]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
dax: improve comment about truncate race
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
f348c252 142int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
e2bfb088
TT
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
0637c6f4
TT
322/*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
5f634d06
AK
326void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
12219aea
AK
328{
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 330 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
331
332 spin_lock(&ei->i_block_reservation_lock);
d8990240 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 334 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 336 "with only %d reserved data blocks",
0637c6f4
TT
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
12219aea 342
0637c6f4
TT
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
71d4f7d0 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 346
12219aea 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 348
72b8ab9d
ES
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
7b415bf6 351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 352 else {
5f634d06
AK
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
72b8ab9d 356 * not re-claim the quota for fallocated blocks.
5f634d06 357 */
7b415bf6 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 359 }
d6014301
AK
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
0637c6f4
TT
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
d6014301 368 ext4_discard_preallocations(inode);
12219aea
AK
369}
370
e29136f8 371static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
372 unsigned int line,
373 struct ext4_map_blocks *map)
6fd058f7 374{
24676da4
TT
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
c398eda0
TT
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
6fd058f7
TT
381 return -EIO;
382 }
383 return 0;
384}
385
e29136f8 386#define check_block_validity(inode, map) \
c398eda0 387 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 388
921f266b
DM
389#ifdef ES_AGGRESSIVE_TEST
390static void ext4_map_blocks_es_recheck(handle_t *handle,
391 struct inode *inode,
392 struct ext4_map_blocks *es_map,
393 struct ext4_map_blocks *map,
394 int flags)
395{
396 int retval;
397
398 map->m_flags = 0;
399 /*
400 * There is a race window that the result is not the same.
401 * e.g. xfstests #223 when dioread_nolock enables. The reason
402 * is that we lookup a block mapping in extent status tree with
403 * out taking i_data_sem. So at the time the unwritten extent
404 * could be converted.
405 */
406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 407 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 EXT4_GET_BLOCKS_KEEP_SIZE);
411 } else {
412 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
414 }
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
417
418 /*
419 * We don't check m_len because extent will be collpased in status
420 * tree. So the m_len might not equal.
421 */
422 if (es_map->m_lblk != map->m_lblk ||
423 es_map->m_flags != map->m_flags ||
424 es_map->m_pblk != map->m_pblk) {
bdafe42a 425 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
426 "es_cached ex [%d/%d/%llu/%x] != "
427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 inode->i_ino, es_map->m_lblk, es_map->m_len,
429 es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 map->m_len, map->m_pblk, map->m_flags,
431 retval, flags);
432 }
433}
434#endif /* ES_AGGRESSIVE_TEST */
435
f5ab0d1f 436/*
e35fd660 437 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 438 * and returns if the blocks are already mapped.
f5ab0d1f 439 *
f5ab0d1f
MC
440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441 * and store the allocated blocks in the result buffer head and mark it
442 * mapped.
443 *
e35fd660
TT
444 * If file type is extents based, it will call ext4_ext_map_blocks(),
445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
446 * based files
447 *
556615dc
LC
448 * On success, it returns the number of blocks being mapped or allocated.
449 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
450 * the result buffer head is unmapped. If the create ==1, it will make sure
451 * the buffer head is mapped.
452 *
453 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 454 * that case, buffer head is unmapped
f5ab0d1f
MC
455 *
456 * It returns the error in case of allocation failure.
457 */
e35fd660
TT
458int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 struct ext4_map_blocks *map, int flags)
0e855ac8 460{
d100eef2 461 struct extent_status es;
0e855ac8 462 int retval;
b8a86845 463 int ret = 0;
921f266b
DM
464#ifdef ES_AGGRESSIVE_TEST
465 struct ext4_map_blocks orig_map;
466
467 memcpy(&orig_map, map, sizeof(*map));
468#endif
f5ab0d1f 469
e35fd660
TT
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
d100eef2 474
e861b5e9
TT
475 /*
476 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 */
478 if (unlikely(map->m_len > INT_MAX))
479 map->m_len = INT_MAX;
480
4adb6ab3
KM
481 /* We can handle the block number less than EXT_MAX_BLOCKS */
482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 return -EIO;
484
d100eef2
ZL
485 /* Lookup extent status tree firstly */
486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 map->m_pblk = ext4_es_pblock(&es) +
489 map->m_lblk - es.es_lblk;
490 map->m_flags |= ext4_es_is_written(&es) ?
491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 retval = es.es_len - (map->m_lblk - es.es_lblk);
493 if (retval > map->m_len)
494 retval = map->m_len;
495 map->m_len = retval;
496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 retval = 0;
498 } else {
499 BUG_ON(1);
500 }
921f266b
DM
501#ifdef ES_AGGRESSIVE_TEST
502 ext4_map_blocks_es_recheck(handle, inode, map,
503 &orig_map, flags);
504#endif
d100eef2
ZL
505 goto found;
506 }
507
4df3d265 508 /*
b920c755
TT
509 * Try to see if we can get the block without requesting a new
510 * file system block.
4df3d265 511 */
729f52c6 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 513 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
515 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 517 } else {
a4e5d88b
DM
518 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 520 }
f7fec032 521 if (retval > 0) {
3be78c73 522 unsigned int status;
f7fec032 523
44fb851d
ZL
524 if (unlikely(retval != map->m_len)) {
525 ext4_warning(inode->i_sb,
526 "ES len assertion failed for inode "
527 "%lu: retval %d != map->m_len %d",
528 inode->i_ino, retval, map->m_len);
529 WARN_ON(1);
921f266b 530 }
921f266b 531
f7fec032
ZL
532 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 535 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
536 ext4_find_delalloc_range(inode, map->m_lblk,
537 map->m_lblk + map->m_len - 1))
538 status |= EXTENT_STATUS_DELAYED;
539 ret = ext4_es_insert_extent(inode, map->m_lblk,
540 map->m_len, map->m_pblk, status);
541 if (ret < 0)
542 retval = ret;
543 }
729f52c6
ZL
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 546
d100eef2 547found:
e35fd660 548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 549 ret = check_block_validity(inode, map);
6fd058f7
TT
550 if (ret != 0)
551 return ret;
552 }
553
f5ab0d1f 554 /* If it is only a block(s) look up */
c2177057 555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
556 return retval;
557
558 /*
559 * Returns if the blocks have already allocated
560 *
561 * Note that if blocks have been preallocated
df3ab170 562 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
563 * with buffer head unmapped.
564 */
e35fd660 565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
566 /*
567 * If we need to convert extent to unwritten
568 * we continue and do the actual work in
569 * ext4_ext_map_blocks()
570 */
571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 return retval;
4df3d265 573
2a8964d6 574 /*
a25a4e1a
ZL
575 * Here we clear m_flags because after allocating an new extent,
576 * it will be set again.
2a8964d6 577 */
a25a4e1a 578 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 579
4df3d265 580 /*
556615dc 581 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 582 * will possibly result in updating i_data, so we take
d91bd2c1 583 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 584 * with create == 1 flag.
4df3d265 585 */
c8b459f4 586 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 587
4df3d265
AK
588 /*
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
591 */
12e9b892 592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 594 } else {
e35fd660 595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 596
e35fd660 597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
598 /*
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
602 */
19f5fb7a 603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 604 }
d2a17637 605
5f634d06
AK
606 /*
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
611 */
612 if ((retval > 0) &&
1296cc85 613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
614 ext4_da_update_reserve_space(inode, retval, 1);
615 }
2ac3b6e0 616
f7fec032 617 if (retval > 0) {
3be78c73 618 unsigned int status;
f7fec032 619
44fb851d
ZL
620 if (unlikely(retval != map->m_len)) {
621 ext4_warning(inode->i_sb,
622 "ES len assertion failed for inode "
623 "%lu: retval %d != map->m_len %d",
624 inode->i_ino, retval, map->m_len);
625 WARN_ON(1);
921f266b 626 }
921f266b 627
adb23551
ZL
628 /*
629 * If the extent has been zeroed out, we don't need to update
630 * extent status tree.
631 */
632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 if (ext4_es_is_written(&es))
635 goto has_zeroout;
636 }
f7fec032
ZL
637 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 640 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
5356f261
AK
648 }
649
adb23551 650has_zeroout:
4df3d265 651 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 653 ret = check_block_validity(inode, map);
6fd058f7
TT
654 if (ret != 0)
655 return ret;
656 }
0e855ac8
AK
657 return retval;
658}
659
f3bd1f3f
MC
660/* Maximum number of blocks we map for direct IO at once. */
661#define DIO_MAX_BLOCKS 4096
662
2ed88685
TT
663static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 struct buffer_head *bh, int flags)
ac27a0ec 665{
3e4fdaf8 666 handle_t *handle = ext4_journal_current_handle();
2ed88685 667 struct ext4_map_blocks map;
7fb5409d 668 int ret = 0, started = 0;
f3bd1f3f 669 int dio_credits;
ac27a0ec 670
46c7f254
TM
671 if (ext4_has_inline_data(inode))
672 return -ERANGE;
673
2ed88685
TT
674 map.m_lblk = iblock;
675 map.m_len = bh->b_size >> inode->i_blkbits;
676
8b0f165f 677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 678 /* Direct IO write... */
2ed88685
TT
679 if (map.m_len > DIO_MAX_BLOCKS)
680 map.m_len = DIO_MAX_BLOCKS;
681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 dio_credits);
7fb5409d 684 if (IS_ERR(handle)) {
ac27a0ec 685 ret = PTR_ERR(handle);
2ed88685 686 return ret;
ac27a0ec 687 }
7fb5409d 688 started = 1;
ac27a0ec
DK
689 }
690
2ed88685 691 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 692 if (ret > 0) {
7b7a8665
CH
693 ext4_io_end_t *io_end = ext4_inode_aio(inode);
694
2ed88685
TT
695 map_bh(bh, inode->i_sb, map.m_pblk);
696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
e842f290
DC
697 if (IS_DAX(inode) && buffer_unwritten(bh)) {
698 /*
699 * dgc: I suspect unwritten conversion on ext4+DAX is
700 * fundamentally broken here when there are concurrent
701 * read/write in progress on this inode.
702 */
703 WARN_ON_ONCE(io_end);
923ae0ff
RZ
704 bh->b_assoc_map = inode->i_mapping;
705 bh->b_private = (void *)(unsigned long)iblock;
923ae0ff 706 }
7b7a8665
CH
707 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
708 set_buffer_defer_completion(bh);
2ed88685 709 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 710 ret = 0;
ac27a0ec 711 }
7fb5409d
JK
712 if (started)
713 ext4_journal_stop(handle);
ac27a0ec
DK
714 return ret;
715}
716
2ed88685
TT
717int ext4_get_block(struct inode *inode, sector_t iblock,
718 struct buffer_head *bh, int create)
719{
720 return _ext4_get_block(inode, iblock, bh,
721 create ? EXT4_GET_BLOCKS_CREATE : 0);
722}
723
ac27a0ec
DK
724/*
725 * `handle' can be NULL if create is zero
726 */
617ba13b 727struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 728 ext4_lblk_t block, int map_flags)
ac27a0ec 729{
2ed88685
TT
730 struct ext4_map_blocks map;
731 struct buffer_head *bh;
c5e298ae 732 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 733 int err;
ac27a0ec
DK
734
735 J_ASSERT(handle != NULL || create == 0);
736
2ed88685
TT
737 map.m_lblk = block;
738 map.m_len = 1;
c5e298ae 739 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 740
10560082
TT
741 if (err == 0)
742 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 743 if (err < 0)
10560082 744 return ERR_PTR(err);
2ed88685
TT
745
746 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
747 if (unlikely(!bh))
748 return ERR_PTR(-ENOMEM);
2ed88685
TT
749 if (map.m_flags & EXT4_MAP_NEW) {
750 J_ASSERT(create != 0);
751 J_ASSERT(handle != NULL);
ac27a0ec 752
2ed88685
TT
753 /*
754 * Now that we do not always journal data, we should
755 * keep in mind whether this should always journal the
756 * new buffer as metadata. For now, regular file
757 * writes use ext4_get_block instead, so it's not a
758 * problem.
759 */
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
762 err = ext4_journal_get_create_access(handle, bh);
763 if (unlikely(err)) {
764 unlock_buffer(bh);
765 goto errout;
766 }
767 if (!buffer_uptodate(bh)) {
2ed88685
TT
768 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
769 set_buffer_uptodate(bh);
ac27a0ec 770 }
2ed88685
TT
771 unlock_buffer(bh);
772 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
773 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
774 if (unlikely(err))
775 goto errout;
776 } else
2ed88685 777 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 778 return bh;
10560082
TT
779errout:
780 brelse(bh);
781 return ERR_PTR(err);
ac27a0ec
DK
782}
783
617ba13b 784struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 785 ext4_lblk_t block, int map_flags)
ac27a0ec 786{
af5bc92d 787 struct buffer_head *bh;
ac27a0ec 788
c5e298ae 789 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 790 if (IS_ERR(bh))
ac27a0ec 791 return bh;
1c215028 792 if (!bh || buffer_uptodate(bh))
ac27a0ec 793 return bh;
65299a3b 794 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
795 wait_on_buffer(bh);
796 if (buffer_uptodate(bh))
797 return bh;
798 put_bh(bh);
1c215028 799 return ERR_PTR(-EIO);
ac27a0ec
DK
800}
801
f19d5870
TM
802int ext4_walk_page_buffers(handle_t *handle,
803 struct buffer_head *head,
804 unsigned from,
805 unsigned to,
806 int *partial,
807 int (*fn)(handle_t *handle,
808 struct buffer_head *bh))
ac27a0ec
DK
809{
810 struct buffer_head *bh;
811 unsigned block_start, block_end;
812 unsigned blocksize = head->b_size;
813 int err, ret = 0;
814 struct buffer_head *next;
815
af5bc92d
TT
816 for (bh = head, block_start = 0;
817 ret == 0 && (bh != head || !block_start);
de9a55b8 818 block_start = block_end, bh = next) {
ac27a0ec
DK
819 next = bh->b_this_page;
820 block_end = block_start + blocksize;
821 if (block_end <= from || block_start >= to) {
822 if (partial && !buffer_uptodate(bh))
823 *partial = 1;
824 continue;
825 }
826 err = (*fn)(handle, bh);
827 if (!ret)
828 ret = err;
829 }
830 return ret;
831}
832
833/*
834 * To preserve ordering, it is essential that the hole instantiation and
835 * the data write be encapsulated in a single transaction. We cannot
617ba13b 836 * close off a transaction and start a new one between the ext4_get_block()
dab291af 837 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
838 * prepare_write() is the right place.
839 *
36ade451
JK
840 * Also, this function can nest inside ext4_writepage(). In that case, we
841 * *know* that ext4_writepage() has generated enough buffer credits to do the
842 * whole page. So we won't block on the journal in that case, which is good,
843 * because the caller may be PF_MEMALLOC.
ac27a0ec 844 *
617ba13b 845 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
850 * violation.
851 *
dab291af 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
855 * write.
856 */
f19d5870
TM
857int do_journal_get_write_access(handle_t *handle,
858 struct buffer_head *bh)
ac27a0ec 859{
56d35a4c
JK
860 int dirty = buffer_dirty(bh);
861 int ret;
862
ac27a0ec
DK
863 if (!buffer_mapped(bh) || buffer_freed(bh))
864 return 0;
56d35a4c 865 /*
ebdec241 866 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 869 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
872 */
873 if (dirty)
874 clear_buffer_dirty(bh);
5d601255 875 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
876 ret = ext4_journal_get_write_access(handle, bh);
877 if (!ret && dirty)
878 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
879 return ret;
ac27a0ec
DK
880}
881
8b0f165f
AP
882static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
883 struct buffer_head *bh_result, int create);
2058f83a
MH
884
885#ifdef CONFIG_EXT4_FS_ENCRYPTION
886static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
887 get_block_t *get_block)
888{
889 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
890 unsigned to = from + len;
891 struct inode *inode = page->mapping->host;
892 unsigned block_start, block_end;
893 sector_t block;
894 int err = 0;
895 unsigned blocksize = inode->i_sb->s_blocksize;
896 unsigned bbits;
897 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
898 bool decrypt = false;
899
900 BUG_ON(!PageLocked(page));
901 BUG_ON(from > PAGE_CACHE_SIZE);
902 BUG_ON(to > PAGE_CACHE_SIZE);
903 BUG_ON(from > to);
904
905 if (!page_has_buffers(page))
906 create_empty_buffers(page, blocksize, 0);
907 head = page_buffers(page);
908 bbits = ilog2(blocksize);
909 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
910
911 for (bh = head, block_start = 0; bh != head || !block_start;
912 block++, block_start = block_end, bh = bh->b_this_page) {
913 block_end = block_start + blocksize;
914 if (block_end <= from || block_start >= to) {
915 if (PageUptodate(page)) {
916 if (!buffer_uptodate(bh))
917 set_buffer_uptodate(bh);
918 }
919 continue;
920 }
921 if (buffer_new(bh))
922 clear_buffer_new(bh);
923 if (!buffer_mapped(bh)) {
924 WARN_ON(bh->b_size != blocksize);
925 err = get_block(inode, block, bh, 1);
926 if (err)
927 break;
928 if (buffer_new(bh)) {
929 unmap_underlying_metadata(bh->b_bdev,
930 bh->b_blocknr);
931 if (PageUptodate(page)) {
932 clear_buffer_new(bh);
933 set_buffer_uptodate(bh);
934 mark_buffer_dirty(bh);
935 continue;
936 }
937 if (block_end > to || block_start < from)
938 zero_user_segments(page, to, block_end,
939 block_start, from);
940 continue;
941 }
942 }
943 if (PageUptodate(page)) {
944 if (!buffer_uptodate(bh))
945 set_buffer_uptodate(bh);
946 continue;
947 }
948 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
949 !buffer_unwritten(bh) &&
950 (block_start < from || block_end > to)) {
951 ll_rw_block(READ, 1, &bh);
952 *wait_bh++ = bh;
953 decrypt = ext4_encrypted_inode(inode) &&
954 S_ISREG(inode->i_mode);
955 }
956 }
957 /*
958 * If we issued read requests, let them complete.
959 */
960 while (wait_bh > wait) {
961 wait_on_buffer(*--wait_bh);
962 if (!buffer_uptodate(*wait_bh))
963 err = -EIO;
964 }
965 if (unlikely(err))
966 page_zero_new_buffers(page, from, to);
967 else if (decrypt)
968 err = ext4_decrypt_one(inode, page);
969 return err;
970}
971#endif
972
bfc1af65 973static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
ac27a0ec 976{
af5bc92d 977 struct inode *inode = mapping->host;
1938a150 978 int ret, needed_blocks;
ac27a0ec
DK
979 handle_t *handle;
980 int retries = 0;
af5bc92d 981 struct page *page;
de9a55b8 982 pgoff_t index;
af5bc92d 983 unsigned from, to;
bfc1af65 984
9bffad1e 985 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
986 /*
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
989 */
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 991 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
992 from = pos & (PAGE_CACHE_SIZE - 1);
993 to = from + len;
ac27a0ec 994
f19d5870
TM
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 flags, pagep);
998 if (ret < 0)
47564bfb
TT
999 return ret;
1000 if (ret == 1)
1001 return 0;
f19d5870
TM
1002 }
1003
47564bfb
TT
1004 /*
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1010 */
1011retry_grab:
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1013 if (!page)
1014 return -ENOMEM;
1015 unlock_page(page);
1016
1017retry_journal:
9924a92a 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1019 if (IS_ERR(handle)) {
47564bfb
TT
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
7479d2b9 1022 }
ac27a0ec 1023
47564bfb
TT
1024 lock_page(page);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1027 unlock_page(page);
1028 page_cache_release(page);
cf108bca 1029 ext4_journal_stop(handle);
47564bfb 1030 goto retry_grab;
cf108bca 1031 }
7afe5aa5
DM
1032 /* In case writeback began while the page was unlocked */
1033 wait_for_stable_page(page);
cf108bca 1034
2058f83a
MH
1035#ifdef CONFIG_EXT4_FS_ENCRYPTION
1036 if (ext4_should_dioread_nolock(inode))
1037 ret = ext4_block_write_begin(page, pos, len,
1038 ext4_get_block_write);
1039 else
1040 ret = ext4_block_write_begin(page, pos, len,
1041 ext4_get_block);
1042#else
744692dc 1043 if (ext4_should_dioread_nolock(inode))
6e1db88d 1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1045 else
6e1db88d 1046 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1047#endif
bfc1af65 1048 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1049 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 from, to, NULL,
1051 do_journal_get_write_access);
ac27a0ec 1052 }
bfc1af65
NP
1053
1054 if (ret) {
af5bc92d 1055 unlock_page(page);
ae4d5372 1056 /*
6e1db88d 1057 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1058 * outside i_size. Trim these off again. Don't need
1059 * i_size_read because we hold i_mutex.
1938a150
AK
1060 *
1061 * Add inode to orphan list in case we crash before
1062 * truncate finishes
ae4d5372 1063 */
ffacfa7a 1064 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1065 ext4_orphan_add(handle, inode);
1066
1067 ext4_journal_stop(handle);
1068 if (pos + len > inode->i_size) {
b9a4207d 1069 ext4_truncate_failed_write(inode);
de9a55b8 1070 /*
ffacfa7a 1071 * If truncate failed early the inode might
1938a150
AK
1072 * still be on the orphan list; we need to
1073 * make sure the inode is removed from the
1074 * orphan list in that case.
1075 */
1076 if (inode->i_nlink)
1077 ext4_orphan_del(NULL, inode);
1078 }
bfc1af65 1079
47564bfb
TT
1080 if (ret == -ENOSPC &&
1081 ext4_should_retry_alloc(inode->i_sb, &retries))
1082 goto retry_journal;
1083 page_cache_release(page);
1084 return ret;
1085 }
1086 *pagep = page;
ac27a0ec
DK
1087 return ret;
1088}
1089
bfc1af65
NP
1090/* For write_end() in data=journal mode */
1091static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1092{
13fca323 1093 int ret;
ac27a0ec
DK
1094 if (!buffer_mapped(bh) || buffer_freed(bh))
1095 return 0;
1096 set_buffer_uptodate(bh);
13fca323
TT
1097 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1098 clear_buffer_meta(bh);
1099 clear_buffer_prio(bh);
1100 return ret;
ac27a0ec
DK
1101}
1102
eed4333f
ZL
1103/*
1104 * We need to pick up the new inode size which generic_commit_write gave us
1105 * `file' can be NULL - eg, when called from page_symlink().
1106 *
1107 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1108 * buffers are managed internally.
1109 */
1110static int ext4_write_end(struct file *file,
1111 struct address_space *mapping,
1112 loff_t pos, unsigned len, unsigned copied,
1113 struct page *page, void *fsdata)
f8514083 1114{
f8514083 1115 handle_t *handle = ext4_journal_current_handle();
eed4333f 1116 struct inode *inode = mapping->host;
0572639f 1117 loff_t old_size = inode->i_size;
eed4333f
ZL
1118 int ret = 0, ret2;
1119 int i_size_changed = 0;
1120
1121 trace_ext4_write_end(inode, pos, len, copied);
1122 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1123 ret = ext4_jbd2_file_inode(handle, inode);
1124 if (ret) {
1125 unlock_page(page);
1126 page_cache_release(page);
1127 goto errout;
1128 }
1129 }
f8514083 1130
42c832de
TT
1131 if (ext4_has_inline_data(inode)) {
1132 ret = ext4_write_inline_data_end(inode, pos, len,
1133 copied, page);
1134 if (ret < 0)
1135 goto errout;
1136 copied = ret;
1137 } else
f19d5870
TM
1138 copied = block_write_end(file, mapping, pos,
1139 len, copied, page, fsdata);
f8514083 1140 /*
4631dbf6 1141 * it's important to update i_size while still holding page lock:
f8514083
AK
1142 * page writeout could otherwise come in and zero beyond i_size.
1143 */
4631dbf6 1144 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1145 unlock_page(page);
1146 page_cache_release(page);
1147
0572639f
XW
1148 if (old_size < pos)
1149 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1150 /*
1151 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 * makes the holding time of page lock longer. Second, it forces lock
1153 * ordering of page lock and transaction start for journaling
1154 * filesystems.
1155 */
1156 if (i_size_changed)
1157 ext4_mark_inode_dirty(handle, inode);
1158
ffacfa7a 1159 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1160 /* if we have allocated more blocks and copied
1161 * less. We will have blocks allocated outside
1162 * inode->i_size. So truncate them
1163 */
1164 ext4_orphan_add(handle, inode);
74d553aa 1165errout:
617ba13b 1166 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1167 if (!ret)
1168 ret = ret2;
bfc1af65 1169
f8514083 1170 if (pos + len > inode->i_size) {
b9a4207d 1171 ext4_truncate_failed_write(inode);
de9a55b8 1172 /*
ffacfa7a 1173 * If truncate failed early the inode might still be
f8514083
AK
1174 * on the orphan list; we need to make sure the inode
1175 * is removed from the orphan list in that case.
1176 */
1177 if (inode->i_nlink)
1178 ext4_orphan_del(NULL, inode);
1179 }
1180
bfc1af65 1181 return ret ? ret : copied;
ac27a0ec
DK
1182}
1183
bfc1af65 1184static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1185 struct address_space *mapping,
1186 loff_t pos, unsigned len, unsigned copied,
1187 struct page *page, void *fsdata)
ac27a0ec 1188{
617ba13b 1189 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1190 struct inode *inode = mapping->host;
0572639f 1191 loff_t old_size = inode->i_size;
ac27a0ec
DK
1192 int ret = 0, ret2;
1193 int partial = 0;
bfc1af65 1194 unsigned from, to;
4631dbf6 1195 int size_changed = 0;
ac27a0ec 1196
9bffad1e 1197 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1198 from = pos & (PAGE_CACHE_SIZE - 1);
1199 to = from + len;
1200
441c8508
CW
1201 BUG_ON(!ext4_handle_valid(handle));
1202
3fdcfb66
TM
1203 if (ext4_has_inline_data(inode))
1204 copied = ext4_write_inline_data_end(inode, pos, len,
1205 copied, page);
1206 else {
1207 if (copied < len) {
1208 if (!PageUptodate(page))
1209 copied = 0;
1210 page_zero_new_buffers(page, from+copied, to);
1211 }
ac27a0ec 1212
3fdcfb66
TM
1213 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1214 to, &partial, write_end_fn);
1215 if (!partial)
1216 SetPageUptodate(page);
1217 }
4631dbf6 1218 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1219 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1220 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1221 unlock_page(page);
1222 page_cache_release(page);
1223
0572639f
XW
1224 if (old_size < pos)
1225 pagecache_isize_extended(inode, old_size, pos);
1226
4631dbf6 1227 if (size_changed) {
617ba13b 1228 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1229 if (!ret)
1230 ret = ret2;
1231 }
bfc1af65 1232
ffacfa7a 1233 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1234 /* if we have allocated more blocks and copied
1235 * less. We will have blocks allocated outside
1236 * inode->i_size. So truncate them
1237 */
1238 ext4_orphan_add(handle, inode);
1239
617ba13b 1240 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1241 if (!ret)
1242 ret = ret2;
f8514083 1243 if (pos + len > inode->i_size) {
b9a4207d 1244 ext4_truncate_failed_write(inode);
de9a55b8 1245 /*
ffacfa7a 1246 * If truncate failed early the inode might still be
f8514083
AK
1247 * on the orphan list; we need to make sure the inode
1248 * is removed from the orphan list in that case.
1249 */
1250 if (inode->i_nlink)
1251 ext4_orphan_del(NULL, inode);
1252 }
bfc1af65
NP
1253
1254 return ret ? ret : copied;
ac27a0ec 1255}
d2a17637 1256
9d0be502 1257/*
c27e43a1 1258 * Reserve space for a single cluster
9d0be502 1259 */
c27e43a1 1260static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1261{
60e58e0f 1262 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1263 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1264 int ret;
03179fe9
TT
1265
1266 /*
1267 * We will charge metadata quota at writeout time; this saves
1268 * us from metadata over-estimation, though we may go over by
1269 * a small amount in the end. Here we just reserve for data.
1270 */
1271 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1272 if (ret)
1273 return ret;
d2a17637 1274
0637c6f4 1275 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1276 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1277 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1278 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1279 return -ENOSPC;
1280 }
9d0be502 1281 ei->i_reserved_data_blocks++;
c27e43a1 1282 trace_ext4_da_reserve_space(inode);
0637c6f4 1283 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1284
d2a17637
MC
1285 return 0; /* success */
1286}
1287
12219aea 1288static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1289{
1290 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1291 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1292
cd213226
MC
1293 if (!to_free)
1294 return; /* Nothing to release, exit */
1295
d2a17637 1296 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1297
5a58ec87 1298 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1299 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1300 /*
0637c6f4
TT
1301 * if there aren't enough reserved blocks, then the
1302 * counter is messed up somewhere. Since this
1303 * function is called from invalidate page, it's
1304 * harmless to return without any action.
cd213226 1305 */
8de5c325 1306 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1307 "ino %lu, to_free %d with only %d reserved "
1084f252 1308 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1309 ei->i_reserved_data_blocks);
1310 WARN_ON(1);
1311 to_free = ei->i_reserved_data_blocks;
cd213226 1312 }
0637c6f4 1313 ei->i_reserved_data_blocks -= to_free;
cd213226 1314
72b8ab9d 1315 /* update fs dirty data blocks counter */
57042651 1316 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1317
d2a17637 1318 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1319
7b415bf6 1320 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1321}
1322
1323static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1324 unsigned int offset,
1325 unsigned int length)
d2a17637 1326{
9705acd6 1327 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1328 struct buffer_head *head, *bh;
1329 unsigned int curr_off = 0;
7b415bf6
AK
1330 struct inode *inode = page->mapping->host;
1331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1332 unsigned int stop = offset + length;
7b415bf6 1333 int num_clusters;
51865fda 1334 ext4_fsblk_t lblk;
d2a17637 1335
ca99fdd2
LC
1336 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1337
d2a17637
MC
1338 head = page_buffers(page);
1339 bh = head;
1340 do {
1341 unsigned int next_off = curr_off + bh->b_size;
1342
ca99fdd2
LC
1343 if (next_off > stop)
1344 break;
1345
d2a17637
MC
1346 if ((offset <= curr_off) && (buffer_delay(bh))) {
1347 to_release++;
9705acd6 1348 contiguous_blks++;
d2a17637 1349 clear_buffer_delay(bh);
9705acd6
LC
1350 } else if (contiguous_blks) {
1351 lblk = page->index <<
1352 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353 lblk += (curr_off >> inode->i_blkbits) -
1354 contiguous_blks;
1355 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1356 contiguous_blks = 0;
d2a17637
MC
1357 }
1358 curr_off = next_off;
1359 } while ((bh = bh->b_this_page) != head);
7b415bf6 1360
9705acd6 1361 if (contiguous_blks) {
51865fda 1362 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
9705acd6
LC
1363 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1364 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1365 }
1366
7b415bf6
AK
1367 /* If we have released all the blocks belonging to a cluster, then we
1368 * need to release the reserved space for that cluster. */
1369 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1370 while (num_clusters > 0) {
7b415bf6
AK
1371 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1372 ((num_clusters - 1) << sbi->s_cluster_bits);
1373 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1374 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1375 ext4_da_release_space(inode, 1);
1376
1377 num_clusters--;
1378 }
d2a17637 1379}
ac27a0ec 1380
64769240
AT
1381/*
1382 * Delayed allocation stuff
1383 */
1384
4e7ea81d
JK
1385struct mpage_da_data {
1386 struct inode *inode;
1387 struct writeback_control *wbc;
6b523df4 1388
4e7ea81d
JK
1389 pgoff_t first_page; /* The first page to write */
1390 pgoff_t next_page; /* Current page to examine */
1391 pgoff_t last_page; /* Last page to examine */
791b7f08 1392 /*
4e7ea81d
JK
1393 * Extent to map - this can be after first_page because that can be
1394 * fully mapped. We somewhat abuse m_flags to store whether the extent
1395 * is delalloc or unwritten.
791b7f08 1396 */
4e7ea81d
JK
1397 struct ext4_map_blocks map;
1398 struct ext4_io_submit io_submit; /* IO submission data */
1399};
64769240 1400
4e7ea81d
JK
1401static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1402 bool invalidate)
c4a0c46e
AK
1403{
1404 int nr_pages, i;
1405 pgoff_t index, end;
1406 struct pagevec pvec;
1407 struct inode *inode = mpd->inode;
1408 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1409
1410 /* This is necessary when next_page == 0. */
1411 if (mpd->first_page >= mpd->next_page)
1412 return;
c4a0c46e 1413
c7f5938a
CW
1414 index = mpd->first_page;
1415 end = mpd->next_page - 1;
4e7ea81d
JK
1416 if (invalidate) {
1417 ext4_lblk_t start, last;
1418 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1419 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1420 ext4_es_remove_extent(inode, start, last - start + 1);
1421 }
51865fda 1422
66bea92c 1423 pagevec_init(&pvec, 0);
c4a0c46e
AK
1424 while (index <= end) {
1425 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1426 if (nr_pages == 0)
1427 break;
1428 for (i = 0; i < nr_pages; i++) {
1429 struct page *page = pvec.pages[i];
9b1d0998 1430 if (page->index > end)
c4a0c46e 1431 break;
c4a0c46e
AK
1432 BUG_ON(!PageLocked(page));
1433 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1434 if (invalidate) {
1435 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1436 ClearPageUptodate(page);
1437 }
c4a0c46e
AK
1438 unlock_page(page);
1439 }
9b1d0998
JK
1440 index = pvec.pages[nr_pages - 1]->index + 1;
1441 pagevec_release(&pvec);
c4a0c46e 1442 }
c4a0c46e
AK
1443}
1444
df22291f
AK
1445static void ext4_print_free_blocks(struct inode *inode)
1446{
1447 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1448 struct super_block *sb = inode->i_sb;
f78ee70d 1449 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1450
1451 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1452 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1453 ext4_count_free_clusters(sb)));
92b97816
TT
1454 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1455 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1456 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1457 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1458 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1459 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1460 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1461 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1462 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1463 ei->i_reserved_data_blocks);
df22291f
AK
1464 return;
1465}
1466
c364b22c 1467static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1468{
c364b22c 1469 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1470}
1471
5356f261
AK
1472/*
1473 * This function is grabs code from the very beginning of
1474 * ext4_map_blocks, but assumes that the caller is from delayed write
1475 * time. This function looks up the requested blocks and sets the
1476 * buffer delay bit under the protection of i_data_sem.
1477 */
1478static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1479 struct ext4_map_blocks *map,
1480 struct buffer_head *bh)
1481{
d100eef2 1482 struct extent_status es;
5356f261
AK
1483 int retval;
1484 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1485#ifdef ES_AGGRESSIVE_TEST
1486 struct ext4_map_blocks orig_map;
1487
1488 memcpy(&orig_map, map, sizeof(*map));
1489#endif
5356f261
AK
1490
1491 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1492 invalid_block = ~0;
1493
1494 map->m_flags = 0;
1495 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1496 "logical block %lu\n", inode->i_ino, map->m_len,
1497 (unsigned long) map->m_lblk);
d100eef2
ZL
1498
1499 /* Lookup extent status tree firstly */
1500 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1501 if (ext4_es_is_hole(&es)) {
1502 retval = 0;
c8b459f4 1503 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1504 goto add_delayed;
1505 }
1506
1507 /*
1508 * Delayed extent could be allocated by fallocate.
1509 * So we need to check it.
1510 */
1511 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1512 map_bh(bh, inode->i_sb, invalid_block);
1513 set_buffer_new(bh);
1514 set_buffer_delay(bh);
1515 return 0;
1516 }
1517
1518 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1519 retval = es.es_len - (iblock - es.es_lblk);
1520 if (retval > map->m_len)
1521 retval = map->m_len;
1522 map->m_len = retval;
1523 if (ext4_es_is_written(&es))
1524 map->m_flags |= EXT4_MAP_MAPPED;
1525 else if (ext4_es_is_unwritten(&es))
1526 map->m_flags |= EXT4_MAP_UNWRITTEN;
1527 else
1528 BUG_ON(1);
1529
921f266b
DM
1530#ifdef ES_AGGRESSIVE_TEST
1531 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1532#endif
d100eef2
ZL
1533 return retval;
1534 }
1535
5356f261
AK
1536 /*
1537 * Try to see if we can get the block without requesting a new
1538 * file system block.
1539 */
c8b459f4 1540 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1541 if (ext4_has_inline_data(inode))
9c3569b5 1542 retval = 0;
cbd7584e 1543 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1544 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1545 else
2f8e0a7c 1546 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1547
d100eef2 1548add_delayed:
5356f261 1549 if (retval == 0) {
f7fec032 1550 int ret;
5356f261
AK
1551 /*
1552 * XXX: __block_prepare_write() unmaps passed block,
1553 * is it OK?
1554 */
386ad67c
LC
1555 /*
1556 * If the block was allocated from previously allocated cluster,
1557 * then we don't need to reserve it again. However we still need
1558 * to reserve metadata for every block we're going to write.
1559 */
c27e43a1 1560 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1561 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1562 ret = ext4_da_reserve_space(inode);
f7fec032 1563 if (ret) {
5356f261 1564 /* not enough space to reserve */
f7fec032 1565 retval = ret;
5356f261 1566 goto out_unlock;
f7fec032 1567 }
5356f261
AK
1568 }
1569
f7fec032
ZL
1570 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1571 ~0, EXTENT_STATUS_DELAYED);
1572 if (ret) {
1573 retval = ret;
51865fda 1574 goto out_unlock;
f7fec032 1575 }
51865fda 1576
5356f261
AK
1577 map_bh(bh, inode->i_sb, invalid_block);
1578 set_buffer_new(bh);
1579 set_buffer_delay(bh);
f7fec032
ZL
1580 } else if (retval > 0) {
1581 int ret;
3be78c73 1582 unsigned int status;
f7fec032 1583
44fb851d
ZL
1584 if (unlikely(retval != map->m_len)) {
1585 ext4_warning(inode->i_sb,
1586 "ES len assertion failed for inode "
1587 "%lu: retval %d != map->m_len %d",
1588 inode->i_ino, retval, map->m_len);
1589 WARN_ON(1);
921f266b 1590 }
921f266b 1591
f7fec032
ZL
1592 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1593 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1594 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1595 map->m_pblk, status);
1596 if (ret != 0)
1597 retval = ret;
5356f261
AK
1598 }
1599
1600out_unlock:
1601 up_read((&EXT4_I(inode)->i_data_sem));
1602
1603 return retval;
1604}
1605
64769240 1606/*
d91bd2c1 1607 * This is a special get_block_t callback which is used by
b920c755
TT
1608 * ext4_da_write_begin(). It will either return mapped block or
1609 * reserve space for a single block.
29fa89d0
AK
1610 *
1611 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1612 * We also have b_blocknr = -1 and b_bdev initialized properly
1613 *
1614 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1615 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1616 * initialized properly.
64769240 1617 */
9c3569b5
TM
1618int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1619 struct buffer_head *bh, int create)
64769240 1620{
2ed88685 1621 struct ext4_map_blocks map;
64769240
AT
1622 int ret = 0;
1623
1624 BUG_ON(create == 0);
2ed88685
TT
1625 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1626
1627 map.m_lblk = iblock;
1628 map.m_len = 1;
64769240
AT
1629
1630 /*
1631 * first, we need to know whether the block is allocated already
1632 * preallocated blocks are unmapped but should treated
1633 * the same as allocated blocks.
1634 */
5356f261
AK
1635 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1636 if (ret <= 0)
2ed88685 1637 return ret;
64769240 1638
2ed88685
TT
1639 map_bh(bh, inode->i_sb, map.m_pblk);
1640 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642 if (buffer_unwritten(bh)) {
1643 /* A delayed write to unwritten bh should be marked
1644 * new and mapped. Mapped ensures that we don't do
1645 * get_block multiple times when we write to the same
1646 * offset and new ensures that we do proper zero out
1647 * for partial write.
1648 */
1649 set_buffer_new(bh);
c8205636 1650 set_buffer_mapped(bh);
2ed88685
TT
1651 }
1652 return 0;
64769240 1653}
61628a3f 1654
62e086be
AK
1655static int bget_one(handle_t *handle, struct buffer_head *bh)
1656{
1657 get_bh(bh);
1658 return 0;
1659}
1660
1661static int bput_one(handle_t *handle, struct buffer_head *bh)
1662{
1663 put_bh(bh);
1664 return 0;
1665}
1666
1667static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1668 unsigned int len)
1669{
1670 struct address_space *mapping = page->mapping;
1671 struct inode *inode = mapping->host;
3fdcfb66 1672 struct buffer_head *page_bufs = NULL;
62e086be 1673 handle_t *handle = NULL;
3fdcfb66
TM
1674 int ret = 0, err = 0;
1675 int inline_data = ext4_has_inline_data(inode);
1676 struct buffer_head *inode_bh = NULL;
62e086be 1677
cb20d518 1678 ClearPageChecked(page);
3fdcfb66
TM
1679
1680 if (inline_data) {
1681 BUG_ON(page->index != 0);
1682 BUG_ON(len > ext4_get_max_inline_size(inode));
1683 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1684 if (inode_bh == NULL)
1685 goto out;
1686 } else {
1687 page_bufs = page_buffers(page);
1688 if (!page_bufs) {
1689 BUG();
1690 goto out;
1691 }
1692 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1693 NULL, bget_one);
1694 }
bdf96838
TT
1695 /*
1696 * We need to release the page lock before we start the
1697 * journal, so grab a reference so the page won't disappear
1698 * out from under us.
1699 */
1700 get_page(page);
62e086be
AK
1701 unlock_page(page);
1702
9924a92a
TT
1703 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1704 ext4_writepage_trans_blocks(inode));
62e086be
AK
1705 if (IS_ERR(handle)) {
1706 ret = PTR_ERR(handle);
bdf96838
TT
1707 put_page(page);
1708 goto out_no_pagelock;
62e086be 1709 }
441c8508
CW
1710 BUG_ON(!ext4_handle_valid(handle));
1711
bdf96838
TT
1712 lock_page(page);
1713 put_page(page);
1714 if (page->mapping != mapping) {
1715 /* The page got truncated from under us */
1716 ext4_journal_stop(handle);
1717 ret = 0;
1718 goto out;
1719 }
1720
3fdcfb66 1721 if (inline_data) {
5d601255 1722 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1723 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1724
3fdcfb66
TM
1725 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1726
1727 } else {
1728 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1729 do_journal_get_write_access);
1730
1731 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1732 write_end_fn);
1733 }
62e086be
AK
1734 if (ret == 0)
1735 ret = err;
2d859db3 1736 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1737 err = ext4_journal_stop(handle);
1738 if (!ret)
1739 ret = err;
1740
3fdcfb66 1741 if (!ext4_has_inline_data(inode))
8c9367fd 1742 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1743 NULL, bput_one);
19f5fb7a 1744 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1745out:
bdf96838
TT
1746 unlock_page(page);
1747out_no_pagelock:
3fdcfb66 1748 brelse(inode_bh);
62e086be
AK
1749 return ret;
1750}
1751
61628a3f 1752/*
43ce1d23
AK
1753 * Note that we don't need to start a transaction unless we're journaling data
1754 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1755 * need to file the inode to the transaction's list in ordered mode because if
1756 * we are writing back data added by write(), the inode is already there and if
25985edc 1757 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1758 * transaction the data will hit the disk. In case we are journaling data, we
1759 * cannot start transaction directly because transaction start ranks above page
1760 * lock so we have to do some magic.
1761 *
b920c755 1762 * This function can get called via...
20970ba6 1763 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1764 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1765 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1766 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1767 *
1768 * We don't do any block allocation in this function. If we have page with
1769 * multiple blocks we need to write those buffer_heads that are mapped. This
1770 * is important for mmaped based write. So if we do with blocksize 1K
1771 * truncate(f, 1024);
1772 * a = mmap(f, 0, 4096);
1773 * a[0] = 'a';
1774 * truncate(f, 4096);
1775 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1776 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1777 * do_wp_page). So writepage should write the first block. If we modify
1778 * the mmap area beyond 1024 we will again get a page_fault and the
1779 * page_mkwrite callback will do the block allocation and mark the
1780 * buffer_heads mapped.
1781 *
1782 * We redirty the page if we have any buffer_heads that is either delay or
1783 * unwritten in the page.
1784 *
1785 * We can get recursively called as show below.
1786 *
1787 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1788 * ext4_writepage()
1789 *
1790 * But since we don't do any block allocation we should not deadlock.
1791 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1792 */
43ce1d23 1793static int ext4_writepage(struct page *page,
62e086be 1794 struct writeback_control *wbc)
64769240 1795{
f8bec370 1796 int ret = 0;
61628a3f 1797 loff_t size;
498e5f24 1798 unsigned int len;
744692dc 1799 struct buffer_head *page_bufs = NULL;
61628a3f 1800 struct inode *inode = page->mapping->host;
36ade451 1801 struct ext4_io_submit io_submit;
1c8349a1 1802 bool keep_towrite = false;
61628a3f 1803
a9c667f8 1804 trace_ext4_writepage(page);
f0e6c985
AK
1805 size = i_size_read(inode);
1806 if (page->index == size >> PAGE_CACHE_SHIFT)
1807 len = size & ~PAGE_CACHE_MASK;
1808 else
1809 len = PAGE_CACHE_SIZE;
64769240 1810
a42afc5f 1811 page_bufs = page_buffers(page);
a42afc5f 1812 /*
fe386132
JK
1813 * We cannot do block allocation or other extent handling in this
1814 * function. If there are buffers needing that, we have to redirty
1815 * the page. But we may reach here when we do a journal commit via
1816 * journal_submit_inode_data_buffers() and in that case we must write
1817 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1818 */
f19d5870
TM
1819 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1820 ext4_bh_delay_or_unwritten)) {
f8bec370 1821 redirty_page_for_writepage(wbc, page);
fe386132
JK
1822 if (current->flags & PF_MEMALLOC) {
1823 /*
1824 * For memory cleaning there's no point in writing only
1825 * some buffers. So just bail out. Warn if we came here
1826 * from direct reclaim.
1827 */
1828 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1829 == PF_MEMALLOC);
f0e6c985
AK
1830 unlock_page(page);
1831 return 0;
1832 }
1c8349a1 1833 keep_towrite = true;
a42afc5f 1834 }
64769240 1835
cb20d518 1836 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1837 /*
1838 * It's mmapped pagecache. Add buffers and journal it. There
1839 * doesn't seem much point in redirtying the page here.
1840 */
3f0ca309 1841 return __ext4_journalled_writepage(page, len);
43ce1d23 1842
97a851ed
JK
1843 ext4_io_submit_init(&io_submit, wbc);
1844 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1845 if (!io_submit.io_end) {
1846 redirty_page_for_writepage(wbc, page);
1847 unlock_page(page);
1848 return -ENOMEM;
1849 }
1c8349a1 1850 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1851 ext4_io_submit(&io_submit);
97a851ed
JK
1852 /* Drop io_end reference we got from init */
1853 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1854 return ret;
1855}
1856
5f1132b2
JK
1857static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1858{
1859 int len;
1860 loff_t size = i_size_read(mpd->inode);
1861 int err;
1862
1863 BUG_ON(page->index != mpd->first_page);
1864 if (page->index == size >> PAGE_CACHE_SHIFT)
1865 len = size & ~PAGE_CACHE_MASK;
1866 else
1867 len = PAGE_CACHE_SIZE;
1868 clear_page_dirty_for_io(page);
1c8349a1 1869 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1870 if (!err)
1871 mpd->wbc->nr_to_write--;
1872 mpd->first_page++;
1873
1874 return err;
1875}
1876
4e7ea81d
JK
1877#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1878
61628a3f 1879/*
fffb2739
JK
1880 * mballoc gives us at most this number of blocks...
1881 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1882 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1883 */
fffb2739 1884#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1885
4e7ea81d
JK
1886/*
1887 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1888 *
1889 * @mpd - extent of blocks
1890 * @lblk - logical number of the block in the file
09930042 1891 * @bh - buffer head we want to add to the extent
4e7ea81d 1892 *
09930042
JK
1893 * The function is used to collect contig. blocks in the same state. If the
1894 * buffer doesn't require mapping for writeback and we haven't started the
1895 * extent of buffers to map yet, the function returns 'true' immediately - the
1896 * caller can write the buffer right away. Otherwise the function returns true
1897 * if the block has been added to the extent, false if the block couldn't be
1898 * added.
4e7ea81d 1899 */
09930042
JK
1900static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1901 struct buffer_head *bh)
4e7ea81d
JK
1902{
1903 struct ext4_map_blocks *map = &mpd->map;
1904
09930042
JK
1905 /* Buffer that doesn't need mapping for writeback? */
1906 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1907 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1908 /* So far no extent to map => we write the buffer right away */
1909 if (map->m_len == 0)
1910 return true;
1911 return false;
1912 }
4e7ea81d
JK
1913
1914 /* First block in the extent? */
1915 if (map->m_len == 0) {
1916 map->m_lblk = lblk;
1917 map->m_len = 1;
09930042
JK
1918 map->m_flags = bh->b_state & BH_FLAGS;
1919 return true;
4e7ea81d
JK
1920 }
1921
09930042
JK
1922 /* Don't go larger than mballoc is willing to allocate */
1923 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1924 return false;
1925
4e7ea81d
JK
1926 /* Can we merge the block to our big extent? */
1927 if (lblk == map->m_lblk + map->m_len &&
09930042 1928 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1929 map->m_len++;
09930042 1930 return true;
4e7ea81d 1931 }
09930042 1932 return false;
4e7ea81d
JK
1933}
1934
5f1132b2
JK
1935/*
1936 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1937 *
1938 * @mpd - extent of blocks for mapping
1939 * @head - the first buffer in the page
1940 * @bh - buffer we should start processing from
1941 * @lblk - logical number of the block in the file corresponding to @bh
1942 *
1943 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1944 * the page for IO if all buffers in this page were mapped and there's no
1945 * accumulated extent of buffers to map or add buffers in the page to the
1946 * extent of buffers to map. The function returns 1 if the caller can continue
1947 * by processing the next page, 0 if it should stop adding buffers to the
1948 * extent to map because we cannot extend it anymore. It can also return value
1949 * < 0 in case of error during IO submission.
1950 */
1951static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1952 struct buffer_head *head,
1953 struct buffer_head *bh,
1954 ext4_lblk_t lblk)
4e7ea81d
JK
1955{
1956 struct inode *inode = mpd->inode;
5f1132b2 1957 int err;
4e7ea81d
JK
1958 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1959 >> inode->i_blkbits;
1960
1961 do {
1962 BUG_ON(buffer_locked(bh));
1963
09930042 1964 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1965 /* Found extent to map? */
1966 if (mpd->map.m_len)
5f1132b2 1967 return 0;
09930042 1968 /* Everything mapped so far and we hit EOF */
5f1132b2 1969 break;
4e7ea81d 1970 }
4e7ea81d 1971 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1972 /* So far everything mapped? Submit the page for IO. */
1973 if (mpd->map.m_len == 0) {
1974 err = mpage_submit_page(mpd, head->b_page);
1975 if (err < 0)
1976 return err;
1977 }
1978 return lblk < blocks;
4e7ea81d
JK
1979}
1980
1981/*
1982 * mpage_map_buffers - update buffers corresponding to changed extent and
1983 * submit fully mapped pages for IO
1984 *
1985 * @mpd - description of extent to map, on return next extent to map
1986 *
1987 * Scan buffers corresponding to changed extent (we expect corresponding pages
1988 * to be already locked) and update buffer state according to new extent state.
1989 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1990 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1991 * and do extent conversion after IO is finished. If the last page is not fully
1992 * mapped, we update @map to the next extent in the last page that needs
1993 * mapping. Otherwise we submit the page for IO.
1994 */
1995static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1996{
1997 struct pagevec pvec;
1998 int nr_pages, i;
1999 struct inode *inode = mpd->inode;
2000 struct buffer_head *head, *bh;
2001 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2002 pgoff_t start, end;
2003 ext4_lblk_t lblk;
2004 sector_t pblock;
2005 int err;
2006
2007 start = mpd->map.m_lblk >> bpp_bits;
2008 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2009 lblk = start << bpp_bits;
2010 pblock = mpd->map.m_pblk;
2011
2012 pagevec_init(&pvec, 0);
2013 while (start <= end) {
2014 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2015 PAGEVEC_SIZE);
2016 if (nr_pages == 0)
2017 break;
2018 for (i = 0; i < nr_pages; i++) {
2019 struct page *page = pvec.pages[i];
2020
2021 if (page->index > end)
2022 break;
70261f56 2023 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2024 BUG_ON(page->index != start);
2025 bh = head = page_buffers(page);
2026 do {
2027 if (lblk < mpd->map.m_lblk)
2028 continue;
2029 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2030 /*
2031 * Buffer after end of mapped extent.
2032 * Find next buffer in the page to map.
2033 */
2034 mpd->map.m_len = 0;
2035 mpd->map.m_flags = 0;
5f1132b2
JK
2036 /*
2037 * FIXME: If dioread_nolock supports
2038 * blocksize < pagesize, we need to make
2039 * sure we add size mapped so far to
2040 * io_end->size as the following call
2041 * can submit the page for IO.
2042 */
2043 err = mpage_process_page_bufs(mpd, head,
2044 bh, lblk);
4e7ea81d 2045 pagevec_release(&pvec);
5f1132b2
JK
2046 if (err > 0)
2047 err = 0;
2048 return err;
4e7ea81d
JK
2049 }
2050 if (buffer_delay(bh)) {
2051 clear_buffer_delay(bh);
2052 bh->b_blocknr = pblock++;
2053 }
4e7ea81d 2054 clear_buffer_unwritten(bh);
5f1132b2 2055 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2056
2057 /*
2058 * FIXME: This is going to break if dioread_nolock
2059 * supports blocksize < pagesize as we will try to
2060 * convert potentially unmapped parts of inode.
2061 */
2062 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2063 /* Page fully mapped - let IO run! */
2064 err = mpage_submit_page(mpd, page);
2065 if (err < 0) {
2066 pagevec_release(&pvec);
2067 return err;
2068 }
2069 start++;
2070 }
2071 pagevec_release(&pvec);
2072 }
2073 /* Extent fully mapped and matches with page boundary. We are done. */
2074 mpd->map.m_len = 0;
2075 mpd->map.m_flags = 0;
2076 return 0;
2077}
2078
2079static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2080{
2081 struct inode *inode = mpd->inode;
2082 struct ext4_map_blocks *map = &mpd->map;
2083 int get_blocks_flags;
090f32ee 2084 int err, dioread_nolock;
4e7ea81d
JK
2085
2086 trace_ext4_da_write_pages_extent(inode, map);
2087 /*
2088 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2089 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2090 * where we have written into one or more preallocated blocks). It is
2091 * possible that we're going to need more metadata blocks than
2092 * previously reserved. However we must not fail because we're in
2093 * writeback and there is nothing we can do about it so it might result
2094 * in data loss. So use reserved blocks to allocate metadata if
2095 * possible.
2096 *
754cfed6
TT
2097 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2098 * the blocks in question are delalloc blocks. This indicates
2099 * that the blocks and quotas has already been checked when
2100 * the data was copied into the page cache.
4e7ea81d
JK
2101 */
2102 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2103 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2104 dioread_nolock = ext4_should_dioread_nolock(inode);
2105 if (dioread_nolock)
4e7ea81d
JK
2106 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2107 if (map->m_flags & (1 << BH_Delay))
2108 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109
2110 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2111 if (err < 0)
2112 return err;
090f32ee 2113 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2114 if (!mpd->io_submit.io_end->handle &&
2115 ext4_handle_valid(handle)) {
2116 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2117 handle->h_rsv_handle = NULL;
2118 }
3613d228 2119 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2120 }
4e7ea81d
JK
2121
2122 BUG_ON(map->m_len == 0);
2123 if (map->m_flags & EXT4_MAP_NEW) {
2124 struct block_device *bdev = inode->i_sb->s_bdev;
2125 int i;
2126
2127 for (i = 0; i < map->m_len; i++)
2128 unmap_underlying_metadata(bdev, map->m_pblk + i);
2129 }
2130 return 0;
2131}
2132
2133/*
2134 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2135 * mpd->len and submit pages underlying it for IO
2136 *
2137 * @handle - handle for journal operations
2138 * @mpd - extent to map
7534e854
JK
2139 * @give_up_on_write - we set this to true iff there is a fatal error and there
2140 * is no hope of writing the data. The caller should discard
2141 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2142 *
2143 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2144 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2145 * them to initialized or split the described range from larger unwritten
2146 * extent. Note that we need not map all the described range since allocation
2147 * can return less blocks or the range is covered by more unwritten extents. We
2148 * cannot map more because we are limited by reserved transaction credits. On
2149 * the other hand we always make sure that the last touched page is fully
2150 * mapped so that it can be written out (and thus forward progress is
2151 * guaranteed). After mapping we submit all mapped pages for IO.
2152 */
2153static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2154 struct mpage_da_data *mpd,
2155 bool *give_up_on_write)
4e7ea81d
JK
2156{
2157 struct inode *inode = mpd->inode;
2158 struct ext4_map_blocks *map = &mpd->map;
2159 int err;
2160 loff_t disksize;
6603120e 2161 int progress = 0;
4e7ea81d
JK
2162
2163 mpd->io_submit.io_end->offset =
2164 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2165 do {
4e7ea81d
JK
2166 err = mpage_map_one_extent(handle, mpd);
2167 if (err < 0) {
2168 struct super_block *sb = inode->i_sb;
2169
cb530541
TT
2170 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2171 goto invalidate_dirty_pages;
4e7ea81d 2172 /*
cb530541
TT
2173 * Let the uper layers retry transient errors.
2174 * In the case of ENOSPC, if ext4_count_free_blocks()
2175 * is non-zero, a commit should free up blocks.
4e7ea81d 2176 */
cb530541 2177 if ((err == -ENOMEM) ||
6603120e
DM
2178 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2179 if (progress)
2180 goto update_disksize;
cb530541 2181 return err;
6603120e 2182 }
cb530541
TT
2183 ext4_msg(sb, KERN_CRIT,
2184 "Delayed block allocation failed for "
2185 "inode %lu at logical offset %llu with"
2186 " max blocks %u with error %d",
2187 inode->i_ino,
2188 (unsigned long long)map->m_lblk,
2189 (unsigned)map->m_len, -err);
2190 ext4_msg(sb, KERN_CRIT,
2191 "This should not happen!! Data will "
2192 "be lost\n");
2193 if (err == -ENOSPC)
2194 ext4_print_free_blocks(inode);
2195 invalidate_dirty_pages:
2196 *give_up_on_write = true;
4e7ea81d
JK
2197 return err;
2198 }
6603120e 2199 progress = 1;
4e7ea81d
JK
2200 /*
2201 * Update buffer state, submit mapped pages, and get us new
2202 * extent to map
2203 */
2204 err = mpage_map_and_submit_buffers(mpd);
2205 if (err < 0)
6603120e 2206 goto update_disksize;
27d7c4ed 2207 } while (map->m_len);
4e7ea81d 2208
6603120e 2209update_disksize:
622cad13
TT
2210 /*
2211 * Update on-disk size after IO is submitted. Races with
2212 * truncate are avoided by checking i_size under i_data_sem.
2213 */
4e7ea81d 2214 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2215 if (disksize > EXT4_I(inode)->i_disksize) {
2216 int err2;
622cad13
TT
2217 loff_t i_size;
2218
2219 down_write(&EXT4_I(inode)->i_data_sem);
2220 i_size = i_size_read(inode);
2221 if (disksize > i_size)
2222 disksize = i_size;
2223 if (disksize > EXT4_I(inode)->i_disksize)
2224 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2225 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2226 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2227 if (err2)
2228 ext4_error(inode->i_sb,
2229 "Failed to mark inode %lu dirty",
2230 inode->i_ino);
2231 if (!err)
2232 err = err2;
2233 }
2234 return err;
2235}
2236
fffb2739
JK
2237/*
2238 * Calculate the total number of credits to reserve for one writepages
20970ba6 2239 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2240 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2241 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2242 * bpp - 1 blocks in bpp different extents.
2243 */
525f4ed8
MC
2244static int ext4_da_writepages_trans_blocks(struct inode *inode)
2245{
fffb2739 2246 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2247
fffb2739
JK
2248 return ext4_meta_trans_blocks(inode,
2249 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2250}
61628a3f 2251
8e48dcfb 2252/*
4e7ea81d
JK
2253 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2254 * and underlying extent to map
2255 *
2256 * @mpd - where to look for pages
2257 *
2258 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2259 * IO immediately. When we find a page which isn't mapped we start accumulating
2260 * extent of buffers underlying these pages that needs mapping (formed by
2261 * either delayed or unwritten buffers). We also lock the pages containing
2262 * these buffers. The extent found is returned in @mpd structure (starting at
2263 * mpd->lblk with length mpd->len blocks).
2264 *
2265 * Note that this function can attach bios to one io_end structure which are
2266 * neither logically nor physically contiguous. Although it may seem as an
2267 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2268 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2269 */
4e7ea81d 2270static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2271{
4e7ea81d
JK
2272 struct address_space *mapping = mpd->inode->i_mapping;
2273 struct pagevec pvec;
2274 unsigned int nr_pages;
aeac589a 2275 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2276 pgoff_t index = mpd->first_page;
2277 pgoff_t end = mpd->last_page;
2278 int tag;
2279 int i, err = 0;
2280 int blkbits = mpd->inode->i_blkbits;
2281 ext4_lblk_t lblk;
2282 struct buffer_head *head;
8e48dcfb 2283
4e7ea81d 2284 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2285 tag = PAGECACHE_TAG_TOWRITE;
2286 else
2287 tag = PAGECACHE_TAG_DIRTY;
2288
4e7ea81d
JK
2289 pagevec_init(&pvec, 0);
2290 mpd->map.m_len = 0;
2291 mpd->next_page = index;
4f01b02c 2292 while (index <= end) {
5b41d924 2293 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2294 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2295 if (nr_pages == 0)
4e7ea81d 2296 goto out;
8e48dcfb
TT
2297
2298 for (i = 0; i < nr_pages; i++) {
2299 struct page *page = pvec.pages[i];
2300
2301 /*
2302 * At this point, the page may be truncated or
2303 * invalidated (changing page->mapping to NULL), or
2304 * even swizzled back from swapper_space to tmpfs file
2305 * mapping. However, page->index will not change
2306 * because we have a reference on the page.
2307 */
4f01b02c
TT
2308 if (page->index > end)
2309 goto out;
8e48dcfb 2310
aeac589a
ML
2311 /*
2312 * Accumulated enough dirty pages? This doesn't apply
2313 * to WB_SYNC_ALL mode. For integrity sync we have to
2314 * keep going because someone may be concurrently
2315 * dirtying pages, and we might have synced a lot of
2316 * newly appeared dirty pages, but have not synced all
2317 * of the old dirty pages.
2318 */
2319 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2320 goto out;
2321
4e7ea81d
JK
2322 /* If we can't merge this page, we are done. */
2323 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2324 goto out;
78aaced3 2325
8e48dcfb 2326 lock_page(page);
8e48dcfb 2327 /*
4e7ea81d
JK
2328 * If the page is no longer dirty, or its mapping no
2329 * longer corresponds to inode we are writing (which
2330 * means it has been truncated or invalidated), or the
2331 * page is already under writeback and we are not doing
2332 * a data integrity writeback, skip the page
8e48dcfb 2333 */
4f01b02c
TT
2334 if (!PageDirty(page) ||
2335 (PageWriteback(page) &&
4e7ea81d 2336 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2337 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2338 unlock_page(page);
2339 continue;
2340 }
2341
7cb1a535 2342 wait_on_page_writeback(page);
8e48dcfb 2343 BUG_ON(PageWriteback(page));
8e48dcfb 2344
4e7ea81d 2345 if (mpd->map.m_len == 0)
8eb9e5ce 2346 mpd->first_page = page->index;
8eb9e5ce 2347 mpd->next_page = page->index + 1;
f8bec370 2348 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2349 lblk = ((ext4_lblk_t)page->index) <<
2350 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2351 head = page_buffers(page);
5f1132b2
JK
2352 err = mpage_process_page_bufs(mpd, head, head, lblk);
2353 if (err <= 0)
4e7ea81d 2354 goto out;
5f1132b2 2355 err = 0;
aeac589a 2356 left--;
8e48dcfb
TT
2357 }
2358 pagevec_release(&pvec);
2359 cond_resched();
2360 }
4f01b02c 2361 return 0;
8eb9e5ce
TT
2362out:
2363 pagevec_release(&pvec);
4e7ea81d 2364 return err;
8e48dcfb
TT
2365}
2366
20970ba6
TT
2367static int __writepage(struct page *page, struct writeback_control *wbc,
2368 void *data)
2369{
2370 struct address_space *mapping = data;
2371 int ret = ext4_writepage(page, wbc);
2372 mapping_set_error(mapping, ret);
2373 return ret;
2374}
2375
2376static int ext4_writepages(struct address_space *mapping,
2377 struct writeback_control *wbc)
64769240 2378{
4e7ea81d
JK
2379 pgoff_t writeback_index = 0;
2380 long nr_to_write = wbc->nr_to_write;
22208ded 2381 int range_whole = 0;
4e7ea81d 2382 int cycled = 1;
61628a3f 2383 handle_t *handle = NULL;
df22291f 2384 struct mpage_da_data mpd;
5e745b04 2385 struct inode *inode = mapping->host;
6b523df4 2386 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2387 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2388 bool done;
1bce63d1 2389 struct blk_plug plug;
cb530541 2390 bool give_up_on_write = false;
61628a3f 2391
20970ba6 2392 trace_ext4_writepages(inode, wbc);
ba80b101 2393
61628a3f
MC
2394 /*
2395 * No pages to write? This is mainly a kludge to avoid starting
2396 * a transaction for special inodes like journal inode on last iput()
2397 * because that could violate lock ordering on umount
2398 */
a1d6cc56 2399 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2400 goto out_writepages;
2a21e37e 2401
20970ba6
TT
2402 if (ext4_should_journal_data(inode)) {
2403 struct blk_plug plug;
20970ba6
TT
2404
2405 blk_start_plug(&plug);
2406 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2407 blk_finish_plug(&plug);
bbf023c7 2408 goto out_writepages;
20970ba6
TT
2409 }
2410
2a21e37e
TT
2411 /*
2412 * If the filesystem has aborted, it is read-only, so return
2413 * right away instead of dumping stack traces later on that
2414 * will obscure the real source of the problem. We test
4ab2f15b 2415 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2416 * the latter could be true if the filesystem is mounted
20970ba6 2417 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2418 * *never* be called, so if that ever happens, we would want
2419 * the stack trace.
2420 */
bbf023c7
ML
2421 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2422 ret = -EROFS;
2423 goto out_writepages;
2424 }
2a21e37e 2425
6b523df4
JK
2426 if (ext4_should_dioread_nolock(inode)) {
2427 /*
70261f56 2428 * We may need to convert up to one extent per block in
6b523df4
JK
2429 * the page and we may dirty the inode.
2430 */
2431 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2432 }
2433
4e7ea81d
JK
2434 /*
2435 * If we have inline data and arrive here, it means that
2436 * we will soon create the block for the 1st page, so
2437 * we'd better clear the inline data here.
2438 */
2439 if (ext4_has_inline_data(inode)) {
2440 /* Just inode will be modified... */
2441 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2442 if (IS_ERR(handle)) {
2443 ret = PTR_ERR(handle);
2444 goto out_writepages;
2445 }
2446 BUG_ON(ext4_test_inode_state(inode,
2447 EXT4_STATE_MAY_INLINE_DATA));
2448 ext4_destroy_inline_data(handle, inode);
2449 ext4_journal_stop(handle);
2450 }
2451
22208ded
AK
2452 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2453 range_whole = 1;
61628a3f 2454
2acf2c26 2455 if (wbc->range_cyclic) {
4e7ea81d
JK
2456 writeback_index = mapping->writeback_index;
2457 if (writeback_index)
2acf2c26 2458 cycled = 0;
4e7ea81d
JK
2459 mpd.first_page = writeback_index;
2460 mpd.last_page = -1;
5b41d924 2461 } else {
4e7ea81d
JK
2462 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2463 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2464 }
a1d6cc56 2465
4e7ea81d
JK
2466 mpd.inode = inode;
2467 mpd.wbc = wbc;
2468 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2469retry:
6e6938b6 2470 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2471 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2472 done = false;
1bce63d1 2473 blk_start_plug(&plug);
4e7ea81d
JK
2474 while (!done && mpd.first_page <= mpd.last_page) {
2475 /* For each extent of pages we use new io_end */
2476 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2477 if (!mpd.io_submit.io_end) {
2478 ret = -ENOMEM;
2479 break;
2480 }
a1d6cc56
AK
2481
2482 /*
4e7ea81d
JK
2483 * We have two constraints: We find one extent to map and we
2484 * must always write out whole page (makes a difference when
2485 * blocksize < pagesize) so that we don't block on IO when we
2486 * try to write out the rest of the page. Journalled mode is
2487 * not supported by delalloc.
a1d6cc56
AK
2488 */
2489 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2490 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2491
4e7ea81d 2492 /* start a new transaction */
6b523df4
JK
2493 handle = ext4_journal_start_with_reserve(inode,
2494 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2495 if (IS_ERR(handle)) {
2496 ret = PTR_ERR(handle);
1693918e 2497 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2498 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2499 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2500 /* Release allocated io_end */
2501 ext4_put_io_end(mpd.io_submit.io_end);
2502 break;
61628a3f 2503 }
f63e6005 2504
4e7ea81d
JK
2505 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2506 ret = mpage_prepare_extent_to_map(&mpd);
2507 if (!ret) {
2508 if (mpd.map.m_len)
cb530541
TT
2509 ret = mpage_map_and_submit_extent(handle, &mpd,
2510 &give_up_on_write);
4e7ea81d
JK
2511 else {
2512 /*
2513 * We scanned the whole range (or exhausted
2514 * nr_to_write), submitted what was mapped and
2515 * didn't find anything needing mapping. We are
2516 * done.
2517 */
2518 done = true;
2519 }
f63e6005 2520 }
61628a3f 2521 ext4_journal_stop(handle);
4e7ea81d
JK
2522 /* Submit prepared bio */
2523 ext4_io_submit(&mpd.io_submit);
2524 /* Unlock pages we didn't use */
cb530541 2525 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2526 /* Drop our io_end reference we got from init */
2527 ext4_put_io_end(mpd.io_submit.io_end);
2528
2529 if (ret == -ENOSPC && sbi->s_journal) {
2530 /*
2531 * Commit the transaction which would
22208ded
AK
2532 * free blocks released in the transaction
2533 * and try again
2534 */
df22291f 2535 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2536 ret = 0;
4e7ea81d
JK
2537 continue;
2538 }
2539 /* Fatal error - ENOMEM, EIO... */
2540 if (ret)
61628a3f 2541 break;
a1d6cc56 2542 }
1bce63d1 2543 blk_finish_plug(&plug);
9c12a831 2544 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2545 cycled = 1;
4e7ea81d
JK
2546 mpd.last_page = writeback_index - 1;
2547 mpd.first_page = 0;
2acf2c26
AK
2548 goto retry;
2549 }
22208ded
AK
2550
2551 /* Update index */
22208ded
AK
2552 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2553 /*
4e7ea81d 2554 * Set the writeback_index so that range_cyclic
22208ded
AK
2555 * mode will write it back later
2556 */
4e7ea81d 2557 mapping->writeback_index = mpd.first_page;
a1d6cc56 2558
61628a3f 2559out_writepages:
20970ba6
TT
2560 trace_ext4_writepages_result(inode, wbc, ret,
2561 nr_to_write - wbc->nr_to_write);
61628a3f 2562 return ret;
64769240
AT
2563}
2564
79f0be8d
AK
2565static int ext4_nonda_switch(struct super_block *sb)
2566{
5c1ff336 2567 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2569
2570 /*
2571 * switch to non delalloc mode if we are running low
2572 * on free block. The free block accounting via percpu
179f7ebf 2573 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2574 * accumulated on each CPU without updating global counters
2575 * Delalloc need an accurate free block accounting. So switch
2576 * to non delalloc when we are near to error range.
2577 */
5c1ff336
EW
2578 free_clusters =
2579 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2580 dirty_clusters =
2581 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2582 /*
2583 * Start pushing delalloc when 1/2 of free blocks are dirty.
2584 */
5c1ff336 2585 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2586 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2587
5c1ff336
EW
2588 if (2 * free_clusters < 3 * dirty_clusters ||
2589 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2590 /*
c8afb446
ES
2591 * free block count is less than 150% of dirty blocks
2592 * or free blocks is less than watermark
79f0be8d
AK
2593 */
2594 return 1;
2595 }
2596 return 0;
2597}
2598
0ff8947f
ES
2599/* We always reserve for an inode update; the superblock could be there too */
2600static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2601{
2602 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2603 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2604 return 1;
2605
2606 if (pos + len <= 0x7fffffffULL)
2607 return 1;
2608
2609 /* We might need to update the superblock to set LARGE_FILE */
2610 return 2;
2611}
2612
64769240 2613static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2614 loff_t pos, unsigned len, unsigned flags,
2615 struct page **pagep, void **fsdata)
64769240 2616{
72b8ab9d 2617 int ret, retries = 0;
64769240
AT
2618 struct page *page;
2619 pgoff_t index;
64769240
AT
2620 struct inode *inode = mapping->host;
2621 handle_t *handle;
2622
2623 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2624
2625 if (ext4_nonda_switch(inode->i_sb)) {
2626 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2627 return ext4_write_begin(file, mapping, pos,
2628 len, flags, pagep, fsdata);
2629 }
2630 *fsdata = (void *)0;
9bffad1e 2631 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2632
2633 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2634 ret = ext4_da_write_inline_data_begin(mapping, inode,
2635 pos, len, flags,
2636 pagep, fsdata);
2637 if (ret < 0)
47564bfb
TT
2638 return ret;
2639 if (ret == 1)
2640 return 0;
9c3569b5
TM
2641 }
2642
47564bfb
TT
2643 /*
2644 * grab_cache_page_write_begin() can take a long time if the
2645 * system is thrashing due to memory pressure, or if the page
2646 * is being written back. So grab it first before we start
2647 * the transaction handle. This also allows us to allocate
2648 * the page (if needed) without using GFP_NOFS.
2649 */
2650retry_grab:
2651 page = grab_cache_page_write_begin(mapping, index, flags);
2652 if (!page)
2653 return -ENOMEM;
2654 unlock_page(page);
2655
64769240
AT
2656 /*
2657 * With delayed allocation, we don't log the i_disksize update
2658 * if there is delayed block allocation. But we still need
2659 * to journalling the i_disksize update if writes to the end
2660 * of file which has an already mapped buffer.
2661 */
47564bfb 2662retry_journal:
0ff8947f
ES
2663 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2664 ext4_da_write_credits(inode, pos, len));
64769240 2665 if (IS_ERR(handle)) {
47564bfb
TT
2666 page_cache_release(page);
2667 return PTR_ERR(handle);
64769240
AT
2668 }
2669
47564bfb
TT
2670 lock_page(page);
2671 if (page->mapping != mapping) {
2672 /* The page got truncated from under us */
2673 unlock_page(page);
2674 page_cache_release(page);
d5a0d4f7 2675 ext4_journal_stop(handle);
47564bfb 2676 goto retry_grab;
d5a0d4f7 2677 }
47564bfb 2678 /* In case writeback began while the page was unlocked */
7afe5aa5 2679 wait_for_stable_page(page);
64769240 2680
2058f83a
MH
2681#ifdef CONFIG_EXT4_FS_ENCRYPTION
2682 ret = ext4_block_write_begin(page, pos, len,
2683 ext4_da_get_block_prep);
2684#else
6e1db88d 2685 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2686#endif
64769240
AT
2687 if (ret < 0) {
2688 unlock_page(page);
2689 ext4_journal_stop(handle);
ae4d5372
AK
2690 /*
2691 * block_write_begin may have instantiated a few blocks
2692 * outside i_size. Trim these off again. Don't need
2693 * i_size_read because we hold i_mutex.
2694 */
2695 if (pos + len > inode->i_size)
b9a4207d 2696 ext4_truncate_failed_write(inode);
47564bfb
TT
2697
2698 if (ret == -ENOSPC &&
2699 ext4_should_retry_alloc(inode->i_sb, &retries))
2700 goto retry_journal;
2701
2702 page_cache_release(page);
2703 return ret;
64769240
AT
2704 }
2705
47564bfb 2706 *pagep = page;
64769240
AT
2707 return ret;
2708}
2709
632eaeab
MC
2710/*
2711 * Check if we should update i_disksize
2712 * when write to the end of file but not require block allocation
2713 */
2714static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2715 unsigned long offset)
632eaeab
MC
2716{
2717 struct buffer_head *bh;
2718 struct inode *inode = page->mapping->host;
2719 unsigned int idx;
2720 int i;
2721
2722 bh = page_buffers(page);
2723 idx = offset >> inode->i_blkbits;
2724
af5bc92d 2725 for (i = 0; i < idx; i++)
632eaeab
MC
2726 bh = bh->b_this_page;
2727
29fa89d0 2728 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2729 return 0;
2730 return 1;
2731}
2732
64769240 2733static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2734 struct address_space *mapping,
2735 loff_t pos, unsigned len, unsigned copied,
2736 struct page *page, void *fsdata)
64769240
AT
2737{
2738 struct inode *inode = mapping->host;
2739 int ret = 0, ret2;
2740 handle_t *handle = ext4_journal_current_handle();
2741 loff_t new_i_size;
632eaeab 2742 unsigned long start, end;
79f0be8d
AK
2743 int write_mode = (int)(unsigned long)fsdata;
2744
74d553aa
TT
2745 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2746 return ext4_write_end(file, mapping, pos,
2747 len, copied, page, fsdata);
632eaeab 2748
9bffad1e 2749 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2750 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2751 end = start + copied - 1;
64769240
AT
2752
2753 /*
2754 * generic_write_end() will run mark_inode_dirty() if i_size
2755 * changes. So let's piggyback the i_disksize mark_inode_dirty
2756 * into that.
2757 */
64769240 2758 new_i_size = pos + copied;
ea51d132 2759 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2760 if (ext4_has_inline_data(inode) ||
2761 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2762 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2763 /* We need to mark inode dirty even if
2764 * new_i_size is less that inode->i_size
2765 * bu greater than i_disksize.(hint delalloc)
2766 */
2767 ext4_mark_inode_dirty(handle, inode);
64769240 2768 }
632eaeab 2769 }
9c3569b5
TM
2770
2771 if (write_mode != CONVERT_INLINE_DATA &&
2772 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2773 ext4_has_inline_data(inode))
2774 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2775 page);
2776 else
2777 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2778 page, fsdata);
9c3569b5 2779
64769240
AT
2780 copied = ret2;
2781 if (ret2 < 0)
2782 ret = ret2;
2783 ret2 = ext4_journal_stop(handle);
2784 if (!ret)
2785 ret = ret2;
2786
2787 return ret ? ret : copied;
2788}
2789
d47992f8
LC
2790static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2791 unsigned int length)
64769240 2792{
64769240
AT
2793 /*
2794 * Drop reserved blocks
2795 */
2796 BUG_ON(!PageLocked(page));
2797 if (!page_has_buffers(page))
2798 goto out;
2799
ca99fdd2 2800 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2801
2802out:
d47992f8 2803 ext4_invalidatepage(page, offset, length);
64769240
AT
2804
2805 return;
2806}
2807
ccd2506b
TT
2808/*
2809 * Force all delayed allocation blocks to be allocated for a given inode.
2810 */
2811int ext4_alloc_da_blocks(struct inode *inode)
2812{
fb40ba0d
TT
2813 trace_ext4_alloc_da_blocks(inode);
2814
71d4f7d0 2815 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2816 return 0;
2817
2818 /*
2819 * We do something simple for now. The filemap_flush() will
2820 * also start triggering a write of the data blocks, which is
2821 * not strictly speaking necessary (and for users of
2822 * laptop_mode, not even desirable). However, to do otherwise
2823 * would require replicating code paths in:
de9a55b8 2824 *
20970ba6 2825 * ext4_writepages() ->
ccd2506b
TT
2826 * write_cache_pages() ---> (via passed in callback function)
2827 * __mpage_da_writepage() -->
2828 * mpage_add_bh_to_extent()
2829 * mpage_da_map_blocks()
2830 *
2831 * The problem is that write_cache_pages(), located in
2832 * mm/page-writeback.c, marks pages clean in preparation for
2833 * doing I/O, which is not desirable if we're not planning on
2834 * doing I/O at all.
2835 *
2836 * We could call write_cache_pages(), and then redirty all of
380cf090 2837 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2838 * would be ugly in the extreme. So instead we would need to
2839 * replicate parts of the code in the above functions,
25985edc 2840 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2841 * write out the pages, but rather only collect contiguous
2842 * logical block extents, call the multi-block allocator, and
2843 * then update the buffer heads with the block allocations.
de9a55b8 2844 *
ccd2506b
TT
2845 * For now, though, we'll cheat by calling filemap_flush(),
2846 * which will map the blocks, and start the I/O, but not
2847 * actually wait for the I/O to complete.
2848 */
2849 return filemap_flush(inode->i_mapping);
2850}
64769240 2851
ac27a0ec
DK
2852/*
2853 * bmap() is special. It gets used by applications such as lilo and by
2854 * the swapper to find the on-disk block of a specific piece of data.
2855 *
2856 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2857 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2858 * filesystem and enables swap, then they may get a nasty shock when the
2859 * data getting swapped to that swapfile suddenly gets overwritten by
2860 * the original zero's written out previously to the journal and
2861 * awaiting writeback in the kernel's buffer cache.
2862 *
2863 * So, if we see any bmap calls here on a modified, data-journaled file,
2864 * take extra steps to flush any blocks which might be in the cache.
2865 */
617ba13b 2866static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2867{
2868 struct inode *inode = mapping->host;
2869 journal_t *journal;
2870 int err;
2871
46c7f254
TM
2872 /*
2873 * We can get here for an inline file via the FIBMAP ioctl
2874 */
2875 if (ext4_has_inline_data(inode))
2876 return 0;
2877
64769240
AT
2878 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2879 test_opt(inode->i_sb, DELALLOC)) {
2880 /*
2881 * With delalloc we want to sync the file
2882 * so that we can make sure we allocate
2883 * blocks for file
2884 */
2885 filemap_write_and_wait(mapping);
2886 }
2887
19f5fb7a
TT
2888 if (EXT4_JOURNAL(inode) &&
2889 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2890 /*
2891 * This is a REALLY heavyweight approach, but the use of
2892 * bmap on dirty files is expected to be extremely rare:
2893 * only if we run lilo or swapon on a freshly made file
2894 * do we expect this to happen.
2895 *
2896 * (bmap requires CAP_SYS_RAWIO so this does not
2897 * represent an unprivileged user DOS attack --- we'd be
2898 * in trouble if mortal users could trigger this path at
2899 * will.)
2900 *
617ba13b 2901 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2902 * regular files. If somebody wants to bmap a directory
2903 * or symlink and gets confused because the buffer
2904 * hasn't yet been flushed to disk, they deserve
2905 * everything they get.
2906 */
2907
19f5fb7a 2908 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2909 journal = EXT4_JOURNAL(inode);
dab291af
MC
2910 jbd2_journal_lock_updates(journal);
2911 err = jbd2_journal_flush(journal);
2912 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2913
2914 if (err)
2915 return 0;
2916 }
2917
af5bc92d 2918 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2919}
2920
617ba13b 2921static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2922{
46c7f254
TM
2923 int ret = -EAGAIN;
2924 struct inode *inode = page->mapping->host;
2925
0562e0ba 2926 trace_ext4_readpage(page);
46c7f254
TM
2927
2928 if (ext4_has_inline_data(inode))
2929 ret = ext4_readpage_inline(inode, page);
2930
2931 if (ret == -EAGAIN)
f64e02fe 2932 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
2933
2934 return ret;
ac27a0ec
DK
2935}
2936
2937static int
617ba13b 2938ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2939 struct list_head *pages, unsigned nr_pages)
2940{
46c7f254
TM
2941 struct inode *inode = mapping->host;
2942
2943 /* If the file has inline data, no need to do readpages. */
2944 if (ext4_has_inline_data(inode))
2945 return 0;
2946
f64e02fe 2947 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
2948}
2949
d47992f8
LC
2950static void ext4_invalidatepage(struct page *page, unsigned int offset,
2951 unsigned int length)
ac27a0ec 2952{
ca99fdd2 2953 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2954
4520fb3c
JK
2955 /* No journalling happens on data buffers when this function is used */
2956 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2957
ca99fdd2 2958 block_invalidatepage(page, offset, length);
4520fb3c
JK
2959}
2960
53e87268 2961static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2962 unsigned int offset,
2963 unsigned int length)
4520fb3c
JK
2964{
2965 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2966
ca99fdd2 2967 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2968
ac27a0ec
DK
2969 /*
2970 * If it's a full truncate we just forget about the pending dirtying
2971 */
ca99fdd2 2972 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2973 ClearPageChecked(page);
2974
ca99fdd2 2975 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2976}
2977
2978/* Wrapper for aops... */
2979static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2980 unsigned int offset,
2981 unsigned int length)
53e87268 2982{
ca99fdd2 2983 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2984}
2985
617ba13b 2986static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2987{
617ba13b 2988 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2989
0562e0ba
JZ
2990 trace_ext4_releasepage(page);
2991
e1c36595
JK
2992 /* Page has dirty journalled data -> cannot release */
2993 if (PageChecked(page))
ac27a0ec 2994 return 0;
0390131b
FM
2995 if (journal)
2996 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2997 else
2998 return try_to_free_buffers(page);
ac27a0ec
DK
2999}
3000
2ed88685
TT
3001/*
3002 * ext4_get_block used when preparing for a DIO write or buffer write.
3003 * We allocate an uinitialized extent if blocks haven't been allocated.
3004 * The extent will be converted to initialized after the IO is complete.
3005 */
f19d5870 3006int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3007 struct buffer_head *bh_result, int create)
3008{
c7064ef1 3009 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3010 inode->i_ino, create);
2ed88685
TT
3011 return _ext4_get_block(inode, iblock, bh_result,
3012 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3013}
3014
729f52c6 3015static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3016 struct buffer_head *bh_result, int create)
729f52c6 3017{
8b0f165f
AP
3018 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3019 inode->i_ino, create);
3020 return _ext4_get_block(inode, iblock, bh_result,
3021 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3022}
3023
4c0425ff 3024static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3025 ssize_t size, void *private)
4c0425ff
MC
3026{
3027 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3028
97a851ed 3029 /* if not async direct IO just return */
7b7a8665 3030 if (!io_end)
97a851ed 3031 return;
4b70df18 3032
88635ca2 3033 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3034 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3035 iocb->private, io_end->inode->i_ino, iocb, offset,
3036 size);
8d5d02e6 3037
b5a7e970 3038 iocb->private = NULL;
4c0425ff
MC
3039 io_end->offset = offset;
3040 io_end->size = size;
7b7a8665 3041 ext4_put_io_end(io_end);
4c0425ff 3042}
c7064ef1 3043
4c0425ff
MC
3044/*
3045 * For ext4 extent files, ext4 will do direct-io write to holes,
3046 * preallocated extents, and those write extend the file, no need to
3047 * fall back to buffered IO.
3048 *
556615dc 3049 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3050 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3051 * still keep the range to write as unwritten.
4c0425ff 3052 *
69c499d1 3053 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3054 * For async direct IO, since the IO may still pending when return, we
25985edc 3055 * set up an end_io call back function, which will do the conversion
8d5d02e6 3056 * when async direct IO completed.
4c0425ff
MC
3057 *
3058 * If the O_DIRECT write will extend the file then add this inode to the
3059 * orphan list. So recovery will truncate it back to the original size
3060 * if the machine crashes during the write.
3061 *
3062 */
6f673763
OS
3063static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3064 loff_t offset)
4c0425ff
MC
3065{
3066 struct file *file = iocb->ki_filp;
3067 struct inode *inode = file->f_mapping->host;
3068 ssize_t ret;
a6cbcd4a 3069 size_t count = iov_iter_count(iter);
69c499d1
TT
3070 int overwrite = 0;
3071 get_block_t *get_block_func = NULL;
3072 int dio_flags = 0;
4c0425ff 3073 loff_t final_size = offset + count;
97a851ed 3074 ext4_io_end_t *io_end = NULL;
729f52c6 3075
69c499d1 3076 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3077 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3078 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3079
69c499d1 3080 BUG_ON(iocb->private == NULL);
4bd809db 3081
e8340395
JK
3082 /*
3083 * Make all waiters for direct IO properly wait also for extent
3084 * conversion. This also disallows race between truncate() and
3085 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3086 */
6f673763 3087 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3088 inode_dio_begin(inode);
e8340395 3089
69c499d1
TT
3090 /* If we do a overwrite dio, i_mutex locking can be released */
3091 overwrite = *((int *)iocb->private);
4bd809db 3092
69c499d1 3093 if (overwrite) {
69c499d1
TT
3094 down_read(&EXT4_I(inode)->i_data_sem);
3095 mutex_unlock(&inode->i_mutex);
3096 }
8d5d02e6 3097
69c499d1
TT
3098 /*
3099 * We could direct write to holes and fallocate.
3100 *
3101 * Allocated blocks to fill the hole are marked as
556615dc 3102 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3103 * the stale data before DIO complete the data IO.
3104 *
3105 * As to previously fallocated extents, ext4 get_block will
3106 * just simply mark the buffer mapped but still keep the
556615dc 3107 * extents unwritten.
69c499d1
TT
3108 *
3109 * For non AIO case, we will convert those unwritten extents
3110 * to written after return back from blockdev_direct_IO.
3111 *
3112 * For async DIO, the conversion needs to be deferred when the
3113 * IO is completed. The ext4 end_io callback function will be
3114 * called to take care of the conversion work. Here for async
3115 * case, we allocate an io_end structure to hook to the iocb.
3116 */
3117 iocb->private = NULL;
3118 ext4_inode_aio_set(inode, NULL);
3119 if (!is_sync_kiocb(iocb)) {
97a851ed 3120 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3121 if (!io_end) {
3122 ret = -ENOMEM;
3123 goto retake_lock;
8b0f165f 3124 }
97a851ed
JK
3125 /*
3126 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3127 */
3128 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3129 /*
69c499d1
TT
3130 * we save the io structure for current async direct
3131 * IO, so that later ext4_map_blocks() could flag the
3132 * io structure whether there is a unwritten extents
3133 * needs to be converted when IO is completed.
8d5d02e6 3134 */
69c499d1
TT
3135 ext4_inode_aio_set(inode, io_end);
3136 }
4bd809db 3137
69c499d1
TT
3138 if (overwrite) {
3139 get_block_func = ext4_get_block_write_nolock;
3140 } else {
3141 get_block_func = ext4_get_block_write;
3142 dio_flags = DIO_LOCKING;
3143 }
2058f83a
MH
3144#ifdef CONFIG_EXT4_FS_ENCRYPTION
3145 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3146#endif
923ae0ff 3147 if (IS_DAX(inode))
a95cd631 3148 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3149 ext4_end_io_dio, dio_flags);
3150 else
17f8c842 3151 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3152 inode->i_sb->s_bdev, iter, offset,
3153 get_block_func,
3154 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3155
69c499d1 3156 /*
97a851ed
JK
3157 * Put our reference to io_end. This can free the io_end structure e.g.
3158 * in sync IO case or in case of error. It can even perform extent
3159 * conversion if all bios we submitted finished before we got here.
3160 * Note that in that case iocb->private can be already set to NULL
3161 * here.
69c499d1 3162 */
97a851ed
JK
3163 if (io_end) {
3164 ext4_inode_aio_set(inode, NULL);
3165 ext4_put_io_end(io_end);
3166 /*
3167 * When no IO was submitted ext4_end_io_dio() was not
3168 * called so we have to put iocb's reference.
3169 */
3170 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3171 WARN_ON(iocb->private != io_end);
3172 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3173 ext4_put_io_end(io_end);
3174 iocb->private = NULL;
3175 }
3176 }
3177 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3178 EXT4_STATE_DIO_UNWRITTEN)) {
3179 int err;
3180 /*
3181 * for non AIO case, since the IO is already
3182 * completed, we could do the conversion right here
3183 */
6b523df4 3184 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3185 offset, ret);
3186 if (err < 0)
3187 ret = err;
3188 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3189 }
4bd809db 3190
69c499d1 3191retake_lock:
6f673763 3192 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3193 inode_dio_end(inode);
69c499d1
TT
3194 /* take i_mutex locking again if we do a ovewrite dio */
3195 if (overwrite) {
69c499d1
TT
3196 up_read(&EXT4_I(inode)->i_data_sem);
3197 mutex_lock(&inode->i_mutex);
4c0425ff 3198 }
8d5d02e6 3199
69c499d1 3200 return ret;
4c0425ff
MC
3201}
3202
22c6186e
OS
3203static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3204 loff_t offset)
4c0425ff
MC
3205{
3206 struct file *file = iocb->ki_filp;
3207 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3208 size_t count = iov_iter_count(iter);
0562e0ba 3209 ssize_t ret;
4c0425ff 3210
2058f83a
MH
3211#ifdef CONFIG_EXT4_FS_ENCRYPTION
3212 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3213 return 0;
3214#endif
3215
84ebd795
TT
3216 /*
3217 * If we are doing data journalling we don't support O_DIRECT
3218 */
3219 if (ext4_should_journal_data(inode))
3220 return 0;
3221
46c7f254
TM
3222 /* Let buffer I/O handle the inline data case. */
3223 if (ext4_has_inline_data(inode))
3224 return 0;
3225
6f673763 3226 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3227 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3228 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3229 else
6f673763
OS
3230 ret = ext4_ind_direct_IO(iocb, iter, offset);
3231 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3232 return ret;
4c0425ff
MC
3233}
3234
ac27a0ec 3235/*
617ba13b 3236 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3237 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3238 * much here because ->set_page_dirty is called under VFS locks. The page is
3239 * not necessarily locked.
3240 *
3241 * We cannot just dirty the page and leave attached buffers clean, because the
3242 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3243 * or jbddirty because all the journalling code will explode.
3244 *
3245 * So what we do is to mark the page "pending dirty" and next time writepage
3246 * is called, propagate that into the buffers appropriately.
3247 */
617ba13b 3248static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3249{
3250 SetPageChecked(page);
3251 return __set_page_dirty_nobuffers(page);
3252}
3253
74d553aa 3254static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3255 .readpage = ext4_readpage,
3256 .readpages = ext4_readpages,
43ce1d23 3257 .writepage = ext4_writepage,
20970ba6 3258 .writepages = ext4_writepages,
8ab22b9a 3259 .write_begin = ext4_write_begin,
74d553aa 3260 .write_end = ext4_write_end,
8ab22b9a
HH
3261 .bmap = ext4_bmap,
3262 .invalidatepage = ext4_invalidatepage,
3263 .releasepage = ext4_releasepage,
3264 .direct_IO = ext4_direct_IO,
3265 .migratepage = buffer_migrate_page,
3266 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3267 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3268};
3269
617ba13b 3270static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3271 .readpage = ext4_readpage,
3272 .readpages = ext4_readpages,
43ce1d23 3273 .writepage = ext4_writepage,
20970ba6 3274 .writepages = ext4_writepages,
8ab22b9a
HH
3275 .write_begin = ext4_write_begin,
3276 .write_end = ext4_journalled_write_end,
3277 .set_page_dirty = ext4_journalled_set_page_dirty,
3278 .bmap = ext4_bmap,
4520fb3c 3279 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3280 .releasepage = ext4_releasepage,
84ebd795 3281 .direct_IO = ext4_direct_IO,
8ab22b9a 3282 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3283 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3284};
3285
64769240 3286static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3287 .readpage = ext4_readpage,
3288 .readpages = ext4_readpages,
43ce1d23 3289 .writepage = ext4_writepage,
20970ba6 3290 .writepages = ext4_writepages,
8ab22b9a
HH
3291 .write_begin = ext4_da_write_begin,
3292 .write_end = ext4_da_write_end,
3293 .bmap = ext4_bmap,
3294 .invalidatepage = ext4_da_invalidatepage,
3295 .releasepage = ext4_releasepage,
3296 .direct_IO = ext4_direct_IO,
3297 .migratepage = buffer_migrate_page,
3298 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3299 .error_remove_page = generic_error_remove_page,
64769240
AT
3300};
3301
617ba13b 3302void ext4_set_aops(struct inode *inode)
ac27a0ec 3303{
3d2b1582
LC
3304 switch (ext4_inode_journal_mode(inode)) {
3305 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3306 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3307 break;
3308 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3309 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3310 break;
3311 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3312 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3313 return;
3d2b1582
LC
3314 default:
3315 BUG();
3316 }
74d553aa
TT
3317 if (test_opt(inode->i_sb, DELALLOC))
3318 inode->i_mapping->a_ops = &ext4_da_aops;
3319 else
3320 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3321}
3322
923ae0ff 3323static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3324 struct address_space *mapping, loff_t from, loff_t length)
3325{
3326 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3327 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3328 unsigned blocksize, pos;
d863dc36
LC
3329 ext4_lblk_t iblock;
3330 struct inode *inode = mapping->host;
3331 struct buffer_head *bh;
3332 struct page *page;
3333 int err = 0;
3334
3335 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3336 mapping_gfp_mask(mapping) & ~__GFP_FS);
3337 if (!page)
3338 return -ENOMEM;
3339
3340 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3341
3342 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3343
3344 if (!page_has_buffers(page))
3345 create_empty_buffers(page, blocksize, 0);
3346
3347 /* Find the buffer that contains "offset" */
3348 bh = page_buffers(page);
3349 pos = blocksize;
3350 while (offset >= pos) {
3351 bh = bh->b_this_page;
3352 iblock++;
3353 pos += blocksize;
3354 }
d863dc36
LC
3355 if (buffer_freed(bh)) {
3356 BUFFER_TRACE(bh, "freed: skip");
3357 goto unlock;
3358 }
d863dc36
LC
3359 if (!buffer_mapped(bh)) {
3360 BUFFER_TRACE(bh, "unmapped");
3361 ext4_get_block(inode, iblock, bh, 0);
3362 /* unmapped? It's a hole - nothing to do */
3363 if (!buffer_mapped(bh)) {
3364 BUFFER_TRACE(bh, "still unmapped");
3365 goto unlock;
3366 }
3367 }
3368
3369 /* Ok, it's mapped. Make sure it's up-to-date */
3370 if (PageUptodate(page))
3371 set_buffer_uptodate(bh);
3372
3373 if (!buffer_uptodate(bh)) {
3374 err = -EIO;
3375 ll_rw_block(READ, 1, &bh);
3376 wait_on_buffer(bh);
3377 /* Uhhuh. Read error. Complain and punt. */
3378 if (!buffer_uptodate(bh))
3379 goto unlock;
c9c7429c
MH
3380 if (S_ISREG(inode->i_mode) &&
3381 ext4_encrypted_inode(inode)) {
3382 /* We expect the key to be set. */
3383 BUG_ON(!ext4_has_encryption_key(inode));
3384 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3385 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3386 }
d863dc36 3387 }
d863dc36
LC
3388 if (ext4_should_journal_data(inode)) {
3389 BUFFER_TRACE(bh, "get write access");
3390 err = ext4_journal_get_write_access(handle, bh);
3391 if (err)
3392 goto unlock;
3393 }
d863dc36 3394 zero_user(page, offset, length);
d863dc36
LC
3395 BUFFER_TRACE(bh, "zeroed end of block");
3396
d863dc36
LC
3397 if (ext4_should_journal_data(inode)) {
3398 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3399 } else {
353eefd3 3400 err = 0;
d863dc36 3401 mark_buffer_dirty(bh);
0713ed0c
LC
3402 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3403 err = ext4_jbd2_file_inode(handle, inode);
3404 }
d863dc36
LC
3405
3406unlock:
3407 unlock_page(page);
3408 page_cache_release(page);
3409 return err;
3410}
3411
923ae0ff
RZ
3412/*
3413 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3414 * starting from file offset 'from'. The range to be zero'd must
3415 * be contained with in one block. If the specified range exceeds
3416 * the end of the block it will be shortened to end of the block
3417 * that cooresponds to 'from'
3418 */
3419static int ext4_block_zero_page_range(handle_t *handle,
3420 struct address_space *mapping, loff_t from, loff_t length)
3421{
3422 struct inode *inode = mapping->host;
3423 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3424 unsigned blocksize = inode->i_sb->s_blocksize;
3425 unsigned max = blocksize - (offset & (blocksize - 1));
3426
3427 /*
3428 * correct length if it does not fall between
3429 * 'from' and the end of the block
3430 */
3431 if (length > max || length < 0)
3432 length = max;
3433
3434 if (IS_DAX(inode))
3435 return dax_zero_page_range(inode, from, length, ext4_get_block);
3436 return __ext4_block_zero_page_range(handle, mapping, from, length);
3437}
3438
94350ab5
MW
3439/*
3440 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3441 * up to the end of the block which corresponds to `from'.
3442 * This required during truncate. We need to physically zero the tail end
3443 * of that block so it doesn't yield old data if the file is later grown.
3444 */
c197855e 3445static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3446 struct address_space *mapping, loff_t from)
3447{
3448 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3449 unsigned length;
3450 unsigned blocksize;
3451 struct inode *inode = mapping->host;
3452
3453 blocksize = inode->i_sb->s_blocksize;
3454 length = blocksize - (offset & (blocksize - 1));
3455
3456 return ext4_block_zero_page_range(handle, mapping, from, length);
3457}
3458
a87dd18c
LC
3459int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3460 loff_t lstart, loff_t length)
3461{
3462 struct super_block *sb = inode->i_sb;
3463 struct address_space *mapping = inode->i_mapping;
e1be3a92 3464 unsigned partial_start, partial_end;
a87dd18c
LC
3465 ext4_fsblk_t start, end;
3466 loff_t byte_end = (lstart + length - 1);
3467 int err = 0;
3468
e1be3a92
LC
3469 partial_start = lstart & (sb->s_blocksize - 1);
3470 partial_end = byte_end & (sb->s_blocksize - 1);
3471
a87dd18c
LC
3472 start = lstart >> sb->s_blocksize_bits;
3473 end = byte_end >> sb->s_blocksize_bits;
3474
3475 /* Handle partial zero within the single block */
e1be3a92
LC
3476 if (start == end &&
3477 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3478 err = ext4_block_zero_page_range(handle, mapping,
3479 lstart, length);
3480 return err;
3481 }
3482 /* Handle partial zero out on the start of the range */
e1be3a92 3483 if (partial_start) {
a87dd18c
LC
3484 err = ext4_block_zero_page_range(handle, mapping,
3485 lstart, sb->s_blocksize);
3486 if (err)
3487 return err;
3488 }
3489 /* Handle partial zero out on the end of the range */
e1be3a92 3490 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3491 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3492 byte_end - partial_end,
3493 partial_end + 1);
a87dd18c
LC
3494 return err;
3495}
3496
91ef4caf
DG
3497int ext4_can_truncate(struct inode *inode)
3498{
91ef4caf
DG
3499 if (S_ISREG(inode->i_mode))
3500 return 1;
3501 if (S_ISDIR(inode->i_mode))
3502 return 1;
3503 if (S_ISLNK(inode->i_mode))
3504 return !ext4_inode_is_fast_symlink(inode);
3505 return 0;
3506}
3507
a4bb6b64
AH
3508/*
3509 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3510 * associated with the given offset and length
3511 *
3512 * @inode: File inode
3513 * @offset: The offset where the hole will begin
3514 * @len: The length of the hole
3515 *
4907cb7b 3516 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3517 */
3518
aeb2817a 3519int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3520{
26a4c0c6
TT
3521 struct super_block *sb = inode->i_sb;
3522 ext4_lblk_t first_block, stop_block;
3523 struct address_space *mapping = inode->i_mapping;
a87dd18c 3524 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3525 handle_t *handle;
3526 unsigned int credits;
3527 int ret = 0;
3528
a4bb6b64 3529 if (!S_ISREG(inode->i_mode))
73355192 3530 return -EOPNOTSUPP;
a4bb6b64 3531
b8a86845 3532 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3533
26a4c0c6
TT
3534 /*
3535 * Write out all dirty pages to avoid race conditions
3536 * Then release them.
3537 */
3538 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3539 ret = filemap_write_and_wait_range(mapping, offset,
3540 offset + length - 1);
3541 if (ret)
3542 return ret;
3543 }
3544
3545 mutex_lock(&inode->i_mutex);
9ef06cec 3546
26a4c0c6
TT
3547 /* No need to punch hole beyond i_size */
3548 if (offset >= inode->i_size)
3549 goto out_mutex;
3550
3551 /*
3552 * If the hole extends beyond i_size, set the hole
3553 * to end after the page that contains i_size
3554 */
3555 if (offset + length > inode->i_size) {
3556 length = inode->i_size +
3557 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3558 offset;
3559 }
3560
a361293f
JK
3561 if (offset & (sb->s_blocksize - 1) ||
3562 (offset + length) & (sb->s_blocksize - 1)) {
3563 /*
3564 * Attach jinode to inode for jbd2 if we do any zeroing of
3565 * partial block
3566 */
3567 ret = ext4_inode_attach_jinode(inode);
3568 if (ret < 0)
3569 goto out_mutex;
3570
3571 }
3572
a87dd18c
LC
3573 first_block_offset = round_up(offset, sb->s_blocksize);
3574 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3575
a87dd18c
LC
3576 /* Now release the pages and zero block aligned part of pages*/
3577 if (last_block_offset > first_block_offset)
3578 truncate_pagecache_range(inode, first_block_offset,
3579 last_block_offset);
26a4c0c6
TT
3580
3581 /* Wait all existing dio workers, newcomers will block on i_mutex */
3582 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3583 inode_dio_wait(inode);
3584
3585 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3586 credits = ext4_writepage_trans_blocks(inode);
3587 else
3588 credits = ext4_blocks_for_truncate(inode);
3589 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3590 if (IS_ERR(handle)) {
3591 ret = PTR_ERR(handle);
3592 ext4_std_error(sb, ret);
3593 goto out_dio;
3594 }
3595
a87dd18c
LC
3596 ret = ext4_zero_partial_blocks(handle, inode, offset,
3597 length);
3598 if (ret)
3599 goto out_stop;
26a4c0c6
TT
3600
3601 first_block = (offset + sb->s_blocksize - 1) >>
3602 EXT4_BLOCK_SIZE_BITS(sb);
3603 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3604
3605 /* If there are no blocks to remove, return now */
3606 if (first_block >= stop_block)
3607 goto out_stop;
3608
3609 down_write(&EXT4_I(inode)->i_data_sem);
3610 ext4_discard_preallocations(inode);
3611
3612 ret = ext4_es_remove_extent(inode, first_block,
3613 stop_block - first_block);
3614 if (ret) {
3615 up_write(&EXT4_I(inode)->i_data_sem);
3616 goto out_stop;
3617 }
3618
3619 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3620 ret = ext4_ext_remove_space(inode, first_block,
3621 stop_block - 1);
3622 else
4f579ae7 3623 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3624 stop_block);
3625
819c4920 3626 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3627 if (IS_SYNC(inode))
3628 ext4_handle_sync(handle);
e251f9bc
MP
3629
3630 /* Now release the pages again to reduce race window */
3631 if (last_block_offset > first_block_offset)
3632 truncate_pagecache_range(inode, first_block_offset,
3633 last_block_offset);
3634
26a4c0c6
TT
3635 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3636 ext4_mark_inode_dirty(handle, inode);
3637out_stop:
3638 ext4_journal_stop(handle);
3639out_dio:
3640 ext4_inode_resume_unlocked_dio(inode);
3641out_mutex:
3642 mutex_unlock(&inode->i_mutex);
3643 return ret;
a4bb6b64
AH
3644}
3645
a361293f
JK
3646int ext4_inode_attach_jinode(struct inode *inode)
3647{
3648 struct ext4_inode_info *ei = EXT4_I(inode);
3649 struct jbd2_inode *jinode;
3650
3651 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3652 return 0;
3653
3654 jinode = jbd2_alloc_inode(GFP_KERNEL);
3655 spin_lock(&inode->i_lock);
3656 if (!ei->jinode) {
3657 if (!jinode) {
3658 spin_unlock(&inode->i_lock);
3659 return -ENOMEM;
3660 }
3661 ei->jinode = jinode;
3662 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3663 jinode = NULL;
3664 }
3665 spin_unlock(&inode->i_lock);
3666 if (unlikely(jinode != NULL))
3667 jbd2_free_inode(jinode);
3668 return 0;
3669}
3670
ac27a0ec 3671/*
617ba13b 3672 * ext4_truncate()
ac27a0ec 3673 *
617ba13b
MC
3674 * We block out ext4_get_block() block instantiations across the entire
3675 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3676 * simultaneously on behalf of the same inode.
3677 *
42b2aa86 3678 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3679 * is one core, guiding principle: the file's tree must always be consistent on
3680 * disk. We must be able to restart the truncate after a crash.
3681 *
3682 * The file's tree may be transiently inconsistent in memory (although it
3683 * probably isn't), but whenever we close off and commit a journal transaction,
3684 * the contents of (the filesystem + the journal) must be consistent and
3685 * restartable. It's pretty simple, really: bottom up, right to left (although
3686 * left-to-right works OK too).
3687 *
3688 * Note that at recovery time, journal replay occurs *before* the restart of
3689 * truncate against the orphan inode list.
3690 *
3691 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3692 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3693 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3694 * ext4_truncate() to have another go. So there will be instantiated blocks
3695 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3696 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3697 * ext4_truncate() run will find them and release them.
ac27a0ec 3698 */
617ba13b 3699void ext4_truncate(struct inode *inode)
ac27a0ec 3700{
819c4920
TT
3701 struct ext4_inode_info *ei = EXT4_I(inode);
3702 unsigned int credits;
3703 handle_t *handle;
3704 struct address_space *mapping = inode->i_mapping;
819c4920 3705
19b5ef61
TT
3706 /*
3707 * There is a possibility that we're either freeing the inode
e04027e8 3708 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3709 * have i_mutex locked because it's not necessary.
3710 */
3711 if (!(inode->i_state & (I_NEW|I_FREEING)))
3712 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3713 trace_ext4_truncate_enter(inode);
3714
91ef4caf 3715 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3716 return;
3717
12e9b892 3718 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3719
5534fb5b 3720 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3721 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3722
aef1c851
TM
3723 if (ext4_has_inline_data(inode)) {
3724 int has_inline = 1;
3725
3726 ext4_inline_data_truncate(inode, &has_inline);
3727 if (has_inline)
3728 return;
3729 }
3730
a361293f
JK
3731 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3732 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3733 if (ext4_inode_attach_jinode(inode) < 0)
3734 return;
3735 }
3736
819c4920
TT
3737 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3738 credits = ext4_writepage_trans_blocks(inode);
3739 else
3740 credits = ext4_blocks_for_truncate(inode);
3741
3742 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3743 if (IS_ERR(handle)) {
3744 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3745 return;
3746 }
3747
eb3544c6
LC
3748 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3749 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3750
3751 /*
3752 * We add the inode to the orphan list, so that if this
3753 * truncate spans multiple transactions, and we crash, we will
3754 * resume the truncate when the filesystem recovers. It also
3755 * marks the inode dirty, to catch the new size.
3756 *
3757 * Implication: the file must always be in a sane, consistent
3758 * truncatable state while each transaction commits.
3759 */
3760 if (ext4_orphan_add(handle, inode))
3761 goto out_stop;
3762
3763 down_write(&EXT4_I(inode)->i_data_sem);
3764
3765 ext4_discard_preallocations(inode);
3766
ff9893dc 3767 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3768 ext4_ext_truncate(handle, inode);
ff9893dc 3769 else
819c4920
TT
3770 ext4_ind_truncate(handle, inode);
3771
3772 up_write(&ei->i_data_sem);
3773
3774 if (IS_SYNC(inode))
3775 ext4_handle_sync(handle);
3776
3777out_stop:
3778 /*
3779 * If this was a simple ftruncate() and the file will remain alive,
3780 * then we need to clear up the orphan record which we created above.
3781 * However, if this was a real unlink then we were called by
58d86a50 3782 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3783 * orphan info for us.
3784 */
3785 if (inode->i_nlink)
3786 ext4_orphan_del(handle, inode);
3787
3788 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3789 ext4_mark_inode_dirty(handle, inode);
3790 ext4_journal_stop(handle);
ac27a0ec 3791
0562e0ba 3792 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3793}
3794
ac27a0ec 3795/*
617ba13b 3796 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3797 * underlying buffer_head on success. If 'in_mem' is true, we have all
3798 * data in memory that is needed to recreate the on-disk version of this
3799 * inode.
3800 */
617ba13b
MC
3801static int __ext4_get_inode_loc(struct inode *inode,
3802 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3803{
240799cd
TT
3804 struct ext4_group_desc *gdp;
3805 struct buffer_head *bh;
3806 struct super_block *sb = inode->i_sb;
3807 ext4_fsblk_t block;
3808 int inodes_per_block, inode_offset;
3809
3a06d778 3810 iloc->bh = NULL;
240799cd
TT
3811 if (!ext4_valid_inum(sb, inode->i_ino))
3812 return -EIO;
ac27a0ec 3813
240799cd
TT
3814 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3815 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3816 if (!gdp)
ac27a0ec
DK
3817 return -EIO;
3818
240799cd
TT
3819 /*
3820 * Figure out the offset within the block group inode table
3821 */
00d09882 3822 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3823 inode_offset = ((inode->i_ino - 1) %
3824 EXT4_INODES_PER_GROUP(sb));
3825 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3826 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3827
3828 bh = sb_getblk(sb, block);
aebf0243 3829 if (unlikely(!bh))
860d21e2 3830 return -ENOMEM;
ac27a0ec
DK
3831 if (!buffer_uptodate(bh)) {
3832 lock_buffer(bh);
9c83a923
HK
3833
3834 /*
3835 * If the buffer has the write error flag, we have failed
3836 * to write out another inode in the same block. In this
3837 * case, we don't have to read the block because we may
3838 * read the old inode data successfully.
3839 */
3840 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3841 set_buffer_uptodate(bh);
3842
ac27a0ec
DK
3843 if (buffer_uptodate(bh)) {
3844 /* someone brought it uptodate while we waited */
3845 unlock_buffer(bh);
3846 goto has_buffer;
3847 }
3848
3849 /*
3850 * If we have all information of the inode in memory and this
3851 * is the only valid inode in the block, we need not read the
3852 * block.
3853 */
3854 if (in_mem) {
3855 struct buffer_head *bitmap_bh;
240799cd 3856 int i, start;
ac27a0ec 3857
240799cd 3858 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3859
240799cd
TT
3860 /* Is the inode bitmap in cache? */
3861 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3862 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3863 goto make_io;
3864
3865 /*
3866 * If the inode bitmap isn't in cache then the
3867 * optimisation may end up performing two reads instead
3868 * of one, so skip it.
3869 */
3870 if (!buffer_uptodate(bitmap_bh)) {
3871 brelse(bitmap_bh);
3872 goto make_io;
3873 }
240799cd 3874 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3875 if (i == inode_offset)
3876 continue;
617ba13b 3877 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3878 break;
3879 }
3880 brelse(bitmap_bh);
240799cd 3881 if (i == start + inodes_per_block) {
ac27a0ec
DK
3882 /* all other inodes are free, so skip I/O */
3883 memset(bh->b_data, 0, bh->b_size);
3884 set_buffer_uptodate(bh);
3885 unlock_buffer(bh);
3886 goto has_buffer;
3887 }
3888 }
3889
3890make_io:
240799cd
TT
3891 /*
3892 * If we need to do any I/O, try to pre-readahead extra
3893 * blocks from the inode table.
3894 */
3895 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3896 ext4_fsblk_t b, end, table;
3897 unsigned num;
0d606e2c 3898 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3899
3900 table = ext4_inode_table(sb, gdp);
b713a5ec 3901 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3902 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3903 if (table > b)
3904 b = table;
0d606e2c 3905 end = b + ra_blks;
240799cd 3906 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3907 if (ext4_has_group_desc_csum(sb))
560671a0 3908 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3909 table += num / inodes_per_block;
3910 if (end > table)
3911 end = table;
3912 while (b <= end)
3913 sb_breadahead(sb, b++);
3914 }
3915
ac27a0ec
DK
3916 /*
3917 * There are other valid inodes in the buffer, this inode
3918 * has in-inode xattrs, or we don't have this inode in memory.
3919 * Read the block from disk.
3920 */
0562e0ba 3921 trace_ext4_load_inode(inode);
ac27a0ec
DK
3922 get_bh(bh);
3923 bh->b_end_io = end_buffer_read_sync;
65299a3b 3924 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3925 wait_on_buffer(bh);
3926 if (!buffer_uptodate(bh)) {
c398eda0
TT
3927 EXT4_ERROR_INODE_BLOCK(inode, block,
3928 "unable to read itable block");
ac27a0ec
DK
3929 brelse(bh);
3930 return -EIO;
3931 }
3932 }
3933has_buffer:
3934 iloc->bh = bh;
3935 return 0;
3936}
3937
617ba13b 3938int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3939{
3940 /* We have all inode data except xattrs in memory here. */
617ba13b 3941 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3942 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3943}
3944
617ba13b 3945void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3946{
617ba13b 3947 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3948 unsigned int new_fl = 0;
ac27a0ec 3949
617ba13b 3950 if (flags & EXT4_SYNC_FL)
00a1a053 3951 new_fl |= S_SYNC;
617ba13b 3952 if (flags & EXT4_APPEND_FL)
00a1a053 3953 new_fl |= S_APPEND;
617ba13b 3954 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3955 new_fl |= S_IMMUTABLE;
617ba13b 3956 if (flags & EXT4_NOATIME_FL)
00a1a053 3957 new_fl |= S_NOATIME;
617ba13b 3958 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3959 new_fl |= S_DIRSYNC;
923ae0ff
RZ
3960 if (test_opt(inode->i_sb, DAX))
3961 new_fl |= S_DAX;
5f16f322 3962 inode_set_flags(inode, new_fl,
923ae0ff 3963 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
3964}
3965
ff9ddf7e
JK
3966/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3967void ext4_get_inode_flags(struct ext4_inode_info *ei)
3968{
84a8dce2
DM
3969 unsigned int vfs_fl;
3970 unsigned long old_fl, new_fl;
3971
3972 do {
3973 vfs_fl = ei->vfs_inode.i_flags;
3974 old_fl = ei->i_flags;
3975 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3976 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3977 EXT4_DIRSYNC_FL);
3978 if (vfs_fl & S_SYNC)
3979 new_fl |= EXT4_SYNC_FL;
3980 if (vfs_fl & S_APPEND)
3981 new_fl |= EXT4_APPEND_FL;
3982 if (vfs_fl & S_IMMUTABLE)
3983 new_fl |= EXT4_IMMUTABLE_FL;
3984 if (vfs_fl & S_NOATIME)
3985 new_fl |= EXT4_NOATIME_FL;
3986 if (vfs_fl & S_DIRSYNC)
3987 new_fl |= EXT4_DIRSYNC_FL;
3988 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3989}
de9a55b8 3990
0fc1b451 3991static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3992 struct ext4_inode_info *ei)
0fc1b451
AK
3993{
3994 blkcnt_t i_blocks ;
8180a562
AK
3995 struct inode *inode = &(ei->vfs_inode);
3996 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3997
3998 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3999 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4000 /* we are using combined 48 bit field */
4001 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4002 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4003 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4004 /* i_blocks represent file system block size */
4005 return i_blocks << (inode->i_blkbits - 9);
4006 } else {
4007 return i_blocks;
4008 }
0fc1b451
AK
4009 } else {
4010 return le32_to_cpu(raw_inode->i_blocks_lo);
4011 }
4012}
ff9ddf7e 4013
152a7b0a
TM
4014static inline void ext4_iget_extra_inode(struct inode *inode,
4015 struct ext4_inode *raw_inode,
4016 struct ext4_inode_info *ei)
4017{
4018 __le32 *magic = (void *)raw_inode +
4019 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4020 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4021 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4022 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4023 } else
4024 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4025}
4026
1d1fe1ee 4027struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4028{
617ba13b
MC
4029 struct ext4_iloc iloc;
4030 struct ext4_inode *raw_inode;
1d1fe1ee 4031 struct ext4_inode_info *ei;
1d1fe1ee 4032 struct inode *inode;
b436b9be 4033 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4034 long ret;
ac27a0ec 4035 int block;
08cefc7a
EB
4036 uid_t i_uid;
4037 gid_t i_gid;
ac27a0ec 4038
1d1fe1ee
DH
4039 inode = iget_locked(sb, ino);
4040 if (!inode)
4041 return ERR_PTR(-ENOMEM);
4042 if (!(inode->i_state & I_NEW))
4043 return inode;
4044
4045 ei = EXT4_I(inode);
7dc57615 4046 iloc.bh = NULL;
ac27a0ec 4047
1d1fe1ee
DH
4048 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4049 if (ret < 0)
ac27a0ec 4050 goto bad_inode;
617ba13b 4051 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4052
4053 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4054 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4055 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4056 EXT4_INODE_SIZE(inode->i_sb)) {
4057 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4058 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4059 EXT4_INODE_SIZE(inode->i_sb));
4060 ret = -EIO;
4061 goto bad_inode;
4062 }
4063 } else
4064 ei->i_extra_isize = 0;
4065
4066 /* Precompute checksum seed for inode metadata */
9aa5d32b 4067 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4068 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4069 __u32 csum;
4070 __le32 inum = cpu_to_le32(inode->i_ino);
4071 __le32 gen = raw_inode->i_generation;
4072 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4073 sizeof(inum));
4074 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4075 sizeof(gen));
4076 }
4077
4078 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4079 EXT4_ERROR_INODE(inode, "checksum invalid");
4080 ret = -EIO;
4081 goto bad_inode;
4082 }
4083
ac27a0ec 4084 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4085 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4086 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4087 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4088 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4089 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4090 }
08cefc7a
EB
4091 i_uid_write(inode, i_uid);
4092 i_gid_write(inode, i_gid);
bfe86848 4093 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4094
353eb83c 4095 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4096 ei->i_inline_off = 0;
ac27a0ec
DK
4097 ei->i_dir_start_lookup = 0;
4098 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4099 /* We now have enough fields to check if the inode was active or not.
4100 * This is needed because nfsd might try to access dead inodes
4101 * the test is that same one that e2fsck uses
4102 * NeilBrown 1999oct15
4103 */
4104 if (inode->i_nlink == 0) {
393d1d1d
DTB
4105 if ((inode->i_mode == 0 ||
4106 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4107 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4108 /* this inode is deleted */
1d1fe1ee 4109 ret = -ESTALE;
ac27a0ec
DK
4110 goto bad_inode;
4111 }
4112 /* The only unlinked inodes we let through here have
4113 * valid i_mode and are being read by the orphan
4114 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4115 * the process of deleting those.
4116 * OR it is the EXT4_BOOT_LOADER_INO which is
4117 * not initialized on a new filesystem. */
ac27a0ec 4118 }
ac27a0ec 4119 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4120 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4121 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4122 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4123 ei->i_file_acl |=
4124 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4125 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4126 ei->i_disksize = inode->i_size;
a9e7f447
DM
4127#ifdef CONFIG_QUOTA
4128 ei->i_reserved_quota = 0;
4129#endif
ac27a0ec
DK
4130 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4131 ei->i_block_group = iloc.block_group;
a4912123 4132 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4133 /*
4134 * NOTE! The in-memory inode i_data array is in little-endian order
4135 * even on big-endian machines: we do NOT byteswap the block numbers!
4136 */
617ba13b 4137 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4138 ei->i_data[block] = raw_inode->i_block[block];
4139 INIT_LIST_HEAD(&ei->i_orphan);
4140
b436b9be
JK
4141 /*
4142 * Set transaction id's of transactions that have to be committed
4143 * to finish f[data]sync. We set them to currently running transaction
4144 * as we cannot be sure that the inode or some of its metadata isn't
4145 * part of the transaction - the inode could have been reclaimed and
4146 * now it is reread from disk.
4147 */
4148 if (journal) {
4149 transaction_t *transaction;
4150 tid_t tid;
4151
a931da6a 4152 read_lock(&journal->j_state_lock);
b436b9be
JK
4153 if (journal->j_running_transaction)
4154 transaction = journal->j_running_transaction;
4155 else
4156 transaction = journal->j_committing_transaction;
4157 if (transaction)
4158 tid = transaction->t_tid;
4159 else
4160 tid = journal->j_commit_sequence;
a931da6a 4161 read_unlock(&journal->j_state_lock);
b436b9be
JK
4162 ei->i_sync_tid = tid;
4163 ei->i_datasync_tid = tid;
4164 }
4165
0040d987 4166 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4167 if (ei->i_extra_isize == 0) {
4168 /* The extra space is currently unused. Use it. */
617ba13b
MC
4169 ei->i_extra_isize = sizeof(struct ext4_inode) -
4170 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4171 } else {
152a7b0a 4172 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4173 }
814525f4 4174 }
ac27a0ec 4175
ef7f3835
KS
4176 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4177 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4178 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4179 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4180
ed3654eb 4181 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4182 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4183 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4184 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4185 inode->i_version |=
4186 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4187 }
25ec56b5
JNC
4188 }
4189
c4b5a614 4190 ret = 0;
485c26ec 4191 if (ei->i_file_acl &&
1032988c 4192 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4193 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4194 ei->i_file_acl);
485c26ec
TT
4195 ret = -EIO;
4196 goto bad_inode;
f19d5870
TM
4197 } else if (!ext4_has_inline_data(inode)) {
4198 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4199 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4200 (S_ISLNK(inode->i_mode) &&
4201 !ext4_inode_is_fast_symlink(inode))))
4202 /* Validate extent which is part of inode */
4203 ret = ext4_ext_check_inode(inode);
4204 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4205 (S_ISLNK(inode->i_mode) &&
4206 !ext4_inode_is_fast_symlink(inode))) {
4207 /* Validate block references which are part of inode */
4208 ret = ext4_ind_check_inode(inode);
4209 }
fe2c8191 4210 }
567f3e9a 4211 if (ret)
de9a55b8 4212 goto bad_inode;
7a262f7c 4213
ac27a0ec 4214 if (S_ISREG(inode->i_mode)) {
617ba13b 4215 inode->i_op = &ext4_file_inode_operations;
be64f884 4216 inode->i_fop = &ext4_file_operations;
617ba13b 4217 ext4_set_aops(inode);
ac27a0ec 4218 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4219 inode->i_op = &ext4_dir_inode_operations;
4220 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4221 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4222 if (ext4_encrypted_inode(inode)) {
4223 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4224 ext4_set_aops(inode);
4225 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4226 inode->i_link = (char *)ei->i_data;
617ba13b 4227 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4228 nd_terminate_link(ei->i_data, inode->i_size,
4229 sizeof(ei->i_data) - 1);
4230 } else {
617ba13b
MC
4231 inode->i_op = &ext4_symlink_inode_operations;
4232 ext4_set_aops(inode);
ac27a0ec 4233 }
563bdd61
TT
4234 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4235 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4236 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4237 if (raw_inode->i_block[0])
4238 init_special_inode(inode, inode->i_mode,
4239 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4240 else
4241 init_special_inode(inode, inode->i_mode,
4242 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4243 } else if (ino == EXT4_BOOT_LOADER_INO) {
4244 make_bad_inode(inode);
563bdd61 4245 } else {
563bdd61 4246 ret = -EIO;
24676da4 4247 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4248 goto bad_inode;
ac27a0ec 4249 }
af5bc92d 4250 brelse(iloc.bh);
617ba13b 4251 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4252 unlock_new_inode(inode);
4253 return inode;
ac27a0ec
DK
4254
4255bad_inode:
567f3e9a 4256 brelse(iloc.bh);
1d1fe1ee
DH
4257 iget_failed(inode);
4258 return ERR_PTR(ret);
ac27a0ec
DK
4259}
4260
f4bb2981
TT
4261struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4262{
4263 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4264 return ERR_PTR(-EIO);
4265 return ext4_iget(sb, ino);
4266}
4267
0fc1b451
AK
4268static int ext4_inode_blocks_set(handle_t *handle,
4269 struct ext4_inode *raw_inode,
4270 struct ext4_inode_info *ei)
4271{
4272 struct inode *inode = &(ei->vfs_inode);
4273 u64 i_blocks = inode->i_blocks;
4274 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4275
4276 if (i_blocks <= ~0U) {
4277 /*
4907cb7b 4278 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4279 * as multiple of 512 bytes
4280 */
8180a562 4281 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4282 raw_inode->i_blocks_high = 0;
84a8dce2 4283 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4284 return 0;
4285 }
4286 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4287 return -EFBIG;
4288
4289 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4290 /*
4291 * i_blocks can be represented in a 48 bit variable
4292 * as multiple of 512 bytes
4293 */
8180a562 4294 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4295 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4296 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4297 } else {
84a8dce2 4298 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4299 /* i_block is stored in file system block size */
4300 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4301 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4302 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4303 }
f287a1a5 4304 return 0;
0fc1b451
AK
4305}
4306
a26f4992
TT
4307struct other_inode {
4308 unsigned long orig_ino;
4309 struct ext4_inode *raw_inode;
4310};
4311
4312static int other_inode_match(struct inode * inode, unsigned long ino,
4313 void *data)
4314{
4315 struct other_inode *oi = (struct other_inode *) data;
4316
4317 if ((inode->i_ino != ino) ||
4318 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4319 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4320 ((inode->i_state & I_DIRTY_TIME) == 0))
4321 return 0;
4322 spin_lock(&inode->i_lock);
4323 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4324 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4325 (inode->i_state & I_DIRTY_TIME)) {
4326 struct ext4_inode_info *ei = EXT4_I(inode);
4327
4328 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4329 spin_unlock(&inode->i_lock);
4330
4331 spin_lock(&ei->i_raw_lock);
4332 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4333 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4334 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4335 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4336 spin_unlock(&ei->i_raw_lock);
4337 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4338 return -1;
4339 }
4340 spin_unlock(&inode->i_lock);
4341 return -1;
4342}
4343
4344/*
4345 * Opportunistically update the other time fields for other inodes in
4346 * the same inode table block.
4347 */
4348static void ext4_update_other_inodes_time(struct super_block *sb,
4349 unsigned long orig_ino, char *buf)
4350{
4351 struct other_inode oi;
4352 unsigned long ino;
4353 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4354 int inode_size = EXT4_INODE_SIZE(sb);
4355
4356 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4357 /*
4358 * Calculate the first inode in the inode table block. Inode
4359 * numbers are one-based. That is, the first inode in a block
4360 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4361 */
4362 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4363 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4364 if (ino == orig_ino)
4365 continue;
4366 oi.raw_inode = (struct ext4_inode *) buf;
4367 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4368 }
4369}
4370
ac27a0ec
DK
4371/*
4372 * Post the struct inode info into an on-disk inode location in the
4373 * buffer-cache. This gobbles the caller's reference to the
4374 * buffer_head in the inode location struct.
4375 *
4376 * The caller must have write access to iloc->bh.
4377 */
617ba13b 4378static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4379 struct inode *inode,
830156c7 4380 struct ext4_iloc *iloc)
ac27a0ec 4381{
617ba13b
MC
4382 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4383 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4384 struct buffer_head *bh = iloc->bh;
202ee5df 4385 struct super_block *sb = inode->i_sb;
ac27a0ec 4386 int err = 0, rc, block;
202ee5df 4387 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4388 uid_t i_uid;
4389 gid_t i_gid;
ac27a0ec 4390
202ee5df
TT
4391 spin_lock(&ei->i_raw_lock);
4392
4393 /* For fields not tracked in the in-memory inode,
ac27a0ec 4394 * initialise them to zero for new inodes. */
19f5fb7a 4395 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4396 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4397
ff9ddf7e 4398 ext4_get_inode_flags(ei);
ac27a0ec 4399 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4400 i_uid = i_uid_read(inode);
4401 i_gid = i_gid_read(inode);
af5bc92d 4402 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4403 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4404 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4405/*
4406 * Fix up interoperability with old kernels. Otherwise, old inodes get
4407 * re-used with the upper 16 bits of the uid/gid intact
4408 */
af5bc92d 4409 if (!ei->i_dtime) {
ac27a0ec 4410 raw_inode->i_uid_high =
08cefc7a 4411 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4412 raw_inode->i_gid_high =
08cefc7a 4413 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4414 } else {
4415 raw_inode->i_uid_high = 0;
4416 raw_inode->i_gid_high = 0;
4417 }
4418 } else {
08cefc7a
EB
4419 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4420 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4421 raw_inode->i_uid_high = 0;
4422 raw_inode->i_gid_high = 0;
4423 }
4424 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4425
4426 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4427 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4428 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4429 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4430
bce92d56
LX
4431 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4432 if (err) {
202ee5df 4433 spin_unlock(&ei->i_raw_lock);
0fc1b451 4434 goto out_brelse;
202ee5df 4435 }
ac27a0ec 4436 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4437 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4438 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4439 raw_inode->i_file_acl_high =
4440 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4441 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4442 if (ei->i_disksize != ext4_isize(raw_inode)) {
4443 ext4_isize_set(raw_inode, ei->i_disksize);
4444 need_datasync = 1;
4445 }
a48380f7 4446 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4447 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4448 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4449 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4450 cpu_to_le32(EXT4_GOOD_OLD_REV))
4451 set_large_file = 1;
ac27a0ec
DK
4452 }
4453 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4454 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4455 if (old_valid_dev(inode->i_rdev)) {
4456 raw_inode->i_block[0] =
4457 cpu_to_le32(old_encode_dev(inode->i_rdev));
4458 raw_inode->i_block[1] = 0;
4459 } else {
4460 raw_inode->i_block[0] = 0;
4461 raw_inode->i_block[1] =
4462 cpu_to_le32(new_encode_dev(inode->i_rdev));
4463 raw_inode->i_block[2] = 0;
4464 }
f19d5870 4465 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4466 for (block = 0; block < EXT4_N_BLOCKS; block++)
4467 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4468 }
ac27a0ec 4469
ed3654eb 4470 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4471 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4472 if (ei->i_extra_isize) {
4473 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4474 raw_inode->i_version_hi =
4475 cpu_to_le32(inode->i_version >> 32);
4476 raw_inode->i_extra_isize =
4477 cpu_to_le16(ei->i_extra_isize);
4478 }
25ec56b5 4479 }
814525f4 4480 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4481 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4482 if (inode->i_sb->s_flags & MS_LAZYTIME)
4483 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4484 bh->b_data);
202ee5df 4485
830156c7 4486 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4487 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4488 if (!err)
4489 err = rc;
19f5fb7a 4490 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4491 if (set_large_file) {
5d601255 4492 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4493 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4494 if (err)
4495 goto out_brelse;
4496 ext4_update_dynamic_rev(sb);
4497 EXT4_SET_RO_COMPAT_FEATURE(sb,
4498 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4499 ext4_handle_sync(handle);
4500 err = ext4_handle_dirty_super(handle, sb);
4501 }
b71fc079 4502 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4503out_brelse:
af5bc92d 4504 brelse(bh);
617ba13b 4505 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4506 return err;
4507}
4508
4509/*
617ba13b 4510 * ext4_write_inode()
ac27a0ec
DK
4511 *
4512 * We are called from a few places:
4513 *
87f7e416 4514 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4515 * Here, there will be no transaction running. We wait for any running
4907cb7b 4516 * transaction to commit.
ac27a0ec 4517 *
87f7e416
TT
4518 * - Within flush work (sys_sync(), kupdate and such).
4519 * We wait on commit, if told to.
ac27a0ec 4520 *
87f7e416
TT
4521 * - Within iput_final() -> write_inode_now()
4522 * We wait on commit, if told to.
ac27a0ec
DK
4523 *
4524 * In all cases it is actually safe for us to return without doing anything,
4525 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4526 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4527 * writeback.
ac27a0ec
DK
4528 *
4529 * Note that we are absolutely dependent upon all inode dirtiers doing the
4530 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4531 * which we are interested.
4532 *
4533 * It would be a bug for them to not do this. The code:
4534 *
4535 * mark_inode_dirty(inode)
4536 * stuff();
4537 * inode->i_size = expr;
4538 *
87f7e416
TT
4539 * is in error because write_inode() could occur while `stuff()' is running,
4540 * and the new i_size will be lost. Plus the inode will no longer be on the
4541 * superblock's dirty inode list.
ac27a0ec 4542 */
a9185b41 4543int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4544{
91ac6f43
FM
4545 int err;
4546
87f7e416 4547 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4548 return 0;
4549
91ac6f43
FM
4550 if (EXT4_SB(inode->i_sb)->s_journal) {
4551 if (ext4_journal_current_handle()) {
4552 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4553 dump_stack();
4554 return -EIO;
4555 }
ac27a0ec 4556
10542c22
JK
4557 /*
4558 * No need to force transaction in WB_SYNC_NONE mode. Also
4559 * ext4_sync_fs() will force the commit after everything is
4560 * written.
4561 */
4562 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4563 return 0;
4564
4565 err = ext4_force_commit(inode->i_sb);
4566 } else {
4567 struct ext4_iloc iloc;
ac27a0ec 4568
8b472d73 4569 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4570 if (err)
4571 return err;
10542c22
JK
4572 /*
4573 * sync(2) will flush the whole buffer cache. No need to do
4574 * it here separately for each inode.
4575 */
4576 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4577 sync_dirty_buffer(iloc.bh);
4578 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4579 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4580 "IO error syncing inode");
830156c7
FM
4581 err = -EIO;
4582 }
fd2dd9fb 4583 brelse(iloc.bh);
91ac6f43
FM
4584 }
4585 return err;
ac27a0ec
DK
4586}
4587
53e87268
JK
4588/*
4589 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4590 * buffers that are attached to a page stradding i_size and are undergoing
4591 * commit. In that case we have to wait for commit to finish and try again.
4592 */
4593static void ext4_wait_for_tail_page_commit(struct inode *inode)
4594{
4595 struct page *page;
4596 unsigned offset;
4597 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4598 tid_t commit_tid = 0;
4599 int ret;
4600
4601 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4602 /*
4603 * All buffers in the last page remain valid? Then there's nothing to
4604 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4605 * blocksize case
4606 */
4607 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4608 return;
4609 while (1) {
4610 page = find_lock_page(inode->i_mapping,
4611 inode->i_size >> PAGE_CACHE_SHIFT);
4612 if (!page)
4613 return;
ca99fdd2
LC
4614 ret = __ext4_journalled_invalidatepage(page, offset,
4615 PAGE_CACHE_SIZE - offset);
53e87268
JK
4616 unlock_page(page);
4617 page_cache_release(page);
4618 if (ret != -EBUSY)
4619 return;
4620 commit_tid = 0;
4621 read_lock(&journal->j_state_lock);
4622 if (journal->j_committing_transaction)
4623 commit_tid = journal->j_committing_transaction->t_tid;
4624 read_unlock(&journal->j_state_lock);
4625 if (commit_tid)
4626 jbd2_log_wait_commit(journal, commit_tid);
4627 }
4628}
4629
ac27a0ec 4630/*
617ba13b 4631 * ext4_setattr()
ac27a0ec
DK
4632 *
4633 * Called from notify_change.
4634 *
4635 * We want to trap VFS attempts to truncate the file as soon as
4636 * possible. In particular, we want to make sure that when the VFS
4637 * shrinks i_size, we put the inode on the orphan list and modify
4638 * i_disksize immediately, so that during the subsequent flushing of
4639 * dirty pages and freeing of disk blocks, we can guarantee that any
4640 * commit will leave the blocks being flushed in an unused state on
4641 * disk. (On recovery, the inode will get truncated and the blocks will
4642 * be freed, so we have a strong guarantee that no future commit will
4643 * leave these blocks visible to the user.)
4644 *
678aaf48
JK
4645 * Another thing we have to assure is that if we are in ordered mode
4646 * and inode is still attached to the committing transaction, we must
4647 * we start writeout of all the dirty pages which are being truncated.
4648 * This way we are sure that all the data written in the previous
4649 * transaction are already on disk (truncate waits for pages under
4650 * writeback).
4651 *
4652 * Called with inode->i_mutex down.
ac27a0ec 4653 */
617ba13b 4654int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4655{
2b0143b5 4656 struct inode *inode = d_inode(dentry);
ac27a0ec 4657 int error, rc = 0;
3d287de3 4658 int orphan = 0;
ac27a0ec
DK
4659 const unsigned int ia_valid = attr->ia_valid;
4660
4661 error = inode_change_ok(inode, attr);
4662 if (error)
4663 return error;
4664
a7cdadee
JK
4665 if (is_quota_modification(inode, attr)) {
4666 error = dquot_initialize(inode);
4667 if (error)
4668 return error;
4669 }
08cefc7a
EB
4670 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4671 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4672 handle_t *handle;
4673
4674 /* (user+group)*(old+new) structure, inode write (sb,
4675 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4676 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4677 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4678 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4679 if (IS_ERR(handle)) {
4680 error = PTR_ERR(handle);
4681 goto err_out;
4682 }
b43fa828 4683 error = dquot_transfer(inode, attr);
ac27a0ec 4684 if (error) {
617ba13b 4685 ext4_journal_stop(handle);
ac27a0ec
DK
4686 return error;
4687 }
4688 /* Update corresponding info in inode so that everything is in
4689 * one transaction */
4690 if (attr->ia_valid & ATTR_UID)
4691 inode->i_uid = attr->ia_uid;
4692 if (attr->ia_valid & ATTR_GID)
4693 inode->i_gid = attr->ia_gid;
617ba13b
MC
4694 error = ext4_mark_inode_dirty(handle, inode);
4695 ext4_journal_stop(handle);
ac27a0ec
DK
4696 }
4697
3da40c7b 4698 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4699 handle_t *handle;
3da40c7b
JB
4700 loff_t oldsize = inode->i_size;
4701 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4702
12e9b892 4703 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4704 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4705
0c095c7f
TT
4706 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4707 return -EFBIG;
e2b46574 4708 }
3da40c7b
JB
4709 if (!S_ISREG(inode->i_mode))
4710 return -EINVAL;
dff6efc3
CH
4711
4712 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4713 inode_inc_iversion(inode);
4714
3da40c7b 4715 if (ext4_should_order_data(inode) &&
5208386c 4716 (attr->ia_size < inode->i_size)) {
3da40c7b 4717 error = ext4_begin_ordered_truncate(inode,
678aaf48 4718 attr->ia_size);
3da40c7b
JB
4719 if (error)
4720 goto err_out;
4721 }
4722 if (attr->ia_size != inode->i_size) {
5208386c
JK
4723 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4724 if (IS_ERR(handle)) {
4725 error = PTR_ERR(handle);
4726 goto err_out;
4727 }
3da40c7b 4728 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
4729 error = ext4_orphan_add(handle, inode);
4730 orphan = 1;
4731 }
911af577
EG
4732 /*
4733 * Update c/mtime on truncate up, ext4_truncate() will
4734 * update c/mtime in shrink case below
4735 */
4736 if (!shrink) {
4737 inode->i_mtime = ext4_current_time(inode);
4738 inode->i_ctime = inode->i_mtime;
4739 }
90e775b7 4740 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4741 EXT4_I(inode)->i_disksize = attr->ia_size;
4742 rc = ext4_mark_inode_dirty(handle, inode);
4743 if (!error)
4744 error = rc;
90e775b7
JK
4745 /*
4746 * We have to update i_size under i_data_sem together
4747 * with i_disksize to avoid races with writeback code
4748 * running ext4_wb_update_i_disksize().
4749 */
4750 if (!error)
4751 i_size_write(inode, attr->ia_size);
4752 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4753 ext4_journal_stop(handle);
4754 if (error) {
3da40c7b
JB
4755 if (orphan)
4756 ext4_orphan_del(NULL, inode);
678aaf48
JK
4757 goto err_out;
4758 }
d6320cbf 4759 }
3da40c7b
JB
4760 if (!shrink)
4761 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 4762
5208386c
JK
4763 /*
4764 * Blocks are going to be removed from the inode. Wait
4765 * for dio in flight. Temporarily disable
4766 * dioread_nolock to prevent livelock.
4767 */
4768 if (orphan) {
4769 if (!ext4_should_journal_data(inode)) {
4770 ext4_inode_block_unlocked_dio(inode);
4771 inode_dio_wait(inode);
4772 ext4_inode_resume_unlocked_dio(inode);
4773 } else
4774 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4775 }
5208386c
JK
4776 /*
4777 * Truncate pagecache after we've waited for commit
4778 * in data=journal mode to make pages freeable.
4779 */
923ae0ff 4780 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
4781 if (shrink)
4782 ext4_truncate(inode);
072bd7ea 4783 }
ac27a0ec 4784
1025774c
CH
4785 if (!rc) {
4786 setattr_copy(inode, attr);
4787 mark_inode_dirty(inode);
4788 }
4789
4790 /*
4791 * If the call to ext4_truncate failed to get a transaction handle at
4792 * all, we need to clean up the in-core orphan list manually.
4793 */
3d287de3 4794 if (orphan && inode->i_nlink)
617ba13b 4795 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4796
4797 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4798 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4799
4800err_out:
617ba13b 4801 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4802 if (!error)
4803 error = rc;
4804 return error;
4805}
4806
3e3398a0
MC
4807int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4808 struct kstat *stat)
4809{
4810 struct inode *inode;
8af8eecc 4811 unsigned long long delalloc_blocks;
3e3398a0 4812
2b0143b5 4813 inode = d_inode(dentry);
3e3398a0
MC
4814 generic_fillattr(inode, stat);
4815
9206c561
AD
4816 /*
4817 * If there is inline data in the inode, the inode will normally not
4818 * have data blocks allocated (it may have an external xattr block).
4819 * Report at least one sector for such files, so tools like tar, rsync,
4820 * others doen't incorrectly think the file is completely sparse.
4821 */
4822 if (unlikely(ext4_has_inline_data(inode)))
4823 stat->blocks += (stat->size + 511) >> 9;
4824
3e3398a0
MC
4825 /*
4826 * We can't update i_blocks if the block allocation is delayed
4827 * otherwise in the case of system crash before the real block
4828 * allocation is done, we will have i_blocks inconsistent with
4829 * on-disk file blocks.
4830 * We always keep i_blocks updated together with real
4831 * allocation. But to not confuse with user, stat
4832 * will return the blocks that include the delayed allocation
4833 * blocks for this file.
4834 */
96607551 4835 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4836 EXT4_I(inode)->i_reserved_data_blocks);
4837 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4838 return 0;
4839}
ac27a0ec 4840
fffb2739
JK
4841static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4842 int pextents)
a02908f1 4843{
12e9b892 4844 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4845 return ext4_ind_trans_blocks(inode, lblocks);
4846 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4847}
ac51d837 4848
ac27a0ec 4849/*
a02908f1
MC
4850 * Account for index blocks, block groups bitmaps and block group
4851 * descriptor blocks if modify datablocks and index blocks
4852 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4853 *
a02908f1 4854 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4855 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4856 * they could still across block group boundary.
ac27a0ec 4857 *
a02908f1
MC
4858 * Also account for superblock, inode, quota and xattr blocks
4859 */
fffb2739
JK
4860static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4861 int pextents)
a02908f1 4862{
8df9675f
TT
4863 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4864 int gdpblocks;
a02908f1
MC
4865 int idxblocks;
4866 int ret = 0;
4867
4868 /*
fffb2739
JK
4869 * How many index blocks need to touch to map @lblocks logical blocks
4870 * to @pextents physical extents?
a02908f1 4871 */
fffb2739 4872 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4873
4874 ret = idxblocks;
4875
4876 /*
4877 * Now let's see how many group bitmaps and group descriptors need
4878 * to account
4879 */
fffb2739 4880 groups = idxblocks + pextents;
a02908f1 4881 gdpblocks = groups;
8df9675f
TT
4882 if (groups > ngroups)
4883 groups = ngroups;
a02908f1
MC
4884 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4885 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4886
4887 /* bitmaps and block group descriptor blocks */
4888 ret += groups + gdpblocks;
4889
4890 /* Blocks for super block, inode, quota and xattr blocks */
4891 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4892
4893 return ret;
4894}
4895
4896/*
25985edc 4897 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4898 * the modification of a single pages into a single transaction,
4899 * which may include multiple chunks of block allocations.
ac27a0ec 4900 *
525f4ed8 4901 * This could be called via ext4_write_begin()
ac27a0ec 4902 *
525f4ed8 4903 * We need to consider the worse case, when
a02908f1 4904 * one new block per extent.
ac27a0ec 4905 */
a86c6181 4906int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4907{
617ba13b 4908 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4909 int ret;
4910
fffb2739 4911 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4912
a02908f1 4913 /* Account for data blocks for journalled mode */
617ba13b 4914 if (ext4_should_journal_data(inode))
a02908f1 4915 ret += bpp;
ac27a0ec
DK
4916 return ret;
4917}
f3bd1f3f
MC
4918
4919/*
4920 * Calculate the journal credits for a chunk of data modification.
4921 *
4922 * This is called from DIO, fallocate or whoever calling
79e83036 4923 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4924 *
4925 * journal buffers for data blocks are not included here, as DIO
4926 * and fallocate do no need to journal data buffers.
4927 */
4928int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4929{
4930 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4931}
4932
ac27a0ec 4933/*
617ba13b 4934 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4935 * Give this, we know that the caller already has write access to iloc->bh.
4936 */
617ba13b 4937int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4938 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4939{
4940 int err = 0;
4941
c64db50e 4942 if (IS_I_VERSION(inode))
25ec56b5
JNC
4943 inode_inc_iversion(inode);
4944
ac27a0ec
DK
4945 /* the do_update_inode consumes one bh->b_count */
4946 get_bh(iloc->bh);
4947
dab291af 4948 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4949 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4950 put_bh(iloc->bh);
4951 return err;
4952}
4953
4954/*
4955 * On success, We end up with an outstanding reference count against
4956 * iloc->bh. This _must_ be cleaned up later.
4957 */
4958
4959int
617ba13b
MC
4960ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4961 struct ext4_iloc *iloc)
ac27a0ec 4962{
0390131b
FM
4963 int err;
4964
4965 err = ext4_get_inode_loc(inode, iloc);
4966 if (!err) {
4967 BUFFER_TRACE(iloc->bh, "get_write_access");
4968 err = ext4_journal_get_write_access(handle, iloc->bh);
4969 if (err) {
4970 brelse(iloc->bh);
4971 iloc->bh = NULL;
ac27a0ec
DK
4972 }
4973 }
617ba13b 4974 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4975 return err;
4976}
4977
6dd4ee7c
KS
4978/*
4979 * Expand an inode by new_extra_isize bytes.
4980 * Returns 0 on success or negative error number on failure.
4981 */
1d03ec98
AK
4982static int ext4_expand_extra_isize(struct inode *inode,
4983 unsigned int new_extra_isize,
4984 struct ext4_iloc iloc,
4985 handle_t *handle)
6dd4ee7c
KS
4986{
4987 struct ext4_inode *raw_inode;
4988 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4989
4990 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4991 return 0;
4992
4993 raw_inode = ext4_raw_inode(&iloc);
4994
4995 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4996
4997 /* No extended attributes present */
19f5fb7a
TT
4998 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4999 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5000 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5001 new_extra_isize);
5002 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5003 return 0;
5004 }
5005
5006 /* try to expand with EAs present */
5007 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5008 raw_inode, handle);
5009}
5010
ac27a0ec
DK
5011/*
5012 * What we do here is to mark the in-core inode as clean with respect to inode
5013 * dirtiness (it may still be data-dirty).
5014 * This means that the in-core inode may be reaped by prune_icache
5015 * without having to perform any I/O. This is a very good thing,
5016 * because *any* task may call prune_icache - even ones which
5017 * have a transaction open against a different journal.
5018 *
5019 * Is this cheating? Not really. Sure, we haven't written the
5020 * inode out, but prune_icache isn't a user-visible syncing function.
5021 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5022 * we start and wait on commits.
ac27a0ec 5023 */
617ba13b 5024int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5025{
617ba13b 5026 struct ext4_iloc iloc;
6dd4ee7c
KS
5027 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5028 static unsigned int mnt_count;
5029 int err, ret;
ac27a0ec
DK
5030
5031 might_sleep();
7ff9c073 5032 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5033 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5034 if (ext4_handle_valid(handle) &&
5035 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5036 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5037 /*
5038 * We need extra buffer credits since we may write into EA block
5039 * with this same handle. If journal_extend fails, then it will
5040 * only result in a minor loss of functionality for that inode.
5041 * If this is felt to be critical, then e2fsck should be run to
5042 * force a large enough s_min_extra_isize.
5043 */
5044 if ((jbd2_journal_extend(handle,
5045 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5046 ret = ext4_expand_extra_isize(inode,
5047 sbi->s_want_extra_isize,
5048 iloc, handle);
5049 if (ret) {
19f5fb7a
TT
5050 ext4_set_inode_state(inode,
5051 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5052 if (mnt_count !=
5053 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5054 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5055 "Unable to expand inode %lu. Delete"
5056 " some EAs or run e2fsck.",
5057 inode->i_ino);
c1bddad9
AK
5058 mnt_count =
5059 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5060 }
5061 }
5062 }
5063 }
ac27a0ec 5064 if (!err)
617ba13b 5065 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5066 return err;
5067}
5068
5069/*
617ba13b 5070 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5071 *
5072 * We're really interested in the case where a file is being extended.
5073 * i_size has been changed by generic_commit_write() and we thus need
5074 * to include the updated inode in the current transaction.
5075 *
5dd4056d 5076 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5077 * are allocated to the file.
5078 *
5079 * If the inode is marked synchronous, we don't honour that here - doing
5080 * so would cause a commit on atime updates, which we don't bother doing.
5081 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5082 *
5083 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5084 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5085 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5086 */
aa385729 5087void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5088{
ac27a0ec
DK
5089 handle_t *handle;
5090
0ae45f63
TT
5091 if (flags == I_DIRTY_TIME)
5092 return;
9924a92a 5093 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5094 if (IS_ERR(handle))
5095 goto out;
f3dc272f 5096
f3dc272f
CW
5097 ext4_mark_inode_dirty(handle, inode);
5098
617ba13b 5099 ext4_journal_stop(handle);
ac27a0ec
DK
5100out:
5101 return;
5102}
5103
5104#if 0
5105/*
5106 * Bind an inode's backing buffer_head into this transaction, to prevent
5107 * it from being flushed to disk early. Unlike
617ba13b 5108 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5109 * returns no iloc structure, so the caller needs to repeat the iloc
5110 * lookup to mark the inode dirty later.
5111 */
617ba13b 5112static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5113{
617ba13b 5114 struct ext4_iloc iloc;
ac27a0ec
DK
5115
5116 int err = 0;
5117 if (handle) {
617ba13b 5118 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5119 if (!err) {
5120 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5121 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5122 if (!err)
0390131b 5123 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5124 NULL,
0390131b 5125 iloc.bh);
ac27a0ec
DK
5126 brelse(iloc.bh);
5127 }
5128 }
617ba13b 5129 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5130 return err;
5131}
5132#endif
5133
617ba13b 5134int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5135{
5136 journal_t *journal;
5137 handle_t *handle;
5138 int err;
5139
5140 /*
5141 * We have to be very careful here: changing a data block's
5142 * journaling status dynamically is dangerous. If we write a
5143 * data block to the journal, change the status and then delete
5144 * that block, we risk forgetting to revoke the old log record
5145 * from the journal and so a subsequent replay can corrupt data.
5146 * So, first we make sure that the journal is empty and that
5147 * nobody is changing anything.
5148 */
5149
617ba13b 5150 journal = EXT4_JOURNAL(inode);
0390131b
FM
5151 if (!journal)
5152 return 0;
d699594d 5153 if (is_journal_aborted(journal))
ac27a0ec 5154 return -EROFS;
2aff57b0
YY
5155 /* We have to allocate physical blocks for delalloc blocks
5156 * before flushing journal. otherwise delalloc blocks can not
5157 * be allocated any more. even more truncate on delalloc blocks
5158 * could trigger BUG by flushing delalloc blocks in journal.
5159 * There is no delalloc block in non-journal data mode.
5160 */
5161 if (val && test_opt(inode->i_sb, DELALLOC)) {
5162 err = ext4_alloc_da_blocks(inode);
5163 if (err < 0)
5164 return err;
5165 }
ac27a0ec 5166
17335dcc
DM
5167 /* Wait for all existing dio workers */
5168 ext4_inode_block_unlocked_dio(inode);
5169 inode_dio_wait(inode);
5170
dab291af 5171 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5172
5173 /*
5174 * OK, there are no updates running now, and all cached data is
5175 * synced to disk. We are now in a completely consistent state
5176 * which doesn't have anything in the journal, and we know that
5177 * no filesystem updates are running, so it is safe to modify
5178 * the inode's in-core data-journaling state flag now.
5179 */
5180
5181 if (val)
12e9b892 5182 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5183 else {
4f879ca6
JK
5184 err = jbd2_journal_flush(journal);
5185 if (err < 0) {
5186 jbd2_journal_unlock_updates(journal);
5187 ext4_inode_resume_unlocked_dio(inode);
5188 return err;
5189 }
12e9b892 5190 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5191 }
617ba13b 5192 ext4_set_aops(inode);
ac27a0ec 5193
dab291af 5194 jbd2_journal_unlock_updates(journal);
17335dcc 5195 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5196
5197 /* Finally we can mark the inode as dirty. */
5198
9924a92a 5199 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5200 if (IS_ERR(handle))
5201 return PTR_ERR(handle);
5202
617ba13b 5203 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5204 ext4_handle_sync(handle);
617ba13b
MC
5205 ext4_journal_stop(handle);
5206 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5207
5208 return err;
5209}
2e9ee850
AK
5210
5211static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5212{
5213 return !buffer_mapped(bh);
5214}
5215
c2ec175c 5216int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5217{
c2ec175c 5218 struct page *page = vmf->page;
2e9ee850
AK
5219 loff_t size;
5220 unsigned long len;
9ea7df53 5221 int ret;
2e9ee850 5222 struct file *file = vma->vm_file;
496ad9aa 5223 struct inode *inode = file_inode(file);
2e9ee850 5224 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5225 handle_t *handle;
5226 get_block_t *get_block;
5227 int retries = 0;
2e9ee850 5228
8e8ad8a5 5229 sb_start_pagefault(inode->i_sb);
041bbb6d 5230 file_update_time(vma->vm_file);
9ea7df53
JK
5231 /* Delalloc case is easy... */
5232 if (test_opt(inode->i_sb, DELALLOC) &&
5233 !ext4_should_journal_data(inode) &&
5234 !ext4_nonda_switch(inode->i_sb)) {
5235 do {
5236 ret = __block_page_mkwrite(vma, vmf,
5237 ext4_da_get_block_prep);
5238 } while (ret == -ENOSPC &&
5239 ext4_should_retry_alloc(inode->i_sb, &retries));
5240 goto out_ret;
2e9ee850 5241 }
0e499890
DW
5242
5243 lock_page(page);
9ea7df53
JK
5244 size = i_size_read(inode);
5245 /* Page got truncated from under us? */
5246 if (page->mapping != mapping || page_offset(page) > size) {
5247 unlock_page(page);
5248 ret = VM_FAULT_NOPAGE;
5249 goto out;
0e499890 5250 }
2e9ee850
AK
5251
5252 if (page->index == size >> PAGE_CACHE_SHIFT)
5253 len = size & ~PAGE_CACHE_MASK;
5254 else
5255 len = PAGE_CACHE_SIZE;
a827eaff 5256 /*
9ea7df53
JK
5257 * Return if we have all the buffers mapped. This avoids the need to do
5258 * journal_start/journal_stop which can block and take a long time
a827eaff 5259 */
2e9ee850 5260 if (page_has_buffers(page)) {
f19d5870
TM
5261 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5262 0, len, NULL,
5263 ext4_bh_unmapped)) {
9ea7df53 5264 /* Wait so that we don't change page under IO */
1d1d1a76 5265 wait_for_stable_page(page);
9ea7df53
JK
5266 ret = VM_FAULT_LOCKED;
5267 goto out;
a827eaff 5268 }
2e9ee850 5269 }
a827eaff 5270 unlock_page(page);
9ea7df53
JK
5271 /* OK, we need to fill the hole... */
5272 if (ext4_should_dioread_nolock(inode))
5273 get_block = ext4_get_block_write;
5274 else
5275 get_block = ext4_get_block;
5276retry_alloc:
9924a92a
TT
5277 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5278 ext4_writepage_trans_blocks(inode));
9ea7df53 5279 if (IS_ERR(handle)) {
c2ec175c 5280 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5281 goto out;
5282 }
5283 ret = __block_page_mkwrite(vma, vmf, get_block);
5284 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5285 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5286 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5287 unlock_page(page);
5288 ret = VM_FAULT_SIGBUS;
fcbb5515 5289 ext4_journal_stop(handle);
9ea7df53
JK
5290 goto out;
5291 }
5292 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5293 }
5294 ext4_journal_stop(handle);
5295 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5296 goto retry_alloc;
5297out_ret:
5298 ret = block_page_mkwrite_return(ret);
5299out:
8e8ad8a5 5300 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5301 return ret;
5302}