]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
ext4: enable punch hole for bigalloc
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2
ZL
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 519 ext4_es_lru_add(inode);
d100eef2
ZL
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
921f266b
DM
534#ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537#endif
d100eef2
ZL
538 goto found;
539 }
540
4df3d265 541 /*
b920c755
TT
542 * Try to see if we can get the block without requesting a new
543 * file system block.
4df3d265 544 */
729f52c6
ZL
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 550 } else {
a4e5d88b
DM
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 553 }
f7fec032
ZL
554 if (retval > 0) {
555 int ret;
3be78c73 556 unsigned int status;
f7fec032 557
44fb851d
ZL
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
921f266b 564 }
921f266b 565
f7fec032
ZL
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
729f52c6
ZL
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 579
d100eef2 580found:
e35fd660 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 582 int ret = check_block_validity(inode, map);
6fd058f7
TT
583 if (ret != 0)
584 return ret;
585 }
586
f5ab0d1f 587 /* If it is only a block(s) look up */
c2177057 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
df3ab170 595 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
596 * with buffer head unmapped.
597 */
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
599 return retval;
600
2a8964d6 601 /*
a25a4e1a
ZL
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
2a8964d6 604 */
a25a4e1a 605 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 606
4df3d265 607 /*
f5ab0d1f
MC
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
4df3d265
AK
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
c2177057 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
12e9b892 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 629 } else {
e35fd660 630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 631
e35fd660 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
19f5fb7a 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 639 }
d2a17637 640
5f634d06
AK
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
1296cc85 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
f7fec032 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 653
f7fec032
ZL
654 if (retval > 0) {
655 int ret;
3be78c73 656 unsigned int status;
f7fec032 657
44fb851d
ZL
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
663 WARN_ON(1);
921f266b 664 }
921f266b 665
adb23551
ZL
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
f7fec032
ZL
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
5356f261
AK
685 }
686
adb23551 687has_zeroout:
4df3d265 688 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 690 int ret = check_block_validity(inode, map);
6fd058f7
TT
691 if (ret != 0)
692 return ret;
693 }
0e855ac8
AK
694 return retval;
695}
696
f3bd1f3f
MC
697/* Maximum number of blocks we map for direct IO at once. */
698#define DIO_MAX_BLOCKS 4096
699
2ed88685
TT
700static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
ac27a0ec 702{
3e4fdaf8 703 handle_t *handle = ext4_journal_current_handle();
2ed88685 704 struct ext4_map_blocks map;
7fb5409d 705 int ret = 0, started = 0;
f3bd1f3f 706 int dio_credits;
ac27a0ec 707
46c7f254
TM
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
2ed88685
TT
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
8b0f165f 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 715 /* Direct IO write... */
2ed88685
TT
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
7fb5409d 721 if (IS_ERR(handle)) {
ac27a0ec 722 ret = PTR_ERR(handle);
2ed88685 723 return ret;
ac27a0ec 724 }
7fb5409d 725 started = 1;
ac27a0ec
DK
726 }
727
2ed88685 728 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 729 if (ret > 0) {
7b7a8665
CH
730 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
2ed88685
TT
732 map_bh(bh, inode->i_sb, map.m_pblk);
733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 set_buffer_defer_completion(bh);
2ed88685 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 737 ret = 0;
ac27a0ec 738 }
7fb5409d
JK
739 if (started)
740 ext4_journal_stop(handle);
ac27a0ec
DK
741 return ret;
742}
743
2ed88685
TT
744int ext4_get_block(struct inode *inode, sector_t iblock,
745 struct buffer_head *bh, int create)
746{
747 return _ext4_get_block(inode, iblock, bh,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
749}
750
ac27a0ec
DK
751/*
752 * `handle' can be NULL if create is zero
753 */
617ba13b 754struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *errp)
ac27a0ec 756{
2ed88685
TT
757 struct ext4_map_blocks map;
758 struct buffer_head *bh;
ac27a0ec
DK
759 int fatal = 0, err;
760
761 J_ASSERT(handle != NULL || create == 0);
762
2ed88685
TT
763 map.m_lblk = block;
764 map.m_len = 1;
765 err = ext4_map_blocks(handle, inode, &map,
766 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 767
90b0a973
CM
768 /* ensure we send some value back into *errp */
769 *errp = 0;
770
0f70b406
TT
771 if (create && err == 0)
772 err = -ENOSPC; /* should never happen */
2ed88685
TT
773 if (err < 0)
774 *errp = err;
775 if (err <= 0)
776 return NULL;
2ed88685
TT
777
778 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 779 if (unlikely(!bh)) {
860d21e2 780 *errp = -ENOMEM;
2ed88685 781 return NULL;
ac27a0ec 782 }
2ed88685
TT
783 if (map.m_flags & EXT4_MAP_NEW) {
784 J_ASSERT(create != 0);
785 J_ASSERT(handle != NULL);
ac27a0ec 786
2ed88685
TT
787 /*
788 * Now that we do not always journal data, we should
789 * keep in mind whether this should always journal the
790 * new buffer as metadata. For now, regular file
791 * writes use ext4_get_block instead, so it's not a
792 * problem.
793 */
794 lock_buffer(bh);
795 BUFFER_TRACE(bh, "call get_create_access");
796 fatal = ext4_journal_get_create_access(handle, bh);
797 if (!fatal && !buffer_uptodate(bh)) {
798 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799 set_buffer_uptodate(bh);
ac27a0ec 800 }
2ed88685
TT
801 unlock_buffer(bh);
802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803 err = ext4_handle_dirty_metadata(handle, inode, bh);
804 if (!fatal)
805 fatal = err;
806 } else {
807 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 808 }
2ed88685
TT
809 if (fatal) {
810 *errp = fatal;
811 brelse(bh);
812 bh = NULL;
813 }
814 return bh;
ac27a0ec
DK
815}
816
617ba13b 817struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 818 ext4_lblk_t block, int create, int *err)
ac27a0ec 819{
af5bc92d 820 struct buffer_head *bh;
ac27a0ec 821
617ba13b 822 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
823 if (!bh)
824 return bh;
825 if (buffer_uptodate(bh))
826 return bh;
65299a3b 827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
828 wait_on_buffer(bh);
829 if (buffer_uptodate(bh))
830 return bh;
831 put_bh(bh);
832 *err = -EIO;
833 return NULL;
834}
835
f19d5870
TM
836int ext4_walk_page_buffers(handle_t *handle,
837 struct buffer_head *head,
838 unsigned from,
839 unsigned to,
840 int *partial,
841 int (*fn)(handle_t *handle,
842 struct buffer_head *bh))
ac27a0ec
DK
843{
844 struct buffer_head *bh;
845 unsigned block_start, block_end;
846 unsigned blocksize = head->b_size;
847 int err, ret = 0;
848 struct buffer_head *next;
849
af5bc92d
TT
850 for (bh = head, block_start = 0;
851 ret == 0 && (bh != head || !block_start);
de9a55b8 852 block_start = block_end, bh = next) {
ac27a0ec
DK
853 next = bh->b_this_page;
854 block_end = block_start + blocksize;
855 if (block_end <= from || block_start >= to) {
856 if (partial && !buffer_uptodate(bh))
857 *partial = 1;
858 continue;
859 }
860 err = (*fn)(handle, bh);
861 if (!ret)
862 ret = err;
863 }
864 return ret;
865}
866
867/*
868 * To preserve ordering, it is essential that the hole instantiation and
869 * the data write be encapsulated in a single transaction. We cannot
617ba13b 870 * close off a transaction and start a new one between the ext4_get_block()
dab291af 871 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
872 * prepare_write() is the right place.
873 *
36ade451
JK
874 * Also, this function can nest inside ext4_writepage(). In that case, we
875 * *know* that ext4_writepage() has generated enough buffer credits to do the
876 * whole page. So we won't block on the journal in that case, which is good,
877 * because the caller may be PF_MEMALLOC.
ac27a0ec 878 *
617ba13b 879 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
880 * quota file writes. If we were to commit the transaction while thus
881 * reentered, there can be a deadlock - we would be holding a quota
882 * lock, and the commit would never complete if another thread had a
883 * transaction open and was blocking on the quota lock - a ranking
884 * violation.
885 *
dab291af 886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
887 * will _not_ run commit under these circumstances because handle->h_ref
888 * is elevated. We'll still have enough credits for the tiny quotafile
889 * write.
890 */
f19d5870
TM
891int do_journal_get_write_access(handle_t *handle,
892 struct buffer_head *bh)
ac27a0ec 893{
56d35a4c
JK
894 int dirty = buffer_dirty(bh);
895 int ret;
896
ac27a0ec
DK
897 if (!buffer_mapped(bh) || buffer_freed(bh))
898 return 0;
56d35a4c 899 /*
ebdec241 900 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
901 * the dirty bit as jbd2_journal_get_write_access() could complain
902 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 903 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
904 * the bit before releasing a page lock and thus writeback cannot
905 * ever write the buffer.
906 */
907 if (dirty)
908 clear_buffer_dirty(bh);
909 ret = ext4_journal_get_write_access(handle, bh);
910 if (!ret && dirty)
911 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 return ret;
ac27a0ec
DK
913}
914
8b0f165f
AP
915static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 struct buffer_head *bh_result, int create);
bfc1af65 917static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
918 loff_t pos, unsigned len, unsigned flags,
919 struct page **pagep, void **fsdata)
ac27a0ec 920{
af5bc92d 921 struct inode *inode = mapping->host;
1938a150 922 int ret, needed_blocks;
ac27a0ec
DK
923 handle_t *handle;
924 int retries = 0;
af5bc92d 925 struct page *page;
de9a55b8 926 pgoff_t index;
af5bc92d 927 unsigned from, to;
bfc1af65 928
9bffad1e 929 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
930 /*
931 * Reserve one block more for addition to orphan list in case
932 * we allocate blocks but write fails for some reason
933 */
934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 935 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
936 from = pos & (PAGE_CACHE_SIZE - 1);
937 to = from + len;
ac27a0ec 938
f19d5870
TM
939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941 flags, pagep);
942 if (ret < 0)
47564bfb
TT
943 return ret;
944 if (ret == 1)
945 return 0;
f19d5870
TM
946 }
947
47564bfb
TT
948 /*
949 * grab_cache_page_write_begin() can take a long time if the
950 * system is thrashing due to memory pressure, or if the page
951 * is being written back. So grab it first before we start
952 * the transaction handle. This also allows us to allocate
953 * the page (if needed) without using GFP_NOFS.
954 */
955retry_grab:
956 page = grab_cache_page_write_begin(mapping, index, flags);
957 if (!page)
958 return -ENOMEM;
959 unlock_page(page);
960
961retry_journal:
9924a92a 962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 963 if (IS_ERR(handle)) {
47564bfb
TT
964 page_cache_release(page);
965 return PTR_ERR(handle);
7479d2b9 966 }
ac27a0ec 967
47564bfb
TT
968 lock_page(page);
969 if (page->mapping != mapping) {
970 /* The page got truncated from under us */
971 unlock_page(page);
972 page_cache_release(page);
cf108bca 973 ext4_journal_stop(handle);
47564bfb 974 goto retry_grab;
cf108bca 975 }
7afe5aa5
DM
976 /* In case writeback began while the page was unlocked */
977 wait_for_stable_page(page);
cf108bca 978
744692dc 979 if (ext4_should_dioread_nolock(inode))
6e1db88d 980 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 981 else
6e1db88d 982 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
983
984 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
985 ret = ext4_walk_page_buffers(handle, page_buffers(page),
986 from, to, NULL,
987 do_journal_get_write_access);
ac27a0ec 988 }
bfc1af65
NP
989
990 if (ret) {
af5bc92d 991 unlock_page(page);
ae4d5372 992 /*
6e1db88d 993 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
994 * outside i_size. Trim these off again. Don't need
995 * i_size_read because we hold i_mutex.
1938a150
AK
996 *
997 * Add inode to orphan list in case we crash before
998 * truncate finishes
ae4d5372 999 */
ffacfa7a 1000 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1001 ext4_orphan_add(handle, inode);
1002
1003 ext4_journal_stop(handle);
1004 if (pos + len > inode->i_size) {
b9a4207d 1005 ext4_truncate_failed_write(inode);
de9a55b8 1006 /*
ffacfa7a 1007 * If truncate failed early the inode might
1938a150
AK
1008 * still be on the orphan list; we need to
1009 * make sure the inode is removed from the
1010 * orphan list in that case.
1011 */
1012 if (inode->i_nlink)
1013 ext4_orphan_del(NULL, inode);
1014 }
bfc1af65 1015
47564bfb
TT
1016 if (ret == -ENOSPC &&
1017 ext4_should_retry_alloc(inode->i_sb, &retries))
1018 goto retry_journal;
1019 page_cache_release(page);
1020 return ret;
1021 }
1022 *pagep = page;
ac27a0ec
DK
1023 return ret;
1024}
1025
bfc1af65
NP
1026/* For write_end() in data=journal mode */
1027static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1028{
13fca323 1029 int ret;
ac27a0ec
DK
1030 if (!buffer_mapped(bh) || buffer_freed(bh))
1031 return 0;
1032 set_buffer_uptodate(bh);
13fca323
TT
1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 clear_buffer_meta(bh);
1035 clear_buffer_prio(bh);
1036 return ret;
ac27a0ec
DK
1037}
1038
eed4333f
ZL
1039/*
1040 * We need to pick up the new inode size which generic_commit_write gave us
1041 * `file' can be NULL - eg, when called from page_symlink().
1042 *
1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1044 * buffers are managed internally.
1045 */
1046static int ext4_write_end(struct file *file,
1047 struct address_space *mapping,
1048 loff_t pos, unsigned len, unsigned copied,
1049 struct page *page, void *fsdata)
f8514083 1050{
f8514083 1051 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1052 struct inode *inode = mapping->host;
1053 int ret = 0, ret2;
1054 int i_size_changed = 0;
1055
1056 trace_ext4_write_end(inode, pos, len, copied);
1057 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058 ret = ext4_jbd2_file_inode(handle, inode);
1059 if (ret) {
1060 unlock_page(page);
1061 page_cache_release(page);
1062 goto errout;
1063 }
1064 }
f8514083 1065
42c832de
TT
1066 if (ext4_has_inline_data(inode)) {
1067 ret = ext4_write_inline_data_end(inode, pos, len,
1068 copied, page);
1069 if (ret < 0)
1070 goto errout;
1071 copied = ret;
1072 } else
f19d5870
TM
1073 copied = block_write_end(file, mapping, pos,
1074 len, copied, page, fsdata);
f8514083
AK
1075
1076 /*
1077 * No need to use i_size_read() here, the i_size
eed4333f 1078 * cannot change under us because we hole i_mutex.
f8514083
AK
1079 *
1080 * But it's important to update i_size while still holding page lock:
1081 * page writeout could otherwise come in and zero beyond i_size.
1082 */
1083 if (pos + copied > inode->i_size) {
1084 i_size_write(inode, pos + copied);
1085 i_size_changed = 1;
1086 }
1087
eed4333f 1088 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1089 /* We need to mark inode dirty even if
1090 * new_i_size is less that inode->i_size
eed4333f 1091 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1092 */
1093 ext4_update_i_disksize(inode, (pos + copied));
1094 i_size_changed = 1;
1095 }
1096 unlock_page(page);
1097 page_cache_release(page);
1098
1099 /*
1100 * Don't mark the inode dirty under page lock. First, it unnecessarily
1101 * makes the holding time of page lock longer. Second, it forces lock
1102 * ordering of page lock and transaction start for journaling
1103 * filesystems.
1104 */
1105 if (i_size_changed)
1106 ext4_mark_inode_dirty(handle, inode);
1107
ffacfa7a 1108 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1109 /* if we have allocated more blocks and copied
1110 * less. We will have blocks allocated outside
1111 * inode->i_size. So truncate them
1112 */
1113 ext4_orphan_add(handle, inode);
74d553aa 1114errout:
617ba13b 1115 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1116 if (!ret)
1117 ret = ret2;
bfc1af65 1118
f8514083 1119 if (pos + len > inode->i_size) {
b9a4207d 1120 ext4_truncate_failed_write(inode);
de9a55b8 1121 /*
ffacfa7a 1122 * If truncate failed early the inode might still be
f8514083
AK
1123 * on the orphan list; we need to make sure the inode
1124 * is removed from the orphan list in that case.
1125 */
1126 if (inode->i_nlink)
1127 ext4_orphan_del(NULL, inode);
1128 }
1129
bfc1af65 1130 return ret ? ret : copied;
ac27a0ec
DK
1131}
1132
bfc1af65 1133static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1134 struct address_space *mapping,
1135 loff_t pos, unsigned len, unsigned copied,
1136 struct page *page, void *fsdata)
ac27a0ec 1137{
617ba13b 1138 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1139 struct inode *inode = mapping->host;
ac27a0ec
DK
1140 int ret = 0, ret2;
1141 int partial = 0;
bfc1af65 1142 unsigned from, to;
cf17fea6 1143 loff_t new_i_size;
ac27a0ec 1144
9bffad1e 1145 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1146 from = pos & (PAGE_CACHE_SIZE - 1);
1147 to = from + len;
1148
441c8508
CW
1149 BUG_ON(!ext4_handle_valid(handle));
1150
3fdcfb66
TM
1151 if (ext4_has_inline_data(inode))
1152 copied = ext4_write_inline_data_end(inode, pos, len,
1153 copied, page);
1154 else {
1155 if (copied < len) {
1156 if (!PageUptodate(page))
1157 copied = 0;
1158 page_zero_new_buffers(page, from+copied, to);
1159 }
ac27a0ec 1160
3fdcfb66
TM
1161 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162 to, &partial, write_end_fn);
1163 if (!partial)
1164 SetPageUptodate(page);
1165 }
cf17fea6
AK
1166 new_i_size = pos + copied;
1167 if (new_i_size > inode->i_size)
bfc1af65 1168 i_size_write(inode, pos+copied);
19f5fb7a 1169 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1170 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1171 if (new_i_size > EXT4_I(inode)->i_disksize) {
1172 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1173 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1174 if (!ret)
1175 ret = ret2;
1176 }
bfc1af65 1177
cf108bca 1178 unlock_page(page);
f8514083 1179 page_cache_release(page);
ffacfa7a 1180 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1181 /* if we have allocated more blocks and copied
1182 * less. We will have blocks allocated outside
1183 * inode->i_size. So truncate them
1184 */
1185 ext4_orphan_add(handle, inode);
1186
617ba13b 1187 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1188 if (!ret)
1189 ret = ret2;
f8514083 1190 if (pos + len > inode->i_size) {
b9a4207d 1191 ext4_truncate_failed_write(inode);
de9a55b8 1192 /*
ffacfa7a 1193 * If truncate failed early the inode might still be
f8514083
AK
1194 * on the orphan list; we need to make sure the inode
1195 * is removed from the orphan list in that case.
1196 */
1197 if (inode->i_nlink)
1198 ext4_orphan_del(NULL, inode);
1199 }
bfc1af65
NP
1200
1201 return ret ? ret : copied;
ac27a0ec 1202}
d2a17637 1203
386ad67c
LC
1204/*
1205 * Reserve a metadata for a single block located at lblock
1206 */
1207static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208{
386ad67c
LC
1209 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1210 struct ext4_inode_info *ei = EXT4_I(inode);
1211 unsigned int md_needed;
1212 ext4_lblk_t save_last_lblock;
1213 int save_len;
1214
1215 /*
1216 * recalculate the amount of metadata blocks to reserve
1217 * in order to allocate nrblocks
1218 * worse case is one extent per block
1219 */
386ad67c
LC
1220 spin_lock(&ei->i_block_reservation_lock);
1221 /*
1222 * ext4_calc_metadata_amount() has side effects, which we have
1223 * to be prepared undo if we fail to claim space.
1224 */
1225 save_len = ei->i_da_metadata_calc_len;
1226 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1227 md_needed = EXT4_NUM_B2C(sbi,
1228 ext4_calc_metadata_amount(inode, lblock));
1229 trace_ext4_da_reserve_space(inode, md_needed);
1230
1231 /*
1232 * We do still charge estimated metadata to the sb though;
1233 * we cannot afford to run out of free blocks.
1234 */
1235 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1236 ei->i_da_metadata_calc_len = save_len;
1237 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1238 spin_unlock(&ei->i_block_reservation_lock);
386ad67c
LC
1239 return -ENOSPC;
1240 }
1241 ei->i_reserved_meta_blocks += md_needed;
1242 spin_unlock(&ei->i_block_reservation_lock);
1243
1244 return 0; /* success */
1245}
1246
9d0be502 1247/*
7b415bf6 1248 * Reserve a single cluster located at lblock
9d0be502 1249 */
01f49d0b 1250static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1251{
60e58e0f 1252 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1253 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1254 unsigned int md_needed;
5dd4056d 1255 int ret;
03179fe9
TT
1256 ext4_lblk_t save_last_lblock;
1257 int save_len;
1258
1259 /*
1260 * We will charge metadata quota at writeout time; this saves
1261 * us from metadata over-estimation, though we may go over by
1262 * a small amount in the end. Here we just reserve for data.
1263 */
1264 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1265 if (ret)
1266 return ret;
d2a17637
MC
1267
1268 /*
1269 * recalculate the amount of metadata blocks to reserve
1270 * in order to allocate nrblocks
1271 * worse case is one extent per block
1272 */
0637c6f4 1273 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1274 /*
1275 * ext4_calc_metadata_amount() has side effects, which we have
1276 * to be prepared undo if we fail to claim space.
1277 */
1278 save_len = ei->i_da_metadata_calc_len;
1279 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1280 md_needed = EXT4_NUM_B2C(sbi,
1281 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1282 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1283
72b8ab9d
ES
1284 /*
1285 * We do still charge estimated metadata to the sb though;
1286 * we cannot afford to run out of free blocks.
1287 */
e7d5f315 1288 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1289 ei->i_da_metadata_calc_len = save_len;
1290 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1291 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1292 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1293 return -ENOSPC;
1294 }
9d0be502 1295 ei->i_reserved_data_blocks++;
0637c6f4
TT
1296 ei->i_reserved_meta_blocks += md_needed;
1297 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1298
d2a17637
MC
1299 return 0; /* success */
1300}
1301
12219aea 1302static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1303{
1304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1305 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1306
cd213226
MC
1307 if (!to_free)
1308 return; /* Nothing to release, exit */
1309
d2a17637 1310 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1311
5a58ec87 1312 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1313 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1314 /*
0637c6f4
TT
1315 * if there aren't enough reserved blocks, then the
1316 * counter is messed up somewhere. Since this
1317 * function is called from invalidate page, it's
1318 * harmless to return without any action.
cd213226 1319 */
8de5c325 1320 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1321 "ino %lu, to_free %d with only %d reserved "
1084f252 1322 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1323 ei->i_reserved_data_blocks);
1324 WARN_ON(1);
1325 to_free = ei->i_reserved_data_blocks;
cd213226 1326 }
0637c6f4 1327 ei->i_reserved_data_blocks -= to_free;
cd213226 1328
0637c6f4
TT
1329 if (ei->i_reserved_data_blocks == 0) {
1330 /*
1331 * We can release all of the reserved metadata blocks
1332 * only when we have written all of the delayed
1333 * allocation blocks.
7b415bf6
AK
1334 * Note that in case of bigalloc, i_reserved_meta_blocks,
1335 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1336 */
57042651 1337 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1338 ei->i_reserved_meta_blocks);
ee5f4d9c 1339 ei->i_reserved_meta_blocks = 0;
9d0be502 1340 ei->i_da_metadata_calc_len = 0;
0637c6f4 1341 }
d2a17637 1342
72b8ab9d 1343 /* update fs dirty data blocks counter */
57042651 1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1345
d2a17637 1346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1347
7b415bf6 1348 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1349}
1350
1351static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1352 unsigned int offset,
1353 unsigned int length)
d2a17637
MC
1354{
1355 int to_release = 0;
1356 struct buffer_head *head, *bh;
1357 unsigned int curr_off = 0;
7b415bf6
AK
1358 struct inode *inode = page->mapping->host;
1359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1360 unsigned int stop = offset + length;
7b415bf6 1361 int num_clusters;
51865fda 1362 ext4_fsblk_t lblk;
d2a17637 1363
ca99fdd2
LC
1364 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1365
d2a17637
MC
1366 head = page_buffers(page);
1367 bh = head;
1368 do {
1369 unsigned int next_off = curr_off + bh->b_size;
1370
ca99fdd2
LC
1371 if (next_off > stop)
1372 break;
1373
d2a17637
MC
1374 if ((offset <= curr_off) && (buffer_delay(bh))) {
1375 to_release++;
1376 clear_buffer_delay(bh);
1377 }
1378 curr_off = next_off;
1379 } while ((bh = bh->b_this_page) != head);
7b415bf6 1380
51865fda
ZL
1381 if (to_release) {
1382 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1383 ext4_es_remove_extent(inode, lblk, to_release);
1384 }
1385
7b415bf6
AK
1386 /* If we have released all the blocks belonging to a cluster, then we
1387 * need to release the reserved space for that cluster. */
1388 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1389 while (num_clusters > 0) {
7b415bf6
AK
1390 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1391 ((num_clusters - 1) << sbi->s_cluster_bits);
1392 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1393 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1394 ext4_da_release_space(inode, 1);
1395
1396 num_clusters--;
1397 }
d2a17637 1398}
ac27a0ec 1399
64769240
AT
1400/*
1401 * Delayed allocation stuff
1402 */
1403
4e7ea81d
JK
1404struct mpage_da_data {
1405 struct inode *inode;
1406 struct writeback_control *wbc;
6b523df4 1407
4e7ea81d
JK
1408 pgoff_t first_page; /* The first page to write */
1409 pgoff_t next_page; /* Current page to examine */
1410 pgoff_t last_page; /* Last page to examine */
791b7f08 1411 /*
4e7ea81d
JK
1412 * Extent to map - this can be after first_page because that can be
1413 * fully mapped. We somewhat abuse m_flags to store whether the extent
1414 * is delalloc or unwritten.
791b7f08 1415 */
4e7ea81d
JK
1416 struct ext4_map_blocks map;
1417 struct ext4_io_submit io_submit; /* IO submission data */
1418};
64769240 1419
4e7ea81d
JK
1420static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1421 bool invalidate)
c4a0c46e
AK
1422{
1423 int nr_pages, i;
1424 pgoff_t index, end;
1425 struct pagevec pvec;
1426 struct inode *inode = mpd->inode;
1427 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1428
1429 /* This is necessary when next_page == 0. */
1430 if (mpd->first_page >= mpd->next_page)
1431 return;
c4a0c46e 1432
c7f5938a
CW
1433 index = mpd->first_page;
1434 end = mpd->next_page - 1;
4e7ea81d
JK
1435 if (invalidate) {
1436 ext4_lblk_t start, last;
1437 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439 ext4_es_remove_extent(inode, start, last - start + 1);
1440 }
51865fda 1441
66bea92c 1442 pagevec_init(&pvec, 0);
c4a0c46e
AK
1443 while (index <= end) {
1444 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1445 if (nr_pages == 0)
1446 break;
1447 for (i = 0; i < nr_pages; i++) {
1448 struct page *page = pvec.pages[i];
9b1d0998 1449 if (page->index > end)
c4a0c46e 1450 break;
c4a0c46e
AK
1451 BUG_ON(!PageLocked(page));
1452 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1453 if (invalidate) {
1454 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1455 ClearPageUptodate(page);
1456 }
c4a0c46e
AK
1457 unlock_page(page);
1458 }
9b1d0998
JK
1459 index = pvec.pages[nr_pages - 1]->index + 1;
1460 pagevec_release(&pvec);
c4a0c46e 1461 }
c4a0c46e
AK
1462}
1463
df22291f
AK
1464static void ext4_print_free_blocks(struct inode *inode)
1465{
1466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1467 struct super_block *sb = inode->i_sb;
f78ee70d 1468 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1469
1470 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1471 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1472 ext4_count_free_clusters(sb)));
92b97816
TT
1473 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1474 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1475 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1476 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1477 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1478 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1479 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1480 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1481 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1482 ei->i_reserved_data_blocks);
92b97816 1483 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1484 ei->i_reserved_meta_blocks);
1485 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1486 ei->i_allocated_meta_blocks);
df22291f
AK
1487 return;
1488}
1489
c364b22c 1490static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1491{
c364b22c 1492 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1493}
1494
5356f261
AK
1495/*
1496 * This function is grabs code from the very beginning of
1497 * ext4_map_blocks, but assumes that the caller is from delayed write
1498 * time. This function looks up the requested blocks and sets the
1499 * buffer delay bit under the protection of i_data_sem.
1500 */
1501static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1502 struct ext4_map_blocks *map,
1503 struct buffer_head *bh)
1504{
d100eef2 1505 struct extent_status es;
5356f261
AK
1506 int retval;
1507 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1508#ifdef ES_AGGRESSIVE_TEST
1509 struct ext4_map_blocks orig_map;
1510
1511 memcpy(&orig_map, map, sizeof(*map));
1512#endif
5356f261
AK
1513
1514 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1515 invalid_block = ~0;
1516
1517 map->m_flags = 0;
1518 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1519 "logical block %lu\n", inode->i_ino, map->m_len,
1520 (unsigned long) map->m_lblk);
d100eef2
ZL
1521
1522 /* Lookup extent status tree firstly */
1523 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1524 ext4_es_lru_add(inode);
d100eef2
ZL
1525 if (ext4_es_is_hole(&es)) {
1526 retval = 0;
1527 down_read((&EXT4_I(inode)->i_data_sem));
1528 goto add_delayed;
1529 }
1530
1531 /*
1532 * Delayed extent could be allocated by fallocate.
1533 * So we need to check it.
1534 */
1535 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1536 map_bh(bh, inode->i_sb, invalid_block);
1537 set_buffer_new(bh);
1538 set_buffer_delay(bh);
1539 return 0;
1540 }
1541
1542 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1543 retval = es.es_len - (iblock - es.es_lblk);
1544 if (retval > map->m_len)
1545 retval = map->m_len;
1546 map->m_len = retval;
1547 if (ext4_es_is_written(&es))
1548 map->m_flags |= EXT4_MAP_MAPPED;
1549 else if (ext4_es_is_unwritten(&es))
1550 map->m_flags |= EXT4_MAP_UNWRITTEN;
1551 else
1552 BUG_ON(1);
1553
921f266b
DM
1554#ifdef ES_AGGRESSIVE_TEST
1555 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1556#endif
d100eef2
ZL
1557 return retval;
1558 }
1559
5356f261
AK
1560 /*
1561 * Try to see if we can get the block without requesting a new
1562 * file system block.
1563 */
1564 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1565 if (ext4_has_inline_data(inode)) {
1566 /*
1567 * We will soon create blocks for this page, and let
1568 * us pretend as if the blocks aren't allocated yet.
1569 * In case of clusters, we have to handle the work
1570 * of mapping from cluster so that the reserved space
1571 * is calculated properly.
1572 */
1573 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1574 ext4_find_delalloc_cluster(inode, map->m_lblk))
1575 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1576 retval = 0;
1577 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1578 retval = ext4_ext_map_blocks(NULL, inode, map,
1579 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1580 else
d100eef2
ZL
1581 retval = ext4_ind_map_blocks(NULL, inode, map,
1582 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1583
d100eef2 1584add_delayed:
5356f261 1585 if (retval == 0) {
f7fec032 1586 int ret;
5356f261
AK
1587 /*
1588 * XXX: __block_prepare_write() unmaps passed block,
1589 * is it OK?
1590 */
386ad67c
LC
1591 /*
1592 * If the block was allocated from previously allocated cluster,
1593 * then we don't need to reserve it again. However we still need
1594 * to reserve metadata for every block we're going to write.
1595 */
5356f261 1596 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1597 ret = ext4_da_reserve_space(inode, iblock);
1598 if (ret) {
5356f261 1599 /* not enough space to reserve */
f7fec032 1600 retval = ret;
5356f261 1601 goto out_unlock;
f7fec032 1602 }
386ad67c
LC
1603 } else {
1604 ret = ext4_da_reserve_metadata(inode, iblock);
1605 if (ret) {
1606 /* not enough space to reserve */
1607 retval = ret;
1608 goto out_unlock;
1609 }
5356f261
AK
1610 }
1611
f7fec032
ZL
1612 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1613 ~0, EXTENT_STATUS_DELAYED);
1614 if (ret) {
1615 retval = ret;
51865fda 1616 goto out_unlock;
f7fec032 1617 }
51865fda 1618
5356f261
AK
1619 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1620 * and it should not appear on the bh->b_state.
1621 */
1622 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1623
1624 map_bh(bh, inode->i_sb, invalid_block);
1625 set_buffer_new(bh);
1626 set_buffer_delay(bh);
f7fec032
ZL
1627 } else if (retval > 0) {
1628 int ret;
3be78c73 1629 unsigned int status;
f7fec032 1630
44fb851d
ZL
1631 if (unlikely(retval != map->m_len)) {
1632 ext4_warning(inode->i_sb,
1633 "ES len assertion failed for inode "
1634 "%lu: retval %d != map->m_len %d",
1635 inode->i_ino, retval, map->m_len);
1636 WARN_ON(1);
921f266b 1637 }
921f266b 1638
f7fec032
ZL
1639 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1640 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1641 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1642 map->m_pblk, status);
1643 if (ret != 0)
1644 retval = ret;
5356f261
AK
1645 }
1646
1647out_unlock:
1648 up_read((&EXT4_I(inode)->i_data_sem));
1649
1650 return retval;
1651}
1652
64769240 1653/*
b920c755
TT
1654 * This is a special get_blocks_t callback which is used by
1655 * ext4_da_write_begin(). It will either return mapped block or
1656 * reserve space for a single block.
29fa89d0
AK
1657 *
1658 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1659 * We also have b_blocknr = -1 and b_bdev initialized properly
1660 *
1661 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1662 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1663 * initialized properly.
64769240 1664 */
9c3569b5
TM
1665int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1666 struct buffer_head *bh, int create)
64769240 1667{
2ed88685 1668 struct ext4_map_blocks map;
64769240
AT
1669 int ret = 0;
1670
1671 BUG_ON(create == 0);
2ed88685
TT
1672 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1673
1674 map.m_lblk = iblock;
1675 map.m_len = 1;
64769240
AT
1676
1677 /*
1678 * first, we need to know whether the block is allocated already
1679 * preallocated blocks are unmapped but should treated
1680 * the same as allocated blocks.
1681 */
5356f261
AK
1682 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1683 if (ret <= 0)
2ed88685 1684 return ret;
64769240 1685
2ed88685
TT
1686 map_bh(bh, inode->i_sb, map.m_pblk);
1687 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1688
1689 if (buffer_unwritten(bh)) {
1690 /* A delayed write to unwritten bh should be marked
1691 * new and mapped. Mapped ensures that we don't do
1692 * get_block multiple times when we write to the same
1693 * offset and new ensures that we do proper zero out
1694 * for partial write.
1695 */
1696 set_buffer_new(bh);
c8205636 1697 set_buffer_mapped(bh);
2ed88685
TT
1698 }
1699 return 0;
64769240 1700}
61628a3f 1701
62e086be
AK
1702static int bget_one(handle_t *handle, struct buffer_head *bh)
1703{
1704 get_bh(bh);
1705 return 0;
1706}
1707
1708static int bput_one(handle_t *handle, struct buffer_head *bh)
1709{
1710 put_bh(bh);
1711 return 0;
1712}
1713
1714static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1715 unsigned int len)
1716{
1717 struct address_space *mapping = page->mapping;
1718 struct inode *inode = mapping->host;
3fdcfb66 1719 struct buffer_head *page_bufs = NULL;
62e086be 1720 handle_t *handle = NULL;
3fdcfb66
TM
1721 int ret = 0, err = 0;
1722 int inline_data = ext4_has_inline_data(inode);
1723 struct buffer_head *inode_bh = NULL;
62e086be 1724
cb20d518 1725 ClearPageChecked(page);
3fdcfb66
TM
1726
1727 if (inline_data) {
1728 BUG_ON(page->index != 0);
1729 BUG_ON(len > ext4_get_max_inline_size(inode));
1730 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1731 if (inode_bh == NULL)
1732 goto out;
1733 } else {
1734 page_bufs = page_buffers(page);
1735 if (!page_bufs) {
1736 BUG();
1737 goto out;
1738 }
1739 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1740 NULL, bget_one);
1741 }
62e086be
AK
1742 /* As soon as we unlock the page, it can go away, but we have
1743 * references to buffers so we are safe */
1744 unlock_page(page);
1745
9924a92a
TT
1746 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1747 ext4_writepage_trans_blocks(inode));
62e086be
AK
1748 if (IS_ERR(handle)) {
1749 ret = PTR_ERR(handle);
1750 goto out;
1751 }
1752
441c8508
CW
1753 BUG_ON(!ext4_handle_valid(handle));
1754
3fdcfb66
TM
1755 if (inline_data) {
1756 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1757
3fdcfb66
TM
1758 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1759
1760 } else {
1761 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1762 do_journal_get_write_access);
1763
1764 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1765 write_end_fn);
1766 }
62e086be
AK
1767 if (ret == 0)
1768 ret = err;
2d859db3 1769 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1770 err = ext4_journal_stop(handle);
1771 if (!ret)
1772 ret = err;
1773
3fdcfb66
TM
1774 if (!ext4_has_inline_data(inode))
1775 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1776 NULL, bput_one);
19f5fb7a 1777 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1778out:
3fdcfb66 1779 brelse(inode_bh);
62e086be
AK
1780 return ret;
1781}
1782
61628a3f 1783/*
43ce1d23
AK
1784 * Note that we don't need to start a transaction unless we're journaling data
1785 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1786 * need to file the inode to the transaction's list in ordered mode because if
1787 * we are writing back data added by write(), the inode is already there and if
25985edc 1788 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1789 * transaction the data will hit the disk. In case we are journaling data, we
1790 * cannot start transaction directly because transaction start ranks above page
1791 * lock so we have to do some magic.
1792 *
b920c755 1793 * This function can get called via...
20970ba6 1794 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1795 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1796 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1797 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1798 *
1799 * We don't do any block allocation in this function. If we have page with
1800 * multiple blocks we need to write those buffer_heads that are mapped. This
1801 * is important for mmaped based write. So if we do with blocksize 1K
1802 * truncate(f, 1024);
1803 * a = mmap(f, 0, 4096);
1804 * a[0] = 'a';
1805 * truncate(f, 4096);
1806 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1807 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1808 * do_wp_page). So writepage should write the first block. If we modify
1809 * the mmap area beyond 1024 we will again get a page_fault and the
1810 * page_mkwrite callback will do the block allocation and mark the
1811 * buffer_heads mapped.
1812 *
1813 * We redirty the page if we have any buffer_heads that is either delay or
1814 * unwritten in the page.
1815 *
1816 * We can get recursively called as show below.
1817 *
1818 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1819 * ext4_writepage()
1820 *
1821 * But since we don't do any block allocation we should not deadlock.
1822 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1823 */
43ce1d23 1824static int ext4_writepage(struct page *page,
62e086be 1825 struct writeback_control *wbc)
64769240 1826{
f8bec370 1827 int ret = 0;
61628a3f 1828 loff_t size;
498e5f24 1829 unsigned int len;
744692dc 1830 struct buffer_head *page_bufs = NULL;
61628a3f 1831 struct inode *inode = page->mapping->host;
36ade451 1832 struct ext4_io_submit io_submit;
61628a3f 1833
a9c667f8 1834 trace_ext4_writepage(page);
f0e6c985
AK
1835 size = i_size_read(inode);
1836 if (page->index == size >> PAGE_CACHE_SHIFT)
1837 len = size & ~PAGE_CACHE_MASK;
1838 else
1839 len = PAGE_CACHE_SIZE;
64769240 1840
a42afc5f 1841 page_bufs = page_buffers(page);
a42afc5f 1842 /*
fe386132
JK
1843 * We cannot do block allocation or other extent handling in this
1844 * function. If there are buffers needing that, we have to redirty
1845 * the page. But we may reach here when we do a journal commit via
1846 * journal_submit_inode_data_buffers() and in that case we must write
1847 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1848 */
f19d5870
TM
1849 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1850 ext4_bh_delay_or_unwritten)) {
f8bec370 1851 redirty_page_for_writepage(wbc, page);
fe386132
JK
1852 if (current->flags & PF_MEMALLOC) {
1853 /*
1854 * For memory cleaning there's no point in writing only
1855 * some buffers. So just bail out. Warn if we came here
1856 * from direct reclaim.
1857 */
1858 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1859 == PF_MEMALLOC);
f0e6c985
AK
1860 unlock_page(page);
1861 return 0;
1862 }
a42afc5f 1863 }
64769240 1864
cb20d518 1865 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1866 /*
1867 * It's mmapped pagecache. Add buffers and journal it. There
1868 * doesn't seem much point in redirtying the page here.
1869 */
3f0ca309 1870 return __ext4_journalled_writepage(page, len);
43ce1d23 1871
97a851ed
JK
1872 ext4_io_submit_init(&io_submit, wbc);
1873 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1874 if (!io_submit.io_end) {
1875 redirty_page_for_writepage(wbc, page);
1876 unlock_page(page);
1877 return -ENOMEM;
1878 }
36ade451
JK
1879 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1880 ext4_io_submit(&io_submit);
97a851ed
JK
1881 /* Drop io_end reference we got from init */
1882 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1883 return ret;
1884}
1885
5f1132b2
JK
1886static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1887{
1888 int len;
1889 loff_t size = i_size_read(mpd->inode);
1890 int err;
1891
1892 BUG_ON(page->index != mpd->first_page);
1893 if (page->index == size >> PAGE_CACHE_SHIFT)
1894 len = size & ~PAGE_CACHE_MASK;
1895 else
1896 len = PAGE_CACHE_SIZE;
1897 clear_page_dirty_for_io(page);
1898 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1899 if (!err)
1900 mpd->wbc->nr_to_write--;
1901 mpd->first_page++;
1902
1903 return err;
1904}
1905
4e7ea81d
JK
1906#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1907
61628a3f 1908/*
fffb2739
JK
1909 * mballoc gives us at most this number of blocks...
1910 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1911 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1912 */
fffb2739 1913#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1914
4e7ea81d
JK
1915/*
1916 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1917 *
1918 * @mpd - extent of blocks
1919 * @lblk - logical number of the block in the file
09930042 1920 * @bh - buffer head we want to add to the extent
4e7ea81d 1921 *
09930042
JK
1922 * The function is used to collect contig. blocks in the same state. If the
1923 * buffer doesn't require mapping for writeback and we haven't started the
1924 * extent of buffers to map yet, the function returns 'true' immediately - the
1925 * caller can write the buffer right away. Otherwise the function returns true
1926 * if the block has been added to the extent, false if the block couldn't be
1927 * added.
4e7ea81d 1928 */
09930042
JK
1929static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1930 struct buffer_head *bh)
4e7ea81d
JK
1931{
1932 struct ext4_map_blocks *map = &mpd->map;
1933
09930042
JK
1934 /* Buffer that doesn't need mapping for writeback? */
1935 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1936 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1937 /* So far no extent to map => we write the buffer right away */
1938 if (map->m_len == 0)
1939 return true;
1940 return false;
1941 }
4e7ea81d
JK
1942
1943 /* First block in the extent? */
1944 if (map->m_len == 0) {
1945 map->m_lblk = lblk;
1946 map->m_len = 1;
09930042
JK
1947 map->m_flags = bh->b_state & BH_FLAGS;
1948 return true;
4e7ea81d
JK
1949 }
1950
09930042
JK
1951 /* Don't go larger than mballoc is willing to allocate */
1952 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1953 return false;
1954
4e7ea81d
JK
1955 /* Can we merge the block to our big extent? */
1956 if (lblk == map->m_lblk + map->m_len &&
09930042 1957 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1958 map->m_len++;
09930042 1959 return true;
4e7ea81d 1960 }
09930042 1961 return false;
4e7ea81d
JK
1962}
1963
5f1132b2
JK
1964/*
1965 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1966 *
1967 * @mpd - extent of blocks for mapping
1968 * @head - the first buffer in the page
1969 * @bh - buffer we should start processing from
1970 * @lblk - logical number of the block in the file corresponding to @bh
1971 *
1972 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1973 * the page for IO if all buffers in this page were mapped and there's no
1974 * accumulated extent of buffers to map or add buffers in the page to the
1975 * extent of buffers to map. The function returns 1 if the caller can continue
1976 * by processing the next page, 0 if it should stop adding buffers to the
1977 * extent to map because we cannot extend it anymore. It can also return value
1978 * < 0 in case of error during IO submission.
1979 */
1980static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1981 struct buffer_head *head,
1982 struct buffer_head *bh,
1983 ext4_lblk_t lblk)
4e7ea81d
JK
1984{
1985 struct inode *inode = mpd->inode;
5f1132b2 1986 int err;
4e7ea81d
JK
1987 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1988 >> inode->i_blkbits;
1989
1990 do {
1991 BUG_ON(buffer_locked(bh));
1992
09930042 1993 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1994 /* Found extent to map? */
1995 if (mpd->map.m_len)
5f1132b2 1996 return 0;
09930042 1997 /* Everything mapped so far and we hit EOF */
5f1132b2 1998 break;
4e7ea81d 1999 }
4e7ea81d 2000 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2001 /* So far everything mapped? Submit the page for IO. */
2002 if (mpd->map.m_len == 0) {
2003 err = mpage_submit_page(mpd, head->b_page);
2004 if (err < 0)
2005 return err;
2006 }
2007 return lblk < blocks;
4e7ea81d
JK
2008}
2009
2010/*
2011 * mpage_map_buffers - update buffers corresponding to changed extent and
2012 * submit fully mapped pages for IO
2013 *
2014 * @mpd - description of extent to map, on return next extent to map
2015 *
2016 * Scan buffers corresponding to changed extent (we expect corresponding pages
2017 * to be already locked) and update buffer state according to new extent state.
2018 * We map delalloc buffers to their physical location, clear unwritten bits,
2019 * and mark buffers as uninit when we perform writes to uninitialized extents
2020 * and do extent conversion after IO is finished. If the last page is not fully
2021 * mapped, we update @map to the next extent in the last page that needs
2022 * mapping. Otherwise we submit the page for IO.
2023 */
2024static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2025{
2026 struct pagevec pvec;
2027 int nr_pages, i;
2028 struct inode *inode = mpd->inode;
2029 struct buffer_head *head, *bh;
2030 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2031 pgoff_t start, end;
2032 ext4_lblk_t lblk;
2033 sector_t pblock;
2034 int err;
2035
2036 start = mpd->map.m_lblk >> bpp_bits;
2037 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2038 lblk = start << bpp_bits;
2039 pblock = mpd->map.m_pblk;
2040
2041 pagevec_init(&pvec, 0);
2042 while (start <= end) {
2043 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2044 PAGEVEC_SIZE);
2045 if (nr_pages == 0)
2046 break;
2047 for (i = 0; i < nr_pages; i++) {
2048 struct page *page = pvec.pages[i];
2049
2050 if (page->index > end)
2051 break;
70261f56 2052 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2053 BUG_ON(page->index != start);
2054 bh = head = page_buffers(page);
2055 do {
2056 if (lblk < mpd->map.m_lblk)
2057 continue;
2058 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2059 /*
2060 * Buffer after end of mapped extent.
2061 * Find next buffer in the page to map.
2062 */
2063 mpd->map.m_len = 0;
2064 mpd->map.m_flags = 0;
5f1132b2
JK
2065 /*
2066 * FIXME: If dioread_nolock supports
2067 * blocksize < pagesize, we need to make
2068 * sure we add size mapped so far to
2069 * io_end->size as the following call
2070 * can submit the page for IO.
2071 */
2072 err = mpage_process_page_bufs(mpd, head,
2073 bh, lblk);
4e7ea81d 2074 pagevec_release(&pvec);
5f1132b2
JK
2075 if (err > 0)
2076 err = 0;
2077 return err;
4e7ea81d
JK
2078 }
2079 if (buffer_delay(bh)) {
2080 clear_buffer_delay(bh);
2081 bh->b_blocknr = pblock++;
2082 }
4e7ea81d 2083 clear_buffer_unwritten(bh);
5f1132b2 2084 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2085
2086 /*
2087 * FIXME: This is going to break if dioread_nolock
2088 * supports blocksize < pagesize as we will try to
2089 * convert potentially unmapped parts of inode.
2090 */
2091 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2092 /* Page fully mapped - let IO run! */
2093 err = mpage_submit_page(mpd, page);
2094 if (err < 0) {
2095 pagevec_release(&pvec);
2096 return err;
2097 }
2098 start++;
2099 }
2100 pagevec_release(&pvec);
2101 }
2102 /* Extent fully mapped and matches with page boundary. We are done. */
2103 mpd->map.m_len = 0;
2104 mpd->map.m_flags = 0;
2105 return 0;
2106}
2107
2108static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2109{
2110 struct inode *inode = mpd->inode;
2111 struct ext4_map_blocks *map = &mpd->map;
2112 int get_blocks_flags;
2113 int err;
2114
2115 trace_ext4_da_write_pages_extent(inode, map);
2116 /*
2117 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2118 * to convert an uninitialized extent to be initialized (in the case
2119 * where we have written into one or more preallocated blocks). It is
2120 * possible that we're going to need more metadata blocks than
2121 * previously reserved. However we must not fail because we're in
2122 * writeback and there is nothing we can do about it so it might result
2123 * in data loss. So use reserved blocks to allocate metadata if
2124 * possible.
2125 *
2126 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2127 * in question are delalloc blocks. This affects functions in many
2128 * different parts of the allocation call path. This flag exists
2129 * primarily because we don't want to change *many* call functions, so
2130 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2131 * once the inode's allocation semaphore is taken.
2132 */
2133 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2134 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2135 if (ext4_should_dioread_nolock(inode))
2136 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2137 if (map->m_flags & (1 << BH_Delay))
2138 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2139
2140 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2141 if (err < 0)
2142 return err;
6b523df4
JK
2143 if (map->m_flags & EXT4_MAP_UNINIT) {
2144 if (!mpd->io_submit.io_end->handle &&
2145 ext4_handle_valid(handle)) {
2146 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2147 handle->h_rsv_handle = NULL;
2148 }
3613d228 2149 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2150 }
4e7ea81d
JK
2151
2152 BUG_ON(map->m_len == 0);
2153 if (map->m_flags & EXT4_MAP_NEW) {
2154 struct block_device *bdev = inode->i_sb->s_bdev;
2155 int i;
2156
2157 for (i = 0; i < map->m_len; i++)
2158 unmap_underlying_metadata(bdev, map->m_pblk + i);
2159 }
2160 return 0;
2161}
2162
2163/*
2164 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2165 * mpd->len and submit pages underlying it for IO
2166 *
2167 * @handle - handle for journal operations
2168 * @mpd - extent to map
7534e854
JK
2169 * @give_up_on_write - we set this to true iff there is a fatal error and there
2170 * is no hope of writing the data. The caller should discard
2171 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2172 *
2173 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2174 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2175 * them to initialized or split the described range from larger unwritten
2176 * extent. Note that we need not map all the described range since allocation
2177 * can return less blocks or the range is covered by more unwritten extents. We
2178 * cannot map more because we are limited by reserved transaction credits. On
2179 * the other hand we always make sure that the last touched page is fully
2180 * mapped so that it can be written out (and thus forward progress is
2181 * guaranteed). After mapping we submit all mapped pages for IO.
2182 */
2183static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2184 struct mpage_da_data *mpd,
2185 bool *give_up_on_write)
4e7ea81d
JK
2186{
2187 struct inode *inode = mpd->inode;
2188 struct ext4_map_blocks *map = &mpd->map;
2189 int err;
2190 loff_t disksize;
2191
2192 mpd->io_submit.io_end->offset =
2193 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2194 do {
4e7ea81d
JK
2195 err = mpage_map_one_extent(handle, mpd);
2196 if (err < 0) {
2197 struct super_block *sb = inode->i_sb;
2198
cb530541
TT
2199 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2200 goto invalidate_dirty_pages;
4e7ea81d 2201 /*
cb530541
TT
2202 * Let the uper layers retry transient errors.
2203 * In the case of ENOSPC, if ext4_count_free_blocks()
2204 * is non-zero, a commit should free up blocks.
4e7ea81d 2205 */
cb530541
TT
2206 if ((err == -ENOMEM) ||
2207 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2208 return err;
2209 ext4_msg(sb, KERN_CRIT,
2210 "Delayed block allocation failed for "
2211 "inode %lu at logical offset %llu with"
2212 " max blocks %u with error %d",
2213 inode->i_ino,
2214 (unsigned long long)map->m_lblk,
2215 (unsigned)map->m_len, -err);
2216 ext4_msg(sb, KERN_CRIT,
2217 "This should not happen!! Data will "
2218 "be lost\n");
2219 if (err == -ENOSPC)
2220 ext4_print_free_blocks(inode);
2221 invalidate_dirty_pages:
2222 *give_up_on_write = true;
4e7ea81d
JK
2223 return err;
2224 }
2225 /*
2226 * Update buffer state, submit mapped pages, and get us new
2227 * extent to map
2228 */
2229 err = mpage_map_and_submit_buffers(mpd);
2230 if (err < 0)
2231 return err;
27d7c4ed 2232 } while (map->m_len);
4e7ea81d
JK
2233
2234 /* Update on-disk size after IO is submitted */
2235 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2236 if (disksize > EXT4_I(inode)->i_disksize) {
2237 int err2;
2238
90e775b7 2239 ext4_wb_update_i_disksize(inode, disksize);
4e7ea81d
JK
2240 err2 = ext4_mark_inode_dirty(handle, inode);
2241 if (err2)
2242 ext4_error(inode->i_sb,
2243 "Failed to mark inode %lu dirty",
2244 inode->i_ino);
2245 if (!err)
2246 err = err2;
2247 }
2248 return err;
2249}
2250
fffb2739
JK
2251/*
2252 * Calculate the total number of credits to reserve for one writepages
20970ba6 2253 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2254 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2255 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2256 * bpp - 1 blocks in bpp different extents.
2257 */
525f4ed8
MC
2258static int ext4_da_writepages_trans_blocks(struct inode *inode)
2259{
fffb2739 2260 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2261
fffb2739
JK
2262 return ext4_meta_trans_blocks(inode,
2263 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2264}
61628a3f 2265
8e48dcfb 2266/*
4e7ea81d
JK
2267 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2268 * and underlying extent to map
2269 *
2270 * @mpd - where to look for pages
2271 *
2272 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2273 * IO immediately. When we find a page which isn't mapped we start accumulating
2274 * extent of buffers underlying these pages that needs mapping (formed by
2275 * either delayed or unwritten buffers). We also lock the pages containing
2276 * these buffers. The extent found is returned in @mpd structure (starting at
2277 * mpd->lblk with length mpd->len blocks).
2278 *
2279 * Note that this function can attach bios to one io_end structure which are
2280 * neither logically nor physically contiguous. Although it may seem as an
2281 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2282 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2283 */
4e7ea81d 2284static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2285{
4e7ea81d
JK
2286 struct address_space *mapping = mpd->inode->i_mapping;
2287 struct pagevec pvec;
2288 unsigned int nr_pages;
aeac589a 2289 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2290 pgoff_t index = mpd->first_page;
2291 pgoff_t end = mpd->last_page;
2292 int tag;
2293 int i, err = 0;
2294 int blkbits = mpd->inode->i_blkbits;
2295 ext4_lblk_t lblk;
2296 struct buffer_head *head;
8e48dcfb 2297
4e7ea81d 2298 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2299 tag = PAGECACHE_TAG_TOWRITE;
2300 else
2301 tag = PAGECACHE_TAG_DIRTY;
2302
4e7ea81d
JK
2303 pagevec_init(&pvec, 0);
2304 mpd->map.m_len = 0;
2305 mpd->next_page = index;
4f01b02c 2306 while (index <= end) {
5b41d924 2307 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2308 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2309 if (nr_pages == 0)
4e7ea81d 2310 goto out;
8e48dcfb
TT
2311
2312 for (i = 0; i < nr_pages; i++) {
2313 struct page *page = pvec.pages[i];
2314
2315 /*
2316 * At this point, the page may be truncated or
2317 * invalidated (changing page->mapping to NULL), or
2318 * even swizzled back from swapper_space to tmpfs file
2319 * mapping. However, page->index will not change
2320 * because we have a reference on the page.
2321 */
4f01b02c
TT
2322 if (page->index > end)
2323 goto out;
8e48dcfb 2324
aeac589a
ML
2325 /*
2326 * Accumulated enough dirty pages? This doesn't apply
2327 * to WB_SYNC_ALL mode. For integrity sync we have to
2328 * keep going because someone may be concurrently
2329 * dirtying pages, and we might have synced a lot of
2330 * newly appeared dirty pages, but have not synced all
2331 * of the old dirty pages.
2332 */
2333 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2334 goto out;
2335
4e7ea81d
JK
2336 /* If we can't merge this page, we are done. */
2337 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2338 goto out;
78aaced3 2339
8e48dcfb 2340 lock_page(page);
8e48dcfb 2341 /*
4e7ea81d
JK
2342 * If the page is no longer dirty, or its mapping no
2343 * longer corresponds to inode we are writing (which
2344 * means it has been truncated or invalidated), or the
2345 * page is already under writeback and we are not doing
2346 * a data integrity writeback, skip the page
8e48dcfb 2347 */
4f01b02c
TT
2348 if (!PageDirty(page) ||
2349 (PageWriteback(page) &&
4e7ea81d 2350 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2351 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2352 unlock_page(page);
2353 continue;
2354 }
2355
7cb1a535 2356 wait_on_page_writeback(page);
8e48dcfb 2357 BUG_ON(PageWriteback(page));
8e48dcfb 2358
4e7ea81d 2359 if (mpd->map.m_len == 0)
8eb9e5ce 2360 mpd->first_page = page->index;
8eb9e5ce 2361 mpd->next_page = page->index + 1;
f8bec370 2362 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2363 lblk = ((ext4_lblk_t)page->index) <<
2364 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2365 head = page_buffers(page);
5f1132b2
JK
2366 err = mpage_process_page_bufs(mpd, head, head, lblk);
2367 if (err <= 0)
4e7ea81d 2368 goto out;
5f1132b2 2369 err = 0;
aeac589a 2370 left--;
8e48dcfb
TT
2371 }
2372 pagevec_release(&pvec);
2373 cond_resched();
2374 }
4f01b02c 2375 return 0;
8eb9e5ce
TT
2376out:
2377 pagevec_release(&pvec);
4e7ea81d 2378 return err;
8e48dcfb
TT
2379}
2380
20970ba6
TT
2381static int __writepage(struct page *page, struct writeback_control *wbc,
2382 void *data)
2383{
2384 struct address_space *mapping = data;
2385 int ret = ext4_writepage(page, wbc);
2386 mapping_set_error(mapping, ret);
2387 return ret;
2388}
2389
2390static int ext4_writepages(struct address_space *mapping,
2391 struct writeback_control *wbc)
64769240 2392{
4e7ea81d
JK
2393 pgoff_t writeback_index = 0;
2394 long nr_to_write = wbc->nr_to_write;
22208ded 2395 int range_whole = 0;
4e7ea81d 2396 int cycled = 1;
61628a3f 2397 handle_t *handle = NULL;
df22291f 2398 struct mpage_da_data mpd;
5e745b04 2399 struct inode *inode = mapping->host;
6b523df4 2400 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2401 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2402 bool done;
1bce63d1 2403 struct blk_plug plug;
cb530541 2404 bool give_up_on_write = false;
61628a3f 2405
20970ba6 2406 trace_ext4_writepages(inode, wbc);
ba80b101 2407
61628a3f
MC
2408 /*
2409 * No pages to write? This is mainly a kludge to avoid starting
2410 * a transaction for special inodes like journal inode on last iput()
2411 * because that could violate lock ordering on umount
2412 */
a1d6cc56 2413 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2414 goto out_writepages;
2a21e37e 2415
20970ba6
TT
2416 if (ext4_should_journal_data(inode)) {
2417 struct blk_plug plug;
20970ba6
TT
2418
2419 blk_start_plug(&plug);
2420 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2421 blk_finish_plug(&plug);
bbf023c7 2422 goto out_writepages;
20970ba6
TT
2423 }
2424
2a21e37e
TT
2425 /*
2426 * If the filesystem has aborted, it is read-only, so return
2427 * right away instead of dumping stack traces later on that
2428 * will obscure the real source of the problem. We test
4ab2f15b 2429 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2430 * the latter could be true if the filesystem is mounted
20970ba6 2431 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2432 * *never* be called, so if that ever happens, we would want
2433 * the stack trace.
2434 */
bbf023c7
ML
2435 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2436 ret = -EROFS;
2437 goto out_writepages;
2438 }
2a21e37e 2439
6b523df4
JK
2440 if (ext4_should_dioread_nolock(inode)) {
2441 /*
70261f56 2442 * We may need to convert up to one extent per block in
6b523df4
JK
2443 * the page and we may dirty the inode.
2444 */
2445 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2446 }
2447
4e7ea81d
JK
2448 /*
2449 * If we have inline data and arrive here, it means that
2450 * we will soon create the block for the 1st page, so
2451 * we'd better clear the inline data here.
2452 */
2453 if (ext4_has_inline_data(inode)) {
2454 /* Just inode will be modified... */
2455 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2456 if (IS_ERR(handle)) {
2457 ret = PTR_ERR(handle);
2458 goto out_writepages;
2459 }
2460 BUG_ON(ext4_test_inode_state(inode,
2461 EXT4_STATE_MAY_INLINE_DATA));
2462 ext4_destroy_inline_data(handle, inode);
2463 ext4_journal_stop(handle);
2464 }
2465
22208ded
AK
2466 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2467 range_whole = 1;
61628a3f 2468
2acf2c26 2469 if (wbc->range_cyclic) {
4e7ea81d
JK
2470 writeback_index = mapping->writeback_index;
2471 if (writeback_index)
2acf2c26 2472 cycled = 0;
4e7ea81d
JK
2473 mpd.first_page = writeback_index;
2474 mpd.last_page = -1;
5b41d924 2475 } else {
4e7ea81d
JK
2476 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2477 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2478 }
a1d6cc56 2479
4e7ea81d
JK
2480 mpd.inode = inode;
2481 mpd.wbc = wbc;
2482 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2483retry:
6e6938b6 2484 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2485 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2486 done = false;
1bce63d1 2487 blk_start_plug(&plug);
4e7ea81d
JK
2488 while (!done && mpd.first_page <= mpd.last_page) {
2489 /* For each extent of pages we use new io_end */
2490 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2491 if (!mpd.io_submit.io_end) {
2492 ret = -ENOMEM;
2493 break;
2494 }
a1d6cc56
AK
2495
2496 /*
4e7ea81d
JK
2497 * We have two constraints: We find one extent to map and we
2498 * must always write out whole page (makes a difference when
2499 * blocksize < pagesize) so that we don't block on IO when we
2500 * try to write out the rest of the page. Journalled mode is
2501 * not supported by delalloc.
a1d6cc56
AK
2502 */
2503 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2504 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2505
4e7ea81d 2506 /* start a new transaction */
6b523df4
JK
2507 handle = ext4_journal_start_with_reserve(inode,
2508 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2509 if (IS_ERR(handle)) {
2510 ret = PTR_ERR(handle);
1693918e 2511 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2512 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2513 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2514 /* Release allocated io_end */
2515 ext4_put_io_end(mpd.io_submit.io_end);
2516 break;
61628a3f 2517 }
f63e6005 2518
4e7ea81d
JK
2519 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2520 ret = mpage_prepare_extent_to_map(&mpd);
2521 if (!ret) {
2522 if (mpd.map.m_len)
cb530541
TT
2523 ret = mpage_map_and_submit_extent(handle, &mpd,
2524 &give_up_on_write);
4e7ea81d
JK
2525 else {
2526 /*
2527 * We scanned the whole range (or exhausted
2528 * nr_to_write), submitted what was mapped and
2529 * didn't find anything needing mapping. We are
2530 * done.
2531 */
2532 done = true;
2533 }
f63e6005 2534 }
61628a3f 2535 ext4_journal_stop(handle);
4e7ea81d
JK
2536 /* Submit prepared bio */
2537 ext4_io_submit(&mpd.io_submit);
2538 /* Unlock pages we didn't use */
cb530541 2539 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2540 /* Drop our io_end reference we got from init */
2541 ext4_put_io_end(mpd.io_submit.io_end);
2542
2543 if (ret == -ENOSPC && sbi->s_journal) {
2544 /*
2545 * Commit the transaction which would
22208ded
AK
2546 * free blocks released in the transaction
2547 * and try again
2548 */
df22291f 2549 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2550 ret = 0;
4e7ea81d
JK
2551 continue;
2552 }
2553 /* Fatal error - ENOMEM, EIO... */
2554 if (ret)
61628a3f 2555 break;
a1d6cc56 2556 }
1bce63d1 2557 blk_finish_plug(&plug);
9c12a831 2558 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2559 cycled = 1;
4e7ea81d
JK
2560 mpd.last_page = writeback_index - 1;
2561 mpd.first_page = 0;
2acf2c26
AK
2562 goto retry;
2563 }
22208ded
AK
2564
2565 /* Update index */
22208ded
AK
2566 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2567 /*
4e7ea81d 2568 * Set the writeback_index so that range_cyclic
22208ded
AK
2569 * mode will write it back later
2570 */
4e7ea81d 2571 mapping->writeback_index = mpd.first_page;
a1d6cc56 2572
61628a3f 2573out_writepages:
20970ba6
TT
2574 trace_ext4_writepages_result(inode, wbc, ret,
2575 nr_to_write - wbc->nr_to_write);
61628a3f 2576 return ret;
64769240
AT
2577}
2578
79f0be8d
AK
2579static int ext4_nonda_switch(struct super_block *sb)
2580{
5c1ff336 2581 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2582 struct ext4_sb_info *sbi = EXT4_SB(sb);
2583
2584 /*
2585 * switch to non delalloc mode if we are running low
2586 * on free block. The free block accounting via percpu
179f7ebf 2587 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2588 * accumulated on each CPU without updating global counters
2589 * Delalloc need an accurate free block accounting. So switch
2590 * to non delalloc when we are near to error range.
2591 */
5c1ff336
EW
2592 free_clusters =
2593 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2594 dirty_clusters =
2595 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2596 /*
2597 * Start pushing delalloc when 1/2 of free blocks are dirty.
2598 */
5c1ff336 2599 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2600 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2601
5c1ff336
EW
2602 if (2 * free_clusters < 3 * dirty_clusters ||
2603 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2604 /*
c8afb446
ES
2605 * free block count is less than 150% of dirty blocks
2606 * or free blocks is less than watermark
79f0be8d
AK
2607 */
2608 return 1;
2609 }
2610 return 0;
2611}
2612
64769240 2613static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2614 loff_t pos, unsigned len, unsigned flags,
2615 struct page **pagep, void **fsdata)
64769240 2616{
72b8ab9d 2617 int ret, retries = 0;
64769240
AT
2618 struct page *page;
2619 pgoff_t index;
64769240
AT
2620 struct inode *inode = mapping->host;
2621 handle_t *handle;
2622
2623 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2624
2625 if (ext4_nonda_switch(inode->i_sb)) {
2626 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2627 return ext4_write_begin(file, mapping, pos,
2628 len, flags, pagep, fsdata);
2629 }
2630 *fsdata = (void *)0;
9bffad1e 2631 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2632
2633 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2634 ret = ext4_da_write_inline_data_begin(mapping, inode,
2635 pos, len, flags,
2636 pagep, fsdata);
2637 if (ret < 0)
47564bfb
TT
2638 return ret;
2639 if (ret == 1)
2640 return 0;
9c3569b5
TM
2641 }
2642
47564bfb
TT
2643 /*
2644 * grab_cache_page_write_begin() can take a long time if the
2645 * system is thrashing due to memory pressure, or if the page
2646 * is being written back. So grab it first before we start
2647 * the transaction handle. This also allows us to allocate
2648 * the page (if needed) without using GFP_NOFS.
2649 */
2650retry_grab:
2651 page = grab_cache_page_write_begin(mapping, index, flags);
2652 if (!page)
2653 return -ENOMEM;
2654 unlock_page(page);
2655
64769240
AT
2656 /*
2657 * With delayed allocation, we don't log the i_disksize update
2658 * if there is delayed block allocation. But we still need
2659 * to journalling the i_disksize update if writes to the end
2660 * of file which has an already mapped buffer.
2661 */
47564bfb 2662retry_journal:
9924a92a 2663 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2664 if (IS_ERR(handle)) {
47564bfb
TT
2665 page_cache_release(page);
2666 return PTR_ERR(handle);
64769240
AT
2667 }
2668
47564bfb
TT
2669 lock_page(page);
2670 if (page->mapping != mapping) {
2671 /* The page got truncated from under us */
2672 unlock_page(page);
2673 page_cache_release(page);
d5a0d4f7 2674 ext4_journal_stop(handle);
47564bfb 2675 goto retry_grab;
d5a0d4f7 2676 }
47564bfb 2677 /* In case writeback began while the page was unlocked */
7afe5aa5 2678 wait_for_stable_page(page);
64769240 2679
6e1db88d 2680 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2681 if (ret < 0) {
2682 unlock_page(page);
2683 ext4_journal_stop(handle);
ae4d5372
AK
2684 /*
2685 * block_write_begin may have instantiated a few blocks
2686 * outside i_size. Trim these off again. Don't need
2687 * i_size_read because we hold i_mutex.
2688 */
2689 if (pos + len > inode->i_size)
b9a4207d 2690 ext4_truncate_failed_write(inode);
47564bfb
TT
2691
2692 if (ret == -ENOSPC &&
2693 ext4_should_retry_alloc(inode->i_sb, &retries))
2694 goto retry_journal;
2695
2696 page_cache_release(page);
2697 return ret;
64769240
AT
2698 }
2699
47564bfb 2700 *pagep = page;
64769240
AT
2701 return ret;
2702}
2703
632eaeab
MC
2704/*
2705 * Check if we should update i_disksize
2706 * when write to the end of file but not require block allocation
2707 */
2708static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2709 unsigned long offset)
632eaeab
MC
2710{
2711 struct buffer_head *bh;
2712 struct inode *inode = page->mapping->host;
2713 unsigned int idx;
2714 int i;
2715
2716 bh = page_buffers(page);
2717 idx = offset >> inode->i_blkbits;
2718
af5bc92d 2719 for (i = 0; i < idx; i++)
632eaeab
MC
2720 bh = bh->b_this_page;
2721
29fa89d0 2722 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2723 return 0;
2724 return 1;
2725}
2726
64769240 2727static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2728 struct address_space *mapping,
2729 loff_t pos, unsigned len, unsigned copied,
2730 struct page *page, void *fsdata)
64769240
AT
2731{
2732 struct inode *inode = mapping->host;
2733 int ret = 0, ret2;
2734 handle_t *handle = ext4_journal_current_handle();
2735 loff_t new_i_size;
632eaeab 2736 unsigned long start, end;
79f0be8d
AK
2737 int write_mode = (int)(unsigned long)fsdata;
2738
74d553aa
TT
2739 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2740 return ext4_write_end(file, mapping, pos,
2741 len, copied, page, fsdata);
632eaeab 2742
9bffad1e 2743 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2744 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2745 end = start + copied - 1;
64769240
AT
2746
2747 /*
2748 * generic_write_end() will run mark_inode_dirty() if i_size
2749 * changes. So let's piggyback the i_disksize mark_inode_dirty
2750 * into that.
2751 */
64769240 2752 new_i_size = pos + copied;
ea51d132 2753 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2754 if (ext4_has_inline_data(inode) ||
2755 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2756 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2757 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2758 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2759 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2760 /* We need to mark inode dirty even if
2761 * new_i_size is less that inode->i_size
2762 * bu greater than i_disksize.(hint delalloc)
2763 */
2764 ext4_mark_inode_dirty(handle, inode);
64769240 2765 }
632eaeab 2766 }
9c3569b5
TM
2767
2768 if (write_mode != CONVERT_INLINE_DATA &&
2769 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2770 ext4_has_inline_data(inode))
2771 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2772 page);
2773 else
2774 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2775 page, fsdata);
9c3569b5 2776
64769240
AT
2777 copied = ret2;
2778 if (ret2 < 0)
2779 ret = ret2;
2780 ret2 = ext4_journal_stop(handle);
2781 if (!ret)
2782 ret = ret2;
2783
2784 return ret ? ret : copied;
2785}
2786
d47992f8
LC
2787static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2788 unsigned int length)
64769240 2789{
64769240
AT
2790 /*
2791 * Drop reserved blocks
2792 */
2793 BUG_ON(!PageLocked(page));
2794 if (!page_has_buffers(page))
2795 goto out;
2796
ca99fdd2 2797 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2798
2799out:
d47992f8 2800 ext4_invalidatepage(page, offset, length);
64769240
AT
2801
2802 return;
2803}
2804
ccd2506b
TT
2805/*
2806 * Force all delayed allocation blocks to be allocated for a given inode.
2807 */
2808int ext4_alloc_da_blocks(struct inode *inode)
2809{
fb40ba0d
TT
2810 trace_ext4_alloc_da_blocks(inode);
2811
ccd2506b
TT
2812 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2813 !EXT4_I(inode)->i_reserved_meta_blocks)
2814 return 0;
2815
2816 /*
2817 * We do something simple for now. The filemap_flush() will
2818 * also start triggering a write of the data blocks, which is
2819 * not strictly speaking necessary (and for users of
2820 * laptop_mode, not even desirable). However, to do otherwise
2821 * would require replicating code paths in:
de9a55b8 2822 *
20970ba6 2823 * ext4_writepages() ->
ccd2506b
TT
2824 * write_cache_pages() ---> (via passed in callback function)
2825 * __mpage_da_writepage() -->
2826 * mpage_add_bh_to_extent()
2827 * mpage_da_map_blocks()
2828 *
2829 * The problem is that write_cache_pages(), located in
2830 * mm/page-writeback.c, marks pages clean in preparation for
2831 * doing I/O, which is not desirable if we're not planning on
2832 * doing I/O at all.
2833 *
2834 * We could call write_cache_pages(), and then redirty all of
380cf090 2835 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2836 * would be ugly in the extreme. So instead we would need to
2837 * replicate parts of the code in the above functions,
25985edc 2838 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2839 * write out the pages, but rather only collect contiguous
2840 * logical block extents, call the multi-block allocator, and
2841 * then update the buffer heads with the block allocations.
de9a55b8 2842 *
ccd2506b
TT
2843 * For now, though, we'll cheat by calling filemap_flush(),
2844 * which will map the blocks, and start the I/O, but not
2845 * actually wait for the I/O to complete.
2846 */
2847 return filemap_flush(inode->i_mapping);
2848}
64769240 2849
ac27a0ec
DK
2850/*
2851 * bmap() is special. It gets used by applications such as lilo and by
2852 * the swapper to find the on-disk block of a specific piece of data.
2853 *
2854 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2855 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2856 * filesystem and enables swap, then they may get a nasty shock when the
2857 * data getting swapped to that swapfile suddenly gets overwritten by
2858 * the original zero's written out previously to the journal and
2859 * awaiting writeback in the kernel's buffer cache.
2860 *
2861 * So, if we see any bmap calls here on a modified, data-journaled file,
2862 * take extra steps to flush any blocks which might be in the cache.
2863 */
617ba13b 2864static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2865{
2866 struct inode *inode = mapping->host;
2867 journal_t *journal;
2868 int err;
2869
46c7f254
TM
2870 /*
2871 * We can get here for an inline file via the FIBMAP ioctl
2872 */
2873 if (ext4_has_inline_data(inode))
2874 return 0;
2875
64769240
AT
2876 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2877 test_opt(inode->i_sb, DELALLOC)) {
2878 /*
2879 * With delalloc we want to sync the file
2880 * so that we can make sure we allocate
2881 * blocks for file
2882 */
2883 filemap_write_and_wait(mapping);
2884 }
2885
19f5fb7a
TT
2886 if (EXT4_JOURNAL(inode) &&
2887 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2888 /*
2889 * This is a REALLY heavyweight approach, but the use of
2890 * bmap on dirty files is expected to be extremely rare:
2891 * only if we run lilo or swapon on a freshly made file
2892 * do we expect this to happen.
2893 *
2894 * (bmap requires CAP_SYS_RAWIO so this does not
2895 * represent an unprivileged user DOS attack --- we'd be
2896 * in trouble if mortal users could trigger this path at
2897 * will.)
2898 *
617ba13b 2899 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2900 * regular files. If somebody wants to bmap a directory
2901 * or symlink and gets confused because the buffer
2902 * hasn't yet been flushed to disk, they deserve
2903 * everything they get.
2904 */
2905
19f5fb7a 2906 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2907 journal = EXT4_JOURNAL(inode);
dab291af
MC
2908 jbd2_journal_lock_updates(journal);
2909 err = jbd2_journal_flush(journal);
2910 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2911
2912 if (err)
2913 return 0;
2914 }
2915
af5bc92d 2916 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2917}
2918
617ba13b 2919static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2920{
46c7f254
TM
2921 int ret = -EAGAIN;
2922 struct inode *inode = page->mapping->host;
2923
0562e0ba 2924 trace_ext4_readpage(page);
46c7f254
TM
2925
2926 if (ext4_has_inline_data(inode))
2927 ret = ext4_readpage_inline(inode, page);
2928
2929 if (ret == -EAGAIN)
2930 return mpage_readpage(page, ext4_get_block);
2931
2932 return ret;
ac27a0ec
DK
2933}
2934
2935static int
617ba13b 2936ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2937 struct list_head *pages, unsigned nr_pages)
2938{
46c7f254
TM
2939 struct inode *inode = mapping->host;
2940
2941 /* If the file has inline data, no need to do readpages. */
2942 if (ext4_has_inline_data(inode))
2943 return 0;
2944
617ba13b 2945 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2946}
2947
d47992f8
LC
2948static void ext4_invalidatepage(struct page *page, unsigned int offset,
2949 unsigned int length)
ac27a0ec 2950{
ca99fdd2 2951 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2952
4520fb3c
JK
2953 /* No journalling happens on data buffers when this function is used */
2954 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2955
ca99fdd2 2956 block_invalidatepage(page, offset, length);
4520fb3c
JK
2957}
2958
53e87268 2959static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2960 unsigned int offset,
2961 unsigned int length)
4520fb3c
JK
2962{
2963 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2964
ca99fdd2 2965 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2966
ac27a0ec
DK
2967 /*
2968 * If it's a full truncate we just forget about the pending dirtying
2969 */
ca99fdd2 2970 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2971 ClearPageChecked(page);
2972
ca99fdd2 2973 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2974}
2975
2976/* Wrapper for aops... */
2977static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2978 unsigned int offset,
2979 unsigned int length)
53e87268 2980{
ca99fdd2 2981 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2982}
2983
617ba13b 2984static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2985{
617ba13b 2986 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2987
0562e0ba
JZ
2988 trace_ext4_releasepage(page);
2989
e1c36595
JK
2990 /* Page has dirty journalled data -> cannot release */
2991 if (PageChecked(page))
ac27a0ec 2992 return 0;
0390131b
FM
2993 if (journal)
2994 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2995 else
2996 return try_to_free_buffers(page);
ac27a0ec
DK
2997}
2998
2ed88685
TT
2999/*
3000 * ext4_get_block used when preparing for a DIO write or buffer write.
3001 * We allocate an uinitialized extent if blocks haven't been allocated.
3002 * The extent will be converted to initialized after the IO is complete.
3003 */
f19d5870 3004int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3005 struct buffer_head *bh_result, int create)
3006{
c7064ef1 3007 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3008 inode->i_ino, create);
2ed88685
TT
3009 return _ext4_get_block(inode, iblock, bh_result,
3010 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3011}
3012
729f52c6 3013static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3014 struct buffer_head *bh_result, int create)
729f52c6 3015{
8b0f165f
AP
3016 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3017 inode->i_ino, create);
3018 return _ext4_get_block(inode, iblock, bh_result,
3019 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3020}
3021
4c0425ff 3022static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3023 ssize_t size, void *private)
4c0425ff
MC
3024{
3025 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3026
97a851ed 3027 /* if not async direct IO just return */
7b7a8665 3028 if (!io_end)
97a851ed 3029 return;
4b70df18 3030
88635ca2 3031 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3032 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3033 iocb->private, io_end->inode->i_ino, iocb, offset,
3034 size);
8d5d02e6 3035
b5a7e970 3036 iocb->private = NULL;
4c0425ff
MC
3037 io_end->offset = offset;
3038 io_end->size = size;
7b7a8665 3039 ext4_put_io_end(io_end);
4c0425ff 3040}
c7064ef1 3041
4c0425ff
MC
3042/*
3043 * For ext4 extent files, ext4 will do direct-io write to holes,
3044 * preallocated extents, and those write extend the file, no need to
3045 * fall back to buffered IO.
3046 *
b595076a 3047 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3048 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3049 * still keep the range to write as uninitialized.
4c0425ff 3050 *
69c499d1 3051 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3052 * For async direct IO, since the IO may still pending when return, we
25985edc 3053 * set up an end_io call back function, which will do the conversion
8d5d02e6 3054 * when async direct IO completed.
4c0425ff
MC
3055 *
3056 * If the O_DIRECT write will extend the file then add this inode to the
3057 * orphan list. So recovery will truncate it back to the original size
3058 * if the machine crashes during the write.
3059 *
3060 */
3061static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3062 const struct iovec *iov, loff_t offset,
3063 unsigned long nr_segs)
3064{
3065 struct file *file = iocb->ki_filp;
3066 struct inode *inode = file->f_mapping->host;
3067 ssize_t ret;
3068 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3069 int overwrite = 0;
3070 get_block_t *get_block_func = NULL;
3071 int dio_flags = 0;
4c0425ff 3072 loff_t final_size = offset + count;
97a851ed 3073 ext4_io_end_t *io_end = NULL;
729f52c6 3074
69c499d1
TT
3075 /* Use the old path for reads and writes beyond i_size. */
3076 if (rw != WRITE || final_size > inode->i_size)
3077 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3078
69c499d1 3079 BUG_ON(iocb->private == NULL);
4bd809db 3080
e8340395
JK
3081 /*
3082 * Make all waiters for direct IO properly wait also for extent
3083 * conversion. This also disallows race between truncate() and
3084 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3085 */
3086 if (rw == WRITE)
3087 atomic_inc(&inode->i_dio_count);
3088
69c499d1
TT
3089 /* If we do a overwrite dio, i_mutex locking can be released */
3090 overwrite = *((int *)iocb->private);
4bd809db 3091
69c499d1 3092 if (overwrite) {
69c499d1
TT
3093 down_read(&EXT4_I(inode)->i_data_sem);
3094 mutex_unlock(&inode->i_mutex);
3095 }
8d5d02e6 3096
69c499d1
TT
3097 /*
3098 * We could direct write to holes and fallocate.
3099 *
3100 * Allocated blocks to fill the hole are marked as
3101 * uninitialized to prevent parallel buffered read to expose
3102 * the stale data before DIO complete the data IO.
3103 *
3104 * As to previously fallocated extents, ext4 get_block will
3105 * just simply mark the buffer mapped but still keep the
3106 * extents uninitialized.
3107 *
3108 * For non AIO case, we will convert those unwritten extents
3109 * to written after return back from blockdev_direct_IO.
3110 *
3111 * For async DIO, the conversion needs to be deferred when the
3112 * IO is completed. The ext4 end_io callback function will be
3113 * called to take care of the conversion work. Here for async
3114 * case, we allocate an io_end structure to hook to the iocb.
3115 */
3116 iocb->private = NULL;
3117 ext4_inode_aio_set(inode, NULL);
3118 if (!is_sync_kiocb(iocb)) {
97a851ed 3119 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3120 if (!io_end) {
3121 ret = -ENOMEM;
3122 goto retake_lock;
8b0f165f 3123 }
97a851ed
JK
3124 /*
3125 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3126 */
3127 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3128 /*
69c499d1
TT
3129 * we save the io structure for current async direct
3130 * IO, so that later ext4_map_blocks() could flag the
3131 * io structure whether there is a unwritten extents
3132 * needs to be converted when IO is completed.
8d5d02e6 3133 */
69c499d1
TT
3134 ext4_inode_aio_set(inode, io_end);
3135 }
4bd809db 3136
69c499d1
TT
3137 if (overwrite) {
3138 get_block_func = ext4_get_block_write_nolock;
3139 } else {
3140 get_block_func = ext4_get_block_write;
3141 dio_flags = DIO_LOCKING;
3142 }
3143 ret = __blockdev_direct_IO(rw, iocb, inode,
3144 inode->i_sb->s_bdev, iov,
3145 offset, nr_segs,
3146 get_block_func,
3147 ext4_end_io_dio,
3148 NULL,
3149 dio_flags);
3150
69c499d1 3151 /*
97a851ed
JK
3152 * Put our reference to io_end. This can free the io_end structure e.g.
3153 * in sync IO case or in case of error. It can even perform extent
3154 * conversion if all bios we submitted finished before we got here.
3155 * Note that in that case iocb->private can be already set to NULL
3156 * here.
69c499d1 3157 */
97a851ed
JK
3158 if (io_end) {
3159 ext4_inode_aio_set(inode, NULL);
3160 ext4_put_io_end(io_end);
3161 /*
3162 * When no IO was submitted ext4_end_io_dio() was not
3163 * called so we have to put iocb's reference.
3164 */
3165 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3166 WARN_ON(iocb->private != io_end);
3167 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3168 ext4_put_io_end(io_end);
3169 iocb->private = NULL;
3170 }
3171 }
3172 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3173 EXT4_STATE_DIO_UNWRITTEN)) {
3174 int err;
3175 /*
3176 * for non AIO case, since the IO is already
3177 * completed, we could do the conversion right here
3178 */
6b523df4 3179 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3180 offset, ret);
3181 if (err < 0)
3182 ret = err;
3183 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3184 }
4bd809db 3185
69c499d1 3186retake_lock:
e8340395
JK
3187 if (rw == WRITE)
3188 inode_dio_done(inode);
69c499d1
TT
3189 /* take i_mutex locking again if we do a ovewrite dio */
3190 if (overwrite) {
69c499d1
TT
3191 up_read(&EXT4_I(inode)->i_data_sem);
3192 mutex_lock(&inode->i_mutex);
4c0425ff 3193 }
8d5d02e6 3194
69c499d1 3195 return ret;
4c0425ff
MC
3196}
3197
3198static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3199 const struct iovec *iov, loff_t offset,
3200 unsigned long nr_segs)
3201{
3202 struct file *file = iocb->ki_filp;
3203 struct inode *inode = file->f_mapping->host;
0562e0ba 3204 ssize_t ret;
4c0425ff 3205
84ebd795
TT
3206 /*
3207 * If we are doing data journalling we don't support O_DIRECT
3208 */
3209 if (ext4_should_journal_data(inode))
3210 return 0;
3211
46c7f254
TM
3212 /* Let buffer I/O handle the inline data case. */
3213 if (ext4_has_inline_data(inode))
3214 return 0;
3215
0562e0ba 3216 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3218 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3219 else
3220 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3221 trace_ext4_direct_IO_exit(inode, offset,
3222 iov_length(iov, nr_segs), rw, ret);
3223 return ret;
4c0425ff
MC
3224}
3225
ac27a0ec 3226/*
617ba13b 3227 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3228 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3229 * much here because ->set_page_dirty is called under VFS locks. The page is
3230 * not necessarily locked.
3231 *
3232 * We cannot just dirty the page and leave attached buffers clean, because the
3233 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3234 * or jbddirty because all the journalling code will explode.
3235 *
3236 * So what we do is to mark the page "pending dirty" and next time writepage
3237 * is called, propagate that into the buffers appropriately.
3238 */
617ba13b 3239static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3240{
3241 SetPageChecked(page);
3242 return __set_page_dirty_nobuffers(page);
3243}
3244
74d553aa 3245static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3246 .readpage = ext4_readpage,
3247 .readpages = ext4_readpages,
43ce1d23 3248 .writepage = ext4_writepage,
20970ba6 3249 .writepages = ext4_writepages,
8ab22b9a 3250 .write_begin = ext4_write_begin,
74d553aa 3251 .write_end = ext4_write_end,
8ab22b9a
HH
3252 .bmap = ext4_bmap,
3253 .invalidatepage = ext4_invalidatepage,
3254 .releasepage = ext4_releasepage,
3255 .direct_IO = ext4_direct_IO,
3256 .migratepage = buffer_migrate_page,
3257 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3258 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3259};
3260
617ba13b 3261static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3262 .readpage = ext4_readpage,
3263 .readpages = ext4_readpages,
43ce1d23 3264 .writepage = ext4_writepage,
20970ba6 3265 .writepages = ext4_writepages,
8ab22b9a
HH
3266 .write_begin = ext4_write_begin,
3267 .write_end = ext4_journalled_write_end,
3268 .set_page_dirty = ext4_journalled_set_page_dirty,
3269 .bmap = ext4_bmap,
4520fb3c 3270 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3271 .releasepage = ext4_releasepage,
84ebd795 3272 .direct_IO = ext4_direct_IO,
8ab22b9a 3273 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3274 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3275};
3276
64769240 3277static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3278 .readpage = ext4_readpage,
3279 .readpages = ext4_readpages,
43ce1d23 3280 .writepage = ext4_writepage,
20970ba6 3281 .writepages = ext4_writepages,
8ab22b9a
HH
3282 .write_begin = ext4_da_write_begin,
3283 .write_end = ext4_da_write_end,
3284 .bmap = ext4_bmap,
3285 .invalidatepage = ext4_da_invalidatepage,
3286 .releasepage = ext4_releasepage,
3287 .direct_IO = ext4_direct_IO,
3288 .migratepage = buffer_migrate_page,
3289 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3290 .error_remove_page = generic_error_remove_page,
64769240
AT
3291};
3292
617ba13b 3293void ext4_set_aops(struct inode *inode)
ac27a0ec 3294{
3d2b1582
LC
3295 switch (ext4_inode_journal_mode(inode)) {
3296 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3297 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3298 break;
3299 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3300 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3301 break;
3302 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3303 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3304 return;
3d2b1582
LC
3305 default:
3306 BUG();
3307 }
74d553aa
TT
3308 if (test_opt(inode->i_sb, DELALLOC))
3309 inode->i_mapping->a_ops = &ext4_da_aops;
3310 else
3311 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3312}
3313
d863dc36
LC
3314/*
3315 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3316 * up to the end of the block which corresponds to `from'.
3317 * This required during truncate. We need to physically zero the tail end
3318 * of that block so it doesn't yield old data if the file is later grown.
3319 */
3320int ext4_block_truncate_page(handle_t *handle,
3321 struct address_space *mapping, loff_t from)
3322{
3323 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3324 unsigned length;
3325 unsigned blocksize;
3326 struct inode *inode = mapping->host;
3327
3328 blocksize = inode->i_sb->s_blocksize;
3329 length = blocksize - (offset & (blocksize - 1));
3330
3331 return ext4_block_zero_page_range(handle, mapping, from, length);
3332}
3333
3334/*
3335 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3336 * starting from file offset 'from'. The range to be zero'd must
3337 * be contained with in one block. If the specified range exceeds
3338 * the end of the block it will be shortened to end of the block
3339 * that cooresponds to 'from'
3340 */
3341int ext4_block_zero_page_range(handle_t *handle,
3342 struct address_space *mapping, loff_t from, loff_t length)
3343{
3344 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3345 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3346 unsigned blocksize, max, pos;
3347 ext4_lblk_t iblock;
3348 struct inode *inode = mapping->host;
3349 struct buffer_head *bh;
3350 struct page *page;
3351 int err = 0;
3352
3353 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3354 mapping_gfp_mask(mapping) & ~__GFP_FS);
3355 if (!page)
3356 return -ENOMEM;
3357
3358 blocksize = inode->i_sb->s_blocksize;
3359 max = blocksize - (offset & (blocksize - 1));
3360
3361 /*
3362 * correct length if it does not fall between
3363 * 'from' and the end of the block
3364 */
3365 if (length > max || length < 0)
3366 length = max;
3367
3368 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3369
3370 if (!page_has_buffers(page))
3371 create_empty_buffers(page, blocksize, 0);
3372
3373 /* Find the buffer that contains "offset" */
3374 bh = page_buffers(page);
3375 pos = blocksize;
3376 while (offset >= pos) {
3377 bh = bh->b_this_page;
3378 iblock++;
3379 pos += blocksize;
3380 }
d863dc36
LC
3381 if (buffer_freed(bh)) {
3382 BUFFER_TRACE(bh, "freed: skip");
3383 goto unlock;
3384 }
d863dc36
LC
3385 if (!buffer_mapped(bh)) {
3386 BUFFER_TRACE(bh, "unmapped");
3387 ext4_get_block(inode, iblock, bh, 0);
3388 /* unmapped? It's a hole - nothing to do */
3389 if (!buffer_mapped(bh)) {
3390 BUFFER_TRACE(bh, "still unmapped");
3391 goto unlock;
3392 }
3393 }
3394
3395 /* Ok, it's mapped. Make sure it's up-to-date */
3396 if (PageUptodate(page))
3397 set_buffer_uptodate(bh);
3398
3399 if (!buffer_uptodate(bh)) {
3400 err = -EIO;
3401 ll_rw_block(READ, 1, &bh);
3402 wait_on_buffer(bh);
3403 /* Uhhuh. Read error. Complain and punt. */
3404 if (!buffer_uptodate(bh))
3405 goto unlock;
3406 }
d863dc36
LC
3407 if (ext4_should_journal_data(inode)) {
3408 BUFFER_TRACE(bh, "get write access");
3409 err = ext4_journal_get_write_access(handle, bh);
3410 if (err)
3411 goto unlock;
3412 }
d863dc36 3413 zero_user(page, offset, length);
d863dc36
LC
3414 BUFFER_TRACE(bh, "zeroed end of block");
3415
d863dc36
LC
3416 if (ext4_should_journal_data(inode)) {
3417 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3418 } else {
353eefd3 3419 err = 0;
d863dc36 3420 mark_buffer_dirty(bh);
0713ed0c
LC
3421 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3422 err = ext4_jbd2_file_inode(handle, inode);
3423 }
d863dc36
LC
3424
3425unlock:
3426 unlock_page(page);
3427 page_cache_release(page);
3428 return err;
3429}
3430
a87dd18c
LC
3431int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3432 loff_t lstart, loff_t length)
3433{
3434 struct super_block *sb = inode->i_sb;
3435 struct address_space *mapping = inode->i_mapping;
e1be3a92 3436 unsigned partial_start, partial_end;
a87dd18c
LC
3437 ext4_fsblk_t start, end;
3438 loff_t byte_end = (lstart + length - 1);
3439 int err = 0;
3440
e1be3a92
LC
3441 partial_start = lstart & (sb->s_blocksize - 1);
3442 partial_end = byte_end & (sb->s_blocksize - 1);
3443
a87dd18c
LC
3444 start = lstart >> sb->s_blocksize_bits;
3445 end = byte_end >> sb->s_blocksize_bits;
3446
3447 /* Handle partial zero within the single block */
e1be3a92
LC
3448 if (start == end &&
3449 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3450 err = ext4_block_zero_page_range(handle, mapping,
3451 lstart, length);
3452 return err;
3453 }
3454 /* Handle partial zero out on the start of the range */
e1be3a92 3455 if (partial_start) {
a87dd18c
LC
3456 err = ext4_block_zero_page_range(handle, mapping,
3457 lstart, sb->s_blocksize);
3458 if (err)
3459 return err;
3460 }
3461 /* Handle partial zero out on the end of the range */
e1be3a92 3462 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3463 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3464 byte_end - partial_end,
3465 partial_end + 1);
a87dd18c
LC
3466 return err;
3467}
3468
91ef4caf
DG
3469int ext4_can_truncate(struct inode *inode)
3470{
91ef4caf
DG
3471 if (S_ISREG(inode->i_mode))
3472 return 1;
3473 if (S_ISDIR(inode->i_mode))
3474 return 1;
3475 if (S_ISLNK(inode->i_mode))
3476 return !ext4_inode_is_fast_symlink(inode);
3477 return 0;
3478}
3479
a4bb6b64
AH
3480/*
3481 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3482 * associated with the given offset and length
3483 *
3484 * @inode: File inode
3485 * @offset: The offset where the hole will begin
3486 * @len: The length of the hole
3487 *
4907cb7b 3488 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3489 */
3490
aeb2817a 3491int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3492{
26a4c0c6
TT
3493 struct super_block *sb = inode->i_sb;
3494 ext4_lblk_t first_block, stop_block;
3495 struct address_space *mapping = inode->i_mapping;
a87dd18c 3496 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3497 handle_t *handle;
3498 unsigned int credits;
3499 int ret = 0;
3500
a4bb6b64 3501 if (!S_ISREG(inode->i_mode))
73355192 3502 return -EOPNOTSUPP;
a4bb6b64 3503
aaddea81
ZL
3504 trace_ext4_punch_hole(inode, offset, length);
3505
26a4c0c6
TT
3506 /*
3507 * Write out all dirty pages to avoid race conditions
3508 * Then release them.
3509 */
3510 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3511 ret = filemap_write_and_wait_range(mapping, offset,
3512 offset + length - 1);
3513 if (ret)
3514 return ret;
3515 }
3516
3517 mutex_lock(&inode->i_mutex);
3518 /* It's not possible punch hole on append only file */
3519 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3520 ret = -EPERM;
3521 goto out_mutex;
3522 }
3523 if (IS_SWAPFILE(inode)) {
3524 ret = -ETXTBSY;
3525 goto out_mutex;
3526 }
3527
3528 /* No need to punch hole beyond i_size */
3529 if (offset >= inode->i_size)
3530 goto out_mutex;
3531
3532 /*
3533 * If the hole extends beyond i_size, set the hole
3534 * to end after the page that contains i_size
3535 */
3536 if (offset + length > inode->i_size) {
3537 length = inode->i_size +
3538 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3539 offset;
3540 }
3541
a361293f
JK
3542 if (offset & (sb->s_blocksize - 1) ||
3543 (offset + length) & (sb->s_blocksize - 1)) {
3544 /*
3545 * Attach jinode to inode for jbd2 if we do any zeroing of
3546 * partial block
3547 */
3548 ret = ext4_inode_attach_jinode(inode);
3549 if (ret < 0)
3550 goto out_mutex;
3551
3552 }
3553
a87dd18c
LC
3554 first_block_offset = round_up(offset, sb->s_blocksize);
3555 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3556
a87dd18c
LC
3557 /* Now release the pages and zero block aligned part of pages*/
3558 if (last_block_offset > first_block_offset)
3559 truncate_pagecache_range(inode, first_block_offset,
3560 last_block_offset);
26a4c0c6
TT
3561
3562 /* Wait all existing dio workers, newcomers will block on i_mutex */
3563 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3564 inode_dio_wait(inode);
3565
3566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3567 credits = ext4_writepage_trans_blocks(inode);
3568 else
3569 credits = ext4_blocks_for_truncate(inode);
3570 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3571 if (IS_ERR(handle)) {
3572 ret = PTR_ERR(handle);
3573 ext4_std_error(sb, ret);
3574 goto out_dio;
3575 }
3576
a87dd18c
LC
3577 ret = ext4_zero_partial_blocks(handle, inode, offset,
3578 length);
3579 if (ret)
3580 goto out_stop;
26a4c0c6
TT
3581
3582 first_block = (offset + sb->s_blocksize - 1) >>
3583 EXT4_BLOCK_SIZE_BITS(sb);
3584 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3585
3586 /* If there are no blocks to remove, return now */
3587 if (first_block >= stop_block)
3588 goto out_stop;
3589
3590 down_write(&EXT4_I(inode)->i_data_sem);
3591 ext4_discard_preallocations(inode);
3592
3593 ret = ext4_es_remove_extent(inode, first_block,
3594 stop_block - first_block);
3595 if (ret) {
3596 up_write(&EXT4_I(inode)->i_data_sem);
3597 goto out_stop;
3598 }
3599
3600 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3601 ret = ext4_ext_remove_space(inode, first_block,
3602 stop_block - 1);
3603 else
3604 ret = ext4_free_hole_blocks(handle, inode, first_block,
3605 stop_block);
3606
3607 ext4_discard_preallocations(inode);
819c4920 3608 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3609 if (IS_SYNC(inode))
3610 ext4_handle_sync(handle);
26a4c0c6
TT
3611 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3612 ext4_mark_inode_dirty(handle, inode);
3613out_stop:
3614 ext4_journal_stop(handle);
3615out_dio:
3616 ext4_inode_resume_unlocked_dio(inode);
3617out_mutex:
3618 mutex_unlock(&inode->i_mutex);
3619 return ret;
a4bb6b64
AH
3620}
3621
a361293f
JK
3622int ext4_inode_attach_jinode(struct inode *inode)
3623{
3624 struct ext4_inode_info *ei = EXT4_I(inode);
3625 struct jbd2_inode *jinode;
3626
3627 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3628 return 0;
3629
3630 jinode = jbd2_alloc_inode(GFP_KERNEL);
3631 spin_lock(&inode->i_lock);
3632 if (!ei->jinode) {
3633 if (!jinode) {
3634 spin_unlock(&inode->i_lock);
3635 return -ENOMEM;
3636 }
3637 ei->jinode = jinode;
3638 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3639 jinode = NULL;
3640 }
3641 spin_unlock(&inode->i_lock);
3642 if (unlikely(jinode != NULL))
3643 jbd2_free_inode(jinode);
3644 return 0;
3645}
3646
ac27a0ec 3647/*
617ba13b 3648 * ext4_truncate()
ac27a0ec 3649 *
617ba13b
MC
3650 * We block out ext4_get_block() block instantiations across the entire
3651 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3652 * simultaneously on behalf of the same inode.
3653 *
42b2aa86 3654 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3655 * is one core, guiding principle: the file's tree must always be consistent on
3656 * disk. We must be able to restart the truncate after a crash.
3657 *
3658 * The file's tree may be transiently inconsistent in memory (although it
3659 * probably isn't), but whenever we close off and commit a journal transaction,
3660 * the contents of (the filesystem + the journal) must be consistent and
3661 * restartable. It's pretty simple, really: bottom up, right to left (although
3662 * left-to-right works OK too).
3663 *
3664 * Note that at recovery time, journal replay occurs *before* the restart of
3665 * truncate against the orphan inode list.
3666 *
3667 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3668 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3669 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3670 * ext4_truncate() to have another go. So there will be instantiated blocks
3671 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3672 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3673 * ext4_truncate() run will find them and release them.
ac27a0ec 3674 */
617ba13b 3675void ext4_truncate(struct inode *inode)
ac27a0ec 3676{
819c4920
TT
3677 struct ext4_inode_info *ei = EXT4_I(inode);
3678 unsigned int credits;
3679 handle_t *handle;
3680 struct address_space *mapping = inode->i_mapping;
819c4920 3681
19b5ef61
TT
3682 /*
3683 * There is a possibility that we're either freeing the inode
3684 * or it completely new indode. In those cases we might not
3685 * have i_mutex locked because it's not necessary.
3686 */
3687 if (!(inode->i_state & (I_NEW|I_FREEING)))
3688 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3689 trace_ext4_truncate_enter(inode);
3690
91ef4caf 3691 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3692 return;
3693
12e9b892 3694 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3695
5534fb5b 3696 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3697 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3698
aef1c851
TM
3699 if (ext4_has_inline_data(inode)) {
3700 int has_inline = 1;
3701
3702 ext4_inline_data_truncate(inode, &has_inline);
3703 if (has_inline)
3704 return;
3705 }
3706
a361293f
JK
3707 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3708 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3709 if (ext4_inode_attach_jinode(inode) < 0)
3710 return;
3711 }
3712
819c4920
TT
3713 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3714 credits = ext4_writepage_trans_blocks(inode);
3715 else
3716 credits = ext4_blocks_for_truncate(inode);
3717
3718 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3719 if (IS_ERR(handle)) {
3720 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3721 return;
3722 }
3723
eb3544c6
LC
3724 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3725 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3726
3727 /*
3728 * We add the inode to the orphan list, so that if this
3729 * truncate spans multiple transactions, and we crash, we will
3730 * resume the truncate when the filesystem recovers. It also
3731 * marks the inode dirty, to catch the new size.
3732 *
3733 * Implication: the file must always be in a sane, consistent
3734 * truncatable state while each transaction commits.
3735 */
3736 if (ext4_orphan_add(handle, inode))
3737 goto out_stop;
3738
3739 down_write(&EXT4_I(inode)->i_data_sem);
3740
3741 ext4_discard_preallocations(inode);
3742
ff9893dc 3743 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3744 ext4_ext_truncate(handle, inode);
ff9893dc 3745 else
819c4920
TT
3746 ext4_ind_truncate(handle, inode);
3747
3748 up_write(&ei->i_data_sem);
3749
3750 if (IS_SYNC(inode))
3751 ext4_handle_sync(handle);
3752
3753out_stop:
3754 /*
3755 * If this was a simple ftruncate() and the file will remain alive,
3756 * then we need to clear up the orphan record which we created above.
3757 * However, if this was a real unlink then we were called by
3758 * ext4_delete_inode(), and we allow that function to clean up the
3759 * orphan info for us.
3760 */
3761 if (inode->i_nlink)
3762 ext4_orphan_del(handle, inode);
3763
3764 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3765 ext4_mark_inode_dirty(handle, inode);
3766 ext4_journal_stop(handle);
ac27a0ec 3767
0562e0ba 3768 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3769}
3770
ac27a0ec 3771/*
617ba13b 3772 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3773 * underlying buffer_head on success. If 'in_mem' is true, we have all
3774 * data in memory that is needed to recreate the on-disk version of this
3775 * inode.
3776 */
617ba13b
MC
3777static int __ext4_get_inode_loc(struct inode *inode,
3778 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3779{
240799cd
TT
3780 struct ext4_group_desc *gdp;
3781 struct buffer_head *bh;
3782 struct super_block *sb = inode->i_sb;
3783 ext4_fsblk_t block;
3784 int inodes_per_block, inode_offset;
3785
3a06d778 3786 iloc->bh = NULL;
240799cd
TT
3787 if (!ext4_valid_inum(sb, inode->i_ino))
3788 return -EIO;
ac27a0ec 3789
240799cd
TT
3790 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3791 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3792 if (!gdp)
ac27a0ec
DK
3793 return -EIO;
3794
240799cd
TT
3795 /*
3796 * Figure out the offset within the block group inode table
3797 */
00d09882 3798 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3799 inode_offset = ((inode->i_ino - 1) %
3800 EXT4_INODES_PER_GROUP(sb));
3801 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3802 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3803
3804 bh = sb_getblk(sb, block);
aebf0243 3805 if (unlikely(!bh))
860d21e2 3806 return -ENOMEM;
ac27a0ec
DK
3807 if (!buffer_uptodate(bh)) {
3808 lock_buffer(bh);
9c83a923
HK
3809
3810 /*
3811 * If the buffer has the write error flag, we have failed
3812 * to write out another inode in the same block. In this
3813 * case, we don't have to read the block because we may
3814 * read the old inode data successfully.
3815 */
3816 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3817 set_buffer_uptodate(bh);
3818
ac27a0ec
DK
3819 if (buffer_uptodate(bh)) {
3820 /* someone brought it uptodate while we waited */
3821 unlock_buffer(bh);
3822 goto has_buffer;
3823 }
3824
3825 /*
3826 * If we have all information of the inode in memory and this
3827 * is the only valid inode in the block, we need not read the
3828 * block.
3829 */
3830 if (in_mem) {
3831 struct buffer_head *bitmap_bh;
240799cd 3832 int i, start;
ac27a0ec 3833
240799cd 3834 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3835
240799cd
TT
3836 /* Is the inode bitmap in cache? */
3837 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3838 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3839 goto make_io;
3840
3841 /*
3842 * If the inode bitmap isn't in cache then the
3843 * optimisation may end up performing two reads instead
3844 * of one, so skip it.
3845 */
3846 if (!buffer_uptodate(bitmap_bh)) {
3847 brelse(bitmap_bh);
3848 goto make_io;
3849 }
240799cd 3850 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3851 if (i == inode_offset)
3852 continue;
617ba13b 3853 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3854 break;
3855 }
3856 brelse(bitmap_bh);
240799cd 3857 if (i == start + inodes_per_block) {
ac27a0ec
DK
3858 /* all other inodes are free, so skip I/O */
3859 memset(bh->b_data, 0, bh->b_size);
3860 set_buffer_uptodate(bh);
3861 unlock_buffer(bh);
3862 goto has_buffer;
3863 }
3864 }
3865
3866make_io:
240799cd
TT
3867 /*
3868 * If we need to do any I/O, try to pre-readahead extra
3869 * blocks from the inode table.
3870 */
3871 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3872 ext4_fsblk_t b, end, table;
3873 unsigned num;
0d606e2c 3874 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3875
3876 table = ext4_inode_table(sb, gdp);
b713a5ec 3877 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3878 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3879 if (table > b)
3880 b = table;
0d606e2c 3881 end = b + ra_blks;
240799cd 3882 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3883 if (ext4_has_group_desc_csum(sb))
560671a0 3884 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3885 table += num / inodes_per_block;
3886 if (end > table)
3887 end = table;
3888 while (b <= end)
3889 sb_breadahead(sb, b++);
3890 }
3891
ac27a0ec
DK
3892 /*
3893 * There are other valid inodes in the buffer, this inode
3894 * has in-inode xattrs, or we don't have this inode in memory.
3895 * Read the block from disk.
3896 */
0562e0ba 3897 trace_ext4_load_inode(inode);
ac27a0ec
DK
3898 get_bh(bh);
3899 bh->b_end_io = end_buffer_read_sync;
65299a3b 3900 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3901 wait_on_buffer(bh);
3902 if (!buffer_uptodate(bh)) {
c398eda0
TT
3903 EXT4_ERROR_INODE_BLOCK(inode, block,
3904 "unable to read itable block");
ac27a0ec
DK
3905 brelse(bh);
3906 return -EIO;
3907 }
3908 }
3909has_buffer:
3910 iloc->bh = bh;
3911 return 0;
3912}
3913
617ba13b 3914int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3915{
3916 /* We have all inode data except xattrs in memory here. */
617ba13b 3917 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3918 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3919}
3920
617ba13b 3921void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3922{
617ba13b 3923 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3924
3925 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3926 if (flags & EXT4_SYNC_FL)
ac27a0ec 3927 inode->i_flags |= S_SYNC;
617ba13b 3928 if (flags & EXT4_APPEND_FL)
ac27a0ec 3929 inode->i_flags |= S_APPEND;
617ba13b 3930 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3931 inode->i_flags |= S_IMMUTABLE;
617ba13b 3932 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3933 inode->i_flags |= S_NOATIME;
617ba13b 3934 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3935 inode->i_flags |= S_DIRSYNC;
3936}
3937
ff9ddf7e
JK
3938/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3939void ext4_get_inode_flags(struct ext4_inode_info *ei)
3940{
84a8dce2
DM
3941 unsigned int vfs_fl;
3942 unsigned long old_fl, new_fl;
3943
3944 do {
3945 vfs_fl = ei->vfs_inode.i_flags;
3946 old_fl = ei->i_flags;
3947 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3948 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3949 EXT4_DIRSYNC_FL);
3950 if (vfs_fl & S_SYNC)
3951 new_fl |= EXT4_SYNC_FL;
3952 if (vfs_fl & S_APPEND)
3953 new_fl |= EXT4_APPEND_FL;
3954 if (vfs_fl & S_IMMUTABLE)
3955 new_fl |= EXT4_IMMUTABLE_FL;
3956 if (vfs_fl & S_NOATIME)
3957 new_fl |= EXT4_NOATIME_FL;
3958 if (vfs_fl & S_DIRSYNC)
3959 new_fl |= EXT4_DIRSYNC_FL;
3960 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3961}
de9a55b8 3962
0fc1b451 3963static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3964 struct ext4_inode_info *ei)
0fc1b451
AK
3965{
3966 blkcnt_t i_blocks ;
8180a562
AK
3967 struct inode *inode = &(ei->vfs_inode);
3968 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3969
3970 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3971 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3972 /* we are using combined 48 bit field */
3973 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3974 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3975 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3976 /* i_blocks represent file system block size */
3977 return i_blocks << (inode->i_blkbits - 9);
3978 } else {
3979 return i_blocks;
3980 }
0fc1b451
AK
3981 } else {
3982 return le32_to_cpu(raw_inode->i_blocks_lo);
3983 }
3984}
ff9ddf7e 3985
152a7b0a
TM
3986static inline void ext4_iget_extra_inode(struct inode *inode,
3987 struct ext4_inode *raw_inode,
3988 struct ext4_inode_info *ei)
3989{
3990 __le32 *magic = (void *)raw_inode +
3991 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3992 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3993 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3994 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3995 } else
3996 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3997}
3998
1d1fe1ee 3999struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4000{
617ba13b
MC
4001 struct ext4_iloc iloc;
4002 struct ext4_inode *raw_inode;
1d1fe1ee 4003 struct ext4_inode_info *ei;
1d1fe1ee 4004 struct inode *inode;
b436b9be 4005 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4006 long ret;
ac27a0ec 4007 int block;
08cefc7a
EB
4008 uid_t i_uid;
4009 gid_t i_gid;
ac27a0ec 4010
1d1fe1ee
DH
4011 inode = iget_locked(sb, ino);
4012 if (!inode)
4013 return ERR_PTR(-ENOMEM);
4014 if (!(inode->i_state & I_NEW))
4015 return inode;
4016
4017 ei = EXT4_I(inode);
7dc57615 4018 iloc.bh = NULL;
ac27a0ec 4019
1d1fe1ee
DH
4020 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4021 if (ret < 0)
ac27a0ec 4022 goto bad_inode;
617ba13b 4023 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4024
4025 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4026 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4027 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4028 EXT4_INODE_SIZE(inode->i_sb)) {
4029 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4030 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4031 EXT4_INODE_SIZE(inode->i_sb));
4032 ret = -EIO;
4033 goto bad_inode;
4034 }
4035 } else
4036 ei->i_extra_isize = 0;
4037
4038 /* Precompute checksum seed for inode metadata */
4039 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4040 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4041 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4042 __u32 csum;
4043 __le32 inum = cpu_to_le32(inode->i_ino);
4044 __le32 gen = raw_inode->i_generation;
4045 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4046 sizeof(inum));
4047 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4048 sizeof(gen));
4049 }
4050
4051 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4052 EXT4_ERROR_INODE(inode, "checksum invalid");
4053 ret = -EIO;
4054 goto bad_inode;
4055 }
4056
ac27a0ec 4057 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4058 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4059 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4060 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4061 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4062 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4063 }
08cefc7a
EB
4064 i_uid_write(inode, i_uid);
4065 i_gid_write(inode, i_gid);
bfe86848 4066 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4067
353eb83c 4068 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4069 ei->i_inline_off = 0;
ac27a0ec
DK
4070 ei->i_dir_start_lookup = 0;
4071 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4072 /* We now have enough fields to check if the inode was active or not.
4073 * This is needed because nfsd might try to access dead inodes
4074 * the test is that same one that e2fsck uses
4075 * NeilBrown 1999oct15
4076 */
4077 if (inode->i_nlink == 0) {
393d1d1d
DTB
4078 if ((inode->i_mode == 0 ||
4079 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4080 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4081 /* this inode is deleted */
1d1fe1ee 4082 ret = -ESTALE;
ac27a0ec
DK
4083 goto bad_inode;
4084 }
4085 /* The only unlinked inodes we let through here have
4086 * valid i_mode and are being read by the orphan
4087 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4088 * the process of deleting those.
4089 * OR it is the EXT4_BOOT_LOADER_INO which is
4090 * not initialized on a new filesystem. */
ac27a0ec 4091 }
ac27a0ec 4092 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4093 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4094 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4095 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4096 ei->i_file_acl |=
4097 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4098 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4099 ei->i_disksize = inode->i_size;
a9e7f447
DM
4100#ifdef CONFIG_QUOTA
4101 ei->i_reserved_quota = 0;
4102#endif
ac27a0ec
DK
4103 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4104 ei->i_block_group = iloc.block_group;
a4912123 4105 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4106 /*
4107 * NOTE! The in-memory inode i_data array is in little-endian order
4108 * even on big-endian machines: we do NOT byteswap the block numbers!
4109 */
617ba13b 4110 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4111 ei->i_data[block] = raw_inode->i_block[block];
4112 INIT_LIST_HEAD(&ei->i_orphan);
4113
b436b9be
JK
4114 /*
4115 * Set transaction id's of transactions that have to be committed
4116 * to finish f[data]sync. We set them to currently running transaction
4117 * as we cannot be sure that the inode or some of its metadata isn't
4118 * part of the transaction - the inode could have been reclaimed and
4119 * now it is reread from disk.
4120 */
4121 if (journal) {
4122 transaction_t *transaction;
4123 tid_t tid;
4124
a931da6a 4125 read_lock(&journal->j_state_lock);
b436b9be
JK
4126 if (journal->j_running_transaction)
4127 transaction = journal->j_running_transaction;
4128 else
4129 transaction = journal->j_committing_transaction;
4130 if (transaction)
4131 tid = transaction->t_tid;
4132 else
4133 tid = journal->j_commit_sequence;
a931da6a 4134 read_unlock(&journal->j_state_lock);
b436b9be
JK
4135 ei->i_sync_tid = tid;
4136 ei->i_datasync_tid = tid;
4137 }
4138
0040d987 4139 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4140 if (ei->i_extra_isize == 0) {
4141 /* The extra space is currently unused. Use it. */
617ba13b
MC
4142 ei->i_extra_isize = sizeof(struct ext4_inode) -
4143 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4144 } else {
152a7b0a 4145 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4146 }
814525f4 4147 }
ac27a0ec 4148
ef7f3835
KS
4149 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4150 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4151 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4152 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4153
25ec56b5
JNC
4154 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4155 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4156 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4157 inode->i_version |=
4158 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4159 }
4160
c4b5a614 4161 ret = 0;
485c26ec 4162 if (ei->i_file_acl &&
1032988c 4163 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4164 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4165 ei->i_file_acl);
485c26ec
TT
4166 ret = -EIO;
4167 goto bad_inode;
f19d5870
TM
4168 } else if (!ext4_has_inline_data(inode)) {
4169 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4170 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4171 (S_ISLNK(inode->i_mode) &&
4172 !ext4_inode_is_fast_symlink(inode))))
4173 /* Validate extent which is part of inode */
4174 ret = ext4_ext_check_inode(inode);
4175 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4176 (S_ISLNK(inode->i_mode) &&
4177 !ext4_inode_is_fast_symlink(inode))) {
4178 /* Validate block references which are part of inode */
4179 ret = ext4_ind_check_inode(inode);
4180 }
fe2c8191 4181 }
567f3e9a 4182 if (ret)
de9a55b8 4183 goto bad_inode;
7a262f7c 4184
ac27a0ec 4185 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4186 inode->i_op = &ext4_file_inode_operations;
4187 inode->i_fop = &ext4_file_operations;
4188 ext4_set_aops(inode);
ac27a0ec 4189 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4190 inode->i_op = &ext4_dir_inode_operations;
4191 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4192 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4193 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4194 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4195 nd_terminate_link(ei->i_data, inode->i_size,
4196 sizeof(ei->i_data) - 1);
4197 } else {
617ba13b
MC
4198 inode->i_op = &ext4_symlink_inode_operations;
4199 ext4_set_aops(inode);
ac27a0ec 4200 }
563bdd61
TT
4201 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4202 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4203 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4204 if (raw_inode->i_block[0])
4205 init_special_inode(inode, inode->i_mode,
4206 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4207 else
4208 init_special_inode(inode, inode->i_mode,
4209 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4210 } else if (ino == EXT4_BOOT_LOADER_INO) {
4211 make_bad_inode(inode);
563bdd61 4212 } else {
563bdd61 4213 ret = -EIO;
24676da4 4214 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4215 goto bad_inode;
ac27a0ec 4216 }
af5bc92d 4217 brelse(iloc.bh);
617ba13b 4218 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4219 unlock_new_inode(inode);
4220 return inode;
ac27a0ec
DK
4221
4222bad_inode:
567f3e9a 4223 brelse(iloc.bh);
1d1fe1ee
DH
4224 iget_failed(inode);
4225 return ERR_PTR(ret);
ac27a0ec
DK
4226}
4227
0fc1b451
AK
4228static int ext4_inode_blocks_set(handle_t *handle,
4229 struct ext4_inode *raw_inode,
4230 struct ext4_inode_info *ei)
4231{
4232 struct inode *inode = &(ei->vfs_inode);
4233 u64 i_blocks = inode->i_blocks;
4234 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4235
4236 if (i_blocks <= ~0U) {
4237 /*
4907cb7b 4238 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4239 * as multiple of 512 bytes
4240 */
8180a562 4241 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4242 raw_inode->i_blocks_high = 0;
84a8dce2 4243 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4244 return 0;
4245 }
4246 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4247 return -EFBIG;
4248
4249 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4250 /*
4251 * i_blocks can be represented in a 48 bit variable
4252 * as multiple of 512 bytes
4253 */
8180a562 4254 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4255 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4256 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4257 } else {
84a8dce2 4258 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4259 /* i_block is stored in file system block size */
4260 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4261 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4262 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4263 }
f287a1a5 4264 return 0;
0fc1b451
AK
4265}
4266
ac27a0ec
DK
4267/*
4268 * Post the struct inode info into an on-disk inode location in the
4269 * buffer-cache. This gobbles the caller's reference to the
4270 * buffer_head in the inode location struct.
4271 *
4272 * The caller must have write access to iloc->bh.
4273 */
617ba13b 4274static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4275 struct inode *inode,
830156c7 4276 struct ext4_iloc *iloc)
ac27a0ec 4277{
617ba13b
MC
4278 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4279 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4280 struct buffer_head *bh = iloc->bh;
4281 int err = 0, rc, block;
b71fc079 4282 int need_datasync = 0;
08cefc7a
EB
4283 uid_t i_uid;
4284 gid_t i_gid;
ac27a0ec
DK
4285
4286 /* For fields not not tracking in the in-memory inode,
4287 * initialise them to zero for new inodes. */
19f5fb7a 4288 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4289 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4290
ff9ddf7e 4291 ext4_get_inode_flags(ei);
ac27a0ec 4292 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4293 i_uid = i_uid_read(inode);
4294 i_gid = i_gid_read(inode);
af5bc92d 4295 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4296 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4297 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4298/*
4299 * Fix up interoperability with old kernels. Otherwise, old inodes get
4300 * re-used with the upper 16 bits of the uid/gid intact
4301 */
af5bc92d 4302 if (!ei->i_dtime) {
ac27a0ec 4303 raw_inode->i_uid_high =
08cefc7a 4304 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4305 raw_inode->i_gid_high =
08cefc7a 4306 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4307 } else {
4308 raw_inode->i_uid_high = 0;
4309 raw_inode->i_gid_high = 0;
4310 }
4311 } else {
08cefc7a
EB
4312 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4313 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4314 raw_inode->i_uid_high = 0;
4315 raw_inode->i_gid_high = 0;
4316 }
4317 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4318
4319 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4320 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4321 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4322 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4323
0fc1b451
AK
4324 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4325 goto out_brelse;
ac27a0ec 4326 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4327 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4328 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4329 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4330 raw_inode->i_file_acl_high =
4331 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4332 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4333 if (ei->i_disksize != ext4_isize(raw_inode)) {
4334 ext4_isize_set(raw_inode, ei->i_disksize);
4335 need_datasync = 1;
4336 }
a48380f7
AK
4337 if (ei->i_disksize > 0x7fffffffULL) {
4338 struct super_block *sb = inode->i_sb;
4339 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4340 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4341 EXT4_SB(sb)->s_es->s_rev_level ==
4342 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4343 /* If this is the first large file
4344 * created, add a flag to the superblock.
4345 */
4346 err = ext4_journal_get_write_access(handle,
4347 EXT4_SB(sb)->s_sbh);
4348 if (err)
4349 goto out_brelse;
4350 ext4_update_dynamic_rev(sb);
4351 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4352 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4353 ext4_handle_sync(handle);
b50924c2 4354 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4355 }
4356 }
4357 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4358 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4359 if (old_valid_dev(inode->i_rdev)) {
4360 raw_inode->i_block[0] =
4361 cpu_to_le32(old_encode_dev(inode->i_rdev));
4362 raw_inode->i_block[1] = 0;
4363 } else {
4364 raw_inode->i_block[0] = 0;
4365 raw_inode->i_block[1] =
4366 cpu_to_le32(new_encode_dev(inode->i_rdev));
4367 raw_inode->i_block[2] = 0;
4368 }
f19d5870 4369 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4370 for (block = 0; block < EXT4_N_BLOCKS; block++)
4371 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4372 }
ac27a0ec 4373
25ec56b5
JNC
4374 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4375 if (ei->i_extra_isize) {
4376 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4377 raw_inode->i_version_hi =
4378 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4379 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4380 }
4381
814525f4
DW
4382 ext4_inode_csum_set(inode, raw_inode, ei);
4383
830156c7 4384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4385 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4386 if (!err)
4387 err = rc;
19f5fb7a 4388 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4389
b71fc079 4390 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4391out_brelse:
af5bc92d 4392 brelse(bh);
617ba13b 4393 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4394 return err;
4395}
4396
4397/*
617ba13b 4398 * ext4_write_inode()
ac27a0ec
DK
4399 *
4400 * We are called from a few places:
4401 *
4402 * - Within generic_file_write() for O_SYNC files.
4403 * Here, there will be no transaction running. We wait for any running
4907cb7b 4404 * transaction to commit.
ac27a0ec
DK
4405 *
4406 * - Within sys_sync(), kupdate and such.
4407 * We wait on commit, if tol to.
4408 *
4409 * - Within prune_icache() (PF_MEMALLOC == true)
4410 * Here we simply return. We can't afford to block kswapd on the
4411 * journal commit.
4412 *
4413 * In all cases it is actually safe for us to return without doing anything,
4414 * because the inode has been copied into a raw inode buffer in
617ba13b 4415 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4416 * knfsd.
4417 *
4418 * Note that we are absolutely dependent upon all inode dirtiers doing the
4419 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4420 * which we are interested.
4421 *
4422 * It would be a bug for them to not do this. The code:
4423 *
4424 * mark_inode_dirty(inode)
4425 * stuff();
4426 * inode->i_size = expr;
4427 *
4428 * is in error because a kswapd-driven write_inode() could occur while
4429 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4430 * will no longer be on the superblock's dirty inode list.
4431 */
a9185b41 4432int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4433{
91ac6f43
FM
4434 int err;
4435
ac27a0ec
DK
4436 if (current->flags & PF_MEMALLOC)
4437 return 0;
4438
91ac6f43
FM
4439 if (EXT4_SB(inode->i_sb)->s_journal) {
4440 if (ext4_journal_current_handle()) {
4441 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4442 dump_stack();
4443 return -EIO;
4444 }
ac27a0ec 4445
a9185b41 4446 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4447 return 0;
4448
4449 err = ext4_force_commit(inode->i_sb);
4450 } else {
4451 struct ext4_iloc iloc;
ac27a0ec 4452
8b472d73 4453 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4454 if (err)
4455 return err;
a9185b41 4456 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4457 sync_dirty_buffer(iloc.bh);
4458 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4459 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4460 "IO error syncing inode");
830156c7
FM
4461 err = -EIO;
4462 }
fd2dd9fb 4463 brelse(iloc.bh);
91ac6f43
FM
4464 }
4465 return err;
ac27a0ec
DK
4466}
4467
53e87268
JK
4468/*
4469 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4470 * buffers that are attached to a page stradding i_size and are undergoing
4471 * commit. In that case we have to wait for commit to finish and try again.
4472 */
4473static void ext4_wait_for_tail_page_commit(struct inode *inode)
4474{
4475 struct page *page;
4476 unsigned offset;
4477 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4478 tid_t commit_tid = 0;
4479 int ret;
4480
4481 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4482 /*
4483 * All buffers in the last page remain valid? Then there's nothing to
4484 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4485 * blocksize case
4486 */
4487 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4488 return;
4489 while (1) {
4490 page = find_lock_page(inode->i_mapping,
4491 inode->i_size >> PAGE_CACHE_SHIFT);
4492 if (!page)
4493 return;
ca99fdd2
LC
4494 ret = __ext4_journalled_invalidatepage(page, offset,
4495 PAGE_CACHE_SIZE - offset);
53e87268
JK
4496 unlock_page(page);
4497 page_cache_release(page);
4498 if (ret != -EBUSY)
4499 return;
4500 commit_tid = 0;
4501 read_lock(&journal->j_state_lock);
4502 if (journal->j_committing_transaction)
4503 commit_tid = journal->j_committing_transaction->t_tid;
4504 read_unlock(&journal->j_state_lock);
4505 if (commit_tid)
4506 jbd2_log_wait_commit(journal, commit_tid);
4507 }
4508}
4509
ac27a0ec 4510/*
617ba13b 4511 * ext4_setattr()
ac27a0ec
DK
4512 *
4513 * Called from notify_change.
4514 *
4515 * We want to trap VFS attempts to truncate the file as soon as
4516 * possible. In particular, we want to make sure that when the VFS
4517 * shrinks i_size, we put the inode on the orphan list and modify
4518 * i_disksize immediately, so that during the subsequent flushing of
4519 * dirty pages and freeing of disk blocks, we can guarantee that any
4520 * commit will leave the blocks being flushed in an unused state on
4521 * disk. (On recovery, the inode will get truncated and the blocks will
4522 * be freed, so we have a strong guarantee that no future commit will
4523 * leave these blocks visible to the user.)
4524 *
678aaf48
JK
4525 * Another thing we have to assure is that if we are in ordered mode
4526 * and inode is still attached to the committing transaction, we must
4527 * we start writeout of all the dirty pages which are being truncated.
4528 * This way we are sure that all the data written in the previous
4529 * transaction are already on disk (truncate waits for pages under
4530 * writeback).
4531 *
4532 * Called with inode->i_mutex down.
ac27a0ec 4533 */
617ba13b 4534int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4535{
4536 struct inode *inode = dentry->d_inode;
4537 int error, rc = 0;
3d287de3 4538 int orphan = 0;
ac27a0ec
DK
4539 const unsigned int ia_valid = attr->ia_valid;
4540
4541 error = inode_change_ok(inode, attr);
4542 if (error)
4543 return error;
4544
12755627 4545 if (is_quota_modification(inode, attr))
871a2931 4546 dquot_initialize(inode);
08cefc7a
EB
4547 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4548 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4549 handle_t *handle;
4550
4551 /* (user+group)*(old+new) structure, inode write (sb,
4552 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4553 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4554 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4555 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4556 if (IS_ERR(handle)) {
4557 error = PTR_ERR(handle);
4558 goto err_out;
4559 }
b43fa828 4560 error = dquot_transfer(inode, attr);
ac27a0ec 4561 if (error) {
617ba13b 4562 ext4_journal_stop(handle);
ac27a0ec
DK
4563 return error;
4564 }
4565 /* Update corresponding info in inode so that everything is in
4566 * one transaction */
4567 if (attr->ia_valid & ATTR_UID)
4568 inode->i_uid = attr->ia_uid;
4569 if (attr->ia_valid & ATTR_GID)
4570 inode->i_gid = attr->ia_gid;
617ba13b
MC
4571 error = ext4_mark_inode_dirty(handle, inode);
4572 ext4_journal_stop(handle);
ac27a0ec
DK
4573 }
4574
5208386c
JK
4575 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4576 handle_t *handle;
562c72aa 4577
12e9b892 4578 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4580
0c095c7f
TT
4581 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4582 return -EFBIG;
e2b46574 4583 }
5208386c
JK
4584 if (S_ISREG(inode->i_mode) &&
4585 (attr->ia_size < inode->i_size)) {
4586 if (ext4_should_order_data(inode)) {
4587 error = ext4_begin_ordered_truncate(inode,
678aaf48 4588 attr->ia_size);
5208386c 4589 if (error)
678aaf48 4590 goto err_out;
5208386c
JK
4591 }
4592 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4593 if (IS_ERR(handle)) {
4594 error = PTR_ERR(handle);
4595 goto err_out;
4596 }
4597 if (ext4_handle_valid(handle)) {
4598 error = ext4_orphan_add(handle, inode);
4599 orphan = 1;
4600 }
90e775b7 4601 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4602 EXT4_I(inode)->i_disksize = attr->ia_size;
4603 rc = ext4_mark_inode_dirty(handle, inode);
4604 if (!error)
4605 error = rc;
90e775b7
JK
4606 /*
4607 * We have to update i_size under i_data_sem together
4608 * with i_disksize to avoid races with writeback code
4609 * running ext4_wb_update_i_disksize().
4610 */
4611 if (!error)
4612 i_size_write(inode, attr->ia_size);
4613 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4614 ext4_journal_stop(handle);
4615 if (error) {
4616 ext4_orphan_del(NULL, inode);
678aaf48
JK
4617 goto err_out;
4618 }
90e775b7
JK
4619 } else
4620 i_size_write(inode, attr->ia_size);
53e87268 4621
5208386c
JK
4622 /*
4623 * Blocks are going to be removed from the inode. Wait
4624 * for dio in flight. Temporarily disable
4625 * dioread_nolock to prevent livelock.
4626 */
4627 if (orphan) {
4628 if (!ext4_should_journal_data(inode)) {
4629 ext4_inode_block_unlocked_dio(inode);
4630 inode_dio_wait(inode);
4631 ext4_inode_resume_unlocked_dio(inode);
4632 } else
4633 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4634 }
5208386c
JK
4635 /*
4636 * Truncate pagecache after we've waited for commit
4637 * in data=journal mode to make pages freeable.
4638 */
7caef267 4639 truncate_pagecache(inode, inode->i_size);
072bd7ea 4640 }
5208386c
JK
4641 /*
4642 * We want to call ext4_truncate() even if attr->ia_size ==
4643 * inode->i_size for cases like truncation of fallocated space
4644 */
4645 if (attr->ia_valid & ATTR_SIZE)
4646 ext4_truncate(inode);
ac27a0ec 4647
1025774c
CH
4648 if (!rc) {
4649 setattr_copy(inode, attr);
4650 mark_inode_dirty(inode);
4651 }
4652
4653 /*
4654 * If the call to ext4_truncate failed to get a transaction handle at
4655 * all, we need to clean up the in-core orphan list manually.
4656 */
3d287de3 4657 if (orphan && inode->i_nlink)
617ba13b 4658 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4659
4660 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4661 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4662
4663err_out:
617ba13b 4664 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4665 if (!error)
4666 error = rc;
4667 return error;
4668}
4669
3e3398a0
MC
4670int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4671 struct kstat *stat)
4672{
4673 struct inode *inode;
8af8eecc 4674 unsigned long long delalloc_blocks;
3e3398a0
MC
4675
4676 inode = dentry->d_inode;
4677 generic_fillattr(inode, stat);
4678
9206c561
AD
4679 /*
4680 * If there is inline data in the inode, the inode will normally not
4681 * have data blocks allocated (it may have an external xattr block).
4682 * Report at least one sector for such files, so tools like tar, rsync,
4683 * others doen't incorrectly think the file is completely sparse.
4684 */
4685 if (unlikely(ext4_has_inline_data(inode)))
4686 stat->blocks += (stat->size + 511) >> 9;
4687
3e3398a0
MC
4688 /*
4689 * We can't update i_blocks if the block allocation is delayed
4690 * otherwise in the case of system crash before the real block
4691 * allocation is done, we will have i_blocks inconsistent with
4692 * on-disk file blocks.
4693 * We always keep i_blocks updated together with real
4694 * allocation. But to not confuse with user, stat
4695 * will return the blocks that include the delayed allocation
4696 * blocks for this file.
4697 */
96607551 4698 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4699 EXT4_I(inode)->i_reserved_data_blocks);
4700 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4701 return 0;
4702}
ac27a0ec 4703
fffb2739
JK
4704static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4705 int pextents)
a02908f1 4706{
12e9b892 4707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4708 return ext4_ind_trans_blocks(inode, lblocks);
4709 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4710}
ac51d837 4711
ac27a0ec 4712/*
a02908f1
MC
4713 * Account for index blocks, block groups bitmaps and block group
4714 * descriptor blocks if modify datablocks and index blocks
4715 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4716 *
a02908f1 4717 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4718 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4719 * they could still across block group boundary.
ac27a0ec 4720 *
a02908f1
MC
4721 * Also account for superblock, inode, quota and xattr blocks
4722 */
fffb2739
JK
4723static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4724 int pextents)
a02908f1 4725{
8df9675f
TT
4726 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4727 int gdpblocks;
a02908f1
MC
4728 int idxblocks;
4729 int ret = 0;
4730
4731 /*
fffb2739
JK
4732 * How many index blocks need to touch to map @lblocks logical blocks
4733 * to @pextents physical extents?
a02908f1 4734 */
fffb2739 4735 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4736
4737 ret = idxblocks;
4738
4739 /*
4740 * Now let's see how many group bitmaps and group descriptors need
4741 * to account
4742 */
fffb2739 4743 groups = idxblocks + pextents;
a02908f1 4744 gdpblocks = groups;
8df9675f
TT
4745 if (groups > ngroups)
4746 groups = ngroups;
a02908f1
MC
4747 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4748 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4749
4750 /* bitmaps and block group descriptor blocks */
4751 ret += groups + gdpblocks;
4752
4753 /* Blocks for super block, inode, quota and xattr blocks */
4754 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4755
4756 return ret;
4757}
4758
4759/*
25985edc 4760 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4761 * the modification of a single pages into a single transaction,
4762 * which may include multiple chunks of block allocations.
ac27a0ec 4763 *
525f4ed8 4764 * This could be called via ext4_write_begin()
ac27a0ec 4765 *
525f4ed8 4766 * We need to consider the worse case, when
a02908f1 4767 * one new block per extent.
ac27a0ec 4768 */
a86c6181 4769int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4770{
617ba13b 4771 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4772 int ret;
4773
fffb2739 4774 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4775
a02908f1 4776 /* Account for data blocks for journalled mode */
617ba13b 4777 if (ext4_should_journal_data(inode))
a02908f1 4778 ret += bpp;
ac27a0ec
DK
4779 return ret;
4780}
f3bd1f3f
MC
4781
4782/*
4783 * Calculate the journal credits for a chunk of data modification.
4784 *
4785 * This is called from DIO, fallocate or whoever calling
79e83036 4786 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4787 *
4788 * journal buffers for data blocks are not included here, as DIO
4789 * and fallocate do no need to journal data buffers.
4790 */
4791int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4792{
4793 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4794}
4795
ac27a0ec 4796/*
617ba13b 4797 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4798 * Give this, we know that the caller already has write access to iloc->bh.
4799 */
617ba13b 4800int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4801 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4802{
4803 int err = 0;
4804
c64db50e 4805 if (IS_I_VERSION(inode))
25ec56b5
JNC
4806 inode_inc_iversion(inode);
4807
ac27a0ec
DK
4808 /* the do_update_inode consumes one bh->b_count */
4809 get_bh(iloc->bh);
4810
dab291af 4811 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4812 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4813 put_bh(iloc->bh);
4814 return err;
4815}
4816
4817/*
4818 * On success, We end up with an outstanding reference count against
4819 * iloc->bh. This _must_ be cleaned up later.
4820 */
4821
4822int
617ba13b
MC
4823ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4824 struct ext4_iloc *iloc)
ac27a0ec 4825{
0390131b
FM
4826 int err;
4827
4828 err = ext4_get_inode_loc(inode, iloc);
4829 if (!err) {
4830 BUFFER_TRACE(iloc->bh, "get_write_access");
4831 err = ext4_journal_get_write_access(handle, iloc->bh);
4832 if (err) {
4833 brelse(iloc->bh);
4834 iloc->bh = NULL;
ac27a0ec
DK
4835 }
4836 }
617ba13b 4837 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4838 return err;
4839}
4840
6dd4ee7c
KS
4841/*
4842 * Expand an inode by new_extra_isize bytes.
4843 * Returns 0 on success or negative error number on failure.
4844 */
1d03ec98
AK
4845static int ext4_expand_extra_isize(struct inode *inode,
4846 unsigned int new_extra_isize,
4847 struct ext4_iloc iloc,
4848 handle_t *handle)
6dd4ee7c
KS
4849{
4850 struct ext4_inode *raw_inode;
4851 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4852
4853 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4854 return 0;
4855
4856 raw_inode = ext4_raw_inode(&iloc);
4857
4858 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4859
4860 /* No extended attributes present */
19f5fb7a
TT
4861 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4862 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4863 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4864 new_extra_isize);
4865 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4866 return 0;
4867 }
4868
4869 /* try to expand with EAs present */
4870 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4871 raw_inode, handle);
4872}
4873
ac27a0ec
DK
4874/*
4875 * What we do here is to mark the in-core inode as clean with respect to inode
4876 * dirtiness (it may still be data-dirty).
4877 * This means that the in-core inode may be reaped by prune_icache
4878 * without having to perform any I/O. This is a very good thing,
4879 * because *any* task may call prune_icache - even ones which
4880 * have a transaction open against a different journal.
4881 *
4882 * Is this cheating? Not really. Sure, we haven't written the
4883 * inode out, but prune_icache isn't a user-visible syncing function.
4884 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4885 * we start and wait on commits.
ac27a0ec 4886 */
617ba13b 4887int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4888{
617ba13b 4889 struct ext4_iloc iloc;
6dd4ee7c
KS
4890 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4891 static unsigned int mnt_count;
4892 int err, ret;
ac27a0ec
DK
4893
4894 might_sleep();
7ff9c073 4895 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4896 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4897 if (ext4_handle_valid(handle) &&
4898 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4899 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4900 /*
4901 * We need extra buffer credits since we may write into EA block
4902 * with this same handle. If journal_extend fails, then it will
4903 * only result in a minor loss of functionality for that inode.
4904 * If this is felt to be critical, then e2fsck should be run to
4905 * force a large enough s_min_extra_isize.
4906 */
4907 if ((jbd2_journal_extend(handle,
4908 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4909 ret = ext4_expand_extra_isize(inode,
4910 sbi->s_want_extra_isize,
4911 iloc, handle);
4912 if (ret) {
19f5fb7a
TT
4913 ext4_set_inode_state(inode,
4914 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4915 if (mnt_count !=
4916 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4917 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4918 "Unable to expand inode %lu. Delete"
4919 " some EAs or run e2fsck.",
4920 inode->i_ino);
c1bddad9
AK
4921 mnt_count =
4922 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4923 }
4924 }
4925 }
4926 }
ac27a0ec 4927 if (!err)
617ba13b 4928 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4929 return err;
4930}
4931
4932/*
617ba13b 4933 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4934 *
4935 * We're really interested in the case where a file is being extended.
4936 * i_size has been changed by generic_commit_write() and we thus need
4937 * to include the updated inode in the current transaction.
4938 *
5dd4056d 4939 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4940 * are allocated to the file.
4941 *
4942 * If the inode is marked synchronous, we don't honour that here - doing
4943 * so would cause a commit on atime updates, which we don't bother doing.
4944 * We handle synchronous inodes at the highest possible level.
4945 */
aa385729 4946void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4947{
ac27a0ec
DK
4948 handle_t *handle;
4949
9924a92a 4950 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4951 if (IS_ERR(handle))
4952 goto out;
f3dc272f 4953
f3dc272f
CW
4954 ext4_mark_inode_dirty(handle, inode);
4955
617ba13b 4956 ext4_journal_stop(handle);
ac27a0ec
DK
4957out:
4958 return;
4959}
4960
4961#if 0
4962/*
4963 * Bind an inode's backing buffer_head into this transaction, to prevent
4964 * it from being flushed to disk early. Unlike
617ba13b 4965 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4966 * returns no iloc structure, so the caller needs to repeat the iloc
4967 * lookup to mark the inode dirty later.
4968 */
617ba13b 4969static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4970{
617ba13b 4971 struct ext4_iloc iloc;
ac27a0ec
DK
4972
4973 int err = 0;
4974 if (handle) {
617ba13b 4975 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4976 if (!err) {
4977 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4978 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4979 if (!err)
0390131b 4980 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4981 NULL,
0390131b 4982 iloc.bh);
ac27a0ec
DK
4983 brelse(iloc.bh);
4984 }
4985 }
617ba13b 4986 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4987 return err;
4988}
4989#endif
4990
617ba13b 4991int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4992{
4993 journal_t *journal;
4994 handle_t *handle;
4995 int err;
4996
4997 /*
4998 * We have to be very careful here: changing a data block's
4999 * journaling status dynamically is dangerous. If we write a
5000 * data block to the journal, change the status and then delete
5001 * that block, we risk forgetting to revoke the old log record
5002 * from the journal and so a subsequent replay can corrupt data.
5003 * So, first we make sure that the journal is empty and that
5004 * nobody is changing anything.
5005 */
5006
617ba13b 5007 journal = EXT4_JOURNAL(inode);
0390131b
FM
5008 if (!journal)
5009 return 0;
d699594d 5010 if (is_journal_aborted(journal))
ac27a0ec 5011 return -EROFS;
2aff57b0
YY
5012 /* We have to allocate physical blocks for delalloc blocks
5013 * before flushing journal. otherwise delalloc blocks can not
5014 * be allocated any more. even more truncate on delalloc blocks
5015 * could trigger BUG by flushing delalloc blocks in journal.
5016 * There is no delalloc block in non-journal data mode.
5017 */
5018 if (val && test_opt(inode->i_sb, DELALLOC)) {
5019 err = ext4_alloc_da_blocks(inode);
5020 if (err < 0)
5021 return err;
5022 }
ac27a0ec 5023
17335dcc
DM
5024 /* Wait for all existing dio workers */
5025 ext4_inode_block_unlocked_dio(inode);
5026 inode_dio_wait(inode);
5027
dab291af 5028 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5029
5030 /*
5031 * OK, there are no updates running now, and all cached data is
5032 * synced to disk. We are now in a completely consistent state
5033 * which doesn't have anything in the journal, and we know that
5034 * no filesystem updates are running, so it is safe to modify
5035 * the inode's in-core data-journaling state flag now.
5036 */
5037
5038 if (val)
12e9b892 5039 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5040 else {
5041 jbd2_journal_flush(journal);
12e9b892 5042 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5043 }
617ba13b 5044 ext4_set_aops(inode);
ac27a0ec 5045
dab291af 5046 jbd2_journal_unlock_updates(journal);
17335dcc 5047 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5048
5049 /* Finally we can mark the inode as dirty. */
5050
9924a92a 5051 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5052 if (IS_ERR(handle))
5053 return PTR_ERR(handle);
5054
617ba13b 5055 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5056 ext4_handle_sync(handle);
617ba13b
MC
5057 ext4_journal_stop(handle);
5058 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5059
5060 return err;
5061}
2e9ee850
AK
5062
5063static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5064{
5065 return !buffer_mapped(bh);
5066}
5067
c2ec175c 5068int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5069{
c2ec175c 5070 struct page *page = vmf->page;
2e9ee850
AK
5071 loff_t size;
5072 unsigned long len;
9ea7df53 5073 int ret;
2e9ee850 5074 struct file *file = vma->vm_file;
496ad9aa 5075 struct inode *inode = file_inode(file);
2e9ee850 5076 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5077 handle_t *handle;
5078 get_block_t *get_block;
5079 int retries = 0;
2e9ee850 5080
8e8ad8a5 5081 sb_start_pagefault(inode->i_sb);
041bbb6d 5082 file_update_time(vma->vm_file);
9ea7df53
JK
5083 /* Delalloc case is easy... */
5084 if (test_opt(inode->i_sb, DELALLOC) &&
5085 !ext4_should_journal_data(inode) &&
5086 !ext4_nonda_switch(inode->i_sb)) {
5087 do {
5088 ret = __block_page_mkwrite(vma, vmf,
5089 ext4_da_get_block_prep);
5090 } while (ret == -ENOSPC &&
5091 ext4_should_retry_alloc(inode->i_sb, &retries));
5092 goto out_ret;
2e9ee850 5093 }
0e499890
DW
5094
5095 lock_page(page);
9ea7df53
JK
5096 size = i_size_read(inode);
5097 /* Page got truncated from under us? */
5098 if (page->mapping != mapping || page_offset(page) > size) {
5099 unlock_page(page);
5100 ret = VM_FAULT_NOPAGE;
5101 goto out;
0e499890 5102 }
2e9ee850
AK
5103
5104 if (page->index == size >> PAGE_CACHE_SHIFT)
5105 len = size & ~PAGE_CACHE_MASK;
5106 else
5107 len = PAGE_CACHE_SIZE;
a827eaff 5108 /*
9ea7df53
JK
5109 * Return if we have all the buffers mapped. This avoids the need to do
5110 * journal_start/journal_stop which can block and take a long time
a827eaff 5111 */
2e9ee850 5112 if (page_has_buffers(page)) {
f19d5870
TM
5113 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5114 0, len, NULL,
5115 ext4_bh_unmapped)) {
9ea7df53 5116 /* Wait so that we don't change page under IO */
1d1d1a76 5117 wait_for_stable_page(page);
9ea7df53
JK
5118 ret = VM_FAULT_LOCKED;
5119 goto out;
a827eaff 5120 }
2e9ee850 5121 }
a827eaff 5122 unlock_page(page);
9ea7df53
JK
5123 /* OK, we need to fill the hole... */
5124 if (ext4_should_dioread_nolock(inode))
5125 get_block = ext4_get_block_write;
5126 else
5127 get_block = ext4_get_block;
5128retry_alloc:
9924a92a
TT
5129 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5130 ext4_writepage_trans_blocks(inode));
9ea7df53 5131 if (IS_ERR(handle)) {
c2ec175c 5132 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5133 goto out;
5134 }
5135 ret = __block_page_mkwrite(vma, vmf, get_block);
5136 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5137 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5138 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5139 unlock_page(page);
5140 ret = VM_FAULT_SIGBUS;
fcbb5515 5141 ext4_journal_stop(handle);
9ea7df53
JK
5142 goto out;
5143 }
5144 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5145 }
5146 ext4_journal_stop(handle);
5147 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5148 goto retry_alloc;
5149out_ret:
5150 ret = block_page_mkwrite_return(ret);
5151out:
8e8ad8a5 5152 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5153 return ret;
5154}