]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
f348c252 142int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
e2bfb088
TT
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
0637c6f4
TT
322/*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
5f634d06
AK
326void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
12219aea
AK
328{
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 330 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
331
332 spin_lock(&ei->i_block_reservation_lock);
d8990240 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 334 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 336 "with only %d reserved data blocks",
0637c6f4
TT
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
12219aea 342
0637c6f4
TT
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
71d4f7d0 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 346
12219aea 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 348
72b8ab9d
ES
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
7b415bf6 351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 352 else {
5f634d06
AK
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
72b8ab9d 356 * not re-claim the quota for fallocated blocks.
5f634d06 357 */
7b415bf6 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 359 }
d6014301
AK
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
0637c6f4
TT
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
d6014301 368 ext4_discard_preallocations(inode);
12219aea
AK
369}
370
e29136f8 371static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
372 unsigned int line,
373 struct ext4_map_blocks *map)
6fd058f7 374{
24676da4
TT
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
c398eda0
TT
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
6a797d27 381 return -EFSCORRUPTED;
6fd058f7
TT
382 }
383 return 0;
384}
385
e29136f8 386#define check_block_validity(inode, map) \
c398eda0 387 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 388
921f266b
DM
389#ifdef ES_AGGRESSIVE_TEST
390static void ext4_map_blocks_es_recheck(handle_t *handle,
391 struct inode *inode,
392 struct ext4_map_blocks *es_map,
393 struct ext4_map_blocks *map,
394 int flags)
395{
396 int retval;
397
398 map->m_flags = 0;
399 /*
400 * There is a race window that the result is not the same.
401 * e.g. xfstests #223 when dioread_nolock enables. The reason
402 * is that we lookup a block mapping in extent status tree with
403 * out taking i_data_sem. So at the time the unwritten extent
404 * could be converted.
405 */
406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 407 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 EXT4_GET_BLOCKS_KEEP_SIZE);
411 } else {
412 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
414 }
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
417
418 /*
419 * We don't check m_len because extent will be collpased in status
420 * tree. So the m_len might not equal.
421 */
422 if (es_map->m_lblk != map->m_lblk ||
423 es_map->m_flags != map->m_flags ||
424 es_map->m_pblk != map->m_pblk) {
bdafe42a 425 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
426 "es_cached ex [%d/%d/%llu/%x] != "
427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 inode->i_ino, es_map->m_lblk, es_map->m_len,
429 es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 map->m_len, map->m_pblk, map->m_flags,
431 retval, flags);
432 }
433}
434#endif /* ES_AGGRESSIVE_TEST */
435
f5ab0d1f 436/*
e35fd660 437 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 438 * and returns if the blocks are already mapped.
f5ab0d1f 439 *
f5ab0d1f
MC
440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441 * and store the allocated blocks in the result buffer head and mark it
442 * mapped.
443 *
e35fd660
TT
444 * If file type is extents based, it will call ext4_ext_map_blocks(),
445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
446 * based files
447 *
556615dc
LC
448 * On success, it returns the number of blocks being mapped or allocated.
449 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
450 * the result buffer head is unmapped. If the create ==1, it will make sure
451 * the buffer head is mapped.
452 *
453 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 454 * that case, buffer head is unmapped
f5ab0d1f
MC
455 *
456 * It returns the error in case of allocation failure.
457 */
e35fd660
TT
458int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 struct ext4_map_blocks *map, int flags)
0e855ac8 460{
d100eef2 461 struct extent_status es;
0e855ac8 462 int retval;
b8a86845 463 int ret = 0;
921f266b
DM
464#ifdef ES_AGGRESSIVE_TEST
465 struct ext4_map_blocks orig_map;
466
467 memcpy(&orig_map, map, sizeof(*map));
468#endif
f5ab0d1f 469
e35fd660
TT
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
d100eef2 474
e861b5e9
TT
475 /*
476 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 */
478 if (unlikely(map->m_len > INT_MAX))
479 map->m_len = INT_MAX;
480
4adb6ab3
KM
481 /* We can handle the block number less than EXT_MAX_BLOCKS */
482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 483 return -EFSCORRUPTED;
4adb6ab3 484
d100eef2
ZL
485 /* Lookup extent status tree firstly */
486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 map->m_pblk = ext4_es_pblock(&es) +
489 map->m_lblk - es.es_lblk;
490 map->m_flags |= ext4_es_is_written(&es) ?
491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 retval = es.es_len - (map->m_lblk - es.es_lblk);
493 if (retval > map->m_len)
494 retval = map->m_len;
495 map->m_len = retval;
496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 retval = 0;
498 } else {
499 BUG_ON(1);
500 }
921f266b
DM
501#ifdef ES_AGGRESSIVE_TEST
502 ext4_map_blocks_es_recheck(handle, inode, map,
503 &orig_map, flags);
504#endif
d100eef2
ZL
505 goto found;
506 }
507
4df3d265 508 /*
b920c755
TT
509 * Try to see if we can get the block without requesting a new
510 * file system block.
4df3d265 511 */
729f52c6 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 513 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
515 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 517 } else {
a4e5d88b
DM
518 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 520 }
f7fec032 521 if (retval > 0) {
3be78c73 522 unsigned int status;
f7fec032 523
44fb851d
ZL
524 if (unlikely(retval != map->m_len)) {
525 ext4_warning(inode->i_sb,
526 "ES len assertion failed for inode "
527 "%lu: retval %d != map->m_len %d",
528 inode->i_ino, retval, map->m_len);
529 WARN_ON(1);
921f266b 530 }
921f266b 531
f7fec032
ZL
532 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 535 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
536 ext4_find_delalloc_range(inode, map->m_lblk,
537 map->m_lblk + map->m_len - 1))
538 status |= EXTENT_STATUS_DELAYED;
539 ret = ext4_es_insert_extent(inode, map->m_lblk,
540 map->m_len, map->m_pblk, status);
541 if (ret < 0)
542 retval = ret;
543 }
729f52c6
ZL
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 546
d100eef2 547found:
e35fd660 548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 549 ret = check_block_validity(inode, map);
6fd058f7
TT
550 if (ret != 0)
551 return ret;
552 }
553
f5ab0d1f 554 /* If it is only a block(s) look up */
c2177057 555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
556 return retval;
557
558 /*
559 * Returns if the blocks have already allocated
560 *
561 * Note that if blocks have been preallocated
df3ab170 562 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
563 * with buffer head unmapped.
564 */
e35fd660 565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
566 /*
567 * If we need to convert extent to unwritten
568 * we continue and do the actual work in
569 * ext4_ext_map_blocks()
570 */
571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 return retval;
4df3d265 573
2a8964d6 574 /*
a25a4e1a
ZL
575 * Here we clear m_flags because after allocating an new extent,
576 * it will be set again.
2a8964d6 577 */
a25a4e1a 578 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 579
4df3d265 580 /*
556615dc 581 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 582 * will possibly result in updating i_data, so we take
d91bd2c1 583 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 584 * with create == 1 flag.
4df3d265 585 */
c8b459f4 586 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 587
4df3d265
AK
588 /*
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
591 */
12e9b892 592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 594 } else {
e35fd660 595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 596
e35fd660 597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
598 /*
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
602 */
19f5fb7a 603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 604 }
d2a17637 605
5f634d06
AK
606 /*
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
611 */
612 if ((retval > 0) &&
1296cc85 613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
614 ext4_da_update_reserve_space(inode, retval, 1);
615 }
2ac3b6e0 616
f7fec032 617 if (retval > 0) {
3be78c73 618 unsigned int status;
f7fec032 619
44fb851d
ZL
620 if (unlikely(retval != map->m_len)) {
621 ext4_warning(inode->i_sb,
622 "ES len assertion failed for inode "
623 "%lu: retval %d != map->m_len %d",
624 inode->i_ino, retval, map->m_len);
625 WARN_ON(1);
921f266b 626 }
921f266b 627
adb23551
ZL
628 /*
629 * If the extent has been zeroed out, we don't need to update
630 * extent status tree.
631 */
632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 if (ext4_es_is_written(&es))
635 goto has_zeroout;
636 }
f7fec032
ZL
637 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 640 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
5356f261
AK
648 }
649
adb23551 650has_zeroout:
4df3d265 651 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 653 ret = check_block_validity(inode, map);
6fd058f7
TT
654 if (ret != 0)
655 return ret;
656 }
0e855ac8
AK
657 return retval;
658}
659
f3bd1f3f
MC
660/* Maximum number of blocks we map for direct IO at once. */
661#define DIO_MAX_BLOCKS 4096
662
2ed88685
TT
663static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 struct buffer_head *bh, int flags)
ac27a0ec 665{
3e4fdaf8 666 handle_t *handle = ext4_journal_current_handle();
2ed88685 667 struct ext4_map_blocks map;
7fb5409d 668 int ret = 0, started = 0;
f3bd1f3f 669 int dio_credits;
ac27a0ec 670
46c7f254
TM
671 if (ext4_has_inline_data(inode))
672 return -ERANGE;
673
2ed88685
TT
674 map.m_lblk = iblock;
675 map.m_len = bh->b_size >> inode->i_blkbits;
676
8b0f165f 677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 678 /* Direct IO write... */
2ed88685
TT
679 if (map.m_len > DIO_MAX_BLOCKS)
680 map.m_len = DIO_MAX_BLOCKS;
681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 dio_credits);
7fb5409d 684 if (IS_ERR(handle)) {
ac27a0ec 685 ret = PTR_ERR(handle);
2ed88685 686 return ret;
ac27a0ec 687 }
7fb5409d 688 started = 1;
ac27a0ec
DK
689 }
690
2ed88685 691 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 692 if (ret > 0) {
7b7a8665
CH
693 ext4_io_end_t *io_end = ext4_inode_aio(inode);
694
2ed88685
TT
695 map_bh(bh, inode->i_sb, map.m_pblk);
696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
e842f290
DC
697 if (IS_DAX(inode) && buffer_unwritten(bh)) {
698 /*
699 * dgc: I suspect unwritten conversion on ext4+DAX is
700 * fundamentally broken here when there are concurrent
701 * read/write in progress on this inode.
702 */
703 WARN_ON_ONCE(io_end);
923ae0ff
RZ
704 bh->b_assoc_map = inode->i_mapping;
705 bh->b_private = (void *)(unsigned long)iblock;
923ae0ff 706 }
7b7a8665
CH
707 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
708 set_buffer_defer_completion(bh);
2ed88685 709 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 710 ret = 0;
ac27a0ec 711 }
7fb5409d
JK
712 if (started)
713 ext4_journal_stop(handle);
ac27a0ec
DK
714 return ret;
715}
716
2ed88685
TT
717int ext4_get_block(struct inode *inode, sector_t iblock,
718 struct buffer_head *bh, int create)
719{
720 return _ext4_get_block(inode, iblock, bh,
721 create ? EXT4_GET_BLOCKS_CREATE : 0);
722}
723
ac27a0ec
DK
724/*
725 * `handle' can be NULL if create is zero
726 */
617ba13b 727struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 728 ext4_lblk_t block, int map_flags)
ac27a0ec 729{
2ed88685
TT
730 struct ext4_map_blocks map;
731 struct buffer_head *bh;
c5e298ae 732 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 733 int err;
ac27a0ec
DK
734
735 J_ASSERT(handle != NULL || create == 0);
736
2ed88685
TT
737 map.m_lblk = block;
738 map.m_len = 1;
c5e298ae 739 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 740
10560082
TT
741 if (err == 0)
742 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 743 if (err < 0)
10560082 744 return ERR_PTR(err);
2ed88685
TT
745
746 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
747 if (unlikely(!bh))
748 return ERR_PTR(-ENOMEM);
2ed88685
TT
749 if (map.m_flags & EXT4_MAP_NEW) {
750 J_ASSERT(create != 0);
751 J_ASSERT(handle != NULL);
ac27a0ec 752
2ed88685
TT
753 /*
754 * Now that we do not always journal data, we should
755 * keep in mind whether this should always journal the
756 * new buffer as metadata. For now, regular file
757 * writes use ext4_get_block instead, so it's not a
758 * problem.
759 */
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
762 err = ext4_journal_get_create_access(handle, bh);
763 if (unlikely(err)) {
764 unlock_buffer(bh);
765 goto errout;
766 }
767 if (!buffer_uptodate(bh)) {
2ed88685
TT
768 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
769 set_buffer_uptodate(bh);
ac27a0ec 770 }
2ed88685
TT
771 unlock_buffer(bh);
772 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
773 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
774 if (unlikely(err))
775 goto errout;
776 } else
2ed88685 777 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 778 return bh;
10560082
TT
779errout:
780 brelse(bh);
781 return ERR_PTR(err);
ac27a0ec
DK
782}
783
617ba13b 784struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 785 ext4_lblk_t block, int map_flags)
ac27a0ec 786{
af5bc92d 787 struct buffer_head *bh;
ac27a0ec 788
c5e298ae 789 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 790 if (IS_ERR(bh))
ac27a0ec 791 return bh;
1c215028 792 if (!bh || buffer_uptodate(bh))
ac27a0ec 793 return bh;
65299a3b 794 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
795 wait_on_buffer(bh);
796 if (buffer_uptodate(bh))
797 return bh;
798 put_bh(bh);
1c215028 799 return ERR_PTR(-EIO);
ac27a0ec
DK
800}
801
f19d5870
TM
802int ext4_walk_page_buffers(handle_t *handle,
803 struct buffer_head *head,
804 unsigned from,
805 unsigned to,
806 int *partial,
807 int (*fn)(handle_t *handle,
808 struct buffer_head *bh))
ac27a0ec
DK
809{
810 struct buffer_head *bh;
811 unsigned block_start, block_end;
812 unsigned blocksize = head->b_size;
813 int err, ret = 0;
814 struct buffer_head *next;
815
af5bc92d
TT
816 for (bh = head, block_start = 0;
817 ret == 0 && (bh != head || !block_start);
de9a55b8 818 block_start = block_end, bh = next) {
ac27a0ec
DK
819 next = bh->b_this_page;
820 block_end = block_start + blocksize;
821 if (block_end <= from || block_start >= to) {
822 if (partial && !buffer_uptodate(bh))
823 *partial = 1;
824 continue;
825 }
826 err = (*fn)(handle, bh);
827 if (!ret)
828 ret = err;
829 }
830 return ret;
831}
832
833/*
834 * To preserve ordering, it is essential that the hole instantiation and
835 * the data write be encapsulated in a single transaction. We cannot
617ba13b 836 * close off a transaction and start a new one between the ext4_get_block()
dab291af 837 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
838 * prepare_write() is the right place.
839 *
36ade451
JK
840 * Also, this function can nest inside ext4_writepage(). In that case, we
841 * *know* that ext4_writepage() has generated enough buffer credits to do the
842 * whole page. So we won't block on the journal in that case, which is good,
843 * because the caller may be PF_MEMALLOC.
ac27a0ec 844 *
617ba13b 845 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
850 * violation.
851 *
dab291af 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
855 * write.
856 */
f19d5870
TM
857int do_journal_get_write_access(handle_t *handle,
858 struct buffer_head *bh)
ac27a0ec 859{
56d35a4c
JK
860 int dirty = buffer_dirty(bh);
861 int ret;
862
ac27a0ec
DK
863 if (!buffer_mapped(bh) || buffer_freed(bh))
864 return 0;
56d35a4c 865 /*
ebdec241 866 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 869 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
872 */
873 if (dirty)
874 clear_buffer_dirty(bh);
5d601255 875 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
876 ret = ext4_journal_get_write_access(handle, bh);
877 if (!ret && dirty)
878 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
879 return ret;
ac27a0ec
DK
880}
881
8b0f165f
AP
882static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
883 struct buffer_head *bh_result, int create);
2058f83a
MH
884
885#ifdef CONFIG_EXT4_FS_ENCRYPTION
886static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
887 get_block_t *get_block)
888{
889 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
890 unsigned to = from + len;
891 struct inode *inode = page->mapping->host;
892 unsigned block_start, block_end;
893 sector_t block;
894 int err = 0;
895 unsigned blocksize = inode->i_sb->s_blocksize;
896 unsigned bbits;
897 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
898 bool decrypt = false;
899
900 BUG_ON(!PageLocked(page));
901 BUG_ON(from > PAGE_CACHE_SIZE);
902 BUG_ON(to > PAGE_CACHE_SIZE);
903 BUG_ON(from > to);
904
905 if (!page_has_buffers(page))
906 create_empty_buffers(page, blocksize, 0);
907 head = page_buffers(page);
908 bbits = ilog2(blocksize);
909 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
910
911 for (bh = head, block_start = 0; bh != head || !block_start;
912 block++, block_start = block_end, bh = bh->b_this_page) {
913 block_end = block_start + blocksize;
914 if (block_end <= from || block_start >= to) {
915 if (PageUptodate(page)) {
916 if (!buffer_uptodate(bh))
917 set_buffer_uptodate(bh);
918 }
919 continue;
920 }
921 if (buffer_new(bh))
922 clear_buffer_new(bh);
923 if (!buffer_mapped(bh)) {
924 WARN_ON(bh->b_size != blocksize);
925 err = get_block(inode, block, bh, 1);
926 if (err)
927 break;
928 if (buffer_new(bh)) {
929 unmap_underlying_metadata(bh->b_bdev,
930 bh->b_blocknr);
931 if (PageUptodate(page)) {
932 clear_buffer_new(bh);
933 set_buffer_uptodate(bh);
934 mark_buffer_dirty(bh);
935 continue;
936 }
937 if (block_end > to || block_start < from)
938 zero_user_segments(page, to, block_end,
939 block_start, from);
940 continue;
941 }
942 }
943 if (PageUptodate(page)) {
944 if (!buffer_uptodate(bh))
945 set_buffer_uptodate(bh);
946 continue;
947 }
948 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
949 !buffer_unwritten(bh) &&
950 (block_start < from || block_end > to)) {
951 ll_rw_block(READ, 1, &bh);
952 *wait_bh++ = bh;
953 decrypt = ext4_encrypted_inode(inode) &&
954 S_ISREG(inode->i_mode);
955 }
956 }
957 /*
958 * If we issued read requests, let them complete.
959 */
960 while (wait_bh > wait) {
961 wait_on_buffer(*--wait_bh);
962 if (!buffer_uptodate(*wait_bh))
963 err = -EIO;
964 }
965 if (unlikely(err))
966 page_zero_new_buffers(page, from, to);
967 else if (decrypt)
3684de8c 968 err = ext4_decrypt(page);
2058f83a
MH
969 return err;
970}
971#endif
972
bfc1af65 973static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
ac27a0ec 976{
af5bc92d 977 struct inode *inode = mapping->host;
1938a150 978 int ret, needed_blocks;
ac27a0ec
DK
979 handle_t *handle;
980 int retries = 0;
af5bc92d 981 struct page *page;
de9a55b8 982 pgoff_t index;
af5bc92d 983 unsigned from, to;
bfc1af65 984
9bffad1e 985 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
986 /*
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
989 */
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 991 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
992 from = pos & (PAGE_CACHE_SIZE - 1);
993 to = from + len;
ac27a0ec 994
f19d5870
TM
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 flags, pagep);
998 if (ret < 0)
47564bfb
TT
999 return ret;
1000 if (ret == 1)
1001 return 0;
f19d5870
TM
1002 }
1003
47564bfb
TT
1004 /*
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1010 */
1011retry_grab:
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1013 if (!page)
1014 return -ENOMEM;
1015 unlock_page(page);
1016
1017retry_journal:
9924a92a 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1019 if (IS_ERR(handle)) {
47564bfb
TT
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
7479d2b9 1022 }
ac27a0ec 1023
47564bfb
TT
1024 lock_page(page);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1027 unlock_page(page);
1028 page_cache_release(page);
cf108bca 1029 ext4_journal_stop(handle);
47564bfb 1030 goto retry_grab;
cf108bca 1031 }
7afe5aa5
DM
1032 /* In case writeback began while the page was unlocked */
1033 wait_for_stable_page(page);
cf108bca 1034
2058f83a
MH
1035#ifdef CONFIG_EXT4_FS_ENCRYPTION
1036 if (ext4_should_dioread_nolock(inode))
1037 ret = ext4_block_write_begin(page, pos, len,
1038 ext4_get_block_write);
1039 else
1040 ret = ext4_block_write_begin(page, pos, len,
1041 ext4_get_block);
1042#else
744692dc 1043 if (ext4_should_dioread_nolock(inode))
6e1db88d 1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1045 else
6e1db88d 1046 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1047#endif
bfc1af65 1048 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1049 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 from, to, NULL,
1051 do_journal_get_write_access);
ac27a0ec 1052 }
bfc1af65
NP
1053
1054 if (ret) {
af5bc92d 1055 unlock_page(page);
ae4d5372 1056 /*
6e1db88d 1057 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1058 * outside i_size. Trim these off again. Don't need
1059 * i_size_read because we hold i_mutex.
1938a150
AK
1060 *
1061 * Add inode to orphan list in case we crash before
1062 * truncate finishes
ae4d5372 1063 */
ffacfa7a 1064 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1065 ext4_orphan_add(handle, inode);
1066
1067 ext4_journal_stop(handle);
1068 if (pos + len > inode->i_size) {
b9a4207d 1069 ext4_truncate_failed_write(inode);
de9a55b8 1070 /*
ffacfa7a 1071 * If truncate failed early the inode might
1938a150
AK
1072 * still be on the orphan list; we need to
1073 * make sure the inode is removed from the
1074 * orphan list in that case.
1075 */
1076 if (inode->i_nlink)
1077 ext4_orphan_del(NULL, inode);
1078 }
bfc1af65 1079
47564bfb
TT
1080 if (ret == -ENOSPC &&
1081 ext4_should_retry_alloc(inode->i_sb, &retries))
1082 goto retry_journal;
1083 page_cache_release(page);
1084 return ret;
1085 }
1086 *pagep = page;
ac27a0ec
DK
1087 return ret;
1088}
1089
bfc1af65
NP
1090/* For write_end() in data=journal mode */
1091static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1092{
13fca323 1093 int ret;
ac27a0ec
DK
1094 if (!buffer_mapped(bh) || buffer_freed(bh))
1095 return 0;
1096 set_buffer_uptodate(bh);
13fca323
TT
1097 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1098 clear_buffer_meta(bh);
1099 clear_buffer_prio(bh);
1100 return ret;
ac27a0ec
DK
1101}
1102
eed4333f
ZL
1103/*
1104 * We need to pick up the new inode size which generic_commit_write gave us
1105 * `file' can be NULL - eg, when called from page_symlink().
1106 *
1107 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1108 * buffers are managed internally.
1109 */
1110static int ext4_write_end(struct file *file,
1111 struct address_space *mapping,
1112 loff_t pos, unsigned len, unsigned copied,
1113 struct page *page, void *fsdata)
f8514083 1114{
f8514083 1115 handle_t *handle = ext4_journal_current_handle();
eed4333f 1116 struct inode *inode = mapping->host;
0572639f 1117 loff_t old_size = inode->i_size;
eed4333f
ZL
1118 int ret = 0, ret2;
1119 int i_size_changed = 0;
1120
1121 trace_ext4_write_end(inode, pos, len, copied);
1122 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1123 ret = ext4_jbd2_file_inode(handle, inode);
1124 if (ret) {
1125 unlock_page(page);
1126 page_cache_release(page);
1127 goto errout;
1128 }
1129 }
f8514083 1130
42c832de
TT
1131 if (ext4_has_inline_data(inode)) {
1132 ret = ext4_write_inline_data_end(inode, pos, len,
1133 copied, page);
1134 if (ret < 0)
1135 goto errout;
1136 copied = ret;
1137 } else
f19d5870
TM
1138 copied = block_write_end(file, mapping, pos,
1139 len, copied, page, fsdata);
f8514083 1140 /*
4631dbf6 1141 * it's important to update i_size while still holding page lock:
f8514083
AK
1142 * page writeout could otherwise come in and zero beyond i_size.
1143 */
4631dbf6 1144 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1145 unlock_page(page);
1146 page_cache_release(page);
1147
0572639f
XW
1148 if (old_size < pos)
1149 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1150 /*
1151 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 * makes the holding time of page lock longer. Second, it forces lock
1153 * ordering of page lock and transaction start for journaling
1154 * filesystems.
1155 */
1156 if (i_size_changed)
1157 ext4_mark_inode_dirty(handle, inode);
1158
ffacfa7a 1159 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1160 /* if we have allocated more blocks and copied
1161 * less. We will have blocks allocated outside
1162 * inode->i_size. So truncate them
1163 */
1164 ext4_orphan_add(handle, inode);
74d553aa 1165errout:
617ba13b 1166 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1167 if (!ret)
1168 ret = ret2;
bfc1af65 1169
f8514083 1170 if (pos + len > inode->i_size) {
b9a4207d 1171 ext4_truncate_failed_write(inode);
de9a55b8 1172 /*
ffacfa7a 1173 * If truncate failed early the inode might still be
f8514083
AK
1174 * on the orphan list; we need to make sure the inode
1175 * is removed from the orphan list in that case.
1176 */
1177 if (inode->i_nlink)
1178 ext4_orphan_del(NULL, inode);
1179 }
1180
bfc1af65 1181 return ret ? ret : copied;
ac27a0ec
DK
1182}
1183
b90197b6
TT
1184/*
1185 * This is a private version of page_zero_new_buffers() which doesn't
1186 * set the buffer to be dirty, since in data=journalled mode we need
1187 * to call ext4_handle_dirty_metadata() instead.
1188 */
1189static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1190{
1191 unsigned int block_start = 0, block_end;
1192 struct buffer_head *head, *bh;
1193
1194 bh = head = page_buffers(page);
1195 do {
1196 block_end = block_start + bh->b_size;
1197 if (buffer_new(bh)) {
1198 if (block_end > from && block_start < to) {
1199 if (!PageUptodate(page)) {
1200 unsigned start, size;
1201
1202 start = max(from, block_start);
1203 size = min(to, block_end) - start;
1204
1205 zero_user(page, start, size);
1206 set_buffer_uptodate(bh);
1207 }
1208 clear_buffer_new(bh);
1209 }
1210 }
1211 block_start = block_end;
1212 bh = bh->b_this_page;
1213 } while (bh != head);
1214}
1215
bfc1af65 1216static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1217 struct address_space *mapping,
1218 loff_t pos, unsigned len, unsigned copied,
1219 struct page *page, void *fsdata)
ac27a0ec 1220{
617ba13b 1221 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1222 struct inode *inode = mapping->host;
0572639f 1223 loff_t old_size = inode->i_size;
ac27a0ec
DK
1224 int ret = 0, ret2;
1225 int partial = 0;
bfc1af65 1226 unsigned from, to;
4631dbf6 1227 int size_changed = 0;
ac27a0ec 1228
9bffad1e 1229 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1230 from = pos & (PAGE_CACHE_SIZE - 1);
1231 to = from + len;
1232
441c8508
CW
1233 BUG_ON(!ext4_handle_valid(handle));
1234
3fdcfb66
TM
1235 if (ext4_has_inline_data(inode))
1236 copied = ext4_write_inline_data_end(inode, pos, len,
1237 copied, page);
1238 else {
1239 if (copied < len) {
1240 if (!PageUptodate(page))
1241 copied = 0;
b90197b6 1242 zero_new_buffers(page, from+copied, to);
3fdcfb66 1243 }
ac27a0ec 1244
3fdcfb66
TM
1245 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1246 to, &partial, write_end_fn);
1247 if (!partial)
1248 SetPageUptodate(page);
1249 }
4631dbf6 1250 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1251 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1252 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1253 unlock_page(page);
1254 page_cache_release(page);
1255
0572639f
XW
1256 if (old_size < pos)
1257 pagecache_isize_extended(inode, old_size, pos);
1258
4631dbf6 1259 if (size_changed) {
617ba13b 1260 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1261 if (!ret)
1262 ret = ret2;
1263 }
bfc1af65 1264
ffacfa7a 1265 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1266 /* if we have allocated more blocks and copied
1267 * less. We will have blocks allocated outside
1268 * inode->i_size. So truncate them
1269 */
1270 ext4_orphan_add(handle, inode);
1271
617ba13b 1272 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1273 if (!ret)
1274 ret = ret2;
f8514083 1275 if (pos + len > inode->i_size) {
b9a4207d 1276 ext4_truncate_failed_write(inode);
de9a55b8 1277 /*
ffacfa7a 1278 * If truncate failed early the inode might still be
f8514083
AK
1279 * on the orphan list; we need to make sure the inode
1280 * is removed from the orphan list in that case.
1281 */
1282 if (inode->i_nlink)
1283 ext4_orphan_del(NULL, inode);
1284 }
bfc1af65
NP
1285
1286 return ret ? ret : copied;
ac27a0ec 1287}
d2a17637 1288
9d0be502 1289/*
c27e43a1 1290 * Reserve space for a single cluster
9d0be502 1291 */
c27e43a1 1292static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1293{
60e58e0f 1294 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1295 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1296 int ret;
03179fe9
TT
1297
1298 /*
1299 * We will charge metadata quota at writeout time; this saves
1300 * us from metadata over-estimation, though we may go over by
1301 * a small amount in the end. Here we just reserve for data.
1302 */
1303 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1304 if (ret)
1305 return ret;
d2a17637 1306
0637c6f4 1307 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1308 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1309 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1310 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1311 return -ENOSPC;
1312 }
9d0be502 1313 ei->i_reserved_data_blocks++;
c27e43a1 1314 trace_ext4_da_reserve_space(inode);
0637c6f4 1315 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1316
d2a17637
MC
1317 return 0; /* success */
1318}
1319
12219aea 1320static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1321{
1322 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1323 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1324
cd213226
MC
1325 if (!to_free)
1326 return; /* Nothing to release, exit */
1327
d2a17637 1328 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1329
5a58ec87 1330 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1331 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1332 /*
0637c6f4
TT
1333 * if there aren't enough reserved blocks, then the
1334 * counter is messed up somewhere. Since this
1335 * function is called from invalidate page, it's
1336 * harmless to return without any action.
cd213226 1337 */
8de5c325 1338 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1339 "ino %lu, to_free %d with only %d reserved "
1084f252 1340 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1341 ei->i_reserved_data_blocks);
1342 WARN_ON(1);
1343 to_free = ei->i_reserved_data_blocks;
cd213226 1344 }
0637c6f4 1345 ei->i_reserved_data_blocks -= to_free;
cd213226 1346
72b8ab9d 1347 /* update fs dirty data blocks counter */
57042651 1348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1349
d2a17637 1350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1351
7b415bf6 1352 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1353}
1354
1355static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1356 unsigned int offset,
1357 unsigned int length)
d2a17637 1358{
9705acd6 1359 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1360 struct buffer_head *head, *bh;
1361 unsigned int curr_off = 0;
7b415bf6
AK
1362 struct inode *inode = page->mapping->host;
1363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1364 unsigned int stop = offset + length;
7b415bf6 1365 int num_clusters;
51865fda 1366 ext4_fsblk_t lblk;
d2a17637 1367
ca99fdd2
LC
1368 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1369
d2a17637
MC
1370 head = page_buffers(page);
1371 bh = head;
1372 do {
1373 unsigned int next_off = curr_off + bh->b_size;
1374
ca99fdd2
LC
1375 if (next_off > stop)
1376 break;
1377
d2a17637
MC
1378 if ((offset <= curr_off) && (buffer_delay(bh))) {
1379 to_release++;
9705acd6 1380 contiguous_blks++;
d2a17637 1381 clear_buffer_delay(bh);
9705acd6
LC
1382 } else if (contiguous_blks) {
1383 lblk = page->index <<
1384 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1385 lblk += (curr_off >> inode->i_blkbits) -
1386 contiguous_blks;
1387 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1388 contiguous_blks = 0;
d2a17637
MC
1389 }
1390 curr_off = next_off;
1391 } while ((bh = bh->b_this_page) != head);
7b415bf6 1392
9705acd6 1393 if (contiguous_blks) {
51865fda 1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
9705acd6
LC
1395 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1396 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1397 }
1398
7b415bf6
AK
1399 /* If we have released all the blocks belonging to a cluster, then we
1400 * need to release the reserved space for that cluster. */
1401 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1402 while (num_clusters > 0) {
7b415bf6
AK
1403 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1404 ((num_clusters - 1) << sbi->s_cluster_bits);
1405 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1406 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1407 ext4_da_release_space(inode, 1);
1408
1409 num_clusters--;
1410 }
d2a17637 1411}
ac27a0ec 1412
64769240
AT
1413/*
1414 * Delayed allocation stuff
1415 */
1416
4e7ea81d
JK
1417struct mpage_da_data {
1418 struct inode *inode;
1419 struct writeback_control *wbc;
6b523df4 1420
4e7ea81d
JK
1421 pgoff_t first_page; /* The first page to write */
1422 pgoff_t next_page; /* Current page to examine */
1423 pgoff_t last_page; /* Last page to examine */
791b7f08 1424 /*
4e7ea81d
JK
1425 * Extent to map - this can be after first_page because that can be
1426 * fully mapped. We somewhat abuse m_flags to store whether the extent
1427 * is delalloc or unwritten.
791b7f08 1428 */
4e7ea81d
JK
1429 struct ext4_map_blocks map;
1430 struct ext4_io_submit io_submit; /* IO submission data */
1431};
64769240 1432
4e7ea81d
JK
1433static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1434 bool invalidate)
c4a0c46e
AK
1435{
1436 int nr_pages, i;
1437 pgoff_t index, end;
1438 struct pagevec pvec;
1439 struct inode *inode = mpd->inode;
1440 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1441
1442 /* This is necessary when next_page == 0. */
1443 if (mpd->first_page >= mpd->next_page)
1444 return;
c4a0c46e 1445
c7f5938a
CW
1446 index = mpd->first_page;
1447 end = mpd->next_page - 1;
4e7ea81d
JK
1448 if (invalidate) {
1449 ext4_lblk_t start, last;
1450 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1452 ext4_es_remove_extent(inode, start, last - start + 1);
1453 }
51865fda 1454
66bea92c 1455 pagevec_init(&pvec, 0);
c4a0c46e
AK
1456 while (index <= end) {
1457 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1458 if (nr_pages == 0)
1459 break;
1460 for (i = 0; i < nr_pages; i++) {
1461 struct page *page = pvec.pages[i];
9b1d0998 1462 if (page->index > end)
c4a0c46e 1463 break;
c4a0c46e
AK
1464 BUG_ON(!PageLocked(page));
1465 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1466 if (invalidate) {
1467 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1468 ClearPageUptodate(page);
1469 }
c4a0c46e
AK
1470 unlock_page(page);
1471 }
9b1d0998
JK
1472 index = pvec.pages[nr_pages - 1]->index + 1;
1473 pagevec_release(&pvec);
c4a0c46e 1474 }
c4a0c46e
AK
1475}
1476
df22291f
AK
1477static void ext4_print_free_blocks(struct inode *inode)
1478{
1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1480 struct super_block *sb = inode->i_sb;
f78ee70d 1481 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1482
1483 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1484 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1485 ext4_count_free_clusters(sb)));
92b97816
TT
1486 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1487 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1488 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1489 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1490 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1491 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1492 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1493 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1494 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1495 ei->i_reserved_data_blocks);
df22291f
AK
1496 return;
1497}
1498
c364b22c 1499static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1500{
c364b22c 1501 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1502}
1503
5356f261
AK
1504/*
1505 * This function is grabs code from the very beginning of
1506 * ext4_map_blocks, but assumes that the caller is from delayed write
1507 * time. This function looks up the requested blocks and sets the
1508 * buffer delay bit under the protection of i_data_sem.
1509 */
1510static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511 struct ext4_map_blocks *map,
1512 struct buffer_head *bh)
1513{
d100eef2 1514 struct extent_status es;
5356f261
AK
1515 int retval;
1516 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1517#ifdef ES_AGGRESSIVE_TEST
1518 struct ext4_map_blocks orig_map;
1519
1520 memcpy(&orig_map, map, sizeof(*map));
1521#endif
5356f261
AK
1522
1523 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524 invalid_block = ~0;
1525
1526 map->m_flags = 0;
1527 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528 "logical block %lu\n", inode->i_ino, map->m_len,
1529 (unsigned long) map->m_lblk);
d100eef2
ZL
1530
1531 /* Lookup extent status tree firstly */
1532 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1533 if (ext4_es_is_hole(&es)) {
1534 retval = 0;
c8b459f4 1535 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1536 goto add_delayed;
1537 }
1538
1539 /*
1540 * Delayed extent could be allocated by fallocate.
1541 * So we need to check it.
1542 */
1543 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1544 map_bh(bh, inode->i_sb, invalid_block);
1545 set_buffer_new(bh);
1546 set_buffer_delay(bh);
1547 return 0;
1548 }
1549
1550 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1551 retval = es.es_len - (iblock - es.es_lblk);
1552 if (retval > map->m_len)
1553 retval = map->m_len;
1554 map->m_len = retval;
1555 if (ext4_es_is_written(&es))
1556 map->m_flags |= EXT4_MAP_MAPPED;
1557 else if (ext4_es_is_unwritten(&es))
1558 map->m_flags |= EXT4_MAP_UNWRITTEN;
1559 else
1560 BUG_ON(1);
1561
921f266b
DM
1562#ifdef ES_AGGRESSIVE_TEST
1563 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1564#endif
d100eef2
ZL
1565 return retval;
1566 }
1567
5356f261
AK
1568 /*
1569 * Try to see if we can get the block without requesting a new
1570 * file system block.
1571 */
c8b459f4 1572 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1573 if (ext4_has_inline_data(inode))
9c3569b5 1574 retval = 0;
cbd7584e 1575 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1576 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1577 else
2f8e0a7c 1578 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1579
d100eef2 1580add_delayed:
5356f261 1581 if (retval == 0) {
f7fec032 1582 int ret;
5356f261
AK
1583 /*
1584 * XXX: __block_prepare_write() unmaps passed block,
1585 * is it OK?
1586 */
386ad67c
LC
1587 /*
1588 * If the block was allocated from previously allocated cluster,
1589 * then we don't need to reserve it again. However we still need
1590 * to reserve metadata for every block we're going to write.
1591 */
c27e43a1 1592 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1593 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1594 ret = ext4_da_reserve_space(inode);
f7fec032 1595 if (ret) {
5356f261 1596 /* not enough space to reserve */
f7fec032 1597 retval = ret;
5356f261 1598 goto out_unlock;
f7fec032 1599 }
5356f261
AK
1600 }
1601
f7fec032
ZL
1602 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1603 ~0, EXTENT_STATUS_DELAYED);
1604 if (ret) {
1605 retval = ret;
51865fda 1606 goto out_unlock;
f7fec032 1607 }
51865fda 1608
5356f261
AK
1609 map_bh(bh, inode->i_sb, invalid_block);
1610 set_buffer_new(bh);
1611 set_buffer_delay(bh);
f7fec032
ZL
1612 } else if (retval > 0) {
1613 int ret;
3be78c73 1614 unsigned int status;
f7fec032 1615
44fb851d
ZL
1616 if (unlikely(retval != map->m_len)) {
1617 ext4_warning(inode->i_sb,
1618 "ES len assertion failed for inode "
1619 "%lu: retval %d != map->m_len %d",
1620 inode->i_ino, retval, map->m_len);
1621 WARN_ON(1);
921f266b 1622 }
921f266b 1623
f7fec032
ZL
1624 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1626 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1627 map->m_pblk, status);
1628 if (ret != 0)
1629 retval = ret;
5356f261
AK
1630 }
1631
1632out_unlock:
1633 up_read((&EXT4_I(inode)->i_data_sem));
1634
1635 return retval;
1636}
1637
64769240 1638/*
d91bd2c1 1639 * This is a special get_block_t callback which is used by
b920c755
TT
1640 * ext4_da_write_begin(). It will either return mapped block or
1641 * reserve space for a single block.
29fa89d0
AK
1642 *
1643 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1644 * We also have b_blocknr = -1 and b_bdev initialized properly
1645 *
1646 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1647 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1648 * initialized properly.
64769240 1649 */
9c3569b5
TM
1650int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1651 struct buffer_head *bh, int create)
64769240 1652{
2ed88685 1653 struct ext4_map_blocks map;
64769240
AT
1654 int ret = 0;
1655
1656 BUG_ON(create == 0);
2ed88685
TT
1657 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1658
1659 map.m_lblk = iblock;
1660 map.m_len = 1;
64769240
AT
1661
1662 /*
1663 * first, we need to know whether the block is allocated already
1664 * preallocated blocks are unmapped but should treated
1665 * the same as allocated blocks.
1666 */
5356f261
AK
1667 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1668 if (ret <= 0)
2ed88685 1669 return ret;
64769240 1670
2ed88685
TT
1671 map_bh(bh, inode->i_sb, map.m_pblk);
1672 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1673
1674 if (buffer_unwritten(bh)) {
1675 /* A delayed write to unwritten bh should be marked
1676 * new and mapped. Mapped ensures that we don't do
1677 * get_block multiple times when we write to the same
1678 * offset and new ensures that we do proper zero out
1679 * for partial write.
1680 */
1681 set_buffer_new(bh);
c8205636 1682 set_buffer_mapped(bh);
2ed88685
TT
1683 }
1684 return 0;
64769240 1685}
61628a3f 1686
62e086be
AK
1687static int bget_one(handle_t *handle, struct buffer_head *bh)
1688{
1689 get_bh(bh);
1690 return 0;
1691}
1692
1693static int bput_one(handle_t *handle, struct buffer_head *bh)
1694{
1695 put_bh(bh);
1696 return 0;
1697}
1698
1699static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1700 unsigned int len)
1701{
1702 struct address_space *mapping = page->mapping;
1703 struct inode *inode = mapping->host;
3fdcfb66 1704 struct buffer_head *page_bufs = NULL;
62e086be 1705 handle_t *handle = NULL;
3fdcfb66
TM
1706 int ret = 0, err = 0;
1707 int inline_data = ext4_has_inline_data(inode);
1708 struct buffer_head *inode_bh = NULL;
62e086be 1709
cb20d518 1710 ClearPageChecked(page);
3fdcfb66
TM
1711
1712 if (inline_data) {
1713 BUG_ON(page->index != 0);
1714 BUG_ON(len > ext4_get_max_inline_size(inode));
1715 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1716 if (inode_bh == NULL)
1717 goto out;
1718 } else {
1719 page_bufs = page_buffers(page);
1720 if (!page_bufs) {
1721 BUG();
1722 goto out;
1723 }
1724 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1725 NULL, bget_one);
1726 }
bdf96838
TT
1727 /*
1728 * We need to release the page lock before we start the
1729 * journal, so grab a reference so the page won't disappear
1730 * out from under us.
1731 */
1732 get_page(page);
62e086be
AK
1733 unlock_page(page);
1734
9924a92a
TT
1735 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1736 ext4_writepage_trans_blocks(inode));
62e086be
AK
1737 if (IS_ERR(handle)) {
1738 ret = PTR_ERR(handle);
bdf96838
TT
1739 put_page(page);
1740 goto out_no_pagelock;
62e086be 1741 }
441c8508
CW
1742 BUG_ON(!ext4_handle_valid(handle));
1743
bdf96838
TT
1744 lock_page(page);
1745 put_page(page);
1746 if (page->mapping != mapping) {
1747 /* The page got truncated from under us */
1748 ext4_journal_stop(handle);
1749 ret = 0;
1750 goto out;
1751 }
1752
3fdcfb66 1753 if (inline_data) {
5d601255 1754 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1755 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1756
3fdcfb66
TM
1757 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1758
1759 } else {
1760 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1761 do_journal_get_write_access);
1762
1763 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1764 write_end_fn);
1765 }
62e086be
AK
1766 if (ret == 0)
1767 ret = err;
2d859db3 1768 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1769 err = ext4_journal_stop(handle);
1770 if (!ret)
1771 ret = err;
1772
3fdcfb66 1773 if (!ext4_has_inline_data(inode))
8c9367fd 1774 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1775 NULL, bput_one);
19f5fb7a 1776 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1777out:
bdf96838
TT
1778 unlock_page(page);
1779out_no_pagelock:
3fdcfb66 1780 brelse(inode_bh);
62e086be
AK
1781 return ret;
1782}
1783
61628a3f 1784/*
43ce1d23
AK
1785 * Note that we don't need to start a transaction unless we're journaling data
1786 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1787 * need to file the inode to the transaction's list in ordered mode because if
1788 * we are writing back data added by write(), the inode is already there and if
25985edc 1789 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1790 * transaction the data will hit the disk. In case we are journaling data, we
1791 * cannot start transaction directly because transaction start ranks above page
1792 * lock so we have to do some magic.
1793 *
b920c755 1794 * This function can get called via...
20970ba6 1795 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1796 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1797 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1798 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1799 *
1800 * We don't do any block allocation in this function. If we have page with
1801 * multiple blocks we need to write those buffer_heads that are mapped. This
1802 * is important for mmaped based write. So if we do with blocksize 1K
1803 * truncate(f, 1024);
1804 * a = mmap(f, 0, 4096);
1805 * a[0] = 'a';
1806 * truncate(f, 4096);
1807 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1808 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1809 * do_wp_page). So writepage should write the first block. If we modify
1810 * the mmap area beyond 1024 we will again get a page_fault and the
1811 * page_mkwrite callback will do the block allocation and mark the
1812 * buffer_heads mapped.
1813 *
1814 * We redirty the page if we have any buffer_heads that is either delay or
1815 * unwritten in the page.
1816 *
1817 * We can get recursively called as show below.
1818 *
1819 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1820 * ext4_writepage()
1821 *
1822 * But since we don't do any block allocation we should not deadlock.
1823 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1824 */
43ce1d23 1825static int ext4_writepage(struct page *page,
62e086be 1826 struct writeback_control *wbc)
64769240 1827{
f8bec370 1828 int ret = 0;
61628a3f 1829 loff_t size;
498e5f24 1830 unsigned int len;
744692dc 1831 struct buffer_head *page_bufs = NULL;
61628a3f 1832 struct inode *inode = page->mapping->host;
36ade451 1833 struct ext4_io_submit io_submit;
1c8349a1 1834 bool keep_towrite = false;
61628a3f 1835
a9c667f8 1836 trace_ext4_writepage(page);
f0e6c985
AK
1837 size = i_size_read(inode);
1838 if (page->index == size >> PAGE_CACHE_SHIFT)
1839 len = size & ~PAGE_CACHE_MASK;
1840 else
1841 len = PAGE_CACHE_SIZE;
64769240 1842
a42afc5f 1843 page_bufs = page_buffers(page);
a42afc5f 1844 /*
fe386132
JK
1845 * We cannot do block allocation or other extent handling in this
1846 * function. If there are buffers needing that, we have to redirty
1847 * the page. But we may reach here when we do a journal commit via
1848 * journal_submit_inode_data_buffers() and in that case we must write
1849 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
1850 *
1851 * Also, if there is only one buffer per page (the fs block
1852 * size == the page size), if one buffer needs block
1853 * allocation or needs to modify the extent tree to clear the
1854 * unwritten flag, we know that the page can't be written at
1855 * all, so we might as well refuse the write immediately.
1856 * Unfortunately if the block size != page size, we can't as
1857 * easily detect this case using ext4_walk_page_buffers(), but
1858 * for the extremely common case, this is an optimization that
1859 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 1860 */
f19d5870
TM
1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862 ext4_bh_delay_or_unwritten)) {
f8bec370 1863 redirty_page_for_writepage(wbc, page);
cccd147a
TT
1864 if ((current->flags & PF_MEMALLOC) ||
1865 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
fe386132
JK
1866 /*
1867 * For memory cleaning there's no point in writing only
1868 * some buffers. So just bail out. Warn if we came here
1869 * from direct reclaim.
1870 */
1871 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1872 == PF_MEMALLOC);
f0e6c985
AK
1873 unlock_page(page);
1874 return 0;
1875 }
1c8349a1 1876 keep_towrite = true;
a42afc5f 1877 }
64769240 1878
cb20d518 1879 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1880 /*
1881 * It's mmapped pagecache. Add buffers and journal it. There
1882 * doesn't seem much point in redirtying the page here.
1883 */
3f0ca309 1884 return __ext4_journalled_writepage(page, len);
43ce1d23 1885
97a851ed
JK
1886 ext4_io_submit_init(&io_submit, wbc);
1887 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1888 if (!io_submit.io_end) {
1889 redirty_page_for_writepage(wbc, page);
1890 unlock_page(page);
1891 return -ENOMEM;
1892 }
1c8349a1 1893 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1894 ext4_io_submit(&io_submit);
97a851ed
JK
1895 /* Drop io_end reference we got from init */
1896 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1897 return ret;
1898}
1899
5f1132b2
JK
1900static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1901{
1902 int len;
1903 loff_t size = i_size_read(mpd->inode);
1904 int err;
1905
1906 BUG_ON(page->index != mpd->first_page);
1907 if (page->index == size >> PAGE_CACHE_SHIFT)
1908 len = size & ~PAGE_CACHE_MASK;
1909 else
1910 len = PAGE_CACHE_SIZE;
1911 clear_page_dirty_for_io(page);
1c8349a1 1912 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1913 if (!err)
1914 mpd->wbc->nr_to_write--;
1915 mpd->first_page++;
1916
1917 return err;
1918}
1919
4e7ea81d
JK
1920#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1921
61628a3f 1922/*
fffb2739
JK
1923 * mballoc gives us at most this number of blocks...
1924 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1925 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1926 */
fffb2739 1927#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1928
4e7ea81d
JK
1929/*
1930 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1931 *
1932 * @mpd - extent of blocks
1933 * @lblk - logical number of the block in the file
09930042 1934 * @bh - buffer head we want to add to the extent
4e7ea81d 1935 *
09930042
JK
1936 * The function is used to collect contig. blocks in the same state. If the
1937 * buffer doesn't require mapping for writeback and we haven't started the
1938 * extent of buffers to map yet, the function returns 'true' immediately - the
1939 * caller can write the buffer right away. Otherwise the function returns true
1940 * if the block has been added to the extent, false if the block couldn't be
1941 * added.
4e7ea81d 1942 */
09930042
JK
1943static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1944 struct buffer_head *bh)
4e7ea81d
JK
1945{
1946 struct ext4_map_blocks *map = &mpd->map;
1947
09930042
JK
1948 /* Buffer that doesn't need mapping for writeback? */
1949 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1950 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1951 /* So far no extent to map => we write the buffer right away */
1952 if (map->m_len == 0)
1953 return true;
1954 return false;
1955 }
4e7ea81d
JK
1956
1957 /* First block in the extent? */
1958 if (map->m_len == 0) {
1959 map->m_lblk = lblk;
1960 map->m_len = 1;
09930042
JK
1961 map->m_flags = bh->b_state & BH_FLAGS;
1962 return true;
4e7ea81d
JK
1963 }
1964
09930042
JK
1965 /* Don't go larger than mballoc is willing to allocate */
1966 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1967 return false;
1968
4e7ea81d
JK
1969 /* Can we merge the block to our big extent? */
1970 if (lblk == map->m_lblk + map->m_len &&
09930042 1971 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1972 map->m_len++;
09930042 1973 return true;
4e7ea81d 1974 }
09930042 1975 return false;
4e7ea81d
JK
1976}
1977
5f1132b2
JK
1978/*
1979 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1980 *
1981 * @mpd - extent of blocks for mapping
1982 * @head - the first buffer in the page
1983 * @bh - buffer we should start processing from
1984 * @lblk - logical number of the block in the file corresponding to @bh
1985 *
1986 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1987 * the page for IO if all buffers in this page were mapped and there's no
1988 * accumulated extent of buffers to map or add buffers in the page to the
1989 * extent of buffers to map. The function returns 1 if the caller can continue
1990 * by processing the next page, 0 if it should stop adding buffers to the
1991 * extent to map because we cannot extend it anymore. It can also return value
1992 * < 0 in case of error during IO submission.
1993 */
1994static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1995 struct buffer_head *head,
1996 struct buffer_head *bh,
1997 ext4_lblk_t lblk)
4e7ea81d
JK
1998{
1999 struct inode *inode = mpd->inode;
5f1132b2 2000 int err;
4e7ea81d
JK
2001 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2002 >> inode->i_blkbits;
2003
2004 do {
2005 BUG_ON(buffer_locked(bh));
2006
09930042 2007 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2008 /* Found extent to map? */
2009 if (mpd->map.m_len)
5f1132b2 2010 return 0;
09930042 2011 /* Everything mapped so far and we hit EOF */
5f1132b2 2012 break;
4e7ea81d 2013 }
4e7ea81d 2014 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2015 /* So far everything mapped? Submit the page for IO. */
2016 if (mpd->map.m_len == 0) {
2017 err = mpage_submit_page(mpd, head->b_page);
2018 if (err < 0)
2019 return err;
2020 }
2021 return lblk < blocks;
4e7ea81d
JK
2022}
2023
2024/*
2025 * mpage_map_buffers - update buffers corresponding to changed extent and
2026 * submit fully mapped pages for IO
2027 *
2028 * @mpd - description of extent to map, on return next extent to map
2029 *
2030 * Scan buffers corresponding to changed extent (we expect corresponding pages
2031 * to be already locked) and update buffer state according to new extent state.
2032 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2033 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2034 * and do extent conversion after IO is finished. If the last page is not fully
2035 * mapped, we update @map to the next extent in the last page that needs
2036 * mapping. Otherwise we submit the page for IO.
2037 */
2038static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2039{
2040 struct pagevec pvec;
2041 int nr_pages, i;
2042 struct inode *inode = mpd->inode;
2043 struct buffer_head *head, *bh;
2044 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2045 pgoff_t start, end;
2046 ext4_lblk_t lblk;
2047 sector_t pblock;
2048 int err;
2049
2050 start = mpd->map.m_lblk >> bpp_bits;
2051 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2052 lblk = start << bpp_bits;
2053 pblock = mpd->map.m_pblk;
2054
2055 pagevec_init(&pvec, 0);
2056 while (start <= end) {
2057 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2058 PAGEVEC_SIZE);
2059 if (nr_pages == 0)
2060 break;
2061 for (i = 0; i < nr_pages; i++) {
2062 struct page *page = pvec.pages[i];
2063
2064 if (page->index > end)
2065 break;
70261f56 2066 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2067 BUG_ON(page->index != start);
2068 bh = head = page_buffers(page);
2069 do {
2070 if (lblk < mpd->map.m_lblk)
2071 continue;
2072 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2073 /*
2074 * Buffer after end of mapped extent.
2075 * Find next buffer in the page to map.
2076 */
2077 mpd->map.m_len = 0;
2078 mpd->map.m_flags = 0;
5f1132b2
JK
2079 /*
2080 * FIXME: If dioread_nolock supports
2081 * blocksize < pagesize, we need to make
2082 * sure we add size mapped so far to
2083 * io_end->size as the following call
2084 * can submit the page for IO.
2085 */
2086 err = mpage_process_page_bufs(mpd, head,
2087 bh, lblk);
4e7ea81d 2088 pagevec_release(&pvec);
5f1132b2
JK
2089 if (err > 0)
2090 err = 0;
2091 return err;
4e7ea81d
JK
2092 }
2093 if (buffer_delay(bh)) {
2094 clear_buffer_delay(bh);
2095 bh->b_blocknr = pblock++;
2096 }
4e7ea81d 2097 clear_buffer_unwritten(bh);
5f1132b2 2098 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2099
2100 /*
2101 * FIXME: This is going to break if dioread_nolock
2102 * supports blocksize < pagesize as we will try to
2103 * convert potentially unmapped parts of inode.
2104 */
2105 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2106 /* Page fully mapped - let IO run! */
2107 err = mpage_submit_page(mpd, page);
2108 if (err < 0) {
2109 pagevec_release(&pvec);
2110 return err;
2111 }
2112 start++;
2113 }
2114 pagevec_release(&pvec);
2115 }
2116 /* Extent fully mapped and matches with page boundary. We are done. */
2117 mpd->map.m_len = 0;
2118 mpd->map.m_flags = 0;
2119 return 0;
2120}
2121
2122static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2123{
2124 struct inode *inode = mpd->inode;
2125 struct ext4_map_blocks *map = &mpd->map;
2126 int get_blocks_flags;
090f32ee 2127 int err, dioread_nolock;
4e7ea81d
JK
2128
2129 trace_ext4_da_write_pages_extent(inode, map);
2130 /*
2131 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2132 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2133 * where we have written into one or more preallocated blocks). It is
2134 * possible that we're going to need more metadata blocks than
2135 * previously reserved. However we must not fail because we're in
2136 * writeback and there is nothing we can do about it so it might result
2137 * in data loss. So use reserved blocks to allocate metadata if
2138 * possible.
2139 *
754cfed6
TT
2140 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2141 * the blocks in question are delalloc blocks. This indicates
2142 * that the blocks and quotas has already been checked when
2143 * the data was copied into the page cache.
4e7ea81d
JK
2144 */
2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2147 dioread_nolock = ext4_should_dioread_nolock(inode);
2148 if (dioread_nolock)
4e7ea81d
JK
2149 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2150 if (map->m_flags & (1 << BH_Delay))
2151 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2152
2153 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2154 if (err < 0)
2155 return err;
090f32ee 2156 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2157 if (!mpd->io_submit.io_end->handle &&
2158 ext4_handle_valid(handle)) {
2159 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2160 handle->h_rsv_handle = NULL;
2161 }
3613d228 2162 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2163 }
4e7ea81d
JK
2164
2165 BUG_ON(map->m_len == 0);
2166 if (map->m_flags & EXT4_MAP_NEW) {
2167 struct block_device *bdev = inode->i_sb->s_bdev;
2168 int i;
2169
2170 for (i = 0; i < map->m_len; i++)
2171 unmap_underlying_metadata(bdev, map->m_pblk + i);
2172 }
2173 return 0;
2174}
2175
2176/*
2177 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2178 * mpd->len and submit pages underlying it for IO
2179 *
2180 * @handle - handle for journal operations
2181 * @mpd - extent to map
7534e854
JK
2182 * @give_up_on_write - we set this to true iff there is a fatal error and there
2183 * is no hope of writing the data. The caller should discard
2184 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2185 *
2186 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2187 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2188 * them to initialized or split the described range from larger unwritten
2189 * extent. Note that we need not map all the described range since allocation
2190 * can return less blocks or the range is covered by more unwritten extents. We
2191 * cannot map more because we are limited by reserved transaction credits. On
2192 * the other hand we always make sure that the last touched page is fully
2193 * mapped so that it can be written out (and thus forward progress is
2194 * guaranteed). After mapping we submit all mapped pages for IO.
2195 */
2196static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2197 struct mpage_da_data *mpd,
2198 bool *give_up_on_write)
4e7ea81d
JK
2199{
2200 struct inode *inode = mpd->inode;
2201 struct ext4_map_blocks *map = &mpd->map;
2202 int err;
2203 loff_t disksize;
6603120e 2204 int progress = 0;
4e7ea81d
JK
2205
2206 mpd->io_submit.io_end->offset =
2207 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2208 do {
4e7ea81d
JK
2209 err = mpage_map_one_extent(handle, mpd);
2210 if (err < 0) {
2211 struct super_block *sb = inode->i_sb;
2212
cb530541
TT
2213 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2214 goto invalidate_dirty_pages;
4e7ea81d 2215 /*
cb530541
TT
2216 * Let the uper layers retry transient errors.
2217 * In the case of ENOSPC, if ext4_count_free_blocks()
2218 * is non-zero, a commit should free up blocks.
4e7ea81d 2219 */
cb530541 2220 if ((err == -ENOMEM) ||
6603120e
DM
2221 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2222 if (progress)
2223 goto update_disksize;
cb530541 2224 return err;
6603120e 2225 }
cb530541
TT
2226 ext4_msg(sb, KERN_CRIT,
2227 "Delayed block allocation failed for "
2228 "inode %lu at logical offset %llu with"
2229 " max blocks %u with error %d",
2230 inode->i_ino,
2231 (unsigned long long)map->m_lblk,
2232 (unsigned)map->m_len, -err);
2233 ext4_msg(sb, KERN_CRIT,
2234 "This should not happen!! Data will "
2235 "be lost\n");
2236 if (err == -ENOSPC)
2237 ext4_print_free_blocks(inode);
2238 invalidate_dirty_pages:
2239 *give_up_on_write = true;
4e7ea81d
JK
2240 return err;
2241 }
6603120e 2242 progress = 1;
4e7ea81d
JK
2243 /*
2244 * Update buffer state, submit mapped pages, and get us new
2245 * extent to map
2246 */
2247 err = mpage_map_and_submit_buffers(mpd);
2248 if (err < 0)
6603120e 2249 goto update_disksize;
27d7c4ed 2250 } while (map->m_len);
4e7ea81d 2251
6603120e 2252update_disksize:
622cad13
TT
2253 /*
2254 * Update on-disk size after IO is submitted. Races with
2255 * truncate are avoided by checking i_size under i_data_sem.
2256 */
4e7ea81d 2257 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2258 if (disksize > EXT4_I(inode)->i_disksize) {
2259 int err2;
622cad13
TT
2260 loff_t i_size;
2261
2262 down_write(&EXT4_I(inode)->i_data_sem);
2263 i_size = i_size_read(inode);
2264 if (disksize > i_size)
2265 disksize = i_size;
2266 if (disksize > EXT4_I(inode)->i_disksize)
2267 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2268 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2269 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2270 if (err2)
2271 ext4_error(inode->i_sb,
2272 "Failed to mark inode %lu dirty",
2273 inode->i_ino);
2274 if (!err)
2275 err = err2;
2276 }
2277 return err;
2278}
2279
fffb2739
JK
2280/*
2281 * Calculate the total number of credits to reserve for one writepages
20970ba6 2282 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2283 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2284 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2285 * bpp - 1 blocks in bpp different extents.
2286 */
525f4ed8
MC
2287static int ext4_da_writepages_trans_blocks(struct inode *inode)
2288{
fffb2739 2289 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2290
fffb2739
JK
2291 return ext4_meta_trans_blocks(inode,
2292 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2293}
61628a3f 2294
8e48dcfb 2295/*
4e7ea81d
JK
2296 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2297 * and underlying extent to map
2298 *
2299 * @mpd - where to look for pages
2300 *
2301 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2302 * IO immediately. When we find a page which isn't mapped we start accumulating
2303 * extent of buffers underlying these pages that needs mapping (formed by
2304 * either delayed or unwritten buffers). We also lock the pages containing
2305 * these buffers. The extent found is returned in @mpd structure (starting at
2306 * mpd->lblk with length mpd->len blocks).
2307 *
2308 * Note that this function can attach bios to one io_end structure which are
2309 * neither logically nor physically contiguous. Although it may seem as an
2310 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2311 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2312 */
4e7ea81d 2313static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2314{
4e7ea81d
JK
2315 struct address_space *mapping = mpd->inode->i_mapping;
2316 struct pagevec pvec;
2317 unsigned int nr_pages;
aeac589a 2318 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2319 pgoff_t index = mpd->first_page;
2320 pgoff_t end = mpd->last_page;
2321 int tag;
2322 int i, err = 0;
2323 int blkbits = mpd->inode->i_blkbits;
2324 ext4_lblk_t lblk;
2325 struct buffer_head *head;
8e48dcfb 2326
4e7ea81d 2327 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2328 tag = PAGECACHE_TAG_TOWRITE;
2329 else
2330 tag = PAGECACHE_TAG_DIRTY;
2331
4e7ea81d
JK
2332 pagevec_init(&pvec, 0);
2333 mpd->map.m_len = 0;
2334 mpd->next_page = index;
4f01b02c 2335 while (index <= end) {
5b41d924 2336 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2337 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2338 if (nr_pages == 0)
4e7ea81d 2339 goto out;
8e48dcfb
TT
2340
2341 for (i = 0; i < nr_pages; i++) {
2342 struct page *page = pvec.pages[i];
2343
2344 /*
2345 * At this point, the page may be truncated or
2346 * invalidated (changing page->mapping to NULL), or
2347 * even swizzled back from swapper_space to tmpfs file
2348 * mapping. However, page->index will not change
2349 * because we have a reference on the page.
2350 */
4f01b02c
TT
2351 if (page->index > end)
2352 goto out;
8e48dcfb 2353
aeac589a
ML
2354 /*
2355 * Accumulated enough dirty pages? This doesn't apply
2356 * to WB_SYNC_ALL mode. For integrity sync we have to
2357 * keep going because someone may be concurrently
2358 * dirtying pages, and we might have synced a lot of
2359 * newly appeared dirty pages, but have not synced all
2360 * of the old dirty pages.
2361 */
2362 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2363 goto out;
2364
4e7ea81d
JK
2365 /* If we can't merge this page, we are done. */
2366 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2367 goto out;
78aaced3 2368
8e48dcfb 2369 lock_page(page);
8e48dcfb 2370 /*
4e7ea81d
JK
2371 * If the page is no longer dirty, or its mapping no
2372 * longer corresponds to inode we are writing (which
2373 * means it has been truncated or invalidated), or the
2374 * page is already under writeback and we are not doing
2375 * a data integrity writeback, skip the page
8e48dcfb 2376 */
4f01b02c
TT
2377 if (!PageDirty(page) ||
2378 (PageWriteback(page) &&
4e7ea81d 2379 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2380 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2381 unlock_page(page);
2382 continue;
2383 }
2384
7cb1a535 2385 wait_on_page_writeback(page);
8e48dcfb 2386 BUG_ON(PageWriteback(page));
8e48dcfb 2387
4e7ea81d 2388 if (mpd->map.m_len == 0)
8eb9e5ce 2389 mpd->first_page = page->index;
8eb9e5ce 2390 mpd->next_page = page->index + 1;
f8bec370 2391 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2392 lblk = ((ext4_lblk_t)page->index) <<
2393 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2394 head = page_buffers(page);
5f1132b2
JK
2395 err = mpage_process_page_bufs(mpd, head, head, lblk);
2396 if (err <= 0)
4e7ea81d 2397 goto out;
5f1132b2 2398 err = 0;
aeac589a 2399 left--;
8e48dcfb
TT
2400 }
2401 pagevec_release(&pvec);
2402 cond_resched();
2403 }
4f01b02c 2404 return 0;
8eb9e5ce
TT
2405out:
2406 pagevec_release(&pvec);
4e7ea81d 2407 return err;
8e48dcfb
TT
2408}
2409
20970ba6
TT
2410static int __writepage(struct page *page, struct writeback_control *wbc,
2411 void *data)
2412{
2413 struct address_space *mapping = data;
2414 int ret = ext4_writepage(page, wbc);
2415 mapping_set_error(mapping, ret);
2416 return ret;
2417}
2418
2419static int ext4_writepages(struct address_space *mapping,
2420 struct writeback_control *wbc)
64769240 2421{
4e7ea81d
JK
2422 pgoff_t writeback_index = 0;
2423 long nr_to_write = wbc->nr_to_write;
22208ded 2424 int range_whole = 0;
4e7ea81d 2425 int cycled = 1;
61628a3f 2426 handle_t *handle = NULL;
df22291f 2427 struct mpage_da_data mpd;
5e745b04 2428 struct inode *inode = mapping->host;
6b523df4 2429 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2430 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2431 bool done;
1bce63d1 2432 struct blk_plug plug;
cb530541 2433 bool give_up_on_write = false;
61628a3f 2434
20970ba6 2435 trace_ext4_writepages(inode, wbc);
ba80b101 2436
61628a3f
MC
2437 /*
2438 * No pages to write? This is mainly a kludge to avoid starting
2439 * a transaction for special inodes like journal inode on last iput()
2440 * because that could violate lock ordering on umount
2441 */
a1d6cc56 2442 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2443 goto out_writepages;
2a21e37e 2444
20970ba6
TT
2445 if (ext4_should_journal_data(inode)) {
2446 struct blk_plug plug;
20970ba6
TT
2447
2448 blk_start_plug(&plug);
2449 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2450 blk_finish_plug(&plug);
bbf023c7 2451 goto out_writepages;
20970ba6
TT
2452 }
2453
2a21e37e
TT
2454 /*
2455 * If the filesystem has aborted, it is read-only, so return
2456 * right away instead of dumping stack traces later on that
2457 * will obscure the real source of the problem. We test
4ab2f15b 2458 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2459 * the latter could be true if the filesystem is mounted
20970ba6 2460 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2461 * *never* be called, so if that ever happens, we would want
2462 * the stack trace.
2463 */
bbf023c7
ML
2464 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2465 ret = -EROFS;
2466 goto out_writepages;
2467 }
2a21e37e 2468
6b523df4
JK
2469 if (ext4_should_dioread_nolock(inode)) {
2470 /*
70261f56 2471 * We may need to convert up to one extent per block in
6b523df4
JK
2472 * the page and we may dirty the inode.
2473 */
2474 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2475 }
2476
4e7ea81d
JK
2477 /*
2478 * If we have inline data and arrive here, it means that
2479 * we will soon create the block for the 1st page, so
2480 * we'd better clear the inline data here.
2481 */
2482 if (ext4_has_inline_data(inode)) {
2483 /* Just inode will be modified... */
2484 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2485 if (IS_ERR(handle)) {
2486 ret = PTR_ERR(handle);
2487 goto out_writepages;
2488 }
2489 BUG_ON(ext4_test_inode_state(inode,
2490 EXT4_STATE_MAY_INLINE_DATA));
2491 ext4_destroy_inline_data(handle, inode);
2492 ext4_journal_stop(handle);
2493 }
2494
22208ded
AK
2495 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496 range_whole = 1;
61628a3f 2497
2acf2c26 2498 if (wbc->range_cyclic) {
4e7ea81d
JK
2499 writeback_index = mapping->writeback_index;
2500 if (writeback_index)
2acf2c26 2501 cycled = 0;
4e7ea81d
JK
2502 mpd.first_page = writeback_index;
2503 mpd.last_page = -1;
5b41d924 2504 } else {
4e7ea81d
JK
2505 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2506 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2507 }
a1d6cc56 2508
4e7ea81d
JK
2509 mpd.inode = inode;
2510 mpd.wbc = wbc;
2511 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2512retry:
6e6938b6 2513 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2514 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2515 done = false;
1bce63d1 2516 blk_start_plug(&plug);
4e7ea81d
JK
2517 while (!done && mpd.first_page <= mpd.last_page) {
2518 /* For each extent of pages we use new io_end */
2519 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2520 if (!mpd.io_submit.io_end) {
2521 ret = -ENOMEM;
2522 break;
2523 }
a1d6cc56
AK
2524
2525 /*
4e7ea81d
JK
2526 * We have two constraints: We find one extent to map and we
2527 * must always write out whole page (makes a difference when
2528 * blocksize < pagesize) so that we don't block on IO when we
2529 * try to write out the rest of the page. Journalled mode is
2530 * not supported by delalloc.
a1d6cc56
AK
2531 */
2532 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2533 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2534
4e7ea81d 2535 /* start a new transaction */
6b523df4
JK
2536 handle = ext4_journal_start_with_reserve(inode,
2537 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2538 if (IS_ERR(handle)) {
2539 ret = PTR_ERR(handle);
1693918e 2540 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2541 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2542 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2543 /* Release allocated io_end */
2544 ext4_put_io_end(mpd.io_submit.io_end);
2545 break;
61628a3f 2546 }
f63e6005 2547
4e7ea81d
JK
2548 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2549 ret = mpage_prepare_extent_to_map(&mpd);
2550 if (!ret) {
2551 if (mpd.map.m_len)
cb530541
TT
2552 ret = mpage_map_and_submit_extent(handle, &mpd,
2553 &give_up_on_write);
4e7ea81d
JK
2554 else {
2555 /*
2556 * We scanned the whole range (or exhausted
2557 * nr_to_write), submitted what was mapped and
2558 * didn't find anything needing mapping. We are
2559 * done.
2560 */
2561 done = true;
2562 }
f63e6005 2563 }
61628a3f 2564 ext4_journal_stop(handle);
4e7ea81d
JK
2565 /* Submit prepared bio */
2566 ext4_io_submit(&mpd.io_submit);
2567 /* Unlock pages we didn't use */
cb530541 2568 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2569 /* Drop our io_end reference we got from init */
2570 ext4_put_io_end(mpd.io_submit.io_end);
2571
2572 if (ret == -ENOSPC && sbi->s_journal) {
2573 /*
2574 * Commit the transaction which would
22208ded
AK
2575 * free blocks released in the transaction
2576 * and try again
2577 */
df22291f 2578 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2579 ret = 0;
4e7ea81d
JK
2580 continue;
2581 }
2582 /* Fatal error - ENOMEM, EIO... */
2583 if (ret)
61628a3f 2584 break;
a1d6cc56 2585 }
1bce63d1 2586 blk_finish_plug(&plug);
9c12a831 2587 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2588 cycled = 1;
4e7ea81d
JK
2589 mpd.last_page = writeback_index - 1;
2590 mpd.first_page = 0;
2acf2c26
AK
2591 goto retry;
2592 }
22208ded
AK
2593
2594 /* Update index */
22208ded
AK
2595 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2596 /*
4e7ea81d 2597 * Set the writeback_index so that range_cyclic
22208ded
AK
2598 * mode will write it back later
2599 */
4e7ea81d 2600 mapping->writeback_index = mpd.first_page;
a1d6cc56 2601
61628a3f 2602out_writepages:
20970ba6
TT
2603 trace_ext4_writepages_result(inode, wbc, ret,
2604 nr_to_write - wbc->nr_to_write);
61628a3f 2605 return ret;
64769240
AT
2606}
2607
79f0be8d
AK
2608static int ext4_nonda_switch(struct super_block *sb)
2609{
5c1ff336 2610 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2611 struct ext4_sb_info *sbi = EXT4_SB(sb);
2612
2613 /*
2614 * switch to non delalloc mode if we are running low
2615 * on free block. The free block accounting via percpu
179f7ebf 2616 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2617 * accumulated on each CPU without updating global counters
2618 * Delalloc need an accurate free block accounting. So switch
2619 * to non delalloc when we are near to error range.
2620 */
5c1ff336
EW
2621 free_clusters =
2622 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2623 dirty_clusters =
2624 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2625 /*
2626 * Start pushing delalloc when 1/2 of free blocks are dirty.
2627 */
5c1ff336 2628 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2629 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2630
5c1ff336
EW
2631 if (2 * free_clusters < 3 * dirty_clusters ||
2632 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2633 /*
c8afb446
ES
2634 * free block count is less than 150% of dirty blocks
2635 * or free blocks is less than watermark
79f0be8d
AK
2636 */
2637 return 1;
2638 }
2639 return 0;
2640}
2641
0ff8947f
ES
2642/* We always reserve for an inode update; the superblock could be there too */
2643static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2644{
e2b911c5 2645 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2646 return 1;
2647
2648 if (pos + len <= 0x7fffffffULL)
2649 return 1;
2650
2651 /* We might need to update the superblock to set LARGE_FILE */
2652 return 2;
2653}
2654
64769240 2655static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2656 loff_t pos, unsigned len, unsigned flags,
2657 struct page **pagep, void **fsdata)
64769240 2658{
72b8ab9d 2659 int ret, retries = 0;
64769240
AT
2660 struct page *page;
2661 pgoff_t index;
64769240
AT
2662 struct inode *inode = mapping->host;
2663 handle_t *handle;
2664
2665 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2666
2667 if (ext4_nonda_switch(inode->i_sb)) {
2668 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2669 return ext4_write_begin(file, mapping, pos,
2670 len, flags, pagep, fsdata);
2671 }
2672 *fsdata = (void *)0;
9bffad1e 2673 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2674
2675 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2676 ret = ext4_da_write_inline_data_begin(mapping, inode,
2677 pos, len, flags,
2678 pagep, fsdata);
2679 if (ret < 0)
47564bfb
TT
2680 return ret;
2681 if (ret == 1)
2682 return 0;
9c3569b5
TM
2683 }
2684
47564bfb
TT
2685 /*
2686 * grab_cache_page_write_begin() can take a long time if the
2687 * system is thrashing due to memory pressure, or if the page
2688 * is being written back. So grab it first before we start
2689 * the transaction handle. This also allows us to allocate
2690 * the page (if needed) without using GFP_NOFS.
2691 */
2692retry_grab:
2693 page = grab_cache_page_write_begin(mapping, index, flags);
2694 if (!page)
2695 return -ENOMEM;
2696 unlock_page(page);
2697
64769240
AT
2698 /*
2699 * With delayed allocation, we don't log the i_disksize update
2700 * if there is delayed block allocation. But we still need
2701 * to journalling the i_disksize update if writes to the end
2702 * of file which has an already mapped buffer.
2703 */
47564bfb 2704retry_journal:
0ff8947f
ES
2705 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2706 ext4_da_write_credits(inode, pos, len));
64769240 2707 if (IS_ERR(handle)) {
47564bfb
TT
2708 page_cache_release(page);
2709 return PTR_ERR(handle);
64769240
AT
2710 }
2711
47564bfb
TT
2712 lock_page(page);
2713 if (page->mapping != mapping) {
2714 /* The page got truncated from under us */
2715 unlock_page(page);
2716 page_cache_release(page);
d5a0d4f7 2717 ext4_journal_stop(handle);
47564bfb 2718 goto retry_grab;
d5a0d4f7 2719 }
47564bfb 2720 /* In case writeback began while the page was unlocked */
7afe5aa5 2721 wait_for_stable_page(page);
64769240 2722
2058f83a
MH
2723#ifdef CONFIG_EXT4_FS_ENCRYPTION
2724 ret = ext4_block_write_begin(page, pos, len,
2725 ext4_da_get_block_prep);
2726#else
6e1db88d 2727 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2728#endif
64769240
AT
2729 if (ret < 0) {
2730 unlock_page(page);
2731 ext4_journal_stop(handle);
ae4d5372
AK
2732 /*
2733 * block_write_begin may have instantiated a few blocks
2734 * outside i_size. Trim these off again. Don't need
2735 * i_size_read because we hold i_mutex.
2736 */
2737 if (pos + len > inode->i_size)
b9a4207d 2738 ext4_truncate_failed_write(inode);
47564bfb
TT
2739
2740 if (ret == -ENOSPC &&
2741 ext4_should_retry_alloc(inode->i_sb, &retries))
2742 goto retry_journal;
2743
2744 page_cache_release(page);
2745 return ret;
64769240
AT
2746 }
2747
47564bfb 2748 *pagep = page;
64769240
AT
2749 return ret;
2750}
2751
632eaeab
MC
2752/*
2753 * Check if we should update i_disksize
2754 * when write to the end of file but not require block allocation
2755 */
2756static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2757 unsigned long offset)
632eaeab
MC
2758{
2759 struct buffer_head *bh;
2760 struct inode *inode = page->mapping->host;
2761 unsigned int idx;
2762 int i;
2763
2764 bh = page_buffers(page);
2765 idx = offset >> inode->i_blkbits;
2766
af5bc92d 2767 for (i = 0; i < idx; i++)
632eaeab
MC
2768 bh = bh->b_this_page;
2769
29fa89d0 2770 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2771 return 0;
2772 return 1;
2773}
2774
64769240 2775static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2776 struct address_space *mapping,
2777 loff_t pos, unsigned len, unsigned copied,
2778 struct page *page, void *fsdata)
64769240
AT
2779{
2780 struct inode *inode = mapping->host;
2781 int ret = 0, ret2;
2782 handle_t *handle = ext4_journal_current_handle();
2783 loff_t new_i_size;
632eaeab 2784 unsigned long start, end;
79f0be8d
AK
2785 int write_mode = (int)(unsigned long)fsdata;
2786
74d553aa
TT
2787 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2788 return ext4_write_end(file, mapping, pos,
2789 len, copied, page, fsdata);
632eaeab 2790
9bffad1e 2791 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2792 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2793 end = start + copied - 1;
64769240
AT
2794
2795 /*
2796 * generic_write_end() will run mark_inode_dirty() if i_size
2797 * changes. So let's piggyback the i_disksize mark_inode_dirty
2798 * into that.
2799 */
64769240 2800 new_i_size = pos + copied;
ea51d132 2801 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2802 if (ext4_has_inline_data(inode) ||
2803 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2804 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2805 /* We need to mark inode dirty even if
2806 * new_i_size is less that inode->i_size
2807 * bu greater than i_disksize.(hint delalloc)
2808 */
2809 ext4_mark_inode_dirty(handle, inode);
64769240 2810 }
632eaeab 2811 }
9c3569b5
TM
2812
2813 if (write_mode != CONVERT_INLINE_DATA &&
2814 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2815 ext4_has_inline_data(inode))
2816 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2817 page);
2818 else
2819 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2820 page, fsdata);
9c3569b5 2821
64769240
AT
2822 copied = ret2;
2823 if (ret2 < 0)
2824 ret = ret2;
2825 ret2 = ext4_journal_stop(handle);
2826 if (!ret)
2827 ret = ret2;
2828
2829 return ret ? ret : copied;
2830}
2831
d47992f8
LC
2832static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2833 unsigned int length)
64769240 2834{
64769240
AT
2835 /*
2836 * Drop reserved blocks
2837 */
2838 BUG_ON(!PageLocked(page));
2839 if (!page_has_buffers(page))
2840 goto out;
2841
ca99fdd2 2842 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2843
2844out:
d47992f8 2845 ext4_invalidatepage(page, offset, length);
64769240
AT
2846
2847 return;
2848}
2849
ccd2506b
TT
2850/*
2851 * Force all delayed allocation blocks to be allocated for a given inode.
2852 */
2853int ext4_alloc_da_blocks(struct inode *inode)
2854{
fb40ba0d
TT
2855 trace_ext4_alloc_da_blocks(inode);
2856
71d4f7d0 2857 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2858 return 0;
2859
2860 /*
2861 * We do something simple for now. The filemap_flush() will
2862 * also start triggering a write of the data blocks, which is
2863 * not strictly speaking necessary (and for users of
2864 * laptop_mode, not even desirable). However, to do otherwise
2865 * would require replicating code paths in:
de9a55b8 2866 *
20970ba6 2867 * ext4_writepages() ->
ccd2506b
TT
2868 * write_cache_pages() ---> (via passed in callback function)
2869 * __mpage_da_writepage() -->
2870 * mpage_add_bh_to_extent()
2871 * mpage_da_map_blocks()
2872 *
2873 * The problem is that write_cache_pages(), located in
2874 * mm/page-writeback.c, marks pages clean in preparation for
2875 * doing I/O, which is not desirable if we're not planning on
2876 * doing I/O at all.
2877 *
2878 * We could call write_cache_pages(), and then redirty all of
380cf090 2879 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2880 * would be ugly in the extreme. So instead we would need to
2881 * replicate parts of the code in the above functions,
25985edc 2882 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2883 * write out the pages, but rather only collect contiguous
2884 * logical block extents, call the multi-block allocator, and
2885 * then update the buffer heads with the block allocations.
de9a55b8 2886 *
ccd2506b
TT
2887 * For now, though, we'll cheat by calling filemap_flush(),
2888 * which will map the blocks, and start the I/O, but not
2889 * actually wait for the I/O to complete.
2890 */
2891 return filemap_flush(inode->i_mapping);
2892}
64769240 2893
ac27a0ec
DK
2894/*
2895 * bmap() is special. It gets used by applications such as lilo and by
2896 * the swapper to find the on-disk block of a specific piece of data.
2897 *
2898 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2899 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2900 * filesystem and enables swap, then they may get a nasty shock when the
2901 * data getting swapped to that swapfile suddenly gets overwritten by
2902 * the original zero's written out previously to the journal and
2903 * awaiting writeback in the kernel's buffer cache.
2904 *
2905 * So, if we see any bmap calls here on a modified, data-journaled file,
2906 * take extra steps to flush any blocks which might be in the cache.
2907 */
617ba13b 2908static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2909{
2910 struct inode *inode = mapping->host;
2911 journal_t *journal;
2912 int err;
2913
46c7f254
TM
2914 /*
2915 * We can get here for an inline file via the FIBMAP ioctl
2916 */
2917 if (ext4_has_inline_data(inode))
2918 return 0;
2919
64769240
AT
2920 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2921 test_opt(inode->i_sb, DELALLOC)) {
2922 /*
2923 * With delalloc we want to sync the file
2924 * so that we can make sure we allocate
2925 * blocks for file
2926 */
2927 filemap_write_and_wait(mapping);
2928 }
2929
19f5fb7a
TT
2930 if (EXT4_JOURNAL(inode) &&
2931 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2932 /*
2933 * This is a REALLY heavyweight approach, but the use of
2934 * bmap on dirty files is expected to be extremely rare:
2935 * only if we run lilo or swapon on a freshly made file
2936 * do we expect this to happen.
2937 *
2938 * (bmap requires CAP_SYS_RAWIO so this does not
2939 * represent an unprivileged user DOS attack --- we'd be
2940 * in trouble if mortal users could trigger this path at
2941 * will.)
2942 *
617ba13b 2943 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2944 * regular files. If somebody wants to bmap a directory
2945 * or symlink and gets confused because the buffer
2946 * hasn't yet been flushed to disk, they deserve
2947 * everything they get.
2948 */
2949
19f5fb7a 2950 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2951 journal = EXT4_JOURNAL(inode);
dab291af
MC
2952 jbd2_journal_lock_updates(journal);
2953 err = jbd2_journal_flush(journal);
2954 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2955
2956 if (err)
2957 return 0;
2958 }
2959
af5bc92d 2960 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2961}
2962
617ba13b 2963static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2964{
46c7f254
TM
2965 int ret = -EAGAIN;
2966 struct inode *inode = page->mapping->host;
2967
0562e0ba 2968 trace_ext4_readpage(page);
46c7f254
TM
2969
2970 if (ext4_has_inline_data(inode))
2971 ret = ext4_readpage_inline(inode, page);
2972
2973 if (ret == -EAGAIN)
f64e02fe 2974 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
2975
2976 return ret;
ac27a0ec
DK
2977}
2978
2979static int
617ba13b 2980ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2981 struct list_head *pages, unsigned nr_pages)
2982{
46c7f254
TM
2983 struct inode *inode = mapping->host;
2984
2985 /* If the file has inline data, no need to do readpages. */
2986 if (ext4_has_inline_data(inode))
2987 return 0;
2988
f64e02fe 2989 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
2990}
2991
d47992f8
LC
2992static void ext4_invalidatepage(struct page *page, unsigned int offset,
2993 unsigned int length)
ac27a0ec 2994{
ca99fdd2 2995 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2996
4520fb3c
JK
2997 /* No journalling happens on data buffers when this function is used */
2998 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2999
ca99fdd2 3000 block_invalidatepage(page, offset, length);
4520fb3c
JK
3001}
3002
53e87268 3003static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3004 unsigned int offset,
3005 unsigned int length)
4520fb3c
JK
3006{
3007 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3008
ca99fdd2 3009 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3010
ac27a0ec
DK
3011 /*
3012 * If it's a full truncate we just forget about the pending dirtying
3013 */
ca99fdd2 3014 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
3015 ClearPageChecked(page);
3016
ca99fdd2 3017 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3018}
3019
3020/* Wrapper for aops... */
3021static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3022 unsigned int offset,
3023 unsigned int length)
53e87268 3024{
ca99fdd2 3025 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3026}
3027
617ba13b 3028static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3029{
617ba13b 3030 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3031
0562e0ba
JZ
3032 trace_ext4_releasepage(page);
3033
e1c36595
JK
3034 /* Page has dirty journalled data -> cannot release */
3035 if (PageChecked(page))
ac27a0ec 3036 return 0;
0390131b
FM
3037 if (journal)
3038 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3039 else
3040 return try_to_free_buffers(page);
ac27a0ec
DK
3041}
3042
2ed88685
TT
3043/*
3044 * ext4_get_block used when preparing for a DIO write or buffer write.
3045 * We allocate an uinitialized extent if blocks haven't been allocated.
3046 * The extent will be converted to initialized after the IO is complete.
3047 */
f19d5870 3048int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3049 struct buffer_head *bh_result, int create)
3050{
c7064ef1 3051 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3052 inode->i_ino, create);
2ed88685
TT
3053 return _ext4_get_block(inode, iblock, bh_result,
3054 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3055}
3056
729f52c6 3057static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3058 struct buffer_head *bh_result, int create)
729f52c6 3059{
8b0f165f
AP
3060 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3061 inode->i_ino, create);
3062 return _ext4_get_block(inode, iblock, bh_result,
3063 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3064}
3065
ed923b57
MW
3066int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3067 struct buffer_head *bh_result, int create)
3068{
3069 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3070 if (create)
3071 flags |= EXT4_GET_BLOCKS_CREATE;
3072 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3073 inode->i_ino, create);
3074 return _ext4_get_block(inode, iblock, bh_result, flags);
3075}
3076
4c0425ff 3077static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3078 ssize_t size, void *private)
4c0425ff
MC
3079{
3080 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3081
97a851ed 3082 /* if not async direct IO just return */
7b7a8665 3083 if (!io_end)
97a851ed 3084 return;
4b70df18 3085
88635ca2 3086 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3087 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3088 iocb->private, io_end->inode->i_ino, iocb, offset,
3089 size);
8d5d02e6 3090
b5a7e970 3091 iocb->private = NULL;
4c0425ff
MC
3092 io_end->offset = offset;
3093 io_end->size = size;
7b7a8665 3094 ext4_put_io_end(io_end);
4c0425ff 3095}
c7064ef1 3096
4c0425ff
MC
3097/*
3098 * For ext4 extent files, ext4 will do direct-io write to holes,
3099 * preallocated extents, and those write extend the file, no need to
3100 * fall back to buffered IO.
3101 *
556615dc 3102 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3103 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3104 * still keep the range to write as unwritten.
4c0425ff 3105 *
69c499d1 3106 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3107 * For async direct IO, since the IO may still pending when return, we
25985edc 3108 * set up an end_io call back function, which will do the conversion
8d5d02e6 3109 * when async direct IO completed.
4c0425ff
MC
3110 *
3111 * If the O_DIRECT write will extend the file then add this inode to the
3112 * orphan list. So recovery will truncate it back to the original size
3113 * if the machine crashes during the write.
3114 *
3115 */
6f673763
OS
3116static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3117 loff_t offset)
4c0425ff
MC
3118{
3119 struct file *file = iocb->ki_filp;
3120 struct inode *inode = file->f_mapping->host;
3121 ssize_t ret;
a6cbcd4a 3122 size_t count = iov_iter_count(iter);
69c499d1
TT
3123 int overwrite = 0;
3124 get_block_t *get_block_func = NULL;
3125 int dio_flags = 0;
4c0425ff 3126 loff_t final_size = offset + count;
97a851ed 3127 ext4_io_end_t *io_end = NULL;
729f52c6 3128
69c499d1 3129 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3130 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3131 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3132
69c499d1 3133 BUG_ON(iocb->private == NULL);
4bd809db 3134
e8340395
JK
3135 /*
3136 * Make all waiters for direct IO properly wait also for extent
3137 * conversion. This also disallows race between truncate() and
3138 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3139 */
6f673763 3140 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3141 inode_dio_begin(inode);
e8340395 3142
69c499d1
TT
3143 /* If we do a overwrite dio, i_mutex locking can be released */
3144 overwrite = *((int *)iocb->private);
4bd809db 3145
69c499d1 3146 if (overwrite) {
69c499d1
TT
3147 down_read(&EXT4_I(inode)->i_data_sem);
3148 mutex_unlock(&inode->i_mutex);
3149 }
8d5d02e6 3150
69c499d1
TT
3151 /*
3152 * We could direct write to holes and fallocate.
3153 *
3154 * Allocated blocks to fill the hole are marked as
556615dc 3155 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3156 * the stale data before DIO complete the data IO.
3157 *
3158 * As to previously fallocated extents, ext4 get_block will
3159 * just simply mark the buffer mapped but still keep the
556615dc 3160 * extents unwritten.
69c499d1
TT
3161 *
3162 * For non AIO case, we will convert those unwritten extents
3163 * to written after return back from blockdev_direct_IO.
3164 *
3165 * For async DIO, the conversion needs to be deferred when the
3166 * IO is completed. The ext4 end_io callback function will be
3167 * called to take care of the conversion work. Here for async
3168 * case, we allocate an io_end structure to hook to the iocb.
3169 */
3170 iocb->private = NULL;
3171 ext4_inode_aio_set(inode, NULL);
3172 if (!is_sync_kiocb(iocb)) {
97a851ed 3173 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3174 if (!io_end) {
3175 ret = -ENOMEM;
3176 goto retake_lock;
8b0f165f 3177 }
97a851ed
JK
3178 /*
3179 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3180 */
3181 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3182 /*
69c499d1
TT
3183 * we save the io structure for current async direct
3184 * IO, so that later ext4_map_blocks() could flag the
3185 * io structure whether there is a unwritten extents
3186 * needs to be converted when IO is completed.
8d5d02e6 3187 */
69c499d1
TT
3188 ext4_inode_aio_set(inode, io_end);
3189 }
4bd809db 3190
69c499d1
TT
3191 if (overwrite) {
3192 get_block_func = ext4_get_block_write_nolock;
3193 } else {
3194 get_block_func = ext4_get_block_write;
3195 dio_flags = DIO_LOCKING;
3196 }
2058f83a
MH
3197#ifdef CONFIG_EXT4_FS_ENCRYPTION
3198 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3199#endif
923ae0ff 3200 if (IS_DAX(inode))
a95cd631 3201 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3202 ext4_end_io_dio, dio_flags);
3203 else
17f8c842 3204 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3205 inode->i_sb->s_bdev, iter, offset,
3206 get_block_func,
3207 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3208
69c499d1 3209 /*
97a851ed
JK
3210 * Put our reference to io_end. This can free the io_end structure e.g.
3211 * in sync IO case or in case of error. It can even perform extent
3212 * conversion if all bios we submitted finished before we got here.
3213 * Note that in that case iocb->private can be already set to NULL
3214 * here.
69c499d1 3215 */
97a851ed
JK
3216 if (io_end) {
3217 ext4_inode_aio_set(inode, NULL);
3218 ext4_put_io_end(io_end);
3219 /*
3220 * When no IO was submitted ext4_end_io_dio() was not
3221 * called so we have to put iocb's reference.
3222 */
3223 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3224 WARN_ON(iocb->private != io_end);
3225 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3226 ext4_put_io_end(io_end);
3227 iocb->private = NULL;
3228 }
3229 }
3230 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3231 EXT4_STATE_DIO_UNWRITTEN)) {
3232 int err;
3233 /*
3234 * for non AIO case, since the IO is already
3235 * completed, we could do the conversion right here
3236 */
6b523df4 3237 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3238 offset, ret);
3239 if (err < 0)
3240 ret = err;
3241 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3242 }
4bd809db 3243
69c499d1 3244retake_lock:
6f673763 3245 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3246 inode_dio_end(inode);
69c499d1
TT
3247 /* take i_mutex locking again if we do a ovewrite dio */
3248 if (overwrite) {
69c499d1
TT
3249 up_read(&EXT4_I(inode)->i_data_sem);
3250 mutex_lock(&inode->i_mutex);
4c0425ff 3251 }
8d5d02e6 3252
69c499d1 3253 return ret;
4c0425ff
MC
3254}
3255
22c6186e
OS
3256static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3257 loff_t offset)
4c0425ff
MC
3258{
3259 struct file *file = iocb->ki_filp;
3260 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3261 size_t count = iov_iter_count(iter);
0562e0ba 3262 ssize_t ret;
4c0425ff 3263
2058f83a
MH
3264#ifdef CONFIG_EXT4_FS_ENCRYPTION
3265 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3266 return 0;
3267#endif
3268
84ebd795
TT
3269 /*
3270 * If we are doing data journalling we don't support O_DIRECT
3271 */
3272 if (ext4_should_journal_data(inode))
3273 return 0;
3274
46c7f254
TM
3275 /* Let buffer I/O handle the inline data case. */
3276 if (ext4_has_inline_data(inode))
3277 return 0;
3278
6f673763 3279 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3280 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3281 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3282 else
6f673763
OS
3283 ret = ext4_ind_direct_IO(iocb, iter, offset);
3284 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3285 return ret;
4c0425ff
MC
3286}
3287
ac27a0ec 3288/*
617ba13b 3289 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3290 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3291 * much here because ->set_page_dirty is called under VFS locks. The page is
3292 * not necessarily locked.
3293 *
3294 * We cannot just dirty the page and leave attached buffers clean, because the
3295 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3296 * or jbddirty because all the journalling code will explode.
3297 *
3298 * So what we do is to mark the page "pending dirty" and next time writepage
3299 * is called, propagate that into the buffers appropriately.
3300 */
617ba13b 3301static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3302{
3303 SetPageChecked(page);
3304 return __set_page_dirty_nobuffers(page);
3305}
3306
74d553aa 3307static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3308 .readpage = ext4_readpage,
3309 .readpages = ext4_readpages,
43ce1d23 3310 .writepage = ext4_writepage,
20970ba6 3311 .writepages = ext4_writepages,
8ab22b9a 3312 .write_begin = ext4_write_begin,
74d553aa 3313 .write_end = ext4_write_end,
8ab22b9a
HH
3314 .bmap = ext4_bmap,
3315 .invalidatepage = ext4_invalidatepage,
3316 .releasepage = ext4_releasepage,
3317 .direct_IO = ext4_direct_IO,
3318 .migratepage = buffer_migrate_page,
3319 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3320 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3321};
3322
617ba13b 3323static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3324 .readpage = ext4_readpage,
3325 .readpages = ext4_readpages,
43ce1d23 3326 .writepage = ext4_writepage,
20970ba6 3327 .writepages = ext4_writepages,
8ab22b9a
HH
3328 .write_begin = ext4_write_begin,
3329 .write_end = ext4_journalled_write_end,
3330 .set_page_dirty = ext4_journalled_set_page_dirty,
3331 .bmap = ext4_bmap,
4520fb3c 3332 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3333 .releasepage = ext4_releasepage,
84ebd795 3334 .direct_IO = ext4_direct_IO,
8ab22b9a 3335 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3336 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3337};
3338
64769240 3339static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3340 .readpage = ext4_readpage,
3341 .readpages = ext4_readpages,
43ce1d23 3342 .writepage = ext4_writepage,
20970ba6 3343 .writepages = ext4_writepages,
8ab22b9a
HH
3344 .write_begin = ext4_da_write_begin,
3345 .write_end = ext4_da_write_end,
3346 .bmap = ext4_bmap,
3347 .invalidatepage = ext4_da_invalidatepage,
3348 .releasepage = ext4_releasepage,
3349 .direct_IO = ext4_direct_IO,
3350 .migratepage = buffer_migrate_page,
3351 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3352 .error_remove_page = generic_error_remove_page,
64769240
AT
3353};
3354
617ba13b 3355void ext4_set_aops(struct inode *inode)
ac27a0ec 3356{
3d2b1582
LC
3357 switch (ext4_inode_journal_mode(inode)) {
3358 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3359 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3360 break;
3361 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3362 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3363 break;
3364 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3365 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3366 return;
3d2b1582
LC
3367 default:
3368 BUG();
3369 }
74d553aa
TT
3370 if (test_opt(inode->i_sb, DELALLOC))
3371 inode->i_mapping->a_ops = &ext4_da_aops;
3372 else
3373 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3374}
3375
923ae0ff 3376static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3377 struct address_space *mapping, loff_t from, loff_t length)
3378{
3379 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3380 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3381 unsigned blocksize, pos;
d863dc36
LC
3382 ext4_lblk_t iblock;
3383 struct inode *inode = mapping->host;
3384 struct buffer_head *bh;
3385 struct page *page;
3386 int err = 0;
3387
3388 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
c62d2555 3389 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3390 if (!page)
3391 return -ENOMEM;
3392
3393 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3394
3395 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3396
3397 if (!page_has_buffers(page))
3398 create_empty_buffers(page, blocksize, 0);
3399
3400 /* Find the buffer that contains "offset" */
3401 bh = page_buffers(page);
3402 pos = blocksize;
3403 while (offset >= pos) {
3404 bh = bh->b_this_page;
3405 iblock++;
3406 pos += blocksize;
3407 }
d863dc36
LC
3408 if (buffer_freed(bh)) {
3409 BUFFER_TRACE(bh, "freed: skip");
3410 goto unlock;
3411 }
d863dc36
LC
3412 if (!buffer_mapped(bh)) {
3413 BUFFER_TRACE(bh, "unmapped");
3414 ext4_get_block(inode, iblock, bh, 0);
3415 /* unmapped? It's a hole - nothing to do */
3416 if (!buffer_mapped(bh)) {
3417 BUFFER_TRACE(bh, "still unmapped");
3418 goto unlock;
3419 }
3420 }
3421
3422 /* Ok, it's mapped. Make sure it's up-to-date */
3423 if (PageUptodate(page))
3424 set_buffer_uptodate(bh);
3425
3426 if (!buffer_uptodate(bh)) {
3427 err = -EIO;
3428 ll_rw_block(READ, 1, &bh);
3429 wait_on_buffer(bh);
3430 /* Uhhuh. Read error. Complain and punt. */
3431 if (!buffer_uptodate(bh))
3432 goto unlock;
c9c7429c
MH
3433 if (S_ISREG(inode->i_mode) &&
3434 ext4_encrypted_inode(inode)) {
3435 /* We expect the key to be set. */
3436 BUG_ON(!ext4_has_encryption_key(inode));
3437 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3684de8c 3438 WARN_ON_ONCE(ext4_decrypt(page));
c9c7429c 3439 }
d863dc36 3440 }
d863dc36
LC
3441 if (ext4_should_journal_data(inode)) {
3442 BUFFER_TRACE(bh, "get write access");
3443 err = ext4_journal_get_write_access(handle, bh);
3444 if (err)
3445 goto unlock;
3446 }
d863dc36 3447 zero_user(page, offset, length);
d863dc36
LC
3448 BUFFER_TRACE(bh, "zeroed end of block");
3449
d863dc36
LC
3450 if (ext4_should_journal_data(inode)) {
3451 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3452 } else {
353eefd3 3453 err = 0;
d863dc36 3454 mark_buffer_dirty(bh);
0713ed0c
LC
3455 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3456 err = ext4_jbd2_file_inode(handle, inode);
3457 }
d863dc36
LC
3458
3459unlock:
3460 unlock_page(page);
3461 page_cache_release(page);
3462 return err;
3463}
3464
923ae0ff
RZ
3465/*
3466 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3467 * starting from file offset 'from'. The range to be zero'd must
3468 * be contained with in one block. If the specified range exceeds
3469 * the end of the block it will be shortened to end of the block
3470 * that cooresponds to 'from'
3471 */
3472static int ext4_block_zero_page_range(handle_t *handle,
3473 struct address_space *mapping, loff_t from, loff_t length)
3474{
3475 struct inode *inode = mapping->host;
3476 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3477 unsigned blocksize = inode->i_sb->s_blocksize;
3478 unsigned max = blocksize - (offset & (blocksize - 1));
3479
3480 /*
3481 * correct length if it does not fall between
3482 * 'from' and the end of the block
3483 */
3484 if (length > max || length < 0)
3485 length = max;
3486
3487 if (IS_DAX(inode))
3488 return dax_zero_page_range(inode, from, length, ext4_get_block);
3489 return __ext4_block_zero_page_range(handle, mapping, from, length);
3490}
3491
94350ab5
MW
3492/*
3493 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3494 * up to the end of the block which corresponds to `from'.
3495 * This required during truncate. We need to physically zero the tail end
3496 * of that block so it doesn't yield old data if the file is later grown.
3497 */
c197855e 3498static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3499 struct address_space *mapping, loff_t from)
3500{
3501 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3502 unsigned length;
3503 unsigned blocksize;
3504 struct inode *inode = mapping->host;
3505
3506 blocksize = inode->i_sb->s_blocksize;
3507 length = blocksize - (offset & (blocksize - 1));
3508
3509 return ext4_block_zero_page_range(handle, mapping, from, length);
3510}
3511
a87dd18c
LC
3512int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3513 loff_t lstart, loff_t length)
3514{
3515 struct super_block *sb = inode->i_sb;
3516 struct address_space *mapping = inode->i_mapping;
e1be3a92 3517 unsigned partial_start, partial_end;
a87dd18c
LC
3518 ext4_fsblk_t start, end;
3519 loff_t byte_end = (lstart + length - 1);
3520 int err = 0;
3521
e1be3a92
LC
3522 partial_start = lstart & (sb->s_blocksize - 1);
3523 partial_end = byte_end & (sb->s_blocksize - 1);
3524
a87dd18c
LC
3525 start = lstart >> sb->s_blocksize_bits;
3526 end = byte_end >> sb->s_blocksize_bits;
3527
3528 /* Handle partial zero within the single block */
e1be3a92
LC
3529 if (start == end &&
3530 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3531 err = ext4_block_zero_page_range(handle, mapping,
3532 lstart, length);
3533 return err;
3534 }
3535 /* Handle partial zero out on the start of the range */
e1be3a92 3536 if (partial_start) {
a87dd18c
LC
3537 err = ext4_block_zero_page_range(handle, mapping,
3538 lstart, sb->s_blocksize);
3539 if (err)
3540 return err;
3541 }
3542 /* Handle partial zero out on the end of the range */
e1be3a92 3543 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3544 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3545 byte_end - partial_end,
3546 partial_end + 1);
a87dd18c
LC
3547 return err;
3548}
3549
91ef4caf
DG
3550int ext4_can_truncate(struct inode *inode)
3551{
91ef4caf
DG
3552 if (S_ISREG(inode->i_mode))
3553 return 1;
3554 if (S_ISDIR(inode->i_mode))
3555 return 1;
3556 if (S_ISLNK(inode->i_mode))
3557 return !ext4_inode_is_fast_symlink(inode);
3558 return 0;
3559}
3560
a4bb6b64
AH
3561/*
3562 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3563 * associated with the given offset and length
3564 *
3565 * @inode: File inode
3566 * @offset: The offset where the hole will begin
3567 * @len: The length of the hole
3568 *
4907cb7b 3569 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3570 */
3571
aeb2817a 3572int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3573{
26a4c0c6
TT
3574 struct super_block *sb = inode->i_sb;
3575 ext4_lblk_t first_block, stop_block;
3576 struct address_space *mapping = inode->i_mapping;
a87dd18c 3577 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3578 handle_t *handle;
3579 unsigned int credits;
3580 int ret = 0;
3581
a4bb6b64 3582 if (!S_ISREG(inode->i_mode))
73355192 3583 return -EOPNOTSUPP;
a4bb6b64 3584
b8a86845 3585 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3586
26a4c0c6
TT
3587 /*
3588 * Write out all dirty pages to avoid race conditions
3589 * Then release them.
3590 */
3591 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3592 ret = filemap_write_and_wait_range(mapping, offset,
3593 offset + length - 1);
3594 if (ret)
3595 return ret;
3596 }
3597
3598 mutex_lock(&inode->i_mutex);
9ef06cec 3599
26a4c0c6
TT
3600 /* No need to punch hole beyond i_size */
3601 if (offset >= inode->i_size)
3602 goto out_mutex;
3603
3604 /*
3605 * If the hole extends beyond i_size, set the hole
3606 * to end after the page that contains i_size
3607 */
3608 if (offset + length > inode->i_size) {
3609 length = inode->i_size +
3610 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3611 offset;
3612 }
3613
a361293f
JK
3614 if (offset & (sb->s_blocksize - 1) ||
3615 (offset + length) & (sb->s_blocksize - 1)) {
3616 /*
3617 * Attach jinode to inode for jbd2 if we do any zeroing of
3618 * partial block
3619 */
3620 ret = ext4_inode_attach_jinode(inode);
3621 if (ret < 0)
3622 goto out_mutex;
3623
3624 }
3625
a87dd18c
LC
3626 first_block_offset = round_up(offset, sb->s_blocksize);
3627 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3628
a87dd18c
LC
3629 /* Now release the pages and zero block aligned part of pages*/
3630 if (last_block_offset > first_block_offset)
3631 truncate_pagecache_range(inode, first_block_offset,
3632 last_block_offset);
26a4c0c6
TT
3633
3634 /* Wait all existing dio workers, newcomers will block on i_mutex */
3635 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3636 inode_dio_wait(inode);
3637
3638 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3639 credits = ext4_writepage_trans_blocks(inode);
3640 else
3641 credits = ext4_blocks_for_truncate(inode);
3642 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3643 if (IS_ERR(handle)) {
3644 ret = PTR_ERR(handle);
3645 ext4_std_error(sb, ret);
3646 goto out_dio;
3647 }
3648
a87dd18c
LC
3649 ret = ext4_zero_partial_blocks(handle, inode, offset,
3650 length);
3651 if (ret)
3652 goto out_stop;
26a4c0c6
TT
3653
3654 first_block = (offset + sb->s_blocksize - 1) >>
3655 EXT4_BLOCK_SIZE_BITS(sb);
3656 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3657
3658 /* If there are no blocks to remove, return now */
3659 if (first_block >= stop_block)
3660 goto out_stop;
3661
3662 down_write(&EXT4_I(inode)->i_data_sem);
3663 ext4_discard_preallocations(inode);
3664
3665 ret = ext4_es_remove_extent(inode, first_block,
3666 stop_block - first_block);
3667 if (ret) {
3668 up_write(&EXT4_I(inode)->i_data_sem);
3669 goto out_stop;
3670 }
3671
3672 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3673 ret = ext4_ext_remove_space(inode, first_block,
3674 stop_block - 1);
3675 else
4f579ae7 3676 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3677 stop_block);
3678
819c4920 3679 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3680 if (IS_SYNC(inode))
3681 ext4_handle_sync(handle);
e251f9bc
MP
3682
3683 /* Now release the pages again to reduce race window */
3684 if (last_block_offset > first_block_offset)
3685 truncate_pagecache_range(inode, first_block_offset,
3686 last_block_offset);
3687
26a4c0c6
TT
3688 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3689 ext4_mark_inode_dirty(handle, inode);
3690out_stop:
3691 ext4_journal_stop(handle);
3692out_dio:
3693 ext4_inode_resume_unlocked_dio(inode);
3694out_mutex:
3695 mutex_unlock(&inode->i_mutex);
3696 return ret;
a4bb6b64
AH
3697}
3698
a361293f
JK
3699int ext4_inode_attach_jinode(struct inode *inode)
3700{
3701 struct ext4_inode_info *ei = EXT4_I(inode);
3702 struct jbd2_inode *jinode;
3703
3704 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3705 return 0;
3706
3707 jinode = jbd2_alloc_inode(GFP_KERNEL);
3708 spin_lock(&inode->i_lock);
3709 if (!ei->jinode) {
3710 if (!jinode) {
3711 spin_unlock(&inode->i_lock);
3712 return -ENOMEM;
3713 }
3714 ei->jinode = jinode;
3715 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3716 jinode = NULL;
3717 }
3718 spin_unlock(&inode->i_lock);
3719 if (unlikely(jinode != NULL))
3720 jbd2_free_inode(jinode);
3721 return 0;
3722}
3723
ac27a0ec 3724/*
617ba13b 3725 * ext4_truncate()
ac27a0ec 3726 *
617ba13b
MC
3727 * We block out ext4_get_block() block instantiations across the entire
3728 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3729 * simultaneously on behalf of the same inode.
3730 *
42b2aa86 3731 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3732 * is one core, guiding principle: the file's tree must always be consistent on
3733 * disk. We must be able to restart the truncate after a crash.
3734 *
3735 * The file's tree may be transiently inconsistent in memory (although it
3736 * probably isn't), but whenever we close off and commit a journal transaction,
3737 * the contents of (the filesystem + the journal) must be consistent and
3738 * restartable. It's pretty simple, really: bottom up, right to left (although
3739 * left-to-right works OK too).
3740 *
3741 * Note that at recovery time, journal replay occurs *before* the restart of
3742 * truncate against the orphan inode list.
3743 *
3744 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3745 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3746 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3747 * ext4_truncate() to have another go. So there will be instantiated blocks
3748 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3749 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3750 * ext4_truncate() run will find them and release them.
ac27a0ec 3751 */
617ba13b 3752void ext4_truncate(struct inode *inode)
ac27a0ec 3753{
819c4920
TT
3754 struct ext4_inode_info *ei = EXT4_I(inode);
3755 unsigned int credits;
3756 handle_t *handle;
3757 struct address_space *mapping = inode->i_mapping;
819c4920 3758
19b5ef61
TT
3759 /*
3760 * There is a possibility that we're either freeing the inode
e04027e8 3761 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3762 * have i_mutex locked because it's not necessary.
3763 */
3764 if (!(inode->i_state & (I_NEW|I_FREEING)))
3765 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3766 trace_ext4_truncate_enter(inode);
3767
91ef4caf 3768 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3769 return;
3770
12e9b892 3771 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3772
5534fb5b 3773 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3774 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3775
aef1c851
TM
3776 if (ext4_has_inline_data(inode)) {
3777 int has_inline = 1;
3778
3779 ext4_inline_data_truncate(inode, &has_inline);
3780 if (has_inline)
3781 return;
3782 }
3783
a361293f
JK
3784 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3785 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3786 if (ext4_inode_attach_jinode(inode) < 0)
3787 return;
3788 }
3789
819c4920
TT
3790 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3791 credits = ext4_writepage_trans_blocks(inode);
3792 else
3793 credits = ext4_blocks_for_truncate(inode);
3794
3795 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3796 if (IS_ERR(handle)) {
3797 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3798 return;
3799 }
3800
eb3544c6
LC
3801 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3802 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3803
3804 /*
3805 * We add the inode to the orphan list, so that if this
3806 * truncate spans multiple transactions, and we crash, we will
3807 * resume the truncate when the filesystem recovers. It also
3808 * marks the inode dirty, to catch the new size.
3809 *
3810 * Implication: the file must always be in a sane, consistent
3811 * truncatable state while each transaction commits.
3812 */
3813 if (ext4_orphan_add(handle, inode))
3814 goto out_stop;
3815
3816 down_write(&EXT4_I(inode)->i_data_sem);
3817
3818 ext4_discard_preallocations(inode);
3819
ff9893dc 3820 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3821 ext4_ext_truncate(handle, inode);
ff9893dc 3822 else
819c4920
TT
3823 ext4_ind_truncate(handle, inode);
3824
3825 up_write(&ei->i_data_sem);
3826
3827 if (IS_SYNC(inode))
3828 ext4_handle_sync(handle);
3829
3830out_stop:
3831 /*
3832 * If this was a simple ftruncate() and the file will remain alive,
3833 * then we need to clear up the orphan record which we created above.
3834 * However, if this was a real unlink then we were called by
58d86a50 3835 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3836 * orphan info for us.
3837 */
3838 if (inode->i_nlink)
3839 ext4_orphan_del(handle, inode);
3840
3841 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3842 ext4_mark_inode_dirty(handle, inode);
3843 ext4_journal_stop(handle);
ac27a0ec 3844
0562e0ba 3845 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3846}
3847
ac27a0ec 3848/*
617ba13b 3849 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3850 * underlying buffer_head on success. If 'in_mem' is true, we have all
3851 * data in memory that is needed to recreate the on-disk version of this
3852 * inode.
3853 */
617ba13b
MC
3854static int __ext4_get_inode_loc(struct inode *inode,
3855 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3856{
240799cd
TT
3857 struct ext4_group_desc *gdp;
3858 struct buffer_head *bh;
3859 struct super_block *sb = inode->i_sb;
3860 ext4_fsblk_t block;
3861 int inodes_per_block, inode_offset;
3862
3a06d778 3863 iloc->bh = NULL;
240799cd 3864 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 3865 return -EFSCORRUPTED;
ac27a0ec 3866
240799cd
TT
3867 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3868 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3869 if (!gdp)
ac27a0ec
DK
3870 return -EIO;
3871
240799cd
TT
3872 /*
3873 * Figure out the offset within the block group inode table
3874 */
00d09882 3875 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3876 inode_offset = ((inode->i_ino - 1) %
3877 EXT4_INODES_PER_GROUP(sb));
3878 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3879 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3880
3881 bh = sb_getblk(sb, block);
aebf0243 3882 if (unlikely(!bh))
860d21e2 3883 return -ENOMEM;
ac27a0ec
DK
3884 if (!buffer_uptodate(bh)) {
3885 lock_buffer(bh);
9c83a923
HK
3886
3887 /*
3888 * If the buffer has the write error flag, we have failed
3889 * to write out another inode in the same block. In this
3890 * case, we don't have to read the block because we may
3891 * read the old inode data successfully.
3892 */
3893 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3894 set_buffer_uptodate(bh);
3895
ac27a0ec
DK
3896 if (buffer_uptodate(bh)) {
3897 /* someone brought it uptodate while we waited */
3898 unlock_buffer(bh);
3899 goto has_buffer;
3900 }
3901
3902 /*
3903 * If we have all information of the inode in memory and this
3904 * is the only valid inode in the block, we need not read the
3905 * block.
3906 */
3907 if (in_mem) {
3908 struct buffer_head *bitmap_bh;
240799cd 3909 int i, start;
ac27a0ec 3910
240799cd 3911 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3912
240799cd
TT
3913 /* Is the inode bitmap in cache? */
3914 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3915 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3916 goto make_io;
3917
3918 /*
3919 * If the inode bitmap isn't in cache then the
3920 * optimisation may end up performing two reads instead
3921 * of one, so skip it.
3922 */
3923 if (!buffer_uptodate(bitmap_bh)) {
3924 brelse(bitmap_bh);
3925 goto make_io;
3926 }
240799cd 3927 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3928 if (i == inode_offset)
3929 continue;
617ba13b 3930 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3931 break;
3932 }
3933 brelse(bitmap_bh);
240799cd 3934 if (i == start + inodes_per_block) {
ac27a0ec
DK
3935 /* all other inodes are free, so skip I/O */
3936 memset(bh->b_data, 0, bh->b_size);
3937 set_buffer_uptodate(bh);
3938 unlock_buffer(bh);
3939 goto has_buffer;
3940 }
3941 }
3942
3943make_io:
240799cd
TT
3944 /*
3945 * If we need to do any I/O, try to pre-readahead extra
3946 * blocks from the inode table.
3947 */
3948 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3949 ext4_fsblk_t b, end, table;
3950 unsigned num;
0d606e2c 3951 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3952
3953 table = ext4_inode_table(sb, gdp);
b713a5ec 3954 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3955 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3956 if (table > b)
3957 b = table;
0d606e2c 3958 end = b + ra_blks;
240799cd 3959 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3960 if (ext4_has_group_desc_csum(sb))
560671a0 3961 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3962 table += num / inodes_per_block;
3963 if (end > table)
3964 end = table;
3965 while (b <= end)
3966 sb_breadahead(sb, b++);
3967 }
3968
ac27a0ec
DK
3969 /*
3970 * There are other valid inodes in the buffer, this inode
3971 * has in-inode xattrs, or we don't have this inode in memory.
3972 * Read the block from disk.
3973 */
0562e0ba 3974 trace_ext4_load_inode(inode);
ac27a0ec
DK
3975 get_bh(bh);
3976 bh->b_end_io = end_buffer_read_sync;
65299a3b 3977 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3978 wait_on_buffer(bh);
3979 if (!buffer_uptodate(bh)) {
c398eda0
TT
3980 EXT4_ERROR_INODE_BLOCK(inode, block,
3981 "unable to read itable block");
ac27a0ec
DK
3982 brelse(bh);
3983 return -EIO;
3984 }
3985 }
3986has_buffer:
3987 iloc->bh = bh;
3988 return 0;
3989}
3990
617ba13b 3991int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3992{
3993 /* We have all inode data except xattrs in memory here. */
617ba13b 3994 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3995 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3996}
3997
617ba13b 3998void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3999{
617ba13b 4000 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4001 unsigned int new_fl = 0;
ac27a0ec 4002
617ba13b 4003 if (flags & EXT4_SYNC_FL)
00a1a053 4004 new_fl |= S_SYNC;
617ba13b 4005 if (flags & EXT4_APPEND_FL)
00a1a053 4006 new_fl |= S_APPEND;
617ba13b 4007 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4008 new_fl |= S_IMMUTABLE;
617ba13b 4009 if (flags & EXT4_NOATIME_FL)
00a1a053 4010 new_fl |= S_NOATIME;
617ba13b 4011 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4012 new_fl |= S_DIRSYNC;
923ae0ff
RZ
4013 if (test_opt(inode->i_sb, DAX))
4014 new_fl |= S_DAX;
5f16f322 4015 inode_set_flags(inode, new_fl,
923ae0ff 4016 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4017}
4018
ff9ddf7e
JK
4019/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4020void ext4_get_inode_flags(struct ext4_inode_info *ei)
4021{
84a8dce2
DM
4022 unsigned int vfs_fl;
4023 unsigned long old_fl, new_fl;
4024
4025 do {
4026 vfs_fl = ei->vfs_inode.i_flags;
4027 old_fl = ei->i_flags;
4028 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4029 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4030 EXT4_DIRSYNC_FL);
4031 if (vfs_fl & S_SYNC)
4032 new_fl |= EXT4_SYNC_FL;
4033 if (vfs_fl & S_APPEND)
4034 new_fl |= EXT4_APPEND_FL;
4035 if (vfs_fl & S_IMMUTABLE)
4036 new_fl |= EXT4_IMMUTABLE_FL;
4037 if (vfs_fl & S_NOATIME)
4038 new_fl |= EXT4_NOATIME_FL;
4039 if (vfs_fl & S_DIRSYNC)
4040 new_fl |= EXT4_DIRSYNC_FL;
4041 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4042}
de9a55b8 4043
0fc1b451 4044static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4045 struct ext4_inode_info *ei)
0fc1b451
AK
4046{
4047 blkcnt_t i_blocks ;
8180a562
AK
4048 struct inode *inode = &(ei->vfs_inode);
4049 struct super_block *sb = inode->i_sb;
0fc1b451 4050
e2b911c5 4051 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4052 /* we are using combined 48 bit field */
4053 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4054 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4055 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4056 /* i_blocks represent file system block size */
4057 return i_blocks << (inode->i_blkbits - 9);
4058 } else {
4059 return i_blocks;
4060 }
0fc1b451
AK
4061 } else {
4062 return le32_to_cpu(raw_inode->i_blocks_lo);
4063 }
4064}
ff9ddf7e 4065
152a7b0a
TM
4066static inline void ext4_iget_extra_inode(struct inode *inode,
4067 struct ext4_inode *raw_inode,
4068 struct ext4_inode_info *ei)
4069{
4070 __le32 *magic = (void *)raw_inode +
4071 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4072 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4073 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4074 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4075 } else
4076 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4077}
4078
1d1fe1ee 4079struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4080{
617ba13b
MC
4081 struct ext4_iloc iloc;
4082 struct ext4_inode *raw_inode;
1d1fe1ee 4083 struct ext4_inode_info *ei;
1d1fe1ee 4084 struct inode *inode;
b436b9be 4085 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4086 long ret;
ac27a0ec 4087 int block;
08cefc7a
EB
4088 uid_t i_uid;
4089 gid_t i_gid;
ac27a0ec 4090
1d1fe1ee
DH
4091 inode = iget_locked(sb, ino);
4092 if (!inode)
4093 return ERR_PTR(-ENOMEM);
4094 if (!(inode->i_state & I_NEW))
4095 return inode;
4096
4097 ei = EXT4_I(inode);
7dc57615 4098 iloc.bh = NULL;
ac27a0ec 4099
1d1fe1ee
DH
4100 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4101 if (ret < 0)
ac27a0ec 4102 goto bad_inode;
617ba13b 4103 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4104
4105 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4106 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4107 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4108 EXT4_INODE_SIZE(inode->i_sb)) {
4109 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4110 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4111 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4112 ret = -EFSCORRUPTED;
814525f4
DW
4113 goto bad_inode;
4114 }
4115 } else
4116 ei->i_extra_isize = 0;
4117
4118 /* Precompute checksum seed for inode metadata */
9aa5d32b 4119 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4120 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4121 __u32 csum;
4122 __le32 inum = cpu_to_le32(inode->i_ino);
4123 __le32 gen = raw_inode->i_generation;
4124 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4125 sizeof(inum));
4126 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4127 sizeof(gen));
4128 }
4129
4130 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4131 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4132 ret = -EFSBADCRC;
814525f4
DW
4133 goto bad_inode;
4134 }
4135
ac27a0ec 4136 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4137 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4138 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4139 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4140 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4141 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4142 }
08cefc7a
EB
4143 i_uid_write(inode, i_uid);
4144 i_gid_write(inode, i_gid);
bfe86848 4145 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4146
353eb83c 4147 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4148 ei->i_inline_off = 0;
ac27a0ec
DK
4149 ei->i_dir_start_lookup = 0;
4150 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4151 /* We now have enough fields to check if the inode was active or not.
4152 * This is needed because nfsd might try to access dead inodes
4153 * the test is that same one that e2fsck uses
4154 * NeilBrown 1999oct15
4155 */
4156 if (inode->i_nlink == 0) {
393d1d1d
DTB
4157 if ((inode->i_mode == 0 ||
4158 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4159 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4160 /* this inode is deleted */
1d1fe1ee 4161 ret = -ESTALE;
ac27a0ec
DK
4162 goto bad_inode;
4163 }
4164 /* The only unlinked inodes we let through here have
4165 * valid i_mode and are being read by the orphan
4166 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4167 * the process of deleting those.
4168 * OR it is the EXT4_BOOT_LOADER_INO which is
4169 * not initialized on a new filesystem. */
ac27a0ec 4170 }
ac27a0ec 4171 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4172 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4173 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4174 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4175 ei->i_file_acl |=
4176 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4177 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4178 ei->i_disksize = inode->i_size;
a9e7f447
DM
4179#ifdef CONFIG_QUOTA
4180 ei->i_reserved_quota = 0;
4181#endif
ac27a0ec
DK
4182 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4183 ei->i_block_group = iloc.block_group;
a4912123 4184 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4185 /*
4186 * NOTE! The in-memory inode i_data array is in little-endian order
4187 * even on big-endian machines: we do NOT byteswap the block numbers!
4188 */
617ba13b 4189 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4190 ei->i_data[block] = raw_inode->i_block[block];
4191 INIT_LIST_HEAD(&ei->i_orphan);
4192
b436b9be
JK
4193 /*
4194 * Set transaction id's of transactions that have to be committed
4195 * to finish f[data]sync. We set them to currently running transaction
4196 * as we cannot be sure that the inode or some of its metadata isn't
4197 * part of the transaction - the inode could have been reclaimed and
4198 * now it is reread from disk.
4199 */
4200 if (journal) {
4201 transaction_t *transaction;
4202 tid_t tid;
4203
a931da6a 4204 read_lock(&journal->j_state_lock);
b436b9be
JK
4205 if (journal->j_running_transaction)
4206 transaction = journal->j_running_transaction;
4207 else
4208 transaction = journal->j_committing_transaction;
4209 if (transaction)
4210 tid = transaction->t_tid;
4211 else
4212 tid = journal->j_commit_sequence;
a931da6a 4213 read_unlock(&journal->j_state_lock);
b436b9be
JK
4214 ei->i_sync_tid = tid;
4215 ei->i_datasync_tid = tid;
4216 }
4217
0040d987 4218 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4219 if (ei->i_extra_isize == 0) {
4220 /* The extra space is currently unused. Use it. */
617ba13b
MC
4221 ei->i_extra_isize = sizeof(struct ext4_inode) -
4222 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4223 } else {
152a7b0a 4224 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4225 }
814525f4 4226 }
ac27a0ec 4227
ef7f3835
KS
4228 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4229 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4230 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4231 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4232
ed3654eb 4233 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4234 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4235 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4236 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4237 inode->i_version |=
4238 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4239 }
25ec56b5
JNC
4240 }
4241
c4b5a614 4242 ret = 0;
485c26ec 4243 if (ei->i_file_acl &&
1032988c 4244 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4245 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4246 ei->i_file_acl);
6a797d27 4247 ret = -EFSCORRUPTED;
485c26ec 4248 goto bad_inode;
f19d5870
TM
4249 } else if (!ext4_has_inline_data(inode)) {
4250 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4251 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4252 (S_ISLNK(inode->i_mode) &&
4253 !ext4_inode_is_fast_symlink(inode))))
4254 /* Validate extent which is part of inode */
4255 ret = ext4_ext_check_inode(inode);
4256 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4257 (S_ISLNK(inode->i_mode) &&
4258 !ext4_inode_is_fast_symlink(inode))) {
4259 /* Validate block references which are part of inode */
4260 ret = ext4_ind_check_inode(inode);
4261 }
fe2c8191 4262 }
567f3e9a 4263 if (ret)
de9a55b8 4264 goto bad_inode;
7a262f7c 4265
ac27a0ec 4266 if (S_ISREG(inode->i_mode)) {
617ba13b 4267 inode->i_op = &ext4_file_inode_operations;
be64f884 4268 inode->i_fop = &ext4_file_operations;
617ba13b 4269 ext4_set_aops(inode);
ac27a0ec 4270 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4271 inode->i_op = &ext4_dir_inode_operations;
4272 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4273 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4274 if (ext4_encrypted_inode(inode)) {
4275 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4276 ext4_set_aops(inode);
4277 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4278 inode->i_link = (char *)ei->i_data;
617ba13b 4279 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4280 nd_terminate_link(ei->i_data, inode->i_size,
4281 sizeof(ei->i_data) - 1);
4282 } else {
617ba13b
MC
4283 inode->i_op = &ext4_symlink_inode_operations;
4284 ext4_set_aops(inode);
ac27a0ec 4285 }
563bdd61
TT
4286 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4287 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4288 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4289 if (raw_inode->i_block[0])
4290 init_special_inode(inode, inode->i_mode,
4291 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4292 else
4293 init_special_inode(inode, inode->i_mode,
4294 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4295 } else if (ino == EXT4_BOOT_LOADER_INO) {
4296 make_bad_inode(inode);
563bdd61 4297 } else {
6a797d27 4298 ret = -EFSCORRUPTED;
24676da4 4299 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4300 goto bad_inode;
ac27a0ec 4301 }
af5bc92d 4302 brelse(iloc.bh);
617ba13b 4303 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4304 unlock_new_inode(inode);
4305 return inode;
ac27a0ec
DK
4306
4307bad_inode:
567f3e9a 4308 brelse(iloc.bh);
1d1fe1ee
DH
4309 iget_failed(inode);
4310 return ERR_PTR(ret);
ac27a0ec
DK
4311}
4312
f4bb2981
TT
4313struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4314{
4315 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4316 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4317 return ext4_iget(sb, ino);
4318}
4319
0fc1b451
AK
4320static int ext4_inode_blocks_set(handle_t *handle,
4321 struct ext4_inode *raw_inode,
4322 struct ext4_inode_info *ei)
4323{
4324 struct inode *inode = &(ei->vfs_inode);
4325 u64 i_blocks = inode->i_blocks;
4326 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4327
4328 if (i_blocks <= ~0U) {
4329 /*
4907cb7b 4330 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4331 * as multiple of 512 bytes
4332 */
8180a562 4333 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4334 raw_inode->i_blocks_high = 0;
84a8dce2 4335 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4336 return 0;
4337 }
e2b911c5 4338 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4339 return -EFBIG;
4340
4341 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4342 /*
4343 * i_blocks can be represented in a 48 bit variable
4344 * as multiple of 512 bytes
4345 */
8180a562 4346 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4347 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4348 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4349 } else {
84a8dce2 4350 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4351 /* i_block is stored in file system block size */
4352 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4353 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4354 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4355 }
f287a1a5 4356 return 0;
0fc1b451
AK
4357}
4358
a26f4992
TT
4359struct other_inode {
4360 unsigned long orig_ino;
4361 struct ext4_inode *raw_inode;
4362};
4363
4364static int other_inode_match(struct inode * inode, unsigned long ino,
4365 void *data)
4366{
4367 struct other_inode *oi = (struct other_inode *) data;
4368
4369 if ((inode->i_ino != ino) ||
4370 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4371 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4372 ((inode->i_state & I_DIRTY_TIME) == 0))
4373 return 0;
4374 spin_lock(&inode->i_lock);
4375 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4376 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4377 (inode->i_state & I_DIRTY_TIME)) {
4378 struct ext4_inode_info *ei = EXT4_I(inode);
4379
4380 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4381 spin_unlock(&inode->i_lock);
4382
4383 spin_lock(&ei->i_raw_lock);
4384 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4385 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4386 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4387 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4388 spin_unlock(&ei->i_raw_lock);
4389 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4390 return -1;
4391 }
4392 spin_unlock(&inode->i_lock);
4393 return -1;
4394}
4395
4396/*
4397 * Opportunistically update the other time fields for other inodes in
4398 * the same inode table block.
4399 */
4400static void ext4_update_other_inodes_time(struct super_block *sb,
4401 unsigned long orig_ino, char *buf)
4402{
4403 struct other_inode oi;
4404 unsigned long ino;
4405 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4406 int inode_size = EXT4_INODE_SIZE(sb);
4407
4408 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4409 /*
4410 * Calculate the first inode in the inode table block. Inode
4411 * numbers are one-based. That is, the first inode in a block
4412 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4413 */
4414 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4415 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4416 if (ino == orig_ino)
4417 continue;
4418 oi.raw_inode = (struct ext4_inode *) buf;
4419 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4420 }
4421}
4422
ac27a0ec
DK
4423/*
4424 * Post the struct inode info into an on-disk inode location in the
4425 * buffer-cache. This gobbles the caller's reference to the
4426 * buffer_head in the inode location struct.
4427 *
4428 * The caller must have write access to iloc->bh.
4429 */
617ba13b 4430static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4431 struct inode *inode,
830156c7 4432 struct ext4_iloc *iloc)
ac27a0ec 4433{
617ba13b
MC
4434 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4435 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4436 struct buffer_head *bh = iloc->bh;
202ee5df 4437 struct super_block *sb = inode->i_sb;
ac27a0ec 4438 int err = 0, rc, block;
202ee5df 4439 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4440 uid_t i_uid;
4441 gid_t i_gid;
ac27a0ec 4442
202ee5df
TT
4443 spin_lock(&ei->i_raw_lock);
4444
4445 /* For fields not tracked in the in-memory inode,
ac27a0ec 4446 * initialise them to zero for new inodes. */
19f5fb7a 4447 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4448 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4449
ff9ddf7e 4450 ext4_get_inode_flags(ei);
ac27a0ec 4451 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4452 i_uid = i_uid_read(inode);
4453 i_gid = i_gid_read(inode);
af5bc92d 4454 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4455 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4456 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4457/*
4458 * Fix up interoperability with old kernels. Otherwise, old inodes get
4459 * re-used with the upper 16 bits of the uid/gid intact
4460 */
af5bc92d 4461 if (!ei->i_dtime) {
ac27a0ec 4462 raw_inode->i_uid_high =
08cefc7a 4463 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4464 raw_inode->i_gid_high =
08cefc7a 4465 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4466 } else {
4467 raw_inode->i_uid_high = 0;
4468 raw_inode->i_gid_high = 0;
4469 }
4470 } else {
08cefc7a
EB
4471 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4472 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4473 raw_inode->i_uid_high = 0;
4474 raw_inode->i_gid_high = 0;
4475 }
4476 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4477
4478 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4479 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4480 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4481 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4482
bce92d56
LX
4483 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4484 if (err) {
202ee5df 4485 spin_unlock(&ei->i_raw_lock);
0fc1b451 4486 goto out_brelse;
202ee5df 4487 }
ac27a0ec 4488 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4489 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4490 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4491 raw_inode->i_file_acl_high =
4492 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4493 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4494 if (ei->i_disksize != ext4_isize(raw_inode)) {
4495 ext4_isize_set(raw_inode, ei->i_disksize);
4496 need_datasync = 1;
4497 }
a48380f7 4498 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4499 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4500 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4501 cpu_to_le32(EXT4_GOOD_OLD_REV))
4502 set_large_file = 1;
ac27a0ec
DK
4503 }
4504 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4505 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4506 if (old_valid_dev(inode->i_rdev)) {
4507 raw_inode->i_block[0] =
4508 cpu_to_le32(old_encode_dev(inode->i_rdev));
4509 raw_inode->i_block[1] = 0;
4510 } else {
4511 raw_inode->i_block[0] = 0;
4512 raw_inode->i_block[1] =
4513 cpu_to_le32(new_encode_dev(inode->i_rdev));
4514 raw_inode->i_block[2] = 0;
4515 }
f19d5870 4516 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4517 for (block = 0; block < EXT4_N_BLOCKS; block++)
4518 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4519 }
ac27a0ec 4520
ed3654eb 4521 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4522 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4523 if (ei->i_extra_isize) {
4524 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4525 raw_inode->i_version_hi =
4526 cpu_to_le32(inode->i_version >> 32);
4527 raw_inode->i_extra_isize =
4528 cpu_to_le16(ei->i_extra_isize);
4529 }
25ec56b5 4530 }
814525f4 4531 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4532 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4533 if (inode->i_sb->s_flags & MS_LAZYTIME)
4534 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4535 bh->b_data);
202ee5df 4536
830156c7 4537 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4538 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4539 if (!err)
4540 err = rc;
19f5fb7a 4541 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4542 if (set_large_file) {
5d601255 4543 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4544 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4545 if (err)
4546 goto out_brelse;
4547 ext4_update_dynamic_rev(sb);
e2b911c5 4548 ext4_set_feature_large_file(sb);
202ee5df
TT
4549 ext4_handle_sync(handle);
4550 err = ext4_handle_dirty_super(handle, sb);
4551 }
b71fc079 4552 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4553out_brelse:
af5bc92d 4554 brelse(bh);
617ba13b 4555 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4556 return err;
4557}
4558
4559/*
617ba13b 4560 * ext4_write_inode()
ac27a0ec
DK
4561 *
4562 * We are called from a few places:
4563 *
87f7e416 4564 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4565 * Here, there will be no transaction running. We wait for any running
4907cb7b 4566 * transaction to commit.
ac27a0ec 4567 *
87f7e416
TT
4568 * - Within flush work (sys_sync(), kupdate and such).
4569 * We wait on commit, if told to.
ac27a0ec 4570 *
87f7e416
TT
4571 * - Within iput_final() -> write_inode_now()
4572 * We wait on commit, if told to.
ac27a0ec
DK
4573 *
4574 * In all cases it is actually safe for us to return without doing anything,
4575 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4576 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4577 * writeback.
ac27a0ec
DK
4578 *
4579 * Note that we are absolutely dependent upon all inode dirtiers doing the
4580 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4581 * which we are interested.
4582 *
4583 * It would be a bug for them to not do this. The code:
4584 *
4585 * mark_inode_dirty(inode)
4586 * stuff();
4587 * inode->i_size = expr;
4588 *
87f7e416
TT
4589 * is in error because write_inode() could occur while `stuff()' is running,
4590 * and the new i_size will be lost. Plus the inode will no longer be on the
4591 * superblock's dirty inode list.
ac27a0ec 4592 */
a9185b41 4593int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4594{
91ac6f43
FM
4595 int err;
4596
87f7e416 4597 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4598 return 0;
4599
91ac6f43
FM
4600 if (EXT4_SB(inode->i_sb)->s_journal) {
4601 if (ext4_journal_current_handle()) {
4602 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4603 dump_stack();
4604 return -EIO;
4605 }
ac27a0ec 4606
10542c22
JK
4607 /*
4608 * No need to force transaction in WB_SYNC_NONE mode. Also
4609 * ext4_sync_fs() will force the commit after everything is
4610 * written.
4611 */
4612 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4613 return 0;
4614
4615 err = ext4_force_commit(inode->i_sb);
4616 } else {
4617 struct ext4_iloc iloc;
ac27a0ec 4618
8b472d73 4619 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4620 if (err)
4621 return err;
10542c22
JK
4622 /*
4623 * sync(2) will flush the whole buffer cache. No need to do
4624 * it here separately for each inode.
4625 */
4626 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4627 sync_dirty_buffer(iloc.bh);
4628 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4629 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4630 "IO error syncing inode");
830156c7
FM
4631 err = -EIO;
4632 }
fd2dd9fb 4633 brelse(iloc.bh);
91ac6f43
FM
4634 }
4635 return err;
ac27a0ec
DK
4636}
4637
53e87268
JK
4638/*
4639 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4640 * buffers that are attached to a page stradding i_size and are undergoing
4641 * commit. In that case we have to wait for commit to finish and try again.
4642 */
4643static void ext4_wait_for_tail_page_commit(struct inode *inode)
4644{
4645 struct page *page;
4646 unsigned offset;
4647 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4648 tid_t commit_tid = 0;
4649 int ret;
4650
4651 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4652 /*
4653 * All buffers in the last page remain valid? Then there's nothing to
4654 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4655 * blocksize case
4656 */
4657 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4658 return;
4659 while (1) {
4660 page = find_lock_page(inode->i_mapping,
4661 inode->i_size >> PAGE_CACHE_SHIFT);
4662 if (!page)
4663 return;
ca99fdd2
LC
4664 ret = __ext4_journalled_invalidatepage(page, offset,
4665 PAGE_CACHE_SIZE - offset);
53e87268
JK
4666 unlock_page(page);
4667 page_cache_release(page);
4668 if (ret != -EBUSY)
4669 return;
4670 commit_tid = 0;
4671 read_lock(&journal->j_state_lock);
4672 if (journal->j_committing_transaction)
4673 commit_tid = journal->j_committing_transaction->t_tid;
4674 read_unlock(&journal->j_state_lock);
4675 if (commit_tid)
4676 jbd2_log_wait_commit(journal, commit_tid);
4677 }
4678}
4679
ac27a0ec 4680/*
617ba13b 4681 * ext4_setattr()
ac27a0ec
DK
4682 *
4683 * Called from notify_change.
4684 *
4685 * We want to trap VFS attempts to truncate the file as soon as
4686 * possible. In particular, we want to make sure that when the VFS
4687 * shrinks i_size, we put the inode on the orphan list and modify
4688 * i_disksize immediately, so that during the subsequent flushing of
4689 * dirty pages and freeing of disk blocks, we can guarantee that any
4690 * commit will leave the blocks being flushed in an unused state on
4691 * disk. (On recovery, the inode will get truncated and the blocks will
4692 * be freed, so we have a strong guarantee that no future commit will
4693 * leave these blocks visible to the user.)
4694 *
678aaf48
JK
4695 * Another thing we have to assure is that if we are in ordered mode
4696 * and inode is still attached to the committing transaction, we must
4697 * we start writeout of all the dirty pages which are being truncated.
4698 * This way we are sure that all the data written in the previous
4699 * transaction are already on disk (truncate waits for pages under
4700 * writeback).
4701 *
4702 * Called with inode->i_mutex down.
ac27a0ec 4703 */
617ba13b 4704int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4705{
2b0143b5 4706 struct inode *inode = d_inode(dentry);
ac27a0ec 4707 int error, rc = 0;
3d287de3 4708 int orphan = 0;
ac27a0ec
DK
4709 const unsigned int ia_valid = attr->ia_valid;
4710
4711 error = inode_change_ok(inode, attr);
4712 if (error)
4713 return error;
4714
a7cdadee
JK
4715 if (is_quota_modification(inode, attr)) {
4716 error = dquot_initialize(inode);
4717 if (error)
4718 return error;
4719 }
08cefc7a
EB
4720 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4721 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4722 handle_t *handle;
4723
4724 /* (user+group)*(old+new) structure, inode write (sb,
4725 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4726 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4727 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4728 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4729 if (IS_ERR(handle)) {
4730 error = PTR_ERR(handle);
4731 goto err_out;
4732 }
b43fa828 4733 error = dquot_transfer(inode, attr);
ac27a0ec 4734 if (error) {
617ba13b 4735 ext4_journal_stop(handle);
ac27a0ec
DK
4736 return error;
4737 }
4738 /* Update corresponding info in inode so that everything is in
4739 * one transaction */
4740 if (attr->ia_valid & ATTR_UID)
4741 inode->i_uid = attr->ia_uid;
4742 if (attr->ia_valid & ATTR_GID)
4743 inode->i_gid = attr->ia_gid;
617ba13b
MC
4744 error = ext4_mark_inode_dirty(handle, inode);
4745 ext4_journal_stop(handle);
ac27a0ec
DK
4746 }
4747
3da40c7b 4748 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4749 handle_t *handle;
3da40c7b
JB
4750 loff_t oldsize = inode->i_size;
4751 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4752
12e9b892 4753 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4754 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4755
0c095c7f
TT
4756 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4757 return -EFBIG;
e2b46574 4758 }
3da40c7b
JB
4759 if (!S_ISREG(inode->i_mode))
4760 return -EINVAL;
dff6efc3
CH
4761
4762 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4763 inode_inc_iversion(inode);
4764
3da40c7b 4765 if (ext4_should_order_data(inode) &&
5208386c 4766 (attr->ia_size < inode->i_size)) {
3da40c7b 4767 error = ext4_begin_ordered_truncate(inode,
678aaf48 4768 attr->ia_size);
3da40c7b
JB
4769 if (error)
4770 goto err_out;
4771 }
4772 if (attr->ia_size != inode->i_size) {
5208386c
JK
4773 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4774 if (IS_ERR(handle)) {
4775 error = PTR_ERR(handle);
4776 goto err_out;
4777 }
3da40c7b 4778 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
4779 error = ext4_orphan_add(handle, inode);
4780 orphan = 1;
4781 }
911af577
EG
4782 /*
4783 * Update c/mtime on truncate up, ext4_truncate() will
4784 * update c/mtime in shrink case below
4785 */
4786 if (!shrink) {
4787 inode->i_mtime = ext4_current_time(inode);
4788 inode->i_ctime = inode->i_mtime;
4789 }
90e775b7 4790 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4791 EXT4_I(inode)->i_disksize = attr->ia_size;
4792 rc = ext4_mark_inode_dirty(handle, inode);
4793 if (!error)
4794 error = rc;
90e775b7
JK
4795 /*
4796 * We have to update i_size under i_data_sem together
4797 * with i_disksize to avoid races with writeback code
4798 * running ext4_wb_update_i_disksize().
4799 */
4800 if (!error)
4801 i_size_write(inode, attr->ia_size);
4802 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4803 ext4_journal_stop(handle);
4804 if (error) {
3da40c7b
JB
4805 if (orphan)
4806 ext4_orphan_del(NULL, inode);
678aaf48
JK
4807 goto err_out;
4808 }
d6320cbf 4809 }
3da40c7b
JB
4810 if (!shrink)
4811 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 4812
5208386c
JK
4813 /*
4814 * Blocks are going to be removed from the inode. Wait
4815 * for dio in flight. Temporarily disable
4816 * dioread_nolock to prevent livelock.
4817 */
4818 if (orphan) {
4819 if (!ext4_should_journal_data(inode)) {
4820 ext4_inode_block_unlocked_dio(inode);
4821 inode_dio_wait(inode);
4822 ext4_inode_resume_unlocked_dio(inode);
4823 } else
4824 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4825 }
5208386c
JK
4826 /*
4827 * Truncate pagecache after we've waited for commit
4828 * in data=journal mode to make pages freeable.
4829 */
923ae0ff 4830 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
4831 if (shrink)
4832 ext4_truncate(inode);
072bd7ea 4833 }
ac27a0ec 4834
1025774c
CH
4835 if (!rc) {
4836 setattr_copy(inode, attr);
4837 mark_inode_dirty(inode);
4838 }
4839
4840 /*
4841 * If the call to ext4_truncate failed to get a transaction handle at
4842 * all, we need to clean up the in-core orphan list manually.
4843 */
3d287de3 4844 if (orphan && inode->i_nlink)
617ba13b 4845 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4846
4847 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4848 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4849
4850err_out:
617ba13b 4851 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4852 if (!error)
4853 error = rc;
4854 return error;
4855}
4856
3e3398a0
MC
4857int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4858 struct kstat *stat)
4859{
4860 struct inode *inode;
8af8eecc 4861 unsigned long long delalloc_blocks;
3e3398a0 4862
2b0143b5 4863 inode = d_inode(dentry);
3e3398a0
MC
4864 generic_fillattr(inode, stat);
4865
9206c561
AD
4866 /*
4867 * If there is inline data in the inode, the inode will normally not
4868 * have data blocks allocated (it may have an external xattr block).
4869 * Report at least one sector for such files, so tools like tar, rsync,
4870 * others doen't incorrectly think the file is completely sparse.
4871 */
4872 if (unlikely(ext4_has_inline_data(inode)))
4873 stat->blocks += (stat->size + 511) >> 9;
4874
3e3398a0
MC
4875 /*
4876 * We can't update i_blocks if the block allocation is delayed
4877 * otherwise in the case of system crash before the real block
4878 * allocation is done, we will have i_blocks inconsistent with
4879 * on-disk file blocks.
4880 * We always keep i_blocks updated together with real
4881 * allocation. But to not confuse with user, stat
4882 * will return the blocks that include the delayed allocation
4883 * blocks for this file.
4884 */
96607551 4885 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4886 EXT4_I(inode)->i_reserved_data_blocks);
4887 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4888 return 0;
4889}
ac27a0ec 4890
fffb2739
JK
4891static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4892 int pextents)
a02908f1 4893{
12e9b892 4894 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4895 return ext4_ind_trans_blocks(inode, lblocks);
4896 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4897}
ac51d837 4898
ac27a0ec 4899/*
a02908f1
MC
4900 * Account for index blocks, block groups bitmaps and block group
4901 * descriptor blocks if modify datablocks and index blocks
4902 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4903 *
a02908f1 4904 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4905 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4906 * they could still across block group boundary.
ac27a0ec 4907 *
a02908f1
MC
4908 * Also account for superblock, inode, quota and xattr blocks
4909 */
fffb2739
JK
4910static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4911 int pextents)
a02908f1 4912{
8df9675f
TT
4913 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4914 int gdpblocks;
a02908f1
MC
4915 int idxblocks;
4916 int ret = 0;
4917
4918 /*
fffb2739
JK
4919 * How many index blocks need to touch to map @lblocks logical blocks
4920 * to @pextents physical extents?
a02908f1 4921 */
fffb2739 4922 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4923
4924 ret = idxblocks;
4925
4926 /*
4927 * Now let's see how many group bitmaps and group descriptors need
4928 * to account
4929 */
fffb2739 4930 groups = idxblocks + pextents;
a02908f1 4931 gdpblocks = groups;
8df9675f
TT
4932 if (groups > ngroups)
4933 groups = ngroups;
a02908f1
MC
4934 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4935 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4936
4937 /* bitmaps and block group descriptor blocks */
4938 ret += groups + gdpblocks;
4939
4940 /* Blocks for super block, inode, quota and xattr blocks */
4941 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4942
4943 return ret;
4944}
4945
4946/*
25985edc 4947 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4948 * the modification of a single pages into a single transaction,
4949 * which may include multiple chunks of block allocations.
ac27a0ec 4950 *
525f4ed8 4951 * This could be called via ext4_write_begin()
ac27a0ec 4952 *
525f4ed8 4953 * We need to consider the worse case, when
a02908f1 4954 * one new block per extent.
ac27a0ec 4955 */
a86c6181 4956int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4957{
617ba13b 4958 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4959 int ret;
4960
fffb2739 4961 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4962
a02908f1 4963 /* Account for data blocks for journalled mode */
617ba13b 4964 if (ext4_should_journal_data(inode))
a02908f1 4965 ret += bpp;
ac27a0ec
DK
4966 return ret;
4967}
f3bd1f3f
MC
4968
4969/*
4970 * Calculate the journal credits for a chunk of data modification.
4971 *
4972 * This is called from DIO, fallocate or whoever calling
79e83036 4973 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4974 *
4975 * journal buffers for data blocks are not included here, as DIO
4976 * and fallocate do no need to journal data buffers.
4977 */
4978int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4979{
4980 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4981}
4982
ac27a0ec 4983/*
617ba13b 4984 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4985 * Give this, we know that the caller already has write access to iloc->bh.
4986 */
617ba13b 4987int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4988 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4989{
4990 int err = 0;
4991
c64db50e 4992 if (IS_I_VERSION(inode))
25ec56b5
JNC
4993 inode_inc_iversion(inode);
4994
ac27a0ec
DK
4995 /* the do_update_inode consumes one bh->b_count */
4996 get_bh(iloc->bh);
4997
dab291af 4998 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4999 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5000 put_bh(iloc->bh);
5001 return err;
5002}
5003
5004/*
5005 * On success, We end up with an outstanding reference count against
5006 * iloc->bh. This _must_ be cleaned up later.
5007 */
5008
5009int
617ba13b
MC
5010ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5011 struct ext4_iloc *iloc)
ac27a0ec 5012{
0390131b
FM
5013 int err;
5014
5015 err = ext4_get_inode_loc(inode, iloc);
5016 if (!err) {
5017 BUFFER_TRACE(iloc->bh, "get_write_access");
5018 err = ext4_journal_get_write_access(handle, iloc->bh);
5019 if (err) {
5020 brelse(iloc->bh);
5021 iloc->bh = NULL;
ac27a0ec
DK
5022 }
5023 }
617ba13b 5024 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5025 return err;
5026}
5027
6dd4ee7c
KS
5028/*
5029 * Expand an inode by new_extra_isize bytes.
5030 * Returns 0 on success or negative error number on failure.
5031 */
1d03ec98
AK
5032static int ext4_expand_extra_isize(struct inode *inode,
5033 unsigned int new_extra_isize,
5034 struct ext4_iloc iloc,
5035 handle_t *handle)
6dd4ee7c
KS
5036{
5037 struct ext4_inode *raw_inode;
5038 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5039
5040 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5041 return 0;
5042
5043 raw_inode = ext4_raw_inode(&iloc);
5044
5045 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5046
5047 /* No extended attributes present */
19f5fb7a
TT
5048 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5049 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5050 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5051 new_extra_isize);
5052 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5053 return 0;
5054 }
5055
5056 /* try to expand with EAs present */
5057 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5058 raw_inode, handle);
5059}
5060
ac27a0ec
DK
5061/*
5062 * What we do here is to mark the in-core inode as clean with respect to inode
5063 * dirtiness (it may still be data-dirty).
5064 * This means that the in-core inode may be reaped by prune_icache
5065 * without having to perform any I/O. This is a very good thing,
5066 * because *any* task may call prune_icache - even ones which
5067 * have a transaction open against a different journal.
5068 *
5069 * Is this cheating? Not really. Sure, we haven't written the
5070 * inode out, but prune_icache isn't a user-visible syncing function.
5071 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5072 * we start and wait on commits.
ac27a0ec 5073 */
617ba13b 5074int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5075{
617ba13b 5076 struct ext4_iloc iloc;
6dd4ee7c
KS
5077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5078 static unsigned int mnt_count;
5079 int err, ret;
ac27a0ec
DK
5080
5081 might_sleep();
7ff9c073 5082 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5083 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5084 if (ext4_handle_valid(handle) &&
5085 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5086 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5087 /*
5088 * We need extra buffer credits since we may write into EA block
5089 * with this same handle. If journal_extend fails, then it will
5090 * only result in a minor loss of functionality for that inode.
5091 * If this is felt to be critical, then e2fsck should be run to
5092 * force a large enough s_min_extra_isize.
5093 */
5094 if ((jbd2_journal_extend(handle,
5095 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5096 ret = ext4_expand_extra_isize(inode,
5097 sbi->s_want_extra_isize,
5098 iloc, handle);
5099 if (ret) {
19f5fb7a
TT
5100 ext4_set_inode_state(inode,
5101 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5102 if (mnt_count !=
5103 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5104 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5105 "Unable to expand inode %lu. Delete"
5106 " some EAs or run e2fsck.",
5107 inode->i_ino);
c1bddad9
AK
5108 mnt_count =
5109 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5110 }
5111 }
5112 }
5113 }
ac27a0ec 5114 if (!err)
617ba13b 5115 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5116 return err;
5117}
5118
5119/*
617ba13b 5120 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5121 *
5122 * We're really interested in the case where a file is being extended.
5123 * i_size has been changed by generic_commit_write() and we thus need
5124 * to include the updated inode in the current transaction.
5125 *
5dd4056d 5126 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5127 * are allocated to the file.
5128 *
5129 * If the inode is marked synchronous, we don't honour that here - doing
5130 * so would cause a commit on atime updates, which we don't bother doing.
5131 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5132 *
5133 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5134 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5135 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5136 */
aa385729 5137void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5138{
ac27a0ec
DK
5139 handle_t *handle;
5140
0ae45f63
TT
5141 if (flags == I_DIRTY_TIME)
5142 return;
9924a92a 5143 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5144 if (IS_ERR(handle))
5145 goto out;
f3dc272f 5146
f3dc272f
CW
5147 ext4_mark_inode_dirty(handle, inode);
5148
617ba13b 5149 ext4_journal_stop(handle);
ac27a0ec
DK
5150out:
5151 return;
5152}
5153
5154#if 0
5155/*
5156 * Bind an inode's backing buffer_head into this transaction, to prevent
5157 * it from being flushed to disk early. Unlike
617ba13b 5158 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5159 * returns no iloc structure, so the caller needs to repeat the iloc
5160 * lookup to mark the inode dirty later.
5161 */
617ba13b 5162static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5163{
617ba13b 5164 struct ext4_iloc iloc;
ac27a0ec
DK
5165
5166 int err = 0;
5167 if (handle) {
617ba13b 5168 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5169 if (!err) {
5170 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5171 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5172 if (!err)
0390131b 5173 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5174 NULL,
0390131b 5175 iloc.bh);
ac27a0ec
DK
5176 brelse(iloc.bh);
5177 }
5178 }
617ba13b 5179 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5180 return err;
5181}
5182#endif
5183
617ba13b 5184int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5185{
5186 journal_t *journal;
5187 handle_t *handle;
5188 int err;
5189
5190 /*
5191 * We have to be very careful here: changing a data block's
5192 * journaling status dynamically is dangerous. If we write a
5193 * data block to the journal, change the status and then delete
5194 * that block, we risk forgetting to revoke the old log record
5195 * from the journal and so a subsequent replay can corrupt data.
5196 * So, first we make sure that the journal is empty and that
5197 * nobody is changing anything.
5198 */
5199
617ba13b 5200 journal = EXT4_JOURNAL(inode);
0390131b
FM
5201 if (!journal)
5202 return 0;
d699594d 5203 if (is_journal_aborted(journal))
ac27a0ec 5204 return -EROFS;
2aff57b0
YY
5205 /* We have to allocate physical blocks for delalloc blocks
5206 * before flushing journal. otherwise delalloc blocks can not
5207 * be allocated any more. even more truncate on delalloc blocks
5208 * could trigger BUG by flushing delalloc blocks in journal.
5209 * There is no delalloc block in non-journal data mode.
5210 */
5211 if (val && test_opt(inode->i_sb, DELALLOC)) {
5212 err = ext4_alloc_da_blocks(inode);
5213 if (err < 0)
5214 return err;
5215 }
ac27a0ec 5216
17335dcc
DM
5217 /* Wait for all existing dio workers */
5218 ext4_inode_block_unlocked_dio(inode);
5219 inode_dio_wait(inode);
5220
dab291af 5221 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5222
5223 /*
5224 * OK, there are no updates running now, and all cached data is
5225 * synced to disk. We are now in a completely consistent state
5226 * which doesn't have anything in the journal, and we know that
5227 * no filesystem updates are running, so it is safe to modify
5228 * the inode's in-core data-journaling state flag now.
5229 */
5230
5231 if (val)
12e9b892 5232 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5233 else {
4f879ca6
JK
5234 err = jbd2_journal_flush(journal);
5235 if (err < 0) {
5236 jbd2_journal_unlock_updates(journal);
5237 ext4_inode_resume_unlocked_dio(inode);
5238 return err;
5239 }
12e9b892 5240 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5241 }
617ba13b 5242 ext4_set_aops(inode);
ac27a0ec 5243
dab291af 5244 jbd2_journal_unlock_updates(journal);
17335dcc 5245 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5246
5247 /* Finally we can mark the inode as dirty. */
5248
9924a92a 5249 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5250 if (IS_ERR(handle))
5251 return PTR_ERR(handle);
5252
617ba13b 5253 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5254 ext4_handle_sync(handle);
617ba13b
MC
5255 ext4_journal_stop(handle);
5256 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5257
5258 return err;
5259}
2e9ee850
AK
5260
5261static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5262{
5263 return !buffer_mapped(bh);
5264}
5265
c2ec175c 5266int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5267{
c2ec175c 5268 struct page *page = vmf->page;
2e9ee850
AK
5269 loff_t size;
5270 unsigned long len;
9ea7df53 5271 int ret;
2e9ee850 5272 struct file *file = vma->vm_file;
496ad9aa 5273 struct inode *inode = file_inode(file);
2e9ee850 5274 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5275 handle_t *handle;
5276 get_block_t *get_block;
5277 int retries = 0;
2e9ee850 5278
8e8ad8a5 5279 sb_start_pagefault(inode->i_sb);
041bbb6d 5280 file_update_time(vma->vm_file);
9ea7df53
JK
5281 /* Delalloc case is easy... */
5282 if (test_opt(inode->i_sb, DELALLOC) &&
5283 !ext4_should_journal_data(inode) &&
5284 !ext4_nonda_switch(inode->i_sb)) {
5285 do {
5c500029 5286 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5287 ext4_da_get_block_prep);
5288 } while (ret == -ENOSPC &&
5289 ext4_should_retry_alloc(inode->i_sb, &retries));
5290 goto out_ret;
2e9ee850 5291 }
0e499890
DW
5292
5293 lock_page(page);
9ea7df53
JK
5294 size = i_size_read(inode);
5295 /* Page got truncated from under us? */
5296 if (page->mapping != mapping || page_offset(page) > size) {
5297 unlock_page(page);
5298 ret = VM_FAULT_NOPAGE;
5299 goto out;
0e499890 5300 }
2e9ee850
AK
5301
5302 if (page->index == size >> PAGE_CACHE_SHIFT)
5303 len = size & ~PAGE_CACHE_MASK;
5304 else
5305 len = PAGE_CACHE_SIZE;
a827eaff 5306 /*
9ea7df53
JK
5307 * Return if we have all the buffers mapped. This avoids the need to do
5308 * journal_start/journal_stop which can block and take a long time
a827eaff 5309 */
2e9ee850 5310 if (page_has_buffers(page)) {
f19d5870
TM
5311 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5312 0, len, NULL,
5313 ext4_bh_unmapped)) {
9ea7df53 5314 /* Wait so that we don't change page under IO */
1d1d1a76 5315 wait_for_stable_page(page);
9ea7df53
JK
5316 ret = VM_FAULT_LOCKED;
5317 goto out;
a827eaff 5318 }
2e9ee850 5319 }
a827eaff 5320 unlock_page(page);
9ea7df53
JK
5321 /* OK, we need to fill the hole... */
5322 if (ext4_should_dioread_nolock(inode))
5323 get_block = ext4_get_block_write;
5324 else
5325 get_block = ext4_get_block;
5326retry_alloc:
9924a92a
TT
5327 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5328 ext4_writepage_trans_blocks(inode));
9ea7df53 5329 if (IS_ERR(handle)) {
c2ec175c 5330 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5331 goto out;
5332 }
5c500029 5333 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5334 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5335 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5336 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5337 unlock_page(page);
5338 ret = VM_FAULT_SIGBUS;
fcbb5515 5339 ext4_journal_stop(handle);
9ea7df53
JK
5340 goto out;
5341 }
5342 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5343 }
5344 ext4_journal_stop(handle);
5345 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5346 goto retry_alloc;
5347out_ret:
5348 ret = block_page_mkwrite_return(ret);
5349out:
8e8ad8a5 5350 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5351 return ret;
5352}