525f4ed8 4474 * We need to consider the worse case, when
a02908f1 4475 * one new block per extent.
ac27a0ec 4476 */
a86c6181 4477int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4478{
617ba13b 4479 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4480 int ret;
4481
a02908f1 4482 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4483
a02908f1 4484 /* Account for data blocks for journalled mode */
617ba13b 4485 if (ext4_should_journal_data(inode))
a02908f1 4486 ret += bpp;
ac27a0ec
DK
4487 return ret;
4488}
f3bd1f3f
MC
4489
4490/*
4491 * Calculate the journal credits for a chunk of data modification.
4492 *
4493 * This is called from DIO, fallocate or whoever calling
79e83036 4494 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4495 *
4496 * journal buffers for data blocks are not included here, as DIO
4497 * and fallocate do no need to journal data buffers.
4498 */
4499int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4500{
4501 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4502}
4503
ac27a0ec 4504/*
617ba13b 4505 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4506 * Give this, we know that the caller already has write access to iloc->bh.
4507 */
617ba13b 4508int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4509 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4510{
4511 int err = 0;
4512
c64db50e 4513 if (IS_I_VERSION(inode))
25ec56b5
JNC
4514 inode_inc_iversion(inode);
4515
ac27a0ec
DK
4516 /* the do_update_inode consumes one bh->b_count */
4517 get_bh(iloc->bh);
4518
dab291af 4519 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4520 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4521 put_bh(iloc->bh);
4522 return err;
4523}
4524
4525/*
4526 * On success, We end up with an outstanding reference count against
4527 * iloc->bh. This _must_ be cleaned up later.
4528 */
4529
4530int
617ba13b
MC
4531ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4532 struct ext4_iloc *iloc)
ac27a0ec 4533{
0390131b
FM
4534 int err;
4535
4536 err = ext4_get_inode_loc(inode, iloc);
4537 if (!err) {
4538 BUFFER_TRACE(iloc->bh, "get_write_access");
4539 err = ext4_journal_get_write_access(handle, iloc->bh);
4540 if (err) {
4541 brelse(iloc->bh);
4542 iloc->bh = NULL;
ac27a0ec
DK
4543 }
4544 }
617ba13b 4545 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4546 return err;
4547}
4548
6dd4ee7c
KS
4549/*
4550 * Expand an inode by new_extra_isize bytes.
4551 * Returns 0 on success or negative error number on failure.
4552 */
1d03ec98
AK
4553static int ext4_expand_extra_isize(struct inode *inode,
4554 unsigned int new_extra_isize,
4555 struct ext4_iloc iloc,
4556 handle_t *handle)
6dd4ee7c
KS
4557{
4558 struct ext4_inode *raw_inode;
4559 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4560
4561 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4562 return 0;
4563
4564 raw_inode = ext4_raw_inode(&iloc);
4565
4566 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4567
4568 /* No extended attributes present */
19f5fb7a
TT
4569 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4570 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4571 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4572 new_extra_isize);
4573 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4574 return 0;
4575 }
4576
4577 /* try to expand with EAs present */
4578 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4579 raw_inode, handle);
4580}
4581
ac27a0ec
DK
4582/*
4583 * What we do here is to mark the in-core inode as clean with respect to inode
4584 * dirtiness (it may still be data-dirty).
4585 * This means that the in-core inode may be reaped by prune_icache
4586 * without having to perform any I/O. This is a very good thing,
4587 * because *any* task may call prune_icache - even ones which
4588 * have a transaction open against a different journal.
4589 *
4590 * Is this cheating? Not really. Sure, we haven't written the
4591 * inode out, but prune_icache isn't a user-visible syncing function.
4592 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4593 * we start and wait on commits.
4594 *
4595 * Is this efficient/effective? Well, we're being nice to the system
4596 * by cleaning up our inodes proactively so they can be reaped
4597 * without I/O. But we are potentially leaving up to five seconds'
4598 * worth of inodes floating about which prune_icache wants us to
4599 * write out. One way to fix that would be to get prune_icache()
4600 * to do a write_super() to free up some memory. It has the desired
4601 * effect.
4602 */
617ba13b 4603int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4604{
617ba13b 4605 struct ext4_iloc iloc;
6dd4ee7c
KS
4606 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4607 static unsigned int mnt_count;
4608 int err, ret;
ac27a0ec
DK
4609
4610 might_sleep();
7ff9c073 4611 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4612 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4613 if (ext4_handle_valid(handle) &&
4614 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4615 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4616 /*
4617 * We need extra buffer credits since we may write into EA block
4618 * with this same handle. If journal_extend fails, then it will
4619 * only result in a minor loss of functionality for that inode.
4620 * If this is felt to be critical, then e2fsck should be run to
4621 * force a large enough s_min_extra_isize.
4622 */
4623 if ((jbd2_journal_extend(handle,
4624 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4625 ret = ext4_expand_extra_isize(inode,
4626 sbi->s_want_extra_isize,
4627 iloc, handle);
4628 if (ret) {
19f5fb7a
TT
4629 ext4_set_inode_state(inode,
4630 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4631 if (mnt_count !=
4632 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4633 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4634 "Unable to expand inode %lu. Delete"
4635 " some EAs or run e2fsck.",
4636 inode->i_ino);
c1bddad9
AK
4637 mnt_count =
4638 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4639 }
4640 }
4641 }
4642 }
ac27a0ec 4643 if (!err)
617ba13b 4644 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4645 return err;
4646}
4647
4648/*
617ba13b 4649 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4650 *
4651 * We're really interested in the case where a file is being extended.
4652 * i_size has been changed by generic_commit_write() and we thus need
4653 * to include the updated inode in the current transaction.
4654 *
5dd4056d 4655 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4656 * are allocated to the file.
4657 *
4658 * If the inode is marked synchronous, we don't honour that here - doing
4659 * so would cause a commit on atime updates, which we don't bother doing.
4660 * We handle synchronous inodes at the highest possible level.
4661 */
aa385729 4662void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4663{
ac27a0ec
DK
4664 handle_t *handle;
4665
617ba13b 4666 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4667 if (IS_ERR(handle))
4668 goto out;
f3dc272f 4669
f3dc272f
CW
4670 ext4_mark_inode_dirty(handle, inode);
4671
617ba13b 4672 ext4_journal_stop(handle);
ac27a0ec
DK
4673out:
4674 return;
4675}
4676
4677#if 0
4678/*
4679 * Bind an inode's backing buffer_head into this transaction, to prevent
4680 * it from being flushed to disk early. Unlike
617ba13b 4681 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4682 * returns no iloc structure, so the caller needs to repeat the iloc
4683 * lookup to mark the inode dirty later.
4684 */
617ba13b 4685static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4686{
617ba13b 4687 struct ext4_iloc iloc;
ac27a0ec
DK
4688
4689 int err = 0;
4690 if (handle) {
617ba13b 4691 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4692 if (!err) {
4693 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4694 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4695 if (!err)
0390131b 4696 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4697 NULL,
0390131b 4698 iloc.bh);
ac27a0ec
DK
4699 brelse(iloc.bh);
4700 }
4701 }
617ba13b 4702 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4703 return err;
4704}
4705#endif
4706
617ba13b 4707int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4708{
4709 journal_t *journal;
4710 handle_t *handle;
4711 int err;
4712
4713 /*
4714 * We have to be very careful here: changing a data block's
4715 * journaling status dynamically is dangerous. If we write a
4716 * data block to the journal, change the status and then delete
4717 * that block, we risk forgetting to revoke the old log record
4718 * from the journal and so a subsequent replay can corrupt data.
4719 * So, first we make sure that the journal is empty and that
4720 * nobody is changing anything.
4721 */
4722
617ba13b 4723 journal = EXT4_JOURNAL(inode);
0390131b
FM
4724 if (!journal)
4725 return 0;
d699594d 4726 if (is_journal_aborted(journal))
ac27a0ec 4727 return -EROFS;
2aff57b0
YY
4728 /* We have to allocate physical blocks for delalloc blocks
4729 * before flushing journal. otherwise delalloc blocks can not
4730 * be allocated any more. even more truncate on delalloc blocks
4731 * could trigger BUG by flushing delalloc blocks in journal.
4732 * There is no delalloc block in non-journal data mode.
4733 */
4734 if (val && test_opt(inode->i_sb, DELALLOC)) {
4735 err = ext4_alloc_da_blocks(inode);
4736 if (err < 0)
4737 return err;
4738 }
ac27a0ec 4739
dab291af 4740 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4741
4742 /*
4743 * OK, there are no updates running now, and all cached data is
4744 * synced to disk. We are now in a completely consistent state
4745 * which doesn't have anything in the journal, and we know that
4746 * no filesystem updates are running, so it is safe to modify
4747 * the inode's in-core data-journaling state flag now.
4748 */
4749
4750 if (val)
12e9b892 4751 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4752 else {
4753 jbd2_journal_flush(journal);
12e9b892 4754 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4755 }
617ba13b 4756 ext4_set_aops(inode);
ac27a0ec 4757
dab291af 4758 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4759
4760 /* Finally we can mark the inode as dirty. */
4761
617ba13b 4762 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4763 if (IS_ERR(handle))
4764 return PTR_ERR(handle);
4765
617ba13b 4766 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4767 ext4_handle_sync(handle);
617ba13b
MC
4768 ext4_journal_stop(handle);
4769 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4770
4771 return err;
4772}
2e9ee850
AK
4773
4774static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4775{
4776 return !buffer_mapped(bh);
4777}
4778
c2ec175c 4779int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4780{
c2ec175c 4781 struct page *page = vmf->page;
2e9ee850
AK
4782 loff_t size;
4783 unsigned long len;
9ea7df53 4784 int ret;
2e9ee850
AK
4785 struct file *file = vma->vm_file;
4786 struct inode *inode = file->f_path.dentry->d_inode;
4787 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4788 handle_t *handle;
4789 get_block_t *get_block;
4790 int retries = 0;
2e9ee850 4791
8e8ad8a5 4792 sb_start_pagefault(inode->i_sb);
9ea7df53
JK
4793 /* Delalloc case is easy... */
4794 if (test_opt(inode->i_sb, DELALLOC) &&
4795 !ext4_should_journal_data(inode) &&
4796 !ext4_nonda_switch(inode->i_sb)) {
4797 do {
4798 ret = __block_page_mkwrite(vma, vmf,
4799 ext4_da_get_block_prep);
4800 } while (ret == -ENOSPC &&
4801 ext4_should_retry_alloc(inode->i_sb, &retries));
4802 goto out_ret;
2e9ee850 4803 }
0e499890
DW
4804
4805 lock_page(page);
9ea7df53
JK
4806 size = i_size_read(inode);
4807 /* Page got truncated from under us? */
4808 if (page->mapping != mapping || page_offset(page) > size) {
4809 unlock_page(page);
4810 ret = VM_FAULT_NOPAGE;
4811 goto out;
0e499890 4812 }
2e9ee850
AK
4813
4814 if (page->index == size >> PAGE_CACHE_SHIFT)
4815 len = size & ~PAGE_CACHE_MASK;
4816 else
4817 len = PAGE_CACHE_SIZE;
a827eaff 4818 /*
9ea7df53
JK
4819 * Return if we have all the buffers mapped. This avoids the need to do
4820 * journal_start/journal_stop which can block and take a long time
a827eaff 4821 */
2e9ee850 4822 if (page_has_buffers(page)) {
2e9ee850 4823 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4824 ext4_bh_unmapped)) {
9ea7df53
JK
4825 /* Wait so that we don't change page under IO */
4826 wait_on_page_writeback(page);
4827 ret = VM_FAULT_LOCKED;
4828 goto out;
a827eaff 4829 }
2e9ee850 4830 }
a827eaff 4831 unlock_page(page);
9ea7df53
JK
4832 /* OK, we need to fill the hole... */
4833 if (ext4_should_dioread_nolock(inode))
4834 get_block = ext4_get_block_write;
4835 else
4836 get_block = ext4_get_block;
4837retry_alloc:
4838 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4839 if (IS_ERR(handle)) {
c2ec175c 4840 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4841 goto out;
4842 }
4843 ret = __block_page_mkwrite(vma, vmf, get_block);
4844 if (!ret && ext4_should_journal_data(inode)) {
4845 if (walk_page_buffers(handle, page_buffers(page), 0,
4846 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4847 unlock_page(page);
4848 ret = VM_FAULT_SIGBUS;
fcbb5515 4849 ext4_journal_stop(handle);
9ea7df53
JK
4850 goto out;
4851 }
4852 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4853 }
4854 ext4_journal_stop(handle);
4855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4856 goto retry_alloc;
4857out_ret:
4858 ret = block_page_mkwrite_return(ret);
4859out:
8e8ad8a5 4860 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
4861 return ret;
4862}